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1 Introduction

In the coming years the production and decay of Higgs bosons will play a central role in

many analyses performed at the Large Hadron Collider (LHC). A crucial ingredient is often

provided by the matching coefficients which govern the coupling of Higgs bosons to gluons.

The corresponding effective Lagrange density is valid in the heavy top quark limit which

provides a good approximation for Higgs boson decays to gluons and the total production

cross section of a single Higgs boson. For less inclusive processes the applicability of the

effective theory approach is limited to parts of the phase space. This is also true for Higgs

boson pair production.

The straightforward way to compute the matching coefficients for the coupling of

gluons to one and two Higgs boson (denoted by CH and CHH , respectively) considers the

corresponding Green’s functions with two gluons and one or two Higgs bosons as external

particles. However, CH and CHH can also be computed using low-energy theorems (LETs).

They relate the matching coefficients to the decoupling constant relating the strong coupling

constant defined in five- and six-flavour QCD, ζαs . For the case of CH the LET has been

derived in ref. [1], where an essential ingredient is the effective Lagrangian containing a

complete basis of all scalar dimension-four operators. On the other hand, for CHH a LET

has only been proposed very recently in ref. [2] without providing a strict derivation. Note

that both for CH and CHH the corresponding LET can be used to obtain (n + 1)-loop

results from the n-loop expression for ζαs .
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Two-loop results for CH have been known since the beginning of the eighties [3, 4]

and at three-loop order CH was obtained for the first time from a direct calculation of the

Higgs-gluon vertex in the large-mt limit in ref. [5] (see also ref. [6]). Later the result was

confirmed with the help of the LET [5] (see also ref. [7]). Using the three-loop decoupling

constant for αs, the LET in combination with the four-loop beta function [8, 9] even leads to

the four-loop result for CH . The same reasoning has been applied in refs. [10–12] to obtain

the five-loop prediction for CH , where an important input is provided by (the fermionic

part of) the five-loop beta function which was computed in refs. [13–15]. To date there is

no direct calculation of CH at four loops. Note that the existing four- and five-loop results

are only available for SU(3).

For CHH the situation is as follows: at one- and two-loop order CHH and CH are

equal. At three-loop order a direct calculation has been performed in ref. [16] by matching

the full theory to the effective theory (see eq. (2.5) below). The result has been confirmed

via the LET from ref. [2], which can be used to derive the four-loop result for CHH .1

The main purpose of this paper is the direct calculation of CHH to four-loop order, thus

providing an independent check for the LET from ref. [2]. In order to gain confidence in

our computer programs we first compute the matching coefficient CH at four-loop order by

considering the Higgs-gluon-gluon vertex. We compare our result to the LET expressions in

the literature [5, 10–12]. All of our results are expressed in general SU(Nc) colour factors.

The essential ingredient for the LETs is the QCD decoupling constant for the strong

coupling. For this reason we re-visit the calculation of all four-loop decoupling constants

and provide results for a generic SU(Nc) gauge group. Currently the four-loop expression

for ζαs is only available for Nc = 3 from refs. [10, 11]. The result for ζαs can be used to

obtain CH and CHH to five-loop order, again for general SU(Nc) colour factors.

The remainder of this paper is organized as follows: in section 2 we fix our notation and

introduce the decoupling constants and the effective Lagrange density for the Higgs-gluon

coupling. In sections 3 and 4 we present our results for the decoupling relations and Wilson

coefficients, respectively. We discuss in detail the extraction of the coupling of two Higgs

bosons to gluons (CHH) and in particular the subtleties in the matching procedure due to

the renormalization of products of operators. Our findings are summarized in section 5.

In the appendix we collect analytic results for the decoupling constants.

2 Technicalities

For convenience of the reader and to fix our notation we repeat in this section the definition

of the decoupling constants in QCD and the Wilson coefficients in the effective Lagrange

density describing Higgs-gluon couplings. For a detailed discussion we refer to ref. [1]. We

will work in the MS scheme throughout this paper, except for the heavy quark mass which

we renormalize both in the MS and on-shell scheme. The MS counterterms are needed

up to four-loop order (see, e.g., ref. [17]) and the renormalization constant for the MS to

on-shell conversion for the heavy quark mass to three loops [18–21].

1Note, however, that no explicit four-loop result for CHH is given in [2].
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2.1 Decoupling constants

The bare and renormalized parameters and fields of the QCD Lagrangian are connected

by renormalization constants defined through

g0
s = µεZggs, m0

q = Zmmq, ξ0 − 1 = Z3(ξ − 1) ,

A0,a
µ =

√
Z3A

a
µ, ψ0

q =
√
Z2ψq, c0,a =

√
Z̃3c

a . (2.1)

Here gs is the QCD gauge coupling with αs = g2
s/(4π) being the strong coupling constant,

µ is the renormalization scale, D = 4 − 2ε the space-time dimension and ξ the gauge

parameter with ξ = 0 corresponding to the Feynman and ξ = 1 to the Landau gauge.

The gluon field is given by Aaµ, ψq is the quark field of flavour q with mass mq and ca is

the ghost field. Bare quantities are denoted by the superscript “0”. The renormalization

constants ZX are needed up to O(α4
s) [8, 9, 17, 22, 23] for our purposes.

In the following we assume a strong hierarchy in the quark masses and integrate out

a heavy quark with mass mh from QCD with nf active quark flavours.2 The resulting

effective Lagrangian has the same form as the original QCD Lagrangian. However, it only

has nl = nf−1 active quark flavours and thus only depends on the light degrees of freedom.

The parameters and fields in the effective nl-flavour and full nf -flavour theory are related

via the so-called (bare) decoupling constants

g0 (nl)
s = ζ0

gg
0 (nf )
s , m0 (nl)

q = ζ
0 (nf )
m m0

q , ξ0 (nl) − 1 = ζ0
3 (ξ0 (nf ) − 1),

A0 (nl)
µ =

√
ζ0

3A
0 (nf )
µ , ψ0 (nl)

q =
√
ζ0

2ψ
0 (nf )
q , c0 (nl) =

√
ζ̃0

3c
0 (nf ) , (2.2)

where the bracketed superscripts denote the number of active quark flavours. For simplicity

we refrain from showing the colour indices for the fields. The different decoupling constants

ζX contain the radiative effects of the heavy quark and can be computed in a perturbative

series in αs.

One obtains the renormalized decoupling constants by replacing the bare parameters

and fields in eq. (2.2) by renormalized counterparts using eq. (2.1). As an example, consider

the gauge coupling where the renormalized decoupling constant is given by

g(nl)
s =

Z
(nf )
g

Z
(nl)
g

ζ0
gg

(nf )
s = ζgg

(nf )
s . (2.3)

Note that Z
(nl)
g depends on g

(nl)
s which has to be transformed to g

(nf )
s using eq. (2.3). Thus,

it is natural to apply eq. (2.3) iteratively, order by order in gs, to arrive at four loops. Note

that the loop corrections to the renormalization constants only contain poles whereas the

decoupling constants also contain positive powers in ε. Thus, Z
(nl)
g expressed in terms of

g
(nf )
s also contains positive powers in ε.

For later convenience we define the decoupling constant for the strong coupling constant

αs as

ζαs = ζ2
g . (2.4)

2The simultaneous decoupling of two heavy quarks with different masses is discussed in ref. [24] up to

three-loop order.
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2.2 Wilson coefficients for Higgs boson production and decay

In the Standard Model, the coupling of a Higgs boson to gluons is mainly mediated by top

quark loops and thus in the following we have nf = 6 and nl = 5 for the full and effective

theories, respectively. The effective Lagrange density which describes the coupling of one

or two Higgs boson to gluons is obtained after integrating out the top quark and is given by

Leff = −H
v
C0
HO0

1 +
1

2

(
H

v

)2

C0
HHO0

1 , (2.5)

where O1 = GaµνG
µν,a/4, with Gaµν being the gluon field strength tensor, is the only phys-

ical operator one has to consider. It is defined in the (nl = 5)-flavour effective theory. The

Wilson coefficients C0
H and C0

HH comprise of the radiative effects of the top quark, which

is in analogy to the decoupling constants introduced in eq. (2.2).

The renormalization of O1 has been discussed in detail in ref. [25] (see also ref. [26]).

In fact, the renormalization constant ZO1 can be expressed through the QCD beta function

through all orders in perturbation theory [25]

ZO1 =
1

1− β(α
(5)
s )/ε

, (2.6)

with

β(αs) = −
(αs
π

)2∑
n≥0

βn

(αs
π

)n
,

β0 =
1

4

(
11

3
CA −

4

3
TFnf

)
,

β1 =
1

16

(
34

3
C2
A −

20

3
CATFnf − 4CFTFnf

)
,

β2 =
1

64

(
2857

54
C3
A −

1415

27
C2
ATFnf −

205

9
CACFTFnf + 2C2

FTFnf

+
158

27
CAT

2
Fn

2
f +

44

9
CFT

2
Fn

2
f

)
. (2.7)

ZO1 can be used to obtain the renormalized Wilson coefficients via the relation

C0
XO0

1 =
C0
X

ZO1

ZO1O0
1 = CXO1 , (2.8)

with X ∈ {H,HH}.

2.3 Low energy theorems

There is a close connection between the decoupling constants from subsection 2.1 and the

Wilson coefficients from 2.2 which is established by the so-called LETs. In [1] a LET

relating ζαs and CH has been derived

CH = −mt

ζαs

∂

∂mt
ζαs , (2.9)
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where we have adapted the prefactors to match our conventions. Beyond three loops CH
has only been obtained by using eq. (2.9). In this work we perform an explicit calculation

of CH for general SU(Nc) colour factors, to four-loop order.

Recently, in ref. [2] a LET has been proposed for CHH which reads

CHH =
m2
t

ζαs

∂2

∂m2
t

ζαs − 2

(
mt

ζαs

∂

∂mt
ζαs

)2

. (2.10)

It provides the correct result for CHH at three-loop order [16]; in section 4 we perform an

explicit calculation of CHH and show that eq. (2.10) also works at four loops.

Note that in QCD, ζαs depends on mt only via logarithms of the form log(µ2/m2
t ).

Thus, it is possible to reconstruct the mt dependence of CHH at (n + 1)-loop order from

the n-loop result, by using the renormalization group equations. Using the LETs this

immediately leads to the (n+ 1)-loop results for CH and CHH .

2.4 Computational setup

For our calculation we use a well tested, automated setup, starting with the generation

of Feynman diagrams using qgraf [27]. The output is processed by q2e and exp [28–30],

which generate FORM [31] code for the amplitudes and map the diagrams onto individual

integral families. We then compute the colour factors of the diagrams using color [32]

and combine amplitudes with the same colour factor and integral family from so-called

superdiagrams, so that we can process them together.

After processing Lorentz structures and expanding in the external momenta, we are left

with single-scale tensor tadpole integrals. We perform a tensor decomposition and reduce

the remaining, scalar integrals to master integrals, using LiteRed [33, 34] and FIRE5 [35].

With the help of the FindRules command of FIRE5 we identify equivalent master integrals

from different integral families.

The master integrals are all known to sufficiently high order in ε [36] (see also [37, 38]).

The missing ε3 term of the integral J6,2 (in the notation of [36]) was provided in [39].

As a cross-check, we also computed the ggH amplitude and the decoupling constants

to three loops using MATAD [40].

3 Calculation of decoupling constants

We aim to calculate all QCD decoupling constants up to four-loop order with general

SU(Nc) colour factors. They are obtained from ζ0
3 , ζ̃0

3 , ζ0
2 and ζ0

m as introduced in eq. (2.2)

and the decoupling constant of the ghost-gluon vertex, ζ̃0
1 . The decoupling constant for

the gauge coupling is then given by

ζ0
g =

ζ̃0
1

ζ̃0
3

√
ζ0

3

. (3.1)
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# loops 1 2 3 4

Π0,h
G 1 7 189 6 245

Π0,h
c — 1 25 765

Σ0,h
V/S — 1 25 765

ΓGcc — 5 228 10 118

Table 1. Number of diagrams contributing to the decoupling constants up to four loops.

The remaining decoupling constants for the gluon-quark vertex (ζ0
1 ), the three-gluon vertex

(ζ0
3g) and four-gluon-vertex (ζ0

4g) are obtained with the help of the Ward identities

ζ0
1 = ζ0

g ζ
0
2

√
ζ0

3 ,

ζ0
3g = ζ0

g (ζ0
3 )3/2 ,

ζ0
4g = (ζ0

g )2(ζ0
3 )2 . (3.2)

The bare decoupling constants ζ0
3 , ζ̃0

3 , ζ0
2 and ζ0

m are obtained from the hard part of

the gluon and ghost vacuum polarizations ΠG(p2) and Πc(p
2), as well as the vector and

scalar parts of the light quark self-energy ΣV (p2) and ΣS(p2), as [1]

ζ0
3 = 1 + Π0,h

G (0) ,

ζ̃0
3 = 1 + Π0,h

c (0) ,

ζ0
2 = 1 + Σ0,h

V (0) ,

ζ0
m =

1− Σ0,h
S (0)

1 + Σ0,h
V (0)

. (3.3)

To obtain the decoupling constants we only need the leading term in the limit mh →
∞. Thus, we can Taylor expand in the external momenta and set them to zero after

factoring out the tree-level tensor structure. This reduces the integrals to single-scale

tadpole integrals. In analogy to eq. (3.3), ζ̃0
1 is obtained from the ghost-gluon vertex

ζ̃0
1 = 1 + ΓGcc(p, q)

∣∣∣
p,q→0

, (3.4)

where p and q are the four-momenta of the ghost and gluon, respectively. After projecting

out the tree-level contribution both p and q are set to zero.

In table 1 we present the number of diagrams generated by qgraf for the individual

Green’s functions. Sample four-loop Feynman diagrams are shown in figure 1. We perform

the calculation keeping the full dependence on the gauge parameter ξ which drops out for

ζ0
αs and ζ0

m, as expected on general grounds. All other decoupling constants have an explicit

ξ dependence. At three-loop order our results agree with those of ref. [1] and at four loops

we reproduce the results for ζαs from refs. [10, 11] and ζm from [41] after specifying Nc = 3.

– 6 –
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Figure 1. Sample four-loop diagrams contributing to the decoupling constants defined in eqs. (3.3)

and (3.4). Solid, curly and dashed lines refer to fermions, gluons and ghosts, respectively.

The results for ζαs and ζm as well as the leading terms of the other decoupling con-

stants can be found in appendix A. We provide the results for all renormalized decoupling

constants in computer readable form in the supplementary material attached to this pa-

per. For convenience we offer several options concerning the renormalization scheme of the

heavy quark (MS vs. on-shell) and αs (nf vs. nl active flavours).

4 Direct calculation of the matching coefficients

This section is devoted to the direct calculation of CH and CHH defined in the effective

Lagrange density in eq. (2.5). We use the notation for the matching equations introduced in

ref. [16] and compute the ggH and ggHH amplitudes in the limit where both the effective

and the full theory are valid, i.e. for small external momenta as compared to the top quark

mass. This leads again to single-scale vacuum integrals up to four-loop order. In the

following we use αs ≡ α(5)
s (µ) if not otherwise indicated.

4.1 CH

The Wilson coefficient is obtained by comparing the ggH amplitude in the effective and

full theory which leads to the following matching formula

CHZO1Aeff
LO =

1

ζ0
3

Ah +O(1/mt) . (4.1)

On the full-theory side Ah denotes the hard part of the amplitude, which is obtained from

a Taylor expansion in the two external momenta. It is assumed that the top quark mass

and αs are renormalized using standard counterterms up to three loops and the factor 1/ζ0
3

takes care of the non-vanishing part of the gluon wave function renormalization. Due to

our choice of the kinematic variables there are only tree-level contributions on the effective-

theory side. Additionally, we have the renormalization constant of the effective operator,

ZO1 , and the sought-after (renormalized) matching coefficient CH , which is obtained by

dividing eq. (4.1) by ZO1 . Note that ZO1 depends on α
(5)
s whereas the quantities on the

r.h.s. depend on α
(6)
s . Before combining the various parts we use the decoupling constant

to transform the strong coupling constant on the r.h.s. to α
(5)
s . We first renormalize the

top quark mass in the MS scheme and transform to the on-shell scheme afterwards.

– 7 –
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# loops 1 2 3 4

ggH 2 23 657 23 251

ggHH 1PI 6 99 3 192 124 149

ggHH 1PR — 8 216 7 200

Table 2. Number of diagrams contributing to the Higgs-gluon amplitudes up to four loops.

Figure 2. Sample one-, two-, three- and four-loop diagrams contributing to the ggH amplitude.

Solid and curly lines refer to fermions and gluons, respectively. The external Higgs boson is repre-

sented by a dashed line.

The number of diagrams generated by qgraf for Ah is shown in table 2 and sample

Feynman diagrams are shown in figure 2. We begin by applying the projector

Pµν =
1

2− 2ε
(gµνq1 · q2 − qν1q

µ
2 − q

µ
1 q

ν
2 ) , (4.2)

where qµ1 and qν2 are the incoming four-momenta of the external gluons with polarization

vectors εµ(q1) and εν(q2). After tensor reduction we obtain the same kind of integral

families as for the decoupling constants of the previous section.

As before, we perform the calculation for generic SU(Nc) colour factors and full de-

pendence on the gauge parameter ξ, which drops out after summing all contributions to

Ah. We cast the final result for the Wilson coefficient CH in the form

CH = −2αs
3π

TF
∑
i=1

C
(i)
H

(αs
π

)(i−1)
, (4.3)

where the C(i) are given by

C
(1)
H = 1 , (4.4)

C
(2)
H =

5

4
CA −

3

4
CF , (4.5)

C
(3)
H =

1063

576
C2
A −

25

12
CACF −

5

96
CATF +

27

32
C2
F −

1

12
CFTF

+

[
7

16
C2
A −

11

16
CACF

]
ln

(
µ2

M2
t

)
+ nlTF

[
− 47

144
CA −

5

16
CF +

1

2
CF ln

(
µ2

M2
t

)]
,

(4.6)
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C
(4)
H = C3

A

(
110041

41472
− 1577

3072
ζ(3)

)
+ C2

ACF

(
−99715

6912
+

5105

512
ζ(3)

)
+ C2

ATF

(
−1081

3456
+

1

384
ζ(3)

)
+ CAC

2
F

(
2963

384
− 407

128
ζ(3)

)
+ CACFTF

(
4537

1728
− 115

64
ζ(3)

)
+ CAT

2
F

(
2

27
− 7

64
ζ(3)

)
− 471

128
C3
F

+ C2
FTF

(
− 5

12
+

13

32
ζ(3)

)
+ CFT

2
F

(
113

432
− 7

32
ζ(3)

)
+
dabcdR dabcdA

NATF

(
−2

3
+

13

2
ζ(3)

)
+
dabcdR dabcdR

NATF

(
11

12
− 2ζ(3)

)
+

[
1993

1152
C3
A −

275

72
C2
ACF −

55

576
C2
ATF +

99

64
CAC

2
F −

11

72
CACFTF

]
ln

(
µ2

M2
t

)
+

[
77

192
C3
A −

121

192
C2
ACF

]
ln2

(
µ2

M2
t

)
+ nl

dabcdR dabcdR

NATF

(
11

6
− 4ζ(3)

)
+ nlTF

[
C2
A

(
−12421

10368
− 151

256
ζ(3)

)
+ CACF

(
9605

2592
− 1145

384
ζ(3)

)

+ CATF

(
7

216
− 7

64
ζ(3)

)
+ C2

F

(
215

288
+

127

96
ζ(3)

)
+ CFTF

(
− 29

144
− 7

32
ζ(3)

)]

+ n2
l T

2
F

[
− 161

2592
CA −

677

1296
CF

]
+ nlTF

[
− 55

288
C2
A +

55

36
CACF +

5

144
CATF −

5

8
C2
F +

1

18
CFTF

]
ln

(
µ2

M2
t

)
+ n2

l T
2
F

[
5

144
CA +

1

18
CF

]
ln

(
µ2

M2
t

)
+ nlTF

[
− 7

48
C2
A +

11

16
CACF

]
ln2

(
µ2

M2
t

)
− 1

6
n2
lCFT

2
F ln2

(
µ2

M2
t

)
. (4.7)

ζ(n) is the Riemann ζ-function, evaluated at n, Mt is the on-shell top quark mass and the

SU(Nc) colour factors are given by

CA = Nc, CF =
N2
c − 1

2Nc
, TF =

1

2
,

dabcdR dabcdA

NA
=
Nc(N

2
c + 6)

48
,

dabcdR dabcdR

NA
=
N4
c − 6N2

c + 18

96N2
c

, (4.8)

with NA = N2
c − 1. Note that CH only contains ζ(3) as a transcendental constant while

Ah also contains other zeta-values and polylogarithms up to weight four. They cancel in

the combination with 1/ζ0
3 and only ζ(3) survives. After setting Nc = 3 our result is in

full agreement with the expression obtained with the help of the LET [1]. This can be

used to obtain the five-loop result with full colour structure. We refrain from showing

explicit results in the paper but include them in the supplementary material attached to

this article. Let us remark that the five-loop result contains zeta-values and polylogarithms

up to weight five.
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Figure 3. Tree-level contributions to the gg → HH amplitude in the effective theory. The blob

indicates the insertion of the operator O1. The left diagram is proportional to CHH , the one in the

middle to C2
H and the right diagram, which contains the trilinear Higgs coupling λ, to CH . The

amplitudes corresponding to the three Feynman diagrams are denoted by Aeff
LO,1PI, Aeff

LO,1PR,λ=0

and Aeff
LO,1PR,λ 6=0.

4.2 CHH

The matching procedure to obtain CHH is more involved than that of CH . First of all

there are three contributions on the effective-theory side which are shown in figure 3: a

one-particle irreducible (1PI) term proportional to CHH , a one-particle reducible (1PR)

term, which involves C2
H , and a term mediated by a virtual Higgs boson which splits into a

Higgs boson pair via the Higgs boson self-coupling λ. The latter is similar in nature to the

effective amplitude in the matching formula for CH . In fact, also on the full-theory side

this contribution involves diagrams which we already encountered in the computation of

CH . As mentioned in ref. [16] it is easy to see, that these diagrams exactly cancel between

the full and effective theory. Thus, the contributions relevant to extract CHH are the 1PI

and 1PR contribution with λ = 0.

The effective-theory side of the matching formula is obtained after renormalizing the

operators in the various contributions of figure 3. Whereas the left and right contributions

of figure 3 are both renormalized with a factor ZO1 , the term in the middle needs special

care. In fact, a naive renormalization with (ZO1)2 leads to uncanceled poles as has already

been observed in refs. [42, 43]. A careful analysis of the renormalization of the product of

two operators O1 has been performed in ref. [26] along the lines of [25]. It has been observed

that apart from the naive multiplicative renormalization a further term is needed which is

proportional to a single O1. Adapting the findings of ref. [26] to our notation one has

Aeff
(O1)2 = Z2

O1
Aeff

(O0
1)2 + ZL11Aeff

O0
1

(4.9)

where Aeff
O0

1
and Aeff

(O0
1)2 correspond to amplitudes with one and two operator insertions.

The renormalization constant ZL11 (where L stands for “linear”) is given by [26]

ZL11 =
1

ε

(
1− β(αs)

ε

)−2

α2
s

∂

∂αs

[
β(αs)

αs

]
. (4.10)

It has its first non-vanishing contribution at order α2
s. As we will see below, in our calcu-

lation we need the combination ZL11/ZO1 up to order α2
s which is given by

ZL11

ZO1

= −β1

ε

α2
s

(4π)2
+O(α3

s) . (4.11)
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Figure 4. Sample one-, two-, three- and four-loop diagrams contributing to Ah1PI in eq. (4.12).

Figure 5. Sample two-, three- and four-loop diagrams contributing to Ah1PR,λ=0 in eq. (4.12).

We are now in the position to write down the matching formula for CHH . Equating the

effective-theory side, which is basically given by figure 3, with the corresponding full-theory

amplitudes and taking into account eq. (4.9) leads to3

(CHHZO1 + C2
HZ

L
11)Aeff

LO,1PI + C2
HZ

2
O1
Aeff

LO,1PR,λ=0 + CHZO1Aeff
LO,1PR,λ 6=0

=
1

ζ0
3

(
Ah1PI +Ah1PR,λ=0 +Ah1PR,λ 6=0

)
+O(1/mt) , (4.12)

where sample Feynman diagrams contributing to Ah1PI and Ah1PR,λ=0 can be found in

figures 4 and 5, respectively. As already mentioned above, the contributions with λ 6= 0

cancel in eq. (4.12). Note that our matching formula differs from the one of ref. [16] by

the term proportional to ZL11 which contributes for the first time at four-loop order, since

both C2
H and ZL11 are of order α2

s.

Let us in the following discuss some features of the matching procedure. At one-loop

order the only non-zero contribution on the r.h.s. of eq. (4.12) is Ah1PI and one obtains

C
(1)
HH = C

(1)
H . This also holds at two-loops where the 1PR contributions on effective-

and full-theory side match exactly. A non-trivial interplay between Ah1PI and Ah1PR,λ=0 is

observed for the first time at three-loop order [16]. In fact the 1PI and 1PR contributions

are not separately finite any more and the poles only cancel in the sum. Starting from

this order CHH is different from CH . While the 1PI and 1PR contributions are separately

ξ-independent at three loops, for the four-loop colour structure C2
ATF it only drops out in

the proper combination.

We computed the 1PI and 1PR amplitudes in the full theory separately and keep in

both cases terms linear in the gauge parameter ξ. For both contributions it is important

3When applying eq. (4.9) to Higgs boson pair production we have Aeff
(O0

1)2 = Aeff
LO,1PR,λ=0 and

Aeff
O0

1
= Aeff

LO,1PI.
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to keep the three external momenta different from zero and different from each other in

order to avoid the mixing with unphysical operators [25]. The external momenta can be

set to zero after projection to the matching coefficient which is done with the help of

Pµν =
1

2− 4ε

(
qν1q

µ
2 q33

2q12q2
T

− qν1q
µ
2

2q12
− qν1q

µ
3 q23

q12q2
T

− qµ2 q
ν
3q13

q12q2
T

+
qµ3 q

ν
3

q2
T

+ gµν
)

− qν1q
µ
2 q33

4q12q2
T

− qν1q
µ
2

4q12
+
qν1q

µ
3 q23

2q12q2
T

+
qµ2 q

ν
3q13

2q12q2
T

− qµ3 q
ν
3

2q2
T

, (4.13)

where qij = qi · qj and q2
T = 2q13q23/q12 − q33. qµ1 and qν2 are the incoming four-momenta

of the external gluons with polarization vectors εµ(q1) and εν(q2) and q3 is the incoming

four-momentum of one of the Higgs bosons.

The number of diagrams for the 1PI amplitude can be found in table 2 and sample

diagrams are shown in figure 4. Once the projector of eq. (4.13) is applied one obtains

scalar expressions which still contain scalar products of q1, q2 and q3 and loop momenta

in the numerator. After solving the corresponding tensor vacuum integrals the resulting

scalar products qij cancel against the corresponding contributions with negative powers

from the projector and all external momenta can be set to zero.

The 1PR amplitude has been obtained in two different ways. First, we computed the

1PR diagrams up to four-loop order (see table 2 for the number of diagrams and figure 5

for typical Feynman diagrams) in analogy to the 1PI contribution. As a cross-check we

computed the 1PI parts of the 1PR contributions separately and constructed the n-loop

1PR ggHH amplitude from ggH amplitudes computed up to (n−1) loops. In this approach

one of the gluons in the ggH amplitude has to be off-shell, which leads to more non-

vanishing Lorentz structures. In practice, we computed the 1PI ggH amplitudes with open

Lorentz indices up to three loops. Full agreement has been found between the two methods.

We cast the final result for the Wilson coefficient CHH in the form

CHH = −2αs
3π

TF
∑
i=1

(
C

(i)
H + ∆

(i)
HH

)(αs
π

)(i−1)
, (4.14)

where the C
(i)
H are given in eq. (4.7) and the differences are given by

∆
(1)
HH = 0 ,

∆
(2)
HH = 0 ,

∆
(3)
HH =

7

8
C2
A −

11

8
CACF −

5

6
CATF +

1

2
CFTF + nlCFTF ,

∆
(4)
HH =

1993

576
C3
A −

1289

144
C2
ACF −

3191

864
C2
ATF +

165

32
CAC

2
F +

67

18
CACFTF +

5

72
CAT

2
F

− 3

2
C2
FTF +

1

9
CFT

2
F +

[
77

48
C3
A −

121

48
C2
ACF −

7

12
C2
ATF +

11

12
CACFTF

]
ln

(
µ2

M2
t

)
+ nlTF

[
− 55

144
C2
A +

55

18
CACF +

109

216
CATF −

11

4
C2
F +

19

36
CFTF

]
+ n2

l T
2
F

[
5

72
CA +

1

9
CF

]
+ nlTF

[
− 7

12
C2
A +

11

4
CACF −

2

3
CFTF

]
ln

(
µ2

M2
t

)
− 2

3
n2
lCFT

2
F ln

(
µ2

M2
t

)
. (4.15)
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The three-loop result can be found in ref. [16]. Our four-loop result ∆
(4)
HH agrees with the

expression from eq. (2.10) [2]. We can thus confirm the validity of the LET for CHH [2]

through four loops. In analogy to CH also for CHH it is possible to construct the five-

loop approximation for general colour structure. The corresponding results can be found

in computer readable form in the supplementary material attached to this paper. After

setting Nc = 3 we agree with the numerical results given in ref. [2], both for MS and

on-shell top quark mass.

5 Conclusions

We perform for the first time a direct four-loop computation of the Wilson coefficients

CH and CHH of the effective operators which couple gluons to one and two Higgs bosons,

respectively. CH and CHH enter, as building blocks, various physical quantities, e.g., the

next-to-next-to-next-to-leading order predictions for single [44, 45] and double Higgs boson

production.4 Our results for CH and CHH agree with the expression obtained by means

of LETs. Furthermore, we compute all QCD decoupling constants up to four-loop order.

Where possible we compare with the literature and find agreement after specifying the

colour factors. All our results are expressed for general SU(Nc) colour factors whereas the

four-loop expressions in the literature are only available for Nc = 3.

A major result of this paper is the derivation of the matching equation (4.12) which

receives a non-trivial renormalization contribution from the effective-theory amplitude with

two insertions of the operator O1. The new term contributes for the first time at four-loop

order and is essential to obtain a finite result.

For the convenience of the reader we collect all analytic results obtained in this paper

in the supplementary material attached to this article.
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A Decoupling constants

In this appendix we collect the results for the decoupling constants for general SU(Nc)

colour factors. We provide results for ζαs and ζm up to four loops and show for all other

ζ constants the expressions for the first non-vanishing loop-order. Computer readable

expressions up to four loops can be found in the supplementary material attached to this

paper. Our results read

ζX = 1 +
∑
i=1

ζ
(i)
X

(
α

(nf )
s

π

)i
, (A.1)

4See also the recent paper [46] where two-loop massless four-point amplitudes have been computed, a

further building block to next-to-next-to-next-to-leading order double Higgs boson production.
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where

ζ(1)
αs =−1

3
TF ln

(
µ2

m2

)
,

ζ(2)
αs =

2

9
CATF−

13

48
CFTF +

(
− 5

12
CATF +

1

4
CFTF

)
ln

(
µ2

m2

)
+

1

9
T 2
F ln2

(
µ2

m2

)
,

ζ(3)
αs =C2

ATF

(11347

20736
− 5

1536
ζ(3)

)
+CACFTF

(2999

2592
− 1273

768
ζ(3)

)
+CAT

2
F

( 245

5184

− 7

128
ζ(3)

)
+C2

FTF

(
− 97

288
+

95

192
ζ(3)

)
+CFT

2
F

( 103

1296
− 7

64
ζ(3)

)
+nlTF

[
− 1

2592
CATF−

41

162
CFTF

]
+

[
− 1063

1728
C2
ATF +

25

36
CACFTF−

113

864
CAT

2
F

− 9

32
C2
FTF +

5

24
CFT

2
F

]
ln

(
µ2

m2

)
+

[
− 7

96
C2
ATF +

11

96
CACFTF +

25

72
CAT

2
F

− 5

24
CFT

2
F

]
ln2

(
µ2

m2

)
− 1

27
T 3
F ln3

(
µ2

m2

)
+nlTF

[
47

432
CATF +

5

48
CFTF

]
ln

(
µ2

m2

)
− 1

12
nlCFT

2
F ln2

(
µ2

m2

)
,

ζ(4)
αs =C3

ATF

(14060183

13063680
− 4663

630
Li5

(
1

2

)
+

24153

2240
Li4

(
1

2

)
+

8051

17920
ln4(2)

+
4663

75600
ln5(2)+

377777

40320
ζ(5)− 6668653

645120
ζ(4)− 70841

10080
ζ(4) ln(2)+

1331653

215040
ζ(3)

− 24153

8960
ζ(2) ln2(2)− 4663

7560
ζ(2) ln3(2)

)
+C2

ACFTF

(69024559

10450944
+

8674

315
Li5

(
1

2

)
− 11

105
Li4

(
1

2

)
− 11

2520
ln4(2)− 4337

18900
ln5(2)− 1411867

40320
ζ(5)+

4919

8960
ζ(4)

+
280261

10080
ζ(4) ln(2)− 1639301

193536
ζ(3)+

11

420
ζ(2) ln2(2)+

4337

1890
ζ(2) ln3(2)

)
+C2

AT
2
F

(
− 6301303

65318400
− 8099

1440
Li4

(
1

2

)
− 8099

34560
ln4(2)+

5

144
ζ(5)+

30103

5120
ζ(4)

− 18564121

4838400
ζ(3)+

8099

5760
ζ(2) ln2(2)

)
+CAC

2
FTF

(
− 556181

145152
− 14458

315
Li5

(
1

2

)
− 39521

560
Li4

(
1

2

)
− 39521

13440
ln4(2)+

7229

18900
ln5(2)+

1214657

20160
ζ(5)+

3818767

53760
ζ(4)

− 13991

315
ζ(4) ln(2)− 1990813

48384
ζ(3)+

39521

2240
ζ(2) ln2(2)− 7229

1890
ζ(2) ln3(2)

)
+CACFT

2
F

(12072043

8164800
+

1457

90
Li4

(
1

2

)
+

1457

2160
ln4(2)− 5

24
ζ(5)− 24673

1440
ζ(4)

+
8133593

806400
ζ(3)− 1457

360
ζ(2) ln2(2)

)
+CAT

3
F

( 6641

1306368
− 545

18144
ζ(3)

)
+C3

FTF

(37441

34560
+

256

15
Li5

(
1

2

)
+

1919

45
Li4

(
1

2

)
+

1919

1080
ln4(2)− 32

225
ln5(2)

− 3429

160
ζ(5)− 58001

1440
ζ(4)+

212

15
ζ(4) ln(2)+

7549

320
ζ(3)− 1919

180
ζ(2) ln2(2)
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+
64

45
ζ(2) ln3(2)

)
+C2

FT
2
F

(2337647

1036800
+

874

45
Li4

(
1

2

)
+

437

540
ln4(2)− 29737

1440
ζ(4)

+
123149

10800
ζ(3)− 437

90
ζ(2) ln2(2)

)
+CFT

3
F

(
− 610843

3265920
+

661

3780
ζ(3)

)
+
dabcdR dabcdA

NA

( 6617

30240
+

7496

105
Li5

(
1

2

)
+

3988

105
Li4

(
1

2

)
+

997

630
ln4(2)− 937

1575
ln5(2)

− 274067

3360
ζ(5)− 194179

6720
ζ(4)+

49661

840
ζ(4) ln(2)+

322631

20160
ζ(3)− 997

105
ζ(2) ln2(2)

+
1874

315
ζ(2) ln3(2)

)
+
dabcdR dabcdR

NA

(
− 2411

5040
+

73

6
Li4

(
1

2

)
+

73

144
ln4(2)+

5

12
ζ(5)

− 2189

192
ζ(4)+

6779

1120
ζ(3)− 73

24
ζ(2) ln2(2)

)
+nl

[
C2
AT

2
F

(
− 252017

373248
− 5

16
Li4

(
1

2

)
− 5

384
ln4(2)+

5

72
ζ(5)− 59

512
ζ(4)

+
11813

27648
ζ(3)+

5

64
ζ(2) ln2(2)

)
+CACFT

2
F

(
− 35455

62208
+

143

72
Li4

(
1

2

)
+

143

1728
ln4(2)

− 9359

2304
ζ(4)+

45287

13824
ζ(3)− 143

288
ζ(2) ln2(2)

)
+CAT

3
F

( 4171

62208
+

1

12
Li4

(
1

2

)
+

1

288
ln4(2)− 49

384
ζ(4)− 59

3456
ζ(3)− 1

48
ζ(2) ln2(2)

)
+C2

FT
2
F

(
− 19

324
− 49

18
Li4

(
1

2

)
− 49

432
ln4(2)+

1453

576
ζ(4)− 1955

1728
ζ(3)+

49

72
ζ(2) ln2(2)

)
+CFT

3
F

(
− 8663

93312

+
1

6
Li4

(
1

2

)
+

1

144
ln4(2)− 49

192
ζ(4)+

77

432
ζ(3)− 1

24
ζ(2) ln2(2)

)
+
dabcdR dabcdR

NA

(
− 103

216
+

5

6
ζ(5)+

1

2
ζ(4)− 131

72
ζ(3)

)]

+n2
l

[
CAT

3
F

(
− 841

62208
− 5

216
ζ(3)

)
+CFT

3
F

(
− 31147

93312
+

53

216
ζ(3)

)]

+

[
C3
ATF

(
− 110041

124416
+

1577

9216
ζ(3)

)
+C2

ACFTF

(105763

20736
− 5105

1536
ζ(3)

)
+C2

AT
2
F

(
− 2093

3888
+

1

768
ζ(3)

)
+CAC

2
FTF

(
− 3491

1152
+

407

384
ζ(3)

)
+CACFT

2
F

(
− 8875

7776

+
1963

1152
ζ(3)

)
+CAT

3
F

(
− 437

7776
+

7

96
ζ(3)

)
+

157

128
C3
FTF +C2

FT
2
F

(
+

277

1728
− 67

144
ζ(3)

)
+CFT

3
F

(
− 545

3888
+

7

48
ζ(3)

)
+
dabcdR dabcdA

NA

(2

9
− 13

6
ζ(3)

)
+
dabcdR dabcdR

NA

(
− 11

36
+

2

3
ζ(3)

)]
ln

(
µ2

m2

)
+

[
− 1993

6912
C3
ATF +

1289

1728
C2
ACFTF

+
1027

1152
C2
AT

2
F−

55

128
CAC

2
FTF−

53

54
CACFT

2
F +

49

864
CAT

3
F +

3

8
C2
FT

2
F

− 17

144
CFT

3
F

]
ln2

(
µ2

m2

)
+

[
− 77

1728
C3
ATF +

121

1728
C2
ACFTF +

35

432
C2
AT

2
F
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− 55

432
CACFT

2
F−

65

324
CAT

3
F +

13

108
CFT

3
F

]
ln3

(
µ2

m2

)
+

1

81
T 4
F ln4

(
µ2

m2

)

+nl

[
C2
AT

2
F

(12421

31104
+

151

768
ζ(3)

)
+CACFT

2
F

(
− 9605

7776
+

1145

1152
ζ(3)

)
+CAT

3
F

(
− 41

3888

+
7

192
ζ(3)

)
+C2

FT
2
F

( 73

864
− 127

288
ζ(3)

)
+CFT

3
F

( 917

3888
+

7

96
ζ(3)

)
+
dabcdR dabcdR

NA

(
− 11

18

+
4

3
ζ(3)

)]
ln

(
µ2

m2

)
+n2

l

[
161

7776
CAT

3
F +

677

3888
CFT

3
F

]
ln

(
µ2

m2

)
+nl

[
55

1728
C2
AT

2
F

− 55

216
CACFT

2
F−

11

96
CAT

3
F +

11

48
C2
FT

2
F−

49

432
CFT

3
F

]
ln2

(
µ2

m2

)
+n2

l

[
− 5

864
CAT

3
F

− 1

108
CFT

3
F

]
ln2

(
µ2

m2

)
+nl

[
7

432
C2
AT

2
F−

11

144
CACFT

2
F +

5

54
CFT

3
F

]
ln3

(
µ2

m2

)
+

1

54
n2
lCFT

3
F ln3

(
µ2

m2

)
, (A.2)

ζ(1)
m = 0 ,

ζ(2)
m =

89

288
CFTF−

5

24
CFTF ln

(
µ2

m2

)
+

1

8
CFTF ln2

(
µ2

m2

)
,

ζ(3)
m =CACFTF

(16627

15552
−2Li4

(
1

2

)
− 1

12
ln4(2)+

31

16
ζ(4)− 629

576
ζ(3)+

1

2
ζ(2) ln2(2)

)
+C2

FTF

(
− 683

576
+4Li4

(
1

2

)
+

1

6
ln4(2)− 11

4
ζ(4)+

57

32
ζ(3)−ζ(2) ln2(2)

)
+CFT

2
F

(
− 1685

7776
+

7

18
ζ(3)

)
+nlCFT
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F

(1327

3888
− 2

9
ζ(3)

)
+
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CACFTF

( 5
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− 3

4
ζ(3)

)
+C2

FTF

(
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64
+

3

4
ζ(3)

)
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108
CFT

2
F

]
ln

(
µ2

m2

)
+

[
29

96
CACFTF−

1

4
C2
FTF

+
5

72
CFT

2
F

]
ln2

(
µ2

m2

)
+

[
11

144
CACFTF−

1

18
CFT

2
F

]
ln3

(
µ2

m2

)
− 53

144
nlCFT

2
F ln
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and

ζ
(2)
1 =

5

96
CFTF +

89

1152
CATF −

(
1

8
CFTF +

5

96
CATF

)
ln

(
µ2

m2

)
+

1

32
CATF ln2

(
µ2

m2

)
,

(A.4)

ζ
(2)
2 =

5

96
CFTF −

1

8
CFTF ln

(
µ2

m2

)
, (A.5)

ζ
(1)
3 = −1

3
TF ln

(
µ2

m2

)
, (A.6)

ζ̃
(3)
1 =

(
1− ξ(nf )

)(
C2
ATF

(
2039

27648
− 1

48
ζ(3)

)
− 7

144
C2
ATF ln

(
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)
+

5
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ATF ln2

(
µ2

m2

)
− 1
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C2
ATF ln3

(
µ2

m2
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, (A.7)

ζ̃
(1)
3 = − 89

1152
CATF +

5

96
CATF ln

(
µ2

m2

)
− 1

32
CATF ln2

(
µ2

m2

)
, (A.8)

ζ
(1)
3g =

1

3
TF ln

(
µ2

m2

)
, (A.9)

ζ
(1)
4g =

1

3
TF ln

(
µ2

m2

)
. (A.10)

In these expression m ≡ m(µ) is the MS quark mass and NF = Nc. Other variants

with α
(nl)
s and the on-shell heavy quark mass can be found in the supplementary material

attached to this paper. The colour factors are defined in eq. (4.8).
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[7] M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the

LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

[8] T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop β-function in quantum

chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

[9] M. Czakon, The Four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710

(2005) 485 [hep-ph/0411261] [INSPIRE].
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