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Abstract 

Industry 4.0 refers to the incorporation of a variety of technologies and agents in order to improve 

the efficiency and reliability of manufacturing systems. The Internet of Things, cyber-physical 

systems, data analytics, machine learning, and robotics are some of the components of the fourth 

industrial revolution. Recent developments in the era of Industry 4.0 are intelligent manufacturing 

systems including intelligent machine tools and related sensors, as well as design and manufac-

turing software packages. In this context, accurate prediction of performance and reliability of the 

machine tool components such as cutting tools is necessary to make intelligent decisions for pro-

ducing of high-quality products. Predictive analytics as a branch of data analytics is widely used 

for modeling and prediction of machine tools and cutting tools performance metrics. The perfor-

mance metrics such as cutting force and tool life are important factors, which influence the 

productivity of manufacturing processes. However, actual predictive analytics techniques (e.g., 

regression and machine learning techniques) are mainly deterministic, so they do not take into 

account the inherent uncertainties and variabilities in the manufacturing process. 

The research in this dissertation proposes Bayesian-based predictive analytics for the modeling 

and prediction of the performance metrics in machining processes including cutting force, tool 

life and reliability, and tool wear growth. Bayesian inference is a probabilistic method, which can 

model and minimize manufacturing process uncertainties. Using Bayesian inference initial belief 

or expert opinion can be integrated into the experimental data to predict manufacturing variables. 

To illustrate the applicability of Bayesian-based predictive analytics to the performance metrics, 

Bayesian Markov Chain Monte Carlo approach is applied to four design and manufacturing pro-

cess applications. In the first application, probabilistic prediction of cutting force is performed, 

and the effect of cutting tools geometries are studied in an orthogonal turning process. The second 

application investigates prediction of cutting and ploughing forces using the probabilistic method 

in the turning process. The third application discusses probabilistic prediction of cutting tools life 

and reliability for different tool geometries and cutting data in the milling process. In the fourth 

application, the Bayesian inference is applied to predict tool wear growth using various tool rake 

angles in the milling process.  

The objective of this research is to propose a probabilistic modeling approach, which can quantify 

manufacturing process uncertainties, integrates machining models with experimental data to infer 
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the performance metrics, and finally incorporates historical data to current and future analysis in 

a sequential manner.  

The output of this research provides the applicability of Bayesian methodology to the area of 

product design and manufacturing process. In this regard, the probabilistic approach can reduce 

the cost of the expensive and hazardous experiments by incorporating past and current infor-

mation into the future analysis.  
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Kurzfassung  

Industrie 4.0 bezieht sich auf die Integration einer Vielzahl von Technologien, um die Effizienz 

und Zuverlässigkeit eines Fertigungssystems zu verbessern. Das Internet der Dinge, cyber-physi-

scheSysteme, Datenanalyse, Maschinelles Lernen und Robotik sind einige der Komponenten der 

vierten industriellen Revolution. Aktuelle Entwicklungen in diesem Kontext betreffen intelligente 

Fertigungssysteme, einschließlich intelligenter Werkzeugmaschinen und entsprechender Senso-

rik, sowie Design- und Fertigungssoftwarepakete. In diesem Zusammenhang ist eine exakte Vor-

hersage der Leistung und Zuverlässigkeit der Werkzeugmaschinenkomponenten, z. B. von 

Schneidwerkzeugen, erforderlich, um eine gleichbleibend hohe Fertigungsqualität sicherzustel-

len. Ein Schwerpunkt innerhalb der Datenanalyse ist die prädiktive Analyse. Diese wird häufig 

zur Modellierung und Vorhersage von Leistungs- und Zuverlässigkeitsindikatoren von Werk-

zeugmaschinen und der zugehörigen Fertigungsprozesse angewandt. Tatsächliche prädiktive 

Analysetechniken (z. B. Regressions- und Maschinelle Lerntechniken) sind jedoch hauptsächlich 

deterministisch, sodass sie die inhärenten Unsicherheiten und Variabilitäten des Fertigungspro-

zesses nicht berücksichtigen.  

In dieser Arbeit wird daher eine Bayesian-basierte prädiktive Analyse zur Modellierung und Vor-

hersage von Leistungs-, Zuverlässigkeits-, und Verschleißmerkmalen von Zerspanungsprozessen 

als Forschungsansatz vorgeschlagen. Die Bayes'sche Inferenz ist eine probabilistische Methode 

mit den Unsicherheiten des Fertigungsprozesses modelliert und anschließend minimiert werden 

können. Mit Hilfe dieser Methode können experimentelle Ergebnisse in Verbindung mit Exper-

tenwissen zur Prognose verschiedene Fertigungsgrößen genutzt werden. 

Um die Anwendbarkeit der Bayes'schen prädiktiven Analyse für die Leistungs- und Zuverlässig-

keitsindikatoren des Fertigungsprozesses zu demonstrieren, wird ein Bayes'sche Markov-Chain-

Monte-Carlo-Ansatz auf vier Design- und Fertigungsanwendungen genutzt.  

Zunächst wird eine probabilistische Vorhersage der Schnittkraft in einem orthogonalen Drehpro-

zess durchgeführt und der Effekt der Schneidwerkzeuggeometrien untersucht. Die zweite Anwen-

dung untersucht die Vorhersage von Schnitt- und Reibungskräften unter Verwendung eines er-

weiterten Modellierungsansatzes im Drehprozess. Die dritte Anwendung behandelt die 

probabilistische Vorhersage der Lebensdauer und Zuverlässigkeit von Schneidwerkzeugen für 

verschiedene Werkzeuggeometrien und Schnittdaten in einem Fräsprozess. Abschließend wird 
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der Ansatz angewendet, um das Werkzeugverschleißwachstum unter Verwendung verschiedener 

Werkzeugschneidwinkel beim Fräsprozess vorherzusagen. 

Das Ziel dieser Forschung ist es, einen probabilistischen Modellierungsansatz zu entwickeln, der 

Unsicherheiten in Fertigungsprozessen quantifiziert und Bearbeitungsmodelle mit experimentel-

len Daten integriert. Damit können Leistung, Lebensdauer und Zuverlässigkeit des Fertigungs-

prozesses abgeleitet werden. Zur Steigerung des Modellierungsgrad werden zusätzlich historische 

Daten in laufende und zukünftige Analysen integriert. 

Das Ergebnis dieser Forschung liefert die Anwendbarkeit der Bayes'schen Methodik für den Be-

reich des Produktdesigns und des Herstellungsprozesses. In dieser Hinsicht kann der probabilis-

tische Ansatz die Kosten und Anzahl von Versuchen reduzieren, indem aktuelle und bereits be-

kannte Informationen in zukünftige Analysen einbezogen werden können. 
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1 Industry 4.0 and Predictive Analytics  

1.1 Industry 4.0  

The industrial revolution began with the transition from hand production to machine production 

in Great Britain. According to Figure 1.1, Industry 1.0 corresponds to the first step in industriali-

zation, in which steam-powered machines and mechanisms replaced human and animal powered 

machinery in production facilities. The first industrial revolution spanned from the end of the 18th 

century to the beginning of the 19th century. Industry 2.0 was mass production starting around 

1870 but is best known through the assembly lines of Henry Ford at 1913. Industry 3.0 corre-

sponds to the introduction of computers and automation in manufacturing from 1950 onward.  

Industry 4.0 refers to the incorporation of a multiplicity of technologies that evolved from a com-

puter-controlled automated facility into a system that gathers and analyzes data from the floor to 

make intelligent decisions in an automated manner. The Internet of Things (IoT), big data, cyber-

physical systems (CPS), machine learning (ML), and robotics are some of the components that 

are associated with this revolution, which changes today’s production technology to cyber-

physical production systems (CPPS). Industry 4.0 and its components can improve efficiency, 

agility, and reactivity to the rapidly changing market demand [1–3].  

 

Figure 1.1: Industrial revolutions and prospects [1] 

The term “Industry 4.0” was employed for the first time in 2011 at the Hannover Fair in Germany. 

It encompasses some modern automation, data exchange, and manufacturing technologies and 
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has been defined as follows [4]: “the collective term for technologies and concepts of value chain 

organizations which draw together CPS, the IoT and the Internet of Services.”  

The emergence of low-cost sensors and actuators, and communication through the internet, ena-

bles real-time connections between machines, products, end users, which is defined as the IoT 

technology. Today, IoT empowers manufacturing systems to collect more and more data from 

machines and processes. In this scenario, the rapid development of data analytics approaches im-

proves the diagnostics and prognostics of production systems, significantly. Data analysis meth-

ods provide better knowledge of the manufacturing system in online and offline status. Addition-

ally, cloud-based computation methods are developing rapidly. This allows manufacturing 

systems to develop and deploy more efficient predictive analytics, prognostics and diagnostics 

techniques, such as online monitoring [5], indirect estimation of manufacturing technological in-

dicators (e.g., cutting forces and vibrations) [6,7] and remaining useful life predictions [8]. An-

other component of Industry 4.0, which has significant potential for today’s manufacturing sys-

tems is CPS. A CPS has two elements, physical and cyber, which are interconnected. While the 

real system operates in the physical world, the digital system operates in the cloud platform, sim-

ulating the machine health monitoring, and continuously recording and tracking machine condi-

tions and product quality, among other valuable information processing. Consequently, data-

driven models can be developed to integrate the information from physical systems into the digital 

models [9]. 

The IoT, data analytics, cloud computing, and CPS have developed a new paradigm in manufac-

turing called personalized production. Accordingly, the end users of the products can be involved 

with the customized design process from the early stages until the services life and disposal [10]. 

This can be achieved with the development of a new generation of smart factories, which are 

characterized by flexible production systems and reconfigurable manufacturing system (RMS) 

that allow the successful personalized production of products even in small batches. Using RMS 

allows building a live factory where its structure changes cost-effectively in response to markets 

and end-user demands for rapid responsiveness to unexpected products changes [9].  

Industry 4.0 refers to a new approach for organization and control of value-adding systems; see 

Figure 1.2. The principal objective of Industry 4.0 is to provide individual customer demands at 

the cost of mass production. In this context, all areas including order management, research and 

development, production, and supply chain are influenced. The sub-structure for such a contribu-

tion can be developed by the digitalization of production using cyber-physical production systems 

(CPPS). In this regard, all of the resources, including workers, products, and machines have to be 
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integrated as intelligent, self-organized, interconnected, real-time and autonomously optimized 

instances [3]. 

 

Figure 1.2: Industrie 4.0 [11] (qtd. in [3]) 

As illustrated in Figure 1.3, there are a variety of technologies and components that are integral 

to Industry 4.0. Four of them (CPS, product lifecycle management (PLM), virtual manufacturing 

system, and data analytics) are described here, all of which are relevant to the current research.  

 

Figure 1.3: Components of Industry 4.0 

1.1.1 Cyber-Physical Systems  

Cyber-physical systems are an inevitable outcome of the information revolution. Embedded com-

puting systems, internet communication, and digital technology are integral components of mod-

ern industries. The National Science Foundation (NSF) of the United States has been performing 
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fundamental research in CPS since 2010. According to NSF, CPS is defined as: “engineered 

systems that are built from, and depend upon, the seamless integration of computational 

algorithms and physical components.” CPS will operate and control innovation and competition 

in various sectors, e.g., agriculture, transportation, construction automation, energy, medical ser-

vice, and manufacturing [4].  

The term cyber-physical encompasses the essential characteristic of the following concept: the 

integration of embedded systems to observe and control physical processes in the framework of 

digital network technology. Different types of sensors and actuators compound a networked struc-

ture of control systems for near-real-time data processing. Using this structure, autonomous deci-

sions can be made, so that the system can adapt itself to new surrounding conditions to a certain 

level. This type of system is already utilized in various applications such as cell phones, aero-

space, and energy power plants among others [4,12].  

Development of the CPS in future production systems paves the way to build a smart factory. In 

a smart factory, the production facilities and logistics systems largely organize themselves with-

out human intervention. Part of this future scenario continues to be the communication between 

the product (e.g., workpiece) and the production plant, in which the product itself brings its man-

ufacturing information in machine-readable form, on radio-frequency identification (RFID) chip. 

These data are used to control the path of the product through the production facilities and the 

manufacturing process steps. As an example, the use of RFID-based cyber-physical systems in a 

clothing industry led to increase of production efficiency by 25 %, where the RFID chips could 

recognize the bottleneck operation and measure the working time of each operator in the manu-

facturing process [4].  

1.1.2 Product Lifecycle Management 

Industry 4.0 involves the development and production of products for consumers using the IoT, 

machines and production plants. This can be actually done by incorporating the industrial value 

chain within the entire lifecycle of the product using digital technology. In this regard, Product 

Lifecycle Management  (PLM) can be the backbone of this digitalization. PLM is a principal 

source for all information about a product, from the initial concept (through engineering design) 

and production to service and disposal [13]. PLM incorporates people, information, production 

processes, and business systems and provides information about the performance of the product 

to companies and their extended enterprise [14]. There are several PLM models in the industry, 
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but most of them are similar. In general, a PLM model of a physical product may have three 

phases, as follows [15]: 

1. Design and development: In this phase, first, the product design specifications and re-

quirements are studied. Next, the conceptual design is conducted considering the func-

tions and features definition for the products. The initial analysis is performed using tri-

dimensional models and tolerance analysis. The detailed design is performed by material 

and functionality analysis of the products. The software packages for the feature and 

functionality design are called computer-aided tools (CAx) for engineering applications. 

Ultimately, manufacturing process planning is done in micro and macro levels generally 

using computer-aided production planning (CAPP) software programs. 

2. Manufacturing: Once the design and development of the products are finalized, the man-

ufacturing phase is defined. This includes defining production methods, techniques and 

processes to produce the parts. The software programs for this phase are computer aided 

manufacturing (CAM) packages. Eventually, the assembly process is performed, and the 

products are prepared for the storage. 

3. Service life, operation, and recycling: The final phase of the lifecycle deals with the 

distribution, operation, user-product interaction, and recycling and reuse of the products. 

This can include providing customers with the support and information required 

for maintenance, and product functions and feature optimization using tools such as 

maintenance, repair and operations management (MRO) software. There is end-of-life to 

every product. Whether it be disposal or recycling of material objects or information, this 

needs to be carefully considered since it may not be free from consequences. 

1.1.3 Virtual Manufacturing System 

The conceptual design has been exercised since the 1960s with the introduction computer-aided 

design (CAD) and computer aided manufacturing (CAM). Engineering applications analysis has 

also conducted using computer-aided engineering (CAE) tools, e.g., finite element analysis (FEA) 

[16]. Since the 1990s, a paradigm shift in manufacturing from real to virtual manufacturing has 

happened, which resulted in significant interests for researchers. The computers allow simulating 

the physical manufacturing systems in virtual environments. The virtual design and manufactur-

ing packages can emulate the behavior of manufacturing systems on a computer before physical 

production, and therefore it reduces the number of experiments on the shop floor. Virtual systems, 

including virtual machine tools (VMT), virtual machining (VMach), virtual assembly (VA), vir-
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tual tooling (VTo) and virtual prototype (VP) have been developed to support virtual manufac-

turing systems. The virtual systems enable the manufacturers to consume less wasted materials 

and production interruptions in the plants. The systems can avoid or prevent hazards regarding 

the manufacturing processes and machines. Additionally, product data management (PDM) and 

product lifecycle management (PLM) can be carried out more systematically [17].  

Several virtual machining research works have been conducted to model, simulate, visualize and 

predict the process performance metrics (such as cutting forces, tool wear) early in the process 

planning stage and increase the quality of the manufactured parts, such as surface quality and tool 

vibration [16]. For example, Ehmann et al. [18–20] developed a virtual machining system to (1) 

approximate the size effect using a method to calculate cutting-condition-independent coefficient 

and prediction of cutting forces over a wide range of cutting conditions, (2) to predict the three-

dimensional machined surface errors generated during the peripheral end milling process and (3) 

predict cutting forces in the transient cut. Virtual optimization models have also been developed 

to be able to select the machining parameters such as speeds, feed rates, and depth of cut in a 

proper manner. This can improve process efficiency and quality of the finished parts.                

There are numerous VMT models and application developed to construct machine tools and pro-

vide a virtual prototyping environment [16]. The applications and methods aim to reduce the cost 

and time for development and improvements of the physical prototypes. For example, Altintas et 

al. [21] proposed a virtual prototype model for machine tools to modify the virtual design, itera-

tively. In this context, the virtual porotype approach enables the engineers to simulate the kine-

matic, static and dynamic of the machine. The model also allows the designer to avoid optimiza-

tion of the physical machine prototype, based on trial and error, and experiences.    

1.1.4 Data Analytics 

Nowadays, manufacturing companies are growingly faced with the influences of dynamic work-

flows and the development of continually increasing process complexity. In order to do this, the 

companies have to adjust their production machines and processes according to their customers’ 

requirements in the supply chain. In this context, production control is especially suffering from 

issues of low prediction quality in production planning. The reasons for the inaccurate prediction 

quality include the uncertainties of future clients’ demands, the unpredictability of the machine’s 

downtimes, and unreliability of the products sub-suppliers, among others. Currently, the solutions 

to solve the inaccurate prediction are provided by a variety of data analytics and IT-systems, 

which, mostly, are not efficient due to noisy or biased data [4].  
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In order to come up with a solution to the mentioned problems, one can propose to implement 

various approaches from the area of data analytics. Due to the increase of demand for digitaliza-

tion of the industries, data processing becomes more significant. In this context, essential factors 

for an increase of productivity are automation of the production lines and application of the intel-

ligent and efficient data analytics tools. This requires implementation of the technologies from 

the area of data acquisition, data processing, data assessment, and data exchange. 

Data acquisition alone is incomplete and not profitable for industries. The process can be inter-

esting for companies and users when historical data are used to predict manufacturing future 

measures and conditions. This can be done using self-learning algorithms. In this regard, smart 

data (SD) can play an essential role in the transparency of the manufacturing process and product 

supply chain, and it can help the companies in making informed decisions [4].  

The data analytics has been traditionally practiced much more in the area of customer service than 

in the production industry. Hence, manufacturing industries can benefit from the already devel-

oped data analytics methods as inputs to their applications for innovative solutions. In this context, 

a derived method of data analytics in production is described in Figure 1.4 [4].  

 

Figure 1.4: Data analytics as the enabler for CPPS [22] (qtd. in [4]) 

The above figure demonstrates data processing stages using diagrams within a cyber-physical 

production system (CCPS). A vital requirement for CCPS is the digitalization of the 

manufacturing process, which can be performed using a digital shadow of the process. The Digital 

shadow resembles an abstract image of the manufacturing system. This is a necessary step to 

generate information for data analytics. The objective of this phase is to define essential data 
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sources including the measurable and understandable data for information technology and to 

incorporate all sources of information. 

In the second phase, the data analytics approach, which is derived from business and customer 

service is implemented. In order to utilize the approach efficiently, it has to be reshaped according 

to the production process requirements. Four successive steps of the data analytics are described 

as follows [4]: 

1. Descriptive analytics: The first stage of data analytics concentrates on increasing trans-

parency of the production using the data generation. In order to control and optimize the 

production process, it is necessary to acquire a digital shadow. This can be only done 

using fully equipped production with sensor technology, such as a barcode, RFID, cam-

eras. 

2. Diagnostic analytics: Diagnostic analytics is a type of advanced analytics which inves-

tigates data to answer the question, why did it happen? Moreover, is characterized by 

some techniques such as drill-down, data discovery, and data mining. Diagnostic analyt-

ics considers a more in-depth exploration of data to infer the causes of events and behav-

iors [23]. 

3. Predictive analytics: In the third phase, the objective is to make predictions using the 

previously identified patterns. Predictions exit in everyday life such as weather forecasts 

or the rear-sensors of a car. In production, forecasts are relevant, when, for example, a 

bottleneck situation is foreseen or when a machine breakdown would not occur yet. Pre-

dictive analytics provides excellent potential for production planning to achieve a smooth 

production process. 

4. Prescriptive analytics: The last step of the data analytics approach is prescriptive ana-

lytics. It is used for making decision support for many organizational problems and there-

fore enables quantified and reasonable decisions for current and future manufacturing 

applications. 

The last stage of the CPPS is the adjusting production. In this phase, the output information of the 

data analytics can be visualized in the form of new assistance systems (e.g., tablets or virtual 

reality support systems). This can provide information to the employees to adjust production and 

implement the derived suggestions by the system based on results of the data analytics. For ex-

ample, using the recommendations for the production planner, bottlenecks can be avoided, or 

orders can be rearranged due to the lack of parts. It is important to note that the decision proposals 

for the production planner, made by the CPPS support, should be made for the entire production 

system since the production units and the processes are interconnected in a CPPS system [4]. 



Industry 4.0 and Predictive Analytics 

10 

Although all the mentioned stages of data analytics are important in coming up with a concrete 

solution for the improvement of the decision-making process, the focus of this thesis is on pre-

dictive analytics in the manufacturing process.   

1.1.5 Predictive Analytics 

Predictive analytics uses statistics approaches to identify meaningful patterns, which can predict 

the likelihood of future outcomes based on historical data. Predictive analytics utilizes techniques 

such as data mining, statistics, probability theory, machine learning, and artificial intelligence to 

detect trends and patterns in the measured data. The patterns found in the historical data can be 

used to identify the risk and probability of occurrence of an event in the future. Predictive analyt-

ics enables the companies and organizations to predict behaviors of a system or a process based 

on the data (quantitative technique) and not on the assumption and hypothesis (qualitative analy-

sis). Predictive analytics have various applications and usage in marketing, financial services, 

production. Some of the applications are as following [24]:   

1. Optimizing product quality: Predictive analytics enables manufacturers to improve 

products quality. In this context, by accurately detecting patterns from the information 

related to the production problems and rapidly discovering their causes, manufacturers 

can forecast and decrease the number of defects earlier than they influence their cus-

tomer’s satisfaction, safety, and confidence. 

2. Enhancing warranty planning: Using predictive analytics, designers and manufacturers 

can identify failure times of machines parts or products earlier than their occurrence. In 

doing so, smarter decision in defining service and repair policies can be made to ensure 

profitability in warranty practices.  

3. Improving demand planning and inventory management: Predictive analytics pro-

vides designers and manufacturers broader vision about sales trends and customers’ de-

mands. Hence, production output can be organized to avoid stock shortages or overages 

due to the miscalculation of the market demands, and smarter decisions can be made 

regarding the procurement of components and raw materials. In such a way, more eco-

nomical business models, such as just-in-time or lean manufacturing strategies, can be 

implemented. 

4. Increasing maintenance: Manufacturers implement inspection schedules for their ma-

chinery to keep production output constant. Predictive analytics can assist them to under-

stand their equipment failure times and reasons better. This provides them with more 
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proactive approaches for the maintenance of the machines, so that they ensure the ma-

chinery performance, and avoid downtime and production delays, in addition to costly 

and unnecessary maintenance. 

Predictive analytics for manufacturing systems enables users transparency in operations. The 

basis of predictive manufacturing is intelligent software, which is used to control the 

functionalities of predictive modeling. Using predictive modeling methods,  manufacturers can 

obtain the opportunity to proactively carry out appropriate solutions to avoid losing efficiency in 

manufacturing operations. Predicting the performance of production equipment and the 

estimation of their failure time can mitigate the effects of these uncertainties. Predictive analytics 

provides manufacturing companies the possibility to predict their machines performance before 

breakdowns happen using recognized patterns which are achieved from the past machine failures. 

With these patterns and data, a manufacturer can perform the necessary maintenance schedules 

on machinery during slow periods without interrupting production operations [25]. 

As a predictive analytics tool, artificial neural networks (ANNs) are widely used for intelligent 

data processing. The ANNs are already utilized to predict changes in complex systems such as 

weather conditions forecast or the prediction of time series for economic growth problems. Infor-

mation technology attempts to demonstrate the human nervous system with the help of neural 

networks. The learning ability is made by the independent activation of connections in the net-

work, changes of weightings, and adding and removing of neurons [4,26].  

For predictive systems, access to high-resolution data from production is an essential requirement. 

Using this data, the ANNs learn the coherence of historical events and can predict the impact on 

future decisions. The ANNs can be implemented in various fields of decision making for the 

production process control. They can also help the decision-makers for diagnostic analysis in the 

field of pattern recognition, control theory and robotics [27]. 

1.1.5.1 Predictive Analytics Techniques  

Predictive analytics approaches and techniques can mainly be classified into regression and ma-

chine learning techniques, which are described in the following sections.  

1.1.5.1.1 Regression Techniques  

Regression techniques are the pillar of predictive analytics. The modeling technique is a useful 

approach for different types of inferential tasks such as prediction, parameter estimation, and data 

description. The objective is to establish a mathematical equation as a model to represent the 

interaction among variables of the model. For instance, a linear regression model investigates the 
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relationship between the dependent variable and a set of independent variables. This relationship 

is defined as an equation that predicts the dependent variable as a linear or nonlinear function of 

the independent parameters. These parameters are determined to optimize the regression quality 

(i.e., the goodness of fit). Regression is commonly used for model fitting technique, which con-

centrates on minimizing the residuals [28]. 

1.1.5.1.2 Machine Learning 

Machine learning (ML) is a branch of artificial intelligence that systematically implements 

algorithms to incorporates the underlying relationships within data and information. In 1959, 

Arthur Samuel described machine learning as "field of study that gives computers the ability to 

learn without being explicitly programmed" [29]. ML employs several advanced statistical 

techniques for regression and classification. In this regard, there are two significant types of 

training methods used by ML including supervised and unsupervised. The supervised learning 

techniques extract relationships between independent variables and designated dependent varia-

bles. It utilizes a training dataset to develop a prediction model using input data and output values. 

The model can then be used to make predictions of the output values for a new dataset. Unsuper-

vised learning techniques group datasets without a prespecified dependent variable. This tech-

nique often involves learning structured patterns in the data by rejecting pure unstructured noise. 

The unsupervised learning can be further grouped to clustering and association algorithms. The 

applications of machine learning are increasingly developed in a variety of fields 

including medical diagnostics, engineering, multimedia analysis, and the stock market, among 

others. There are different approaches to machine learning such as decision tree, neural networks, 

deep learning, and support vector machines (SVMs) [30,31].  

1.1.5.2 Challenges of Predictive Modeling  

The predictive data analytics in manufacturing is becoming increasingly important and having 

more significant impact on a wide range of industries. However, there are many uncertainties and 

issues associated with the data analytics, which are common to all industries. In this regard, some 

of the challenges are listed as following [32]:  

1. Data quality is labor-intensive. Having a massive amount of data does not necessarily 

result in a better output quality. Typically, most data scientists spend 75%-80% of their 

time cleaning up data. Analyzing poor quality data causes misleading the information. 

2. Data Reliability relies on collection methods and the definition of measurements process. 

Data reliability depends on how the raw data was gathered. The robustness of analysis is 

related to data quality and reliability. 
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3. Variability in the manufacturing process leads to different data even though the process 

parameters are identical. The variability originates from inherent uncertainty in the man-

ufacturing system such as material-to-material differences and changes in physical be-

haviors of the production machines. Predictive analytics tools should be able to quantify 

the uncertainty of the manufacturing processes. 

4. As stated by Box [33]: “essentially, all models are wrong, but some are useful”. A 

model’s potential for inaccuracy is an important consideration in predictive modeling. 

Even a correctly specified model may not always be accurate. An error term represents 

the portion of the model that is unexplained. Model uncertainty is the uncertainty related 

to imperfect knowledge or idealizations of the mathematical models. It is typically diffi-

cult to characterize the modeling errors in an efficient and statistically consistent manner 

using classical statistical techniques (e.g., regression analysis). 

5. Predictive models are often based on frequentist (classical) approaches, which are based 

on testing the null hypothesis. In other words, the null hypothesis implies that no infor-

mation is available. This hypothesis could be an inappropriate starting point for data anal-

ysis because based on previous research, it is almost always expected that some infor-

mation is available. 

1.1.6 Bayesian Method for Predictive Analytics 

Bayesian method enables users to integrate background knowledge into their analyses instead of 

testing the same null hypothesis repeatedly and ignoring the learnings from previous experiments. 

The Bayesian method is a knowledge-based approach and differs from data-driven approaches 

which are based on the null hypothesis. Bayesian approach to predictive modeling incorporates 

prior knowledge or initial belief (i.e., past information or expert’s knowledge) about a parameter 

into the data from current experiments to form a posterior knowledge of the parameter. The 

posterior knowledge (the updated parameter) can be used as a prior belief for the next set of 

analysis, sequentially. This can minimize the number of experiments in case the tests are time-

consuming or costly. 

While the majority of the predictive modeling techniques are deterministic, Bayesian approach 

can model and quantify inherent uncertainties of the manufacturing processes. The approach is 

used to minimize uncertainties. This is achieved by training model parameters using the results 

of experiments in the context of the likelihood function. Using the Bayesian method, the degree 

of confidence or belief about a model parameter is maximized after training the parameter with 

the results of new observation and experiments.  
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Another advantage of the Bayesian approach for predictive modeling is that it is highly flexible. 

Using the Bayesian method, it is straightforward to fit rational models to complex datasets with 

measurement error, censored or missing observations [34]. 

The Bayesian method has also been used for the probabilistic design of industrial components, 

where the prediction of the probability of failure in addition to safety and risk assessment are 

utmost important. The approach can be applied to various industries. In this regard, some of the 

applications are probabilistic risk assessment in nuclear plant [35], the probabilistic design of 

aircraft turbine disk at high pressure [36], and probabilistic design of wind turbines [37] among 

others. The probabilistic design is characterized by prediction of reliability and failure probability 

of the designed components using statistical distributions. This differs from deterministic design, 

which is based on using safety factors for industrial components design. 

1.2 Case Study: Bayesian-Based Predictive Analytics for 

Machining Process Metrics 

Cutting tools are the most flexible components in a manufacturing system. The quality of the 

different machining processes is affected by cutting tools performance and reliability. An 

important machining and cutting tools performance metric is the cutting force. There are some 

machining technological indicators (e.g., machining stability and vibration, tool wear growth, and 

machining power consumption), which have been directly or indirectly attributed to the cutting 

force [38]. Online monitoring and prediction of the cutting force can avoid damages to the ma-

chine tool components such as cutting tools and spindle. The damages are mainly due to abnormal 

machining force development during machining process [6]. The cutting force modeling tech-

niques and state of the art are reported in Chapter 3.   

Tool wear such as flank, crater, and notch wears, and built-up edge can have adverse effects on 

the surface finish of the machined components and can cause costly reworks. The surface and 

dimensional quality of parts are significantly influenced by the condition of cutting tools in the 

machining process. Tool fracture may lead to the scrapping of the machined parts and damages 

the machine tool components [39]. This can result in expensive equipment replacement, even 

bringing down the whole production line. To avoid cutting tools failures, they are often replaced 

before the end of their useful lifetime. It has been reported that only 50–80% of the expected tool 

life is typically used [40]. In the machining industry, 20% of downtime is attributed to tool failures 

[41]. The cutting tools wear is even more important when machining hard and brittle materials, 
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that are in general characterized as difficult to machine. The processing of such materials can 

result in very high wear rates on both the flank and the face of the tool. In practice, the tooling 

cost, in the case of flexible manufacturing systems, represents approximately 25% of the total 

machining cost. In general tool life is characterized by randomness and its accurate prediction is 

quite difficult. The application of reliability techniques enable the calculation of tool life under 

process uncertainties [42]. There are several that have been investigated the reliability of cutting 

tools under different cutting conditions reported in chapter 5. 

The present research studies applications of predictive analytics to the machining and cutting tools 

performance metrics such as cutting force, tool life and reliability and tool wear growth. Bayesian 

inference is used to develop probabilistic models to predict the performance metrics in turning 

and milling processes. In this context, the probabilistic models can predict the variables taking 

into account the inherent uncertainties of the process such as physical, model, measurement un-

certainties.    

1.2.1 Machining Process Modelling 

Machining is the most general manufacturing operation regarding volume and expenditure. 

Machined components are found in almost every type of manufactured parts. It has been estimated 

that machining expenditure grants for approximately 5% of the GDP in developed countries. Over 

the last decades, challenges of the machining process have motivated researchers to predict the 

fundamental physical variables involved. However, the end goal of machining models is to predict 

industry-relevant outcomes and thus improve productivity. Table 1.1 summarizes modeling ef-

forts for prediction of cutting forces in recent times [43]. 
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Table 1.1: comparison of the cutting force prediction with different modeling methods [43] 

 Analytical Numerical Empirical Probabilistic 

Principle Slip-line Continuum me-

chanics using 

FEM, FDM, etc. 

Curve fitting of ex-

perimental data 

Probability theory  

Capabilities Predicts cut-

ting forces, 

chip geometry, 

average stress, 

etc. 

Predicts forces, 

chip geometry, 

stress, tempera-

ture, etc. 

Applicable to most 

machining opera-

tions 

Predicts cutting forces 

with the inherent un-

certainty of the process 

Limitations Usually lim-

ited to 2D 

analysis 

Material model, 

computational 

limitation: e.g., 

meshing 

Valid only for the 

range of experimen-

tation 

Valid only for the 

range of experimenta-

tion 

Advantages Ability to de-

velop fast, 

practical tools 

Opportunity to 

connect to indus-

trial relevant pa-

rameters 

Practical, fast, and 

direct of industry-

relevant parameters 

Practical, requires few 

experimentations in the 

presence of informa-

tive prior knowledge, 

robust 

Disadvantages Unique to 

each machin-

ing problem 

Long computa-

tional time 

Extensive experi-

mentation, time-

consuming and 

costly 

Difficulties with the 

prior selection, some-

times computationally 

expensive 

1.2.1.1 Application of Soft Computing Modelling of Machining Process 

Soft computing is an approach to computing resembling the considerable capability of the human 

mind to reason and learn in a domain of uncertainty and imprecision. In an attempt to discover 

reasonably useful solutions, soft computing-based techniques recognize the presence of impreci-

sion and uncertainty in machining. Soft computing methods such as neural network (NN), fuzzy 

logic (FL), genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO), 

and particle swarm optimization (PSO) have received remarkable attention due to their potentials 

to cope with nonlinear, multidimensional, and complex engineering problems [44].  

Among the soft computing techniques, artificial neural networks (ANN) has been broadly used 

for modeling of the machining process. Neural networks are systems that can obtain, store, and 

utilize knowledge gained from experience. An ANN is an effective method of learning from an 

experimental dataset to describe the nonlinear and interaction effects between the variables, 
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successfully. It is composed of an input layer used to incorporate data to the network, output layer 

to generate ANN’s response and one or several hidden layers in between. The input and output 

layers interact with the environment, and hidden layers do not interact with the environment. NNs 

are identified by their topology, weight vectors, and activation function which are utilized in hid-

den and output layers of the networks. Neural networks are trained with some datasets and tested 

with different datasets to achieve optimal topology and weights. After the training procedure, the 

neural networks can be used for prediction [44].  

Several researchers have proposed applications of NN to monitor and predict cutting force and 

tool life. Khanchustambham and et al. [45] used neural networks to predict cutting force and 

surface finish for machining of ceramic materials. Machining metrics such as feed, depth of cut, 

and spindle speed were used as input parameters of the network. The network was then trained 

using the cutting force signal and measured surface finish data for real-time monitoring of the 

turning process. Lee et al. [46] used fuzzy nonlinear programming combined with the neural net-

work for prediction of cutting forces. The network is trained using cutting speed, depth of cut, 

and feed values as input parameters. The authors proved the effectiveness of the combined model, 

where the predicted results were in good agreement with experimental data. Dutta et al. [47] stud-

ied the application of neural network with different learning schemes using computers for faster 

data processing in online tool condition monitoring. The input variables of the neural networks 

were selected to be cutting speed, feed, depth of cut, and three forces components, and the output 

variable was flank wear. The authors reported that the modified backpropagation neural network 

(BPNN) has advantages over standard backpropagation algorithm regarding testing error level 

and rate of convergence. Quiza et al. [48] conducted an experimental investigation on the wear 

of ceramic cutting tools in turning of hardened cold rolled tool steel. They also predicted tool 

wear using neural networks and regression models, where the neural network model has 

advantages over the regression model. 

1.2.1.2 Effect of Tool Geometry and Material on Cutting Tools Performance  

The cutting edge geometry extremely influences cutting tools performance and life. A suitable 

shape of the cutting edge improves wear resistance, tool life, and process reliability. In this regard, 

the shape of the tools edge micro-geometries plays a vital role in reducing the cutting forces and 

increasing the process stability and tool life [49]. Endres et al. [50] investigated the effect of the 

tool edge and corner radius on orthogonal turning of AISI 1040. They investigated the influence 

of the tool geometry on the tool wear and cutting force, in which smaller edge and corner 

roundness led to less tool wear. Bassett et al. [51] investigated the edge hone effect on tool 
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life, thermomechanical stress, and cutting forces in the orthogonal cutting of the AISI 1045. 

Coated carbide inserts were selected, with a design micro-geometry having two different edge 

radii on the flank and rake faces. Denkena et al. [52] investigated the influence of cutting edge 

preparation on the performance of PVD coated tungsten carbide. They studied the effect of dif-

ferent geometries of the tool edge including triple edge chamfer, waterfall and trumpet geometries 

on the tool life and cutting forces during hard turning process. Wyen et al. [53] studied the effect 

of tool micro-geometry on cutting forces in machining of Titanium. The selected tool was tung-

sten carbide. They also reported the tool edge effect on the friction force, where the force was 

found to increase with an increase in the tool edge radius. Another comprehensive study of the 

tool geometry effect on the milling process performance was reported by Bouzakis et al. [54]. 

They investigated the edge preparation process for the coated tungsten carbide inserts and studied 

their influence on tool wear. 

The researches mentioned above involve the investigation of the influence of tool micro-geometry 

on tool life. The present work aims to investigate the effect of cutting parameters and custom 

cutting tool geometries on the machining and cutting tool performance metrics using Bayesian-

based predictive analytics, described in the next section.  

1.2.2 Predictive Modelling for Design of Custom Cutting Tools  

Figure 1.5 demonstrates the process of design and development for a custom cutting tool (with 

special geometry or material) in the industry. According to the figure, first, the prototype tool is 

designed and developed using the computer-aided engineering (CAE) software. Second, the tool 

is delivered to the testing department to conduct machining tests. Third, a test engineer performs 

machining experiment under defined cutting conditions to identify the performance of the custom 

tool. Forth, the collected information regarding the tool’s performance such as tool life and wear 

is fed back to the tool designing department for further analysis. 

Traditionally, cutting tools design and development, and the performance tests are conducted sep-

arately in industry. In this regard, the design phase is often implemented using FEA commercial 

software packages. Experiments then verify the results of the numerical analysis. The software 

packages are used to simulate stress distributing on the tool cutting edge, tool wear estimation, 

and prediction of the temperature of the chip-tool contact zone, among others. Notwithstanding 

their many benefits, there are several drawbacks to the programs, including their simplification 

of the machining and cutting tools parameters, as well as high computation cost and long run 
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times. Figure 1.6 shows the functionality of the FEM software programs, input variables and pre-

dicting output variables.  

 

Figure 1.5: Information flow of cutting tool performance 

 

Figure 1.6: Functionality of the FEM software programs  

The emergence of new sensors and monitoring equipment, and internet in modern machine tools 

ease the collection of the machining and cutting tools performance metrics. The data are recorded 

online or offline and fed back to the tool designer for modification of the design parameters. In 
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this scenario, Bayesian inference can incorporate the tools performance data into the machining 

models in an efficient way. Moreover, the inherent uncertainties of the process reflected in the 

data can be quantified and minimized after each training steps of the model parameters. Figure 

1.7 demonstrate an architecture for Bayesian-based predictive analytics for the machining and 

cutting tools performance metric. As illustrated, Bayesian inference combines prior knowledge 

about a machining model parameter with the results of the experiments to predict the posterior 

knowledge of the model parameter. Using Bayesian inference, uncertainties of the prior 

knowledge can be minimized after training of the parameters with the machining experiments 

results (e.g., cutting force and tool wear), so that the posterior probability is increased. Bayesian 

inference can also be used as a sequential probabilistic approach for prediction of machining pro-

cess variables. In this regard, the results of the posterior knowledge, e.g., the first geometry can 

be integrated as a prior of the analysis for the second geometry. Bayesian inference is a 

knowledge-based approach which combines historical knowledge into the current and future anal-

ysis. 

 

Figure 1.7: Bayesian-based predictive modeling for machining and cutting tools performance metrics 

1.3 Research Objective  

Advances in new sensors technologies and IoT enable physical devices to be connected and able 

to exchange data. Smart manufacturing systems such as smart machine tools can monitor the 

machining processes and detect the process anomaly before damages happen to the machine spin-

dle or components. The rapid development of data analytics approaches has significantly im-

proved the diagnostics and prognostics of the production systems. Data-driven analytics such as 

NN methods enable users to predict machining variables precisely. However, existing approaches 
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and models applied to machining processes are often deterministic and therefore cannot model 

the inherent uncertainty of the machining process. 

Moreover, they cannot integrate historical knowledge and expert opinion into current and future 

data analysis. The objective of this research is to investigate the applicability of Bayesian statistics 

for the design and manufacturing process as a predictive analytics approach. To demonstrate the 

advantage of using probabilistic method over the deterministic method, the Bayesian inference is 

applied to cutting forces, and cutting tools life, reliability, and degradation models. It is shown 

that Bayesian inference can be used for probabilistic modeling of the machining processes and 

design of the cutting tools under process uncertainties and using minimal experiments and inputs. 

The probabilistic modeling approach can predict the functionality, reliability, and probability of 

failure for cutting tools in turning and milling processes. This research also aims to demonstrate 

how the initial beliefs of the user or prior knowledge about a model parameter can be incorporated 

into the manufacturing data analysis and cutting tools design process. This avoids testing based 

on the null hypothesis and can minimize the number of often expensive and time-consuming ex-

periments.   

1.4 Overview of Later Chapters 

This thesis is presented in three parts and seven chapters. The outline of the parts and the chapters 

are as follows. In part Ⅰ, consisting of chapter 2, the fundamentals of Bayesian inference are 

presented, including prior’s role in the Bayesian method, parameters estimation methods, MCMC 

method used to approximate posterior distributions, and application of MCMC to the bimodal 

distribution function, etc. In part Ⅱ the application of Bayesian-based predictive analytics to the 

cutting force prediction is presented. In this part, Chapter 3 discusses applications of Bayesian 

inference to predict the cutting force using Merchant and Kienzle models, probabilistic cutting 

force prediction, and sequential modeling of the cutting forces for various cutting tools geome-

tries. Chapter 4 discusses the development of extended Kienzle force model to isolate the 

ploughing force from the cutting force and probabilistic prediction of the forces. In part Ⅲ appli-

cations of Bayesian-based predictive analytics to cutting tools life, reliability and tool wear 

growth analysis are reported. In this part, Chapter 5 discusses the tool life and cutting tools failure 

prediction, probabilistic sequential model development to predict the tool life, and the reliability 

analysis for different tool geometries. Chapter 6 covers the application of the Bayesian method of 
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cutting tool degradation or tool wear growth prediction and sequential modeling approach to in-

vestigate the effect of tool geometry on tool wear growth. Finally, chapter 7 reports the conclu-

sions and suggestions for future work.
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2 Bayesian Inference 

The probabilities are commonly used to express our observation and beliefs about unknown 

quantities informally. Nonetheless, the probabilities can be used to express information formally. 

In an accurate mathematical sense, it can be demonstrated that probabilities can numerically 

quantify a set of logical beliefs, that there is a relationship between probability and information. 

In this context, Bayes’ rule provides a rational method for updating beliefs considering new in-

formation. The procedure of inductive learning using Bayes’ rule is referred to as Bayesian infer-

ence [28].  

Bayesian inference allows the prior or initial belief about a parameter to be updated by new ob-

servation(s). This approach offers a different view of hypothesis testing, compared to frequentist 

(classical) approaches. The Bayesian method enables users to integrate background knowledge 

into their analyses instead of testing the same null hypothesis repeatedly and ignoring the learn-

ings from previous experiments. On the contrary, statistical methods based on the frequentist ap-

proach are often involved testing the null hypothesis. In other words, the null hypothesis implies 

that “no information is available.” This hypothesis could be an inappropriate starting point for 

data analysis because it is almost always expected that “some information is available.” Replica-

tion is an essential tool in design and manufacturing, and Bayesian methods fit within this frame-

work because background knowledge can be incorporated into the statistical model. As a result, 

the possibility of previous research findings can be evaluated about new data, which makes the 

proposed approach an interesting tool for predictive analytics of the design and manufacturing 

applications [55].  

In Bayesian inference, a probability is represented as a degree of belief. In this regard, uncertainty 

about a parameter can be quantified using a probability density function (PDF) and a cumulative 

distribution function (CDF). Bayesian inference is a powerful tool to quantify models, processes 

and measurement uncertainties, and to predict the parameter of interest with the probability of 

occurrence in various field of science, engineering, and economy, among others.  
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2.1 Bayes’ Rule 

Bayes’ rule enables the prior, or initial belief about a parameter, to be updated by new experi-

mental results, as shown in Eq. (2.1). According to the equation, the posterior probability, p(θ|y), 

is calculated by multiplying the prior probability, p(θ), by the likelihood function p(y|θ) and di-

viding by a normalizing function [28], as: 

𝑝(𝜃|𝑦) =
 𝑝(𝑦|𝜃) 𝑝(𝜃)

∫ 𝑝(𝑦|𝜃) 𝑝(𝜃) 𝑑𝜃
 (2.1) 

The Bayesian approach to parameter estimation is to treat the parameter, θ, as a random variable. 

Considering Eq. (2.1), the prior distribution, p(θ), denotes how likely the parameter values are 

when no sampled data, y, is observed yet. In a Bayesian context, the aim is to estimate the posterior 

distribution, p(θ|y), over parameters given the sampled data. This is also known as posterior in-

ference. Likelihood expresses the plausibility of a model parameter, θ, given specific observed 

data, y. Assuming independent and identically distributed (IID) observations, the likelihood func-

tion, p(y|θ), is written as the product of each observation probability shown in Eq. (2.2). 

𝑝(𝑦|𝜃) = 𝑝(𝑦1, 𝑦2, 𝑦3, . . , 𝑦𝑛|𝜃) =∏𝑝(𝑦𝑖|𝜃)

𝑛

𝑖=1

 (2.2) 

 

The integral in Eq. (2.1) is the normalizing factor and is often referred to as the marginal proba-

bility. Generally, the integral does not have a closed-form solution, so it is convenient to simplify 

Eq. (2.1) to Eq. (2.3), [56], as:  

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃) 𝑝(𝜃) (2.3) 

Although integration of the posterior probability distribution, p(θ|y), is possible in some cases, in 

many cases, numerical approximations such as Markov Chain Monte Carlo (MCMC) methods is 

employed to generate samples from the posterior probability. 
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Figure 2.1 shows the process of updating the prior PDF by the likelihood function to achieve the 

posterior PDF. 

 

Figure 2.1: Schematic representation of the Bayes’ rule 

2.2 Role of the Prior in Parameter Inference  

Prior distributions play an important role in parameter inference. They are essentially key param-

eters of Bayesian inference and represent the information about an uncertain parameter, θ. Dif-

ferent types of prior distribution exist, namely, informative and non-informative. Non-informa-

tive prior distribution has no population basis and plays a minimal role in the posterior 

distribution. The non-informative prior distribution is used when there is less degree of confidence 

about the parameter, θ, or large sample size is available. In this case, prior distribution of the 

parameter has minor effects on the posterior inference. The uniform distribution is frequently used 

as the non-informative prior distribution. 

On the other hand, when the sample size is small, an informative prior has a stronger influence 

on the posterior distribution. An informative prior could come from operational or observational 

data, from previous experiments, or from engineering knowledge. In general, large sample sizes 

are required to modify strong priors, whereas weak priors are influenced by even relatively small 

sample sizes [57].  
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2.3 Comparison of Methods for Parameter Estimation  

Every probability distribution has a set of parameters that need to be estimated. These parameters 

specify the constants are appearing in the model and provide a mechanism for efficient and accu-

rate use of data [58,59].  There are some approaches to estimation of the parameters distributions, 

which are presented in the following sections [60]. 

2.3.1 Maximum Likelihood 

Maximum Likelihood (ML) estimation method is a fundamental approach to estimate parameters. 

The objective of the method is to find the parameter estimates that maximize the likelihood of the 

observed data, y, given the model parameter, θ. This corresponds to: 

𝜃𝑀𝐿 = arg𝑚𝑎𝑥(𝜃𝑖)  𝑝(𝑦|𝜃𝑖) (2.4) 

where the θi vary across the range of allowable values. ML considers the parameter vector, θ, to 

be constant and provides maximum support for the evidence. Although this seems like a very 

straightforward means of estimating parameters in a probabilistic model, there are some serious 

drawbacks to this approach. For example, when we deal with small sample sizes, the ML estimate 

might not even be defined. It might also be nontrivial to find the maximum of the likelihood 

function when there are many parameters in the model [61]. 

2.3.2 Maximum a Posteriori 

The posterior distribution is specified by a simple product of the likelihood and the prior. In 

Bayesian data analysis, one way to apply a model to data is to find the Maximum a Posteriori 

(MAP) parameter values. Using MAP, it is possible to find the parameter estimates that maximize 

the posterior probability of the parameter given the data. This corresponds to: 

𝜃𝑀𝐴𝑃 = arg𝑚𝑎𝑥(𝜃𝑖)  𝑝(𝜃𝑖|𝑦) =  arg𝑚𝑎𝑥𝜃𝑖 𝑝(𝑦|𝜃𝑖) 𝑝(𝜃𝑖) (2.5) 

This looks similar to the ML estimation procedure. The difference is that the priors will influence 

the parameter estimation. Although it seems that the prior do not have important role in parameter 

estimation, there are several good reasons to prefer the MAP over ML estimation, especially when 

only a few data points are available [62]. 
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2.3.3 Posterior Sampling: Markov Chain Monte Carlo (MCMC) 
Method 

Although MAP method is useful for parameters estimates, particularly, when incorporating the 

prior belief to the estimation procedure, there are some drawbacks to the approach as follows: 

1. MAP approach characterizes the posterior distribution with a single set of parameter val-

ues for a model. Nevertheless, a problem arises when there are multiple sets of parameter 

values that all have a very high posterior probability, or there are tradeoffs between pa-

rameter values. For example, suppose a model with two parameters A and B, where a 

high posterior probability is established either by setting A to a high value and B to a low 

value or the other way around. MAP estimate does not recognize such parameters corre-

lations.  

2. In a more comprehensive Bayesian method, the goal is to identify the full posterior 

distribution and not just to find the mode of the posterior distribution. In some cases, it 

could be possible to find an analytic expression for the posterior distribution. However, 

in many cases, it is required to resort to sampling techniques, such as MCMC, to get 

samples from the posterior distribution. These samples can be used to calculate some 

things, such as means, variances and other moments of the distribution. Using the 

sampling techniques, model parameters correlations could also be recognized. 

MCMC technique is often applied to Bayesian inference and learning problems in large dimen-

sional spaces. This technique plays a fundamental role in machine learning, physics, statistics, 

and econometrics, and decision analysis. A comprehensive literature review about MCMC ap-

proach has been reported by Andrieu et al. [63]. 

2.4 Bayesian Inference for Parameter Estimation  

This section presents parameter estimation using probability distribution functions, via the normal 

and lognormal distributions. The functions are widely used for the representation of the cutting 

force and tool life data analysis and are adopted throughout this thesis. The Bayesian MCMC 

technique is applied to the problem of parameter estimation using a bimodal normal distribution. 
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2.4.1 Normal and Lognormal Distribution for Life Data Analysis 

In probability theory, a normal (Gaussian or bell curve) distribution is the most common contin-

uous probability distribution. It is particularly useful because of the central limit theorem. 

The central limit theorem establishes that, when independent random variables are added, their 

means (averages) tend toward a normal distribution even though the original variables themselves 

are not normally distributed [64]. There are two principal applications of the normal distribution 

to manufacturing engineering and reliability analysis investigated in this thesis. The first applica-

tion deals with variability and uncertainty analysis of manufacturing process data. The second 

one concerns the lifecycle and failure analysis of the consumable items, such as cutting tools. The 

probability distribution functions of the normal lifetime distribution are PDF, CDF, reliability 

function, and hazard function. The normal lifetime PDF is expressed as follows, 

𝑓(𝑡) =
1

𝜎√2𝜋
𝑒
−(𝑡−𝜇)2

2𝜎2  (2.6) 

where µ is the mean, and σ is the corresponding standard deviation. Figure 2.2 displays the normal 

PDF lifetime distribution with mean value, µ, of 20 min and standard deviation, σ, of 3 min.  

 

Figure 2.2: Normal PDF with a mean value of 20 min and a standard deviation of 3 min 

In reliability study, lognormal distribution is commonly called lifetime distribution. The lognor-

mal distribution is a continuous probability distribution of random variables whose logarithm is 

normally distributed. The lognormal PDF is extensively used to describe the distribution of posi-

tive random variables.  

  



Bayesian Inference 

29 

A positive random variable, t, is lognormally distributed if the logarithm of t is normally distrib-

uted. This corresponds to: 

ln(𝑡) ~ 𝑁(𝜇, 𝜎2) 
(2.7) 

The PDF of the lognormal distribution is as follows: 

𝑓(𝑡) =
1

𝑡𝜎′√2𝜋
𝑒
−(ln 𝑡−𝜇′)2

2𝜎′
2

 ; 𝑡 > 0 (2.8) 

where µ′ and σ′ are the mean and standard deviation of natural logarithms of the µ and σ.  

Figure 2.3 displays the lognormal lifetime PDF with a mean value of 20 min and a standard devi-

ation of 3 min.  

 

Figure 2.3: Lognormal PDF with a mean value of 20 min and a standard deviation of 3 min 

2.4.2 Application of MCMC to Bimodal Normal Distribution 

The MCMC method is a numerical approach to draw random samples, θ, from a distribution of 

interest. Metropolis-Hastings (MH) algorithm is the most widely used MCMC approach [63]. The 

MH technique can be used for drawing samples from symmetric and asymmetric proposal distri-

butions. Metropolis algorithm is a special case of the MH algorithm, where the proposal function 

is symmetric. A normal distribution is often used as a symmetric proposal PDF denoted as q(x). 

To illustrate the procedure, the Metropolis algorithm was used to approximate a known function 

(bimodal PDF) as the posterior target distribution; see Eq. (2.9).  

𝑝(𝜃) ∝ 0.4𝑒(−0.2𝜃
2) + 0.6𝑒(−0.2(𝜃−10)

2) (2.9) 
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Algorithm 1 demonstrates the summary of the Metropolis algorithm for approximation of the 

posterior target distribution, p(θ). The algorithms allow to accept or reject the drawn samples 

from the proposal distribution, q(θnew| θi). In this regard, a new proposal, θnew, is always accepted 

when it is more likely than the old state, θi. Therefore, the sampler moves towards the regions of 

the state space where the target function has a high density. In this example, the proposal distri-

bution is symmetric normal distribution, such that q(θnew| θi) = q(θi| θnew). Therefore, the proba-

bility of proposing a new state given the old state is the same as proposing to go from the new 

state back to the old state. Cauchy, Student-t, and uniform distributions are other forms of the 

symmetric distributions, which can be used as proposal distributions of the Metropolis algorithm. 

Figure 2.4 to Figure 2.9 display graphically the acceptance and rejecting procedure of the Me-

tropolis sampling algorithms in six steps. In this context, Metropolis sampler is used to draw 

samples, θi, from the proposal distribution q(θnew| θi), to approximate the target function, p(θ) 

[60,63].  

Algorithm 1: Metropolis algorithm for sampling of the posterior θ 

1. Initialize a starting sample θ0, 

2. For i = 0 to i = N-1: 

 Select a candidate θnew from a proposal distribution, q(θnew| θi), 

 Calculate the acceptance ratio, 

 𝑟 =
𝑝(𝜃𝑛𝑒𝑤)

𝑃(𝜃𝑖)
, 

 Generate a random number,  

u~ uniform (0,1), 

If u ≤ r: 

  Accept the proposal: θ i+1= θ new,  

     Else:  

  Reject the proposal: θi= θ new,  

     End If 

3. End For 

As illustrated in Figure 2.4, θ0 is selected as a starting point of the chain at the first step. At the 

second step, a candidate sample, θnew, is drawn from the proposal distribution, q(θnew| θi); see 

Figure 2.5. In this case, the candidate sample is accepted, because the acceptance rate, r, is calcu-

lated (according to Algorithm 1) to be bigger than 1. Hence, the chain moves to θnew.  
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Figure 2.4: Sampling using the Metropolis algorithm. Step 1: starting point selection 

 

Figure 2.5: Sampling using the Metropolis algorithm. Step 2: accepted candidate sample 

At the third step, again a new candidate sample is selected from the proposal distribution, and 

then the posterior acceptance rate between the current and proposed sample is calculated; see 

Figure 2.6. In this case, the posterior rate, r, (ratio of the newly sampled parameter, θnew, to the 

current sample, θ1) is less than 1. The sample is not rejected but a new acceptance ratio, u, is 

generated randomly from a uniform distribution and compared with the posterior ratio, r. For this 

example, it is assumed that r is greater than u so that the sample is accepted, and the chain moves 

one step forward. 
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Figure 2.6: Sampling using the Metropolis algorithm. Step 3: accepted candidate sample  

The algorithm is continued by proposing the fourth sample and calculating the acceptance ratios; 

see Figure 2.7. For this example, the sample is rejected, since both acceptance ratios are computed 

to be less and 1. Therefore, the chain remains at the current value of θ2. 

 

Figure 2.7: Sampling using the Metropolis algorithm. Step 4: rejected candidate sample  

Figure 2.8 demonstrates the fifth step of the Metropolis algorithm iterations, where the newly 

drawn random sample from the proposal distribution, q, is accepted because the posterior ratio is 

greater than 1. As a result, the θ3 value is assigned to the new sample θnew. At the sixth step, the 

drawn proposed sample is rejected, because the posterior ratio is less than 1 and u; see Figure 2.9. 



Bayesian Inference 

33 

 

Figure 2.8: Sampling using the Metropolis algorithm. Step 5: accepted candidate sample  

 

Figure 2.9: Sampling using the Metropolis algorithm. Step 5: rejected candidate sample 

Figure 2.10 shows the histogram of the drawn samples and the normal bimodal function, p(θ). 

The Metropolis algorithm was practiced out for N =10,000 iterations. According to the figure, the 

bimodal distribution in red color fits the histogram of the drawn samples shown in blue color. It 

is observed that the samples approximate the target PDF, p(θ), quite well. Note that the histogram 

and the target distribution were normalized to obtain a unit area under the curve. 
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Figure 2.10: Approximation of the bimodal normal distribution using Metropolis algorithm 

2.4.3 Considerations Related to the MCMC Method 

As demonstrated in the previous section, the key issue in the Metropolis algorithm is the ac-

ceptance or rejection of the current state in the Markov chain. In order for the chain to explore the 

solution space more efficiently, it is essential for samples to be accepted in each stage. Poor algo-

rithms reject samples often and force very long runs to achieve steady state condition and an 

appropriate sample of the possible states. The second issue with the MCMC method is the 

convergence of the Markov chain. In order to ensure convergence, the burn-in technique is used, 

which is meant to give the Markov Chain time to reach its stationary distribution. The technique 

is referred to as discarding the first n samples of the iterations. The idea is that a "bad" starting 

point may over-sample regions that are very low probability under the equilibrium distribution 

before it settles into the stationary distribution. A practical way to evaluate the convergence of 

the chain’s stationary distribution (appropriate length of the burn-in period) is by observing the 

trace plot and histogram of the parameters [65]. The third issue with the Metropolis simulation is 

that the values of the sampled parameters are correlated since they are generated by the Markov 

process. Excessive autocorrelation may cause a problem with the model specification and should 

be investigated further. To reduce the autocorrelation, there are two techniques, which are 

explained as follows, 

1. Thinning: This refers to drawing samples in a regular interval. For instance, in the pre-

vious section, N = 10,000 iterations were exercised, where each iteration was repeated 

for 10 times and every 10th value was kept.  
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2. Tuning the proposal distribution: A key factor in achieving high efficiency in Markov 

chain is finding a suitable proposal distribution for each parameter. The tuning can be 

examined by acceptance probability of a sampling process. This refers to the percentage 

of the proposals that have been accepted. A high acceptance rate means that most new 

samples occur right around the current data point. This indicates that the Markov chain is 

not fully exploring the parameter space. On the other hand, a low acceptance rate means 

that the proposed samples are often rejected; hence the chain does not move much for-

ward. Roberts and Rosenthal  [66] demonstrated empirically that an acceptance rate be-

tween 0.15 and 0.50 is at least 80% efficient. Moreover, Hoff [67] stated that to improve 

the performance of the Markov chain, the posterior variance of samples can be an efficient 

choice of the proposal variance. 

To illustrate the evaluation of the chain’s convergence and reduction of the autocorrelation, two 

case studies are presented. In the first case study, the proposal variances of the parameter, θ, is 

selected to be 0.3; while in the second scenario, the variance is 13. In both cases, the number of 

the iterations and burn-in samples are selected to be 1×104, and 1000, respectively. Using the 

variance of the first case study, the trace plot of the burn-in period shows that the chain cannot 

converge to a stationary condition, as can be seen in Figure 2.11.  

 

Figure 2.11: Trace plot of the 1000 initial samples drawn from the θ target distribution, un-stationary 

chain 

In the example discussed above, the histogram of the drawn sample cannot approximate the 

known distribution function (bimodal normal distribution), even though a very high acceptance 

ratio of 0.977 is achieved; see Figure 2.12. Figure 2.13 shows the autocorrelation of the first and 
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last 100 samples of the parameter, θ, after discarding the burn-in period. According to the figure, 

the high autocorrelation of 0.4 is seen at the lag of 50 for both the first and last 100 samples.  

 

Figure 2.12: High acceptance ratio as a result of the proposal variance 0.3 

 

Figure 2.13: Autocorrelation of first and last 100 samples, choosing proposal variance 0.3 
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Nevertheless, using the variance of the second case study, the trace plot of the burn-in period 

shows that the chain converges to a stationary condition see Figure 2.14. Furthermore, the histo-

gram of the drawn sample approximates the known distribution function (bimodal normal distri-

bution) precisely (Figure 2.15). As can be seen, the obtained acceptance ratio is 0.445. 

 

Figure 2.14: Trace plot of the 1000 initial samples drawn from the θ target distribution, stationary chain 

Figure 2.16 displays the autocorrelation of first and last 100 samples of the parameter θ after 

discarding burn-in period. According to the figure, the autocorrelations were minimized to less 

than of 0.2 for the entire range of the samples. Comparing two case studies, it was shown that the 

second proposal variance leads to better convergence of the trace plot as well as less correlated 

samples in the chain.  

 

Figure 2.15: Suitable acceptance ratio of 0.445 because of the proposal variance 13 
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Figure 2.16: Autocorrelation of first and last 100 samples, choosing proposal variance 13 

2.4.3.1 Convergence Diagnostic for Markov Chains   

Geweke [68] proposed a convergence diagnostic for Markov chains based on a comparison of the 

last part of the chain against some smaller interval at the beginning of the chain (e.g., the first 

10% and last 50% after removing the burn-in period). If the chain is at the stationary condition, 

the means of the samples are almost equal. The Geweke test is applied to ensure the convergence 

of the Markov chain for all the simulations throughout this thesis.  

2.4.3.2 Sampling Multivariate Distributions  

In the previous example on Metropolis MCMC method, the focus was on how to sample from the 

univariate target distribution (bimodal PDF). This was performed to give readers some intuition 

for implementation of MCMC with an example that can be visualized. Nevertheless, the Metrop-

olis MCMC can be used to sample multivariate distributions. There are two procedures for sam-

pling distributions in multiple dimensions, which are described as following [60,69]: 

1. Blockwise method: In this approach, proposal distribution, q(Θ) is selected to have the 

same dimensionality as the target distribution, p(Θ). To demonstrate, consider p(Θ) as a 

target PDF of n variables (i.e., Θ = (θ1, θ2,…, θn)) and q(Θ) as the proposal distribution 

having identical dimensionality with the p(Θ). The proposed state, Θnew, which is sampled 
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from q(Θ), is either accepted or rejected in the same way as for the univariate Metropolis 

algorithm. 

2. Componentwise random walk method: In this method, the algorithm samples one var-

iable at a time and then proceeds sequentially to sample the remaining variables of a 

multivariate PDF in the order of  θ1→ θ2→ θ3→ . . . θn. The sampling for each variable 

is conducted using a univariate proposal distribution, q(θi), for that variable, θi. This 

method is particularly useful when the number of variables, n, becomes large. 

In this research, blockwise updating technique of the Metropolis MCMC is used to sample from 

multivariate probability PDFs. Additionally, the proposal distributions are taken to be normal 

distribution in all instances. 
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Part II: Bayesian-Based Analytics for 

Cutting Force Prediction  
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3 Bayesian Updating for Sequential 

Cutting Force Prediction in 

Orthogonal Turning Process1 

3.1 Introduction 

Machining models provide relationships between user-selected inputs (feed, cutting speed, tool 

geometry) and process outputs, such as cutting forces. The models may be numerical or analytical 

in format. In this context, several models have been proposed [70–73] to predict cutting forces in 

milling and turning operations. In general, machining models are deterministic. In other words, 

given a set of inputs, a unique set of outputs is obtained. However, to establish a predictive model, 

the mean and distribution in the outputs must be related to the input means and distributions. This 

probabilistic approach incorporates the inherent uncertainties. These uncertainties are due to the 

machine and machining process, workpiece material, measurement process, tool material, and 

tool geometry, among others. The uncertainty evaluation and probabilistic prediction of cutting 

force can be performed by Bayesian inference [65].  Schmitz et al. [74] investigated cutting force 

prediction under uncertainty using Bayesian inference for the Merchant model, where the cutting 

force is linearly proportional to the feed-dependent uncut chip thickness. Discrete grid method 

was used to update the force model parameters. Mehta et al. [75] developed a mechanistic force 

model for cutting force prediction using Markov Chain Monte Carlo approach again applied to 

the Merchant model. Gözü and Karpat [76] studied the application of Bayesian inference to pre-

dict cutting forces in micromilling of Titanium alloy TiAl4V. The Metropolis-Hasting algorithm 

of MCMC was used to identify probability distributions of the cutting, and ploughing forces co-

efficients based on experimental measurements and mechanistic models of micromilling. The 

                                                      

1 This chapter is extended from the following publication: M. Salehi, T.L. Schmitz, R. Copenhaver, R. 

Haas, J. Ovtcharova, Probabilistic Sequential Prediction of Cutting Force Using Kienzle Model in Orthog-

onal Turning Process, J. Manuf. Sci. Eng. 141 (2018) 11009. doi:10.1115/1.4041710.,  
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mechanistic model can predict the cutting and ploughing forces in radial and tangential directions, 

where the cutting forces are linearly proportional to the uncut chip thickness. 

The force models, which have been used in the papers mentioned above describe linear relation-

ships between the feed values and the cutting and ploughing forces. Nevertheless, the probabilistic 

cutting force prediction considering the size effect phenomenon is yet to be investigated using 

nonlinear models such as Kienzle force model [77]. The term size effect refers to as the nonlinear 

increase of the specific cutting energy with decreasing the undeformed chip thickness. A good 

summary of the phenomenon and the modeling techniques are given by Vollersten et al. [78]. In 

this chapter, the Bayesian inference is applied to the Merchant and Kienzle force models to predict 

the cutting forces at very low feed values in turning. Metropolis algorithm of the Markov Chain 

Monte Carlo (MCMC) method is used to estimate the force models’ parameters. In order to 

investigate the effect of cutting tool geometry on cutting forces, two cutting tool chamfer (rake) 

angles, 0 and -10 deg, are tested under different cutting conditions in an orthogonal turning pro-

cess. First, the probabilistic prediction of tangential force using the Merchant model for the 0 deg 

rake angle tool is presented. Next, the Bayesian inference is applied to the Kienzle model to pre-

dict tangential and feed forces for the 0 and -10 deg rake angle tools, sequentially.  

The chapter is organized as follows. In section 3.2, deterministic models of Merchant and Kienzle 

are presented. In section 3.3 the experimental setup and the force measurement results are pre-

sented. In section 3.4, the Bayesian inference scheme and MCMC method are presented. Section 

3.5 describes the application of MCMC to the Merchant using the 0 deg tool rake angle. Section 

3.6 presents the application of MCMC to the Kienzle force models using the 0 deg tool rake angle. 

The results of the posterior forces and parameters of the Kienzle model for the 0 deg tool rake 

angle are used to predict forces for the -10 deg rake angle tool in section 3.7. Conclusions are 

provided in section 3.8.  

3.2 Deterministic Cutting Force Models 

Deterministic models of the Merchant and Kienzle force models are presented in this section. The 

Mechanistic Merchant model is based on the assumption that the tool edge radius is zero. How-

ever, Kienzle force model takes into account the effect of cutting edge radius on specific cutting 

force coefficient. Weber et al. [77] investigated the increase of the force coefficients comparing 

two edge radii of 5 and 50 µm, where the larger cutting edge radius resulted in a higher specific 

cutting force. They also reported that the edge radius of the tool used in the investigations to 

derive the Kienzle equation was probably in the range of 10–20 µm. 
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3.2.1 Merchant Force Model 

Merchant force model describes linear relationships between cutting force and the uncut chip 

thickness, h [38]. Figure 3.1 displays a schematic orthogonal cutting model for the cutting forces 

calculation.  

  

Figure 3.1: Merchant cutting force diagram for a negative rake angle tool 

According to the figure, the tangential force Ft and the feed force Ff are achieved as below, 

𝐹𝑡 = 𝐾𝑡𝑏ℎ (3.1) 

𝐹𝑓 = 𝐾𝑓𝑏ℎ (3.2) 

where Kt and Kf are cutting force coefficients, b is the width of cut, and h is the uncut chip thick-

ness. The width of cut and the feed value are decided by the machinist, while the cutting force 

coefficients must be calculated. In order to calculate Ft and Ff, one needs to find Kt and Kf as 

follows, 

𝐾𝑡 = 𝜏𝑠  
𝑐𝑜𝑠(𝛽𝑎 − 𝛼𝑟)

𝑠𝑖𝑛(ø𝑐) 𝑐𝑜𝑠(ø𝑐 + 𝛽𝑎 − 𝛼𝑟) 
 (3.3) 
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𝐾𝑓 = 𝜏𝑠  
𝑠𝑖𝑛(𝛽𝑎 − 𝛼𝑟)

𝑠𝑖𝑛(ø𝑐) 𝑐𝑜𝑠(ø𝑐 + 𝛽𝑎 − 𝛼𝑟) 
 (3.4) 

where τs is the shear stress along the shear plane, ϕc is the shear plane angle, βa is the average 

friction angle, and αr is the tool rake angle. The τs is determined through the equations (3.5) to 

(3.7) as follows,  

𝜏𝑠 =
𝐹𝑠
𝐴𝑠

 (3.5) 

𝐹𝑠 = 𝐹𝑡  𝑐𝑜𝑠(ø𝑐) − 𝐹𝑓 𝑠𝑖𝑛(ø𝑐) (3.6) 

𝐴𝑠 =
𝑏ℎ

𝑠𝑖𝑛(ø𝑐)
 (3.7) 

where the Fs is the shear force and As is the shear area. The βa is achieved as follows, 

𝛽𝑎 = 𝛼𝑟 + 𝑡𝑎𝑛
−1(
𝐹𝑓

𝐹𝑡
) (3.8) 

Shear plane angle, ϕc is obtained as follows, 

ø𝑐 = 𝑡𝑎𝑛
−1(

𝑟𝑐 𝑐𝑜𝑠(𝛼𝑟)

1 − 𝑟𝑐  𝑠𝑖𝑛(𝛼𝑟) 
 ) (3.9) 

𝑟𝑐 = 
ℎ

ℎ𝑐
 (3.10) 

where hc is the cut chip thickness, and rc is the chip thickness ratio.  

3.2.2 Kienzle Force Model 

The Kienzle force models, Eq. (3.11) and (3.12) describe nonlinear relationships between the 

uncut chip thickness, h, and the cutting force components in tangential and feed directions, Ft and 

Ff, respectively [79]: 

𝐹𝑡 = 𝐾𝑡𝑡. 𝑏. ℎ
1−𝑐𝑡 (3.11) 

𝐹𝑓 = 𝐾𝑓𝑓 . 𝑏. ℎ
1−𝑐𝑓 (3.12) 
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where 1-ct and 1-cf exponents are positive constants less than one; while, Ktt and Kff are tangential 

and feed specific cutting force coefficients. The force coefficients depend on the workpiece ma-

terial, and the exponents depend on the geometrical cutting parameters, cutting speed and the tool-

workpiece combination. 

3.3 Experimental Setup, Results, and Discussion 

Tube turning experiments were performed on a Haas TL-1 CNC lathe; see Figure 3.2. The dry 

machining tests were completed using a Kennametal turning insert, CCMW3252, with 0 deg rake 

angle as well as uncoated inserts SPGW09T308 with the rake angle -10 deg. The latter inserts 

were designed and produced with the special edge geometry by Zermet Zerspanung GmbH, with 

the ISO grade of P25. The tubular workpiece material was 1020 steel with an outer diameter of 

25.4 mm and wall thickness of 2.1 mm. The corresponding chip width was 2.1 mm. Feed values 

of f = {0.051, 0,076, and 0,102} mm/rev, as well as three cutting speeds of Vc = {60, 80 and 

100} m/min, were selected. The experiments were repeated three times for each cutting speed-

feed combination. Therefore, the total number of experiments was 54.  

 

Figure 3.2: Machining experiments setup 

Before starting the machining tests, micro geometry of the special tools was inspected using a 

laser scanning microscope, Keyence VK8710; see Figure 3.3. Figure 3.4 shows the result of the 

tool chamfer (rake) angle measurement, where the exact rake angle was measured to be -10.62 

deg. The measurement process was repeated for three samples to ensure the precision and the 
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repeatability of the edge preparation process. According to the results, the mean and standard 

deviation of the rake angle were -10.10 and 0.56 deg, respectively.  

 

Figure 3.3: Tool geometry inspection with Keyence laser scanning microscope 

 

 

Figure 3.4: Measurement of the tool rake angle with Keyence laser scanning microscope 
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Surface roughness was also measured along the cutting edge for three sample tools; see  

Figure 3.5. According to the results, mean and standard deviation of the edges roughness based 

on ten-point mean roughness (Rz) were achieved to be 7.5 and 0.36 µm, respectively. Additionally, 

the mean and standard deviation of cutting edges based on arithmetical mean roughness (Ra) were 

obtained to be 1 and 0.13 µm, respectively. 

 

Figure 3.5: Measurement of the tool edge roughness with Keyence laser scanning microscope 

A three-axis force dynamometer (Kistler 9257B) was used to measure the cutting force in tangen-

tial and feed directions. Machining chips were collected to measure the thickness by dial caliper. 

For each geometry, three data sets were selected to update the prior of the probabilistic models, 

while the others were used for model verification.  

Digital high-speed camera (Fastec IL-3) with a maximum frame rate of 1250 frames/sec, was 

used to record videos from the cutting zone. Matlab image processing toolbox was utilized to 

obtain frame by frame images from the recorded videos, and determination of shear plane angle 

with the corresponding cut chip thickness. Since the obtained images correspond to the operations 

under various cutting speeds and feed values at different frames, various shear plane angles were 

observed. Figure 3.6 shows the shear plane angles quantities using tool rake angle 0 deg, under 

different cutting data.   
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Figure 3.6: Cutting zone images to determine the shear plane angle using tool rake angle 0 deg, cutting 

feed 0.102 mm/rev, and the cutting speeds, a) 60 m/min, b) 80 m/min, and  

The results of the observation were tabulated in Table 3.1. The mean value and standard deviation 

of the shear plane angles were computed, 17.7, and 4 deg, respectively. The values are used as an 

initial belief of the shear plane angle for Bayesian modeling. 

Table 3.1: Measured shear plane angles using high-speed camera images for the tool rake angle 0 deg 

No. Vc (m/min) f (mm/rev) hc (mm) ϕc (deg) 

1 60 0.051 0.24 15 

2 60 0.076 0.25 16.5 

3 60 0.102 0.33 13 

4 80 0.102 0.3 17 

5 80 0.102 0.28 19 

6 100 0.102 0.22 22 

7 100 0.102 0.2 25 

From the maximum shear stress principle in addition to Lee and Shaffer’s slip line model [38], 

average friction angle was achieved, 27.3 deg, (see Eq. (3.13)). The value can be used as an initial 

belief of the average friction angle. 

𝛽𝑎 =
𝜋

4
− (ø𝑐 − 𝛼𝑟) (3.13) 
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3.3.1 Cutting Force and Chip Thickness Measurement 

Twelve tangential and feed forces were selected to be used for training of the prior model param-

eters. In addition, chip thickness of the corresponding experiments was measured by dial caliper 

in various points along the chip length, so that the variations in the thickness were obtained and 

reported as standard deviation values.   

3.3.1.1 Cutting Forces for Training of the Model Parameters  

Figure 3.7 and Figure 3.8 display the tangential and feed force component data under different 

cutting conditions, using the tool rake angle 0, and -10, deg, respectively. The mean is provided 

together with one standard deviation error bars. As can be seen, the forces increase with an 

increase in feed for the all geometries; while the cutting speed has a slight influence on the cutting 

forces. Using tool rake angle 0 deg, feed forces values are seen less than tangential forces; never-

theless, the feed force component goes beyond the tangential component for the bigger negative 

rake angles -10 deg.  

 

Figure 3.7: Tangential and feed force components for training of prior using tool rake angle 0 deg 

 

Figure 3.8: Tangential and feed force components for training of prior using tool rake angle -10 deg 
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3.3.1.2 Chip Thickness for Training of the Merchant Model Prior  

Figure 3.9 shows the mean and one standard deviation of cut chip thicknesses. The values are 

used to train the priors of the merchant model parameters for the 0 deg rake angle tool. According 

to the figure, the cut chip thickness increases with an increase in feed values.  

 

Figure 3.9: Mean and standard deviation values of chip thickness using tool rake angle 0 deg 

3.4 Metropolis Algorithm for Merchant and Kienzle  

Models 

Bayesian MCMC method is used to estimate Merchant and Kienzle model parameters and quan-

tify the corresponding uncertainties. To demonstrate, Metropolis algorithm of MCMC is used to 

update Merchant and Kienzle force model parameters; see Algorithm 2 and 3.  

According to the Algorithm 2, Metropolis algorithm is applied to approximate the posterior target 

distribution of the parameter ϕc, first. Second, the algorithm is used to sample from the joint pos-

terior distribution of the parameters (βa,τs). The likelihood function in the first algorithm calculates 

the probability of the measured shear plane angle, ϕc
 m, given the shear plane angle, ϕc. The like-

lihood function in the second algorithm calculates the probability of the measured force, Fc, given 

the model parameters, ϕc, and (βa,τs). It is important to note that, the Metropolis algorithm is able 

to accept or reject the candidate samples of the model parameters depending on the acceptance 

ratio of the posterior probabilities.  
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Algorithm 2: Metropolis algorithm for updating the Merchant force model parameters 

1. Establish a normal prior distribution, p(ϕc), 

2. Establish a proposal density function for ϕc, 

3. Initialize a starting sample ϕc
0, 

4. For i = 0 to i = N-1: 

 Select a candidate ϕc new from a proposal distribution, q(ϕc
new| ϕc

i), 

 Compute the posterior distribution, 

p(ϕc
 i| ϕc

 m) = p(ϕc
 i) p(ϕc

 m| ϕc
 i), 

 Calculate the acceptance ratio, 

 𝑟 =
𝑝(𝜙𝑐

𝑛𝑒𝑤)

𝑃(𝜙𝑐
𝑖)

, 

 Generate a random number,  

u~ uniform (0,1), 

If u ≤ r: 

 Accept the proposal: ϕc
 i+1= ϕc

 new,  

Else:  

Reject the proposal: ϕc
 i= ϕc

 new,  

End If 

5. End For 

6. Establish a normal prior distribution, p(βa,τs), 

7. Establish a proposal density function for (βa,τs), 

8. Initialize a starting sample (βa,τs)0, 

9. For i = 0 to i = N-1: 

 Select a candidate (βa, τs)new from a proposal distribution, q((βa,τs) new| (βa,τs) i), 

 Compute the posterior distribution, 

p((βa,τs)i| Fc
 m,ϕc

 i) = p((βa,τs)i) p(Fc
 m| ϕc

 i,(βa,τs) i), 

 Calculate the acceptance ratio, 

 𝑟 =
𝑝((𝛽𝑎,𝜏𝑠)

𝑛𝑒𝑤)

𝑃((𝛽𝑎,𝜏𝑠)
𝑖)

, 

 Generate a random number,  

u~ uniform (0,1), 

If u ≤ r: 

 Accept the proposal: (βa,τs) i+1= (βa,τs)  new,  

Else:  

Reject the proposal: (βa,τs)  i= (βa,τs) new,  

End If 

10. End For 
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Algorithm 3 is applied to draw samples from the joint posterior target distribution, p(Ktt,ct). Ac-

cording to the algorithm, the likelihood function calculates the probability of the measured tan-

gential force, Ft, given the model parameters (Ktt,ct). The posterior distribution is calculated by 

multiplying the prior joint distribution into the likelihood function. 

Algorithm 3: Metropolis algorithm for updating of the Kienzle force model parameters 

1. Establish a normal prior distribution, p(Ktt,ct), 

2. Establish a proposal density function for (Ktt,ct), 

3. Initialize a starting sample (Ktt,ct)0, 

4. For i = 0 to i = N-1: 

 Select a candidate (Ktt,ct)new from a proposal distribution, q((Ktt,ct) new| (Ktt,ct) i), 

 Compute the posterior distribution, 

p((Ktt,ct)i| Ft) = p((Ktt,ct)i) p(Ft | (Ktt,ct) i), 

 Calculate the acceptance ratio, 

 𝑟 =
𝑝((𝐾𝑡𝑡,𝑐𝑡)

𝑛𝑒𝑤)

𝑃((𝐾𝑡𝑡,𝑐𝑡)
𝑖)

, 

 Generate a random number,  

u~ uniform (0,1), 

If u ≤ r: 

 Accept the proposal: (Ktt,ct) i+1= (Ktt,ct)  new,  

Else:  

Reject the proposal: (Ktt,ct)  i= (Ktt,ct) new,  

End If 

5. End For 

To reduce the excessive autocorrelation of the drawn samples using the Metropolis algorithm, the 

thinning technique is performed. Additionally, the proposal distribution of the samples is tuned 

by selecting the sample acceptance ratio roughly between 15-50 %  [56,66]. Geweck’s method 

[68] is used for the convergent diagnostics of the drawn sample of the posterior target function.  

3.5 Application of MCMC to Merchant Force Model using 

Tool Rake Angle 0 deg 

In the Merchant force model, there is uncertainty in the force coefficient, Kt, due to the uncertainty 

in the model parameters, ϕc, βa, and τs. The uncertainty evaluation and minimization using Bayes-

ian MCMC are explained in this section. Summary of the steps of the MCMC application to the 

force models is described as follows, 
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1. Establishing the priors of the force models parameters.  

2. Parameters updating using the likelihood function of the measured forces. 

3. Computing of the posterior distribution of the force models parameters and cutting forces 

using MCMC Metropolis algorithm. 

3.5.1 Establishing the Prior Distributions 

Priors of the model parameters were obtained from literature reviews [74] and [80] for a range of 

steel cutting operation, and the measurements of the shear plane angle. In the literatures, the re-

sults of the cutting tests were reported for a range of tool rake angles, +5, 0, and -7 deg, the cutting 

speed values of 100-400 m/min and feed values of 0.1-0.5 mm/rev. In this regard, prior of the 

shear plane angle, ϕc, was established from the direct measurement through the observation by a 

high speed camera. Additionally, prior of average friction angle, βa, was determined, using Eq. 

(3.13) and the information of the literatures. Consequently, the prior mean and one standard de-

viation of the parameters are given as follows:  

1. ϕc = 17 ± 4 deg  

2. βa = 30 ± 5 deg  

3. τs = 550 ± 80 MPa  

Figure 3.10 shows the Gaussian prior distribution of ϕc, and Figure 3.11 illustrates the joint Gauss-

ian prior distribution of βa and τs, with the independent covariance matrix. Monte Carlo sampling 

was completed to find the distribution of tangential and feed force coefficients, Kt and Kf. In this 

case, N = 10,000 samples were drawn from the distributions of ϕc, βa, and τs.  

 

Figure 3.10: Prior distribution of ϕc, 
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Figure 3.11: Joint distribution of βa and τs, 

Figure 3.12 depicts the prior distributions of Kt and Kf, where the mean values are 2447 and  

1427 MPa and the standard deviations are 528 and 456 MPa, respectively. The large uncertainty 

of the coefficients can be attributed to the low level of confidence in the prior of the parameters.  

 

Figure 3.12: Prior distributions of Kt (left), and Kf, (right) 

Once again, Monte Carlo simulation was used to represent the prior for the tangential and feed 

cutting forces using Eqs. (3.1) and (3.2). Figure 3.13 illustrates the functional form of the prior 

mean value, two standard deviations (2) uncertainty intervals, and the training force data points. 

According to the figure, the prior mean function under-estimates the forces.  
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Figure 3.13: Prior functions of the tangential forces (left) and feed force (right) with ±2 standard devia-

tions uncertainty intervals 

3.5.2 Parameters Updating  

This section describes the model parameters updating using the likelihood function and Metrop-

olis MCMC method. In this regard, first, the parameter ϕc is updated using the measured hc. Next, 

random samples from the posterior of ϕc, together with the measured force values are used to 

update the joint PDF of the parameters βa and τs [74]. Likelihood function of the shear plane angle 

is written as follows, 

𝑝(𝜙𝑐
𝑚|𝜙𝑐) = 𝑒

−
(𝜙𝑐−𝜙𝑐

𝑚)2

2𝜎𝑐,𝑚
2

 (3.14) 

where ϕc
m is the measured shear plane angle, which is calculated using measured cut chip thick-

ness, hc, as an input into Eq. (3.9), σc,m is the standard deviation or variation of the measured cut 

chip thickness, which is obtained to be 7-10% of the thickness of measured mean value. The 

likelihood is the value of the PDF for the measured shear plane angle, ϕc
m, given the specified 

values of the ϕc as prior probability. This likelihood function describes how likely the measure-

ment result at a feed is, given the model parameters priors. In other word, if the priors result in a 

force, which is near to the measured force, the likelihood is high; otherwise, it is low.  

Posterior distribution of ϕc was calculated by multiplying the prior the into the likelihood function 

using the Metropolis algorithm. In this context, N = 10,000 samples were drawn from the proposal 

normal distribution, q(ϕc). After removing the first 1500 points as the burn-in period, the ac-

ceptance rate of 28% was obtained. Figure 3.14 shows posterior distributions of ϕc after three 

updates. The updated posterior mean values of the ϕc, in tangential and feed directions, are 10.9 

and 10.8 deg, and the corresponding standard deviations are 0.28 and 0.29 deg, respectively. Ac-

cordingly, the uncertainties of the parameters are minimized. 
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Figure 3.14: Comparison of prior and posterior distributions of ϕc after three updates, in tangential (left) 

and feed (right) directions 

The same procedure was followed to update the prior joint distribution of (βa,τs) using the meas-

ured force values and the samples from the ϕc posterior. Similarly, blockwise MCMC method was 

exercised to draw N = 10,000 samples from the joint normal proposal distribution, q(βa,τs); see 

Algorithm 2. After discarding of the first 1500 samples as the burn-in period, the acceptance rate 

of 41% was obtained. Figure 3.15 shows the joint posterior distributions of βa and τs after three 

updates using tangential and feed forces. The mean values of βa and τs, in the tangential direction, 

are 30.8 deg and 559 MPa, and the standard deviations are 3.8 deg and 17MPa, respectively. The 

mean values of βa and τs, in the feed direction, were calculated to be 34.5 deg and 620 MPa, and 

the standard deviations were obtained, 1.3 deg and 36 MPa, respectively. Comparing the posterior 

and prior joint distributions, it is shown that the MCMC simulation can reduce the uncertainty 

after parameters training processes. 

 

Figure 3.15: Joint PDF of βa and τs after three updates using tangential (left) and feed (right) forces 
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Although the prior joint PDF of (βa,τs) were taken to be independent, the parameters become 

correlated after running the MCMC simulation. This can be quantified using Pearson correlation 

coefficient. The correlation coefficient is the measure of linear relationship between two param-

eters defined as the covariance of the parameters divided by the product of their standard devia-

tions; see Eq. (3.15).  

𝜌(𝛽𝑎 , 𝜏𝑠) =
𝑐𝑜𝑣(𝛽𝑎 , 𝜏𝑠)

𝜎𝛽𝑎𝜎𝜏𝑠 
 (3.15) 

The correlation coefficient of the parameters, βa, and τs, in tangential and feed directions were 

calculated to be -0.2 and -0.67, respectively. After updating the parameters, ϕc, βa, and τs, Monte 

Carlo simulation is used to calculate the posterior distribution of the coefficients, Kt and Kf, using 

Eq. (3.3) and (3.4). Figure 3.16 shows posterior distributions of Kt and Kf, where the mean values 

were computed to be 3408 and 2654 MPa, and, the uncertainties were minimized to be 135 and 

136 MPa, respectively. 

 

Figure 3.16: Comparison of Kt (left), and Kf (right), prior and posterior distributions after three updates 

3.5.3 Cutting Force Prediction  

Posterior forces prediction is performed inserting the posterior distributions of Kt and Kf, to the 

Eqs. (3.1) and (3.2). Figure 3.17 shows the functional form of the posterior tangential and feed 

forces with the mean and 2 standard deviations. The uncertainties for the tangential and feed 

forces were quantified numerically (using the Monte Carlo method) and illustrated using the feed 

value of 0.076 mm/rev. As can be seen, despite the uncertainty intervals assignments to the 

posterior mean functions, the models cannot predict all of the training forces. Figure 3.18 illus-

trates the prediction of the cutting forces obtained under other cutting conditions using the 
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posterior function and the corresponding credible intervals. As illustrated, the tangential and feed 

posterior functions can predict only a few forces. 

 

Figure 3.17: Posterior function of tangential (left) and feed (right) forces with ±2 standard deviations 

uncertainty intervals using Merchant model 

 

Figure 3.18: Posterior function for prediction of tangential (left) and feed (right) forces with ±2 standard 

deviations uncertainty intervals using Merchant model 

Table 3.2 shows the cutting conditions and forces used for the prediction purpose. According to 

the table, each row contains one to three force values as a result of repeated tests. The reason of 

the imprecise prediction is that Merchant force model is based on the assumption that cutting 

forces Ft and Ff, are linearly proportional to the uncut chip thickness values, h. The nonlinear 

relationship of the forces and uncut chip thickness often appears at the low feed values. The non-

linearity can be due to the increase of the specific cutting energy with the reduced uncut chip 

thickness or an increase of tool edge radius. In this context, the energy is expended in shearing of 

the chip due to the apparent more negative effective rake angle (size effect phenomenon) [81]. 

The size effect is often described with the Kienzle force model [77]. Additionally, the Bayesian 
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inference is not able to predict the forces if there is imprecision in the deterministic model. There-

fore, the Merchant model can be replaced with Kienzle cutting force model, which describes a 

nonlinear relationship between the uncut chip thickness and the cutting force values. 

Table 3.2: Cutting conditions and forces for prediction using tool rake angles 0 deg 

No. αr (deg) Vc (m/min) f (mm/rev) Ft_measured (N) Ff_ measured (N) 

1 0 60 0.051  259 

2 0 80 0.051 336, 341,361 263 

3 0 100 0.051  297 

4 0 60 0.076 472, 475 348 

5 0 100 0.076 462 376, 382 

6 0 60 0.102 583 419, 426 

7 0 80 0.102 605  

8 0 100 0.102 567 463 

3.6 Application of MCMC to Kienzle Force Model using 

Tool Rake Angle 0 deg 

Blockwise Metropolis algorithm is again used to evaluate the uncertainty of the Kienzle force 

model parameters and the forces prediction. The uncertainty of the tangential and feed forces, Ft 

and Ff, originates from the uncertainty in the model parameters Ktt, Kff, ct, and cf.   

3.6.1 Establishing the Prior Distributions 

The parameter identification starts with establishing prior values for Ktt, Kff, ct, and cf. The mean 

and standard deviation of the parameters were taken from [82] for a range of low carbon steel 

cutting operations: 

1. Ktt= 1620 ± 96 MPa  

2. Kff= 350 ± 140 MPa 

3. ct = 0.28 ± 0.04  

4. cf= 0.33 ± 0.025  

Figure 3.19 shows the joint Gaussian prior distribution of Ktt and ctt, in addition to Kff and cf, with 

the independent covariance matrices.  
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Figure 3.19: Joint prior distribution of Ktt and ctt (left), and Kff and cf (right), for tool rake angle 0 

deg 

Table 3.3 shows the calculated mean and prior values of the tangential force, Ft, for ten different 

combinations of the parameters, (Ktt,ct). In this regard, the mean value of the force was calculated 

using Eq. (3.10) and the probability of each pair of the parameters (Ktt,ct) was computed consid-

ering the mean force value of 534 N and standard deviation of 70 N at the feed 0.076 mm/rev.  

Table 3.3: Prior probabilities of Ft for the joint samples (Ktt,ct) at feed 0.076 mm/rev 

No. (Ktt,ct) Ft (N) Prior probability 

1 (1530, 0.25) 466 0.0045 

2 (1560, 0.25) 475 0.0049 

3 (1590, 0.25) 485 0.0052 

4 (1630, 0.25) 497 0.0055 

5 (1680, 0.25) 512 0.0057 

6 (1620, 0.26) 525 0.0056 

7 (1620, 0.27) 520 0.0056 

8 (1620, 0.28) 534 0.0054 

9 (1620, 0.29) 547 0.0050 

10 (1620, 0.3) 562 0.0044 

Moreover, the functional form of the priors mean values, two standard deviations (2) uncertainty 

intervals, and the training force data points are displayed in Figure 3.20. The training data is also 

shown. According to the figures, the prior mean function of the tangential force over-estimates 

the training force data; while the prior mean function of the feed force under-estimates them. 
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Figure 3.20: Prior functions of the tangential forces (left) and feed force (right) with ±2 standard devia-

tions uncertainty intervals for the tool rake angle 0 deg 

3.6.2 Parameters Updating 

The bivariate likelihood function of the measured tangential force given the Kienzle force coeffi-

cients is: 

𝑝(𝐹𝑡| 𝐾𝑡𝑡, 𝑐𝑡) = 𝑒
− 
((𝐾𝑡𝑡 .𝑏.𝑓

1−𝑐𝑡)−𝐹𝑡)
2

2𝜎𝐹𝑡
2

 (3.16) 

where p(Ft| Ktt,ct) is the likelihood function of the measured mean cutting force, Ft, given speci-

fied prior values of the model coefficients, (Ktt,ct), at an experimental feed value. The likelihood 

function is expressed as a non-normalized normal distribution, where σFt is the standard deviation 

of the measured force. To illustrate, again consider ten possible (Ktt,ct) pairs listed in Table 3.4. 

Assume an experimental cutting force of 470 N was obtained at the feed of  f = 0.076 mm/rev. 

The likelihood function can be interpreted as assigning weights to the sample forces coefficients 

(Ktt,ct), from zero to unity, where zero means that the selected combination is not likely at all and 

unity means the most likely combination [65]. The likelihood for each sample force coefficients, 

(Ktt,ct), was calculated using (3.16) considering the measured cutting force of 470 N. The value 

of σFt is selected by the user’s belief based on experimental force uncertainty. For this study, the 

standard deviation was decided to be 4-6% of the measured mean value. Table 3.4 lists the like-

lihood values for each possible (Ktt,ct) pair. The likelihood values listed in the table imply that 

sample number 1 is most likely to be the correct (Ktt,ct) combination, whereas sample number 10 

is the least likely. 
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Table 3.4: Likelihood probabilities of Ft for joint samples (Ktt,ct) pairs given the measured force of 468 N 

No. (Ktt,ct) Ft (N) Prior probability Likelihood 

1 (1530, 0.25) 466 0.0045 0.0733 

2 (1560, 0.25) 475 0.0049 0.0722 

3 (1590, 0.25) 485 0.0052 0.0645 

4 (1630, 0.25) 497 0.0055 0.0476 

5 (1680, 0.25) 512 0.0057 0.0255 

6 (1620, 0.26) 525 0.0056 0.0328 

7 (1620, 0.27) 520 0.0056 0.0166 

8 (1620, 0.28) 534 0.0054 0.0067 

9 (1620, 0.29) 547 0.0050 0.0021 

10 (1620, 0.3) 562 0.0044 0.0005 

Figure 3.21 shows the bivariate likelihood function for Ft = 470 N at feed 0.076 mm/rev, given 

different values of (Ktt,ct) pairs. The figure also demonstrates the likelihood of the joint samples 

number 1, which is the most likely parameters combination within the selected samples.  

 

Figure 3.21: Bivariate likelihood function of the measured force 470 N at feed 0.076 mm/rev, given the 

(Ktt,ct) pairs 

Posterior distribution of the model parameters in tangential and feed directions are achieved using 

non-normalized product of priori and the likelihood function: 

𝑝(𝐾𝑡𝑡, 𝑐𝑡|𝐹𝑡) = 𝑝(𝐹𝑡|𝐾𝑡𝑡, 𝑐𝑡) 𝑝(𝐾𝑡𝑡, 𝑐𝑡) 
(3.17) 

where p(Ktt,ct|Ft) is the joint posterior distribution of the force coefficients given the measured 

force mean value, p(Ktt,ct) is the prior joint distributions of the force coefficients, p(Ft|Ktt,ct) is the 
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likelihood function, and p(Ft) is the normalizing factor. Joint posterior distributions, (Ktt,ct) and 

(Kff, cf), were calculated by multiplying the priors into the likelihood functions using blockwise 

Metropolis algorithm. N = 10,000 samples were drawn from the proposal normal distributions, 

q(Ktt,ct) and q(Kff, cf), and 1500 samples were considered as the burn-in period. The covariance 

matrices of the proposal distributions were tuned, so that the acceptance rate values of 44% and 

33% were obtained for the drawn samples of the tangential and feed model parameters, respec-

tively. Figure 3.22 displays the bivariate posterior distributions of Ktt and ct (left), which is 

obtained after one update, in addition to Kff and cf (right) achieved after two updates using meas-

ured forces. For the tangential force component, the mean values of Ktt and ct were computed to 

be 1573 MPa and 0.24, and the standard deviations are 84 MPa and 0.023, respectively. For the 

feed force component, the mean values of Kff and cf are 870 MPa, and 0.36 and the standard 

deviations are 58 MPa and 0.022, respectively. Comparing the posterior and prior joint 

distributions, it is seen that the uncertainties are reduced. Additionally, the model parameters be-

come correlated with the correlation coefficient of -0.78 for (Ktt,ct) and -0.85 for (Kff,cf) joint 

distributions. 

 

Figure 3.22: Joint posterior distribution of Ktt and ctt (left), and Kff and cf (right), for tool rake angle 0 deg 

3.6.3 Cutting Force Prediction  

Force prediction is performed using Monte Carlo simulation and the posterior distributions of Ktt 

and ct and Kff and cf for Eqs. (3.11) and (3.12). The uncertainty quantification is performed nu-

merically (using the Monte Carlo method) and illustrated using the feed value of 0.076 mm/rev. 

Figure 3.23 shows the functional form of the tangential and feed forces posteriors with the mean 

and two standard deviations. The regression fit is characterized by R2 = 0.99 (tangential force), 

and R2 = 0.98 (feed force). As can be seen, only one force is used for updating the tangential force 

posterior, and two forces are used for training of the feed force posterior function. The posterior 
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mean functions closely agree with the training forces. This is due to the influence of the informa-

tive prior knowledge in the tangential direction (which leads to the usage of only one training 

force) and less informative prior in the feed direction.  

 

Figure 3.23: Posterior function of tangential (left) and feed (right) force with ±2 standard deviations un-

certainty intervals for the tool rake angle 0 deg 

Table 3.5 shows the prior, likelihood and posterior probabilities for each pair of (Ktt,ct) pair. As 

can be seen, the posterior probabilities of the samples number 1 and 2 were increased compared 

to the prior probability. This implies that the Ft values of the 466 and 475 N have the highest 

estimation probabilities compare to the other values. 

Table 3.5: Posterior probabilities of Ft for joint samples (Ktt,ct) at feed 0.076 mm/rev 

No. (Ktt,ct) Ft (N) Prior probability Likelihood Posterior probability 

1 (1530, 0.25) 466 0.0045 0.0733 0.0134 

2 (1560, 0.25) 475 0.0049 0.0722 0.0134 

3 (1590, 0.25) 485 0.0052 0.0645 0.0120 

4 (1630, 0.25) 497 0.0055 0.0476 0.0089 

5 (1680, 0.25) 512 0.0057 0.0255 0.0049 

6 (1620, 0.26) 525 0.0056 0.0328 0.0032 

7 (1620, 0.27) 520 0.0056 0.0166 0.0023 

8 (1620, 0.28) 534 0.0054 0.0067 0.0012 

9 (1620, 0.29) 547 0.0050 0.0021 0.0004 

10 (1620, 0.3) 562 0.0044 0.0005 0.0001 

 

Figure 3.24 illustrates the prediction of the cutting forces obtained under other cutting conditions 

using the tangential and feed posterior functions. As can be seen, almost all the force data appear 

within the uncertainty intervals.  
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Figure 3.24: Posterior function for prediction of tangential (left) and feed (right) forces with ±2 standard 

deviations uncertainty intervals for the tool rake angle 0 deg 

Table 3.6 lists the experimental force values, and the predicted mean with two standard deviations 

(2) uncertainty intervals of the tangential and feed forces for the 0 deg tool rake angle. Percent 

error values between the measured and predicted mean forces are calculated to determine the 

precision of the calculations described as follows, 

%𝑒𝑟𝑟𝑜𝑟 = |
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
| ∙ 100 (3.18) 

where the maximum prediction errors for the tangential force was calculated to be 5% and for the 

feed force is 8%; see Table 3.6. This indicates that the algorithms are able to identify the model 

parameters and predict the forces with a reasonable degree of accuracy. Consequently, the prob-

abilistic prediction of the forces using Kienzle model causes more accurate estimation and can 

capture the nonlinearity of the measured forces in both tangential and feed directions. 

Table 3.6: Cutting conditions, measured experimental and predicted forces for the 0 deg tool rake angle 

No. Vc (m/min) f (mm/rev) Ft_measured  

(N) 

Ft_predicted 

(N) 

Ft_error (%) Ff_measured 

(N) 

Ff_predicted 

(N) 

Ff_error (%) 

1 60 0.051    259   7.7 

2 80 0.051 336, 341,361  (352, 9.67) 4.7, 3.2, 2.5 263  (279, 6.7) 5 

3 100 0.051    297  6 

4 60 0.076 472, 475  (475 ,14.2) 0.6 348 (360, 9.9) 3.5 

5 100 0.076 462  2 376, 382  4.2, 5.7 

6 60 0.102 583  1.7 419, 426  3.3, 1.6 

7 80 0.102 605 (593,19) 2  (433, 13.2)  

8 100 0.102 567  4.5 463  6.5 
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3.7 Sequential Force Prediction using Kienzle Force 

Model  

Sequential force prediction is performed by using the posterior distributions of the Kienzle model 

parameters of the 0 deg rake tool as the prior distributions for the -10 deg rake tool; see  

Figure 3.25. As illustrated in the figure, the model parameter priors are trained by 0 deg rake 

experiments to obtain the posterior force distribution. Next, the 0 deg posterior distributions are 

used as prior probabilities for the -10 deg rake angle tool. The training procedure can be continued 

to update and predict the forces using other rake angles as well. 

 

Figure 3.25: Sequential training and prediction of cutting forces using Bayesian updating for different tool 

rake angles 

3.7.1 Model Parameters Identification 

To establish the mean and standard deviation for the priors of the new geometry (tool rake angle 

-10 deg), the following steps were implemented: 

1. The prior mean and standard deviation values of Ktt and ctt parameters, for -10 deg rake 

tool, are taken to be equal to the posterior of the previous geometry.  

2. The prior mean values of Kff and cf parameters, for -10 deg rake tool, are again taken to 

be equal to the posterior mean values of the previous geometry.  

3. The prior standard deviations of Kff and cf parameters, for -10 deg rake tool, are taken to 

be equal to the priors of the 0 deg rake tool, 140 MPa and 0.025.  

The approach mentioned above for establishing of the prior’s standard deviations denotes that 

allocating larger uncertainty on the prior values (i.e., less confidence in the prior knowledge) 

enables the simulation to rely more on the measurements. If more weight is given to the experi-

ments, the parameters follow the likelihood function. On the other hand, defining smaller uncer-

tainty on the prior distributions (more informative prior knowledge) refers that the simulation 

relies more on the prior. Based on this argument, it was decided to allocate smaller uncertainties 
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to the tangential force model parameters (due to the more informative priors) and larger ones to 

the feed force model parameters. The functional form of the prior mean values, two standard 

deviations (2) uncertainty intervals, and the tangential and feed training force data points are 

shown in Figure 3.26. According to the figures, the prior mean value of the tangential force esti-

mates better the training forces compared to the prior function of the feed force and both under-

estimate the data. 

 

Figure 3.26: Prior functions of the tangential forces (left) and feed force (right) with ±2 standard devia-

tions uncertainty intervals for the tool rake angle -10 deg 

Once again, N = 10,000 samples were drawn from the proposal normal distributions, q(Ktt,ct) and 

q(Kff,cf), and 1500 samples were considered as the burn-in period. The covariance matrices of the 

proposal distributions were tuned, so that the acceptance rate values of 45% and 39% were 

obtained for the drawn samples of the tangential and feed model parameters, respectively.  

Figure 3.27 shows the bivariate posterior distributions of Ktt and ct and Kff and cf after one and 

two force updates, respectively. For the tangential force component, the mean values of Ktt and ct 

were computed to be 1658 MPa, and 0.27 and the standard deviations are 70 MPa, and 0.017. For 

the feed force component, the mean values of Kff and cf, are 1255 MPa and 0.39 and the standard 

deviations are 72 MPa and 0.021. Comparing the posterior and prior joint distributions, it is seen 

that the uncertainties are reduced after updating. Additionally, the correlation coefficient of the 

model parameters were calculated to be -0.53 for (Ktt,ct) and -0.80 for (Kff,cf) joint distributions. 

3.7.2 Cutting Forces Prediction  

Posterior force prediction was performed using the posterior distributions of Ktt and ct and Kff and 

cf for the Eqs. (3.11) and (3.12). Figure 3.28 shows the functional form of the posterior tangential 
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and feed forces with the mean and standard deviations of 2. The uncertainty is quantified nu-

merically (using the Monte Carlo method) and illustrated using the feed value of 0.076 mm/rev. 

The regression fit parameters are R2 = 0.96 (tangential force), and R2 = 0.965 (feed force). The 

posterior of the tangential force was achieved using only one update due to the more informative 

prior. This demonstrates the effectiveness of Bayesian inference as compared to the least squares 

curve fitting, which requires at least two data points for the parameter identification, in this case. 

On the other hand, the posterior of feed force was obtained after two updates due to its less in-

formative prior. According to the figures, the posterior mean functions accurately represent the 

training forces in tangential and feed directions.   

 

Figure 3.27: Joint posterior distribution of Ktt and ctt (left), and Kff and cf (right) for the tool rake angle  

-10 deg 

 

Figure 3.28: Posterior function of tangential (left) and feed (right) forces with ±2 standard deviations 

uncertainty intervals for the tool rake angle -10 deg 

Figure 3.29 illustrates the prediction of the tangential and feed test forces using the posterior 

functions. As can be seen, all the force data appear within the uncertainty intervals. Table 3.7 lists 
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the experimental force values, and the predicted mean tangential and feed forces with two stand-

ard deviations (2) uncertainty intervals for the -10 deg tool rake angle. Once more, the percent 

error between the measured and predicted mean forces were calculated and reported in the table. 

The maximum prediction error for the tangential force was calculated to be 7%, and for the feed 

force was obtained to be 9%. This implies that the model parameters identification and forces 

prediction were performed with a reasonable degree of accuracy using the MCMC method applied 

to the Kienzle force model. 

 

Figure 3.29: Posterior function for prediction of tangential (left) and feed (right) forces with ±2 standard 

deviations uncertainty intervals for the tool rake angle -10 deg 

Table 3.7: Cutting conditions and forces for prediction for the tool rake angles -10 deg 

No. Vc (m/min) f (mm/rev) Ft_measured  

(N) 

Ft_predicted 

(N) 

Ft_error (%) Ff_measured  

(N) 

Ff_predicted 

(N) 

Ff_error (%) 

1 60 0.051 427  6.5 430  1.8 

2 80 0.051 415 (399, 8) 3.8  (438, 8.2)  

3 100 0.051 386  3 404, 411  8.5, 6.5 

4 60 0.076 576 (534, 11.8) 7.2 571 (557, 12.2) 2.5 

5 80 0.076 500, 514  6.8, 3.8 549, 562  1.5, 0.8 

6 80 0.102 654 (662, 15.7) 1.2 629, 646, 686 (666, 16.2) 6, 3, 3 

7 100 0.102 666, 691  0.6, 4    

 

3.8 Conclusions 

In this chapter, cutting forces prediction was performed using Bayesian inference (MCMC simu-

lation) for the Merchant and Kienzle force models. The Mechanistic Merchant model is based on 
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the assumption that the tool edge radius is zero, whereas the Kienzle force model takes into ac-

count the effect of cutting edge radius on specific cutting force coefficient. The results of the 

probabilistic force predictions using Merchant and Kienzle models for a 0 deg rake angle tool 

were obtained and discussed. Sequential force prediction was carried out by using the posterior 

probabilities of the Kienzle force model parameters for the 0 deg rake tool as the prior probabili-

ties for the -10 deg rake tool. The main conclusions are summarized as follows: 

1. The Kienzle force model predicted the tangential and feed cutting forces, successfully, 

while the Merchant model could not. The reason is that the Kienzle model can consider 

the size effect phenomenon in the turning process. This refers to the nonlinearity due to 

the increase of the specific cutting energy with the reduced uncut chip thickness or an 

increase of tool edge radius. 

2. The Kienzle posterior functions could predict the tangential and feed forces with the good 

degree of accuracy for both tool geometries. Using the 0 deg rake angle tool, the maxi-

mum prediction error values were reported 5% for the tangential force and 8% for the 

feed force. Using the 10 deg rake angle tool, the maximum errors of 7% for the tangential 

force and 9% for the feed force were obtained. 

3. The posterior functions of the tangential force components for both geometries were ob-

tained using only one updating process, which is impossible in the case of parameter 

determination by least squares curve fitting. The uncertainty of the initial belief was 

reduced after updating in all instances. This suggests that Bayesian inference offers a 

preferred approach to force modeling by incorporating the minimal input and predicting 

forces under inherent uncertainties.  

The result of the study can be further used to investigate the effect of cutting tools geometry and 

material on cutting force using Bayesian inference. The sequential probabilistic technique allows 

incorporating historical knowledge about process parameters into the current simulation so that 

the number of experiments is reduced.    
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4 Bayesian Updating for Cutting and 

Ploughing Forces Prediction in 

Turning Process1 

4.1 Introduction 

The semi-empirical Kienzle force model describes a nonlinear relationship between the uncut 

chip thickness and cutting force using a power law [83]. The model predicts the force value 

deterministically and, therefore, the process uncertainties, including the machining and 

measurement processes variability, are not inherently incorporated. They can be quantified and 

minimized using Bayesian inference. 

Additionally, the traditional Kienzle model does not isolate the ploughing force from the cutting 

force. The model can be enhanced by incorporating the ploughing force component. In this chap-

ter, orthogonal turning is performed to measure cutting forces over a range of uncut chip thickness 

values. An extended Kienzle force model is proposed to include the ploughing force component 

and nonlinear least squares fitting (LSF) method is used to identify the force model coefficients 

using the experimental data. Moreover, the Bayesian Markov Chain Monte Carlo (MCMC) 

approach is used to develop a probabilistic model. The model is verified using forces measured 

under other cutting conditions. Finally, the LSF and Bayesian inference predictions are compared. 

4.2 Orthogonal Turning Experiments 

Once more, tube turning experiments were performed on a Haas TL-1 CNC lathe; see Figure 3.2.  

The dry machining tests were completed using an uncoated insert SPGW09T308 with the ISO 

grade of P25, a rake angle of -10 deg and an edge radius of 20 µm. The tubular workpiece material 

                                                      

1 This chapter is extended from the following publication: M. Salehi, T.L. Schmitz, R. Copenhaver, R. 

Haas, J. Ovtcharova, Probabilistic Prediction of Cutting and Ploughing Forces using Extended Kienzle 

Force Model in Orthogonal Turning Process, Procedia CIRP. 77 (2018) 90–93. 
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was 1020 steel with an outer diameter of 25.4 mm and wall thickness of 2.1 mm. The 

corresponding chip width was 2.1 mm. Four feed values of f = {0.051, 0,076, 0.102, and 

0.127} mm/rev, as well as three cutting speeds of Vc = {60, 80 and 100} m/min, were selected. 

The experiments were repeated three times for each cutting speed-feed combination. Therefore, 

the total number of experiments was 36. 

A three-axis force dynamometer (Kistler 9257B) was used to measure the cutting force. Three 

data sets were used to identify the force model parameters and establish the prior for the 

probabilistic models, while the others were used for model verification. Figure 4.1 displays the 

tangential force component data for identification of the force model coefficients (using nonlinear 

LSF) and prior training purpose. The mean is provided together with one standard deviation error 

bars. As can be seen, the forces increase with an increase in feed. 

 

Figure 4.1: Tangential force components for training of the prior 

4.3 Extended Kienzle Force Model  

Kienzle force model describes a nonlinear relationship between the uncut chip thickness and the 

cutting force. However, since the cutting-edge corner radius is nonzero, there is an increase in 

chip plastic deformation without material cutting for small chip thickness values. This 

phenomenon is referred to as ploughing [38]; see Figure 4.2. Ploughing can be included to the 

force model by augmenting the Eq. (3.11), and adding a constant force coefficient that scales with 

the chip width, b.  

𝐹𝑡 = 𝐾𝑡𝑡. 𝑏. ℎ
1−𝑐𝑡⏞      

𝐹𝑡−𝑠ℎ𝑒𝑎𝑟𝑖𝑛𝑔

 + 𝐾𝑡𝑒 . 𝑏⏞  

𝐹𝑡−𝑝𝑙𝑜𝑢𝑔ℎ𝑖𝑛𝑔

 (4.1) 
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In Eq. (4.1), Kte is associated with the tangential ploughing (rubbing) term. The shearing compo-

nent is dependent on the chip thickness, while the ploughing terms is not. 

 

Figure 4.2: Schematic representation of ploughing phenomenon 

4.4 Parameter Identification using Nonlinear LSF 

The tangential force parameters, Ktt, Kte, and ct, can be determined using the nonlinear LSF. Figure 

4.3 shows the force data curve fit (using Eq. (4.1)); the regression fit quality is R2 = 0.987, where 

the lower and upper bounds for the fit parameters were selected to be 0 and 1000. Although the 

fit quality is high, and three training data were used to identify the force model coefficients the 

approach was not able to identify the ploughing force coefficient, Kte.  

 

Figure 4.3: Nonlinear LSF to determine the extended Kienzle model parameters 
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4.5 Parameter Identification and Forces Prediction using 

Bayesian MCMC Method 

In the extended Kienzle force model, there is uncertainty in the force value, Ft, due to the uncer-

tainties in the model parameters, Ktt, Kte, and ct. The uncertainties can be quantified and minimized 

using Blockwise MCMC method. To demonstrate, Metropolis algorithm of MCMC is presented 

to draw samples from the joint proposal distribution, q(Ktt,Kte,ct) to approximate posterior target 

distribution p(Ktt,Kte,ct); see Algorithm 4. According to the algorithm, the likelihood function cal-

culates the probability of the measured tangential force, Ft, given the model parameters Ktt, Kte, 

and ct. The likelihood function of the parameters, Ktt, Kte, and ct, can be shown graphically as 

marginal joint PDFs of the pairs, (Ktt,Kte) and (Ktt,ct). The posterior distribution is calculated by 

multiplying the prior joint distribution into the likelihood function.  

Algorithm 4: Metropolis algorithm for updating of the extended Kienzle force model parameters 

1. Establish a normal prior distribution, p(Ktt, Kte,ct), 

2. Establish a proposal density function for (Ktt, Kte,ct), 

3. Initialize a starting sample (Ktt, Kte,ct)0, 

4. For i = 0 to i = N-1: 

 Select a candidate (Ktt, Kte,ct)new from a proposal distribution, q((Ktt, Kte,ct) new| (Ktt, Kte,ct) i), 

 Compute the posterior distribution, 

p((Ktt, Kte,ct)i| Ft) = p((Ktt, Kte,ct)i) p(Ft | (Ktt, Kte,ct) i), 

 Calculate the acceptance ratio, 

 𝑟 =
𝑝((𝐾𝑡𝑡,𝐾𝑡𝑒,𝑐𝑡)

𝑛𝑒𝑤)

𝑃((𝐾𝑡𝑡,𝐾𝑡𝑒,𝑐𝑡)
𝑖)

, 

 Generate a random number,  

u~ uniform (0,1), 

If u ≤ r: 

 Accept the proposal: (Ktt, Kte,ct) i+1= (Ktt, Kte,ct)  new,  

Else:  

Reject the proposal: (Ktt, Kte,ct)  i= (Ktt, Kte,ct) new,  

End If 

5. End For 
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4.5.1 Establishing the Prior 

To develop the probabilistic model for the extended Kienzle force model, prior values for the 

parameters Ktt, Kte, and ct must be selected. The mean and standard deviation of the parameters 

were taken from [82] for a range of low carbon steel cutting operations: 

1. Ktt = 1560 ± 96 MPa (one standard deviation) 

2. ct = 0.21 ± 0.06 (one standard deviation)  

Waldorf et al. [84] described the “separation point on edge” model to study the ploughing force 

in orthogonal cutting processes. According to the model, the separation point, S, of the material 

in front of a rounded cutting edge is defined, where the upper part converts to the chip (cut chip 

thickness, hm, and shear angle, ϕc,) and travels along the rake face, while the lower part with the 

ploughing layer thickness, δ, remains attached to the workpiece; see Figure 4.2. The locating 

angle, αs, for the separation point was reported to be approximately 65 deg. Therefore, the δ layer 

was calculated to be 2 µm (for a tool edge radius of 20 µm). The corresponding ploughing force 

coefficient can be approximated using the following steps.  

a. Kt and ct are inserted in the shearing component of Eq. (4.1) to find the cutting force,  

b. The force is set equal to the ploughing component of the equation, 

c. The prior value of Kte is found by dividing the force by the chip width, b. 

The corresponding prior value for the ploughing force coefficient is given as follows. 

3. Kte = 12 ± 2.4 MPa (one standard deviation) 

 

Figure 4.4: Joint prior distribution of Ktt and ct (left), Ktt and Kte (right) 

Figure 4.4 displays the marginal joint prior distribution of the parameters Ktt and Kte in addition 

to the Ktt and ct. Monte Carlo simulation was used to represent the prior for the cutting force 

model. Figure 4.5 illustrates the functional form of the prior mean value, two standard deviations 
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(2) uncertainty intervals, and the training force data points. According to the figure, the prior 

mean function under-predicts the forces. 

 

Figure 4.5: Prior function with ±2 standard deviations uncertainty intervals using extended Kienzle 

model 

4.5.2 Likelihood Function 

Figure 4.6 shows the bivariate likelihood function of the measured tangential force, Ft (427 N, at 

the feed of 0.051 mm/rev and the cutting speed of 60 m/min), given (Ktt,ct). As illustrated in the 

figure, the joint values with the higher probabilities are associated with the most likely values of 

the parameters. 

 

Figure 4.6: Bivariate Likelihood function of Ktt and ct  
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Joint marginal posterior distributions, (Ktt,ct) and (Ktt,Kte), were calculated by multiplying the pri-

ors into the likelihood functions using blockwise Metropolis algorithm. N = 10,000 samples were 

drawn from the proposal normal distributions, q(Ktt,Kte,ct), and 1500 samples were considered as 

the burn-in period. The covariance matrix of the proposal distribution was tuned, so that the ac-

ceptance rate of 21% was obtained for the drawn samples of the model parameter. Figure 4.7 

displays the marginal joint posterior distribution of the parameters (Ktt, ct) in addition to the  

(Ktt, Kte). The corresponding mean values of the posterior parameters, Kt, Kte, and ct, parameters, 

are 1597 MPa, 12.25 MPa, and 0.27, while the standard deviations are 66 MPa, 2.37 MPa, and 

0.024, respectively. Moreover, the uncertainty of the posterior function is reduced. Further mini-

mization of the uncertainties can be performed by repeating the parameters updating process using 

the training forces. As can be seen, the model parameters become correlated with the correlation 

coefficient of -0.67 for (Ktt,ct) and 0.01 for (Ktt,Kte) joint distributions. 

 

Figure 4.7: Joint posterior distribution of Ktt and ct (left), Ktt and Kte (right)  

4.5.3 Cutting and Ploughing Forces Prediction 

Figure 4.8 depicts the functional form of the posterior distribution with the mean and standard 

deviations of 2  (R2 = 0.989). The uncertainty was quantified numerically (using the Monte Carlo 

method) and illustrated using the feed value of 0.102 mm/rev for the Eq. (4.1). The function 

approximates the shearing and ploughing components of the cutting force using only one training 

data, Ft = 427 N. This demonstrates that Bayesian inference can identify the model parameters 

with the minimum input thanks to the informative prior knowledge.  Nevertheless, the ploughing 

force identification was not successful using nonlinear LSF method, despite four training force 

data were used. The ploughing force is shown based on extrapolation to the zero chip thickness 

[85]. Furthermore, the uncertainty of the posterior function is significantly reduced.  
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Figure 4.8: Posterior function with ±2 standard deviations uncertainty intervals using extended Kienzle 

model 

The predicted ploughing force is verified using the simplified slip-line model [86], which has 

been proposed for turning processes:  

𝐹𝑡𝑝 = 𝜏𝑠. 𝑏. 𝑟𝑒 . tan (
𝜋

2
+
𝛼𝑟
2
) (4.2) 

where Ftp is the ploughing force, re is the edge radius, and αr is the cutting edge rake angle. The 

τs parameter was computed to be 684 MPa using Merchant’s force model [38]. From Eq. (4.2), 

Ftp is calculated to be 24.22 N, showing that the probabilistic model successfully approximates 

the ploughing force, 25.84 ± 2.37 N.  

Table 4.1: Cutting conditions, and measured and predicted forces  

No. Vc (m/min) f (mm/rev) Ft_measured (N) Ft_predicted (N) Ft_error (%) 

1 80 0.051 415, 422 (414, 20.5) 0.2, 1.6 

2 100 0.051 386  7 

3 80 0.076 546, 576 (545, 24.5) 0.2, 5 

4 100 0.076 500  9 

5 80 0.102 647 (669, 28.3) 3.4 

6 100 0.102 667, 691  0.3, 3 

7 100 0.127 723, 730, 749 (779, 32) 7, 6.7, 4 

Table 4.1 shows the cutting conditions and the measured forces in addition to the mean and one 

standard deviation values of the predicted forces. According to the table, each row contains one 

to three force values as a result of repeated tests. Percent error values between the measured and 

predicted mean forces are reported in the table, where the maximum error was calculated to be 
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7%. Figure 4.9 illustrates the prediction of the cutting forces obtained under other cutting condi-

tions using the posterior function. As can be seen, all the force data appear within the uncertainty 

intervals.  

 

Figure 4.9: Posterior function for prediction with ±2 standard deviations uncertainty intervals using ex-

tended Kienzle model 

4.6 Conclusions 

Cutting and ploughing force prediction was performed using nonlinear least squares fitting and 

Bayesian inference (MCMC simulation) methods. The prediction results were compared with 

orthogonal turning data and a simplified slip-line model. Percent error values between the meas-

ured and predicted mean forces were computed, where the maximum error was obtained to be 

7%. Comparing the fitting and inference approaches, it was shown that Bayesian inference could 

predict the cutting and ploughing forces with minimal initial data (one data point in this case) 

thanks to the informative prior knowledge. Furthermore, the nonlinear fitting was not able to 

determine the ploughing force from the cutting force despite three training force data were used 

and high fit quality of R2 ~ 0.99 was achieved. This suggests that Bayesian inference offers a 

preferred approach to force modeling with minimum input and inherent uncertainty. 
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Part III: Bayesian-Based Analytics for 

Cutting Tool Life, Reliability and Wear 

Growth
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5 Bayesian Updating for Tool Life and 

Reliability Analysis in Milling 

Process 

This chapter represents the probabilistic prediction and reliability analysis of tool life applying 

Bayesian inference to the Taylor tool life model. The probabilistic models investigate the effect 

of cutting speed and tool geometry on the tool life using MCMC approach. Metropolis algorithm 

is used to quantify and minimize the model uncertainties. Two types of tool geometries with dif-

ferent edge radii were tested under a range of cutting speeds, 300-400 m/min, in the milling pro-

cess. It is important to note that the parameters identification is valid within the mentioned range, 

so the tool life prediction function cannot be extrapolated beyond this range. The results of the 

probabilistic tool wear prediction are validated with the milling experiments, which are obtained 

under different cutting conditions. Tool life prediction using Bayesian and least squares curve 

fitting methods are compared and discussed. The tool life reliability analysis is performed using 

reliability and hazard functions for the range of cutting speeds and tool geometries. This chapter 

is organized as follows. Section 5.1 represents an introduction to the tool life modeling process 

and literature review. Section 5.2 reports the experimental setup and results of the milling tests. 

Section 5.3 presents the application of MCMC to sequential tool life prediction using the normal 

distribution. Section 5.4 demonstrates the reliability analysis considering the effect of cutting 

speeds and cutting tools geometries on the analysis. Finally, section 5.5 reports the conclusions.  

5.1 Introduction  

Cutting tools undergo different shapes of wear such as flank, crater, and notch wears. Flank wear 

is the most important and preferred form of the wear because it offers predictable and progressive 

tool wear pattern. This type of wear is caused due to the friction between the tool flank face and 

the machined surface of the workpiece [38]. Figure 5.1 shows a typical cutting tool wear pattern 

according to ISO 3685, where VB,avg
 denotes the average tool flank wear, VB,max

 is the maximum 

tool flank wear width, VB,C
 is the width of the flank wear at the tool corner, and VB,N

 is the width 

of notch wear. According to the ISO, the VB,avg exceeds 0.3 mm, while the VB,max can exceed to  
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0.6 mm [87]. Astakhov and Davim [88] has recommended the limit of the VB,avg
 to be in a range 

of 0.2 to 0.5 mm for cemented carbides in the industrial applications.  

 

Figure 5.1: Cutting tool flank and notch wear patterns, ISO 3685 

Tool life is often defined as the cutting time required to reach a predetermined wear limit of VB,avg. 

Taylor equation is a useful model to predict the tool life. It describes an empirical relationship 

between tool life and cutting speed using the power law [65]: 

T = (
C

𝑉𝑐
)

1
𝑛

 (5.1) 

where Vc is the cutting speed in m/min, C is the constant which is defined as the cutting speed 

required to obtain the tool life of 1 minute, n is the exponent that depends on the cutting 

parameters, and T is the tool life, in minute, taken to develop a certain flank wear. 

During the last decades, several other analytical, numerical, and empirical models have been de-

veloped to model and predict the tool wear  [89–93]. However, tool wear varies in real applica-

tions, even if the cutting tool, machine, and the cutting conditions are identical. This can be due 

to the variation of the chemical and physical properties of the commercially identical workpiece 

and the tool-to-tool performance which causes to obtain stochastic quantities for same tool life 

tests. Therefore, the deterministic models are limited in the application if the randomness in the 

tool life results is not evaluated.  

The uncertainty evaluation and probabilistic prediction of tool life can be performed by Bayesian 

inference. Karandikar et al. [8,69,94,95] investigated the application of grid-based and Bayesian 

MCMC to predict the tool life in milling and turning processes. The grid-based method was used 

for inference on Taylor tool life model parameters, whereas the Metropolis MCMC was applied 

to estimate the extended Taylor’s model parameters. The performance comparison of two ap-

proaches was also reported, where the grid-based method was easier to implement, but it was 

computationally more expensive for updating a joint distribution with three or more dimensions. 
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On the other hand, the Metropolis MCMC algorithm facilitated sampling from multivariate dis-

tributions without sensitivity to the number of the parameters [65]. Niaki et al. [67,96] developed 

probabilistic models using Bayesian inference to predict tool wear in the milling of Nickel-based 

material. The combined Gibbs-Metropolis algorithm was used to estimate the unknown parame-

ters of a non-linear mechanistic cutting power model. The Metropolis algorithm was used for 

predicting the model parameters, whereas the Gibbs sampler was utilized for updating measure-

ment error variance. By using the algorithm, the model parameters were successfully estimated, 

and the spindle power consumption was predicted with the maximum error of 18%. 

The reliability analysis of the cutting tool life and wear have been studied using various probabil-

ity distributions and statistical methods. Salonitis et al. [42] have used the surrogated modeling 

method and Stochastic Response Surface Method (SRSM) to approximate the tool flank wear in 

high speed turning process. Monte Carlo and First Order Reliability Methods (FORM) were used 

for the simulation of reliability indices. They have illustrated that the proposed technique leads to 

a reduction of a number of experiments in comparison to the purely empirical methods. El Ward-

any and Elbestawi [97] has presented stochastic models for prediction of failure rate in turning of 

hardened steel with ceramic tools. Different types of tool wear including, gradual wear; chemical 

wear and premature failure were modeled using lognormal and Weibull distributions. They in-

vestigated the failure behavior of the tool at different cutting speeds using the reliability and prob-

ability density functions, quantitatively. 

Moreover, the hazard function was used to study the instantaneous failure rate, qualitatively. It 

was demonstrated that the lognormal distribution could be used as a tool wear distribution to 

predict the tool failure rate under different values of cutting conditions and workpiece surface 

finish. It was also shown that the Weibull distribution is the most suitable distribution to represent 

the tool chipping. There are some papers, which present the reliability of cutting tools under dif-

ferent cutting conditions and applications [98–101]. In this chapter, The Metropolis MCMC 

method is used for the probabilistic prediction of tool life in the milling process. Two types of 

tool edge radii (20 and 40 µm) are considered for the sequential prediction purpose, where the 

posteriors of the model's parameters of the first geometry are used as priors of the second geom-

etry. Additionally, the effect of cutting speed and tool geometry on reliability and hazard functions 

of the cutting tools are investigated using the probabilistic models. 
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5.2 Experimental Setup, Results, and Discussion 

Milling experiments were performed on a 5-axis milling machine Hermle C40; see Figure 5.2.  

Face milling tool wear tests (2.5 axes) were completed using tool diameter 32 mm holding three 

cutting inserts. Two types of uncoated inserts (SPGW09T308) with the edge radii of 20 and  

40 µm were used; see Figure 5.3. The inserts were designed and produced with the special edge 

geometry by Zermet Zerspanung GmbH, with the ISO grade of P25. The cubic workpiece material 

was AISI 1045 steel with the dimensions of 100×100×100 mm. The depth of cut was selected to 

be 1.5 mm. Feed value of 0.05 mm/tooth, and four cutting speeds of Vc = {300, 325, 350 and 

400} m/min were selected as the cutting data.  

  

Figure 5.2: Tool wear measurement; milling tool and the microscope (left), and machining set up (right) 

To avoid removing the tool from the spindle, a portable microscope 5 MPX Dino-Lite 

(AM7915MZT) with the magnification of 220x was used to record digital images of the tool flank 

face in regular intervals. The tool wear was measured for three inserts after each cutting of  

200 mm cutting length, so that the inserts wear growth was tracked. 

To ensure the dimensional accuracy and surface quality of the specially produced inserts, the 

micro-geometry of the tools was inspected using a laser scanning microscope, Keyence VK8710. 

Figure 5.4 shows the measurement result for the tool with a nominal edge radius of 20 µm, where, 

the exact radius was measured to be 19.25 µm. The measurement was repeated up to three times 

to calculate the corresponding mean and uncertainty. The mean and standard deviation of the edge 

radius were computed to be 19.27, and 0.705 µm, respectively. 
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Figure 5.3: Sketches of the tool inserts, SPGW09T308 (left), and tool edge radii 20 and 40 µm (right) 

 

 

Figure 5.4: Measurement of the tool edge roundness for the tool edge radius 20 µm 

Figure 5.5 displays the measurement results for the tool with a nominal edge radius of 40 µm. As 

illustrated in the figure, the exact radius was measured to be 42.64 µm. Again, the measurement 

process was repeated up to three sample tools. The mean and standard deviation of the edge radius 

were achieved to be 40.26, and 0.82 µm, respectively. 
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Figure 5.5: Measurement of the tool edge roundness for the tool edge radius 40 µm 

Cutting edge geometry is characterized by micro-geometry and edge topography. The edge to-

pography describes the surface structure of the cutting edge. It is likely to occur microscopic 

damages along the cutting edge due to the grinding or sandblasting process [49,102]. The surface 

quality inspection is performed parallel to the cutting edge [103].  

 

Figure 5.6: Measurement of the tool edge roughness for the tool edge radius 20 µm 

The tools edge roughness was measured along the cutting edge for three tool samples for the tool 

with edge radius of 20 µm, Figure 5.6. According to the results, mean and standard deviation of 

cutting edges based on ten-point mean roughness (Rz) were achieved to be 5.27 and 2.096 µm, 

respectively. The mean and standard deviation of cutting edges based on arithmetical mean rough-

ness (Ra) were achieved to be 0.82 and 0.253 µm, respectively. Figure 5.7 displays the result of 

the edge roughness measurement for the tool with edge radius 40 µm. According to the results, 
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mean and standard deviation of cutting edges based on ten-point mean roughness (Rz) were 

achieved to be 11.59 and 0.978 µm, respectively. Moreover, the mean and standard deviation of 

the cutting edges based on arithmetical mean roughness (Ra) were obtained to be 1.47 and 0.319 

µm, respectively. 

 

Figure 5.7: Measurement of the tool edge roughness for the tool edge radius 40 µm 

5.2.1 Tool Life and Wear Growth Measurement 

Average tool flank wear, VB,avg, was measured in regular intervals until the flank wear criterion  

0.3 mm is reached. Figure 5.8 illustrates the tool wear growth images recorded at five intervals 

using the tool edge radius of 20 µm, the cutting speed of 350 m/min, and the feed at 0.05 mm/tooth. 

The wear amount of each data point and the corresponding cutting time was recorded and illus-

trated. To establish the tool life for each test, linear interpolation was used between adjacent data 

points until the wear limit of 0.3 mm is reached. 

The results of the tool wear tests using the tool edge radii of 20 and 40 µm are demonstrated in 

Figure 5.9 and Figure 5.10, respectively. For each data point, the mean is provided together with 

one standard deviation error bars as a result of three measurements (three inserts wear amount) 

for each cutting pass. As can be seen, the tool life reduces with an increase in cutting speed for 

both geometries. Moreover, the tool life using the tool edge radius of 20 µm is longer than the 

edge radius of 40 µm. Table 5.1 shows the measured mean values of the tool life at the average 

flank wear of 0.3 mm and the feed value of 0.05 mm/tooth. 
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Figure 5.8: Average flank wear growth using tool edge radius 20 µm, cutting speed 350 m/min, and feed 

0.05 mm/tooth 

 

Figure 5.9: Tool flank wear growth using the tool edge radius of 20 µm, and feed 0.05 mm/tooth 
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Figure 5.10: Tool flank wear growth using the tool edge radius of 40 µm, and feed 0.05 mm/ tooth 

Table 5.1: Mean value of tool life at the average flank wear of 0.3 mm and the feed of 0.05 mm/ tooth 

No. Tool edge radius(µm) Vc(m/min) Measure tool life (min) 

1 20 300 47.6 

2 20 325 28 

3 20 350 14.7 

4 20 400 7.7 

5 40 300 36.2 

6 40 325 19.5 

7 40 350 13.8 

8 40 400 7.6 

5.3 Probabilistic Sequential Prediction of Tool Life  

Probabilistic prediction of tool life using normal distribution is performed starting with establish-

ing priors to the Taylor tool life model parameters, C and n. In the Taylor model, the uncertainty 

of the tool life is due to the uncertainties in the model parameters, C and n. The priors are then 

updated by the result of wear test using the tool radius of 20 µm to obtain the posterior distribution 

of the parameters and tool life. The posteriors of the model parameters for the 20 µm edge radius 

tool are used as priors of the subsequent tool geometry, 40 µm edge radius tool. The results of the 

simulation are validated with the measured tool life under other cutting conditions. Finally, the 

model parameter identification using MCMC and least squares fit method are compared to each 

other. 
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5.3.1 Application of MCMC to the Tool Edge Radius 20 µm  

Bayesian Markov Chain Monte Carlo is used to estimate the Taylor model parameters. Metropolis 

algorithm of MCMC is again used to draw samples from the joint proposal distribution q(C,n) to 

approximate the posterior target distribution, p(C,n); see Algorithm 5. According to the algorithm, 

the likelihood function calculates the probability of the measured tool life, Tm, given the model 

parameters, (C,n). The posterior distribution is calculated by multiplying the prior joint distribu-

tion into the likelihood function.  

Algorithm 5: Metropolis algorithm for updating the Taylor tool life model parameters 

1. Establish a normal prior distribution, p(C,n), 

2. Establish a proposal density function for (C,n), 

3. Initialize a starting sample (C,n)0, 

4. For i = 0 to i = N-1: 

 Select a candidate (C,n)new from a proposal distribution, q((C,n) new| (C,n) i), 

 Compute the posterior distribution, 

p((C,n)i| Tm) = p((C,n)i) p(Tm | (C,n) i), 

 Calculate the acceptance ratio, 

 𝑟 =
𝑝((𝐶,𝑛)𝑛𝑒𝑤)

𝑃((𝐶,𝑛)𝑖)
, 

 Generate a random number,  

u~ uniform (0,1), 

If u ≤ r: 

 Accept the proposal: (C,n) i+1= (C,n)  new,  

Else:  

Reject the proposal: (C,n)  i= (C,n) new,  

End If 

5. End For 

5.3.1.1 Establishing the Prior 

The parameter identification starts with establishing prior values for the parameters C and n as a 

joint Gaussian distribution. The mean and one standard deviation of the parameters were taken 

from [65,82] for a range of low carbon steel cutting operations: 

1. C= 340 ± 60 m/min  

2. n= 0.26 ± 0.05  

Figure 5.11 displays the joint priors of the pairs (C,n), where the covariance matrices were taken 

to be independent. Monte Carlo simulation was exercised to determine the prior distribution of 
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the tool life, T, using the joint priors of the C and n. For the simulation, N = 3000 random C and 

n samples were drawn from the prior joint distribution for the Eq. (5.1) using the cutting speed of 

325 m/min. 

 

Figure 5.11: Prior joint Gaussian distribution of the parameters C and n 

Figure 5.12 displays the histogram of the tool life (in blue) and a lognormal distribution fit to the 

histogram (solid red line), where the histogram is normalized to obtain a unit area under the curve. 

As shown in the figure, the lognormal distribution provides a good approximation to the histo-

gram of the tool life prior.  Note that the right-skewed distribution of the PDF is obtained due to 

the power law form of the Taylor tool life equation. The lognormal distribution represents the 

prior PDF of tool life at the cutting speed of 325 m/min.  

 

Figure 5.12: Prior distribution of tool life using the cutting speed of 325 m/min 
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The functional form of the tool life prior with the median and the confidence intervals are 

displayed in Figure 5.13. The lognormal distributions were used to illustrate the uncertainty in-

tervals of tool life within the selected range cutting speeds. Since the median value is associated 

with the 50th percentile of the PDF, the prior function is characterized by the median and the 

bounds of the credible intervals. The lower and upper bounds of the credible intervals were taken 

to be 15.87th and 84.13th percentiles, respectively. The tool life data is also shown. According to 

the figure, the function underestimates the data points. 

 

Figure 5.13: Prior function of the tool life using 20 µm edge radius tool 

The prior probability of tool life can be computed for each drawn sample from the joint PDF of 

the parameters C and n. To demonstrate the procedure, assume the case that ten samples of (C, n) 

pairs are selected and inserted to the Eq. (5.1) to calculate the tool life values; see Table 5.2.  

Table 5.2: Prior probabilities for the joint samples (C, n) using the cutting speed of 325 m/min 

No. (C,n) T_predicted (min) Prior probability 

1 (280, 0.26) 0.56 0.37 

2 (320, 0.26) 0.94 0.57 

3 (360, 0.26) 1.48 0.56 

4 (400, 0.26) 2.22 0.17 

5 (400, 0.21) 2.68 0.04 

6 (400, 0.23) 2.46 0.09 

7 (400, 0.25) 2.3 0.14 

8 (400, 0.27) 2.15 0.2 

9 (400, 0.29) 2.04 0.26 

10 (400, 0.31) 1.95 0.31 
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According to Table 5.2, the corresponding probabilities for the selected samples are computed 

using the Eq. (2.6). In this case, the tool life probability of each pair was calculated using the 

median tool life value of 1.2 min and a standard deviation of 0.63 min at the cutting speed of 325 

m/min. As can be seen, the tool life value of the second sample, 0.94 min, has the highest proba-

bility of 0.57; whereas, the sample number 5 has the lowest probability of 0.04. 

5.3.1.2 Parameters Updating 

MCMC Simulation was exercised to achieve the posterior distribution of the parameters C and n. 

For the simulation, N = 10,000 samples were drawn from the joint normal proposal distribution, 

q(C,n). The samples are then updated by the results of the experiments (likelihood function); see 

Algorithm 5. Bivariate likelihood function of the measured tool life given the Taylor model pa-

rameters is written as follows: 

𝑝(𝑇𝑚|𝐶, 𝑛) = 𝑒
− 

((
𝐶
𝑉𝑐
)

1
𝑛
−𝑇𝑚)

2

2𝜎𝑇𝑚
2

 
(5.2) 

where p(Tm| C,n) is the likelihood function of the measured tool life, Tm, given specified prior 

values of the Taylor model coefficients, (C,n), at an experimental cutting speed value, Vc. The 

likelihood function is expressed as a non-normalized normal distribution, where σTtm is the stand-

ard deviation of the measured tool life. This likelihood function describes how likely the meas-

urement result at a particular cutting speed is, given prior parameters values. In other word, if 

priors result in a tool life, which is near to the measured tool life, the likelihood is high; otherwise, 

it is low.  

To illustrate the functionality of the likelihood function, consider ten possible (C,n) pairs listed in 

Table 5.3. Assume an experimental tool life of 28 min was obtained at cutting speed, Vc = 325 

m/min. The likelihood function can be interpreted as assigning weights to the sampled parameters 

(C,n), from zero to unity, where zero means that the selected combination is not likely at all and 

unity means the most likely combination. The likelihood for each sample pairs, (C,n), was calcu-

lated using Eq. (5.2) given the measured tool life of 28 min. The value of σTm was selected by the 

user’s belief based on experimental tool life uncertainty. For this study, the standard deviation 

was decided to be 5-7% of the mean value. Table 5.3 lists the likelihood values for each possible 

(C,n) pair. Comparing the prior and the likelihood values, it is seen that the joint samples number 

5 had the lowest prior probability before the update, and now has the highest likelihood after the 

update. This implies that the MCMC simulation shifts the parameters C and n towards the meas-

ured tool life value of 28 min, so the parameters are strongly influenced by the likelihood function. 
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On the other hand, joint samples number 1 had the highest prior probability before the update and 

now has the lowest likelihood after the update. This sample is rejected by the Metropolis algo-

rithm because of the negligible influence on the posterior distribution. This causes the simulation 

to rely on those prior values, which are closer to the measured tool life quantities.  

Table 5.3: Prior probabilities and likelihood for the joint samples (C, n) using cutting speed 325 m/min 

No. (C,n) T_predicted (min) Prior probability Likelihood 

1 (320, 0.16) 0.9 0.56 4.65×10-22 

2 (360, 0.16) 1.9 0.34 1.32×10-19 

3 (400, 0.16) 3.66 3.83×10-14 3.85×10-17 

4 (440, 0.16) 6.42 1×10-16 2.26×10-13 

5 (480, 0.16) 11.4 8.24×10-57 2.46×10-8 

6 (540, 0.16) 23.8 8.24×10-257 0.33 

7 (540, 0.20) 12.6 6×10-71 2.95×10-7 

8 (540, 0.24) 8.3 9.95×10-28 1.7×10-11 

9 (540, 0.28) 6.13 7.26 ×10-14 5.35×10-14 

10 (540, 0.32) 4.88 3.7×10-8 1.56×10-15 

MCMC simulations are continued by updating the model parameters using the second measured 

tool life 7.7 min, at the cutting speed of 400 m/min. Figure 5.14 shows the joint posterior of the 

parameters C and n (right). The mean values of the parameters C and n are 543 m/min and 0.155, 

and the parameters standard deviation values are 21.5 m/min and 0.014, respectively. Comparing 

the posterior and prior joint distributions, it is seen that the uncertainties are reduced. Addition-

ally, the model parameters become correlated with the correlation coefficient of 0.95. 

 

Figure 5.14: Posterior joint Gaussian distribution of the parameters C and n for the 20 µm edge radius tool 
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As mentioned in the section 2.4.3, convergence of the Markov chain can be improved using burn-

in technique. Figure 5.15 shows the trace plot of the burn-in period for the parameters C and n 

with arbitrary starting points of the 300 and 0.3, respectively. To ensure the convergence of the 

chain, 1000 initial samples were discarded from the iterations, so that the remaining samples ap-

proach the steady state condition. As can be seen in the figures, the chain approaches to the pos-

terior mean of the parameters C and n after the transient iterations.  

 

Figure 5.15: Trace plots of the burn-in period for parameters C and n using 20 µm edge radius tool 

Figure 5.16 displays the marginal posterior distribution of the parameter C along with the trace 

plot for the entire iterations. The figure shows that the Metropolis rejecting/accepting algorithm 

approved 34% of the drawn samples, which is a reasonable acceptance rate [56].   

 

Figure 5.16: Marginal posterior distribution and trace plot of the parameter C  



Bayesian Updating for Tool Life and Reliability Analysis in Milling Process 

96 

5.3.1.3 Tool Life Prediction 

Posterior tool life prediction is performed using Monte Carlo simulation by inserting the marginal 

posterior distributions of C and n to the Eq. (5.1). The uncertainty quantification is performed 

numerically (using Monte Carlo method) for the range of cutting speeds, 275-425 m/min.  

Figure 5.17 demonstrates the functional form of the posterior tool life with the mean and standard 

deviations of 2 and the regression fit quality of R2 = 0.991. It important to note that prior lognor-

mal distribution is converted to the posterior normal distribution because of the influence of 

Gaussian likelihood function (i.e., central limit theorem); see section 2.4.1. As can be seen, the 

posterior mean functions approximate the training (black points) and tests data (red points), ac-

curately. It is seen that the posterior function is achieved using two training points. It is important 

to note that the posterior function can only predict the data points within the predetermined cutting 

speed range 300-400 m/min and extrapolation before and after the range is not valid.  

 

Figure 5.17: Posterior function with ±2 standard deviations uncertainty intervals using 20 µm edge ra-

dius tool 

Table 5.4 shows the prior, likelihood and posterior probabilities for each (C,n) pair. As can be 

seen, the posterior probability of the joint samples number 6 is maximized from the prior proba-

bility of 8.24×10-257 to the 0.0575, thanks to the influence of the larger likelihood value. On the 

other hand, the minimum posterior probability belongs to the joint samples number 1 due to the 

weak influence of the likelihood function. This implies that, in this case, the posterior probability 

is strongly influenced by likelihood function (experiments results) due to the less informative 

priors.   
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Table 5.4: Prior, likelihood and posterior probabilities for (C, n) using cutting speed of 325 m/min 

No. (C,n) T_predicted (min) Prior probability Likelihood Posterior probability 

1 (320, 0.16) 0.9 0.56 4.65×10-22 1.44×10-7 

2 (360, 0.16) 1.9 0.34 1.32×10-19 3.72×10-7 

3 (400, 0.16) 3.66 3.83×10-14 3.85×10-17 1.86×10-6 

4 (440, 0.16) 6.42 1×10-16 2.26×10-13 2.17×10-5 

5 (480, 0.16) 11.4 8.24×10-57 2.46×10-8 5.97×10-4 

6 (540, 0.16) 23.8 8.24×10-257 0.33 0.0575 

7 (540, 0.20) 12.6 6×10-71 2.95×10-7 0.0012 

8 (540, 0.24) 8.3 9.95×10-28 1.7×10-11 7.41×10-5 

9 (540, 0.28) 6.13 7.26 ×10-14 5.35×10-14 1.46×10-5 

10 (540, 0.32) 4.88 3.7×10-8 1.56×10-15 5.32×10-6 

Figure 5.18 displays the comparison of lognormal prior and normal posterior PDFs and tool life 

data points at the average tool wear of 0.3 mm. As illustrated in the figure, the posterior distribu-

tion is able to predict the tool life data at the cutting speed of 300 m/min, accurately.  

 

Figure 5.18: Prior and posterior PDFs using cutting speed 300 m/min using 20 µm edge radius tool 

5.3.2 Application of MCMC to the Tool Edge Radius 40 µm  

Sequential probabilistic tool life prediction is performed by using the posterior distributions of 

the Taylor model parameters, C and n, (from the 20 μm edge radius tool) as priors for the 40 μm 

edge radius tool; see Figure 5.19. As illustrated in the figure, the model priors are trained by  

20 μm edge radius tool experiments to obtain the tool life posterior distributions, first. Second, 
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the 20 μm posterior distributions are used as priors for the 40 μm edge radius tool. The training 

procedure can be continued to update and predict the forces using further edge radii. 

 

Figure 5.19: Sequential training and prediction of tool life using Bayesian updating for different tool edge 

radius 

5.3.2.1 Establishing the Prior 

Priors of the model parameters, C and n, are established to be the mean and standard deviation of 

posteriors of the 20 μm edge radius tool. Monte Carlo simulation is again used to find the func-

tional form of the tool life prior; see Figure 5.20. The figure displays the prior median value and 

confidence intervals, and the experimental tool life data. Again, lognormal distribution was 

selected as the prior tool life function. The lower and upper bounds of the credible intervals were 

taken to be 15.87th and 84.13th percentiles, respectively. As can be seen in the figure, the prior 

median function overestimates the data points at the cutting speed of 300, 325, and 350 m/min.  

 

Figure 5.20: Prior function for the tool life using 40 µm edge radius tool 

5.3.2.2 MCMC Simulation and Likelihood Function 

Metropolis algorithm of MCMC simulation is used to update the priors of the parameters C and 

n using the tool life of 13.84 min at the cutting speed of 350 m/min. The number of iterations and 

burn-in period were selected to be N = 10,000 and 1000, respectively. To reduce the 
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autocorrelation of the Markov chain, the thinning was implemented; see section 2.4.3. The ac-

ceptance ratio of the simulation was 0.33, denoting that 33% of the drawn samples are accepted 

by the MCMC simulation. Figure 5.21 displays the autocorrelation plots for 100 samples of the 

model parameters, C and n. As can be seen in the figures the autocorrelation of the chain con-

verges to less than ±0.02 after the 8th lag for both parameters.  

 

Figure 5.21: Autocorrelation for the C and n samples (converged chain) 

 

Figure 5.22: Posterior joint distribution of the parameters C and n for the 40 µm edge radius tool 

Figure 5.22 depicts the joint posterior of the parameters C and n (right) after one update using the 

tool life 13.84 min at the cutting speed of 350 m/min. The mean values of the parameters C and n 

are 531 m/min and 0.158, and the parameters standard deviation values are 15.1 m/min and 0.01, 

respectively. Comparing the posterior and prior joint distributions, it is seen that the uncertainties 
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are reduced. Additionally, the model parameters become correlated with the correlation coeffi-

cient of 0.85. 

5.3.2.3 Tool Life Prediction 

Tool life posterior was found by inserting the posteriors C and n to the Eq. (5.1) using the Monte 

Carlo simulation. Figure 5.23 depicts the functional form of the tool life posterior with the mean 

and standard deviations of 2 in addition to the training and test tool life data. The goodness of 

fit was computed R2 = 0.977. The tool life posterior was achieved using only one update due to 

the more informative prior. As can be seen, the posterior mean function represents the tool life 

data, accurately.  

 

Figure 5.23: Posterior function with ±2 standard deviations uncertainty intervals using 40 µm edge ra-

dius tool 

Bayesian inference was compared with the least squares curve fitting to evaluate the tool life 

prediction and the regression quality; see Figure 5.24. The regression fit quality using least square 

fitting was calculated to be R2 = 0.981, which is slightly more accurate than the quality using 

Bayesian (R2 = 0.977). However, the Bayesian approach requires only one data point for the pa-

rameters training. This demonstrates the effectiveness of Bayesian inference as compared to the 

least squares curve fitting, which requires at least two data points for the parameter identification, 

in this case.  
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Figure 5.24: Comparison of posterior mean function and the least squares curve fitting methods using 40 

µm edge radius tool 

Table 5.5 lists the measured tool life and the predicted values using Bayesian inference for the 

tool edge radii 20 and 40 μm. The predicted values are provided with the mean and one standard 

deviation credible interval (σ). As can be seen all the tool life data points are predicted within two 

standard deviations (2σ). The minimum and maximum prediction errors for the tool life were 

calculated to be 0.7 and 21%, respectively. This implies that the model parameters identification 

and tool life prediction were performed with a good degree of accuracy using the MCMC method 

applied to the Taylor tool life model. 

Table 5.5: Cutting conditions, tool life and Bayesian prediction for the tool edge radii 20 and 40 μm 

No. Edge radius (µm) Vc (m/min) T_measured (min) T_predicted (min) T_error (%) 

1 20 300 47.6 (47, 6.22) 1.2 

2 20 325 28 (27.8, 2.68) 0.7 

3 20 350 14.7 (17.1, 1.33) 16 

4 20 400 7.7 (7.2, 0.69) 6 

5 40 300 36.2 (37.2, 4.78) 2.7 

6 40 325 19.5 (22.4, 2.38) 15 

7 40 350 13.8 (13.9, 1.31) 0.7 

8 40 400 7.6 (6, 0.85) 21 

Figure 5.25 displays the lognormal prior (in blue color) and normal posterior (in red color) PDFs 

of the tool life and the measured life data at the cutting speed of 300 m/min. As illustrated in the 

figure, the uncertainty of the tool life is reduced, and the posterior can predict the tool life data, 

accurately.  
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Figure 5.25: Prior and posterior PDFs using cutting speed 300 m/min 

5.4 Reliability Analysis 

Reliability function is the most frequently used function in engineering life data analysis. This 

function gives the probability of an item operating for a certain amount of time without failure. 

Eq. (5.3) represents the normal CDF of a tool failure, which refers to the probability that a tool is 

worn out prior or equal to the time t: 

𝑃(𝜏 < 𝑡) = ∫ 𝑓(𝜏) 𝑑𝜏
𝑡

0

 
(5.3) 

where τ is the time corresponding to the occurrence of tool failure. Note that this integral does not 

exist in a simple closed-form solution and it should be computed numerically. The reliability 

function is the complement of the CDF, which is expressed as, 

𝑅(𝑡) = 1 − 𝑃(𝜏 < 𝑡) (5.4) 

The hazard function is the probability of failure at the time (t, t+∆t) given the unit has survived 

until time t. The function is defined as follows, 

ℎ(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

𝑃𝑟 (𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑡, 𝑡 + ∆𝑡)|𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛 (0, 𝑡))

∆𝑡
 (5.5) 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
 (5.6) 



Bayesian Updating for Tool Life and Reliability Analysis in Milling Process 

103 

As illustrated in the Eq. (5.6), the hazard function is the probability distribution of tool life, f(t) 

over the reliability function, R(t), at the time t. The hazard rate versus time plot is an important 

tool to understand how a cutting tool fails. If the rate decreases with time, the cutting tool exhibits 

pre-mature or early life failures. This type of failure is typically induced by mechanisms like 

design errors, poor quality control, the inadequacy of the tool to the applications, or material 

defects. If the hazard rate is constant with time, then the tool exhibits a random or memoryless 

failure rate behavior. If the failure rate is increasing with time, the cutting tool wears out (i.e., 

mechanical wear or fatigue) [97,104]. Reliability analysis of the tool life considering the effect of 

the cutting speed and the tool geometries are described in the following sections.   

5.4.1 Reliability Analysis for the Tool Edge Radius 20 and 40 μm 

Figure 5.26 shows the reliability function of the tool life (using 20 µm edge radius tool) at the 

cutting speed of 300 m/min along with the measured tool life data points at the average flank wear 

of 0.3 (black points) and 0.35 mm (green points). As can be seen in the figure, the mean value of 

the posterior reliability function is predicted to be 46.9 min.  

 

Figure 5.26: Prior and posterior reliability functions at cutting speed 300 m/min using 20 µm edge radius 

tool 

Table 5.5 lists the tool life of the data points and the corresponding reliability values. According 

to the table, the reliability of the cutting tool drops significantly when the tool wear exceeds the 

average tool wear limit 0.3 mm. 
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Table 5.6: Measured tool life data and the corresponding reliability at cutting speed 300 m/min for the 

tool edge radius 20 μm 

No. VB (mm) Tool life (min) Reliability 

1 0.3 46.8 0.52 

2 0.3 47.7 0.46 

3 0.3 48.6 0.4 

4 0.35 51.2 0.25 

5 0.35 51.7 0.23 

6 0.35 53.2 0.16 

Since each of the reliability, probability density and hazard functions can completely represent 

the failure behavior of the tool at the corresponding cutting conditions, the hazard function can 

be used as a characteristic signature for qualitative performance evaluation; see Figure 5.27 [97].  

 

Figure 5.27: Posterior hazard function using cutting speed of 300 m/min using 20 µm edge radius tool 

Reliability of cutting tool with edge radius of 40 μm can be calculated using the Eq. (5.4).  

Figure 5.28 illustrates the reliability function of the tool life at the cutting speed of 300 m/min 

along with the measured tool life data points at the average flank wear of 0.3 (black points) and 

0.35 mm (green points). As can be seen in the figure, the mean value of the posterior reliability 

function is predicted to be 36.5 min. Table 5.7 lists the tool life of the data points and the corre-

sponding reliabilities. According to the table, the reliability of the cutting tool drops significantly 

when the tool wear exceeds the average tool wear limit 0.3 mm. 
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Figure 5.28: Prior and posterior reliability functions at cutting speed 300 m/min using 40 µm edge radius 

tool 

Table 5.7: Measured tool life data and the corresponding reliability at cutting speed 300 m/min for the 

tool edge radius 40 μm 

No. VB(mm) Tool life(min) Reliability 

1 0.3 34.7 0.71 

2 0.3 36.2 0.6 

3 0.3 37.2 0.51 

4 0.35 39.9 0.3 

5 0.35 40.1 0.28 

6 0.35 40.8 0.23 

5.4.2 Reliability Analysis Comparing Cutting Speeds 

Figure 5.29 depicts the comparison between the posterior reliability functions at the cutting speeds 

of 350 and 400 m/min using the tool edge radius of 40 μm. As can be seen in the figure, the tool 

life reliability of 0.5 is calculated to be 13.9 and 6 min for the cutting speed of 350 and 400 m/min, 

respectively. The reliability of 0.5 denotes that 50% of the tools with the 40 μm edge radius can 

survive until the average flank wear, VB,avg, of 0.3 mm.  
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Figure 5.29: Comparison of posterior reliability functions using cutting speeds 350 and 400 m/min 

While the probability density and reliability functions demonstrate the overall speed of failure, 

hazard function shows the dynamic (instantaneous) speed of failure. This provides a qualitative 

knowledge about the cutting tool failure supported by quantitative cutting tool life data.  

Figure 5.30 demonstrates a comparison between the cutting tools hazard rate using the cutting 

speeds of 350 and 400 m/min, at the cutting time of 10 min. As illustrated, the instantaneous 

failure rates of the tools with an edge radius of 40 μm are 0.04 and 0.87 using the cutting speed 

350 and 400 m/min, respectively. The hazard rate of the flank wear using the posterior normal 

distribution increase monotonically for both cutting speeds. 

 

Figure 5.30: Comparison of posterior hazard functions using cutting speeds 350 and 400 m/min 
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5.4.3 Reliability Analysis Comparing Cutting Edge Geometries 

Figure 5.31 depicts the comparison between the posterior reliability functions of the tool edge 

radii 20 and 40 μm at the cutting speed of 350 m/min. According to the figure, the reliability values 

of the posterior functions at the cutting time of the 15 min are 0.94 and 0.22 for the tool with edge 

radii 20 and 40 μm, respectively. This implies that the 20 μm edge radius tool can survive with 

the reliability of 94%, while the 40 μm edge radius tool survives with the reliability of 22%, until 

the cutting time of 15 min. This demonstrates that the former tool has more reliable performance 

and can be a preferred choice for the user in the defined machining application.  

Figure 5.32 demonstrates a comparison between the posterior hazard functions of the tool edge 

radii 20 and 40 μm at the cutting time of 16 min. As illustrated, the posterior hazard rates are 0.14 

and 1.48 for the tool edge radii 20 and 40 μm, respectively. It is seen that the hazard function of 

40 μm edge radius tool exceeds one. Essentially, the hazard rate is not a probability and can exceed 

one.  In fact, it is the expected number of tool failure per unit of time, conditional on being at risk 

and not failed before the time, t. For this example, it is expected that the tool fails with the instan-

taneous rate of 1.48. Therefore, the tool with the smaller edge radius can minimize the risk of 

instantaneous failure compared to the bigger, 40 μm edge radius tool, in this case.  

 

Figure 5.31: Comparison of posterior reliability functions for tool edge radii 20 and 40 µm at the cutting 

speed of 350 m/min 
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Figure 5.32: Comparison of posterior hazard functions for tool edge radii 20 and 40 µm at the cutting 

speed of 350 m/min 

5.5 Conclusions 

Probabilistic prediction and reliability analysis of tool life applying Bayesian MCMC to the Tay-

lor tool life model were presented in this chapter. Sequential prediction of tool life using the tools 

with two different edge radii was performed successfully. In this regard, posteriors of the previous 

cutting speeds and tool geometries were used as priors of the current simulations, so that the tool 

life prediction was performed with the minimum input data. Lognormal distributions were used 

as prior PDFs, and the posterior normal PDFs were achieved after updating the model parameter 

using the Metropolis algorithm (i.e., central limit theorem). The numerical quantification and 

minimization of the tool life uncertainty were conducted for the range of cutting speeds,  

275-400 m/min, using MCMC simulation. It was also shown that the Bayesian method could 

predict the tool life for the second geometry using only one tool life data point thanks to the 

informative prior. This is impossible in the case of parameter determination by least squares curve 

fitting which requires at least two data points (in this case). The minimum and maximum predic-

tion errors for the tool life were calculated to be 0.7 and 21%, respectively. This implies that the 

model parameters identification and tool life prediction were performed with a good degree of 

accuracy using MCMC method applied to the Taylor tool life model. 
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The posteriors PDFs were used to calculate the reliability and hazard functions. Based on the 

quantitative and qualitative reliability analysis, it was demonstrated that: 

1. The failure probability and instantaneous failure rate of the cutting tools (both geome-

tries) are smaller using lower cutting speeds (e.g., 350 m/min) compared to the cutting 

speed at 400 m/min. 

2.  The failure probability and instantaneous failure rate of the cutting tools with the edge 

radius of 20 µm are smaller than the failure functions using the tool with the of 40 µm 

edge radius tool. 

This implies that machining with the lower cutting speeds and the smaller edge radius tools offer 

more reliable cutting tools usage and can minimize the risk of instantaneous failure. Nevertheless, 

reduction of cutting speed may affect the productivity and selection of smaller tool edge radius 

may cause vulnerability of the tool edge in case of heavy interrupted cuts. Therefore, the reliability 

analysis should be performed in the context of machining applications and take into account the 

applications limitations and user’s preference.    
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6 Bayesian Updating for Tool Wear 

Growth Prediction in Milling 

Process 

Probabilistic prediction of tool wear growth is presented in this chapter. Bayesian MCMC method 

is applied to identify the parameters of two models, exponential and Gompertz models. Three 

types of tools with the rake angles of 0, 3, and 9 deg as indexable milling tools were tested at the 

cutting speed value of 250 m/min until the tool flank wear threshold of 0.3 mm is reached. The 

model uncertainty is quantified and minimized numerically for all of the tool geometries. The 

probabilistic models are used for sequential prediction of tool wear growth using the information 

of previous tool geometry for subsequent tool geometries. This can reduce the cutting time re-

quired to identify tool wear evolution and the relevant end of life. The probabilistic models predict 

the tool wear curve and failure time using the degradation models and the wear data at the early 

and middle stages of the tool wear. The results of the probabilistic prediction of tool wear growth 

are validated with milling experiments data. Fit quality of the wear prediction (for the tool rake 

angle of 9 deg) using the Bayesian and least square methods are compared at the end.  

6.1 Introduction 

Tool wear curves illustrate the relationship between the amount of tool’s flank wear, rake wear, 

and the cutting time (the cutting length). During the last decades, researchers have studied and 

modeled the tool wear using analytical, numerical and statistical models [105–108]. The models 

describe the wear rate as a function of some process variables (cutting velocity, feed rate) [43].  

Usui et al. [109] have proposed an analytical wear model based on stress and the temperature in 

the interface between the cutting tool and workpiece. The model characterizes the wear rate with 

sensitive parameters of stress and temperature on the tool face. The measurements of the stress 

and the temperature must be performed and insert to the wear model. However, the experiments 

with the dedicated setup could not be performed practically in the machine shops. Therefore, they 

have improved the wear rate model, in which model constants could be identified using cutting 

tests without specialized equipment [110]. The model (Eq. (6.1)) is characterized by normal stress, 
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σf, temperature on the flank wear land, θf, cutting speed, Vc, and tool rake angle, α, relief angle, γ, 

and two constants C and λ. 

dV𝐵
dt

= 𝐶 𝜎𝑓 exp(−
𝜆

𝜃𝑓
) . (

1

tan 𝛾
− tan 𝛼)𝑉𝑐 (6.1) 

Takeyama and Murata [111] derived a fundamental wear rate equation by considering abrasive 

wear which is proportional to cutting distance as a function of the activation energy of the 

diffusion process. Since the Usui’s [109] and Murata’s [111] wear models are derived as a 

function of the process parameters (e.g., tool temperature, contact pressure and sliding velocity 

of the chip), they are widely used to be implemented in the FEM codes [112]. 2D FEM codes 

implementing tool wear models have been reported in the literature [113,114]. However, their 

most significant limitation is that they are able to predict the tool wear only for orthogonal cutting 

conditions. 3D FEM simulations have been implemented, using the Deform 3D environment, to 

predict the tool wear in longitudinal turning operation [115,116]. The developed models can con-

sider tool geometry modification due to the wear rate and how its distribution changes as the tool 

geometry changes. 

Among the statistical methods, artificial neural network and regression analysis have also been 

used for the tool wear modeling. Karpat et al. [117] have used predictive neural network modeling 

to predict tool wear in finish hard turning process using Cubic Boron Nitride (CBN) tools. 

Attanasio et al. [118] compared response surface methodology (RSM) and artificial neural net-

works (ANNs) fitting techniques for prediction of tool wear for turning of AISI 1045 steel. The 

comparison showed that ANNs model provides better approximation than RSM in the prediction 

of the amount of the tool wear parameters. Klocke et al. [119] proposed a regression analysis to 

determine the material constants C and λ in Usui’s wear model (Eq. (6.1)). The abrasive model 

can predict both the flank and the crater wear, in which the experimental data points can be inter-

polated by only one line in a semi-logarithmic chart. 

In this chapter, probabilistic prediction of tool flank wear is presented. The probabilistic model 

can take into account the variability of machining process parameters and quantify the relative 

inherent uncertainty. The Bayesian MCMC is used to calculate posterior distributions of the deg-

radation models parameters-exponential and Gompertz models. The Bayesian method is used to 

incorporate the prior knowledge (about model parameters from previous experiments or user be-

lief) into the tool wear analysis which leads to minimizing the number of experiments required 

for the model parameters identification.  
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Figure 6.1 shows the mean and one standard deviation error bars of the tool flank growth as a 

function of cutting time at the cutting speed of 250 m/min and feed of 0.05 mm/tooth using a tool 

with the rake angle of 9 deg. As can be seen, the tool wear growth is divided into three zones 

described as follows: 

1. Break-in period: It refers to rapid initial wear which occurs in the early cutting time. 

2. Steady-state wear region: This region denotes a uniform tool wear rate. 

3. Failure region: It indicates an accelerating wear rate until final failure occurs. 

 

Figure 6.1: Tool flank wear growth as a function of cutting time divided into three regions 

The goal of this work is to train the model parameters of the degradation models (exponential and 

Gompertz) and predict the tool wear growth, probabilistically. In this regard, the break-in period 

is discarded from the analysis, and the model parameters are trained to predict the tool wear curve 

in the steady-state and failure regions. The training of the model parameters is performed as fol-

lowing steps: 

1. For the first tool geometry (0 deg tool rake angle) the model's parameters updating is done 

using wear data of the steady-state and failure region regions. 

2. For the second and third tool geometries (3 and 9 deg tool rake angles), posteriors of the 

previous tool geometries are used as priors of the subsequent geometries. The sequential 

probabilistic prediction and updating are performed using the wear data of the steady-

state region.  
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The sequential probabilistic technique allows to predict the end of tool wear criterion (in this case, 

tool wear amount of 0.3 mm) taking into account the early or middle stage of tool wear data. In 

this way, tool wear tests are not required to be conducted until the end of the wear criterion, so 

that the tool end of life can be determined beforehand. In addition, using the probabilistic model-

ing technique, one can predict the tool wear growth with mean and standard deviation uncertainty 

intervals for each wear data point.  

The chapter is organized as follows. Section 6.2 reports the experimental setup and results of the 

milling tests. Section 6.3 presents the application of MCMC to the exponential model for sequen-

tial prediction of tool wear growth. Section 6.4 demonstrates the application of MCMC to the 

Gompertz model for sequential prediction of tool wear growth. Discussions and conclusions are 

presented in chapters 6.5 and 6.6. 

6.2 Experimental Setup, Results, and Discussion 

Milling experiments were performed on a 5-axis milling machine Hermle C40; see Figure 5.2.  

Slot milling tool wear tests (2.5 axes) were completed using three face mills with a diameter of  

40 mm, holding three cutting inserts. The face mills were produced in three different rake angles 

(0, 3, and 9 deg). Cutting inserts were selected to be uncoated (SPGW09T308) Tungsten carbide 

with the edge radius of 40 µm. The inserts were designed and produced by Zermet Zerspanung 

GmbH, with the ISO grade of P25. The cubic workpiece material was AISI 1045 steel with the 

dimensions of 120×120×100 mm. The depth of cut was selected to be 1.5 mm. Feed value of 0.05 

mm/tooth and a cutting speed of 250 m/min were selected for the tests. 

 

Figure 6.2: Comparison of tool flank wear for tools with three different rake angles at a cutting speed of 

250 m/min and feed of 0.05 mm/rev 
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Figure 6.2 shows the tool flank wear growth comparison of three types of tool rake angles (0, 3, 

and 9 deg) at the cutting speed of 250 m/min and the feed of 0.05 mm/rev. As can be seen, the 

tool life decreases with the increase in tool rake angles. In other words, the tool with the largest 

rake angle (9 deg) reaches the tool wear criterion, VB = 0.3 mm, faster than others. Table 6.1 lists 

the tool life values of the tool rake angles at VB = 0.3 mm. 

Table 6.1: Measured tool life for various tool rake angles 

No. VB (mm) Tool rake angle (deg) T_measured (min) 

1 0.3 0 83.2 

2 0.3 3 63.8 

3 0.3 9 46.8 

6.3 Probabilistic Prediction of Tool Wear Growth using 

Exponential Function 

Probabilistic prediction of tool wear growth is performed applying MCMC method to model pa-

rameters of the exponential function. The function is often used to model destructive degradation 

of the components, which is given as: 

𝑦 = 𝑏 . 𝑒𝑎.𝑡 (6.2) 

where y is the mean value of the tool wear for the corresponding measured time t. a and b are the 

model's parameters, which are required to be determined. The normal distribution is used to rep-

resent the mean and uncertainty of the tool wear data points.  

In the exponential model, there is uncertainty in the wear value, y, due to the uncertainties in the 

model parameters, a, and b. The Blockwise MCMC is used to estimate the exponential model 

parameters. Metropolis algorithm is again used to draw samples from the joint proposal distribu-

tion, q(a,b), to approximate the posterior target distribution, p(a,b); see Algorithm 6. According 

to the algorithm, the likelihood function calculates the probability of the measured tool life, VB, 

given the joint model parameters, (a,b). The posterior distribution is calculated by multiplying the 

prior joint distribution into the likelihood function. 

To develop the sequential probabilistic models about the model parameters of the exponential 

function, the parameters priors are established for the 0 deg rake angle tool, first. Second, the 

priors are updated using the wear tests data to obtain the posterior distributions of the parameters 

and tool wear curve. Third, the results of the parameters posteriors are used as priors of the tool 
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rake angle 3 deg. The sequential modeling technique is continued to predict the tool wear curve 

for the 9 deg rake angle tool; see Figure 6.3. 

Algorithm 6: Metropolis algorithm for updating of the exponential function parameters 

1. Establish a normal prior distribution, p(a,b), 

2. Establish a proposal density function for (a,b), 

3. Initialize a starting sample (a,b)0, 

4. For i = 0 to i = N-1: 

 Select a candidate (a,b)new from a proposal distribution, q((a,b) new| (a,b) i), 

 Compute the posterior distribution, 

p((a,b)i| VB) = p((a,b)i) p(VB | (a,b) i), 

 Calculate the acceptance ratio, 

 𝑟 =
𝑝((𝑎,𝑏)𝑛𝑒𝑤)

𝑃((𝑎,𝑏)𝑖)
, 

 Generate a random number,  

u~ uniform (0,1), 

If u ≤ r: 

 Accept the proposal: (a,b) i+1= (a,b)  new,  

Else:  

Reject the proposal: (a,b)  i= (a,b) new,  

End If 

5. End For 

 

Figure 6.3: Sequential probabilistic prediction of the tool wear growth using exponential and Gompertz 

models 
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6.3.1 Wear Growth Prediction using Tool Rake Angle 0 deg 

The parameters identification starts with establishing prior values for the parameters, a and b, of 

the exponential function. Since there is no information available for the model parameters, the 

priors were selected as uniform distributions.  

 

Figure 6.4: Uniform prior distribution for the parameter a 

In the Bayesian analysis, a uniform distribution is referred to as a non-informative distribution, 

where the probability of the random variables is distributed equally likely within the specified 

range. The ranges of the uniform priors (for a and b parameters) were selected to be between 0 

and 2. As can be seen in Figure 6.4, the probability of the distribution is 0.5 through the entire 

range of the parameter, a. Priors of the parameters, a and b, are updated with the results of the 

measured tool wear (likelihood function) to obtain the posterior distribution. The likelihood func-

tion using the wear data of the 0 deg rake angle tool is given as follows: 

𝑝(𝑉𝐵|𝑎, 𝑏) = 𝑒
− 
((𝑏 .𝑒𝑎.𝑡)−𝑉𝐵)

2

2𝜎𝑉𝐵
2

 (6.3) 

where p(VB| a,b) is the likelihood function of the measured average tool wear, VB, given specified 

prior values of the joint parameters distribution, (a,b), at a specific cutting time. The likelihood 

function is expressed as a non-normalized normal distribution, where σVB is the standard deviation 

of the measured tool wear. The standard deviation for this case was selected to be 5-7% of the 

measured tool wear. The likelihood function describes how likely the measurement result at a 

particular time is, given prior parameters values. MCMC simulation were implemented to calcu-

late the posterior distributions of the parameters. The Metropolis algorithm was carried out for  

N = 10,000 iterations and 1500 samples were taken as the burn-in period. Figure 6.5 displays the 
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joint posterior distribution, (a,b), after training of the parameters using the tool wear data until the 

wear criterion, 0.3 mm. Joint Gaussian distribution is used to illustrate the posteriors. The mean 

values of the parameters a and b are 0.066 m/min and 0.018, and the standard deviation values are 

0.007 m/min and 0.002, respectively. Moreover, the uncertainty of the posterior function is 

reduced. As can be seen, the model parameters become correlated with the correlation coefficient 

of -0.85 for (a,b) joint distribution. 

 

Figure 6.5: Joint posterior distribution of the parameters a and b for the tool rake angle 0 deg 

 

Figure 6.6: Marginal posterior distribution and trace plot of the parameter a 



Bayesian Updating for Tool Wear Growth Prediction in Milling Process 

118 

Figure 6.6 displays marginal posterior distribution of the parameter, a, and the corresponding 

trace plot for the N = 10,000 iterations after discarding the burn-in period. The sampled distribu-

tion is fitted by a normal distribution, accurately. As demonstrated, the Markov chain converges 

to a stationary condition within the drawn samples range.  

The posterior exponential function of the tool wear is obtained using Monte Carlo simulation by 

inserting the marginal posterior, a and b, to the Eq. (6.2). Figure 6.7 depicts the posterior mean 

function with 2 standard deviations uncertainty intervals to approximate the tool wear curve of  

0 deg rake angle tool. The uncertainty of the posterior function was computed, σVB = 0.009 mm, 

using Monte Carlo simulation at the time 37.5 min, which is the middle-measured data point of 

the tool wear curve. The regression fit quality was calculated to be R2 = 0.987. According to the 

figure, the posterior mean function predicts the end of wear criterion (at the wear value of 0.3 

mm), 80.62 min. As can be seen, the measured flank wear with the error bars (including the end 

of tool wear data point) appears within the credible intervals of the posterior function. It is im-

portant to note that the posterior function predicts the tool wear at the steady-state and failure 

region (are marked with the pink dash lines) and not the break-in period. 

 

Figure 6.7: Posterior exponential function with ±2 standard deviations uncertainty intervals versus the 

measured tool wear data using the tool rake angle 0 deg 

6.3.2 Sequential Wear Growth Prediction  

Sequential prediction of the tool wear growth is performed using posterior mean values of the 

parameters, a and b, for the 0 deg rake angle tool as priors of the subsequent tool geometry 3 deg 

tool rake angle; see Figure 6.3. The prior joint distribution of the parameters for the 3 deg rake 

angle tool was taken to be independent. The standard deviations of the priors were selected to be 
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0.01, which is bigger than the standard deviations, obtained using previous tool geometry. This is 

due to the fact that allocating bigger uncertainties to the priors enables the simulations to rely 

more on measurements (i.e., less confidence in the prior knowledge).  

Figure 6.8 shows the prior exponential function with 2 standard deviations uncertainty intervals 

using the tool rake angle 3 deg. Once again, the Monte Carlo simulation is used to compute the 

prior function. Although the prior function is informative (in comparison to the uniform distribu-

tion), its mean function under-estimates the measured tool wear. The advantage of an informative 

prior is that it influences the posterior distribution and is not entirely dominated by likelihood 

function. Therefore, fewer data points are required for updating the function to achieve posterior 

probabilities. The proper use of prior distributions illustrates the power of the Bayesian method, 

in which the information is gathered from the previous study, past experience, and expert opinion 

so that the information can be naturally combined into current analysis.  

 

Figure 6.8: Prior exponential function with ±2 standard deviations uncertainty intervals versus the meas-

ured tool wear data using the tool rake angle 3 deg 

MCMC simulation is practiced to calculate the posterior distribution of the parameters, a and b. 

Figure 6.9 displays the joint prior (left) and posterior (right) of the parameters after updating 

process with the tool wear data until the cutting time 33.78 min (measured data point at the middle 

of the tool wear curve). As can be seen, the uncertainty of the posterior distribution is reduced 

compared to the prior distribution. The mean values of the parameters a and b were obtained to 

be 0.054 m/min and 0.026 and the standard deviation values were calculated to be 0.003 m/min 

and 0.002, respectively. As can be seen, the model parameters become correlated with the corre-

lation coefficient of -0.91 for (a,b) joint distribution. 
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Figure 6.9: Prior (left) and posterior (right) joint Gaussian distribution of the parameters using the tool for 

the 3 deg tool rake angle 

The posterior exponential function of the tool wear for the 3 deg rake angle tool is obtained using 

Monte Carlo simulation by inserting the marginal posteriors, a and b, to the Eq. (6.2). Figure 6.10 

displays the posterior mean function with 2 standard deviations credible intervals to predict the 

measured tool wear curve. The uncertainty of the posterior function was quantified, was com-

puted, σVB = 0.012 mm, using Monte Carlo simulation at the time 26.27 min, which is the middle-

measured data point of the tool wear curve. The regression fit quality was calculated to be R2 = 

0.991. According to the figure, the posterior mean function predicts the end of wear criterion, 

65.06 min. As illustrated in the figure, the measured wear and the error bars are all happened to 

be within the credible intervals of the posterior function until the tool wear, VB = 0.3 mm. The 

posterior function estimates the tool wear at the steady-state and failure region. 

 

Figure 6.10: Posterior exponential function with ±2 standard deviations uncertainty intervals versus the 

measured tool wear data using the 3 deg rake angle tool  
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Figure 6.11 shows the prior exponential function with 2 standard deviations uncertainty intervals 

using the tool rake angle 9 deg. As demonstrated, the prior under-predicts the measured tool wear.  

 

Figure 6.11: Prior exponential function with ±2 standard deviations uncertainty intervals versus the 

measured tool wear data using the tool rake angle 9 deg 

Metropolis MCMC simulation is again executed to calculate the posterior distribution of the pa-

rameters, a and b. Figure 6.12 shows the joint prior (left) and posterior (right) of the parameters 

after the updating process with the tool wear data until the cutting time 24.4 min (i.e., the middle 

wear data point of the tool wear curve). As demonstrated in the figure, the uncertainty of posterior 

distribution is minimized after the parameters training process. The mean values of the parameters 

a and b are 0.068 m/min and 0.031, and the standard deviation values are 0.004 m/min and 0.003, 

respectively. Although the prior joint PDF was selected to be independent, the joint posterior PDF 

becomes correlated with the correlation coefficient of -0.93 for (a,b) joint distribution. 

 

Figure 6.12: Prior (left) and posterior (right) joint Gaussian distribution of the parameters using the tool 

for the 9 deg tool rake angle 
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The posterior exponential function of the tool wear for the 9 deg rake angle tool is obtained using 

Monte Carlo simulation by inserting the marginal posteriors, a and b, to the Eq.(6.2). Figure 6.13 

displays the posterior mean function with 2 standard deviations credible intervals to predict the 

measured tool wear curve. The uncertainty of the posterior function was evaluated, 

σVB = 0.008 mm, using Monte Carlo simulation at the time 24.4 min. The regression fit quality 

was calculated to be R2 = 0.997. The posterior mean function predicts the end of wear criterion, 

46.9 min. As illustrated in the figure, the measured wear and the error bars appear within the 

credible intervals of the posterior function until the end of wear value, VB = 0.3 mm.  

 

Figure 6.13: Posterior exponential function with ±2 standard deviations uncertainty intervals versus the 

measured tool wear data using the tool rake angle 9 deg 

The Bayesian method is compared with the deterministic approach to compare the assess the fit 

quality and accuracy of the tool life prediction at VB = 0.3 mm. Figure 6.14 shows the prediction 

of the tool wear curve using the least squares fitting method. The model parameters were trained 

with the same wear data points, which were used for training of the Bayesian model. The regres-

sion fit quality using the least squares method was calculated to be R2 = 0.971. According to the 

figure, the function cannot accurately predict the tool wear curve in the failure region, where the 

predicted end of wear criterion is 49.8 min. Table 6.2 compares the tool life prediction error and 

regression quality using both methods for the 9 deg rake angle tool. As can be seen, the Bayesian 

method is able to approximate the tool wear curve with better regression quality. Moreover, the 

error percentage values of the tool life prediction were computed to be 0.2, and 6.5% for the 

Bayesian and least squares fit methods, respectively. This shows that the Bayesian method can 

estimate the tool life more accurate than the least squares fit method.  
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Figure 6.14: Exponential function using least squares fit versus the measured tool wear data for the 9 deg 

rake angle tool 

Table 6.2: Comparison of Bayesian and least squares methods using exponential function 

Method Tool rake angle (deg) T_measured (min) T_predicted (min)  T_error (%) R_Squared 

Bayesian 9 46.8 46.9 0.2 0.997 

Lease squares fitting 9 46.8 49.8 6.5 0.971 

6.4 Prediction of Tool Wear Growth using Gompertz 

Model 

MCMC method is applied to the model parameters of the Gompertz function to predict the tool 

wear curve. The function is often used to model the non-destructive and destructive degradation 

tests of the components of the machine. A deterministic form of the function is written as: 

𝑦 = 𝑎 . 𝑏𝑐
𝑡
 (6.4) 

where y is the mean value of the tool wear for the corresponding measured time t. a, b and c are 

the model's parameters, which can be identified using Bayesian and least squares fitting methods. 

The normal distribution is again used to represent the mean and uncertainty intervals of the tool 

wear data points. The sequential probabilistic modeling of the tool wear curve is practiced apply-

ing the MCMC method to the Gompertz model; see Figure 6.3. In this context, the model param-

eters of the Gompertz function are identified for the 0 deg rake angle tool, first. Second, the results 

of the parameters posteriors are then used as priors of the tool rake angle 3 deg. The sequential 
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probabilistic modeling technique is continued to predict the tool wear curve for the 9 deg rake 

angle tool. 

Since the sequential probabilistic modeling using the Gompertz model is identical to the expo-

nential function, the procedure for model parameters identification is not reported for the sake of 

brevity. Hence, only the results of the tool wear curve prediction are shown for the tool rake angles 

0, 3, and 9 deg in this section. Figure 6.15 displays the posterior mean of the Gompertz function 

with 2 standard deviations uncertainty intervals to estimate the wear curve of 0 deg rake angle 

tool. The uncertainty of the function was quantified, σVB = 0.007 mm, using Monte Carlo simula-

tion at the time 37.5 min, at the middle-measured data point of the tool wear curve. The regression 

fit quality was calculated to be R2 = 0.984. According to the figure, the posterior mean function 

predicts the end of wear criterion (at the wear value of 0.3 mm), 81.95 min. According to the 

figure, the measured wear with the error bars (including the tool life at VB = 0.3 mm) appears 

within the credible intervals of the posterior function. Once again, the posterior function estimates 

the tool wear at the steady-state and failure region and not the break-in period. 

 

Figure 6.15: Posterior Gompertz function with ±2 standard deviations uncertainty intervals versus the 

measured tool wear data using the 0 deg rake angle tool 

The sequential tool wear prediction is repeated using the posterior of the previous geometry as 

priors of the new geometry. Figure 6.16 displays the posterior Gompertz mean function with 2 

standard deviations credible intervals to estimate the measured tool wear curve using the 3 deg 

rake angle tool. The uncertainty of the posterior function was computed, σVB = 0.007 mm, using 

Monte Carlo simulation at the time 26.27 min (which is the middle-measured data point of the 

tool wear curve). The regression fit quality was achieved to be R2 = 0.988. According to the figure, 

the posterior mean function predicts the end of wear criterion, 64.4 min. Additionally, the 
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measured wear and the corresponding error bars are all happened to be within the 2  uncertainty 

intervals of the posterior function until the tool wear amount of VB = 0.3 mm. The posterior func-

tion estimates the tool wear at the steady-state and failure region. 

 

Figure 6.16: Posterior Gompertz function with ±2 standard deviations uncertainty intervals versus the 

measured tool wear data using the tool rake angle 3 deg 

Figure 6.17 shows the posterior Gompertz mean function with 2 standard deviations uncertainty 

intervals to estimate the measured tool wear curve using the 9 deg rake angle tool. The uncertainty 

was quantified, σVB = 0.005 mm, using Monte Carlo simulation at the time, 24.4 min. The regres-

sion fit quality was computed to be R2 = 0.997. The posterior mean function predicts the end of 

wear criterion, 47.2 min. As demonstrated in the figure, the measured wear and the error bars 

appear within the credible intervals of the posterior function in both steady-state and failure re-

gions.  

The Bayesian method is compared with a deterministic approach to evaluate the regression fit 

quality and accuracy of the tool life prediction at VB = 0.3 mm. Figure 6.18 shows the prediction 

of the tool wear curve using the least squares fitting method. The model parameters were 

identified with the same wear data points, which were used for training of the Bayesian model. 

The regression fit quality was calculated to be R2 = 0.971. The least squares function estimates 

the tool life, 49.8 min. According to the figure, the function is not able to predict the tool wear 

curve in the failure region, accurately. 
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Figure 6.17: Posterior Gompertz function with ±2 standard deviations uncertainty intervals versus the 

measured tool wear data using the tool rake angle 9 deg 

 

Figure 6.18: Gompertz function using least squares fit versus the measured tool wear data for the tool 

rake angle 9 deg 

Table 6.3 compares the tool life prediction error using the posterior mean function and regression 

quality using both methods for the 9 deg rake angle tool. As can be seen, the Bayesian method is 

able to approximate the tool wear curve with better regression quality. Moreover, the error per-

centage values of the predicted tool life were computed to be 0.8 and 6.5% for the Bayesian and 

least squares fit methods, respectively. Again, the Bayesian method can estimate the tool life more 

accurate than the least squares fit method using the Gompertz model. 
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Table 6.3: Comparison of Bayesian and least squares methods using Gompertz function 

Method Tool rake angle (deg) T_measured (min) T_predicted (min)  T_error (%) R_Squared 

Bayesian 9 46.8 47.2 0.8 0.997 

Lease squares fitting 9 46.8 49.8 6.5 0.971 

6.5 Comparison of the Models  

The results of the tool wear, mean tool life values, and regression quality using exponential and 

Gompertz models are compared with the measured tool wear; see Table 6.4. According to the 

table, the regression quality and tool life prediction at VB = 0.3 mm, are improved using sequential 

prediction method from 0 to 9 deg rake angles tools for both functions. Although both functions 

could predict the tool wear curve with the fit quality higher than R2 ~ 0.95, the posterior expo-

nential functions are more accurate than Gompertz function. The results of predicted values of 

the tool life using the posterior mean function and the corresponding error percentage at  

VB = 0.3 mm are shown in Table 6.4. As demonstrated, Gompertz function could estimate the 

mean values of the tool life using 0 and 3 deg rake angles tools more accurate than the exponential 

function. Nevertheless, Exponential function estimate the mean tool life values using 9 deg rake 

angle tool more precise than Gompertz function.   

Table 6.4: Comparison of the wear prediction accuracy using exponential and Gompertz functions 

No. Function Tool rake angle (deg) T_measured (min) T_predicted (min) T_error (%) R_Squared 

1 Exponential 0 83.2 80.6 3 0.987 

2 Exponential 3 63.8 65 1.8 0.991 

3 Exponential 9 46.8 46.9 0.2 0.997 

4 Gompertz 0 83.2 81.9 1.5 0.984 

5 Gompertz 3 63.8 64.4 1 0.988 

6 Gompertz 9 46.8 47.2 0.8 0.997 

6.6 Conclusions 

In this chapter, the sequential prediction of tool wear growth was performed using the Metropolis 

algorithm of the Bayesian method for the exponential and Gompertz models. MCMC simulations 

were implemented to identify the exponential and Gompertz model parameters and the wear curve 

prediction for the 0, 3, and 9 deg rake angle tools. First, the measured tool wear data of the steady-

state and failure region were used for training of the model parameter and building of the proba-

bilistic model using the 0 deg rake angle tool. Second, posteriors of the previous geometry were 

used for the new geometries (3 and 9 deg rake angles tools). In this scenario, the wear data of the 
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steady-state region were only used for training of the model parameter, and then the probabilistic 

models predicted the tool wear data of the steady-state and failure regions. The probabilistic pre-

diction result using the 9 deg rake angle tool was compared with the least squares fitting predic-

tion. It was concluded that: 

1. MCMC applications to both functions were completed successfully so that the prediction 

of tool wear, tool life, and the regression quality values were improved from 0 to 9 deg 

rake angles tools,  

2. The Bayesian method can predict the wear curve more accurate (smaller error percentage) 

with the higher fit quality compared to the least squares fitting method. This is because 

of the integration of prior knowledge about the parameters to the analysis. 

3. Bayesian Gompertz model could predict the tool life at VB = 0.3 mm, more accurate than 

the exponential model for the first two geometries (0 and 3 deg rake angle tools). 

4. The Bayesian exponential model could predict the tool life at VB = 0.3 mm, slightly more 

accurate than the Gompertz model for the last geometries (9 deg rake angle tools). 

Therefore, the Bayesian inference could identify the model parameters of the tool wear curves 

accurately, and the results could be used as an initial belief for the subsequent studies. Further-

more, the the Bayesian method requires fewer input values in the presence of informative priors 

and could evaluate the inherent uncertainties of the design and manufacturing process to the mod-

els.
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7 Conclusions and Future Scope  

The research in this dissertation focuses on the application of Bayesian inference as a predictive 

modeling approach to predict the machining and cutting tools performance metrics. Bayesian in-

ference is a probabilistic modeling approach, which takes into account the inherent uncertainties 

due to the machining process, physical models, and measurement variabilities. The approach can 

incorporate initial belief or prior knowledge (e.g., expert opinions, and previous experiments re-

sults) into the current and future analysis. In this way, the machining variables such as cutting 

forces, tool life and tool wear growth can be updated and used from one geometry of the cutting 

tools for another geometry in a sequential manner. The application of Bayesian inference to pre-

dict the performance metrics was studied in four chapters.  

In chapter 3, the Bayesian inference was applied to the Merchant and Kienzle force models to 

predict the tangential and feed forces for two different tool geometries. It was shown that Kienzle 

model could predict the cutting forces using low feed values accurately, while the Merchant model 

is not. The results of the forces predictions were verified with the orthogonal turning data.  

In chapter 4, Bayesian MCMC was applied to the extended Kienzle force model to isolate 

ploughing from cutting force in the orthogonal turning process. The model parameters were iden-

tified comparing Bayesian and Least Squares Curve Fitting (LSF) methods. It was demonstrated 

that the Bayesian approach could isolate and predict the ploughing force from cutting force with 

minimum input training data and inherent uncertainty, while the LSF method cannot predict the 

ploughing force component. Once again, the probabilistic model was verified with the results of 

the orthogonal turning process obtained under other cutting condition.  

In chapter 5, tool life prediction and reliability analysis of cutting tools were performed applying 

Bayesian inference to the Taylor tool life model. It was demonstrated that the Bayesian MCMC 

approach could predict the tool life of two different tool geometries, sequentially. The probabil-

istic models were validated with the results of the milling tool life data other than training data. 

The reliability analysis results were performed by reliability (quantitative) and hazard (qualita-

tive) functions. The functions were used to analyze the effect of cutting forces and tool geometry 

on the cutting tool reliability.   

In chapter 6, tool wear growth in milling process was predicted using the Bayesian MCMC 

method. Three types of tool geometries were considered for probabilistic sequential prediction 
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process. Two types of degradation models, exponential and Gompertz functions, were taken into 

account to predict the tool wear curve. First, the model parameters of the exponential and Gom-

pertz functions were trained using the wear data of the steady-state wear region. Next, the tool 

wear curve of the both steady-state and failure regions was predicted, successfully. The wear 

curve posterior functions were shown by the mean function and standard deviation credible inter-

vals. The posterior functions were in good agreement with the measured tool wear error bars. 

According to the prediction results, both probabilistic functions can predict the wear growth with 

high fit quality. However, Gompertz function can predict the tool life at VB = 0.3 mm, more accu-

rate than an exponential function. Finally, Tool wear growth prediction using Bayesian MCMC 

was compared to deterministic LSF method. The probabilistic method can predict the tool wear 

curve with the higher fit quality and more accurate than LSF method. This is because of the pos-

sibility of combining the prior knowledge to the analysis using the Bayesian method.   

7.1 Future Scope: Digital Twin Technology 

With the advent of commercial design packages, the product design process is being more and 

more digitalized. These programs enable designers to develop feature-based objects and simulate 

the behavior of the product. The digital programs (e.g., CAD, CAM, CAE, FEA) reflect the virtual 

world of a product. In parallel to the virtual world, Internet of Things (IoT) platform enables the 

users to collect data from sensorized physical devises and transmit the data to the “cloud” and 

analyze those using data analytic programs. The IoT is heavily concentrated on the physical 

world. Given this background, the interaction between the virtual and physical worlds can be 

performed using digital twin, which is a new emerging and fast-growing technology. Tradition-

ally, the virtual and physical products and spaces are built, analyzed, and verified separately from 

each other. However, in the digital twin framework, the virtual and physical spaces are not iso-

lated, but there are two-way interacting channels, providing data exchange between the spaces 

[120].  

The concept of the digital twin defined by Grieves at one of his presentations slides at the 

University of Michigan. The slide, as shown in Figure 7.1, was merely called “Conceptual Ideal 

for PLM.” Nevertheless, it holds all the elements of the digital twin: real space, virtual space, the 

link for information flow from real space to virtual space and vice versa and virtual sub-spaces. 

The premise driving the model was that each system composed of two systems, the physical 

system that always exists and a new virtual model that holds all of the information about the 
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physical system. This meant that there was a mirroring or twinning of systems between what 

existed in real space to what existed in virtual space, reciprocally [121].  

Since the introduction of this model, several explanations and definitions have been proposed 

[122]. Tuegel et al. [123] have used the digital twin for re-engineering of the aircraft structure 

and its life prediction. According to their explanation, digital twin can update data in real time, so 

that virtual models can experience continuous improvement by comparing virtual and physical 

spaces, parallelly. A general definition of the digital twin which has been recognized and broadly 

used so far has been presented by Glaessegen and Stargel [124] as follows:  

“Digital Twin is integrated multi-physics modeling, probabilistic simulation of a complex product 

and uses the best available physical models, sensor updates, to mirror the life of its identical twin. 

Meanwhile, digital twin consists of three parts: physical product, virtual product, and linkage 

between the physical and virtual product. It is used as a bridge between the physical space and 

virtual space”. 

 

Figure 7.1: Conceptual ideal for PLM [121] 

A digital twin is an incorporated model of an as-built product including physics, fatigue, lifecycle, 

sensor information, performance simulations, among others. It is intended to reflect all manufac-

turing defects and be continually updated to include wear-and-tear sustained while in use [125]. 

Digital twin allows companies or end users to have a complete digital footprint of the product, 

from design and development phase till the end of the product life. Therefore, digital twin has 

increasing attention by both industry and academia. The applications of digital twin in industrial 

and academic projects are summarized in the next section. 
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7.1.1 Application of Digital Twin 

Typical applications of digital twin to products health management (PHM) in the aerospace in-

dustry are reported in [120]. Seshadri et al. [126] proposed a damage characterization method 

based on a digital twin for aircraft structural health management, which demonstrated great ad-

vancement in predicting the damage location, size, and orientation. Gockel et al. [127] proposed 

Airframe Digital Twin (ADT) to assess the flight state which helps find the subsequent damage 

in a real-time way. Another Industrial form of a hardware twin is the Iron Bird, a ground-based 

engineering tool used in aircraft industries to incorporate, optimize and validate vital aircraft sys-

tems (Airbus Industries). Due to the increasing power of simulation technologies more and more 

physical components are replaced by virtual models in the Iron Bird. This allows for using the 

concept of an Iron Bird in earlier development cycles, even when some physical components are 

not yet available. Extending this idea along all phases of the lifecycle causes a complete digital 

model of the physical system [128]. Besides aircraft, General Electric pays attention to using 

digital twin to forecast product health in the product lifecycle, which can make operations and 

maintenance more accurate. 

7.1.2 Digital Twin for Cutting Tool Lifecycle 

Cutting tools are the most flexible elements and the basis of machining industry. The work dealing 

with machining processes such as cutting, drilling, turning, and milling require proper selection 

of cutting tools. Although modern machine tools enable the manufacturers to achieve higher feed 

rates and cutting speeds, market demand for machining of new materials such as Nickel-based 

superalloys, Titanium and hard to cut materials requires harder, tougher and more reliable cutting 

tools. The decision of the most appropriate cutting tool design and development process can de-

liver savings of as much as 15% on overall costs and improve machining productivity by 20%. 

Proper design and selection of cutting tools can also minimize downtime of production lines (i.e., 

the time taken to replace worn tools) [129]. Researchers reported that 8% of total manufacturing 

costs are due to the cutting tools in the manufacturing phase of the product lifecycle. Therefore, 

industrial companies should also concentrate on improving the tool life cycle. 

The complexity and variety of today’s cutting tools are continually growing due to the industrial 

companies request and desire including cost reduction and innovations in technology, etc. In this 

context, conventional tool design, delivery and distribution, and management systems are not able 

to pursue a comprehensive approach to collect all necessary data along the tool life cycle. To 

provide solutions to these volatile conditions, processes within the cutting tool life cycle need to 
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be monitored, adjusted and optimized comprehensively from the design phase until the recycling 

phase [130].  

Traditionally, there is no consideration of an automated concept to extract tools performance data 

during their operational life. This means that, once the tools are delivered to the end user, they do 

not communicate back to their producers about their performance. Therefore, it is necessary to 

provide a platform to integrate the tools performance data into the virtual tools models.  

Digital twin can provide this platform by leveraging smart cutting tools and sensor network of the 

machine tools. In this context, new generation of intelligent machine tools, versatile and afforda-

ble sensors, and the smart cutting tools can help to monitor the tool performance throughout its 

service and operation life. The recorded data of the cutting tool performance can be fed back to 

the virtual tool model to have a footprint of the entire tool lifecycle. The digital twin of cutting 

tools can provide a near-real-time linkage between the physical and digital status of the tools. So, 

the tool failures can be visualized on the virtual copy in the digital twin concept. Using this tech-

nology, the tool designer can realize the features, and functionality of the cutting tools during 

their operational life. This helps the tool manufacturer to understand the customer’s requirement 

and optimize the functionality of the tool more efficiently than the traditional approach.  

Digital twin technology can provide flexibility, agility and lower cost of production for the cutting 

tool manufacturers. However, significant challenges are also encountered in the generation and 

collection of data from the floor. Automated data acquisition is critical for the implementation of 

digital twin, particularly, for small to midsize companies, which still rely on manual methods for 

data gathering. What is the first step and how this will be getting started? It can be a challenging 

task to get there, but the journey starts with a single step [2,131]. 
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