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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der vollautomatischen Segmen-
tierung medizinischer 3D-Bilddaten. Eine Einteilung der Bilder in relevante
Objekt- und Hintergrundregionen ist ein notwendiger Schritt für eine nachfol-
gende ganzheitlichere Interpretation der Daten. Die manuelle Segmentierung
solcher Daten ist sehr zeitaufwendig, und eine automatische Segmentierung
wird durch Einschränkungen bei der Bildqualität, durch sichtbare Bildartefak-
te und durch eine variable Patientenanatomie erschwert.

In dieser Arbeit wird das Problem der automatischen Bilddatensegmentie-
rung mithilfe einer methodischen Erweiterung 3D Statistischer Formmodelle
(3D-SSM) behandelt. 3D-SSM zählen zu den bekanntesten und beliebtesten
Segmentierungsmethoden. Sie verfolgen einen lern- und modellbasierten An-
satz, der Robustheit gegen schwierige Bildverhältnisse verleiht, und der erlernte
Modellinformation automatisch mit neu segmentierten Bilddaten verknüpft.

Drei bekannte Schwächen von 3D-SSM werden in dieser Arbeit betrachtet:
1) 3D-SSM benötigen eine genaue initiale Modellplatzierung am Zielorgan, 2)
sie sind empfindlich gegenüber wechselnden Modellposen während der Segmen-
tierung, und 3) sie nutzen lediglich lokale Umgebungsinformation am segmen-
tierten Organ, was Probleme verursacht, wenn sich Modellteile weiter vom Ziel-
organ entfernt befinden. Diese Schwachpunkte werden gezielt durch Einbinden
nicht-lokaler Information bei der Erscheinungsmodellierung von Objektland-
marken und mithilfe einer omni-direktionalen, nicht-lokalen Landmarkensuche
während der Segmentierung behandelt.

Diese Arbeit leistet folgenden Hauptbeitrag zur automatischen medizini-
schen Bildsegmentierung: 1) Einen neuen Typ von 3D-SSM, der eine omni-
direktionale Suche nach Weichgewebelandmarken in 3D-Bilddaten zeiteffizient
in ein Segmentierungsverfahren integriert. 2) Einen Ansatz, der die obigen
Schwächen von 3D-SSM erstmals ganzheitlich adressiert. 3) Einen Ansatz, der
3D-SSM ohne weitere Hilfsmethoden als eigenständige Segmentierungstechnik
einsetzbar macht. Den oben genannten Schwächen wird mit dem entwickelten
Verfahren effektiv begegnet. Es liefert reproduzierbare Ergebnisse für wech-
selnde Modellplatzierungen im Bild, es findet gesuchte Objektlandmarken er-
folgreich über weite Bilddistanzen und es ist ohne vorherige Platzierung am
Zielorgan einsetzbar. Das Verfahren lässt sich somit anders als bisher sehr ein-
fach auf eine Vielzahl von Organen, Bildmodalitäten und Szenarien anwenden
und erzielt gleichzeitig eine höhere Segmentierungsgenauigkeit. Es wurde auf
einer Reihe von proprietären und öffentlich verfügbaren Datensätzen getestet
und mit Methoden vom aktuellen Stand der Technik verglichen.





Abstract

This thesis addresses the task of a fully-automatic and accurate segmenta-
tion of 3D medical image data. The labeling of object and background regions
in medical images is a necessary first step towards a more holistic understand-
ing of clinical data. Manual labeling of images is tedious and time consuming,
and a reliable and accurate automatic segmentation is generally hard to obtain,
due to low image contrast, noise, artifacts and a high anatomical variability of
the segmented organs.

In this thesis, the problem of automatic image segmentation is approached
by a methodological extension of 3D Statistical Shape Models (3D-SSM), a
well-known and popular segmentation technique. 3D-SSM use an effective
learning- and model-based approach to grant robustness against difficult imag-
ing conditions and to link higher-level modeling information with newly seg-
mented images.

Three limitations of 3D-SSM are addressed in this thesis, that strongly affect
performance and applicability of 3D-SSM: 1) They require an accurate initial
model placement at the segmented organs, 2) they are sensitive to changing
model poses during segmentation, and 3) they only rely on local information
at the segmented organs, which considerably fails if model parts are out of
range during segmentation. These limitations are directly addressed by an
incorporation of non-local information of landmark appearance, and by an
unambiguous, non-local search for organ surface landmarks.

The main contributions of this work are: 1) A new 3D-SSM that incorpo-
rates a landmark-wise omni-directional search for soft tissue landmarks, used in
a time efficient framework for volumetric image segmentation. 2) The first joint
approach that addresses the aforementioned well-known issues of 3D-SSM. 3) A
segmentation approach that makes 3D-SSM applicable as a standalone method
without support from additional techniques. The above limitations are effec-
tively addressed by the proposed method. Reproducible results are achieved
from changing model pose, sought object landmarks are found across large
distances, and the proposed 3D-SSM is applicable without need for previous
model initialization at the organ of interest. As a consequence, the proposed
method obtains an improved generalizability across different organs, modal-
ities and use-cases, and it achieves an overall higher segmentation accuracy.
The method has been tested and evaluated on a variety of proprietary and
public datasets, in comparison with methods from the state-of-the-art.
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CHAPTER 1

Introduction

1.1 Motivation
Since their introduction, medical imaging techniques have evolved into a key
technology that has changed medicine and that is now an indispensable part
of the clinic. The acquisition and reconstruction of tomographic data allows
an unequaled and non-invasive representation of the human body, while dif-
ferent imaging modalities like ultrasound (US), computer tomography (CT),
magnetic resonance imaging (MRI) or positron emission tomography (PET)
deliver an imagery that can be adapted to a given clinical scenario for maxi-
mized insight. Even organs in motion and metabolic processes can be captured
based on suitable acquisition protocols.

The obtained volumetric images provide an immediate visual representation
of patient anatomy and tissue appearance as a valuable basis for diagnosis,
treatment planning, follow-up and monitoring. However, a significant part of
information within the data remains dormant unless it is revealed by further
image processing. For example, quantifiable information of organ geometry
such as volume and shape can be crucial for diagnosis and for therapy choice
(e.g. in liver and heart surgery), and an exact geometrical modeling of target
organs and adjacent risk structures is needed for a thorough treatment planning
in surgery and radiotherapy. For an extraction of this kind of information,
an image segmentation is required, which means that all relevant anatomical
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structures must be identified, marked and delineated within the images.
For lack of a better solution, most images in the clinic are segmented manu-

ally by human operators using basic software tools. Due to the sheer size and
the level of detail of the acquired image information, a manual segmentation
becomes very tedious and time consuming. Also, the achieved accuracy of the
segmentation is dependent on experience and skill of the operator. Therefore,
solutions for a fully-automatic image segmentation are highly desirable, since
they could operate autonomously without need for human interaction, blend
in to the clinical workflow, and deliver a reproducible outcome that allows
systematic analysis and high-level adjustment of results.

However, low contrast, noise, visible artifacts, as well as a high anatomical
variability and various pathologies make an automatic and accurate image
segmentation difficult. Also, the mere location of sought organs in an image is
unknown by default, while irrelevant background structures crowd the image
space. After decades, automatic segmentation is still under active research,
and in addition to a large variety of basic algorithms, particular progress has
been made with high-level approaches like model-based, atlas-based and deep-
learning-based segmentation methods.

As of today, many propositions have been made on how to successfully em-
ploy these approaches on different image segmentation tasks. Applications
have revealed that notable benefits and weaknesses arise from the underlying
nature of these approaches, depending on the intended goals of the addressed
tasks. Consequently, the methodologies are generally considered to be com-
plementary tools in the field of medical image segmentation.

3D Statistical Shape Models (3D-SSM) are among the most prominent
model-based approaches, and they have been used with great success in sev-
eral applications. 3D-SSM are characterized by a combination of traits that
are particularly appealing for certain scenarios. First, they offer a higher-level
representation of segmentation results that is intrinsically backed by trained
prior models of object shape and appearance. Each new segmentation that
is obtained by 3D-SSM can automatically be put in context with previously
analyzed object classes, thus linking higher-level modeling information with
low-level image information. This provides the means for an assessment of
object typicality and for a direct comparison of object geometries based on
well-defined shape correspondences.

Furthermore, higher-level information is provided where low level informa-
tion is missing, e.g. in the presence of impaired imaging conditions, artifacts
or occlusions. In addition to this, the built-in shape constraint of 3D-SSM

2



1.2. Objectives

grants further robustness while precluding ill-shaped segmentation errors. In
contrast to many other methods, 3D-SSM rely on an explicit modeling of the
specific target organs, which enables additional means for a thorough organ-
wise optimization.

Currently, 3D-SSM only reach their full potential at the expense of a pro-
found organ-wise training optimization. Also, 3D-SSM cannot reach their best
performance autonomously, instead they need support from a number of elab-
orate auxiliary methods. This leads to highly complex segmentation systems
which are controlled by a large number of free parameters that have to be op-
timized for each specific application. Unfortunately, a tweaked system cannot
easily be adjusted to new and unexpected image data, nor can it directly be
translated to other clinical cases. Usually, an application of these systems then
remains limited to the original use-cases they were once designed for.

As a reason for the described inflexibility of 3D-SSM, a number of basic
limitations can clearly be identified: restricted use of spatial information, weak
learning and an inflexible one-dimensional landmark detection. So far, these
basic limitations of 3D-SSM have only been subject to preliminary research.
But today, the rapidly developing field of machine learning has led to promising
techniques like strong and flexible learning, extensive feature description and
global landmark detection. These techniques have already demonstrated their
potential in computer vision, and they promise to be an effective remedy for
the described limitations.

1.2 Objectives
The main objective of this thesis is the methodological extension of 3D Statis-
tical Shape Models (3D-SSM), with the goal of a promoted overall availabil-
ity of high-level modeling and segmentation functionality in different use-case
scenarios. The result should be a new type of 3D-SSM that provides both
high flexibility and accuracy for the fully-automatic segmentation of medical
image data. The new 3D-SSM is meant to operate autonomously without sup-
port from auxiliary methods, and it should easily be trainable for changing
use-cases. During segmentation, the new standalone method is supposed to
achieve an immediate higher accuracy without need for a tailor-made system
design. In particular, the following characteristics should apply:

• Independence from auxiliary methods: The segmentation outcome
of the new 3D-SSM should not rely on an application of additional, exter-
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nal methods. Especially, accurate results should no longer be dependent
from an exact initial placement of the employed surface model. Thus,
sophisticated model initialization procedures should no longer be a pre-
requisite for high accuracy in future applications.

• Fully-automatic training: During training, no manual intervention
should be required for a sustained high accuracy across different use-
cases. From underlying training data, image features should automati-
cally be determined that best describe the appearance of a sought target
organ. For a successful learning of different use-cases, no further adjust-
ment of training parameters should be required.

• Accuracy and generalizability: A high overall accuracy should be
achieved without loss of generalizability. The method should produce
similar results in comparison with optimized, use-case tailored hybrid
systems.

• Clinical workflow compatibility: Segmentations for single target or-
gans should be available within minutes. Both quick visual results and
time-efficient background processing of larger clinical datasets should be
provided this way. Fine-grain parallelization and an optional integra-
tion of algorithms for quicker learning should facilitate training on large
datasets e.g. for ongoing studies.

1.3 Contribution
This work contributes methodological extensions to 3D Statistical Shape Mod-
els (3D-SSM) that address previous well-known problems of this popular and
widely-used segmentation technique. The contributed extensions aim at higher
intrinsic search and model fitting capabilities of 3D-SSM, and at a higher avail-
ability of segmentation performance from 3D-SSM in different segmentation
scenarios.

This work proposes the following methodological contributions:

• A new 3D-SSM is presented that incorporates a landmark-wise omni-
directional search for arbitrary soft tissue landmarks, using a time effi-
cient segmentation framework for application in volumetric image data.

• For the first time, three well-known problems of 3D-SSM are jointly ad-
dressed by the proposed method, i.e. dependence of results from previous
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model initialization (Model Initialization Problem); dependence of results
from model pose changes and proneness to be stuck in local minima dur-
ing segmentation (Visibility Problem); and a limited search range that
fails to attract 3D-SSM to the sought organ of interest from growing
distances (Capture Range Problem).

• A segmentation approach is presented that generalizes well across dif-
ferent organs and modalities, only relying on the proposed 3D-SSM as
a self-sufficient segmentation technique without need for support from
other methods. In particular, the proposed 3D-SSM can be used as a
single technique for multi-organ segmentation tasks without additional
effort for previous organ localization in larger image volumes.

1.4 Structure of this thesis
This thesis is structured as follows: Chapter 2 will present an overview of the
state-of-the-art for 3D-SSM and their application in image segmentation. The
overview will focus on techniques in the field of medical image analysis, but
references from other fields like computer vision will be included as needed.
The chapter will encompass the essential concepts that contribute to the suc-
cessful modeling, training and application of 3D-SSM. In particular, different
strategies and approaches will be detailed that address the modeling of object
appearance, and the model adaptation process during segmentation.

In Chapter 3, the training of shape prior models for a number of common
organ structures will be presented, that build the foundation for the later exten-
sions of appearance modeling, of landmark search and of model fitting in this
work. Methods for shape model construction will be chosen for the proposed
method, that allow an incorporation of techniques on the basis of explicitly
modeled surface landmarks. The extensions to 3D-SSM in this work will be
proposed independently from the underlying shape modeling techniques, ex-
cept for a claimed landmark-based shape representation. Thus, the proposed
extensions can be combined with a large variety of other landmark-based ap-
proaches that address different domains and issues of 3D-SSM.

In Chapter 4, the proposed use of a non-local landmark context appearance
modeling will be presented. The aforementioned well-known problems of 3D-
SSM will be analyzed in detail, and conceptual solutions will be motivated to
address these problems. Classification- and regression-based strategies for ob-
ject modeling and detection will be discussed. The use of a flexible, randomized
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3D Haar-like feature descriptor will be described, including its time-efficient
computation and normalization, and its role in the greater modeling and de-
tection framework. Finally, the proposed use of landmark-wise trained random
regression forests in 3D-SSM will be described, incorporating flexible and ro-
bust machine learning for the intended modeling and detection of arbitrary
soft tissue landmarks in volume images. In addition, the use of extremely
randomized trees and faster sample impurity computation will be proposed to
speed up training.

In Chapter 5, the previous techniques of shape prior modeling, non-local
landmark appearance modeling and omni-directional landmark detection will
be put together to provide a time efficient model-based segmentation approach.
The choice of a voting scheme from different possible strategies will be moti-
vated, thus enabling a robust aggregation of forest predictions on the sought
landmark positions, based on information from distributed viewpoints in the
image. The omni-directional landmark detectors will be embedded in a multi-
scale approach, where the use of sparse surface modeling, a multi-resolution
model fitting and a final profile-based segmentation for all landmarks will pro-
vide a time efficient, robust and accurate applicability for the considered 3D
applications.

Chapter 6 will present a experimental validation of the proposed method in
a variety of segmentation experiments, for different organs of interest, imaging
modalities and use-case scenarios. The goal of the experiments was to ex-
amine the effects of the proposed techniques on model initialization, visibility
and capture range problems of 3D-SSM, and to demonstrate the generalizabil-
ity of the proposed method to different use cases. In a comparison with a
typical previous 3D-SSM, the robustness of the proposed 3D-SSM was tested
against random model pose changes around the organ of interest. Capture
range experiments were conducted to determine the distance from which the
proposed method is attracted to the underlying organs of interest. Search ex-
periments were performed where the quality of segmentation results was com-
pared when started under different conditions of model initialization, regarding
the proneness to locally optimal solutions during segmentation. And finally,
the proposed method was compared with various methods from other groups
on publicly available data, comprising a liver segmentation task and a multi-
organ task for liver, spleen and kidney segmentation on CT data. In addition,
experiments were conducted for liver segmentation in T1-weighted MRI data,
for left ventricle segmentation in ultrasound data, and for a segmentation of
pathological lungs in MDCT data, to further demonstrate the generalizability
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of the proposed method to challenging and heterogeneous imaging modalities
and to a clinical dataset with pronounced presence of pathologies. Finally,
a runtime and robustness analysis of the employed random regression forests
was conducted, where influence of a number of training parameters on seg-
mentation accuracy, on convergence, on precision of forest predictions and on
training duration was examined.

In Chapters 7 and 8, based on the shown experimental results, the general
characteristics, benefits and limitations of the proposed method will be dis-
cussed and concluded, regarding its solution for the addressed problems of 3D-
SSM, its application under varying imaging conditions, encountered anatom-
ical and pathological variabilities, and its implications for model based seg-
mentation, also in comparison with other approaches from the field of medical
image segmentation.
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CHAPTER 2

State of the Art

2.1 Model-Based Image Segmentation
A number of fundamental tasks constitute the greater field of medical image
processing. They have coined the major disciplines of segmentation, registra-
tion and modeling, for which numerous methods were developed during several
decades of active research.

Image segmentation deals with the separation of images in different object
and background regions. For the task, separate methodologies have evolved
which build on their own strategies and ideas to perform a successful segmen-
tation. Due to the notion of an extended model-based segmentation in this
thesis, the following chapter will focus on an overview of current 3D Statis-
tical Shape Model (3D-SSM) approaches. A detailed overview of the field of
medical image processing, and of other segmentation methodologies can e.g.
be found in [1].

3D-SSM are among the most prominent model-based approaches, and they
have been used with great success in various applications. 3D-SSM rely on
a surface representation of distinct organs of interest in order to provide a
targeted segmentation of these structures. In addition, 3D-SSM incorporate
prior knowledge of shape and appearance which is learned for given organs of
interest from previously annotated training images. The learned prior is then
adopted during segmentation in order to fit a surface model to the learned
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target organ in new unknown images. Despite the advent of more and more
promising voxel classification and labeling techniques, many approaches still
rely on a comparable shape representation at some point in order to improve
segmentation accuracy. A comprehensive survey of 3D-SSM and their appli-
cation can be found in [2].

Also, 3D-SSM are characterized by a combination of traits that are particu-
larly appealing for certain scenarios. First, they offer a higher-level representa-
tion of segmentation results that is intrinsically backed by trained prior models
of object shape and appearance. Each new segmentation that is obtained by
3D-SSM can automatically be put in context with previously analyzed object
classes, thus linking higher-level modeling information with low-level image
information. This provides the means for an assessment of object typicality
and for a direct comparison of object geometries based on well-defined shape
correspondences.

Starting from a set of annotated training images, a number of tasks and
challenges arises en route to a 3D-SSM that is applicable for image segmen-
tation. First, a geometric representation must be provided that is suitable
for a modeling of the considered object classes. Different representation tech-
niques have been proposed that offer particular benefits for chosen application
scenarios. These techniques will be presented in Sect. 2.2.

Furthermore, shape prior information that is retrieved from the underlying
training shapes needs to be properly encoded and modeled in order to be
applicable for shape analysis and segmentation. To provide a comparable
basis for different shapes and to capture only meaningful shape variation from
training data, the latter typically needs to be transformed to a common shape
domain. Techniques for a suitable processing of the original training shapes
and for the subsequent modeling of shape prior will be outlined in Sect. 2.3.

Learning object class appearance from image information for successful seg-
mentation is another key feature of 3D-SSM. Similarly to the previous shape
prior modeling, different challenges and design choices arise during this process.
For a meaningful modeling of object appearance, various feature descriptors
exist which respond to certain object characteristics as they are encountered
in the underlying images. They build the foundation for a learning of object
appearance from the training data, for which various learning techniques have
been proposed. These topics will be detailed in Sect. 2.4.

3D-SSM typically perform an iterative search for an optimal model place-
ment at the organ of interest to perform a segmentation. For best results, a
best possible model initialization near the organ of interest has to be provided
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prior to the iterative segmentation process. A number of well-known problems
arise from the notion of a model initialization that provides boundary condi-
tions for a subsequent, highly dependent search. As a response to the arising
need for compensatory measures, various techniques have been proposed in
the literature. These topics and techniques will be described in Sect. 2.5.

The majority of 3D-SSM that are used for general segmentation purposes
build on a landmark-based shape prior model. A landmark-based representa-
tion offers various benefits, and it goes particularly well with the algorithmic
development in this thesis. Therefore, the remainder of this chapter will fo-
cus on developments that build on this type. The proposed enhancements for
3D-SSM will however not be limited to this object representation type alone.
Further details on the developments regarding all types of 3D-SSM can be
found in [2].

2.2 Surface Representation

3D-SSM rely on a geometric modeling of organ surfaces that naturally pro-
vides an organ delineation in the image volumes during segmentation. They
also serve as a basis for the learned shape and appearance prior during train-
ing, and for an incorporation of the latter in the model fitting process during
segmentation.

In this regard, different surface representation techniques exist that have
been employed in a variety of image analysis tasks. They provide distinct
advantages concerning compactness, simplicity, topological flexibility or geo-
metrical expressiveness of the resulting surface model. Generally speaking,
some techniques offer convenient solutions for a broad variety of segmentation
tasks, whereas others provide particular solutions e.g. regarding anatomical
structures of complex geometry and peculiar shape variation.

In general, the choice of surface representation affects 3D-SSM at various
stages during their training and their application. Specifically, this means
that requirements are introduced on the retrieval of corresponding surfaces
from labeled training data, on the statistical modeling of shape variation, or
on surface detection and model adaptation during segmentation. The different
representations will shortly be detailed in this regard in the remainder of this
section.

11



Chapter 2. State of the Art

Figure 1: Landmark-based surface model of the liver. An explicit
representation of surface landmarks embedded in a triangular mesh.

2.2.1 Landmark-based Models
The most widespread surface representation, called the Point Distribution
Model (PDM), is based on an explicit modeling of distcint surface landmarks
~xi = (x11,x12,x13)T that are usually integrated in a triangular mesh structure.
Consequently, given shapes ~Xi can be encoded through a concatenation of
their landmark coordinates:

~Xi = (x11,x12,x13, · · · ,xn1,xn2,xn3) ∈ R3n, i = 1, · · · , k

The PDM has originally been proposed for statistical shape models in [3], and
thanks to its simplicity, its computational efficiency and its generality, this
type of representation has remained highly popular ever since. Accordingly, it
has been a foundation for many successful applications in image segmentation.
Due to the general focus on image segmentation tasks in this thesis, the PDM
will also build the foundation for all presented developments. Henceforth,
emphasis will be put on shape and appearance prior modeling techniques that
are of particular relevance for this type of surface representation.

2.2.2 Medial Models
Another class of surface representations is based on medial models. They de-
scribe a shape of interest by an internal centerline structure in conjunction
with distributed radial information to capture surface geometry. This kind of
representation was originally proposed for shape modeling in 2D domain [4],
where connecting vectors between centerline and surface were defined for de-
scription of 2D shapes. The concept was later extended to 3D domain [5], and
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Figure 2: Spherical harmonics (left) and medial model (right) sur-
face representations. Shapes are represented by sets of basic functions and
by centerlines with added radial information.

to the continuous modeling of surface geometry [6]. Apart from the increased
compactness of the medial model representation, it is apparently ideally suited
for the modeling of structures that exhibit convoluted tubular geometries, e.g.
the cochlea [7].

2.2.3 Fourier Descriptors, Spherical Harmonics, Splines
Furthermore, methods have been proposed that provide a compact represen-
tation through a finite number of descriptive elementary functions. Their
compact representation allows a higher-level interpretation, and they promise
higher topological flexibility during training. Also, their parameterization-
based representation can be used for a mapping to the higher parameter space,
where shape correspondences are more easily established, which is a prerequi-
site for shape model building. In [8], the Fourier transformation known from
signal processing, is extended to the surface domain. Similarly, a set of ba-
sic functions is employed in [9], [10] called spherical harmonics (SPHARM ),
which offer high-level representation of deformable surface models for segmen-
tation and shape analysis as in [11]. Also based on a spherical composition,
a hierarchical approach is proposed in [12] that describes surfaces through vi-
brational modes of spherical meshes. Obviously, both techniques are limited
to the description of spherical topologies. This is overcome by an extension of
SPHARM called surface harmonics from [13]. A set of wavelet functions for
shape description was proposed first in 2D [14], and later in 3D domain [15],
[16] using spherical wavelets.

Another, highly compact description is based on non-uniform rational B-
Splines (NURBS) [17], which describe a surface through a sparse number of
control points and their resulting spline interpolation. While their explicit and
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compact description allows convenient user interaction through manipulation
of control points, the level of surface detail is rather limited. For a shape
analysis apart from segmentation, the use of shape descriptors was proposed
in [18].

2.2.4 Level-Sets
In [19], level-sets were proposed as an implicit representation of object ge-
ometries. Object boundaries are defined by the zero-level sets of a higher
dimensional level-set function. The major benefit of this modeling type is that
it provides topological independence for modeled objects, which can have ar-
bitrary, changing topologies during application. However in general, the use
of level-sets for image segmentation is not straightforward and often requires
an application specific design of the underlying level-set function.

The original notion of level-sets for object representation from [19] was con-
sequently adopted for use in image segmentation by [20], where a model fitting
scheme and the use of predefined image features were proposed. Subsequently,
shape prior was added to the level-set formulation in [21], [22], where prior
knowledge was represented in image domain through the use of distance maps.
Due to the non-linear distance mapping, ill-shaped solutions could not be pro-
hibited, which was later tackled by [23] through a representation of shape prior
in the linear LogOdds space. Another problem with level sets and shape priors
arises from a time consuming estimation of optimal pose parameters during
segmentation. In [24], a solution was proposed based on intrinsic coordinate
systems in each training shape, following the idea described in [25]. With
it, translation, rotation and scale of shapes could directly be incorporated in
the evolution equation, making time consuming optimization of registration
parameters obsolete.

Based on their implicit surface formulation, on the requirements during
their algorithmic design and on the peculiarities during their application, level-
sets can be regarded an alternative concept that is entirely different from the
aforementioned explicit representation techniques. An extensive review on
level-sets can for example be found in [26].

2.3 Shape Prior Modeling
Shape can commonly be defined as the part of object geometry that is invariant
under translation, rotation and scale. To incorporate prior knowledge of shape
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variation from a class of objects, a shape prior model is trained on previously
annotated data. During model training, a shape distribution is estimated from
the encountered objects in the training data by means of statistical modeling.
The trained shape prior model can be used to generate plausible shapes that
are in accordance with the observed shape variation in the training data.

The shape prior model grants a generally strong robustness for 3D-SSM dur-
ing segmentation. Erroneous surface geometries are excluded by the learned
shape constraint, while convergence of the segmentation process is promoted
towards plausible solutions. Also, the shape of any solution that is hypothe-
sized during segmentation can be projected back to the learned shape distri-
bution, where its plausibility can be assessed.

Training shapes in a common shape representation as described in the pre-
vious sections serve as input for model training. A landmark-based surface
representation builds the foundation for the techniques that were developed in
this thesis. The following parts of this section will therefore mostly be related
to this type of surface representation. However, numerous similar concepts
have been proposed in the literature for the other representation types.

Prior to shape model training, the provided surface shapes typically un-
dergo further processing in order to remove non-essential information from
the training data and to ensure conformity of the surface shapes. Also, an
optional augmentation of training samples can be performed to increase in-
formation gain from limited training data. Processing of training shapes and
shape prior modeling will be the subjects of the following sections.

2.3.1 Shape Alignment and Normalization

Before suitable information on shape variation can be extracted from the ini-
tially provided training shapes, an alignment and a scale normalization have
to be conducted on the latter. Intuitively for most applications, shape varia-
tion is considered as the disparity between distinct shapes that remains after a
removal of differences in translation, rotation and scale. Consequently, learn-
ing and modeling shape distribution from a set of training shapes requires an
alignment of all input surfaces by affine registration first.

An efficient and convenient method for alignment of landmark based shapes
is provided by the generalized procrustes analysis (GPA) [27], [28]. The GPA
works under the assumption of an equal number of corresponding landmarks
that are distributed on the surface of each shape. This requirement is also
a prerequisite for the subsequent statistical shape analysis, and it is ensured
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throughout the model training process by a dedicated correspondence opti-
mization step that will be the topic of the following section.

The procrustes analysis delivers a closed form solution that minimizes the
euclidean distance between two given shapes. Based on the pairwise alignment
of shapes, the GPA produces an alignment of all training shapes with an
optimized mean shape, i.e. the one that minimizes squared distances to the
aligned shapes. Since the initially unknown optimal mean cannot be identified
analytically, it is determined iteratively through shape alignment and repeated
updates of the mean shape.

In order for this process to converge, at least a scale normalization of the
mean shape (usually |x̄| = 1) has to be maintained throughout the process [3].
The remaining shapes can then either be scaled implicitly during the procrustes
analysis, or explicitly, to a hypersphere (|xi| = 1) or into the tangent space of
the mean shape through a posterior scaling by 1/xix̄ for each shape. It can be
shown that only for the latter, additional non-linearities in the resulting shape
distribution can be avoided (cf. [29]).

Further propositions on shape alignment were made in the literature. In
[30], an optimization of the L1 and L∞ norms was proposed during the pro-
crustes analysis, thus addressing sensitivity to outliers. In [31], an optimization
based on the minimum description length (MDL) was proposed, which is com-
patible with correspondence optimization methods that also rely on MDL op-
timization. In [32], a group-wise shape alignment was proposed by establishing
transitivity on the pairwise transforms, which addresses previous sensitivity to
noise from occlusions or false landmark correspondences.

2.3.2 Correspondence Optimization

For landmark-based surface representations, a statistical modeling of shape
variation is generally performed in a common parameter space spanned by
the landmark coordinates of the training shapes. Obviously, embedding all
shapes in this joint parameter space requires a uniform representation based
on an equal number of corresponding landmarks on each single shape. Shape
variation can then be derived from the positional variations of any set of cor-
responding landmarks on all training samples.

This means that the actual placement of corresponding landmarks on the
different shapes has a direct influence on the validity of the shape variation
that is captured therefrom, and the quality of the trained shape prior model
is consequently dependent from a meaningful placement of landmark positions
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Figure 3: Landmark correspondence problem. Find a set of correspond-
ing landmarks across different surface shapes.

on each shape.
The optimal selection of corresponding landmark positions on the training

data is a non-trivial problem. First, the large number of required landmarks on
multiple training shapes renders a manual placement non-feasible, particularly
so for 3D surface shapes. And second, the actual meaningfulness of landmark
placements is in general undefined, and in theory, requirements for optimality
have to be considered with regard to the purpose of the subsequent shape prior
modeling.

Consequently, a number of challenges arises, that altogether contribute to
the complexity of a suitable correspondence optimization for 3D-SSM: the
automated placement of large numbers of landmarks on all training shapes;
the convenient and accurate selection of meaningful landmark positions on
different shapes; and the establishment of an optimality criterion for the chosen
landmark correspondences.

For an automated placement of large sets of landmarks on multiple training
shapes, different strategies exist. For instance, all landmarks can be transfered
from a template shape to all other training shapes via mesh-to-mesh registra-
tion. Alternatively, an image registration can be performed on all training
images. Then after surface mesh creation on any labeled image, landmarks
can directly be transfered to all other cases automatically. Another strategy
can be to perform a segmentation of unlabeled images, either using a de-
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formable template mesh or a presegmented atlas. Finally, all training shapes
can be projected to a joint parameter space that serves as a common reference
frame for all projected shapes (parameterization-based correspondence opti-
mization). There, landmarks can then conveniently be placed on all training
shapes simultaneously.

All of these approaches yield their own advantages and problems regarding
the convenience, the meaningfulness and an intended optimality of the land-
marking. These traits play an important role in the model building process,
since they decide about the availability of an accurate shape prior modeling
in various applications. Accordingly, extra measures can be required for the
different approaches in order to improve the quality of their found correspon-
dences.

Regarding the optimality of the landmark correspondences, various de-
mands can be raised. At least, a homeomorphic mapping of the corresponding
training meshes is naturally desired, where landmark positions do not produce
ill-defined foldings on the corresponding surface parts of the remaining shapes.
Another qualitative demand can be to remove any unfavorable biases of the
correspondence optimization that emerge from the actual mesh structure of
the training shapes, or from the choice of arbitrary reference templates at the
beginning of the process (selection bias).

Apart from these qualitative optimality criteria, various quantitative mea-
sures exist that regularize landmark correspondences. They aim either at an
optimization on a per shape basis (e.g. through minimization of landmark dis-
tances, or through conformity on shape features), or they impose optimality
on the whole set of training shapes simultaneously (group-wise optimization).

According to these basic ideas, various propositions have been made in the
literature for correspondence optimization. They will briefly be reviewed in
the following subsections.

2.3.2.1 Mesh-to-mesh registration

In [33]–[35], correspondences via mesh-to-mesh registration were proposed, us-
ing the iterative closest point algorithm (ICP) [36] or the Softassign Procrustes
[37]. For removal of the selection bias from the arbitrarily chosen reference
shape, a binary tree for the pairwise registration of shapes was proposed in
[38], based on a symmetric ICP algorithm. In order to impose optimality to
the correspondences, feature preserving registration was proposed with regard
to crest lines, normal vectors and local shape information [39]–[41].

The confinement to similarity transformations during shape registration
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does not naturally enable the direct selection of common landmark positions
on two registrated shapes. Instead, an inaccurate selection of landmark po-
sitions is performed based on minimum surface distance. Especially in case
of large, elastic shape variations, this can negatively affect the quality of the
landmark correspondences, resulting in non-homeomorphic mappings and ill-
defined surface meshes.

One straightforward solution for this problem can be a non-rigid registration
based on splines, e.g. using B-Splines [39] or multi-resolution Octree Splines
[42]. Another alternative is the selection of sparse correspondences based on
shape features [43]–[46] or on a sparse manual landmarking [47]–[51]. From
there, the remaining landmark correspondences can then be established such
that mesh quality is preserved, e.g. through thin-plate spline registration, fol-
lowed by physical-model based mesh adaptation [47] or by a markov random
field regularization of the spline deformations to ensure homeomorphic map-
ping [51]. Apart from manual landmarking, automatic feature detection can be
involved, e.g. based on similarity, structural and prior information [43], based
on local surface geometry and geodesic distances [44], or using pattern recogni-
tion through clustering, classifier training or dynamic programming [45], [46].

2.3.2.2 Template- and atlas-based matching

One major drawback of the mesh-to-mesh registration based approaches de-
scribed above is the necessity for non-rigid surface matching techniques. It
can instead be reasonable to rely on mesh adaptation techniques that are later
used during segmentation anyway. Or, if manual annotations of training im-
ages are not available, the fitting of a deformable model to these images can
be a reasonable option, thereby retrieving landmark correspondences.

In [52]–[55], the matching of a template shape to pre-segmented images was
proposed, and alternatively in [56], [57], the template-based segmentation of
unlabeled images. In order to remove the selection bias from the chosen tem-
plate, an optimal shape selection was introduced in [55], involving additional
shape modifications for improved fitting. Apart from this, measures that rely
on physical deformation models, multi-resolution model fitting and gradient
vector flow are employed to improve the adaptation accuracy of the template
shape.

Analogously for the use of atlases, registration to pre-segmented images
[58]–[60] and atlas-based segmentation of unlabeled images [57], [61], [62] were
proposed. The proposed techniques involve rigid pre-registration followed by
thin-plate splines or B-splines [57], [58], [61], relying on mutual information
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Figure 4: Population-based correspondence optimization. Approa-
ches of this type assume that the best correspondences are those which explain
shape variation with least modeling complexity.

and normalized mutual information (NMI), or on label consistency and on
the kappa-metric for the registration of multi-label images [59], [60]. For a
removal of the selection-bias from the employed atlas, an atlas-selection based
on minimization of overall deformation was proposed [62].

2.3.2.3 Parameterization-based Correspondence Optimization

Although template- and atlas-based matching techniques are appealing due to
the re-use of established methods from segmentation and image registration,
they do not essentially address the original problem of optimizing landmark
correspondences. They rather focus on a mere matching of shapes and atlases
to similar objects in image domain. However, apart from tackling selection-
biases, they do not consider any optimality criteria regarding the resulting
landmark distribution on the matched objects.

Therefore, correspondence optimization is still most naturally approached
in the surface domain of the underlying training shapes. To avoid the afore-
mentioned problems of the mesh-to-mesh registration approaches in terms of
non-rigid shape matching and limited availability of sparse surface features,
a parameterization based approach can be the better choice. The basic idea
is to provide a parameterization for the different training shapes, thus trans-
forming each shape into a common parameter space. There, landmarks can
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be defined and be distributed across all shapes in a convenient and unbiased
manner, without need for a non-rigid registration of selected shapes.

Several methods have been proposed that rely on different parameter spaces
and optimization strategies. In [10], a parameterization via spherical harmon-
ics was proposed. There, all shapes are aligned by their first-degree ellipsoids,
and landmark correspondences can immediately be transfered to all shapes.
In [40], [63], harmonic maps were employed for a mapping of cartilage to
2D topological disks, with shape alignment based on disk rotation minimiz-
ing landmark distances that were determined via ICP on the training shapes.
While diffeomorphism across all shapes is established this way, an arbitrary
landmarking is employed that does not aim for further optimality.

A natural approach to achieve higher quality of the chosen correspondences
is to take into account anatomical or geometrical key structures, which are
extracted manually [64], [65] or automatically [66]. Examples are sulci of
the brain [64], user-selected image patches, feature lines [65], [67], landmark
features [66], or geometrical characteristics like surface normals and curvature
features. Optimization of the landmark correspondences is carried out either
during the initial parameterization of all shapes [64]–[66], or iteratively through
re-parameterization of the initial shape parameterizations [67]–[69].

Apart from the above propositions where optimality is introduced rather
intuitively through conformity across distinct shapes, an entirely different op-
timization policy can be to aim at the joint optimality of all shapes (population-
based / goup-wise optimization). A suitable objective for a more global corre-
spondence optimization is given by the quality of the shape prior model that
itself relies on the quality of the chosen landmark correspondences. Therefor,
a feasible criterion is based on the compactness of the resulting linear shape
prior model. Generally for the covariance matrix Σ, this means an overall
smaller aggregation of eigenvalues on fewer eigenmodes, thus favoring models
that explain shape variation more efficiently than other, more complex models.
Although being a basic assumption, this well-known principle holds true for
many real-world problems and applications.

Following this rationale, different optimality criteria were proposed in the
literature. In [70], an optimality criterion based on the determinant of the
covariance matrix was proposed. There, only a limited choice of landmark
positions was supported. In [71], an optimization of the minimum description
length (MDL) was proposed. The latter is an information theoretical measure
that follows the aforementioned Occam’s Razor principle of favoring simpler
hypotheses over the more complex ones. Here, the main challenge lies in the
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increased computational complexity of the MDL cost function. As a suitable
alternative, a simplified version of the MDL was proposed in [72], which sup-
ports a more efficient computation. In [73], an entropy based optimization was
proposed that is also considered equivalent to the MDL. This approach also
introduces a particle based alternative to the previously used spherical para-
materization, thus enabling topological independence. Another alternative was
proposed by [74], relying on a 2D disk parameterization and on piecewise bi-
linear maps. Furthermore, an MDL-based group-wise image registration was
proposed in [75].

For the actual optimization of the proposed cost functions, genetic algo-
rithms [70], [71] and a Nelder-Mead heuristic [76], [77] were proposed. Signif-
icant speedup was achieved by [78] based on a gradient descent optimization
of the simplified MDL.

Summarized, the parameterization-based approaches provide an effective
and convenient means for a direct optimization of correspondences across mul-
tiple training shapes. They implement well-defined cost functions that directly
aim at optimality of the trained shape prior models. Approaches have been
proposed for objects of arbitrary topology, and although computationally the
methods generally come at a higher expense, the availability of faster opti-
mization algorithms and the importance of model quality for the later applica-
tions make a use of these approaches worthwhile. They can provide a robust
shape prior during segmentation that accurately represents the considered ob-
ject classes in terms of specificity and generalizability, and that can deliver
meaningful higher-level information from newly segmented objects.

2.3.3 Modeling Shape Distribution

After meaningful landmark correspondences have been established on the train-
ing shapes, shape prior knowledge can be learned from the training data. The
learned shape prior can then be used to generate plausible shapes and to fit
them to the sought objects in new image data. Or it can be used to asses sim-
ilarity of shapes that are retrieved during segmentation or during any other
application involving a representation of the modeled objects.

Mathematically, shape prior can be represented by any shape distribution
that is suited to explain shape variation that is encountered in the training
data. Different basic assumptions can be made on the underlying distribution.
In conjunction with landmark-based SSM, the assumption of a normal distri-
bution was proposed in [3]. Shape variation is explained by the mean shape
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X̄ and by the covariance Σ of the training shapes

~Xi = (x11,x12,x13, · · · ,xn1,xn2,xn3) ∈ R3n, i = 1, · · · , k

A dimensionality reduction is performed using the principal component anal-
ysis (PCA), which results in a smaller number of eigenvectors of Σ that are
used for shape description within the entire shape space R3n.

Numerically, this is preferably done prior to a calculation of the covariance
matrix, using the singular value decomposition (SVD) due to its greater sta-
bility. In order to address outlier sensitivity of conventional eigenanalysis and
SVD, a robust PCA was proposed in [79].

As a result, shapes ~Xj can be generated in accordance with the modeled
distribution:

~Xj = X̄ +
c∑
i=1

αiΦi = X̄ + P~b

Based on the eigenmodes P of the shape distribution, the plausibility of
future shapes ~x can be assessed using the Mahalanobis Distance

d( ~Xj, X̄) =
√

( ~Xj − X̄)TΣ−1( ~Xj − X̄)

Likewise, the generation of surfaces can be constrained to plausible shapes
by limiting αi from the parameter vector ~b separately, or by applying a hyper-
ellipsoidal constraint to ~b.

The above relies more or less on the absence of non-linearities in the underly-
ing shape distribution, and plausibility is not assured for the larger discrepan-
cies in the presence of considerable non-linearities. Some works have explicitly
addressed the more specific selection of plausible shapes thereby taking non-
linearities into account. In [80], a gaussian mixture model was proposed to
estimate the probability density function of shapes in the parameter space of
~b. Similarly in [81], a hierarchical PDM based on gaussian models was pro-
posed. In [82], a tabular constraint of shape parameters was employed based
on the previously encountered training data.

Alternatively, non-linear shape deformations can directly be modeled in a
non-linear shape prior, and different propositions have been made to this end
in the literature. In [83], non-linear PCA was employed based on polynomial
regression (PRPDM), and later using a multi-layer perceptron (MLPPDM)
[84]. In [85], a highly-expressive non-linear modeling was proposed based on
kernel transformation (Kernel PCA).
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Another important aspect of shape prior modeling concerns the range of
the shape deformation during a change of modes. In the linear PDM based
on the PCA, each mode of variation generally affects shape on a global level
(global support). However for many applications, a description of purely local
shape variations can be desirable (local support), e.g. for the representation of
pathological alterations at dedicated organ subparts. For the principal compo-
nents of the linear PCA, this means that they are desired to have a delimited
effect on local landmark clusters (sparsity).

For linear shape prior models, this can be achieved through redefinition
of the principal components, e.g. by the orthogonality preserving Orthomax
rotation of components [86], or approximately through quasi-orthogonal redefi-
nition as proposed in [87]. In [88], modes were selected towards a maximization
of autocorrelation factor (MAF).

Alternatively, an independent component analysis (ICA) can be applied
for non-linear shape prior modeling [89]. There, a mixed distribution of non-
gaussian random variables is decomposed in its independent components after
decorrelation of input signals based on the inverse correlation matrix, and e.g.
through an iterative rotation towards maximization of non-normality in the
marginal distributions [90]. It can be shown that ICA and MAF are equiva-
lent. An example application can be found in [91], [92] for pattern description
in cardiac MRI. Since no orthogonality is established on the components, ad-
ditional measures have to be taken during an iterative segmentation scheme
in order to find an optimal fit to potential landmark locations. Also naturally,
shape selection from the modeled distribution cannot simply be made based
on principal component variance alone.

2.3.4 Model Training

For 3D-SSM, robustness during segmentation results from the specificity of the
employed shape prior model. Segmented surfaces are constrained to plausible
shapes and thus excluding ill-shaped delineation errors. However, specificity
can also be accompanied by a loss of generalizability to newly encountered
shapes.

Often, the problem arises when only little training data is available due to
the high effort for manual annotation of training cases. Then, little information
on shape variation is provided for suitable application in future cases. To tackle
this problem, an artificial augmentation of training data can be performed,
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where plausible shape variation is added to the underlying data.
The prerequisite is to only impose plausible shape variation during aug-

mentation. In [93], plausible shape variation is generated using vibrational
modes that model physical deformation from a finite element model. In [94], a
simpler alternative is proposed where additional variation is added landmark-
wise in the covariance matrix of the training samples. To prevent implausible
variations of isolated landmarks, covariance among neighboring landmarks is
increased simultaneously. This approach was later adopted by [95].

In [96], non-rigid local deformations of surface landmarks were proposed.
Plausibility was ensured through topology preserving landmark shifts and
through a rejection of implausible deformations that are not in accordance
with a probability map constructed from the original training data. In [97],
different approaches were evaluated regarding their effect on the generalizabil-
ity of the resulting models. It was shown that overall best results were achieved
using non-rigid deformations and the FEM approach from [93].

Another idea to tackle the problem of limited training data is to decompose
the modeling of a global shape to smaller local shapes of lower complexity.
The overall decreased complexity of the subparts then promotes a modeling on
smaller training set sizes. One illustrative example for this is the decomposition
of tubular structures in a cross-sectional part and in a part that describes
variations of the tubular axis itself. This was proposed in [14], [98] for the
modeling of aortic aneurysms where higher generalizability was achieved.

Alternatively, in [55], a separate modeling of different surface parts was
proposed. Implausible shape variation was then prevented by a regularization
of the parameter curves for the different parts based on their similarity to
parameter curves observed in the original training data.

Summarized, techniques that increase the expressiveness of the shape prior
modeling during training show great promise if limited training data is in-
tended to be used to a greater extent. However, a possible loss of modeling
specificity has to be considered when shape variation is artificially induced
that is not explicitly backed by underlying training data. This is important
since specificity is what provides most part of the robustness while using shape
priors during segmentation.

Altogether, there is no general recommendation for regular use of these
techniques, and their engagement remains a design choice to be considered
separately for different clinical applications. In case of modeling scenarios
where complex geometries are composed of simpler subparts, a use of the
presented decomposition techniques generally seems to be advisable.
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2.3.5 Summary
A large variety of methods and strategies exist that tackle the problems that
arise during shape model training. They cover a multitude of conditions that
can be encountered in different applications, regarding object geometry and
topology, availability and representation of training data, assumed shape dis-
tribution and anatomical variability. Approaches have been proposed that
induce modeling optimality for the later application of the trained models.
Particularly, they build the foundation for a shape prior modeling that can
provide additional segmentation robustness in 3D applications.

Some of the proposed techniques have been developed for general use in
differing applications, whereas others focus on more particular use-case scenar-
ios. Altogether, the presented techniques largely rely on an explicit modeling
of object landmarks, which makes them compatible with various algorithms
that were developed on this basis. This also means that methods for object
appearance modeling of for model fitting optimization can in large parts be de-
veloped independently from the previous shape prior modeling. Their notions
can then easily be extended to additional scenarios that profit from particular
shape modeling techniques.

While the role of the shape prior model is to add constraints to the hy-
potheses that are found in the segmentation process, appearance prior models
are employed to provide meaningful candidates for this process by searching
the image domain. The challenges and techniques that arise from the task
of appearance prior modeling for 3D-SSM will be presented in the following
section.

2.4 Appearance Prior Modeling
To generate plausible hypotheses during segmentation that match sought ob-
jects in images, information on object appearance is learned from annotated
data during 3D-SSM training. This follows the greater top-down bottom-up
approach of 3D-SSM, where higher-level modeling information from the learned
shape and appearance priors is linked with low-level image information during
segmentation to provide higher robustness.

For a successful modeling and learning of object appearance to this end,
different strategies exist that describe object characteristics in the underlying
image data. In general, they yield benefits for different objects and modalities,
depending on the actually encountered appearance of the considered objects in
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the images. Also, their choice can have a strong influence on the applicability
of different search and model fitting strategies during segmentation.

The previously trained models are directly employed for an estimation of
plausible model placements during segmentation. Generally, hypotheses are ei-
ther generated through search of plausible solutions in the image domain, and
then rating these by their posterior probabilities in the previously modeled
distributions. Or, a generative model is trained for the creation of hypothe-
ses that are fitted to the underlying image during segmentation, in order to
determine the most plausible solution.

Existing concepts for appearance modeling can roughly be categorized by
the actual object characteristics or parts they actually describe. A first type
builds on an exclusive description of object boundaries, i.e. contours in 2D
and surfaces in 3D domain. This type probably constituted the first type of
appearance modeling used for object description and segmentation in image
data. Due to its focus on outer boundaries of the considered objects of interest,
these appearance models naturally support a search for the visible object de-
lineations during segmentation. The boundary-based appearance models will
be detailed in Sect. 2.4.1.

Another way to describe appearance of objects is based on their texture. In
contrast to the boundary-based approaches, texture-based appearance models
consider information from the entire interior region of the considered objects.
This goes naturally well with objects that involve characteristic recognizable
features or distinctive texture patterns. Since these approaches generally in-
volve information from within the entire object, they can make use of this
information in terms of a global constraint for texture search during segmen-
tation. The texture-based appearance models will be detailed in Sect. 2.4.2.

More recently, an object description found entrance to image segmentation
tasks that is based on capturing the characteristics at distinct object land-
marks. In contrast to the boundary- and texture-based approaches where dis-
crete landmark positions are used as sample points for boundary and texture
appearance of the described objects, those modeling approaches focus on the
distinct description of these separate object landmarks. This approach is the-
oretically well suited for an unambiguous detection of the modeled landmark
positions during segmentation, which should have significant implications on
model-based segmentation in general. However, these implications have not
yet been investigated and applications remain largely limited to selected ob-
jects in 2D applications. Previous work on landmark-based appearance models
will be presented in Sect. 2.4.3.

27



Chapter 2. State of the Art

Figure 5: Boundary-based appearance modeling. The modeled objects
of interest are described by their local boundary appearance. Local information
is encoded in directed linear profiles and in feature response vectors from multi-
scale oriented wavelet filter banks.

2.4.1 Boundary-based Modeling
Various approaches have been proposed for an appearance modeling of object
boundaries in image data. They comprise simple and more complex feature sets
for the description of boundary appearance. They make different assumptions
on the underlying sample distribution of the modeled appearance, and they
employ a variety of methods to estimate posterior probabilities of possible
boundary candidates during segmentation.

Originally, a boundary appearance modeling based on intensity and gradient
profiles was proposed in [99], [100]. Boundary appearance was modeled by
a gaussian distribution of sampled profiles from training data. To estimate
posterior probabilities of new samples during segmentation, the Mahalanobis
distance has been shown to produce favorable results [100]. Also in these works,
normalization of the profiles to unity scale was proposed in order to compensate
for intensity fluctuation from illumination changes. The normalized profiles
have also been shown to deliver the best results in the presented applications.

Instead of a separate modeling of landmark appearance, a boundary de-
scription across all landmarks via concatenation of landmark-wise profiles was
proposed in [101]. It was assumed that separate profiles are not generally un-
correlated, which can better be captured by the concatenated profile model. In
conjunction with a more complex quasi-newtonian optimization of landmark
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candidates during segmentation, more accurate results were achieved in the
presented scenario. However, the proposed optimization strategy was accom-
panied by slower execution times, and the chosen boundary representation did
not allow an assessment of the local quality of fit apart from the employed
global cost function.

A more extensive modeling was proposed for a 2D-SSM in [102], where a
gaussian mixture model was used based on a large set of Gabor wavelet features
(called jet). Features were used in various scales and rotations, thus providing
a rich description of boundary appearance. Distribution of the local jets was
estimated via expectation maximization. In [103], the use of rotation-invariant
Gabor features was proposed for use in 2D-SSM, to compensate for the rota-
tional field of view of the employed ultrasound probe. In [104], steerable filters
were proposed for an appearance modeling in 2D-SSM. The employed steerable
filters represent another alternative for a rich set of features, which in addi-
tion offer an efficient evaluation of rotated versions of the provided features.
Canonical correlation analysis (CCA) was used to model the local landmark
appearance.

In [105], it was reasoned that linear modeling of landmark appearance was
insufficient. Therefore, a k-nearest neighbor classifier was proposed that es-
timates posterior probabilities from a non-linear distribution of foreground
and background profiles. Higher accuracy was demonstrated in this approach.
Later, further non-linear models were proposed using steerable filters [106] and
profile histograms [82]. Also in contrast to previous work, a stronger AdaBoost
classifier was proposed for the automatic selection of meaningful features from
the larger feature sets, and for the aggregation of weak classifiers to a stronger
overall classifier.

The aforementioned approaches have in common that they define features
and feature sets once for use during training, and that they do not preselect
any features from these sets to be excluded or to be focused on during train-
ing. In contrast, an additional feature selection was proposed by other groups,
where prior knowledge is used on meaningful features for specific applications.
Selection of useful features was proposed via boundary likelihood tests [107]
and via simulated search of landmark positions [108]. In [109], [110], heuris-
tics were used based on typical intensity profiles that are encountered during
liver segmentation in CT volumes. Obviously, this kind of feature selection
requires considerable extra effort and is highly use-case dependent. On the
other hand, notable performance was achieved through the extra effort in a
particular application [110].
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One problem that typically affects classifier-based profile modeling is the
small number of profile samples available at each surface landmark. To solve
this problem, a clustering of training samples can be applied. Larger numbers
of samples are concentrated in each cluster and thus made available to each
surface landmark. Different propositions were made as how to cluster sam-
ples and how to assign landmarks to clusters. In [111], a surface-wide fuzzy
clustering with c-means was proposed. Assignment of landmarks from chosen
boundary sections to eligible clusters was done manually. In [112], a clustering
with k-means was proposed, where each landmark was assigned one cluster
that holds the most training samples from that landmark. Alternatively, as-
signment to that cluster which produces the best accumulated fitting costs for
the considered landmark was proposed in [113]. Another way of clustering
was presented in [114], where spatial relationship between surface landmarks
was considered. In the process, profiles were blurred across the corresponding
boundary sections.

Summarized, boundary-based appearance modeling provides a natural and
intuitive means of object description regarding segmentation tasks. It means
a direct modeling of object parts that need to be delineated during segmen-
tation. The modeling type naturally corresponds to a linear search for object
boundaries, where the problem of object detection and delineation is reduced
to identifying the most likely intersection point of search lines with the sought
object boundary. This formulation of the segmentation task has proven highly
effective in past applications, and various boundary descriptors have been pro-
posed that can provide rich information for the delineation.

Despite their popularity, the boundary-based descriptors also exhibit some
significant disadvantages. First, the focus on boundary appearance usually
means that useful information can only be found in the vicinity of the bound-
ary. Thus, detection quickly fails for boundary parts that are out of reach
during segmentation (capture range problem). Furthermore, boundary-based
descriptors do not distinguish between neighboring landmark positions on the
same object boundary, which allows ambiguous results during segmentation.
In addition, the above intersection points of the search profiles with the object
boundaries continuously change during segmentation, depending on the origin
of the search profiles on the model surface of 3D-SSM. This regularly leads
to unforeseen segmentation errors. However, due to the simplicity and the
effectiveness of the boundary-based appearance models, they are probably the
most widespread type among 3D-SSM that are used in image segmentation
tasks.
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2.4.2 Region-based Modeling
In contrast to the use of boundary-based features, propositions were made
to model object appearance based on regional characteristics. They involve
features that are suitable for a description of spatial intensity patterns. Due
to the higher dimensionality of the considered spatial domain, a limitation of
the complexity of these features naturally becomes important. Also, regional
intensities tend to be more sensitive to unforeseen intensity variations. There-
fore, suitable measures for spatial intensity normalization have to be addressed,
if additional robustness is desired.

In [115], [116], an intensity vector was sampled from a reference frame inside
the modeled object. All training shapes were first warped to their mean using a
triangulation algorithm. Intensity vectors were then sampled from the warped
training images in a predefined region covered by the mean shape. A normal-
ization of the sampled vectors was proposed through projection to the tangent
space of the mean vector. Object appearance was modeled by a normal dis-
tribution of normalized vectors, using the Mahalanobis distance for posterior
estimation during segmentation. As an alternative to the linear tangent space
normalization, a non-linear intensity normalization was proposed in [117]. A
global non-linear transformation was applied to remove shift and skewness
from encountered intensity distributions to approximate normal distribution.

In [118], the use of a regional description based on direction and strength of
gradients was proposed. The previous intensity vector was replaced by a gradi-
ent vector where gradients had undergone a previous non-linear normalization.
Main motivation was that the use of a gradient-based representation is gener-
ally more robust against illumination changes. The approach was shown to be
beneficial only in the presence of changing illumination. In [119], the gradient
based description was extended by additional descriptors involving edge and
corner strength, which lead to improved results in the presented scenarios. It
was assumed that additional descriptors might be of further benefit.

In [120], a rich feature set known from texture analysis was proposed to de-
scribe the appearance of patches around landmark positions in 2D-SSM. For
the feature descriptor, histogram moments from various filter responses were
considered, produced by a multi-scale gradient filter bank. From the rich set
of features, a landmark-wise selection of optimal features was performed by
feature forward and backward selection. Search for suitable landmark posi-
tions was conducted through a meaningful separation of classified foreground
and background voxels by the employed surface model. In addition to the
automatic selection scheme, complexity of regional description was reduced to
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Figure 6: Region-based appearance modeling. The modeled objects
of interest are described by their global or local regional appearance. Infor-
mation on texture and on salient features of an object of interest is encoded
by global intensity and gradient profiles, and by use of multi-scale oriented
wavelet filter banks. A generative model of object appearance can be trained
to generate joint solutions of shape and appearance during model fitting in
unknown images (Active appearance model approach).

patches around the modeled surface landmarks. Additionally in [121], the use
of Cartesian Differential Invariants was proposed to reach rotational invari-
ance of the employed feature set. In [122], the use of a Gabor filter bank was
proposed for appearance modeling of the prostate in 3D ultrasound images.
To reduce complexity, 2D filters were applied in orthogonal view planes of
the volumetric data. Locally trained support vector machines were used for a
classification of foreground and background voxels to guide a 3D-SSM during
segmentation. In [123], the use of wavelet and wedgelet features was proposed
for global texture model adaptation.

To reduce complexity of the modeled object texture appearance, image re-
sampling has shown to be effective [117], [124], [125]. Other methods were pro-
posed to reduced complexity in comparison with texture sampling. In [126],
regional description by an object-wide intensity histogram was proposed in-
stead of a voxel-wise feature sampling. Quality of fit between appearances
from the segmented region and from the previously learned appearance was
calculated by the Lα distance of the histograms’ cumulative distribution func-
tions. In [127], an additional weighting of voxels was proposed depending on
their distance from the object boundary. In [128], appearance modeling was
reduced to texture patches around previously identified feature points.
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In [129], liver tissue appearance in CT images was modeled using 2D Haar-
like features - i.e. a large set of randomized box integral features - in addition
to a conventional profile-based boundary modeling. Learning from training
data was performed by a cascade of AdaBoost classifiers, and classifier out-
puts were later used in a level-set function for model-adaptation. In [130],
Haar-like features were proposed to describe regional appearance for prostate,
bladder and rectum in 3D CT. In addition, auto context classifiers were used
to increase robustness. That is, a cascade of classifiers is trained where each
classifier learns from the output of its predecessor in addition to training sam-
ples from image domain. Finally, a boundary regression was proposed using
3D-Haarlike features and random forests. The trained forests were used to es-
timate organ boundaries from image positions determined by the results of the
trained classifiers. A deformable surface model was then employed to perform
segmentation of the estimated organ boundaries.

Summarized, region-based appearance models have been shown to success-
fully incorporate information more globally, i.e. from larger object parts, in
contrast to the boundary-based approaches. Unlike other 3D-SSM approaches,
they allow a combined optimization of shape and appearance during segmen-
tation as done by the presented active appearance model approaches. Also
theoretically, these approaches are not necessarily subject to the problems of
boundary-based approaches where results depend from the visibility of linear
search scopes during segmentation. This is because active appearance mod-
els were basically designed to directly learn optimal displacements for later
segmentation using a regression approach. But this model adaptation scheme
is only applied by the presented active appearance models and not by other
region-based approaches.

In general, applications benefit the most from the region-based approaches if
confined objects with characteristic inner features are considered for segmenta-
tion. Consequently, an application of these approaches largely remains limited
to certain organ segmentation tasks [2], like prostate, left cardiac ventricle and
hippocampus segmentation in MRI and ultrasound data. In contrast, region-
based approaches are rather rarely encountered in the more general image
annotation tasks, i.e. apart from specialized use in certain clinical scenarios.

2.4.3 Landmark-based Modeling

In more recent approaches, an appearance modeling at distinct feature points
or landmarks was proposed, instead of an appearance modeling at boundaries
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Figure 7: Landmark-based appearance modeling. The modeled objects
of interest are described by the distinct appearance of their surface and salient
feature landmarks. Non-local information is gathered around the landmark
positions by means of flexible, highly randomized features. A regressor can
learn the spatial interrelation of appearance around the modeled landmarks
from these features.

or foreground and background regions. They involve features that produce a
unique response at separate landmark positions. This is in contrast to bound-
ary and region based features that do usually not disambiguate adjacent land-
mark positions, e.g. at boundary sections of similar appearance.

Often, large sets of randomly generated features are used to produce a local-
ized response at specific key points. A popular randomized feature descriptor
was introduced in [131], where the use of Haar-like features was proposed.
Feature response was generated by subtraction of two box integrals of random
size and position within a centered patch at a given image position. A high ex-
pressiveness of the resulting feature descriptor was reached thanks to the rich
sets of randomly generated features. Also, fast feature evaluation in constant
time was enabled by using precalculated integral images as a lookup table for
the calculated box integrals.

In [132], the high specificity of randomized 2D Haar-like features was shown
for description of facial landmarks. A highly localized feature response was pro-
duced at the examined facial landmark position, in contrast to the compared
profile- and Gabor-filter based descriptions. An Adaboost classifier was used
for automatic selection of meaningful features from the random feature set,
and for an estimation of posterior probability of the sought landmark position
during segmentation.
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Alternatively in [104], steerable filters were proposed for an appearance
modeling of facial landmarks and of hand-bone contour points in 2D. A method
called canonical correlation analysis (CCA) was used to model local landmark
appearance and to control model adaptation during segmentation.

In [133], [134] an appearance modeling based on 2D-Haarlike features was
proposed for the left ventricle in 2D ultrasound images. A learning technique
called image based boosting regression was employed to both predict an ini-
tial bounding box around the left ventricle (LV), and to predict LV shapes
that deliver plausible segmentation results. In [29], [135], 2D Haar-like fea-
tures were employed for a landmark-wise appearance modeling of the femur
in 2D radiographs. High segmentation accuracy could be achieved through a
landmark detection using random regression forests. In [136], an image driven
model adaptation scheme was proposed for the segmentation of bones in 2D
radiographs. There, global solutions could be provided for the detection of
multiple landmark positions through an optimization of a convex cost func-
tion. Also, feasibility was shown for test cases of bone segmentation in CT
volumes. However, no efficient and accurate solution could be presented for
3D domain at that time.

In [137], randomized 3D Haar-like features and a feature description based
on voxel-wise image intensities and gradients was proposed for kidney segmen-
tation in CT volumes. After a rough bounding box detection of the kidney us-
ing random regression forests, a refinement of bounding box position and a final
kidney delineation by a deformable ellipsoid was performed. In this approach,
3D Haar-like features were only involved during the rough pre-localization of
the kidneys.

In [138], the use of another random feature descriptor using random ferns
was proposed for the description of facial appearance in 2D images. A (fern)
is a set of random features that compare image intensities at pair-wise voxel
positions. Classification and regression tasks can then be learned and be per-
formed efficiently using a semi-naive version of Bayes’ theorem. Depending on
the chosen size for the ferns, conditional probabilities can efficiently be deter-
mined on the generated features. The method was used for an iterative shape
regression of facial shapes during segmentation. In contrast to forest-based
techniques, random ferns allow a parallel evaluation of all features at runtime,
which enables a particularly fast inference. On the other hand, the presented
technique relies on weak regressors, which makes measures like cascading nec-
essary in order to boost performance [139]. Also, efficiency and performance of
the random ferns depend on size and number of the ferns, while the expressive-
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ness of the ferns essentially relies on an extra selection of meaningful features
during training. Altogether, this gives rise to an additional optimization of
the training process, and measures for a meaningful selection of features for
the ferns have to be employed for the actual task at hand. Different selection
techniques have been proposed based on regression error minimization [140],
[141], or on a maximized correlation of the selected features with the regression
target in conjunction with a minimization of inter-feature correlation [138].

2.4.4 Summary

Propositions from the presented boundary-based, region-based and landmark-
based appearance modeling strategies have so far revealed some insights in the
strengths and weaknesses of the different types. In summary, boundary-based
appearance modeling is the most widespread type that is used for segmentation
in a large variety of use-case scenarios. Its focus on a boundary-based object
description fits most applications, and weaker basic assumptions are being
made in contrast to the region-based approaches. There, benefits are probably
limited to cases with pronounced presence of inner object details. Furthermore,
the simplicity of the modeling and search schemes for the boundary-based type
notably facilitates its direct applicability in new applications. Finally, the
availability of rich feature sets like the proposed Gabor filter banks has been
shown to be applicable even under difficult imaging conditions as encoutnered
e.g. in ultrasound segmentation.

However, there is a strong downside of the boundary-based modeling ap-
proaches regarding image segmentation, as detailed in Sect. 2.4.1. That is,
the spatial ambiguity of the used boundary descriptors and the corresponding
linear boundary search make the resulting 3D-SSM highly sensitive to chang-
ing conditions during segmentation. Changes of model pose that continuously
occur throughout the iterative segmentation process, and the choice of the
initial model placement prior to the segmentation greatly affect final results.
Consequently, the course of the segmentation is highly unpredictable, and un-
expected errors arise on a regular basis.

The presented landmark-based appearance modeling approaches do in the-
ory offer the means to cope with these well-known problems that are asso-
ciated with the most widespread type of appearance modeling in 3D-SSM.
Their focus on a description of object appearance in terms of distinguishable
landmarks provides the kind of spatial distinctiveness that is required for an
unambiguous and reproducible detection of different object parts during seg-
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mentation. However, previous work has so far focused on other, single aspects
of this relatively new type of appearance modeling. High accuracy for bone
segmentation, global optimization of landmark search in 2D domain, and 3D
soft tissue segmentation using 2D feature descriptors were shown. While the
proposed concepts were so far limited to 2D domain or bone segmentation,
most importantly, possible benefits regarding the aforementioned problems of
previous 3D-SSM have not yet been examined.

2.5 Image Segmentation with 3D-SSM

During segmentation, top-down information from the learned shape and ap-
pearance priors and bottom-up information from an evaluation of underlying
image features are combined in order to obtain meaningful results. To this
end, a surface model from the previously learned shape distribution is fitted to
the sought organ in the underlying image, while the learned appearance prior
is used to determine the posterior probability of found solutions with regard
to their appearance in the image.

Essentially, the model fitting procedure can be considered an optimization
problem where shape and appearance posteriors are to be maximized in order
to obtain an optimal solution of the segmentation problem. Different strategies
exist for this optimization, and according propositions have been made in the
literature.

Generally, optimization is performed in two steps: a model initialization and
a subsequent model fitting procedure. During the model initialization, an ap-
proximate solution is determined where pose and sometimes shape parameters
of the sought target organ are roughly identified prior to the actual segmenta-
tion. From this initial localization of the organ of interest, suitable boundary
conditions can be provided for the subsequent model fitting procedure.

The model fitting can then either be performed in an iterative optimization
scheme where an optimized fit of the employed surface model to the underlying
organ is obtained through stepwise evolution of pose and shape parameters.
Or, an instant solution can directly be derived from the initial model place-
ment. Methodically in contrast to the iterative model fitting, no update of
boundary conditions is performed during this approach.

In Sect. 2.5.1, the task of finding a suitable model initialization for the
subsequent segmentation will be outlined together with existing strategies in
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the literature. Sect. 2.5.2 will then further elaborate on the different challenges
and solutions for a robust and accurate model fitting.

2.5.1 Model Initialization

To provide a suitable model initialization for the subsequent model fitting
prior to segmentation, the actual organ of interest must first be localized in
the underlying images. Usually, the position of visible organs in these images
is unknown in advance, and significant anatomical variation and positional
changes from breathing motion or varying body posture can be encountered. In
addition, images often exhibit varying fields-of-view. Sometimes, pathologies
and previous treatments cause large changes of patient anatomy.

In addition to a mere localization of considered organs, the model initial-
ization step must also provide an accurate model placement for 3D-SSM to
increase the chances of success for the subsequent model fitting. As described
previously, 3D-SSM are in general highly sensitive against the choice of their
initial model placement, due to the ambiguity of the employed unidirectional
search during segmentation.

Often in selected scenarios, an organ detection is only required for one par-
ticular organ of interest. In these cases, a model initialization can be set
up with a focus on that organ. The resulting initialization methods rely on
common basic assumptions about the general organ position and size in the
images at hand, and about intensity distribution of the underlying imaging
modality. Typical examples are the works from [142]–[145], where techniques
like thresholding, morphological operators, voxel counting and connected com-
ponent analysis are employed.

In other works, the use of more generic methods for a detection in these
particular scenarios was proposed. The methods conduct an automatic search
for organ location that is less dependent from limiting basic assumptions. This
makes the resulting model initialization generally more robust, and allows an
application in other segmentation scenarios. In [110], the Generalized Hough
Transform [146] was proposed to conduct an exhaustive search for a suitable
model placement in the image volume.

Another example is the use of an evolutionary optimization algorithm to
determine a suitable model placement as proposed in [147]. Shape parameters
and rigid transformation parameters of a 3D-SSM were randomly altered and
then selected based on a fitness function that takes into account estimates from
a previously trained appearance model.
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Figure 8: Iterative model fitting via active appearance model search.
Pose, shape and appearance parameters are estimated via regression from sam-
pled residuals in the image. A joint generative model of shape and appearance
is fitted to the unknown image, in order to find a meaningful estimate for the
encountered object of interest.

Despite their higher robustness, an application of these methods is still lim-
ited to certain organs and use-cases. Also, these methods are computationally
expensive, often, they consume the same amount of time as the subsequent
segmentation. In this regard, the use of machine learning can be a better
solution. According methods have been shown to provide robust detection of
various organs in the use-cases they were trained on, and they are known to
be computationally fast. In [129], the classifier output that was also used for
appearance model training served as a basis for a detection of the liver in CT
volumes, by selecting the largest region in the thresholded classifier output
for the whole image. A cascade of boosted CART classifiers was used for this
purpose.

Instead of an entire scanning of the image by a trained classifier, the use
of a regressor was proposed in [133], [134] to perform a pose estimation of the
left ventricle in 2D ultrasound images. A number of regression estimates is
performed on different bounding boxes to determine position and size of the
shown ventricle. Multiple regression estimates from randomly altered bound-
ing boxes are averaged to obtain the final pose estimate of the ventricle.

Another regression-based approach for single organ detection was proposed
in [135]. Detection of the femur in 2D radiographs was performed by the
trained regressor, but instead of a bounding box detection, an initial position
of selected landmarks on the femur contour was estimated in the images.
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Although being fast and robust, an applicability of the above detection and
initialization approaches was limited to single organ detection in smaller 2D
images, and no solution was presented for larger image volumes where greater
variation of anatomical context and possible organ locations is more often
encountered.

Other propositions have addressed the task of a more general detection
of multiple organs in larger image volumes. In [148], [149], Marginal Space
Learning (MSL) was proposed where probabilistic boosting tree classifiers were
employed for bounding box detection in CT volumes. To reduce the compu-
tational cost for a repeated scanning of the entire image volume using several
trained classifiers, a limited search in the marginal spaces of the cascaded
classifier outputs was proposed. The approach was later also adopted for a
prediction of organ shape in addition to the bounding box location.

In [150], for the same task, an organ classification approach was proposed
using a faster and more accurate version of decision forest (Entangled Decision
Forests) which takes contextual information into account during training and
application. The approach was even faster than MSL, but unlike MSL, it did
not involve shape prior to add robustness against labeling noise. Similarly
to the single-organ case, the use of regressors was proposed in [151]–[153], to
profit from reduced scanning effort and from improved accuracy for detection
of multiple anatomical structures in the larger image volumes.

In [154], the use of additional information on organ shape and location
interrelation in a probabilistic atlas was proposed to improve detection and
segmentation. An overall improvement of performance could be achieved with
this approach, and in addition, the segmentation of heterogeneous images was
supported thanks to the incorporation of higher-level information. Robust
and accurate placement for the employed statistical shape models could be
provided using the proposed contextual information. However, no conclusive
results could be produced by the employed 3D-SSM, and a graph-cut method
had to be applied in order to retrieve an accurate segmentation.

Summarized, various propositions have been made for organ detection and
model initialization at single or multiple organs of interest. For isolated clinical
applications, specific solutions are often preferred that are based on techniques
from basic image processing, due to their high availability. However, high-level
methods have also been proposed for that purpose, based on robust classifier
and regressor approaches. For multi-organ segmentation tasks, such high-level
solutions are obviously the only possible choice. The proposed classification-
and regression-based strategies have proved to be particularly fast. The use
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Figure 9: Iterative model fitting via profile-based search. Pose and
shape parameters are estimated from landmark-wise displacements as provided
by the linear search. A discriminative model of boundary- or region-based
appearance provides plausible displacements within the linear search scopes.

of combined classification and regression approaches and of contextual infor-
mation from shape and location interrelation have been shown to produce a
robust and accurate organ detection. However, it has not yet been possible
to provide a model initialization that could serve as a basis for an error-free
subsequent application of 3D-SSM. In this regard, better insight can be gained
from an understanding of the nature of the model fitting and its interplay with
the previous initialization of 3D-SSM.

2.5.2 Model Fitting

From an initial placement of the surface model, the final adaptation to the
organ of interest is carried out during model fitting. The basic task is to
determine an optimal model placement that maximizes the learned posterior
probability regarding shape and appearance of the modeled organ of interest.
Essentially, this optimization can be conducted in different target domains.

One way is to optimize model parameters directly as it was proposed for
active appearance models in [115], [116]. There, a regressor is trained to predict
adjustments to shape and appearance parameters in order to minimize the
residual prediction error. Automatically in such an approach, shape constraints
are always imposed throughout the model fitting process. However, this also
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means that an introduction of additional freedom from the learned shape prior
is not immediately possible.

Another strategy is to optimize model parameters indirectly based on a
previous detection of suitable landmark positions on the sought organ surface.
This optimization scheme corresponds to the original formulation of statisti-
cal shape models in [3], and has since then remained the most widespread
optimization strategy for shape model fitting (cf. [155] for an comprehensive
overview of applications).

Here, a meaningful shape constraint is imposed after a separate landmark
detection step by choosing parameters that minimize the residuals to the found
landmark candidates. Since this optimization scheme is based on a separate de-
tection of landmark positions, it is not solely bound to an adjustment of model
parameters and additional techniques can be introduced that allow an extra
deformation of the surface model to increase freedom of the model adapta-
tion process. This often becomes necessary if the encountered shape variation
exceeds the variability learned from limited training data.

Additionally, the use of landmark-wise detectors opens the possibility of
treating landmarks differently during the model fitting across the modeled
surface e.g. based on reliability and confidence of the detector. Also, an
intuitive qualitative inspection of results is easily possible in this approach.

On the downside, a separate detection during the model fitting is also ac-
companied with a number of challenges. On the one hand, a time-efficient
search strategy is required. The standard procedure for this is a linear search
perpendicular to the model surface, which can lead to the problem of miss-
ing landmark positions at surface parts that are not covered during the linear
search. As a result, the outcome of the model fitting becomes dependent from
the quality of the previous model initialization.

Consequently, the need for highly accurate and complex initialization meth-
ods arises. A possibility to compensate for this problem is to actively steer
the model fitting process as in [144]. There, modeled surface parts are treated
differently using a rule-based system. It could be shown that the sensitivity
against model initialization can be greatly reduced this way. However, this pro-
cedure is accompanied by a large number of free parameters and by significant
fine tuning, which hampers the general applicability of this approach.

As an alternative to the limited profile-based search, another detection strat-
egy was proposed for 2D bone segmentation using a landmark detection based
on a trained regressor [29], [135]. Apart from the high accuracy that was
achieved for the bone segmentation, the possible benefits regarding the visi-
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bility problem and the dependency from previous model initialization remain
unclear. However in [136], it was furthermore demonstrated that a globally
optimal solution could be derived for 2D bone segmentation based on the for-
mulation of the detection problem as a convex optimization task.

Another problem with approaches that rely on landmark detectors is that
they do not necessarily guarantee well-defined landmark displacements during
the model update process, and a global selection of landmark positions can
be required that is meaningful across larger parts of the surface model. Also,
consistency has to be preserved across the surface model if additional freedom
from shape constraints is allowed during the model fitting.

To this end, additional measures were proposed in the literature. For exam-
ple in [147], an additional free shift of landmarks perpendicular to the model
surface was employed through a shape-constrained deformable model. There,
a surface-wide regularization of the linear displacements could be imposed
through a graph cut based optimization. In [156], the freedom of the shape-
constrained model deformation was further extended by the introduction of
omnidirectional landmark shifts. For regularization, a Markov Random Field
optimization was proposed using a fast primal dual solver. Despite the use of
an extra regularization, the appearance of surface inconsistencies during the
free model fitting could not always be guaranteed.

A third possible optimization strategy during the model fitting is to directly
optimize on the landmark positions themselves without taking shape param-
eters into account (shape regression). To this end, a regressor is trained that
predicts shapes from varying model positions around the assumed organ of
interest. This means that landmark displacements are learned surface-wide
between the shifted positions and the target surface. Therefore, the predicted
landmark shifts during segmentation are assumed to be well-defined as long as
inconsistencies do not enter the model fitting process at any point. Further-
more, joint shape predictions have shown to be computationally efficient e.g.
by using fast parallel predictors like random ferns [138], [139].

Instead of varied model positions around the sought organ, a regressor can
also be trained from a variety of image patches that contain the considered
organ of interest as proposed in [133], [134]. In any case, landmark predictions
are made globally on a per shape basis, which means that no immediate influ-
ence is possible on selected landmarks. Also since predictions are exclusively
determined by the overall outcome of the regressor, detection results cannot be
interpreted as intuitively as through separate landmark detectors, and cannot
be directly counteracted on a per-landmark basis.
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Figure 10: Visibility problem for boundary-based appearance mod-
els. From an unfavorable model pose, the typical unidirectional search often
fails to provide valid landmark positions during model fitting. An ambigu-
ous boundary appearance allows landmark shifts on the target surface, and
landmarks end up in false positions, producing locally optimal solutions.

2.5.3 Visibility, Capture Range and Local Optimization

Regarding the optimization process that 3D-SSM carry out during segmen-
tation, certain basic limitations arise that have a strong repercussion on per-
formance and applicability of 3D-SSM in general. Depending on the chosen
model initialization, 3D-SSM are highly prone to be stuck in local optima at
some point of the subsequent segmentation. The dependency of results from
the previous initialization has been reported regardless of the underlying model
adaptation strategies, i.e. for separate detection of landmark positions and for
regression-based pose and shape estimates.

Since initial conditions have an irreversible effect on the outcome of the
subsequent search, it often means that errors have already taken place prior
to the segmentation process. These sources of error are hard to anticipate and
to reconstruct from the highly unpredictable course of the subsequent model
fitting. Altogether, increased uncertainty and a constant source of segmen-
tation error is caused by the described interplay between model initialization
and subsequent model fitting.

Approaches for a general segmentation of various organs strongly build on
the performance of the first model initialization step [148], [149], [154], whereas
the typical limited search is performed during the subsequent model fitting.
With an increasing sophistication of the employed techniques, a notable degree
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Figure 11: Capture range problem for statistical shape models. Due
to the limited range of the trained landmark search, model parts are no longer
attracted to the sought organ of interest, if they move out of range at some
point during model fitting.

of algorithmic complexity and an accumulation of basic assumptions can often
be observed. Both generally limit the direct applicability of the proposed
systems to different segmentation tasks. Another way to tackle the problem
can be to additionally constrain displacement at different surface parts, as
demonstrated in [144]. There it was shown for liver segmentation that the
influence from model initialization could greatly be reduced, by introducing
a rule-based system where different surface parts are governed by a set of
control parameters. However, this fine-tuning of the model fitting through a
large set of free parameters must be repeated for new use-cases, which makes
an adaptation of such approaches to other scenarios difficult.

The original model fitting scheme for 3D-SSM which conducts search for
suitable landmark positions during segmentation, allows a more intuitive un-
derstanding of the problem that different local optima are being found under
changing conditions. One likely reason for this problem is the ambiguity of
the search that produces changing results depending on the intersections of
the linear search profiles with the actual object boundary.

This problem usually occurs in conjunction with a boundary-based appear-
ance modeling (cf. Sect. 2.4.1) and has coined the term visibility problem for
3D-SSM. In [156], this problem was identified as a reason for high-curvature
surface parts that are regularly missed during segmentation, due to lacking
visibility of landmark positions at these object parts during the typical unidi-
rectional search of 3D-SSM.
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Figure 12: Model initialization problem for statistical shape models.
The outcome of the model fitting is often highly unpredictable, and model
initialization is a regular source of error. Optimization is difficult, since the
sufficiency of the initialization always remains unclear. An unfavorable model
initialization is usually hard to compensate in the subsequent model fitting.

As reasoned earlier (cf. Sect. 2.4.4), recent appearance modeling approaches
that build on a landmark-based object description can offer the means of a sep-
arate and unambiguous detection of different object parts during segmentation.
Previous work has shown high spatial distinctiveness [132] and high accuracy
[29], [135] of landmark-based appearance modeling in 2D applications. Fur-
thermore, the use of trained regressors for 3D tasks has shown promise for
a successful incorporation of non-local image information [130], [151]–[153],
which should also be applicable for segmentation strategies using 3D-SSM.

Together, these techniques should provide the means of a model fitting
scheme that is based on a robust and omni-directional search for distinct land-
mark positions. With this, it should be possible to tackle the aforementioned
visibility problem of 3D-SSM, and thus to lift the previous influence from
model initialization and to improve performance and applicability of 3D-SSM
through a more global search for optimal solutions during segmentation.

2.5.4 Summary

Various approaches have been proposed for an image segmentation using 3D-
SSM. They follow the different basic strategies for a model fitting of 3D-SSM
to unknown image data, i.e. iterative search for landmark positions, direct
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estimation of pose and shape parameters, or global estimation of surface-wide
landmark displacements.

Traditionally, an iterative search for landmark positions has been in use with
boundary-based appearance modeling types, while pose and shape parame-
ter estimation is typically associated with a region-based object description,
specifically with active appearance model approaches.

Recently, with the upcoming use of landmark-based object descriptors, both
iterative search for landmark positions and global estimation of landmark dis-
placements have been proposed for a model fitting based on that appearance
modeling type. These approaches have mostly been applied to 2D segmenta-
tion tasks, where spatial distinctiveness of object description and high accuracy
have been demonstrated.

An accurate model initialization at the organ of interest is required for 3D-
SSM to conduct a subsequent error-free segmentation. As a reason for the
well-known sensitivity of 3D-SSM from the previous model initialization, the
visibility problem can be identified, where segmentation results are depen-
dent from changing views of linear search scopes on landmark positions during
model fitting.

In addition to solutions for single use-case scenarios by means of low-level
image processing and specific basic assumptions, more general high-level meth-
ods have been developed that aim at a robust and accurate model initialization
for a segmentation with 3D-SSM. Nevertheless, the simplicity of the subse-
quent model fitting of the employed 3D-SSM has shown to be limiting for
overall accuracy, which makes correctional measures necessary. Altogether,
the high sophistication and complexity of the proposed methods leads to a
worse adaptability to other use-cases than the presented scenarios.

The use of a landmark-based object description during segmentation has
the particular advantage that it allows an unambiguous detection of distinct
landmark positions during segmentation. This should provide the means to di-
rectly target the visibility problem of 3D-SSM, where segmentation results are
dependent from changing views of linear search scopes on landmark positions
during model fitting.

Thus, it should be possible to reduce the strong influence from the previous
model initialization on segmentation from 3D-SSM, which has always strongly
affected the overall performance and applicability of 3D-SSM (cf. Sect. 2.5.3).
Despite the importance of these basic problems for 3D-SSM in general and
despite their far-reaching implications, benefits and possibilities of the new
techniques have never been examined with a focus on these problems before.
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2.6 Conclusions
A large number of strategies, approaches and techniques have been proposed
that cover the core aspects of 3D-SSM, i.e. surface representation, shape and
appearance prior modeling, model initialization and model fitting. They pro-
vide the means for an application of 3D-SSM in general segmentation scenarios
and in more specific use-cases.

However, important and fundamental problems of 3D-SSM have so far re-
mained unsolved - i.e. the visibility problem, sensitivity against previous model
initialization and susceptibility to local optima during segmentation. They
have far-reaching consequences for the general performance and applicability
of 3D-SSM. The aforementioned problems have not yet been addressed on a
conceptual level by previous work. Instead, compensatory measures have been
proposed in the literature which add complexity and hamper an application of
3D-SSM to different use cases.

The more recent concepts of landmark-based object description and incorpo-
ration of more robust machine learning techniques during segmentation using
3D-SSM should offer the means for a more direct approach to the aforemen-
tioned issues. These techniques have already been shown to provide beneficial
traits like high accuracy and direct disambiguation of separate object parts.
While applied mostly for 2D applications and for more specific use-cases like
bone and ventricle segmentation, these techniques have not been involved with
a focus on the more basic problems of 3D-SSM and of their application in gen-
eral segmentation tasks.

The developments in this thesis will specifically target these topics. The in-
tended extensions to 3D-SSM will build on the presented recent techniques for
an appearance modeling using landmark-based object description, for a global
use of image information, and for an incorporation of robust machine learning
for detection tasks during segmentation. The goal of these means will be to di-
rectly address the visibility and initialization problem of 3D-SSM, thus making
3D-SSM more robust against influence from the previous model initialization,
and enabling a more global search for optimal solutions during segmentation.
These additions to 3D-SSM are intended to be applicable to general purpose
segmentation tasks, thus adding to the aforementioned methods that have al-
ready shown other benefits of machine-learning based landmark detection for
selected 2D segmentation scenarios.

Surface representation and shape prior modeling techniques will be adopted
for the developments in this thesis, that allow an incorporation of the afore-
mentioned techniques on a per-landmark basis. They will be chosen to allow
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a profound shape prior modeling that also supports a straightforward appli-
cation of the proposed techniques to most common organ segmentation tasks.
The strong focus on a development of landmark-based techniques will also
allow an incorporation of other shape modeling techniques, which work on a
per-landmark basis and which are suitable for an application of the proposed
techniques in more peculiar use-cases.
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Shape Model Construction

As described in Sect. 2.2 and Sect. 2.3, different strategies exist for the geo-
metrical representation of organ surfaces and for the training of a shape prior
model that generates meaningful surface models during segmentation. The
originally proposed explicit surface modeling [3] based on distinct landmarks
and mesh triangulations has remained highly popular ever since, and it is also
well suited for the proposed enhancements of this thesis.

Apart from its convenient and efficient data representation, this model-
ing type also allows a fine-grain division of appearance model training and of
landmark detection during segmentation. This means that organ appearance
can be learned in parallel on a per-landmark basis, thus promoting distributed
computation. Also prospectively, segmentation confidence can be assessed sep-
arately at distinct landmark positions, and training effort can be focused on
particularly demanding landmarks. In parts during segmentation, detection
can be narrowed down to fewer landmarks, in order to achieve faster com-
putation. The representation also allows convenient inspection, analysis and
understanding of segmentation performance at separate landmark positions.
Finally, it promotes compatibility of the proposed enhancements with a vast
number of propositions made for this most widespread type of model repre-
sentation.

For the statistical modeling of shape distribution from a set of training
meshes, different approaches yield varying degrees of descriptive power, as de-
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scribed in Sect. 2.3. Some methods promise to be of particular use for specific
problems and for peculiar anatomical structures, like highly deformable and
eccentric shapes, tubular organs, coupled multi-part structures, and severe,
shape-altering pathologies. In the more general organ segmentation scope,
many approaches rely on a point distribution model (PDM) that is based on
a linear shape modeling via principal component analysis (PCA). Despite its
strong basic assumption of a linear distribution of shapes, this PDM has been
part of solutions where an excellent segmentation accuracy was achieved for
deformable soft tissue organs like the liver [110]. Altogether, this qualifies for
the projected extensions of 3D-SSM. Since shape modeling, appearance model-
ing and model fitting are well separated concepts in the original formulation of
3D-SSM, independent propositions can be made in this thesis for a non-local
appearance modeling and a more proficient model fitting. These can easily
be combined with other shape modeling techniques in the future in order to
address more particular problems.

A number of procedural steps are necessary to retrieve a shape prior model
from a set of annotated training images. The latter usually contain manual
segmentations of specific target organs that are represented by a labeling of
object and background voxels. Starting from the object labelings, the fol-
lowing operations are subsequently performed during shape model creation:
generation and refinement of surface meshes from the object voxels, optimal
placement of an equal number of corresponding landmarks across the surface
meshes (correspondence optimization), and statistical analysis of shape vari-
ation from the corresponding surfaces. These steps will be outlined in the
following.

3.1 Surface Mesh Generation
In this first step towards the desired shape prior model, a transition has to be
made from the voxel-based representation of the input segmentations to the
chosen triangle mesh representation that is used in all following steps (cf. Sect.
2.2.1 and 2.6). The latter raise a number of requirements for the mathematical
topology and for the mesh quality of the resulting surfaces, particularly as a
prerequisite for the subsequent correspondence optimization step. The meshes
must be of genus zero to allow a projection to the unity sphere (spherical
parameterization), where the placement of an equal number of corresponding
surface landmarks on all projected training meshes is particularly convenient
(cf. Sect. 2.3.2.3). Consequently, the meshes have to be cleaned from detached
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surface parts and from any openings that alter mesh topology. Furthermore,
the surface models must be free from unwanted discretization artifacts imposed
by the original voxel structure of the input segmentations.

The required processing of binary data and its transformation to the surface
meshes is common knowledge and largely builds on the use of basic processing
tools. The encountered basic problems and common solutions will shortly be
outlined in the following. Further detail can e.g. be found in [157].

Generally, it can be easier to first ensure the aforementioned requirements
on the initial binary segmentations, and then to generate the surface meshes
afterwards. Otherwise, particular measures have to be taken for the initially
generated meshes, e.g. size-preserving smoothing, removal of erroneous and
isolated mesh parts and the like. On the input segmentations, inconsisten-
cies are removed that are usually added during manual segmentation, like
isolated regions outside the organ of interest, holes or missing parts on single
slices of the segmented volume. The removal of these flaws can be achieved
using connected component analysis and local median filtering. For some or-
gans, a morphological closing is recommendable for cut-out tubular structures
like blood vessels that cross the segmentation volume. Finally, an eccentric
anisotropic spacing is often encountered at larger slice distances, which leads
to an adoption of characteristic staircase effects by the created surfaces meshes.
One effective remedy for this unwanted phenomenon is a Gaussian smoothing
of the binary segmentation.

After this kind of basic preprocessing, the segmentations are suited for an
extraction of the desired surface meshes. The usual way to do this is the
construction of an iso-surface at the mid value of the Gaussian-smoothed seg-
mentations, using the marching cubes algorithm for instance [158]. Finally, the
landmark count of the resulting triangle meshes is reduced, for which various
remeshing algorithms are available [159], [160].

3.2 Correspondence Optimization
In the process of the chosen statistical shape prior modeling, the given training
meshes are considered to be part of a normal distribution of a set of multivari-
ate random variables. In order for these training meshes to be embedded in a
common random vector space, an equal number of corresponding surface land-
marks has to be placed on all training shapes in a consistent and meaningful
manner.

The way in which these corresponding landmarks are placed on the dis-
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tinct training meshes has a significant impact on the descriptive quality of the
resulting shape prior model. As outlined in Sect. 2.3, different approaches
exist that aim at a beneficial placement of corresponding surface landmarks
(Correspondence Optimization).

For the given purpose, an automatic and particularly time efficient method
from [78] is employed. To attain a high quality of landmark correspondences,
the method aims at an optimization of the minimum description length (MDL)
of the produced shape prior model. Thus, the optimization process itself fo-
cuses on a high compactness and descriptive accuracy of the resulting shape
model. The method is well suited for the task of image segmentation, where
a high degree of specificity and generalizability of the employed shape prior
model is desired in order to provide a robust shape constraint during model
fitting. Furthermore, the optimization of the MDL cost function is conducted
in a gradient descent approach which grants a high computational efficiency
of the whole process.

Altogether, this makes an automatic, accurate and highly efficient solution
for this crucial step of automatic shape model creation. However, the benefits
come at the expense of a reduced topological flexibility of the modeled surface
shapes. The reason for this is that a spherical parameterization of training
meshes is involved in the process, where surfaces are mapped to the unity
sphere for a convenient placement of reference landmarks on all shapes. In
order for this mapping to succeed, the meshes must be of a genus zero topology,
which prohibits holes and tunnelings in the modeled organ surface.

For the general task of a multi-organ segmentation in medical images, soft
tissue structures and bones of abdomen, thorax, pelvic area, head-neck region
and of the extremities are of major interest. The majority of these structures
of interest can directly be modeled by genus zero surfaces, e.g. liver, spleen,
kidneys, stomach, pancreas, prostate, bladder, lungs, heart, the thyroid glands,
the brain and its subparts, ribs, and all major bones of the extremities. The
same applies for the spines where the enclosed spinal cord can be included
in the modeled volume and additionally be separated after segmentation if
necessary. The hip bone contains several openings and can accordingly not
be represented by a genus zero mesh. Tubular structures like the aorta and
the rectum can in theory be modeled by a closed surface if upper and lower
boundaries are delimited properly. However, a more meaningful modeling has
reportedly been achieved for a separate representation of center line and di-
ameter. Due to the highly displaceable nature of the intestines, these are best
being treated as a greater region of interest that can again easily be modeled
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and segmented by a closed surface. This also applies for other more general
anatomical regions of interest, like the torso, the thoracic and abdominal re-
gions, and the head.

For the aforementioned structures that cannot be covered by a genus zero
surface, various alternatives exist that can be employed for a modeling of these
particular cases [2], [161].

3.3 Statistical Shape Analysis
As motivated at the beginning of this chapter, a statistical shape modeling is
applied based on the principal component analysis. However, the presented
techniques in this thesis were developed independently from the underlying
shape prior modeling, and they will also be compatible with other landmark-
based shape modeling techniques that were proposed for various purposes in
the literature (cf. Sect. 2.3 and 2.6).

The PCA assumes that the training meshes be samples of a normal dis-
tribution that hypothetically describe the variety of encountered shapes for
a given organ of interest. From this, a generative shape model (Point Dis-
tribution Model) is constructed that allows the arbitrary creation of surfaces
in agreement with the previously learned shape distribution. The PDM was
first introduced in [162] for use as a robust shape constraint in image segmen-
tation. The underlying basic principles and their actual application during
segmentation will shortly be outlined in the following.

At first, after the previous landmark correspondence optimization, all train-
ing shapes are represented by an equal number of meaningful surface landmarks
xj. Each of the k training shapes ~Xi is then regarded as a random vector of
surface landmark coordinates xj1,xj2,xj3 (cf. Sect. 2.3.3):

~Xi = (x11,x12,x13, · · · ,xn1,xn2,xn3) ∈ R3n, i = 1, · · · , k

Shape is generally considered to be the difference in geometry that remains
after a removal of translation, rotation, scaling and sheering from distinct sur-
faces. Therefore, all training shapes have to be aligned by an affine transfor-
mation before the actual shape information can be retrieved from the residuals
of the aligned meshes. To this end, a procrustes analysis is usually applied [28],
which delivers a closed-form solution for the alignment of all shapes through
affine transformation. For a normalization of scale, the aligned shapes are pro-
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jected to the tangent space of the normalized mean shape where the averaging
property of the latter is preserved (cf. Sect. 2.3.1).

The aligned training samples now reflect the assumed normal distribution
of shapes that is described by the covariance matrix S of the k training meshes
~Xi:

S = 1
k − 1

k∑
i=1

( ~Xi − X̄)( ~Xi − X̄)T

with regard to their mean shape

X̄ = 1
k

k∑
i=1

~Xi

As motivated in [162], the high dimensionality of the shape space (R3n, n
in a magnitude of > 1000) and the correlation of the landmark variables xik
prohibit an efficient and convenient generation of new shapes Xj from the
learned distribution. Therefore, a dimensionality reduction is carried out by
the principal componenent analysis (PCA), where the given shape distribu-
tion is explained by the fewer eigenvectors (eigenmodes) of covariance matrix
S instead of the full set of random landmark variables xik. The eigenvec-
tors Φ1, · · · , Φk−1 (k � 3n in general) of S provide a compact description of
the principal modes of shape variation across the observed training samples.
Thus, they define a new set of uncorrelated random variables α1, · · · ,αk−1
(shape parameters) which necessarily describe the given shape distribution,
with variances σ2

1, · · · ,σ2
k−1 equaling the respective eigenvalues λ1, · · · ,λk−1.

For an increasing sample size k, it is the accumulated variance from the expect-
edly declining eigenvalues that defines an upper bound for model complexity.
Therefore, it is sufficient to rely on the largest c eigenvalues that cover the
majority (usually between 95% and 98%) of the total variance from all k − 1
eigenvalues (after ordering the λi):

c∑
i=1

λi ≥ r ·
k−1∑
i=1

, λ1 ≥ · · · ≥ λk−1,

c < k, r ∈ [∼ 0.95,∼ 0.98]

Instead of an eigen-analysis of the covariance matrix, a singular value decom-
position (SVD) of the mean-free shape matrix ( ~X1 − X̄ · · · ~Xk − X̄) is usually
employed for higher numerical stability.
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This directly leads to the generative model of shapes, where arbitrary sur-
faces ~Xj from the learned distribution can be formed by a linear combination
of the eigenmodes Φi, with chosen weights for the random shape parameters
αi:

~Xj = X̄ +
k−1∑
i=1

αiΦi ≈ X̄ +
c∑
i=1

αiΦi

During shape creation, the variances σ2
i of the shape parameters αi can be

taken into account, e.g. separately by a parameter-wise limitation:

−3
√
λi ≤ αi ≤ +3

√
λi

Or by a global, hyper-ellipsoidal constraint:
c∑
i=1

α2
i

λi
≤ t

Each shape from the learned distribution is uniquely identified by its shape
parameters, hereafter summarized by the joint shape vector ~b = (α1, · · · ,αc)T .
To be available during image segmentation, any shape has to be mapped from
shape space to the image domain by an affine transformation T. With P =
(φ1 · · ·φc), each surface ~Xj in image domain is then defined by its ~b and T :

~Xj = T (X̄ +
c∑
i=1

αiφi) = T (X̄ + P~b)

For the image segmentation, surface shapes are iteratively generated to best
fit the sought target organ (model fitting). At each iteration t, a search for new
landmark positions from the current surface ~Xt is conducted, thus delivering
a hypothetically optimal set of landmark displacements ~dX. The newly found
landmark positions ~Xt + ~dX are then approximated by an update of shape
parameters ~b+ ~db and of the affine transform Tt+1:

~Xt+1 = ~Xt + ~dX ≈ Tt+1(X̄ + P (~b+ ~db))

First, the new mapping Tt+1 is determined by a procrustes matching of the
current surface ~Xt and the updated landmark positions ~Xt + ~dX. Then, the
shape vector is updated by ~b+ ~db to fit the residual between the new mapping
of the former shape Tt+1( ~Xt) and the landmark positions ~Xt + ~dX. Using the
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orthogonality of P, ~dx ≈ P · ~db and ~dx = ~Xt + ~dX − Tt+1( ~Xt), this leads to a
solution for the updated shape parameters:

~db = P T ( ~Xt + ~dX − Tt+1( ~Xt))

Thus, the model fitting yields an iterative optimization process of T and ~b in
order to maximize the shape posterior p( ~X|I) in image I.
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Landmark-based Context Appearance Modeling

As described in Sect. 2.5, 3D-SSM exhibit a number of intrinsic basic limi-
tations that generally hamper their application and that notably increase the
effort necessary to reach high accuracy in various applications. As a hypothesis,
these problems go back to the nature of the underlying appearance modeling,
and to the characteristics of landmark search and model fitting. Combined,
these intertwined concepts lead to the well-known and often observed problems
regarding applicability and performance of 3D-SSM, and they cause greater
implications for 3D-SSM and for their use in medical image segmentation.

In the following, a statement of the problem will be presented based on the
limitations detailed in Sect. 2.5.3, and the choice of another type of appearance
modeling, landmark search and model fitting scheme will be motivated, in
order to directly address the aforementioned problems.

4.1 Problem Statement and Approach
Three general problems are found in 3D-SSM during their application in image
segmentation tasks (also cf. Fig. 10 - 12 in Sect. 4):

1. Their solution during segmentation strongly depends on the choice of the
previous model initialization, which serves as a starting condition for the
subsequent model fitting. (Model Initialization Problem)
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2. During the iterative model fitting, parts of the surface model can move
out of detection range regarding meaningful landmark positions on the
target surface. As a result, attraction of the surface model to the organ
of interest fails, which leads to segmentation errors. (Capture Range
Problem)

3. The visibility of meaningful landmark positions depends on the current
model pose during the iterative model fitting process. In conjunction
with the limited capture range of 3D-SSM, this means that search for
meaningful solutions of the segmentation problem is strongly limited
to locally optimal solutions. As a result, lack of visibility at parts of
the target surface cause 3D-SSM to get stuck at suboptimal solutions.
(Visibility Problem)

The first problem, dependence from model initialization, can be regarded
as a result of the other problems. The visibility problem makes the final seg-
mentation outcome dependent from the initial model placement relative to the
sought organ of interest. That is, throughout the iterative model fitting, visi-
bility of landmark positions changes continuously, and is altogether dependent
from the initial visibility of positions at the actual model initialization. Fur-
thermore, the limited capture range promotes the occurrence of segmentation
errors from suboptimal model initialization, if surface model parts are at more
remote positions at the beginning of the model fitting. And finally, the limited
capture range gives rise to the requirement of model placement in the vicinity
of the target surface altogether.

Regarding appearance modeling and model fitting, the following traits can
be identified that are expected to cause visibility and capture problems of
3D-SSM. First, typical boundary-based approaches only provide an ambigu-
ous feature description that is suited for an identification of larger boundary
sections during segmentation (cf. Fig. 5). The resulting ambiguity is a pre-
requisite for the visibility problem.

Second, boundary- and region-based approaches generally only incorporate
local information for a description of object or surface parts, which gives rise
to the capture range problem, where meaningful information is only available
within limited range of the modeled objects.

And finally, the resulting search strategies based on unidirectional linear
profiles and on residual sampling for Active Appearance Model fitting translate
the aforementioned limitations to the model fitting process. Their sampling
range is limited to the vicinity of the surface model during segmentation, and
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in case of the profile-based search, visibility of landmark positions is directly
limited to the one-dimensional scope. Also, visibility and model initialization
problems have been reported for Active Appearance Models (e.g. [163]).

Therefore, based on the recent previous advances in landmark-based appear-
ance modeling techniques (cf. Sect. 2.4.3), the proposed appearance modeling
and model fitting approach will be aimed at the following characteristics as a
direct response to the aforementioned conceptual limitations:

1. A non-local appearance modeling that incorporates global information
from widely distributed viewpoints in the image domain.

2. An unambiguous modeling of object appearance, based on a separate
description of distinct surface landmarks on the model surface.

3. An omni-directional and locally unconstrained search for distinct land-
mark positions on the sought organ surface.

The expectation of the chosen approach is that it should allow a detection of
landmark positions regardless of model pose and from larger distances during
segmentation. As a result, 3D-SSM should be enabled to find solutions during
segmentation more reproducibly, the should be attracted to the sought target
surface from larger distances, and they should generally produce solutions that
are closer to the global optimum of the segmentation problem.

The employed concepts of a non-local appearance modeling and of a feature
description required to disambiguate object landmarks from their non-local
context will be described in the remainder of this chapter. The use of the
learned landmark-based appearance model for an omni-directional landmark
detection will be detailed in chapter Sect. 5.

4.2 Non-local Landmark Appearance Model
In contrast to the local boundary or regional appearance modeling of previ-
ous 3D-SSM as described in Sect. 2.4.4 (local appearance modeling), a non-
local appearance modeling of object landmarks will build the foundation for
an omni-directional landmark detection of the proposed 3D-SSM during seg-
mentation. Information will be captured at widespread locations around the
modeled surface landmarks, instead of a limitation to image information near
or inside the modeled surface.
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Main task of the non-local appearance model training is an automatic selec-
tion of features to accurately describe the appearance of the considered surface
landmarks. While for the boundary- and region-based appearance modeling
approaches, feature descriptors were employed that reflect local object charac-
teristics well, the use of a feature descriptor for non-local modeling is required
to provide a different kind of expressiveness and flexibility to capture dis-
tributed image information. As described in Sect. 2.4.3, randomized features
are well suited for this task. Their use for the proposed appearance modeling
in 3D-SSM will be detailed in Sect. 4.3.

Also, accuracy and robustness must be provided for the trained landmark
detectors during segmentation, and the proposed appearance modeling must
also generalize to differing use-cases. Enabling robust and accurate inference
during model training is expected to be achieved by means of a suitable ma-
chine learning, which will be described in Sect. 4.4.

Finally, distributed non-local modeling of object appearance and the subse-
quent inference of sought positions in unknown image data can be performed
either using a classification-based approach, or a regression-based approach.
The difference between the two concepts will be detailed in the following.

4.2.1 Classification-based Modeling
The majority of statistical shape model based approaches is based on a formu-
lation of appearance modeling and of object detection as a classification task
(cf. Sect. 2.4). Voxel affinity to objects or boundaries is provided from an-
notated images by means of positive and negative training samples. Samples
are used to train a classifier which performs a discriminative task of object /
boundary voxels and background voxels during segmentation.

Such an approach can also be used for a non-local modeling and detection
of landmarks in image data [164]. The image space is then scanned in a voxel-
wise manner in order to classify foreground and background voxels during
segmentation. One general disadvantage of these approaches is the exhaustive
nature of the search due to the repetitive scanning of larger image areas.

Another problem of these approaches is the presence of labeling noise that is
regularly observed for purely classification-based approaches. Labeling noise is
usually caused by false positive classification, and a regularization is required
to allow robust and accurate inference of sought landmark positions, e.g. by
means of graphical models [164]. This would however not hamper use in 3D-
SSM, since they already impose regularization based on their intrinsic shape
constraint.
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Also, classification based approaches are largely based on information from
negative non-object samples, which are available in abundance from underlying
training images. By contrast, only little information on positive samples is
provided for a modeling of single landmarks or object boundaries. However, in
order to limit the sparsity of positive samples as opposed to the large number
of negatives, a cut-off decision has to be made at some point in order to limit
the number of negative samples. Alternatively, clustering techniques can be
employed to increase the number of positive samples available for classifier
training, as detailed in Sect. 2.4.1.

Apart from their widespread use and robust performance in many applica-
tions, classification-based approaches clearly exhibit a number of disadvantages
that are encountered regarding design of landmark-based appearance model-
ing techniques. A comprehensive examination of the described traits related
to the use of classifiers can e.g. be found in [165]. The use of regression-
based approaches as a natural alternative has several appealing advantages, as
discussed in the following.

4.2.2 Regression-based Modeling

In addition to the classification-based approaches, regression-based techniques
have later been proposed to formulate detection tasks in medical image analysis
[151]. They go back to similar propositions in computer vision [132], [166],
[167]. The idea of regression-based detection is outlined in Fig. 2.4.3, where
a spatial context function is learned from distributed patch positions around
sought landmark positions, based on an expressive set of image features.

For the first time in [151], regressors were proposed for detection tasks in
medical images. Immediate incentives were the more natural approach to the
detection task, where relative position estimates are made from distributed
image positions, instead of an exhaustive scanning of larger image regions.
Also, the aforementioned problem of sparsity of positive samples does not
apply to the regression approaches.

Furthermore, in contrast to the labeling noise of classification-based ap-
proaches, where false positives can hamper a conclusive extraction of landmark
positions without additional regularization, false position estimates produced
by a regressor do not necessarily impede further detection. On the opposite,
many position estimates are often at least closer to the sought position, which
can be utilized to produce new subsequent estimates from the first rough po-
sition estimates [153].
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This ideally suits the iterative nature of the 3D-SSM model fitting, where
predictions are refined iteratively while they close in on the segmented target
organ. Meanwhile, rough outliers are removed by the learned shape constraint.
Also, if a regression is opted for, the use of classifier output can still be consid-
ered to add information e.g. on the confidence of the regressor results. Finally,
the use of a regressor has been shown to significantly improve landmark de-
tection accuracy [153].

In [29], [135], the idea of a regression-based detection was first introduced
for shape-model based bones segmentation and facial landmark detection in
2D image data. Later, global optimization of regression votes were proposed
also for 2D bone segmentation [136]. Despite their promising results in the pre-
sented applications, the use of regression-based landmark detectors remained
limited to the aforementioned 2D applications, in addition to follow-up appli-
cation on bones in 2D datasets [168]. In particular, a use of these techniques
to tackle the well-known problems of 3D-SSM in volume segmentation tasks,
as described in Sect. 4.1, have never been addressed.

As a major reason for the limitation of landmark regressors to 2D domain
was the higher modeling complexity and computational burden for 3D-SSM, as
suggested in [136]. Also, the more general case of soft tissue landmark modeling
adds further challenges regarding higher shape variability and reduced contrast
[147]. Whereas free model deformation as proposed by the constrained local
model approach from [29], [135] is expected to work for more rigid structures
in 2D domain, an application for highly deformable soft tissue in 3D domain
without additional regularization is unclear. Also, an extended spatial context,
variable organ positioning and changing fields of view of 3D data differs from
the previous radiographic and facial picture task.

In contrast to the previous applications for 2D bone segmentation, the pro-
posed method will extend the above concept of appearance modeling to the
more general case of soft tissue landmark modeling and segmentation in vol-
umetric image data for different imaging modalities. In [2], 3D-SSM were
categorized based on their underlying appearance modeling and model fitting
strategies. Since its proposition for 2D active shape models in [29], [135], no
similar categorization of the regression-based context modeling approach for
3D-SSM has been presented so far. Therefore in the following, the proposed
approach will be outlined in the broader context of appearance modeling for
3D-SSM.

The use of an expressive feature set has proved an essential prerequisite for
a regression-based landmark modeling and detection [132]. A family of suit-
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able feature descriptors, and their incorporation for the proposed appearance
modeling will be outlined in the following section.

4.3 Randomized Feature Description
For the use of regression based detection tasks, a number of feature sets has
been established that has proved to possess the flexibility and expressiveness
that is required for description of image context at changing viewpoints [132],
[138], [140], [169]. They all have in common the use of structural primitives
on which variation is induced by randomization within a predefined image
patch. By contrast, the use of steerable filters has also been proposed for a
detection of facial landmarks and of hand-bone contour points [104]. The con-
cept of steerable filters has also successfully been employed in other detection
tasks, like the classification based approach of Marginal Space Learning [148],
[149]. However, the use of the randomized features has probably been more
popular, in conjunction with machine learning approaches that work well with
randomized feature sets, like random forests or random ferns.

The use of random regression forests also offers appealing benefits regarding
the goals of the proposed method and has often been applied with success
in detection tasks. Therefore, the following sections will focus on a use of
randomized feature descriptors in conjunction with random regression forests
for the proposed appearance modeling.

4.3.1 General Considerations
In any case, flexibility is promoted through an additional introduction of struc-
tural randomness. Features are defined by a random positioning of (usually
two) box elements or voxels within the patch, and sometimes by an additional
random scaling of the structured elements. Randomization can be limited to
one moving element with a fixed element at the center point of interest like
in [153], or to a random pair of voxels [138], [140]. Or, both elements can be
configured at random, like in [169], [170].

From the broad variety of potential feature descriptors proposed previously
(e.g. by [140], [153], [169], [170]), randomized 3D Haar-like features possess all
of the desired traits: they use freely arrangeable structured elements that have
proved a particularly high degree of flexibility and expressiveness [171]. They
can reflect highly variable anatomical key structures, and their randomization
grants the ability to capture image information at arbitrary viewpoints in the
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image. For a repeated evaluation of features during model fitting of 3D-SSM,
a fast evaluation of the employed feature descriptors is important to allow
feasible execution times during segmentation. Despite their higher complexity
compared with features based on random voxel pairs [138], [140], they can be
evaluated in constant time by means of precomputed integral images.

Although 3D Haar-like features have been shown to be robust against object
rotation to some degree [171], they are not rotation-invariant. This means that
the recognition of learned features may not work in images that display major
rotations for any reasons. This can for example occur if coordinate axes of the
underlying image geometry are defined differently across the images. In these
cases, the use of header information from these images allows a retrospective
rectification of the alternate reference frames. To this end, basic software tools
can be applied, and no further measures have to be taken.

Another reason for an appearance of major rotations is the variability of pa-
tient positioning during image acquisition. In fact, most clinical scenarios do
involve image acquisition protocols that arrange for a general patient position-
ing which is usually either a dorsal or a ventral bedding of the patient, or an
axis alignment with a specific anatomical target region. Minor variations can
occur, like e.g. casual inclinations of a patient’s body. Such cases are then in
general sufficiently represented within the underlying training images. Due to
their robustness with regard to non-linear learning tasks, the employed random
regression forests are then able to cope with the described minor variations in
the datasets.

If a handling of more general cases should be required in the future, var-
ious solutions can be considered in this regard, like a rigid pre-registration
of input images, an augmentation of the training data with artificial rota-
tions, confidence-weighted selection of specifically trained forests, or the use of
rotation-invariant features.

The following subsection will describe the randomized 3D Haar-like feature
descriptor and its time-efficient evaluation. The selection of actually meaning-
ful 3D Haar-like features from underlying training images is then part of the
forest-based appearance model training which is detailed in Sect. 4.4.

4.3.2 3D Haar-like Features

Haar-like features were first introduced in [131] for facial detection in 2D com-
puter vision. The idea was to provide an extensive set of simple, yet highly
representative and time-efficient features for the description of human faces in
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Figure 13: Example set of randomized Haar-like features. Each fea-
ture is generated as a set of two random box integrals (black and white) which
are calculated on the underlying image intensities (a). Subtraction of the cal-
culated box integrals yields the corresponding feature response. Each feature
is evaluated in constant time using pre-calculated integral images for integral
computation (b). The shown box integral in image space (blue cuboid) is calcu-
lated from voxels a1, · · · a4 and b1, · · · b4 in the integral image. a1−a2−a3+a4
and b1− b2− b3 + b4 yield the red box integrals (b, left and right), which are
subtracted to get the blue box integral.

gray-value images.
Features are composed of either two, three or four adjacent rectangles, that

are all together arranged variably within a predefined image patch. If applied
to an image, feature response is produced by the contrasting rectangles, i.e.
for each rectangle the integral of intensities in the underlying image region
is calculated, and the response is derived from the difference of the opposing
integrals, as described in [131]. Depending on the feature at hand, a strong
response is obtained at places that reflect the structure of the given feature. On
the opposite, there is a neutral response within homogeneous image regions,
due to the area zeroing wavelet structure of the Haar-like features.

At a glance, the total feature set contains edge- and ridge-features of differ-
ent scales and in horizontal, vertical and diagonal orientation. For an actual
detection task, meaningful features then have to be learned from all possible
configurations. For the 2D facial detection in [131], this was done e.g. by a
cascade of AdaBoost classifiers, and the learned features reflected characteris-
tic image regions like the greater eye-region and the mid-face, and facial details
like nose and mouth.

Thanks to their high efficiency and their flexibility, Haar-like features were
subsequently adopted for extensive use in other tasks, e.g. for identification,
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description and matching of characteristic key-points in the SURF-algorithm
[172].

For the recognition tasks in said applications, the employed Haar-like fea-
tures merely served local purposes. They were used to either speedup local
image filtering operations (e.g. fast computation of multi-scale Hessian de-
terminants), for fast local neighborhood description at distinct keypoints in
the style of oriented gradients, or for a representation of characteristic local
features within objects of interest. Whereas, the global application of these
features is usually limited to a rejection of true-negatives from the image back-
ground.

A detailed definition of 2D Haar-like features, and ideas for their time ef-
ficient calculation using 2D integral images is provided in the original work
[131]. Rather little information is available in the literature on an extension
of these features to 3D domain and on a time-efficient computation in 3D.
Therefore, we will provide a definition of 3D Haar-like features, and details on
their constant-time evaluation in the following, including an algorithm for a
time-efficient computation of the required 3D integral images. To the best of
our knowledge, we have for the first time proposed 3D Haar-like features for
a description and detection of arbitrary landmarks on soft tissue surfaces and
for use in different imaging modalities.

To extend the original concepts to 3D domain, each possible Haar-like fea-
ture is defined by two randomized cuboids C1,C2 within a predefined reference
patch P that is centered at an evaluated reference voxel v = (v1, v2, v3):

Ci = (xmin,xmax, ymin, ymax, zmin, zmax), (xi, yi, zi) ∈ P

In order to control the degree of image context that is considered for detec-
tion by the employed feature descriptor, a maximum patch size can be chosen
that serves as an outer bound for the generated cuboids.

The feature response fc1,c2(v) as stated above is derived from the intensity
integrals Σc1, Σc2 over C1 and C2:

Σci
=

xmax∑
i=xmin

ymax∑
j=ymin

zmax∑
k=zmin

I(i, j, k)

fc1,c2(v) = Σc1 − Σc2

Instead of the above summation of all underlying intensities, the compu-
tation of each integral Σc can be achieved in constant time by a total of 7
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additions. This is possible using a pre-calculated integral image Σ(I) := ΣI

of the original image I, as detailed for the 2D case in [171]. For the 3D case,
at each index i, j, k, the integral image contains the sum of intensities in the
cuboid Cijk = (0, i, 0, j, 0, k) that is spanned in I between the origin (0, 0, 0)
and (i, j, k):

ΣI(i, j, k) =
i∑

x=0

j∑
y=0

k∑
z=0

I(x, y, z)

The integral Σc of an arbitrary cuboid C = (xmin,xmax, ymin, ymax, zmin, zmax)
can as well be composed by such origin-spanning cuboid volumes at each corner
point of C (cf. Fig. 13):

Σc = ΣI(xmax, ymax, zmax)− ΣI(xmin − 1, ymax, zmax)
−ΣI(xmax, ymin − 1, zmax) + ΣI(xmin − 1, ymin − 1, zmax)
−ΣI(xmax, ymax, zmin − 1) + ΣI(xmin − 1, ymax, zmin − 1)
+ΣI(xmax, ymin − 1, zmin − 1)− ΣI(xmin − 1, ymin − 1, zmin − 1)

Each ΣI(x, y, z) can then simply be looked-up in the pre-computed integral
image. The computation of the integral image plays an important role, es-
pecially because its computation time adds to the total time needed for each
new segmentation, or even twice if a feature normalization is used as described
below. Little information is provided on time efficient computation of the 3D
integral image in the literature. For the proposed method, the following al-
gorithm was devised for the integral image computation in linear time with
regard to its voxel count.

Each cuboid ΣI(x, y, z) is composed by the cuboid ΣI(x−1, y, z) of the pre-
viously visited voxel and by the next cuboid-complementing slice Σslice(x, y, z).
The latter can be obtained by an addition of the previously calculated slice
Σslice(x, y, z− 1) and the newly calculated line Σline(x, y, z). Only requirement
is holding and initializing the required slice and line sums. This way, it is
possible to compute typically sized integral images in a matter of seconds on
standard desktop computers (512× 512× 200 voxels in <3s, single-threaded).
All details are shown in Algorithm 1.

4.3.3 Feature Normalization

Unlike the previous works in 2D, a normalization of the Haar-like features will
be used by the proposed method, in order to make it applicable to more het-
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Algorithm 1 Calculate the integral image Σ(I) of image I
Require: 3D gray-valued image I(x, y, z)
Ensure: Integral Image ΣI(x, y, z) = ∑x

i=0
∑y
j=0

∑z
k=0 I(i, j, k)

1: Initialize slice sums: Σslice(x, y) = 0 ∀x, y
2: for all z do
3: Re-initialize line sums: Σline(x) = 0 ∀x
4: for all y do
5: Re-initialize cuboid sum: Σcuboid = 0
6: for all x do
7: Σline(x) += I(x, y, z)
8: Σslice(x, y) += Σline(x)
9: ΣI(x, y, z) = Σcuboid + Σslice(x, y)

10: Σcuboid = ΣI(x, y, z)
11: end for
12: end for
13: end for

erogeneous imaging modalities. Various techniques for linear and non-linear
normalization on image regions like the Haar-like feature patches were pro-
posed in the literature (cf. Sect.2.4.2). A simple, robust and fast normaliza-
tion based on patch variance of image intensities was proposed in [131]. Like
the fast evaluation of the Haar-like features, normalization can also be done
in constant time with the help of integral images. Instead of traversing patch
voxels twice for computation of mean and variance, the sum of squared voxels
in the patch can be used for variance calculation:

σ2 = µ2 − 1
N

N∑
i=1

x2
i

The integral image for the previous box integral calculation is also used for
constant time calculation of the squared mean. Analogously, another integral
image of squared intensities is used to get the sum of squared voxels.

The randomized 3D Haar-like descriptor is well suited for a representation
of distributed image features. It can be used to capture image information
from the surroundings of a modeled organ of interest, and thus allows a non-
local modeling of landmark appearance for 3D-SSMs. To this end, image fea-
tures must be selected from the underlying vast feature pool that are actually
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Figure 14: Trained random regression forests. During training, trees
are constructed by splitting sample sets into left and right subsets at each
tree node. Samples are split according to a splitting criterion that maximizes
sample homogeneity. Predictions are made on the sample distributions in the
leaf nodes, which are aggregated across all trees based on confidence of the
predictions, in order to derive a robust forest estimate.

meaningful for detection. Furthermore, the learned, distributed appearance
information must be reconnected to the modeled landmark positions. Both
is a task for the automatic, non-local appearance model training and will be
discussed in the following section.

4.4 Model Training and Inference
As motivated earlier, landmark-wise trained random regression forests are well
suited to learn the spatial context function as part of the proposed appearance
modeling (cf. Sect. 4.2), and to infer landmark positions from the learned
model during segmentation. They offer a high degree of flexibility and robust-
ness regarding their application to different use-cases, which fits the goal of a
3D-SSM that is more readily available for use in different segmentation tasks.
Their main characteristics, their training and their application will be detailed
in the following.

4.4.1 Random Regression Forests
Random forests were originally introduced in [173] as an extension of decision
trees that had earlier only been used with limited success. Significant boost in
performance was reached through bagging, that is, predictors were trained and
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averaged on random subsets of samples and features (bootstrap aggregating or
bagging), to compensate for over-fitting of the decision trees. An ensemble of
the trained tree predictors is called a random forest.

After their introduction [173], random forests have widely gained popularity
as a robust and effective tool in various machine learning applications [174].
In medical imaging tasks, random forests have first been applied for classifi-
cation-based object detection and segmentation (cf. e.g. [175], [176]), before
additional benefits from a use of random forests in regression tasks during
detection were demonstrated [153], [169], [177].

Random forests owe their popularity to several beneficial traits. They per-
form well in non-linear classification and regression tasks, and they are known
for their easy and robust application where parameter settings for high perfor-
mance can easily be found in various use-case scenarios, while they determine
meaningful image features automatically during training. For further details
on random forests, please refer to [174].

For previous approaches relying on a landmark-based modeling of object
appearance by means of regression, different approaches were proposed (cf.
Sect. 2.4.3), like canonical correlation analysis [104], boosting regression [133],
[134], random ferns [139], and random regression forests [29], [135].

Random regression forests have succeeded in various anatomical detection
tasks in CT data, like for bounding box detection around organs of interest
[137], [169] or for a detection of a set of anatomical landmarks [153]. Random
regression forests also served as a highly accurate foundation for the previous
constrained local model approaches in 2D domain [29], [135]. Although an
application for the intended modeling and detection of arbitrary soft tissue
surface landmarks has not been examined so far, the use of random regres-
sion forests is promising for the intended landmark modeling of the proposed
method. Furthermore, their well-known straightforwardness regarding an ap-
plication in different use-cases fits the goals of the proposed method. An
incorporation of random regression forests is expected to make the proposed
appearance modeling generalize well to different use-cases.

In the following, the use of the proposed random regression forests for the
above appearance modeling will shortly be outlined. They will in large parts
be similar to the 2D case from [29], [135]. However, in contrast to these works,
two additions will be made for the proposed method. Instead of the original
ensemble trees from [173], we propose the use of extremely randomized trees
[178], which have been shown to be considerably faster during training, and
which have proved to be more robust in certain applications. Also, we propose
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the use of a splitting criterion based on impurity of displacements which is
sometimes encountered in the literature (cf. e.g. [167]), and which may also
speed-up training in contrast to the criterion based on sample entropy [29],
[135]. Training of the ensemble tree predictors and their use for inference will
be detailed in the following section.

4.4.2 Sample Split and Tree Construction
Each tree has a binary topology as shown in Fig. 14, where tree nodes split
incoming training samples into smaller subsets. Thus, the overall learning task
is divided into easier sub-problems by each split.

To reach a simplification of sub-problems, each split aims to increase the
homogeneity of samples in the resulting subsets, i.e. purity of class labels
(classification) or of output values (regression). Purity is reached by a split-
ting criterion that is optimized during each split. Thus ideally, the splitting
criterion is designed to minimize sample impurity. A splitting function fsplit
(e.g. hyperplane, ellipsoid) splits the samples in a random subspace from k
random features F = {f1, · · · , fk} of the whole feature space.

If samples are split by hyperplanes fi = x, fi ∈ F ,x ∈ R in the feature
space over F , then the possible splits are given by split functions

fsplit(i,x) := fi,x, i = 1, · · · , k, x ∈ R

Each fi,x splits the arriving training samples A = {a1, · · · , an} into subsets
AL and AR:

AL(fi,x) = {ai ∈ A|fi(ai) ≤ x}
AR(fi,x) = {ai ∈ A|fi(ai) > x}

Splitting functions fi,x for each possible split can e.g. be found by sorting
all samples by fi first and then repeatedly choose fi,x that split A in ascending
order.

The objective is to select a feature fi that minimizes the splitting criterion
over the subsets. In case of the proposed regression, the goal is to minimize the
impurity over all vector samples in AL and AR in terms of sample dispersion in
the subsets. Different measures for sample impurity are commonly used, e.g.
based on entropy log(|Σ(A)|) of sample covariance [29], [135], or based on total
sample variance Tr(Σ(A)) [167], which can speed up training. In conjunction
with the proposed use of extremely randomized trees described below, the use
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of a sample variance based criterion will also be examined for the proposed
method, in addition to the use of the entropy based criterion.

Impurities Sfsplit(A) are defined for each split of A:

Sfsplit(A) = |AL,fsplit | · log |Σ(AL,fsplit)|+ |AR,fsplit | · log |Σ(AR,fsplit)|

and

Sfsplit(A) = |AL,fsplit | · Tr(Σ(AL,fsplit)) + |AR,fsplit | · Tr(Σ(AR,fsplit))

To reduce computation time of the splits for larger sample sets in the upper
tree part, the optimal split is determined on a smaller random subset of all
samples at each node, as proposed in [29], [135].

As motivated earlier, the use of extremely randomized trees will be examined
regarding their use in the proposed regression based landmark appearance
modeling [178]. Instead of finding an optimal splitting function fi,x, where i
and x are chosen to minimize sample impurity Sfsplit(A), an optimal feature fi
is determined with random instances of x, thus performing a random split in
each dimension of the parameter space instead of search for an optimum split
for each considered feature. This means that complexity of the node splitting
will be reduced by the full search for optimal feature values in each dimension
of the considered feature subspace.

Splitting stops if a sufficient purity of samples is reached or if a minimum
number of samples is encountered in a subset. After the final split, the remain-
ing data in the leaf nodes serve as a basis for later prediction (leaf prediction).
As described above, several trees are trained for a random forest in this manner,
and randomness is introduced during training by bagging of training samples
and by using random feature subsets at each node.

4.4.3 Leaf Prediction and Aggregation
During segmentation, for any tested location around the sought landmark, a
relative position estimate for the unknown landmark position can be inferred
from the trained forest. The tested sample is processed by each of the trained
ensemble trees, where the sample is evaluated by the previously built split
nodes as it travels down each tree (cf. Fig. 14). Its image context is evaluated
at each node based on the selected split feature at that node, and based on
the split decision for the tested sample, it is passed to one of the child nodes.
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Depending on the previous split decisions, the test sample arrives at a leaf
node that contains all samples that are expected to be taken from the same
context of the modeled landmark during training.

Thus, a position estimate can be derived from the corresponding samples in
the leaf node, based on their displacements to the modeled landmark position.
All available information about the sample distribution in the leaf node can
be used for a meaningful prediction. Usually, mean and covariance of the
sampled distribution are incorporated during leaf prediction [29], [169], which
is expected to also fit the requirements of the proposed method. Also, more
ample modeling approaches on the sample distributions in the leaf nodes have
been proposed [179], e.g. based on Gaussian mixture modeling.

Based on the bagging of tree predictors in random forests, reliable leaf
predictions are usually available in at least some leaves of the tree ensemble,
provided enough trees have been trained. Therefore, robust predictions can
be derived taking into account estimates from all leaf nodes, and weighting
them by a confidence measure in each node, e.g. based on sample impurity.
Thus, all estimates can be aggregated to obtain a robust overall estimate from
the trained forest [173]. Different strategies to derive position estimates from
the random forest predictions during segmentation which will be discussed in
chapter 5.

4.5 Summary of Training and Detection Frame-
work

Summarized at this point, the flexible Haar-like feature description, the non-
local appearance modeling and the landmark-wise trained random regression
forests provide an omni-directional detection of suitable landmark positions
during segmentation. With it, the proposed techniques provide the means for
a methodological independence of the proposed 3D-SSM with regard to their
training and their application.

Landmark appearance is trained without using manually tailored features,
and meaningful characteristics for visible anatomical structures are determined
automatically from a pool of randomized features during training. The em-
ployed random forest regressors introduce the intrinsic capability for a robust
and flexible learning to the proposed 3D-SSM.

In particular, the proposed method takes advantage of the robust and easy
applicability of random forests known for varying applications from the liter-
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ature. Furthermore, landmark appearance is now based on non-local informa-
tion learned from distributed image locations. The extent of the information
coverage during training can arbitrarily be adjusted in the process, thus pro-
viding a devised detection range as needed for the later segmentation.

During application, the proposed method is expected to profit from a non-
local analysis of distributed image information, and based on this, from an
omni-directional landmark detection and from a larger capture range during
the iterative model fitting, based on more widely available information on
sought object positions at larger distances. From this, two major benefits
arise with regard to the application of the proposed 3D-SSM.

First, the proposed method is intended to be employed from arbitrary start-
ing placements in the image. That is, based on the extent of information
learned during training, landmarks are supposed to be detected from remote
image positions. As explained earlier, the detection accuracy of the landmark
estimates is expected to increase as the surface model closes in on the target
structure during the iterative model fitting. At the same time, misleading pre-
dictions that arise in the process should be compensated by the learned shape
prior model.

A second benefit arises for the reproducibility of the segmentation results
using the proposed 3D-SSM. The omni-directional detection of landmark po-
sitions is intended to produce unambiguous results that are robust against
changes of model pose, and significantly more constant results are expected
for a model fitting from changing initializations. This should generally lift the
predominant influence from model initialization on 3D-SSM, and also remove
the importance of an accurate fit of the initial placement with the organ of
interest.

Altogether, the proposed techniques are expected to target the well-known
weaknesses of 3D-SSM summarized in Sect. 4.1, i.e. strong dependence of
results from the previous model initialization, limited capture range at the
sought organ of interest, and a high sensitivity against model pose changes,
which makes 3D-SSM prone to be stuck in locally optimal solutions during
segmentation. By addressing these issues, the proposed 3D-SSM is expected
to be better applicable across different use-cases, i.e. to reach higher perfor-
mance without support from elaborate model initialization methods or from
techniques that compensate for sensitivity against locally optimal solutions.

In the following sections, the introduced techniques are all put together for
an actual application of the proposed 3D-SSM to clinical data. That is, predic-
tions from the random forest ensemble will be incorporated from distributed
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image positions, in order to derive robust position estimates for the modeled
landmark positions in unknown images. Furthermore, a multi-scale approach
will be applied that serves as a framework for a robust and computationally
efficient model fitting during segmentation. For this purpose, a sparsification
of surface landmarks and a multi-resolution image pyramid will be introduced
to the model fitting process
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CHAPTER 5

Model-Based Segmentation Approach

Using the developed techniques from the previous sections, a segmentation
procedure will be established for the proposed 3D-SSM. Apart from the benefits
that result from the newly employed techniques, the segmentation is based on
the usual two step approach for 3D-SSM. That is, a model surface is initially
placed in the image that contains a sought target organ. From there, the
iterative search for suitable landmark positions is started, which guides the
surface model to perform the intended segmentation.

As a difference to the previous approaches for 3D-SSM, the initial model
placement will be allowed to be at an arbitrary location in the image. Thus,
no upstream method for an accurate and precise model initialization will be
required. The omni-directional landmark detection will then guide the subse-
quent model fitting across increased distances in the underlying images. In the
subsequent finer resolutions of the model fitting, the proposed omni-directional
landmark detectors are expected to grant a strong robustness against the con-
tinuous model pose changes that occur during model adaptation of 3D-SSM,
thus providing a high reproducibility of results regardless of model pose, and
allowing a more extensive non-local search for optimal solutions during seg-
mentation. This will also be in contrast to previous 3D-SSM, where choice
of model initialization and subsequent changes of model pose during model
fitting have a strong impact on the final results, and where 3D-SSM regularly
get stuck in locally optimal solutions.
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Apart from the differences, a multi-scale approach will be followed that is
usually employed during model fitting of 3D-SSM. At the different stages of
this procedure, varying aims are pursued. That is, in the early stages, position
and shape of the target organ will roughly be covered by the surface model. In
the subsequent steps, the segmentation result will gradually be refined, until
final results can be obtained for the actual image.

In contrast to the typical multi-resolution approaches of previous 3D-SSM,
the proposed method introduces a long distance model fitting at the first stage
of the model fitting, which leads the surface model from remote image positions
to the sought organ of interest. At this stage, global information from across
the image domain has to be analyzed and be incorporated in order to bridge
the initial large distances during this first model fitting step.

An increased computational complexity is introduced by the employed omni-
directional landmark detectors, due to repeated landmark-wise evaluation of
voxel positions by the trained random regression forests in each iteration. to
To speedup the segmentation process, a sparsification approach will be estab-
lished that performs detection on a smaller subset of surface landmarks. The
sparse surface modeling, the step-wise refinement of results through a multi-
resolution approach, and the long distance model fitting as a particular first
step of the segmentation will be detailed in the following sections.

5.1 Omni-directional Landmark Detection

This section will outline the use of the previously trained context appearance
model for an omni-directional landmark detection during segmentation. Based
on the learned image context for each modeled landmark, the trained random
regression forests will provide a robust and unambiguous inference of sought
landmark positions during segmentation.

In accordance with the learned distributed information of the context ap-
pearance model, position estimates will be inferred from different image loca-
tions to provide a robust voting for sought landmark positions. This adds to
the robustness that is also achieved by means of an aggregation of estimates
within the trained forests. Several voting strategies exist for that purpose,
some of which have e.g. been proposed by previous approaches in 2D [29],
[135]. Unlike these works, a different search and model fitting scheme builds
the foundation for the proposed method, which makes the previous voting
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Figure 15: Different voting strategies for the trained random regres-
sion forests. Estimates from leaf predictions in the trained ensemble trees
are expected to accumulate at the sought landmark position. Left figure: tree
predictions are aggregated through confidence weighting in the trained ran-
dom forests, casting more robust votes to a smaller focal region around the
estimated landmark positions. Right figure: tree predictions are directly cast
to the image, with or without confidence weighting, thus mapping information
from forest leaves to the image domain, resulting in smoother cost functions.

strategies less suited for an application with the proposed method. This will
be further discussed in Sect. 5.1.1.

The goal of the proposed landmark-based object description and of the
landmark-wise omni-directional search was to address the visibility and model
initialization problems of 3D-SSM (cf. Sect. 2.5.3). To the best of our knowl-
edge, these problems of 3D-SSM for medical image segmentation are addressed
for the first time by means of an unambiguous appearance modeling and of an
omni-directional landmark detection for 3D-SSM in this thesis. The intended
use of the presented landmark detection for model fitting of 3D-SSM, and the
major differences to previous approaches will be outlined in Sect. 5.1.2.

5.1.1 Voting for Landmark Positions
As motivated above, different schemes can be applied for a voting of sought
landmark positions from distributed surrounding locations. In [29], [167], the
use of accumulator arrays was proposed where votes are stored in an underlying
image or voting map, instead of working directly with the original vector votes
as proposed e.g. by [169]. This allows the mapping of votes from different
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distributions to the underlying voting maps, and furthermore, it fits the use
of voxel-based cost functions that are usually employed by shape-model based
approaches [2]. Therefore, the use of accumulator arrays is also well-suited for
the proposed method.

However, unlike the previous approaches from [29], [135], another voting
strategy will be chosen for the proposed method, due to differences in the un-
derlying nature of the employed search and model fitting approaches. Unlike
typical 3D-SSM approaches, the constrained local model approach (CLM) as
proposed by [29], [135] performs a joined optimization of pose and shape pa-
rameters, and of the landmark-wise cost functions across all landmarks of the
employed shape model. This means that instead of a landmark-wise selection
of optimal candidates, shape and pose parameters are chosen as to determine
a global solution that considers cost functions from all landmark positions.

Accordingly, strategies were proposed by [29] for a direct mapping of weighted
or unweighted tree votes, of sample distributions or of separate training sam-
ples from the leaf nodes to the accumulator array. Estimates are not aggregated
in the forests prior to their mapping, which makes sense for the CLM since the
added uncertainty projection from the unaggregated votes provides an overall
smooth cost function for optimization through the CLM (cf. Fig. 15, right).

Figure 16: Voting map creation during model fitting. Each cluster
of votes represents a position estimate for one particular model landmark.
(a) Landmark-wise votes (red) cast from a momentary model position (green
contour). (b) Votes and model updates for two subsequent iterations in: i0
(white contour, red votes), i1 (red contour, yellow votes) i2 (yellow contour).

The proposed method however builds on a 3D-SSM approach that relies
on an accurate landmark-wise detection of optimal candidate positions during
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segmentation. Instead of a smooth cost function as used by the approaches
from [29], [135], an optimized estimation of landmark-wise positions is prefer-
able, where the additional uncertainties from above are resolved prior to the
vote cast, by means of a tree aggregation of the trained regression forests. The
proposed voting strategy therefore incorporates the original notion of a bagging
of tree predictors in random forests, and votes of a generally higher confidence
are produced by the forest predictions. Nevertheless, the voting maps that are
produced by the chosen approach still qualify for use as a cost function. Thus,
an incorporation of additional optimization schemes for 3D-SSM is possible if
desired (cf. [2]).

Let V = {v1, · · · , vn} denote the set of voxels from which estimates on the
sought landmark position are infered during segmentation. At each vj ∈ V ,
the trained random regression forest produce estimates ~di, i = 1, · · · , k for
the sought landmark position. Each ~di is weighted by a confidence measure
Ci(vj) which is defined for all leaf nodes in the forest, and tree predictions are
aggregated to obtain the overall forest prediction ~D(vj) for vj:

~D(vj) =
∑k
i=1 Ci(vj)~di(vj)∑k

i=1 Ci

The Ci(vj) represent the uncertainties in each leaf node, for which we choose
the impurity of leaf nodes as in [29]:

Ci(vj) = |Σi|−1

where |Σi| denotes the determinant of sample covariance or, for the additionally
proposed total variance based measure (cf. Sect. 4.4) the sum of sample
variance, in the i-th leaf node that contributes a prediction on ~D(vj).

~D(vj) then yields the confidence-weighted mean of the different tree esti-
mates in the forest. From all forest predictions ~D(vj) at the different vj, the
3D voting map M(i, j, k) is created:

M(i, j, k) =
n∑
l=1

1i,j,k(P (vl))

where 1i,j,kP (vl) denotes the voxel membership of the vector-valued predictions
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P (vl):

1i,j,k(P (vl)) =

1 if P (vl) is part of voxel (i, j, k) in M
0 otherwise

In contrast to tree-wise votes as in [29], [135], a forest-vote is cast on the
voting map for each vj by the chosen approach (cf. Fig. 15, left). Votes
from the tested voxel positions tend to accumulate in a narrow region around
the sought landmark positions in the image. After a Gaussian smoothing of
each vote cluster, a position candidate for each landmark is retrieved from the
regional maximum of the vote clusters.

After the extraction of landmark positions from the voting maps, the re-
sulting position estimates are available for the subsequent model fitting (cf.
Sect. 3.3).

5.1.2 Adding to the Model Fitting of 3D-SSM
The previous sections have described the use of a non-local context-based
appearance modeling and of an accumulated regression voting for the pro-
posed 3D-SSM. These concepts are intended to provide an omni-directional
landmark-wise search during segmentation, based on the trained random re-
gression forests. Specifically, the proposed method builds on the ability of its
landmark detectors to separately pinpoint positions of the modeled surface
landmarks in underlying images.

During segmentation, the landmark-wise trained regression forests make
predictions on suitable landmark positions based on information from dis-
tributed image locations. The resulting position estimates point towards plau-
sible landmark positions in the image and thus provide an input for the model
fitting in each iteration. As the modeled surface closes in on the organ of in-
terest, estimates from the vicinity of the sought landmark positions and thus
more accurate detection results are produced as the model fitting progresses.

The visibility of landmark positions for each modeled surface landmark is
essentially determined by the provided detection radius during appearance
model training, which makes landmark visibility in essence independent from
model pose. This should provide the means for the proposed method to address
the model initialization, capture range and visibility problems of 3D-SSM.

With its incorporation of the above techniques, the proposed method is the
first 3D-SSM that addresses these well-known problems of 3D-SSM by means of
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unambiguous and spatially extended landmark detection during model fitting.
This is e.g. in contrast to original 2D approaches from [29], [135], where land-
marks are detected jointly across the shape model by the proposed constrained
local model (CLM) approach. In particular, detection results are dependent
from a joint optimization with the model pose in the CLM. By contrast, the
proposed method builds on a separate detection in each modeled landmark in-
dependently from pose and shape, with the intended goal of an unambiguous
landmark detection from differing model poses. Also, this differs from other
regression-based approaches which rely on a joint estimation of shape and pose
parameters or shape-wide landmark displacements like e.g. random ferns (cf.
Sect. 2.4.3).

5.2 Sparse Surface Modeling
As motivated at the beginning of the chapter, regarding the high number of
forest predictions derived at various image locations and in each iteration, a
lowering of computational costs becomes essential. To tackle the resulting
computational complexity, a sparse surface modeling is applied where land-
mark detection is conducted only for a sparse subset of distributed landmarks
across the modeled surface.

For an adaptation of the surface model throughout the fitting process, mean-
ingful updates for all landmark positions are required, as described in Sect. 3.
For this purpose, the required surface-wide position updates for all landmarks
will be derived from the sparse subset based on an approach that is similar to
[180]. That is, a transfer of position updates from the detected sparse land-
mark positions to the in-between surface landmarks will be made based on
geodesic distances on the surface model.

Be Lts = {~lt1, · · · , ~ltk} sparse landmark positions at iteration t and

Lt+1
s = { ~lt+1

1 , · · · , ~lt+1
k }, ~lt+1

i = ~lti + ~dlti

position updates for iteration t+ 1. For each non-sparse landmark ~rti , a set of
sparse landmarks from the neighborhood are selected using

N(~rti) = {~lti ∈ Lts | ‖~lti − ~rti‖ ≤ χ}

within a predefined geodesic distance χ. From the selected positions, updates
are then propagated to ~rti after a normalization on the underlying geodesic
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distances:

~rt+1
i =

∑
~lti∈N(~rt

i) ‖
~lti − ~rti‖ ~lt+1

i∑
~lti∈N(~rt

i) ‖
~lti − ~rti‖

In contrast to [180], where updates are propagated based on a gaussian ker-
nel weighting, the proposed interpolation of position updates clearly produces
favorable results for the proposed 3D-SSM.

5.3 Multi-Resolution Search

Figure 17: Image segmentation by the proposed method. (a) Long-
distance model fitting: arbitrary initialization (white), long-distance result
(orange) and final segmentation (red). (b) Exemplary segmentations of multi-
ple organs produced by the proposed method: liver (green), spleen (blue) and
left kidney (orange).

As part of the multi-scale segmentation approach (cf. Sect. 5), a hierarchi-
cal search is conducted based on sub-sampled versions of the original image,
following the notion of a multi-scale image pyramid [181], [182], proposed for
a faster and more robust shape model fitting during segmentation, while re-
moving unnecessary clutter from image details that are not needed until the
later stages of the segmentation.

Resampled versions of the original image are created with isotropic spacings
that are doubled at each step of the pyramid, and versions of the non-local
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appearance model are trained in all resolutions. Since the 3D-SSM is expected
to close in on the organ of interest with increasing resolutions, detection range
is reduced stepwise with the trained versions of the appearance model.

Thus, focus shifts from a remote detection of the organ of interest to an
accurate detection of nearby landmarks. The coarser resolutions emphasize
image features that describe the greater anatomical context needed to guide
the model fitting from distant image locations to the target organ. The finer
resolutions gradually reveal the local detail needed to cover the shape of the
target organ and to finally derive a segmentation.

Image segmentation starts with a long-range model fitting on the coarsest
resolution, where the mean shape of the 3D-SSM is guided from remote image
locations to the organ of interest (cf. Fig. 17). The subsequent finer model
fitting stage adjusts shape and pose parameters to provide a more accurate
fit to the organ of interest. Finally, the most accurate model fitting stage is
applied, followed by a profile-based adaptation for all surface landmarks such
that a free surface deformation can be applied as proposed in [147]. This
way, shapes that exhibit high anatomical variability can be covered that are
otherwise excluded from the hard shape constraint.

Altogether, the presented segmentation approach shows characteristics that
are substantially different from previous multi-resolution approaches. The pro-
posed 3D-SSM is expected to achieve a high reproducibility of results through-
out all stages of the multi-resolution approach, and at remote locations from
the organ of interest, based on the intended robustness of landmark detection
against changes of model pose during segmentation.

The choice of overlapping landmark detection ranges during appearance
model training is expected to provide high robustness throughout all stages of
the proposed model fitting. At the same time, the proposed omni-directional
search should guide the model fitting to solutions that are generally closer to
the global optimum of the segmentation, compared with the typical unidirec-
tional search schemes of previous 3D-SSM. The expected reproducibility of
results and to the improved non-local search of the proposed 3D-SSM should
remove the need for an optimal model initialization, which significantly facili-
tates application and optimization of 3D-SSM towards higher performance.

This is in contrast to previous 3D-SSM, where the model initialization step
is required to provide a suitable fit with the organ of interest, in order to pro-
vide optimal results during the subsequent model fitting. The typical model
fitting of previous 3D-SSM is highly unpredictable in its course, and is prone
to be stuck in locally optimal solutions during segmentation. Furthermore,
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the capture range of these 3D-SSM is typically strongly limited, especially at
high curvature surface parts. Other than to provide a best possible initial
fit with the organ of interest, optimality criteria for the model initialization
with regard to the outcome of the subsequent model fitting are generally un-
clear. This gives rise to more complex methods for model initialization and
to compensatory measures during segmentation, but still, model initialization
remains an unpredictable source of error. Altogether, these problems affect
the general performance and applicability of previous 3D-SSM, which are now
directly addressed by the chosen approach of the proposed method.

In the following chapter, the proposed method will be evaluated with re-
gard to its robustness against changes of model pose during adaptation of
3D-SSM, its added global capture range for 3D-SSM within the image space,
its capability to perform a more non-local search for optimal solutions dur-
ing segmentation, and its generalizability to different segmentation tasks and
use-case scenarios.
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CHAPTER 6

Validation and Application of the Proposed Method

For an evaluation of the proposed method, segmentation experiments were con-
ducted for different organs on various clinical image datasets. The experiments
were laid out to reflect the overall goals of this thesis, i.e. higher generalizabil-
ity for 3D-SSM by means of a robust and flexible appearance model training,
and of a stronger independence from auxiliary methods. Prior to the presen-
tation of the conducted experiments, some introductory information will be
provided in the following section that is helpful for an understanding of these
experiments.

6.1 Fundamentals of the Evaluation
The experiments in this thesis will in large part be based on a measurement
of the segmentation accuracy produced by the proposed method and by other
state-of-the-art approaches. For this purpose, meaningful and widely-used
accuracy measures have been proposed in the literature. They will be described
in Sect. 6.1.1.

Also, as a part of its generalizability, the proposed method is applicable to
different use-cases without thorough optimization of forest training and voting
parameters. Thanks to the straightforward nature of the employed random
regression forests, a comprehensible set of parameters is easily found that can
then be reused in different applications. The parameter set that was chosen
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for the experiments of this thesis will be described in Sect. 6.1.2.
Different attributes and qualities of the proposed method contribute to the

overall goals of this thesis. They take effect on several stages during training
and during application. To better understand how these aspects of the pro-
posed methods are reflected by the conducted experiments, Sect. 6.1.3 will
present an outline of all experiments together with an explanation of their
purpose.

6.1.1 Segmentation Performance Measuring
6.1.1.1 Analytical and empirical performance measuring

Various approaches exist for the performance evaluation of segmentation algo-
rithms [183]. Some conduct a performance analysis at a methodological level,
where algorithmic prerequisites, basic assumptions and complexities of each
segmentation method are assessed. They allow a comparative evaluation of
the conditions and prerequisites that need to be fulfilled prior to successful
segmentation, which can be highly relevant for the applicability of a particular
method in clinical applications. Such a qualitative analysis will be part of the
evaluation of the proposed method in Sect. 6.3.3.

In addition to the qualitative analysis of the overall segmentation method,
an evaluation of its partial techniques can be conducted. Such an analysis
can provide additional insight to the conceptual capabilities of the examined
methods, however it is not always suited for a direct comparison of different
methods.

Finally, a qualitative analysis of results from different segmentation methods
can be performed. Such an analysis aims at the plausibility of the results
and at their geometric properties like homogeneity and smoothness of the
segmentations. It allows a direct comparison of different methods and a better
understanding for occurring types of segmentation errors that are relevant for
clinical applications.

6.1.1.2 Quantitative measures of segmentation accuracy

Instead of a qualitative analysis of segmentation results, a number of quanti-
tative measures can be introduced that allow an evaluation based on manual
expert annotations. These are usually provided by one or more medical ex-
perts and reflect the expected ground truth from a clinical point of view. On
a dedicated test dataset, the quantitative measures can then be used to assess
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the agreement of automatically produced results with the underlying manual
annotations.

Several well-known and widely-used quantitative evaluation measures have
been proposed in the literature [184], [185]. They are either based on a voxel-
wise comparison of volumetric segmentations or on a comparison of the re-
sulting surface delineations. The volume-based measures do a comparison by
analyzing the overlap of segmentation volumes and their discrepancy. The
surface-based measures on the other hand quantify surface discrepancies be-
tween two segmentations based on point-wise differences. Each measure is
able to reflect certain error characteristics of the segmentations, which allows
deeper insight into the nature of encountered errors.

In the following, A and B denote two binary segmentations of one original
image that are to be compared, where voxels are labeled to belong either to
the target object or to its background. Then, one quantitative measure for the
overlap of A and B is given by the Dice coefficient:

Dice(A,B) = 2 · |A ∩B|
|A|+ |B|

where |A| and |B| are the measured volumes of the binary segmentations.
Another measure that quantifies volume overlap is given by the Tanimoto
coefficient (also known as Jaccard coefficient):

Tanimoto(A,B) = |A ∩B|
|A ∪B|

Both coefficients map the measured volume overlaps to the range of [0; 1],
where 0 means no overlap and where 1 reflects the identity of the volumes.
Based on Dice and Tanimoto coefficients, the according volume overlap error
percentage (VOE) is sometimes used:

VOED = 1−Dice

and
VOET = 1− Tanimoto

When compared, the Tanimoto coefficient is more sensitive to small overlap
errors than the Dice coefficient. Apart from this, VOET is a metric since it
also satisfies the triangle inequality.

In addition to these overlap-based measures, segmentation errors can also
be assessed based on the difference of segmentation volume. This can be done
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using the relative volumetric distance measure:

RVD(A,B) = |A| − |B|
|B|

where |B| can be a ground truth segmentation that is used as a reference for
|A|. The RVD reflects volumetric errors which can be of particular interest in
applications that rely on organ volume as a clinical parameter. Apart from
this, the RVD is complementary to the above overlap measures, i.e. a low RVD
does not necessarily imply a low overlap error of the segmentations.

In addition to the above volume-based measures, the use of surface-based
measures allows an assessment of segmentation error based on the agreement
of the segmented surfaces.

In the following, SA and SB denote the surfaces of A and B, and VA be a
discrete set of vertices in SA. Then, the average surface distance (asd) describes
the average landmark-wise deviation of SA from SB:

asd(SA,SB) = 1
|SA|

∑
v∈VA

min
x∈SB

||v − x||

Distances are determined for each modeled surface landmark v on one mesh
SA with regard to the nearest points x on the other surface SB. The root mean
square distance (rmsd) is based on squared surface distances instead:

rmsd(SA,SB) =
√√√√ 1
|SA|

∑
v∈VA

min
x∈SB

||v − x||2

In contrast to the average surface distance, the root mean square distance is
more sensitive to outliers. Thus, it additionally pronounces outlier deviations
from the ground truth surface. For an isolated outlier measurement, the Haus-
dorff distance can be used that works with the maximum distance between SA
and SB:

hd(SA,SB) = max
v∈VA

(
min
x∈SB

||v − x||
)

The above surface-based measures are asymmetric with regard to an origin
and a target surfaces SA and SB (e.g. a reference segmentation). For a lesser
biased measurement regarding the choice of A and B, a symmetric version of
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each measure can be used based on their reciprocal application:

ASD(SA,SB) = 1
2(asd(SA,SB) + asd(SB,SA))

RMSD(SA,SB) =
√

1
2(rmsd(SA,SB)2 + rmsd(SB,SA)2)

HD(SA,SB) = max (hd(SA,SB), hd(SB,SA))

As for the purpose of the presented quantitative accuracy measures, there
are also particularities to be considered. First, these measures merely offer
a global representation of segmentation error, where local errors are masked
behind the global measure. At most, the maximum surface distance indicates
the presence of larger discrepancies at certain surface locations. However, these
measures offer a valuable error and accuracy quantification, and in combination
with a qualitative analysis of segmentation results, they are ideally suited for
a thorough evaluation of different algorithms.

Second, these measures usually reflect the agreement of segmentation results
with a ground truth that is defined only by an individual group of medical
experts. This means that good accuracy scores do represent meaningfulness
based on best practices in the medical community. However, they do not take
into account the limited reproducibility of annotation by human raters, or the
disagreement across different raters (inter- and intra-observer variance).

In [186], a scoring system was proposed based on quantitative performance
measures. There, the inter-observer variability is determined using annotations
from a second rater. Then, scores are awarded for the achieved segmentation
accuracy that relate to the underlying inter-observer variability.

6.1.2 Training and Segmentation Parameters
One key feature of the proposed 3D-SSM is a higher generalizability regarding
its application across different use-cases. Generalizability is on the one hand
implemented during the proposed appearance model training, which strongly
builds on robustness and flexibility of the employed random regression forests
in conjunction with the underlying Haar-like feature descriptor. The straight-
forward nature of random forests regarding their training and their application
is widely known, and is expressed by an easy and uncomplicated parameteri-
zation during training and during application.

The effect of the involved parameters on the detection results is highly
intuitive, and strong performance can be reached in a wide parameter range.
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Regarding the proposed method, this holds true for a sufficient number of
training samples from an adequate range in image domain, for a reasonable
number of tree predictions during segmentation, and for a sufficiently large
image context reflected by the employed feature descriptor. The robustness of
the trained landmark regressors will also be part of the experiments in Sect.
6.5.

During training, forest parameters comprise the radius and density of sam-
ples taken from the underlying training images during forest training (cf. Sect.
4.4), the number of ensemble trees that are trained in each forest (cf. Sect.
4.4), and the maximum patch size of the created 3D Haar-like features (cf.
Sect. 4.3.2). During segmentation, forest parameters involve the vote count
and the area in which votes are raised during the regression voting (cf. Sect.
5.1.1). As described in Sect. 4.3.2), a variance normalization of Haar-like
features can compensate for intensity inconsistencies encountered during seg-
mentation, which strongly applies to the segmentation of MRI data (cf. Sect.
6.4.2).

Table 1: Forest training and voting parameters for the proposed
method.

Level of detail 0 1 2
Spacing 4mm 2mm 1mm
Sampling Radius 60mm 30mm 15mm
Samples / LM / Img 2000 1000 400
Feature Patch Size 120mm 30mm 15mm
Number of Trees 12 12 12
Maximum Tree Depth max max max
Stop Splitting at Sample Count 4 4 4
Number of Random Features / Node 100 100 100
Voting Range (mm3) 36× 36× 36 18× 18× 18 9× 9× 9
Votes / LM 9× 9× 9 9× 9× 9 9× 9× 9

Tab. 1 shows the parameter values that were chosen for use in all ex-
periments of this thesis. The rationale behind their choice was based on an
increasing spatial context and sample coverage required for the coarser resolu-
tions, and on an immediately well-working voting strategy that allows robust
landmark detection during segmentation.
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The choice of parameters for the different resolutions largely followed the
doubling of spacings in the employed multi-resolution pyramid (cf. Sect. 5.3).
One exception was made for the patch size of the coarsest resolution. To
intuitively support the more global organ detection during the long distance
model fitting with structural features found at larger distances, the patch size
was additionally doubled. The chosen training parameters were used in all
experiments of this thesis.

Regarding application of the proposed method, generalizability is provided
by the ability to be employed as a single, standalone segmentation technique.
This means in particular that no initialization techniques have to be provided
for use of the proposed method in different cases, and that a parameter tun-
ing of underlying techniques is limited to the segmentation parameters of the
proposed method only.

For the casting of votes during segmentation, it was found that votes from
densely packed regions (i.e. with votes cast from a coherent region of neighbor-
ing voxels) immediately provided better results than more widely spread votes
(i.e. from regions in which no votes are cast from some of the voxels). Apart
from this it was found that in single cases, votes that were taken from inside
the surface model provided better results than votes that were taken from in-
side and outside the modeled surface around each landmark position. Thus,
the voting region was shifted inwards in normal direction of the surface model
by an offset of 8mm. Also, to provide for votes best being cast from inside the
object of interest, the first resolution of the model fitting was started from a
half-size down-scaled shape on the organ position found by the long-distance
model fitting.

6.1.3 Overview of the Experiments

In the segmentation experiments of this thesis, the proposed method was eval-
uated with regard to the following intended goals: to reach an independence
from previous model initialization for the proposed 3D-SSM; to make 3D-SSM
less prone to be stuck in local optima during segmentation, thus improving
overall accuracy; and to enable robust and flexible standalone applicability of
3D-SSM across different use-cases without necessity for additional auxiliary
methods.

To assess the independence of the proposed 3D-SSM from the previous
model initialization, a series of segmentation experiments was conducted. There,
the sensitivity of results against changes of model initialization was assessed
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Table 2: Number of sparse landmarks and total number of landmarks
for liver, spleen, kidney, left ventricle and lung models.

Modeled Organ Sparse Model Landmarks All landmarks
Liver-DKFZ 119 2562

Liver-Challenge 105 2600
Liver-Multiorgan 112 2600

Spleen 104 2263
Left Kidney 123 1659
Liver-MRI 110 2500

Ultrasound-LV 235 2033
MDCT-LeftLung 163 1498
MDCT-RightLung 158 1497

for the proposed method in comparison with a typical profile-based 3D-SSM.
Then, the capture range of the proposed model fitting was examined, i.e. the
maximum distance from which the proposed 3D-SSM is reliably attracted to
the underlying organ of interest. Both robustness against changing initial-
izations and large capture range build the foundation for an application of
the proposed method as a standalone technique. These experiments will be
presented in Sect. 6.2.

To examine how the proposed omni-directional landmark detectors help
avoid local optima during segmentation, and whether more global solutions can
be found instead, liver segmentation experiments were carried out on CT image
data. The high shape variability of the liver stresses the visibility problem of
3D-SSM, which makes this task well suited to demonstrate the benefits of
the omni-directional search. Also, many sophisticated approaches have been
proposed for the task and are thus available for comparison with the proposed
method. These experiments will be presented in Sect. 6.3.

To assess the standalone applicability of the proposed method, it was em-
ployed in a variety of segmentation scenarios with unchanged training pa-
rameters, and without the use of auxiliary methods for model initialization,
image preprocessing, model steering, or additional segmentation techniques.
Its overall accuracy was assessed in comparison with other state-of-the-art
segmentation approaches. With the chosen segmentation tasks, a variety of
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conditions were covered that are typically encountered in clinical scenarios.
These experiments will be presented in Sect. 6.4.

To demonstrate the ability of the proposed method for a segmentation of
distributed organs in larger image volumes, the proposed method was employed
for liver, spleen and left kidney segmentation in a public multi-atlas labeling
challenge. Organ detection in image volumes of differing size, heterogeneous
imaging quality, and variability of the underlying morphology are the chal-
lenges that were encountered in this case. This experiment will be described
in Sect. 6.4.1.

To demonstrate the generalizability of the proposed method across different
imaging modalities, a liver segmentation was conducted on MRI image data.
Apart from the importance and from the extensive use of this modality for
clinical diagnostics, the underlying image data serves as an example for strong
local and global inconsistencies of image intensities. This experiment will be
presented in Sect. 6.4.2. For similar reasons, the proposed method was further
employed in a left cardiac ventricle segmentation task on 4D ultrasound image
data. Motion artifacts, occlusions and strong noise make segmentation in this
imaging modality particularly challenging. This experiment will be presented
in Sect. 6.4.3.

In Sect. 6.4.4, an application of the proposed method in a typical clinical
use case will be presented. There, the proposed method was used for a lung
segmentation in high resolution CT data in the presence of a pronounced
appearance-altering pathology. Performance was assessed through qualitative
evaluation and through a histogram-based analysis of results, in comparison
with an elaborate region-based lung segmentation method.

Speeding up the appearance model training can become particularly impor-
tant when facing the sheer plurality of possible clinical applications. Therefore,
speedup options of the employed random regression forest training were exam-
ined in Sect. 6.5. There, the robustness of results from the trained random re-
gression forests was assessed for parameter changes that reduce training times,
and for architectural modifications that speedup the underlying forest split-
ting. Furthermore, the well-known robustness of the employed random regres-
sion forests is of importance for the generalizability of the proposed method.
To demonstrate this robustness also for the proposed 3D-SSM, the influence
of training parameters was additionally examined that carry the most weight
during an application of the proposed method, i.e the image context reflected
by the underlying feature descriptor, and robustness of tree aggregation from
the previously trained tree ensembles during segmentation.
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6.2 Independence from Model Initialization
The goal of the experiments in this section was to evaluate how the proposed
method copes with the known sensitivity of 3D-SSM from previous model
initialization. The dependency of 3D-SSM from an accurate model initializa-
tion near the sought organ of interest is a widely known problem. It means
on the one hand that segmentation results of 3D-SSM generally vary with
changing model initializations, and that non-suitable starting conditions cause
segmentation errors. The reason for this is that the outcome of the typical
unidirectional search strongly depends from the model pose at the beginning
of the search. The dependency from model initialization means on the other
hand that a positioning of the model surface near the sought organ is essential
for the mere applicability of 3D-SSM. Without it, the segmentation is usually
guaranteed to fail.

To demonstrate how the proposed method copes with both parts of the
problem, two experiments were conducted on a CT dataset of the human liver.
First, the degree of model pose invariance was evaluated that is gained from
the proposed omni-directional search, i.e. the reproducibility of results for
pose changes of the underlying surface model. For this purpose, the precision
of results of the proposed method was assessed for changing initial placements
around the liver. This experiment will be described in Sect. 6.2.2.

Second, the capture range of the proposed model fitting was examined, i.e.
the distance from which the 3D-SSM is reliably attracted to the sought organ
of interest. A larger capture range was expected by the proposed method due
to its non-local appearance modeling and the employed long distance model fit-
ting, thus allowing an application of the proposed method without an accurate
model initialization. This experiment will be presented in Sect. 6.2.3.

6.2.1 Data Material
The dataset that was used in the experiments of this section was taken from
a larger collective of 99 abdominal CT scans (DKFZ_ABDOM) (cf. [187]).
Images were acquired as part of surgical planning and clinical studies at the
German Cancer Research Center Heidelberg. Images were recorded in the
central venous phase after application of contrast agent, using scanners from
different manufacturers. The underlying image geometry exhibits an in-plane
resolution of ∼ 0.55 mm− 0.80 mm, and an inter-slice distance of 3.0 mm and
of 5.0 mm in some cases.

For the initialization experiments in this section, a subset of 45 CT volumes
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(DKFZ_LIVER) from the DKFZ_ABDOM dataset was used. The volumes
covered the entire abdomen, and additionally in some cases part of the thoracic
region and the pelvic region. More than half of the volumes contain visible
liver lesions that mainly affect the tissue appearance of the liver. No surgical
alterations of the liver were encountered in the dataset. Gold standard an-
notations were produced on the dataset by manual slice-by-slice segmentation
from radiological experts.

6.2.2 Model Pose Invariance

Based on its omni-directional search, the proposed method is expected to reach
a higher degree of invariance under model pose changes during segmentation.
That is, landmark detection results are supposed to be largely reproducible
regardless of pose changes of the employed surface model during segmentation.
As a result, higher robustness is expected from the proposed method against
an influence from changing model initializations prior to the segmentation.

To evaluate the robustness, an experiment was conducted where the pro-
posed method was started from randomized model placements around a pre-
defined optimal model placement. Then, the reproducibility of segmentation
results from the changing model initializations was evaluated, by measuring
their dispersion in comparison with the underlying ground truth. The experi-
ment was carried out for increasing degrees of degradation in order to evaluate
the robustness of the proposed method against a growing influence from erratic
model initializations. To exclude the case that a reproducibility of results is
primarily reached in the first long distance model fitting step where no adapta-
tion of shape parameters is performed, segmentation of the proposed method
were started from the first LOD, where shape and pose parameters are fitted
based on the conducted omni-directional search.

The results of the proposed method were compared with a typical 3D-
SSM that solely relies on local appearance modeling and on a unidirectional
search during segmentation [147], [188]. A detailed description of the compared
method and of its general characteristics can be found in Sect. 6.3.2.1.

Liver models were trained for the proposed method on 5 cross validation
sets of a subpart of the DKFZ_LIVER dataset, where 5 images were left out
during training for testing in each set. The predefined optimal placement that
served as a starting point for the pose randomization was obtained from the
pose parameters of the left-out training shape. Then, translation, rotation and
scale of the assumed optimum were randomly altered to generate a number of
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Figure 18: Influence of random pose changes on model fitting results
(qualitative). When started without long distance model fitting from 150
increasingly degraded model initializations around the liver (top to bottom
row), the proposed method displayed strong robustness against the induced
pose changes (right column) in contrast to the profile-based 3D-SSM (left
column). Three degradation levels were applied: small (translation t<6.0mm,
rotation r<0.4 and scaling s<0.1, n=50), medium (t<8.0mm, r<0.6, s<0.15,
n=50) and large (t<12.0mm, r<0.8, s<0.2, n=50).
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Table 3: Random degradation of model initializations. Three levels of
degradation from the assumed optimal positioning were randomly applied to
the model initialization of the proposed method.

Magnitude of degradation Small Medium Large
Translation ≤ 6 mm ≤ 8 mm ≤ 12 mm
Rotation ≤ 0.4 rad ≤ 0.6 rad ≤ 0.8 rad
Scale ≤ 10% ≤ 15% ≤ 20%

150 degraded starting placements (50 at each degradation level). The three
levels of degradation are specified in Tab. 3.

Fig. 18 shows cross sections of the results from all model initializations at
the different degradation levels, i.e. for the proposed method on the right side
and from the profile-based 3D-SSM on the left side. Results are shown from
top to bottom for the three increasing degradation levels.

The segmentations from the profile-based method show a growing number of
larger segmentation errors throughout the aggravated stages of the experiment
(cf. Fig. 18 left column). Also, several locations can be identified where visible
imprecisions of results arise. Precision declines visibly with growing magnitude
of the dislocations. In direct comparison, the results of the proposed method
(Fig. 18 right column) exhibit lesser segmentation errors and an overall higher
precision of results at different parts of the segmentation. In particular, no
increase of visible segmentation errors and imprecisions can be observed with
growing degradation of the model initializations.

Fig. 19 shows the quantitative segmentation results for all 45 cases in all
degradation levels, as measured by the Jaccard coefficient for volume overlap.
Each column represents 50 segmentations from varied model poses around the
liver. The results show that the proposed method produced highly constant
results regardless of the magnitude of pose variations. Three exceptions were
observed, i.e. cases 26, 28 and 33. In cases 26 and 28 with few exceptions,
segmentation generally failed, regardless of model initialization. Thus, these
cases clearly stand out as outlier segmentations for the proposed method. Case
33 shows a few outliers that occur depending on the chosen model pose. How-
ever, apart from the single outlier cases, the remaining segmentations of case
33 show a very high precision.
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Figure 19: Influence of random pose changes on model fitting results
(quantitative). When started without long distance model fitting from 150
increasingly degraded model initializations around the liver (top to bottom
row), the proposed method displayed strong robustness against the induced
pose changes (right column) in contrast to the profile-based 3D-SSM (left
column). Three degradation levels were applied: small (translation t<6.0mm,
rotation r<0.4 and scaling s<0.1, n=50), medium (t<8.0mm, r<0.6, s<0.15,
n=50) and large (t<12.0mm, r<0.8, s<0.2, n=50).
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Figure 20: Overall improvement of robustness against model pose
changes by the proposed method. Total spread of results for the profile-
based method (yellow) and for the proposed method (green), when started
without long distance model fitting from n=150 randomly degraded model ini-
tializations. To show the influence of initialization on segmentation accuracy,
cases are excluded where segmentation generally failed regardless of model ini-
tialization (i.e. cases 8, 28 and 36 for the profile-based method, and cases 26
and 28 for the proposed method, cf. Fig. 19), without affecting significance of
the results. ∗∗∗: p < 0.001, as assessed with Wilcoxon’s signed rank test.

By contrast, the profile-based method shows an overall strong dependence of
results against pose changes, which increases strongly with larger pose changes.
In every degradation level, large spread of results and occurrence of outliers
were observed in most of the 45 cases. Like for the proposed method, clear
outlier cases can be identified, where segmentation generally fails regardless of
initialization, i.e. cases 8, 28 and 36. Finally, it can be observed that under
the variation of model pose, a hypothetical optimum of segmentations for the
profile-based method can be identified, i.e. the best achieved segmentations
in each of the 45 columns, across all degradation levels. It is notable that the
results of the proposed method are not only very precise, but they are also
in many cases at least near or at the hypothetical global optimum of results
of the proposed method (cf. right and left boxplot pairs in Fig. 19 at any
degradation level for the separate 45 cases).

Fig. 20 shows the overall influence of model initialization on the spread
of results for both methods. To exclude the influence of the aforementioned
outlier cases that fail regardless of model initialization, they are not added to
the plots (8, 28 and 36 for the profile-based method, 26 and 28 for the proposed
method). Three pairs of yellow and green boxplots reflect the volume overlap
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based on the Jaccard-Coefficient of the profile-based 3D-SSM (yellow) and of
the proposed method (green). From left to right, the boxplot pairs represent
the three increasing degradation levels.

These results are in accordance with the observed qualitative results from
Fig. 18. The overall segmentation error from all dislocated initializations is
significantly higher for the profile based method than for the proposed method.
Also, the larger outliers shown in Fig. 18, which were produced by the profile-
based method, are represented in Fig. 20. Errors and outliers increase for the
profile-based method with growing dislocations (yellow boxplots from left to
right), in contrast to the proposed method (green boxplots from left to right).
The same applies for the overall precision of results, which is higher for the
proposed method compared with the profile-based method, and which grows
significantly only for the profile-based method through the different stages of
the experiment.

Altogether, the results from the profile-based method vividly illustrate the
known strong sensitivity of 3D-SSM to model pose changes and to changing
model initializations. In comparison, the results of the proposed method have
shown a strong increase of robustness against model pose changes during seg-
mentation. They display a significantly higher accuracy, and a strong stability
regardless of the chosen magnitude for the initial pose variations. Also, the
results of the proposed method tend to be near the hypothetically observed
optimum of results that were achieved by the proposed method under optimal
model pose conditions.

6.2.3 Capture Range

The second experiment was conducted to evaluate the capture range of the pro-
posed method by using it to perform segmentations from spatially distributed
model initializations across the image domain. The experiment was intended
to determine from which distance the proposed method was successfully at-
tracted to the sought organ of interest during the course of the model fitting.
The achieved capture range of the proposed method was then compared with
the capture range from the profile-based 3D-SSM as detailed in the previous
experiment.

Altered model initializations were generated similarly to the first experi-
ment, but in a distributed image-wide pattern, to obtain a global coverage
of accuracy measurements. Focus was put on the largest coherent area in
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Figure 21: Quantitative comparison of model capture range around
the liver. Left column: the capture range map (cf. Sect. 6.2.3) of the
profile-based method shows a quick loss of accuracy (blue to red coloring) for
initializations with a growing distance from the true liver surface (white con-
tour), as measured by the Tanimoto coefficient (right hand color legend). Right
column: high accuracy is achieved by the proposed method from initializations
in a wide area around the liver (dark blue area).

which the proposed model fitting could be started while still sustaining a high
reproducibility of results.

The experiment was conducted for the liver, for the spleen and for the right
kidney. To perform segmentations of the liver, one of the trained cross valida-
tion models from the previous section was selected for which a test image was
available in the DKFZ_LIVER dataset that was sufficiently large for use in
the capture range experiment. In case of spleen and right kidney, trained mod-
els from the multi-organ segmentation experiments in Sect. 6.4.1 were chosen
to conduct the segmentations. Here, as a sufficiently large image volume for
the capture range experiment, an image was chosen from the DKFZ_LIVER
dataset for which gold standard annotations of spleen and right kidney were
available outside the training set of the selected models.

The chosen volumes spanned 512× 512× 394 voxels with in-plane spacing
of 0.59 mm × 0.59 mm and inter-slice distance of 1 mm in case of the liver,
and 512× 512× 414 voxels with in-plane spacing of 0.71 mm× 0.71 mm and
inter-slice distance of 1 mm in case of spleen and right kidney. Both images
covered the abdominal and pelvic regions. In this scenario, the capture range
of the proposed long distance model fitting could be tested to a considerable
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extent. Also, the applicability of the proposed method from an arbitrary model
placement in the image could be demonstrated, without relying on a previous
model initialization. Finally, this setting also allowed insight to the actual
capture range in comparison with the chosen detection range during training.

Distributed model placements were sampled for each organ in a regular grid
pattern throughout the image volume. Different numbers of initializations
were involved for the organs depending on their size, i.e. less placements were
required for the liver to cover the entire image due to its bigger size (n = 150 for
the liver, n = 250 for the spleen, n = 255 for the right kidney). Also, random
rotations were applied to all model initializations. Finally, segmentations were
conducted from the generated model initializations by both methods.

For a performance evaluation at the distributed starting positions, a capture
range map was generated. There for each model initialization, the Tanimoto
coefficient of the subsequent segmentation was determined in comparison with
the ground truth, an then mapped back to all voxels that were originally
covered by the initial model placement. Tanimoto scores were accumulated
for voxels where several model placements initially overlapped prior to seg-
mentation. The accumulated scores were then averaged over the number of
overlapping surfaces.

Figs. 21 - 23 show cross-sections of the capture range maps that were
produced by both methods for the liver (cf. Fig. 21), for the spleen (cf.
Fig. 22) and for the right kidney (cf. Fig. 23). The capture range maps
of the profile-based 3D-SSM show unsteady results for all three organs from
the distributed initializations (cf. Fig. 21 - 23, left columns). Furthermore,
the capture range of the profile-based 3D-SSM was strictly limited to a local
neighborhood around these organs. In contrast, the capture range maps of the
proposed method show that steady results were obtained across a large and
coherent area of the entire image (cf. Fig. 21 - 23, right columns). Thus, a
large gain of capture range was reached by the proposed method over the local
capture range of the profile-based 3D-SSM.

Different capture ranges of the proposed method were observed for the ex-
amined organs. For the liver, the achieved capture range roughly spanned the
upper two thirds of the image volume. In accordance with the limited sam-
pling radius chosen during training (cf. Tab. 1), the capture range of the long
distance model fitting faded in the lower third of the image. There were still
distant areas that exhibited sustained accuracy, due to parts of the surface
model that were still within capture range as discussed in Sect. 5.3. From
these positions, the subsequent model fitting lead the surface model towards
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Figure 22: Quantitative comparison of model capture range around
the spleen. Left column: the capture range map (cf. Sect. 6.2.3) of the
profile-based method shows a quick loss of accuracy (blue to red coloring) for
initializations with a growing distance from the true spleen surface (white con-
tour), as measured by the Tanimoto coefficient (right hand color legend). Right
column: high accuracy is achieved by the proposed method from initializations
within a wide area around the spleen (dark blue area).

the target organ during segmentation. However, the reliability for starting
positions in this part of the image was compromised, and it vanished for the
corner regions. Altogether, the observed capture range clearly exceeded the
range of samples provided during training.

For the spleen, a similar capture range was observed as in the liver case.
Similarly for the spleen, the actual capture range clearly exceeded the range of
samples provided during training. The results for the right kidney differed from
the other organs, i.e. a smaller capture range was produced. In particular, the
range rather matched the range of training samples that was provided during
training. Still, a constant high reproducibility of results was reached when the
model fitting was started from within the most part of the abdominal area,
while it faded in the pelvic region of the image.

6.3 Segmentation Performance
The goal of the following experiments was to evaluate the benefit of the pro-
posed omni-directional search on the segmentation performance of 3D-SSM.
Their purpose was to address the visibility problem of 3D-SSM, where the
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Figure 23: Quantitative comparison of model capture range around
the kidney. Left column: the capture range map (cf. Sect. 6.2.3) of the
profile-based method shows a quick loss of accuracy (blue to red coloring) for
initializations with a growing distance from the true surface of the right kidney
(white contour), as measured by the Tanimoto coefficient (right hand color
legend). Right column: high accuracy is achieved by the proposed method
from initializations within a wide area around the right kidney (dark blue
area).

unidirectional detection of meaningful landmark positions was again strongly
dependent from model pose during segmentation. As a consequence, 3D-SSM
were prone to be stuck in local optima during the iterative segmentation pro-
cess. The omni-directional landmark detectors of the proposed method were
intended to perform a more global search for landmark positions from changing
model pose, and thus to better avoid local optima during segmentation.

To assess this effect, liver segmentation experiments were conducted on the
DKFZ_LIVER dataset. Results of the proposed method were compared with
the profile-based 3D-SSM from the previous experiments (cf. Sect. 6.2). The
chosen reference 3D-SSM and its main characteristics as a typical profile-based
3D-SSM will be detailed in Sect. 6.3.2.1. The experiments and their findings
will be detailed in Sect. 6.3.2.

Finally, the resulting performance of the proposed method was compared
with current liver segmentation approaches in a public segmentation challenge.
Achieved results and a description of the competing methods of the challenge
will be presented in Sect. 6.3.3.
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Table 4: Parameter setting for the profile-based reference method.
In addition, a model initialization method with an optimized parameter setting
is used prior to the segmentation with the shown model-fitting parameters. Cf.
Sect. 6.3.2.1 and [147], [157] for further details.

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
4 dmax < 4.0mm - - 6 10
3 dmax < 2.0mm - - 6 10
3 dmax < 0.3mm 0.01 1 6 10
2 dmax < 0.4mm 0.02 2 6 10
2 dmax < 1.0mm 0.05 2 6 10
2 I = 50 0.10 2 6 10
1 I = 50 0.10 2 6 10
0 I = 20 0.10 2 6 10

6.3.1 Data Material
For the first part of liver segmentation experiments, the DKFZ_LIVER dataset
was used as described in Sect. 6.2.1. The dataset comprises 45 CT volumes
(DKFZ_LIVER) of the human liver, with in-plane resolutions ranging from
0.55 mm to 0.80 mm and with an interslice distance of 3.0 mm and of 5.0 mm
in some cases. Contrast agent was applied, and images were acquired at the
central venous phase.

For the participation of the proposed method in the MICCAI 2007 liver seg-
mentation challenge ’Sliver’, the publicly available challenge dataset was used
(MICCAI_LIVER) (cf. [186] for details). The dataset comprises 30 contrast-
enhanced, abdominal CT images, which are also part of the DKFZ_ABDOM
dataset as described in Sect. 6.2.1. 10 images were chosen by the challenge
organizers for testing and for evaluation.

6.3.2 Non-Local Search Capability
6.3.2.1 Reference Method

As a reference method for comparison with the proposed method, a profile-
based 3D-SSM was chosen [147], [188] of a type that is often encountered in
many image segmentation applications. In contrast to the proposed non-local
landmark appearance modeling, to the employed random forest regressors,
and to the omni-directional search during segmentation, the chosen reference
method solely relies on a local boundary appearance modeling, on a kNN
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classifier training and on a unidirectional search during segmentation. Thus
with regard to the common visibility problem of previous 3D-SSM, the effect
of the proposed omni-directional landmark detectors can directly be assessed
from the comparison.

Apart from this, the compared method does not introduce compensatory
measures to take influence on search and on model fitting at different surface
parts. However, an anisotropic diffusion filtering step was applied to the under-
lying CT images, which has a homogenizing effect on the sampled line profiles.
The filtering was not applied to the input data of the proposed method.

The chosen reference approach includes an automatic model initialization
step, based on an evolutionary optimization of model shape and pose param-
eters. Parameters are vector-encoded, and randomly perturbed during evolu-
tion based on a Gaussian distribution. Solutions are selected based on their
fitness value which is defined on landmark-wise posterior probabilities pi(b|gi)
as determined by the previously trained kNN-classifier. An optimal set of
parameters for the evolutionary optimizer was determined experimentally in
the previous study of [157], comprising an optimization of 10 shape param-
eters, a population size of 1000, an evolutionary optimization throughout 25
iterations with convergence speed of ν = 10, an initial Gaussian perturbation
factors of σ0 = 0.6 which was linearly decreased to a final perturbation factor
of σ = 0.905, and a scaling factor for the translation perturbation of σtrans = 10
(cf. [147], [157] for further details).

During segmentation, the reference method employs the same profile-based
model adaptation like the final model fitting step of the proposed method,
where subsequently to the previous omni-directional search of the sparse model,
a linear search for all surface landmarks is performed using estimates from
the previously trained kNN-classifier. This also includes the surface mesh
deformation approach that is based on the proposed physical model and on
the graph-cut based candidate selection as described in [157].

Tab. 5, Sect. 6.1.2, and Tab. 4 show the parameter settings that were used
for a segmentation with the proposed method and with the chosen reference
method. Parameters were determined empirically to obtain best results for
both methods, which was done for the proposed method as part of this thesis,
and for the reference method in the earlier studies of [147], [157].

6.3.2.2 Experimental Setup

To evaluate how both methods cope with the presence of local optima dur-
ing segmentation, three cross validation experiments were performed on the
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Table 5: Parameter setting for liver segmentation on the DKFZ_-
LIVER dataset with the proposed method. Regression voting (top) and
profile-based adaptation (bottom).

LOD Stopping Criterion δ s σ Shape Parameters
0 dmax < 1.0mm - - 22.0 1
1 dmax < 1.0mm 8.0 - 15.0 15
2 dmax < 1.0mm - - 15.0 39

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
3 I=50 - - 6 34
2 I=50 - - 6 34
1 I=50 - - 12 34
2 I=50 0.1 1 6 34
2 I=50 0.1 1 6 15
1 I=50 0.1 1 6 15
0 I=50 0.1 1 6 15

DKFZ_LIVER dataset, where 9 sets of 5 images were excluded from train-
ing each time for subsequent segmentation testing. First, both methods were
started from the automatic model initialization as provided by the profile-
based method. For the proposed method in this case, the long distance model
fitting was omitted, and segmentation was run from the first detailed stage
(LOD=1) of the multi-resolution approach. This allowed a comparison of how
both methods cope with suboptimal solutions under the same initial conditions
for the subsequent iterative search, while differences between the automatic
model initialization of the profile-based method and the detection outcome of
the proposed long distance model fitting were removed.

In a second setting, the proposed method was started like in the previous
setting, but from a 0.5 downscaled pose of the provided model initialization.
The rationale behind this was that a large capture range was observed for the
proposed model fitting in LOD=1, when started from rough placements inside
the organ of interest. This trait represents an additional degree of freedom of
the proposed model fitting which can be utilized during segmentation. The
downscaling then acts as a step from the provided model initialization towards
a more neutral initial placement.

In the final setting, the proposed method was applied throughout all LODs,
including the initial long distance model fitting. The latter then provides
intrinsic starting conditions for the subsequent higher LODs, as intended by
the employed multi-scale approach. Altogether, the three experiments allow an
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Figure 24: Improvement of accuracy by the proposed omni-directio-
nal search. In a 9-fold cross-validation on 45 CT volumes, significantly better
solutions were found for the liver segmentation task by the proposed method
(green) in comparison with the profile-based 3D-SSM (yellow), when started
without long distance model fitting from the same initialization (Proposed ini-
tialized), after initial down-scaling by factor 0.5 (Proposed initialized, scaled),
and from the outcome of the previous long distance model fitting (Proposed).
∗∗ : p < 0.01 as assessed with Wilcoxon’s signed rank test.

assessment of how the iterative omni-directional search in the higher levels of
detail (LOD=1,2) of the proposed method copes with local optima during the
presented liver segmentation: once under the same conditions as the profile-
based method, with and without utilizing the intrinsic scaling step; and once
using its own long distance model fitting to provide suitable starting conditions.

6.3.2.3 Results

Fig. 24 shows the achieved Tanimoto coefficients of the profile-based method
and of the proposed method in all three settings. Overall in each setting,
solutions were found by the proposed omni-directional search that were sig-
nificantly closer to the global optimum in comparison with the solutions from
the profile-based method. Apart from one respectively two outliers produced
by both methods, the proposed method found better solutions (with Tanimoto
coefficients ≥ 0.92) for the worst cases of the profile-based method (with Tan-
imoto coefficients of < 0.89). This roughly accounted for the lower quartile of
cases from the profile-based method (10 cases out of 45).

The same benefits were reached regardless of the starting conditions of the
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proposed omni-directional search, and segmentation accuracy of the proposed
method remained highly similar under the differing conditions, except for the
occurrence of outliers. Regarding the latter, an improvement was achieved by
the applied scaling step (one outlier with a Tanimoto coefficient of ∼ 0.83) in
comparison with the segmentations that were started from the provided model
initialization (two outliers with Tanimoto coefficients of < 0.82), and more so
by using the long distance model fitting of the proposed method (one outlier
with a Tanimoto coefficient of ∼ 0.89). All improvements were significant with
a p-value < 0.01 as assessed with Wilcoxon’s signed rank test.

Fig. 25 shows cross section examples of the segmentations as produced
by the profile-based method (yellow) and by the proposed method (green), in
comparison with the ground truth (red contour). The upper row represents
cases where a good solution was found by both methods. The middle row
represents cases where solutions found by the proposed method were closer
to the global optimum than the solutions produced by the compared method.
This example illustrates a typical case where the profile-based 3D-SSM gets
caught in a local optimum during the iterative model fitting. Part of the surface
model gets attracted to erroneous landmark positions nearby, whereas more
meaningful positions remain out of scope. The bottom row represents cases
where no suitable solution was found by either method (3 out of 45 cases).
In contrast to the aforementioned cases, the depicted segmentation error is
caused by a very low contrast between the liver and the adjacent stomach,
which makes a correct delineation highly challenging.

6.3.3 Performance Comparison

In the second experiment, the performance of the proposed method was com-
pared with other approaches in the public liver segmentation challenge SLIVER.
The goal of this comparison was to put the performance of the proposed
method into perspective with a variety of state-of-the-art liver segmentation
methods, and to compare their underlying system designs. Thus, better insight
can be gained on how optimal results are commonly achieved in specific seg-
mentation scenarios like the presented one, and how the compared algorithms
can be assessed with regard to their generalizability to other tasks.

In the SLIVER challenge, more or less than 50 contributions have been
made for the automatic liver segmentation task since 2007. For the perfor-
mance analysis of this section, approaches were selected that performed best
at the time when the proposed method participated in the challenge (as of
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Figure 25: Qualitative comparison of CT liver segmentations. Re-
sults of the proposed method (green contour) and of the compared profile-based
method [147] (yellow contour), in comparison with the ground truth (red con-
tour). From left to right: sagittal, coronal and axial slices of results. Top
row: an example where both methods achieved good results. Middle row: an
example for those cases where a better solution was found using the omni-
directional search of the proposed method. Bottom row: a difficult case where
no suitable solution was found by neither method (3 out of 45 cases). All cases
are shown with an intensity window of [-65, 385] HU.
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Table 6: Parameter setting for liver segmentation on the MIC-
CAI_LIVER dataset with the proposed method. Regression voting
(top) and profile-based adaptation (bottom).

LOD Stopping Criterion δ s σ Shape Parameters
0 dmax < 1.0mm - - 15.0 1
1 dmax < 1.0mm 8.0 - 15.0 15
2 dmax < 1.0mm 8.0 - 15.0 61

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
3 I=50 - - 6 39
2 I=50 - - 6 39
1 I=50 - - 12 39
2 I=50 0.1 1 6 39
1 I=50 0.1 1 12 39
0 I=50 0.1 1 12 39

May 2016). To reach high performance in the presented liver segmentation
task, some of the methods rely on single segmentation techniques, whereas
others involve complex hybrid systems. The majority of all methods are algo-
rithmically designed for the liver segmentation task at some point, and only
few methods are expected to be applicable to other tasks just by changing the
segmentation parameters that had been optimized for the SLIVER challenge.

For the challenge participation, the segmentation parameters of the pro-
posed method were determined empirically for best performance on the liver
segmentation task of the challenge. Tab. 6 shows the resulting parame-
ter setting for the proposed method. For model training, a subset of the
DKFZ_LIVER dataset was used where the test cases of the MICCAI_LIVER
dataset had been excluded (cf. Sect. 6.3.1). In addition, 27 CT liver annota-
tions were added from another set of abdominal CT images (UHP_LIVER),
which were acquired during clinical routine at the University Hospital of Hei-
delberg, resulting in a total of 62 liver cases. Annotations on the second dataset
were produced by a medical student in accordance with the annotations of the
DKFZ_LIVER dataset.

Tab. 7 and 8 show the segmentation results and the achieved challenge
scores of the proposed method and of the competitors on the test dataset.
Tab. 7 lists the mean volume- and surface-based quality measures from Sect.
6.1.1.2 for all competitors. For each of these volume- and surface-based evalu-
ation measures, Tab. 8 presents a corresponding score from the scoring system
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Table 7: Quantitative results from the MICCAI liver segmentation
challenge SLIVER. Volumetric overlap error VOE (based on the Tanimoto
metric), volumetric difference VD, average surface distance AvgD, root mean
square distance RMSD, and maximum surface distance MaxD. Methods are
sorted by the achieved total score in the challenge (cf. Tab. 8). The best
averaged values in each category are highlighted.

Segmentation method VOE [%] VD [%] AvgD [mm] RMSD [mm] MaxD [mm]
Al-Shaikhli et al. [143] 6.44 1.53 0.95 1.58 15.92
Li et al. [142] 6.07 0.00 0.97 1.82 17.49
Lu et al. [189] 5.90 2.70 0.91 1.88 18.94
Proposed 5.90 1.17 0.98 2.08 21.63
Kainmueller et al. [110] 6.09 -2.86 0.95 1.87 18.69
Wimmer et al. [129] 6.47 1.04 1.02 2.00 18.32
Linguraru et al. [190] 6.37 2.26 1.00 1.92 20.75
Wang et al. [191] 7.57 -1.83 1.23 2.08 19.07
Wu et al. [145] 7.87 1.31 1.29 2.50 23.56
Erdt et al. [144] 8.62 1.32 1.54 3.13 25.90
Heimann et al. [147] 7.73 1.66 1.39 3.25 30.07

of the SLIVER challenge. The score takes the inter-observer variability of a
second human rater into account (cf. Sect. 6.1.1.2). That is, for each quan-
titative performance measure, 100 points are assigned if the measure matches
those of the first expert rater, 75 points if the discrepancies to the first rater
are comparable with those from the less-experienced secondary rater, 50 points
for double discrepancies than from the secondary rater etc. The highest scores
for each performance measure are highlighted in the table. Note that in case
of the volumetric distance measure, a total value closer to zero does not neces-
sarily imply a higher score in the scoring system, if for example larger positive
and negative discrepancies level themselves out. Thus, it is more desirable to
achieve a high accuracy of the liver volume estimate for every patient, rather
than estimating a closer mean for all patients in the dataset.

The first five methods in Tab. 8 achieved total scores of more than 77
points. Their performances differ across the examined performance measures.
The overall best volume overlaps and volumetric distances are achieved by the
proposed method. Also best in volume overlap, in conjunction with the best
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Table 8: Inter-rater scores for the participants of the SLIVER seg-
mentation challenge. 75 points for results that reach the quality of a sec-
ondary human rater based on the ground truth of a primary human rater. The
best scores are highlighted in each category. Note that the highest score for
the volumetric distance (VD).

Segmentation method VOE-Scr VD-Scr AvgD-Scr RMSD-Scr MaxD-Scr Total Score
Al-Shaikhli et al. [143] 74.9 89.7 76.2 78.1 79.1 79.6
Li et al. [142] 76.3 88.0 75.8 78.0 77.0 77.8
Lu et al. [189] 77.0 85.6 77.3 73.8 75.1 77.8
Proposed 77.0 91.6 75.6 71.1 71.5 77.4
Kainmueller et al. [110] 76.2 84.7 76.3 74.0 75.4 77.3
Wimmer et al. [129] 74.7 86.4 74.5 72.3 75.9 76.8
Linguraru et al. [190] 75.1 85.0 74.9 73.4 72.7 76.2
Wang et al. [191] 70.4 88.7 69.2 71.1 74.9 74.9
Wu et al. [145] 69.3 85.7 67.9 65.3 69.0 71.4
Erdt et al. [144] 66.3 91.6 61.6 56.5 65.9 68.4
Heimann et al. [147] 69.8 87.9 65.2 54.9 60.4 67.6

average surface distance, favorable results are obtained by the method from
[189]. Best root mean square and maximum surface distances are scored by
the two methods from [142], [143], with an overall best performance achieved
by the method from [143].

In the group of the automatically learning based 3D-SSM, higher perfor-
mance was reached with boosted regressors as proposed in [129] and with
regression forests by the proposed method, in comparison with the previous
kNN classifiers [147]. The use of thorough use-case tailoring for 3D-SSM as
in [110] has outperformed the more generalizable machine-learning based ap-
proaches for a long time. However, competitive results could be achieved by
the proposed methodology.

Tab. 9 shows an overview of algorithmic components from competitors that
rely on a 3D-SSM as their major method of segmentation. Except for their
intrinsic 3D-SSM-based techniques, they refrain from additional segmentation
methods to reach higher accuracy. In the listing, techniques are highlighted
that are expected to cause significant extra effort in addition to the usual
parameter adaptation of 3D-SSM to other use-cases, or where chances of suc-
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Table 9: 3D-SSM participants in the MICCAI liver segmentation
challenge SLIVER. Components are highlighted that are expected to cause
significant extra effort in addition to the known parameter tuning of the typical
3D-SSM model fitting.

3D-SSM Appearance Modeling Model fitting Model initialization
Feat.Selection Training

Kainmueller et al. [110] Manual Manual Profile-based Gen.Hough Transf.
Erdt et al. [144] Manual Automatic Rule-based Heuristic
Heimann et al. [147] Manual Automatic Profile-based Evolut.Optim.
Wimmer et al. [129] Automatic Automatic Level-Set Boosted Class.+Heuristic
Proposed Automatic Automatic Regression-based —

cess are generally unclear. In detail, the 3D-SSMs from [110], [144] rely on an
expert selection of image features after an analysis of tissue intensities and his-
tograms of the underlying image data. Alternatively, an optimal set of features
is identified through experimental segmentation of test images in [147]. During
the appearance model training, the method from [110] increases segmentation
performance by a heuristic surface-dependent modeling of liver appearance
while building on expert knowledge on the specifics of the shape-model based
liver segmentation into account. During model fitting, the method from [144]
employs a rule-based approach, where different parts of the surface model
can be governed separately by adapting a suitable set of control parameters.
Thereby, the influence from unfavorable starting placements on the outcome
of the model fitting can be compensated. Finally, for a suitable model initial-
ization, some techniques rely on heuristic basic assumptions [110], [144], while
in [147], an initialization technique is used where an immediate application to
other organs is unclear. However in this regard, more generalizable methods
for model initialization have been proposed that could be chosen to remove this
limitation. Only the 3D-SSM from [129] and the proposed method are entirely
based on techniques that support an easier application to different use-cases.
Both methods rely on flexible machine learning and on an automatic selec-
tion of meaningful features during training for this purpose. The method from
[129] employs an additional model initialization step in conjunction with minor
heuristics. The initialization step should however in theory be applicable to
other organs as well.
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Tab. 10 shows a similar listing for hybrid segmentation systems that rely
on an apt combination of different algorithms for the liver segmentation task,
together with the 3D-SSM based approaches from Tab. 9. The highlighted
entries indicate components that are expected to undergo significant modifi-
cations prior to an application in other segmentation scenarios. The changes
are considered to require substantial expert knowledge on algorithm design,
in addition to a larger number of free parameters and strong basic assump-
tions. All methods are ordered by their achieved total score in the SLIVER
challenge. The approaches from [142], [189] employ a combination of differ-
ent algorithms, which includes image preprocessing, heuristic detection of the
liver, a convolutional neural network designed for the classification task [189],
a 3D-SSM based shape constraint [142], and a graph cut segmentation. The
method from [143] incorporates complexity through its level set formulation
designed for the task, apart from a heuristic liver detection. The 3D-SSM from
[110] includes heuristic tailoring of liver appearance prior to its application (cf.
Tab. 9).

Altogether in addition to its independence from model initialization and its
intended easier applicability, the proposed method has also shown the potential
to reach a high segmentation accuracy in specific use-cases like the presented
liver segmentation task, by means of the search capabilities of the employed
omni-directional landmark detectors.

6.4 Generalizability

6.4.1 Multi-Organ Segmentation
The generalizability of the proposed method was first evaluated in a multi-
organ segmentation task. The segmentation of several different organs in 3D
images is highly relevant for many clinical applications. Important applications
include target and risk structure annotation for radiotherapy planning [192]–
[194], assessment of patient geometry as a boundary condition for path plan-
ning in robotic surgery [195], [196], anatomical subdivision for the detection
of anomalies like tumors [197], and support for higher level feature extraction
in radiomics [198].

Different methodologies for the task of multi-organ segmentation have been
proposed in the literature. They comprise multi-atlas segmentation techniques
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Table 10: Overview of the examined challenge participants in the
MICCAI liver segmentation challenge SLIVER. Components are high-
lighted that are expected to require significant changes to the underlying al-
gorithmic components in order to be applicable to other use-cases.

Method Shape constraint Graphcut
Voxel Classifier/
Image Partitioning Preprocessing Organ detection

Al-Shaikhli et al. [143] Level-Set — — — Heuristic
Li et al. [142] SSM × — × Heuristic
Lu et al. [189] — × CNN × —
Proposed SSM — — — —
Kainmueller et al. [110] SSM — — — Gen. Hough Transform
Wimmer et al. [129] SSM/Level-Set — Boosted Classifiers — Boosted Class.

+Heuristic
Linguraru et al. [190] Level-Set/Act.Cont. (×) — × Norm. Mutual Inform./

Prob. Atlas
Wang et al. [191] Level-Set — Prob. Atlas - MAP × Norm. Cross Corr./

Prob. Atlas
Wu et al. [145] — × Supervoxels (SLIC) × Heuristic
Erdt et al. [144] SSM — — — Heuristic
Heimann et al. [147] SSM — — — Evolut. Optimization

[199], deep learning applications [194], and shape priors in conjunction with
a previous organ detection and model initialization. The latter is often pro-
vided by atlas-registration techniques or learning-based organ detection meth-
ods [149], [154]. These shape-prior based approaches are typical examples
for the use of combined high-level techniques as a basis for the subsequent
application of 3D-SSM during segmentation. They follow the rationale of ad-
ministering optimal conditions for 3D-SSM which are generally highly sensitive
to the provided conditions. Particularly in [154], the employed 3D-SSM were
mainly utilized to support the overall segmentation by the built-in shape prior,
and a graph-cut method was subsequently used to perform the final surface
delineation.

The application of the proposed method in the multi-organ segmentation
task involves a different approach. Instead of a complex support from methods
that are supposed to provide optimal conditions for the previous susceptible
3D-SSM, the proposed method builds on its more robust search and model fit-
ting capabilities to autonomously perform the segmentation task. This makes
an application of the proposed method independent from the previous complex
initialization methods. However, an application for multi-organ segmentation
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also rises a number of challenges for the non-local appearance modeling and
for the trained landmark detectors of the proposed method. They must detect
organs at variable positions and with changing neighborhoods, and they must
cope with morphological variabilities, with differing image sizes and heteroge-
neous imaging qualities. Regarding landmark detection and surface delineation
accuracy, the proposed method is required to generalize across the differing or-
gans without need for modifications of the appearance model training or of the
model fitting procedure.

For the actual segmentation task, the proposed method took part in the
MICCAI 2015 Challenge "Multi-Atlas labeling beyond the cranial vault" [200].
There, different state-of-the-art multi-atlas registration approaches competed
in an abdominal organ segmentation task. The participating methods are ded-
icated to the presented multi-organ segmentation task and involve a variety of
current registration and labeling techniques. Although the challenge specifi-
cally addressed an application of multi-atlas approaches, it was also open for
participation of other methodologies like the proposed 3D-SSM. Its applica-
tion among the atlas-based approaches allowed more detailed insights in the
segmentation characteristics of these completely different methodologies.

6.4.1.1 Data Material

A set of 50 abdominal CT images (MICCAI_MULT) was made publicly avail-
able as part of the MICCAI 2015 Challenge "Multi-Atlas labeling beyond the
cranial vault". Images were acquired based on a colorectal cancer chemother-
apy trial, and a retrospective ventral hernia study at the Vanderbilt University
Medical Center (VUMC) (cf. [200]). Various scanners were involved for image
acquisition. Varying fields of view were encountered in the dataset, ranging
from 280 × 280 × 280 mm3 − 500 × 500 × 650 mm3, comprising volumes of
512 × 512 × 85 − 512 × 512 × 198 voxels across the pelvic and abdominal re-
gions. Images comprise in-plane resolutions of 0.54 − 0.98 mm voxel spacing
and slice distances between 2.5− 5.0 mm.

Different pathologies and anomalies were present in the dataset, such as
tumors, kidney atrophies, unexpected organ positions caused by sudden in-
hale during acquisition, and a previous liver resection. Also in contrast to the
datasets from the previous experiments, this dataset exhibited more heteroge-
neous image qualities in terms of contrast, noise and inter-slice distance.

For the challenge, gold standard annotations of the abdominal organs had
been created through manual labeling by trained raters under the supervision
of medical experts from radiology and radiotherapy. 30 training and 20 test
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images were selected from the labeled datasts such that random images from
all scanner types were represented in both sets.

6.4.1.2 Challenge Outline

The presented segmentation challenge was designed with a special focus on
multi-atlas approaches. These methods involve a registration of multiple an-
notated atlases to the target images. Segmentations are then retrieved from
the atlas labels that have been mapped to the target image domain. Segmenta-
tions from typical multi-atlas based methods naturally build on a voxel-based
representation, i.e. they focus on a meaningful membership of voxels to a
segmentation volume rather than on a meaningful surface definition.

Two categories of segmentation tasks were offered by the challenge organiz-
ers. The standard competition focused on an evaluation of the labeling step
after successful image registration. Registration of the training atlases to the
test images was to be used as provided by the challenge organizers. In the free
competition, the joint performance from the registration and label fusion steps
was evaluated. No predefined registration had to be used, and segmentations
were freely produced by all methods on the test dataset. This was therefore
also the category for non-atlas based participants such as the proposed method.

The challenge ranked results from the different competitors based on volume
overlap performance as measured by the Dice coefficient. Apart from the Dice
coefficient for the ranking, average surface distance and Hausdorff distance (cf.
Sect. 6.1.1.2) were also evaluated. The underlying manual annotations of the
challenge dataset put an emphasis on a multi-atlas based segmentation. They
were defined such that many of the inner details of the labeled organs were
excluded from the larger organ. This concerns e.g. larger parts of the hepatic
vessel tree and the renal calix. Atlas-based approaches take these details natu-
rally into account during segmentation, since the labeled atlases that are used
for target registration also contain these details. Model-based methods usually
exclude inner details from their surface representation, which means that their
results systematically include parts in the segmentation that are excluded in
the ground truth. This systematically affects the achieved accuracy measures,
which has to be considered in the presented challenge scores.

6.4.1.3 Challenge Participants

Several multi-atlas based approaches were proposed for the presented multi-
organ segmentation task:
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• CLSIMPLEJLF: Corrective learning and simple joint label fu-
sion [201]. The method had been particularly successful in two previous
segmentation challenges. It won the 2012 Multi-Atlas Labeling Challenge
for brain image segmentation, and it was one of the leading methods in
the 2013 MICCAI Segmentation: Algorithms, Theory and Applications
(SATA) challenge. It is based on a label fusion by means of a weighted
voting strategy. Label-fusion approaches have previously been shown to
be particularly successful in many image segmentation tasks (cf. [202]),
and brain segmentation results at inter-rater reliability levels were re-
ported using multi-atlas label fusion [201]. For the weighting of the label
fusion, the use of spatial weighting patterns was proposed, which take
intensity similarities between atlas and target images into account [203].
Furthermore, in the proposed corrective learning algorithm, an AdaBoost
classifier was trained to discriminate between true and false labelings of
the previous primary segmentation method, thus learning from its seg-
mentation errors for later correction at runtime. For this purpose, results
from the primary segmentation method in conjunction with underlying
ground truth annotations were used as training data [201].

• PATH: An extension of CLSIMPLEJLF, introducing auto con-
text for corrective learning [204]. To take contextual information
into account during the corrective learning step, an auto context classifier
was proposed as introduced in [205]. It involves a cascade of trained clas-
sifiers where the output of the preceding stage is taken as an additional
input image for the subsequent training stage. Thus, common segmen-
tation errors of the trained classifiers are being corrected iteratively, by
taking both the original image patterns and contextual information from
the preceding classifier results into account. A significant improvement
of segmentation performance had been reported by using this approach
for the corrective learning as used by PATH [204]. PATH was the over-
all winner of the challenge’s standard registration category as described
above.

• IMI_deeds_SSC: self similarity context and dense displace-
ment sampling [206]. The method involves an extension of self sim-
ilarity descriptors, which were proposed in [207] to provide a multi-
modal feature representation by means of self-repeating structural pat-
terns. The descriptor is used to define a similarity metric for the atlas-
registration. That is, a dense displacement field is optimized based on
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the chosen similarity metric, and smoothness constraints are imposed
through efficient inference on a Markov Random Field. IMI_deeds_SSC
was the overall winner of the challenge’s free category as described above.

• Deepseg: Combined multi-atlas registration and convolutional
neural network approach [208]. A multi-atlas labeling technique
[209] was used to provide an initial region of interest within each of the
encountered organs. Based on the initialization, a previously trained
CNN was employed in a region growing fashion. New voxel candidates
were selected in each iteration for classification by the trained CNN,
based on a dilation of regions that had previously been assigned object
labels by the CNN with a probability larger than 0.5. A final segmenta-
tion was retrieved after thresholding and connected component analysis.

Altogether, the described challenge participants represented a current vari-
ety of state-of-the-art multi-atlas segmentation methods, incorporating effec-
tive and successful concepts from label fusion, corrective and context learning,
innovative feature description and integration of deep in the multi-atlas la-
beling approach. Details on the participation of the proposed method in the
segmentation challenge will be presented in the following.

6.4.1.4 Experimental Setup

The proposed method was used for spleen, liver and left kidney segmentation
in the presented challenge. For the spleen, a model of the proposed method
was trained on the MICCAI_MULT dataset and additionally on 35 spleen an-
notations of the DKFZ_LIVER dataset (total of 65 training examples). For
the liver, a model was trained on 28 training examples from the the MIC-
CAI_MULT dataset, and from an additional 25 images of the DKFZ_LIVER
dataset, where the vena cava had been removed from the underlying training
examples by manual annotation, in order to match the requirements of the chal-
lenge for the liver segmentations (total of 53 training examples). For two train-
ing examples from the MICCAI_MULT, the employed surface model training
was not immediately applicable due to particularities of the surface geometry
that impeded spherical parameterization of these meshes (cf. Sect. 3). For the
kidney, a model was trained on 25 training examples of the MICCAI_MULT
dataset, on 15 manual annotations of the kidney from the DKFZ_LIVER
dataset, and on 5 manual annotations of the UHP_LIVER dataset (cf. Sect.
6.3.3) (total of 45 training examples). 5 training examples were excluded from
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Table 11: Parameter setting for spleen segmentation on the MIC-
CAI_MULT dataset with the proposed method. Regression voting
(top) and profile-based adaptation (bottom).

LOD Stopping Criterion δ s σ Shape Parameters
0 dmax < 1.0mm - - 8.0 1
1 dmax < 1.0mm 8.0 0.5 8.0 1
2 dmax < 1.0mm 7.0 - 8.0 15

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
2 I=100 - 1 6 10
1 I=50 - 1 6 10
1 I=50 0.1 2 6 10
2 I=50 0.03 2 6 10
1 I=50 0.1 2 6 10
0 I=50 0.1 2 6 10

the MICCAI_MULT dataset for the same reasons as described for the above
liver training examples.

Like in the remaining experiments of this thesis, the proposed method was
used without previous model initialization. During segmentation, based on the
forest parameters from Tab. 11 - 13. Model fitting was conducted organ-wise
with segmentation parameters shown in Tab. 1, starting with the liver from
the center of the image volume, followed by the spleen and by the left kidney.
Results of the proposed method were compared with the results from the other
competitors based on the provided evaluation system of the challenge.

6.4.1.5 Segmentation Results

Fig. 26 shows the Dice ranking of the challenge participants in the examined
organ categories of the free competition, and additionally the results of the
winner in the standard competition (PATH) [211]. In detail, the proposed
method achieved the best rank for the spleen segmentation, the second best
rank for the liver segmentation, and the fourth rank for the left kidney seg-
mentation. IMI_deeds [206] achieved the best rank in the liver segmentation
category, and the best rank in the left kidney segmentation category. It was
also the overall winner of the challenge’s free competition. The winner of the
standard competition, PATH [211], reached third ranks in the liver, spleen and
left kidney segmentation categories. Deepseg [208] reached the second best re-
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Table 12: Parameter setting for liver segmentation on the MIC-
CAI_MULT dataset with the proposed method. Regression voting
(top) and profile-based adaptation (bottom).

LOD Stopping Criterion δ s σ Shape Parameters
0 dmax < 1.0mm - - 15.0 1
1 dmax < 1.0mm 8.0 - 15.0 15
2 dmax < 1.0mm 8.0 - 15.0 15

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
3 I=75 - 1 6 61
2 I=50 - - 6 15
2 I=50 0.04 2 12 15
1 I=50 0.05 2 12 15
0 I=50 0.05 2 12 15

Table 13: Parameter setting for left kidney segmentation on the
MICCAI_MULT dataset with the proposed method. Regression vot-
ing (top) and profile-based adaptation (bottom).

LOD Stopping Criterion δ s σ Shape Parameters
0 dmax < 1.0mm - - 6.0 1
1 dmax < 1.0mm 6.0 0.5 6.0 5
2 dmax < 1.0mm - - 6.0 15

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
2 I=50 - 1 12 5
1 I=50 - 1 12 5
1 I=50 0.1 2 12 5
0 I=50 0.1 2 12 5

126



6.4. Generalizability

0.90

0.92

0.94

0.96

Spleen Liver Left Kidney

D
ic

e 
co

ef
fic

ie
nt

Method
Proposed
IMI_deeds
Deepseg
Path
CLSIMPLEJLF

Figure 26: Results from the MICCAI 2015 Multi-atlas Labeling
Challenge [200]. Dice coefficients in the free competition category for spleen,
liver and left kidney segmentation: IMI_deedsSSC [206] (dark blue, overall
winner in this category), deepseg [208] (yellow), CLSIMPLEJLF [210] (light
blue) and the proposed method (green); also, the winner of the standard reg-
istration category: PATH [211] (orange).

sults in the spleen and left kidney segmentation categories, and has afterwards
also achieved the best results in the liver segmentation category.

At a glance, the recent approaches - IMI_deeds, Path, Deepseg and the
proposed method - clearly outperformed the label fusion approach CLSIM-
PLEJLF that had previously been employed with particular success in brain
segmentation tasks (cf. Sect. 6.4.1.3). The spleen and kidney segmentation
results show a clearer ranking (Dice coefficients ranging from 91.1% - 96.4%
for the spleen, and 90.1% - 91.7% for the left kidney) than the liver segmen-
tation results, where similar scores were reached by all competitors, except by
CLSIMPLEJLF (Dice coefficients ranging from 94.6% - 94.9%). The achieved
quantitative scores result from characteristic aspects of the segmentations as
produced by the different methods, i.e. local segmentation errors, varying
levels of object detail, general delineation accuracy, and handling of outlier
cases.

A qualitative comparison of results from the different methods is shown
in Figs. 27 - 30. They illustrate the aforementioned differences between the
challenge participants for spleen segmentation (Fig. 27), liver segmentation
(Fig. 28), left kidney segmentation and for the segmentation of the earlier
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Figure 27: Differences of spleen segmentations from the competi-
tors. Left column: good segmentation example as produced by the different
methods. Middle column: More meaningful segmentation due to the explicit
shape prior modeling of the proposed method. Right column: better cavity
segmentation by the proposed method. All cases are shown with an intensity
window of [-550, 710] HU.
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Figure 28: Differences of liver segmentations from the competitors.
Left column: detailed vessel exclusion by IMI_DEEDS and Deepseg in contrast
to the proposed method. Middle column: More meaningful segmentation by
the proposed method thanks its explicit shape prior modeling. Right column:
liver lobe sometimes missed by all methods. All cases are shown with an
intensity window of [-550, 710] HU.
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Figure 29: Differences of left kidney segmentations from the
competitors. Left column: Detailed exclusion of the inner cavity from
IMI_DEEDS. Middle column: Excellent tumor separation from IMI_DEEDS.
Right column: Favorable segmentation of higher curvature parts by
IMI_DEEDS and by the proposed method. All cases are shown with an in-
tensity window of [-550, 710] HU.
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Figure 30: Difficult outlier cases in the challenge dataset. Left col-
umn: resected liver case which was probably best handled by Deepseg. Middle
column: atrophic kidneys, where a valid solution is unclear. Right column: el-
evated kidney positioning due to influence from breathhold attempt. All cases
are shown with an intensity window of [-550, 710] HU.
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described outlier cases (Fig. 29). The proposed method is always compared
with the (other) two best performing methods (cf. Fig. 26).

In case of the spleen, the left column of Fig. 27 shows an example for cases
where a highly accurate segmentation was produced by all methods. The
middle row shows a typical segmentation error of the multi-atlas approaches,
where segmented regions leaked into neighboring objects, sometimes across
well-defined object boundaries. These errors were also observed during liver
segmentation by the multi-atlas approaches. They did not occur for segmenta-
tions by the proposed method, due to the intrinsic shape prior of the underlying
3D-SSM. The right column of Fig. 27 shows another typical spleen segmenta-
tion error that was sometimes produced by the multi-atlas approaches, where
surface concavities were partly missed during segmentation. This is also a
known problem of 3D-SSM, but in case of the spleen, it was mainly displayed
by the multi-atlas approaches. The problem was prominent during liver seg-
mentation as well, including the proposed method.

In case of the liver, the left column of Fig. 28 shows the aforementioned
problem of 3D-SSM (cf. Sect. 6.4.1.2), where inner details of the segmented
organ were missing from the trained surface model and were thus regularly
included by the proposed method. In the shown case, this affects the intra-
hepatic vessels, which were in contrast very well detailed by Deepseg and by
IMI_deeds due to their atlas-based label representation. An additional step
that performed a threshold-based segmentation of the portal vein was limited
in its success, leading to an increase of the mean Dice coefficient of 0.05%. The
same problem also occurred during kidney segmentation. Otherwise, the case is
an example for high accuracy achieved by all methods. The middle row of Fig.
28 shows typical errors from segmentation leaks into neighboring objects, as
described above for the spleen segmentation. Results of the proposed method
were not affected by this kind of segmentation error. The right row of Fig.
28 shows the aforementioned under-segmentation of surface concavities that
was sometimes produced by all methods. In case of the liver, Deepseg was
generally least affected by this type of segmentation error.

In case of the kidney, the left column of Fig. 29 shows a case where inner
details of the organ were segmented differently by the challenge competitors.
Parts of the renal cavity could sometimes not entirely be covered by the sur-
face model of the proposed method. Unlike the proposed method and Deepseg,
IMI_deeds produced a very large degree of detail in the kidney segmentations.
The middle column of Fig. 29 shows an encountered tumor case in the chal-
lenge dataset. In contrast to Deepseg and to the proposed method, IMI_deeds

132



6.4. Generalizability

achieved an excellent separation of tumor and kidney tissue. The right col-
umn of Fig. 29 shows a typical case of surface cavity under-segmentation as
produced by Deepseg, and minor delineation inaccuracies as produced by both
multi-atlas approaches.

Three major outlier cases were encountered in the challenge dataset that
were particularly difficult to segment by all segmentation methods. The left
column of Fig. 30 shows a resected liver case. The untypical shape of the
liver, and the unexpected non-liver tissue in place of the removed liver part
lead to false segmentations from all participants. The middle column of Fig.
30 shows a kidney atrophy case, where the mere location of the left kidney was
highly unclear. As a result, intestinal parts were segmented instead by the
different methods. The right column of Fig. 30 shows a particular positioning
of the kidneys right below the diaphragm, which was probably caused by a
strong inhale of the patient at acquisition time. Only parts of the kidney were
segmented by each method, and neighboring structures were partially included
in the segmentation. IMI_deeds clearly produced the least segmentation error
in this case, followed by Deepseg. The proposed method produced the largest
over-segmentation of neighboring structures in the outlier case.

6.4.1.6 Summary and Conclusion

Summarized, for spleen and liver, the proposed method achieved similar or
better segmentation results than the presented state-of-the-art multi-atlas ap-
proaches. In case of the kidney, the proposed method achieved similar quan-
titative results like the standard segmentation category winner PATH, while
better scores were reached by IMI_deeds and by Deepseg. It can be assumed
that for all participants, the overall scores for the liver and kidney segmenta-
tions were notably affected by the shown outlier cases (cf. Fig. 30).

Apart from surface cavities that were sometimes missed by all methods,
the proposed method produced the best overall surface delineations due to its
model-based shape prior, by successfully preventing the occurrence of erro-
neous segmentation leaks. For the same reason, the results of the proposed
method were visually more meaningful than the segmentations from the other
competitors. As a downside of its model-based approach, inner objects de-
tails were not well represented by the proposed method. Also, the shape
prior model lead to a worse handling of the shown outlier cases, because no
meaningful shape could be hypothesized from the encountered morphological
irregularities, and instead, a worse overall solution was chosen in these cases.
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6.4.2 MRI Liver Segmentation
In the segmentation experiment of this section, the proposed method was ap-
plied for liver segmentation in T1-weighted MRI images. The purpose of this
experiment was to examine the generalizability of the proposed method to
imaging modalities that comprise larger inconsistencies of the underlying in-
tensities. In particular, the robustness of the employed Haar-like feature nor-
malization can be assessed (cf. Sect. 4.3.2). For this purpose, MRI data
segmentation is well suited: in contrast to CT data, intensities of variable
scale, as well as local and global inhomogeneities are present in MRI image
data. Also, pronounced soft tissue contrast is found in MRI data compared
with high contrast of bone structures in CT data. Finally due to its wide area
of clinical applications, the modality is of particular interest for the clinical
applicability of the proposed method.

6.4.2.1 Clinical Scenario

The presented liver segmentation task was part of a clinical study (HELENA)
in which the effects of an intermittent calorie restriction were examined on a
number of metabolic parameters and on tissue composition of patients. 150
overweight patients were separated into groups that followed selected dietary
plans, i.e. intermittent calorie restriction, continuous calorie restriction and a
control diet, for the duration of one year. In the course of the study, a number
of parameters were examined, comprising gene expression from subcutaneous
adipose tissue biopsies, changes of metabolic, hormonal, inflammatory and
metagenomic parameters, and image-derived parameters like subcutaneous,
visceral and hepatic fat content (cf. [212] for further details).

The goal of the study was to compare possible benefits and the overall ef-
fectiveness of an intermittent calorie restriction diet with the other dietary
models. The chosen set of genetic, metabolic and image-derived biomarkers
served as a basis for a broader assessment of these effects across the differ-
ent patient groups. For a retrieval of image-based parameters, MRI datasets
were acquired from baseline and follow-up measurements of 150 overweight
patients (50% male, 50% female). Different protocols were used to assess fat
distribution and liver fat content of the patients.

Fat accumulation in the liver is expected to be strongly connected with
observed overall metabolic and body composition changes in the body under
dietary effects. It is directly measurable with the employed imaging protocols,
and therefore as a first step to derive this measurement from the acquired
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Figure 31: Typical bias field inconsistencies in the HELENA dataset.
Bias field with gradient from dorsal to ventral as encountered in the dataset.
A windowing function of [71,156] was chosen for visualization.

images, an automatic segmentation of the liver is required, in order to give
access to the underlying information of interest.

For training and testing of the proposed method in the presented liver seg-
mentation scenario, a subset of the data collective was selected for which man-
ual annotations were provided. The dataset and the applied image acquisition
protocol will be described in the following part.

6.4.2.2 Data Material

A dataset of thoraco-abdominal MRI volumes from 32 patients (LIVER_DI-
XON) was used in this experiment as part of the dataset acquired for the HE-
LENA study. A T1-weighted 3D-VIBE two-point DIXON sequence was used
for image acquisition, to allow an assessment of adipose tissue distribution in
the body. Images were acquired at the Department for Diagnostic and Inter-
ventional Radiology, University Hospital Heidelberg, using a 1.5 Tesla MRI
scanner with 70 cm bore design (Siemens MAGNETOM Aera). As described
above, the acquisition protocol was suited for an assessment of thoracoabdomi-
nal, visceral and liver fat content. Images comprise constant in-plane resolution
of 1.4× 1.4 mm spacing and inter-slice distance of 3.0 mm. Challenges of the
segmented dataset were pronounced bias field inconsistencies and visible liver
lesions in the underlying images (cf. Fig. 31). Manual annotations of the liver
were created by a medical student, via slice-by-slice segmentation.
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Table 14: Parameter setting for liver MRI segmentation with the
proposed method. Regression voting (top) and profile-based adaptation
(bottom).

LOD Stopping Criterion δ s σ Shape Parameters
0 dmax < 1.0mm - - 22.0 1
1 dmax < 1.0mm - - 15.0 15
2 dmax < 1.0mm - - 15.0 34

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
3 I=50 - - 6 34
2 I=50 - - 6 34
1 I=50 - - 12 34
2 I=50 0.1 1 6 15
1 I=50 0.1 1 6 15
0 I=50 0.1 1 6 15

6.4.2.3 Experimental Setup

An 8-fold cross validation of liver segmentation was conducted for the pro-
posed method on the presented image dataset. Liver models were trained on
the training sets using variance normalization for the employed Haar-like fea-
ture descriptor (cf. Sect. 4.3.2). Like previously, segmentation was conducted
without model initialization from the image center. Similar model fitting pa-
rameters were adopted as used in the CT liver segmentation experiments in
Sect. 6.3.2.2 (cf. Tab. 14).

6.4.2.4 Results

Tab. 15 shows quantitative segmentation results of the proposed method in
the test datasets based on average surface distance (AvgD), maximum surface
distance (MaxD), root mean square distanc (RMSD), Dice- and Jaccard coef-
ficients. An overall high segmentation accuracy was reached by the proposed
method, with a mean average surface distance of 1.27 mm, a mean Tanimoto
coefficient of 0.92 and a mean Dice coefficient of 0.96. Compared with the CT
liver segmentation results from Sect. 6.3, results were slightly worse, with a
mean Tanimoto coefficient of 0.93, and mean Dice coefficient of 0.97 on the
CT dataset.

Feature normalization was a prerequisite for a meaningful segmentation of
the MRI data by the proposed method, otherwise segmentation was prone
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Table 15: Quantitative results of the proposed method for liver seg-
mentation in MRI data. Average surface distance (AvgD), maximum sur-
face distance (MaxD), root mean square distance (RMSD), Tanimoto and Dice
coefficient. Segmentations were evaluated on a set of 32 images by 8-fold cross
validation.

No. AvgD MaxD RMSD Tanimoto- Dice-
[mm] [mm] [mm] Coefficient Coefficient

1 1.16 2.12 23.03 0.92 0.96
2 1.76 4.29 45.37 0.93 0.96
3 1.22 2.14 22.18 0.92 0.96
4 1.11 2.23 21.83 0.93 0.96
5 1.02 2.02 20.89 0.94 0.97
6 1.01 1.89 15.60 0.92 0.96
7 1.20 2.57 25.01 0.94 0.97
8 1.24 2.40 21.09 0.90 0.95
9 1.03 2.05 21.35 0.93 0.96
10 1.02 2.05 19.69 0.93 0.96
11 1.26 2.44 21.83 0.92 0.96
12 1.28 2.66 22.36 0.92 0.96
13 1.24 2.52 22.11 0.92 0.96
14 2.12 6.11 46.66 0.90 0.95
15 1.20 2.45 32.62 0.92 0.96
16 1.35 3.14 29.61 0.93 0.96
17 1.23 2.44 24.10 0.93 0.96
18 1.15 2.20 21.23 0.92 0.96
19 1.31 2.76 31.60 0.92 0.96
20 1.53 3.13 33.91 0.91 0.95
21 1.00 1.94 18.76 0.93 0.97
22 1.36 2.27 18.92 0.92 0.96
23 1.46 3.60 40.12 0.92 0.96
24 0.96 1.84 18.28 0.93 0.97
25 1.52 2.85 26.53 0.91 0.95
26 1.17 2.43 26.64 0.93 0.96
27 1.16 2.39 27.33 0.92 0.96
28 2.24 5.36 47.50 0.89 0.94
29 1.08 2.10 20.32 0.93 0.96
30 1.15 2.09 23.24 0.92 0.96
31 1.10 2.44 25.35 0.93 0.97
32 0.88 1.68 14.79 0.93 0.97

Avg 1.27 ± 0.30 2.64 ± 0.97 25.91 ± 8.60 0.92 ± 0.01 0.96 ± 0.01
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Figure 32: Qualitative evaluation of liver segmentations in T1-weigh-
ted MRI data. Exemplary results of the proposed method (green contour) in
comparison with the manual ground truth (red contour), from Q0.05 quantile
(best results), median (average results) and Q0.95 quantile of average surface
distance error (failed segmentations).

to fail. In all cases, the employed feature normalization provided robustness
against the encountered intensity inconsistencies from the MRI acquisition.
Fig. 6.4.2 shows exemplary segmentation results of the proposed method in
comparison with the underlying manual annotations. Generally, a high delin-
eation accuracy was achieved. Segmentation errors in the more challenging
cases were found at the lower liver lobe near the rib cage and intestine, or
when a thin part of the liver lobe entered between heart and stomach.

A number of liver segmentation methods for MRI data were proposed in
the literature. They involve the use of atlas-based approaches [213], [214], of
2D or 3D level-sets [215], [216], random walker [217], watershed [218], [219]
or active contours [220]–[223], or combination thereof [224]. According to the
literature, good results are not often achieved, and the use of semi-automatic
approaches is regularly referred to as a solution towards higher accuracy [225].

A comparison of the different published results is difficult due to differences
of image acquisition protocols, of clinical use-cases and of visible patholo-
gies in the dataset. The methods from [214], [216] have published results on
T1-weighted two-point Dixon imaging, comparable with the dataset used for
experiments with the proposed method in this section. The work from [216]
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builds on a level-set technique, incorporating image denoising, distance trans-
formation, the use of probability maps and of intensity priors that are learned
from training data. Healthy and fatty livers were automatically segmented.
An overall mean Dice coefficient of 0.94 ± 0.02 was reached on a set of 20
non-fatty livers, and a mean Dice of 0.89± 0.06 on 20 fatty livers using their
approach. In [214], a method based on multi-atlas segmentation and morpho-
logical operations was proposed for segmentation of image data acquired from
20 female patients, prior and after implementation of a diet plan. A mean
Dice coefficient of 0.943 ± 0.023 was achieved using their approach. In com-
parison, the proposed method has achieved a mean Dice of 0.96± 0.01 on the
32 patients of the LIVER_DIXON dataset.

Other approaches have presented results for other acquisition protocols and
use-case scenarios. In [219], 17 datasets of fatty and healthy livers acquired on
different machines were automatically segmented using an improved watershed
algorithm. A mean Dice of 95.0± 1.0 (mean Jaccard coefficient of 0.91± 0.02)
was reached on the presented dataset. In [220], a geodesic active contour was
used for automatic segmentation of 23 T1-MRI with visible tumors, where a
mean Dice coefficient of 93.6 ± 1.7 was reported. In [222], another geodesic
active contour was proposed for segmentation of T1-MRI from 10 patients,
where a mean Dice coefficient of 91.0Â ± 2.8 was reported. Probably the
best overall results were reported by [225], where a semi-automatic approach
by means of Laplacian mesh optimization was proposed for segmentation of
20 contrast-enhanced MRI volumes acquired with LAVA-3D sequence for fat
suppression. A Tanimoto coefficient of 0.92±0.14, an average surface distance
of 1.52 ± 0.26 mm and a maximum surface distance of 2.60 ± 0.55 mm were
reported. Other approaches have either been used for 2D segmentation, or less
accurate overall results were reported.

6.4.2.5 Summary and Conclusion

In this section, an application of the proposed method for liver segmentation
in T1-MRI data was presented. The method was applied without algorith-
mic adaptations, without changes of the model training and without previous
model initialization, and similar segmentation parameters were used like in the
liver segmentation experiments from Sect. 6.3.2. Also, the proposed feature
normalization was applied in both the CT liver and the MRI liver segmentation
experiments (cf. Sect. 4.3.2).

In a comparison with results that had been reported by other works on MRI
liver segmentation in the literature, the proposed method has achieved better
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results than the state-of-the-art methods for images acquired by the two-point
Dixon technique. Also, no better results were reported by any of the other
presented approaches, which is however hard to compare due to the different
imaging conditions and use-cases presented in these latter works.

The shown results have demonstrated that the proposed method also gen-
eralizes well across imaging modalities that exhibit larger inhomogeneities of
their intensity distributions. Results have also shown that the proposed feature
normalization was robust against the encountered bias field inconsistencies in
the LIVER_HELENA dataset. Finally, the achieved accuracies in the pre-
sented cases indicate that the benefit of the proposed omni-directional land-
mark detectors to find solutions that are closer to the global optimum during
segmentation, also apply to other more heterogeneous imaging modalities than
the presented liver CT scenario in Sect. 6.3.2.

Since no conclusive breakthroughs have been reported in the field of MRI
data segmentation as of yet, the shown results are promising for a develop-
ment of techniques that can promote higher segmentation accuracy for this
challenging modality type.

6.4.3 Left Ventricle Ultrasound Segmentation

In this section, an application of the proposed method for left cardiac ventricle
segmentation in 3D+t ultrasound images will be presented. This scenario is an
example for a largely different task that is particularly challenging in several
regards.

In these images, strong noise, motion artifacts and partial occlusions of
anatomical structures are regularly encountered. These effects are challenges
that can put the learning capabilities of the regression forests to the test.
Also, they cause notable variabilities of visible anatomical structures and of
their appearance. This is a particular challenge for the flexibility and for the
expressiveness of the employed Haar-like feature descriptor. Here, it is of inter-
est whether the observed variabilities can be compensated by the randomness
of the feature descriptor, and whether meaningful features can successfully be
learned during training.

The dataset that was used in this experiment will be described in Sect.
6.4.3.2. The results that were obtained by the proposed method, and a com-
parison with other approaches for left ventricle segmentation in ultrasound
images will be presented in Sect. 6.4.3.4.
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6.4.3.1 Clinical Scenario

The presented task of left ventricle segmentation in ultrasound images origi-
nates from a clinical application in cardiac surgery. By means of a fast intra-
operative acquisition of ultrasound images, a quick assessment of ventricle
geometry and function becomes available during surgical intervention. This is
particular important in case of time critical interventions, and it is also highly
useful for real-time evaluation and monitoring of the applied surgical mea-
sures. Ultrasound imaging of the heart is also an important diagnostic tool for
patient examination prior to surgery.

Based on the acquisition of time-resolved ultrasound data, ventricle motion
can be monitored and be evaluated across the cardiac cycle, allowing to reveal
types of pathological anomalies and their severity. In addition, the computer-
ized image analysis at single time frames also allows a precise assessment of
ventricular geometry during the cardiac cycle, thus providing valuable insight
in functional parameters and potential biomechanic disorders of the heart.

In this scenario, a model-based segmentation of ventricle can be particularly
beneficial, since it provides an immediate surface-based representation of the
ventricle, which allows visual inspection in the operating room, thus providing
an immediate qualitative assessment of ventricle geometry. Furthermore, a
segmentation with 3D-SSM also allows an incorporation of higher modeling
information on cardiac motion by means of a learning-based motion modeling
of the heart. The use of this kind of modeling information can in turn be useful
to promote robustness and accuracy for ventricle segmentation, particularly in
case of challenging imaging modalities such as ultrasound imaging.

However, conflicting demands from depth information acquisition and spa-
tial resolution, strong noise, the capturing of motion artifacts, variable view
angles and a stronger influence from experience level of different ultrasound
operators make an automatic segmentation of the considered cardiac ultra-
sound data highly challenging (cf. Fig. 33). In addition to the robustness and
accuracy requirements, segmentation is desired to be fast in order to provide
instant information for intra-operative use. Altogether, the presented scenario
of ventricle segmentation in ultrasound data is a well-known and challenging
task. Despite numerous improvements in the development of segmentation
techniques, the problem remains challenging and is still subject of ongoing
research.
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Figure 33: Challenges of the left ventricle ultrasound segmentation
task. Wall occlusions, ventricle deformation, intra-ventricular substructures,
low contrast, noise, artifacts and changes of imaging quality make left ventricle
segmentation in ultrasound images a challenging task (ground truth shown as
white contours).
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Table 16: Parameter setting for left ventricle segmentation with the
proposed method. Regression voting (top) and profile-based adaptation
(bottom).

LOD Stopping Criterion δ s σ Shape Parameters
1 dmax < 1.0mm - - 3.0 5
2 dmax < 1.0mm 10.0 - 3.0 5

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
2 I=50 - 1 6 5
1 I=50 - 1 6 5
0 I=50 - 1 6 5

6.4.3.2 Data Material

The image dataset used for segmentation in this section comprises 35 ECG-
triggered transesophageal echocardiagrams (4D-TEE) which were acquired
from 19 patients prior to cardiac surgery at the University Hospital of Hei-
delberg (UHP_VENTRICLE). Patients from the selected group suffered from
cases of mitral valve insufficiency. Images were acquired in four chamber view
of the left ventricle using ECG triggering for data extraction at end-diastolic
and end-systolic time points of the cardiac cycle. A Philips IE 33 ultrasound
system was used for image acquisition, equipped with a X7-2t matrix array
transducer. Image resolution was isotropic with a spacing of 0.5 mm. Typical
view-angle changes were encountered in the dataset, caused by ventricular mo-
tion, by operator variability and by cardiac-esophageal variation. Also, strong
noise, motion artifacts and time-varying occlusions of the ventricle wall were
present in the images (cf. Fig. 33 for an overview of the encountered difficulties
in the UHP_VENTRICLE dataset).

6.4.3.3 Experimental Setup

A cross-validation experiment was conducted on the UHP_VENTRICLE data-
set, where two patients were randomly excluded from model training for seg-
mentation testing in each set. Models were trained on 9 sets, with 4 images
used for testing in all sets, except for one set where a diastolic time frame of a
patient was not available in the dataset. Training and voting parameters were
applied for the proposed method like in the other experiments, as detailed in
Tab. 1. Parameters for the model fitting are shown in Tab. 16. Due to the
smaller size of the ultrasound images in comparison with the other image vol-
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Figure 34: End-systolic and end-diastolic errors on the UHP_VEN-
TRICLE dataset as produced by the proposed method. End-systolic
(left column) and end-diastolic (right column) time frames: results of the
proposed method (green contour) in comparison with the ground truth (red
contour).

umes of this thesis, the trained capture range of the model fitting at LOD=1
was already covering an ample part of the encountered volumes, thus providing
enough capture range to find the ventricle position in the image. Segmenta-
tions were evaluated with the quantitative performance measures from Sect.
6.1.1.2.

6.4.3.4 Results

Fig. 34 shows the quantitative results of the proposed method for the diastolic
and for the systolic time frames, based on the Dice volume overlap error and
on the average surface distance metrics. Mean overlap errors of 0.136± 0.047
(systolic) and of 0.126 ± 0.049 (diastolic), and mean average errors of 2.26 ±
0.87 mm (systolic) and of 2.08 ± 0.89 mm (diastolic) were produced by the
proposed method.

Fig. 35 shows representative segmentation results produced by the proposed
method at end-systolic and end-diastolic time frames. Cases comprise high ac-
curacy in both time steps (upper left figures), smaller deviations in both time
steps (upper right figures), lower accuracy in one of the time steps, more often
in the end-systolic frame (lower left figures), and one failed segmentation at
both time frames (lower right figures). Segmentation problems generally oc-
curred due to shadowing at ventricle septum and apex, and due to interference
from the subvalvular apparatus at the apex.

The produced results of the proposed method are also in the range of re-
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Figure 35: Segmentation examples of the left ventricle in the UHP-
_VENTRICLE dataset. Results of the proposed method (green contour)
in comparison with the ground truth (red contour) for the 90th percentile
of all achieved Dice coefficients (best results, top left), for the median (av-
erage results, top right), for the 10th / 90th percentile at the end-systolic /
end-diastolic time frames (bottom left), and for the worst result (failed seg-
mentation, bottom right).
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cently reported state-of-the-art results. Several approaches have been proposed
for the fully-automatic segmentation of the left ventricle in 3D+T ultrasound
data. Some of them have been evaluated on the public dataset of the MIC-
CAI 2014 Segmentation Challenge ’CETUS’ [226]. There, segmentations were
evaluated on a set of ultrasound images acquired at systolic and diastolic time
frames for 30 patients. Their results will shortly be outlined in the following.
For calculation of their overlap errors, a modified Dice measure was proposed
for the overlap comparison of surface-based segmentation representations.

In [227], a B-Spline Explicit Active Surface Approach was proposed to fit
an ellipsoid to the ventricle during segmentation. A motion estimation was in-
volved based on global optical flow and temporally consistent, recurrent block-
matching. They reached mean overlap errors of 0.144± 0.057 (systolic) and of
0.106± 0.041 (diastolic), and mean average errors of 2.43± 0.91 mm (systolic)
and of 2.26± 0.73 mm (diastolic). In [228], the B-Spline Explicit Active Sur-
face approach was extended by the use of shape priors, which has produced
the best results so far, i.e. overlap errors of 0.125 ± 0.046 (systolic) and of
0.091± 0.034 (diastolic), and mean average errors of 1.98± 0.66 mm (systolic)
and of 1.81± 0.59 mm (diastolic)

In [229], a random forest auto context classifier was used, based on features
of image intensities and of geodesic distances to anatomical keypoints, like
ventricle center, mitral valve and myocardium. The use of the auto context
implicitly induced shape information during the labeling process, that was
previously learned by the classifier cascade. They reached mean overlap errors
of 0.158 ± 0.057 (systolic) and of 0.130 ± 0.048 (diastolic), and mean average
errors of 2.54± 0.75 mm (systolic) and of 2.44± 0.95 mm (diastolic).

In [230], a joint detection and segmentation approach based on Hough
forests was proposed. Hough forest predictions on the ventricle center position
were produced on voxel positions that were classified as part of the ventricle
wall. After back-projection of the predictions to original wall positions, label
patches stored during forest training are composed to a probabilistic map of
the ventricle, from which the segmentation is obtained. They reached mean
overlap errors of 0.162± 0.062 (systolic) and of 0.107± 0.031 (diastolic), and
mean average errors of 2.91± 1.01 mm (systolic) and of 2.14± 0.68 mm (dias-
tolic).

In [231], a deformable mesh was applied where global and local deformation
was estimated by a Kalman Filter for the different time frames. Input for the
filter was generated from profile-based edge detection of the surface model.
They reached mean overlap errors of 0.156 ± 0.050 (systolic) and of 0.115 ±
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0.038 (diastolic), and mean average errors of 2.92± 0.93 mm (systolic) and of
2.62± 0.95 mm (diastolic).

In [163], an Active Appearance Model (AAM) was used, where the surface
model was initialized using a set of strategies, of which the best fit was selected
based on the residuals of the AAM. They reached mean overlap errors of
0.165 ± 0.079 (systolic) and of 0.121 ± 0.054 (diastolic), and mean average
errors of 2.79± 1.24 mm (systolic) and of 2.44± 0.91 mm (diastolic).

For the presented methods it can be summarized that the regression-based
Hough Forest approach [230] outperformed the classification-based auto-context
approach [229]. And that the use of explicit surface models in combination
with motion estimation for joint segmentation of the two time frames per-
formed best [227], particularly so with an added shape prior for more accurate
segmentation [228]. Results on the UHP_VENTRICLE dataset used for the
segmentations in this section do not allow a direct comparison with the above
results. However, it can be concluded that the results of the proposed method
on a typical clinical dataset are well in the range of the presented state-of-the-
art methods for ventricle segmentation in the clinical dataset of the CETUS
challenge. Methodologically, the proposed method is probably most similar to
the explicit model-based segmentation approaches from [227], [228]. By con-
trast, they also incorporate motion estimation to profit from cross-information
from the different time frames.

6.4.3.5 Summary and Conclusion

The presented ventricle segmentation task in 3D+T ultrasound data served
as an additional example for the pronounced generalizability of the proposed
method. In the presented case, the proposed method was applied without
modifications to a set of challenging conditions that strongly deviate from the
previous CT and MRI segmentation scenarios. Imaging conditions introduced
large differences to the previously examined modalities, in terms of contrast,
noise, pronounced structural occlusions and visibility of anatomical subparts
that interfered with the task of a meaningful surface delineation.

Application of the proposed method was straightforward, without modifi-
cations of algorithms and training procedures, and without use of additional
methods for image pre-processing or model initialization that are often needed
for an adaptation to heterogeneous and diverse conditions like in the presented
case. Also, a set of segmentation parameters was used that follows a very sim-
ilar rationale like in the previous segmentation scenarios.

As a result, a segmentation performance was reached with error measures
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on the UHP_VENTRICLE dataset that are similar to the results produced
by state-of-the-art approaches on the dataset of the CETUS challenge. Apart
from the different dataset sizes (18 patients in the UHP_VENTRICLE dataset
and 30 patients in the CETUS challenge), similar findings on image quality
and on the presence of pathologies were described by the challenge organizers
[226].

Altogether, the shown segmentation experiment underlines an immediate
and successful applicability of the proposed method to highly heterogeneous
conditions, without prior modifications or adaptations. Results were produced
by the proposed method that are promising for the presented clinical scenario
on the UHP_VENTRICLE dataset, in particular, regarding the comparably
low average surface distance errors that were produced by the proposed method
for both time frames. The landmark-based foundation of the proposed method
also allows an extension of the proposed method by additional motion modeling
and correction components, which seems promising regarding the encountered
problems of missing image information from motion-induced shadowing of the
ventricle wall.

6.4.4 Segmentation of Pathological Lungs in MDCTData

In this experiment, a typical clinical application of the proposed method will be
presented. The shown use-case scenario is concerned with the diagnosis and
the treatment of idiopathic pulmonary fibrosis (IPF), a disease of unknown
origin, which is often characterized by a sudden and severe exacerbation of the
disease. The choice of treatment options significantly depends from the state
of the disease and from the risk of exacerbation for examined patients.

In the following, an application of the proposed method on image data from
IPF patients in an ongoing clinical study will be presented. For this study,
a dataset of 420 CT volumes was acquired from patients suffering from mild
to severe cases of lung fibrosis. The automatically generated segmentations of
the proposed method built the foundation for a subsequent histogram analysis
of the lung parenchyma. The analysis was intended to measure the amount of
fibrotic tissue within the parenchyma, thus providing a possible clinical marker
for the severity and for the progression of the disease.

Regarding the generalizability of the proposed method, a robust perfor-
mance in the presence of pronounced appearance altering pathologies was of
major interest in this experiment. Also, whereas the previous experiments were
focused on a translation of segmentation performance to different use-cases and
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(a) (b)

Figure 36: Examples of idiopathic lung fibrosis. (a) moderate case and
(b) severe case. The discrimination of fibrotic tissue from the lung periphery
becomes increasingly difficult. In addition, the overall appearance of the lung
parenchyma is subject to heavy alteration.

imaging modalities, the experiment in this section served as a demonstration
for the straightforward and robust applicability of the proposed method in an
extensive clinical setting, which is another relevant trait for algorithms with
regard to their generalizability to different use-cases.

6.4.4.1 Clinical Scenario

The clinical study behind this experiment was aimed at an examination of id-
iopathic pulmonary fibrosis (IPF). The pathology is characterized by fibrotic
tissue growth within the lung’s functional part (parenchyma), which can im-
pede respiratory function. A CT image acquisition has been established as a
standard tool for imaging based examination of patients with IPF. Different
kinds of fibrotic tissue exist, with characteristic variations in density and tex-
ture. Mild to severe cases can be observed, and often, the origin of the disease
remains unknown. Fig. 36 shows examples of increasingly severe lung fibrosis.

Apart from a visual inspection and evaluation by radiological experts, an
image-derived assessment of fibrotic tissue that takes holistic image informa-
tion into account for diagnosis, monitoring and evaluation of IPF, is highly
desirable. The segmentation of the lung parenchyma is a crucial first step for
the subsequent tissue analysis. It provides a separation of the relevant im-
age regions from irrelevant surrounding tissue, which is a prerequisite for the
targeted analysis of the lung parenchyma.
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The segmentation of fibrotic lungs yields particular challenges (cf. Fig. 36c).
The attachment of fibrosis to the pleura leads to regions where the parenchyma
is hardly distinguishable from its outer surroundings. Purely density-based
segmentation approaches often suffer from an under-segmentation of fibrotic
tissue in the produced segmentation. Since the excluded fibrotic parts are
highly relevant for an analysis regarding IPF, important information is lost
from the overall content of the image analysis. Furthermore, the appearance
of the fibrosis strongly depends on its type and on its severity, which causes
an overall high heterogeneity in the images.

With its shape prior, the proposed method is expected to provide an addi-
tional means for a delineation of the lung surface by incorporating higher-level
information in the delineation task. An improved separation of fibrotic tissue
from adjacent non-lung tissue parts means an additional inclusion of relevant
information that can be gained from the segmentation. From a successful seg-
mentation of the lung parenchyma and a subsequent analysis of the visible
fibrotic tissue, severity and progression of the disease can finally be assessed.

6.4.4.2 Data Material

A clinical dataset of 420 multi-detector CT (MDCT) volumes of the tho-
rax from diseased patients was used for the experiments in this section (LU-
FIT_LUNG). Data was acquired from 127 patients suffering from idiopathic
lung fibrosis at baseline and at follow-up dates, allowing patient monitoring
regarding progressive disease. Cases were grouped in patients with stable dis-
ease (72 patients, median age 71 years, male 83%, smoking history 100%) and
patients that had undergone one or more acute exacerbations (39 patients,
median age 69 years, male 79%, smoking history 97%).

Images were acquired by a 4-slice Siemens Volume Zoom scanner, and by a
64-slice Siemens Somatom Definition AS scanner. For acquisition, thin-section
MDCT were acquired in spiral mode scanning, covering the whole chest of
patients in supine position. Patients were in addition instructed to perform
an inspiratory breath-hold. Image resolution was isotropic with a spacing of
∼ 0.7mm.

9 different reconstruction kernels were involved in the generation of the im-
ages from the dataset. They comprised various kernel classes used for filtered
back-projection or for iterative reconstruction of the raw data (cf. [232] for
further reading). The kernels have an impact on contrast and on noise levels
in the resulting images. Thus, they emphasize the visibility of different tissue
types associated with presence and development of lung fibrosis. For two pa-
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Table 17: Parameter setting for IPF lung segmentation with the
proposed method. Regression voting (top) and profile-based adaptation
(bottom).

LOD Stopping Criterion δ s σ Shape Parameters
0 I=10 - - 15.0 1
1 I=10 - - 15.0 37
2 I=10 - - 15.0 37

Resolution Stopping Criterion γ ∆ Radius Shape Parameters
3 I=50 - - 12 37
3 I=50 0.1 1 12 37
2 I=50 0.1 1 12 37
2 I=50 0.1 1 12 15
1 I=50 0.1 1 12 15

tients, a contrast agent was applied. The differing imaging conditions notably
affected the overall appearance and the quality of the images.

Medium-soft kernels have been shown to produce more accurate and less
noisy images than hard kernels [233]. Therefore, analysis was focused on
datasets reconstructed with medium-soft kernels, and a training dataset for
the proposed method was chosen based on I40 iterative reconstruction algo-
rithms. However, since these reconstructions were not available for all patients
in the dataset, a segmentation of images reconstructed by other kernels was
also performed in the presented experiment. They comprise 10 images of re-
construction with B40 kernel, three images with B40s, one image with B40f,
one image with B35f, one image with B46, one image with B31, one image
with I30 and one image with I70). From a radiological point of view, the
use of I70 kernel reconstructed images is preferred for a visual inspection and
differentiation of fibrosis tissue. Therefore in addition, all 420 cases were also
segmented for the I70 kernel reconstructed images, in order to examine robust-
ness against the choice of a sharp kernel for image reconstruction in contrast
to the medium-soft kernels.

Model training was performed on manual annotations of left and right lungs
in another dataset of 39 lung CT images (LUFIT_TRAINING), that were
acquired under the same conditions as the LUFIT_LUNG dataset. Images
were provided by manual slice-by-slice annotation, carried out by a medical
expert. CT images from iterative reconstruction with I40f were used for model
training.
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6.4.4.3 Experimental Setup

One goal of the segmentations in this section was to examine if the proposed
method as a shape prior based approach allows a better inclusion of fibrotic
tissue in the segmentation volume of the LUFIT_LUNG dataset. Since ground
truth labeling of fibrosis in the lung was not feasible for the 420 datasets, an-
other approach was chosen for an indication of additional fibrosis segmentation
in the dataset.

The idea was to compare results of the proposed method on the LUFIT-
_LUNG dataset with results from an accurate intensity-based lung segmenta-
tion method. Based on earlier reports [234], it was expected that the compared
method would still succeed in the minor or moderate cases, but was prone to
fail for the more severe cases of lung fibrosis. In these cases, a strong decrease
of segmented lung volume should be observed, whereas the proposed method
was expected to be robust against volume loss in these cases.

According to this idea, a lung segmentation approach was chosen as a refer-
ence method that had proved to provide a highly accurate lung segmentation
in absence of severe pathologies [235] (Yacta). The method scored third in the
LOLA 2011 lung segmentation challenge. It relies on a number of segmenta-
tion steps, including tracheabronchial tree segmentation, seed point detection,
threshold based region growing, and correction using morphological operators
and other basic image processing techniques. A mean Jaccard coefficient of
0.970 was reached for the LOLA 2011 lung segmentation task.

After application of both methods on the LUFIT_LUNG dataset, a compar-
ison of segmentation volumes was performed to identify cases of fibrosis where
the shape model based approach of the proposed method was more successful
in a separation of fibrosis from the lung periphery. Although this approach
was no proved criterion for an additional segmentation of lung fibrosis, it was
still expected to serve as a good indicator.

In a second setup, the lung segmentation of the proposed method was used
to derive a possible clinical marker for an exacerbation of lung fibrosis. In [236],
the 40th and 80th percentiles (p40, p80) were identified as potential biomark-
ers for an increase of two types of pathological changes in the parenchyma, i.e.
ground-glass (p40) and fibrosis (p80). Thus, an increase of p40 and p80 was
expected for rapid pathological changes of the lung parenchyma in case of an
exacerbation. Since the percentiles are directly affected by the amount of seg-
mented fibrosis in the lung, successful segmentations of the more severe cases
by the proposed method were expected to better reveal significant changes of
p40 and p80 in case of an exacerbation. To this end, information on known
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exacerbation of patients was compared with the observed changes of p40 and
p80 based on the segmentation of the proposed method. Finally, a correlation
analysis of the p40 and p80 biomarkers, with ground-glass and fibrosis per-
centage results from a commercial software (Imbio) was performed to further
underline the meaningfulness of p40 and p80 as potential biomarkers.

All segmentation of the proposed method were performed without previous
model initialization from the image center, using model fitting parameters from
Tab. 17. No changes of model training, algorithmic adaptations or additional
methods were used for an application of the proposed method in the lung
segmentation scenario.

6.4.4.4 Fibrosis Segmentation

After segmentation of all 420 images in the LUFIT_LUNG dataset, a mean
volumetric difference of 235.33± 161.96 ml between the proposed method and
Yacta was found (p-value < 0.001 as assessed with Wilcoxon’s signed rank
test). Visual inspection of the data confirmed that the found volumetric dif-
ferences reflected an additional segmentation of fibrosis in the parenchyma by
the proposed method. Also, the found volumetric difference provided a suit-
able means for a selection of mild, moderate and severe cases from the dataset.
Segmentation took ∼ 8 minutes per image and 3 days in total on one Intel
core i7 by the proposed method.

Fig. 37 shows representative examples for the Q95, Q90, Q50, and Q10 per-
centiles of the volumetric difference. The shown example illustrate the de-
lineation of severe fibrosis from the lung periphery by the proposed method,
despite the underlying tissue similarity. The examples show that the intensity-
based Yacta cannot achieve a separation of these cases, despite its still re-
markable exclusion of high-density parts from the parenchyma. Also, the tra-
cheabronchial tree segmentation was sometimes affected by the presence of the
lung fibrosis, leading to an additional exclusion of high-density tissue from the
segmentation volume. Altogether, a benefit of additional fibrosis segmentation
was observed for the moderate to the severe cases, which roughly contributed
half of the examined patients in the data collective.

Regarding segmentation of the aforementioned sharp I70 kernel reconstruc-
ted images for all cases, segmentation results of the proposed method were
only slightly preferable on the I40 reconstructed images (cf. Fig. 38). Apart
from this, no notable differences were produced by the proposed method on
the I70 kernel reconstructed images, or on the other encountered images from
differing reconstruction kernels (cf. Sect. 6.4.4.2).
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Figure 37: Lung segmentation examples from the LUFIT_LUNG
dataset. Results of the proposed method (green) and from the intensity-
based reference approach Yacta (orange). Examples from the Q95 percentile
(very severe cases), from the Q90 percentile (severe cases), from the median
(moderate cases) and from the Q5 percentile (mild cases), based on the volu-
metric difference between the proposed method and Yacta.
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Problems of the proposed method were encountered in terms of under-
segmentation of pronounced concavities of the lung (cf. Fig. 39a), which
was most often encountered at the lung base. Also, a difficult outlier was en-
countered, as shown in Fig. 39(b), caused by a catheter that was inserted near
the lung base, which lead the model fitting of the proposed method to a false
upward placement.

6.4.4.5 Clinical Biomarker Evaluation

To evaluate the expressiveness of the 40th and 80th histogram percentiles
(p40 and p80) as disease markers that are obtained from the segmentations of
the proposed method, a regression analysis was conducted on the underlying
dataset. There, the statistical relationship between the histogram percentiles
and two clinical parameters from the dataset was examined: the functional
vital capacity (FVC) which represents the respiratory function of a patient;
and the incidence of an acute exacerbation i.e. a dramatic aggravation of the
disease. To this end, a linear mixed-effects model was fitted to the data using
restricted and standard maximum likelihood estimation. There, a decrease
in FVC and an increase in the acute exacerbation probability was observed
(p < 0.05). Furthermore, both percentile markers were compared with the
estimated fibrosis percentage from the fibrosis annotation software IMBIO.
A positive correlation between p40 and p80 from the proposed method, and
the estimated fibrosis percentage from IMBIO was found (r = 0.918 for p80,
r = 0.784 for p40). Although the accuracy of IMBIO could not be considered to
be a gold standard, the image-based estimation results from IMBIO did confirm
the expressiveness of the histogram-based results of the proposed method.

6.4.4.6 Summary and Conclusion

In this section, a clinical application example for use of the proposed method
on a larger pathological dataset was presented. The shown cases of lung fi-
brosis cause strong global changes of organ appearance, and they hamper a
delineation of the lung surface due to the high similarity of tissue ingrowth
and surrounding non-lung tissue. Particularly, the more severe cases have pre-
viously been reported to cause problems for density-based approaches [234],
like the chosen reference method Yacta in the shown experiments.

Based on a ranking of volumetric differences to the reference method Yacta,
a qualitative analysis of the 420 cases of lung fibrosis segmentation has shown
the proposed method achieved an accurate separation of lung fibrosis at the
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(a) (b)

Figure 38: Segmentation example of a case of severe fibrosis in two
different imaging conditions. (a) I40 kernel and (b) I70 kernel. Overall,
fibrotic tissue was more effectively separated from the adjacent pleura by the
proposed method (green contour) than by a region-based method (yellow con-
tour) that had been adapted for fibrotic lung segmentation. The proposed
method worked slightly better on the I40-reconstructed image, which had also
been used during model training. Segmentations of the compared method
worked better on the contrast-enhancing I70 kernel.

(a) (b)

Figure 39: Cases that were difficult to segment by the proposed
method. (a) 2D cross-section of a segmentation outlier that was caused by a
catheter passing at the base of the left lung. (b) Example of cavity under-seg-
mentation by the proposed method.
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lung periphery also in severe cases of the disease. Yacta as an intensity-based
approach has still shown notable robustness in the moderate cases of lung
fibrosis. In the severe cases of lung fibrosis, it was evident that density-based
information alone was not sufficient to accurately separate the fibrosis from
the lung periphery. Here, the use of shape prior from the proposed method
has shown to be beneficial across the LUFIT_LUNG dataset.

As reported in many earlier cases, the segmentation of high curvature parts
was also a problem for the proposed method in case of the lung. It can be
assumed that part of the reason for this problem is linked to the missing flexi-
bility of surface deformation of 3D-SSM based approaches [156]. An incorpora-
tion of a final deformation step where landmark shifts are regularized to allow
a consistent, more flexible model adaptation could help solve the described
problem.

Altogether, the presented scenario of IPF lung segmentation has recon-
firmed the generalizability of the proposed method, in terms of straightforward
and robust applicability for different use-cases. No algorithmic modifications
or adaptations of the training process, and no additional methods for model
initialization or other refinements were required for successful application un-
der the shown clinical conditions. This sets the proposed method apart from
previous model-based approaches where tailored solutions were required for
successful use of 3D-SSM for lung segmentation [237], [238]. However, the use
of additional measures seems worthwhile to address the aforementioned limi-
tation of 3D-SSM regarding concavity segmentation. With its landmark-based
foundation, its integration in the general 3D-SSM framework and its immedi-
ate robust performance, the proposed method offers a convenient platform for
future extensions, e.g. towards a more flexible surface deformation.

Finally, the more robust segmentation of severe cases of IPF has allowed the
extraction of the p40 and p80 biomarkers in those cases that are particularly
relevant for use of these markers. The presented findings on the extracted
biomarkers have produced first evidence that these markers are associated
with exacerbation of the disease and with functional parameters of the lung.

6.5 Runtime and Robustness
In the following experiments, different choices and parameters for the random
regression forest training were examined. When large datasets and use case
varieties are encountered, a reduction of training time becomes particularly
important. Several options exist for a speedup of the regression forest training,
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which will be considered in this section. Furthermore, the proposed method is
expected to profit from the well-known robustness of random forests, in terms
of a generally easier application to different use-cases without an elaborate
parameter tuning. Therefore, the goal of the following experiments was to
demonstrate that a robust performance can immediately be achieved by the
trained random regression forests for a larger range of parameters.

For an analysis of training duration and random regression forest robust-
ness, parameters were of interest from an application point of view, based on
the underlying use-case scenario and the encountered image material. For an
application of the proposed method, this concerns the amount and the extent
of image information that is considered during training and during segmenta-
tion, and furthermore, the number of trees that are used by the trained forests
during landmark detection. Furthermore as proposed in Sect. 4.4, the use of
extremely randomized trees and of a faster splitting criterion was examined
(Extra-Tree). It was reported earlier that these measures can reduce training
time and increase robustness in certain applications [178].

Apart from this, limiting tree depth is another possibility to speed up train-
ing. However, this is an option that is rarely regarded in the context of medical
image segmentation using random regression forests, and that should generally
not be required due to the robustness of the bagged trees against over-fitting
(cf. 4.4 and [173]). Similarly, a large variety of other improvements and tuning
options are available for random forests. Although it can be assumed that ac-
curacy can be improved by various measures, an optimization of segmentation
accuracy for particular use-cases is beyond the scope of this thesis and will be
left for future work.

6.5.1 Experimental Setup

Based on the stated goals above, the effect of the chosen forest parameters
on training runtime, on segmentation accuracy and on the convergence of
detection results for increasing numbers of trees was evaluated. The CT liver
segmentation on the DKFZ_LIVER dataset from Sect. 6.3.2 served as a test
scenario for the following experiments. The experiments were carried out in
three setups.

First, the effect of sample count, and the use of extremely randomized trees
(Extra-Tree) in conjunction with the faster variance based impurity measure
on training duration and on segmentation accuracy was evaluated. This ex-
periment served to determine the sensitivity of the tested random regression
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forest types against a reduction of training samples, and to determine possible
speedup of training without loss of segmentation accuracy in the examined
scenario. Sample counts were reduced by lowering the bagging size for each
tree, i.e. the number of random samples that are passed to each tree during
training. Samples were taken without restriction from the underlying training
images to provide constant coverage in the image domain.

For speedup measurement, training was conducted using both the default
trees and the faster extremely randomized trees while exponentially reducing
the employed size of training samples. In this manner, 32 versions of the liver
model from Sect. 6.3 were trained in the three levels of detail (LOD) of the
proposed method. That is, two cross-validation sets at 8 exponentially drop-
ping reduction levels, for each the default trees and the extremely randomized
trees. Training was performed on an Intel core i7 (hexacore, parallelized). For
the measurement of segmentation accuracy, model fitting was carried out in all
LODs on the 10 test cases. Segmentation accuracy was determined using the
Dice coefficient. All segmentation experiments were conducted for the default
trees and for the extremely randomized trees in all sample reduction levels.

In a second setup, the effect of the above parameters on the stability of
model fitting results and on the convergence of the random regression forest
predictions was evaluated. Model fitting was carried out separately in each
LOD for all sample reduction levels used in the first experiment. Model fit-
ting was performed repeatedly, each time with an incremented count of tree
estimates.

Then, convergence and overall spread of the model fitting results was as-
sessed by measuring the volume overlap of all model fitting results with their
mean shape using the Dice coefficient. For a sufficient number of training
samples, model fitting results are expected to converge to a common solution
when additional tree predictions are incrementally included during detection.
An insufficient number of training samples should lead to overall worse results
and to an increase of dispersion.

To examine the effect of the sample reduction separately for each LOD, the
reduction was only applied to the current LOD of interest, while no further
sample reduction was applied in the preceding LODs. Thus, the effect of
sample reduction in a particular LOD could be determined without interference
from sample reduction in previous LODs.

Finally, the same experiment was repeated measuring the influence of the
Haar-like feature patch size instead of the previous sample reduction (cf. Sect.
4.3.2). Evaluation was carried out for increasing patch sizes of the feature
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Figure 40: Landmark detector training: runtime and accuracy anal-
ysis. Training duration [h] (orange) and Dice-%-loss (red) for default trees
(dashed line) and for extremely randomized trees (dotted line). Speedup was
achieved through exponential reduction of training samples (from left to right).
Considerable speedup was reached in the first 4 reduction steps without sig-
nificant loss of accuracy.

descriptor, measuring precision and convergence of the model fitting results
separately in each LOD for incremental tree counts. Similarly to the second
experiment, optimum patch sizes were chosen in the preceding LODs to allow
a separate assessment in each LOD. Again, two test sets of 5 images each were
excluded from training to allow cross-validation of the forest predictions. Only
the fast splitting tree version was involved in these experiments, since results
will show that the faster version reaches an equivalent performance like their
slower counterparts. On the two cross validation sets, 30 liver models were
trained in LODs=0,1,2 with 10 patch sizes for each set.

6.5.2 Regression Forest Performance

Fig. 40 shows the total training duration for both tree versions for all reduc-
tion levels (orange contours). With increasing sample reduction, the training
duration expectedly dropped at an exponential rate for both tree versions.
A significant speedup was reached within the first four reduction steps, with
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Figure 41: Effect of training sample reduction on random forest
precision. The top, middle and bottom plots show the loss of precision for
model fitting results in each LOD, when exponentially less training samples
were used for the random forest training (from left to right). Model fitting was
started several times for an increasing number of trees (n=1,· · · ,12). Overall
precision of results around the mean outcome of the model fitting was measured
using the Dice-coefficient.
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Figure 42: Convergence of random forest results in all training sam-
ple reduction levels. Each plot shows the convergence of model fitting
results towards a common solution, when increasing numbers of trees are used
during landmark detection. Convergence was measured in all LODs using the
Dice-coefficient (top, middle and bottom rows) for the default regression trees
(left column) and for extremely randomized trees (right column), based on the
volume overlap of results with the mean outcome of the model fitting.
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Figure 43: Influence from feature patch size on random forest preci-
sion. The top, middle and bottom plots show the loss of precision for model
fitting results in each LOD, when different feature patch sizes are used for
the training of extremely randomized trees (from left to right). Model fit-
ting was started several times for an increasing number of trees (n=1,· · · ,12).
Overall precision of results around the mean outcome of the model fitting was
measured using the Dice-coefficient. 163
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Figure 44: Convergence of random forest results for the different
feature patch sizes. Each plot shows the convergence of model fitting results
towards a common solution produced by the extremely randomized trees, when
increasing numbers of trees are used during landmark detection. Convergence
was measured in all LODs using the Dice-coefficient (top, middle and bottom
rows), based on the volume overlap of results with the mean outcome of the
model fitting. 164



6.5. Runtime and Robustness

training duration dropping from ∼ 32 to 16 hours for the default trees, and
from ∼ 25 to 15 hours for the fast splitting trees. No loss of segmentation
accuracy (Fig. 40, red contours) was observed throughout the first four reduc-
tion steps. Beyond this point from reduction level 5, accuracy declined notably
for the default forests. In contrast, decline started significantly later for the
extremely randomized trees, with a clear loss of accuracy at level 6.

Figs. 41 and 42 show the results of the second experiment. Overall, no larger
loss of precision was observed for the first 5 reduction steps at all LODs for
both forest types, except for a loss by the default type at LOD=1 and reduction
level 4 (Fig. 41). Precision loss grew notably beyond this point. Loss was very
similar for both forest types at LOD=0. In LODs=1,2, extremely randomized
trees suffered considerably less from precision loss than their counterpart. At
LOD=1 for both types, and at LOD=2 for the default forest type, a generally
higher loss rate was observed in comparison with the other results.

Results for the forest convergence in Fig. 42 reflect the findings of the
precision loss analysis. Convergence is clearly flawed for the 3 largest reduc-
tion levels at LOD=0 (both forest types), for the largest 3 reduction levels at
LOD=1 (largest 4 reduction levels for the default type), and for the largest
two reduction levels at LOD=2 (largest 3 reduction levels for the default type).
All other forest results show convergence towards a common solution, with a
final overall precision of ∼ 95% Dice.

Figs. 43 - 44 show the results of the third experiment. Each patch size is
represented by its patch radius, i.e. patch size equals the center voxel plus two
times radius in each dimension. For each LOD, a stable patch size interval can
be identified where no significant loss of precision was encountered. That is,
at LOD=0 between patch radii 5 and 25, at LOD=1 between 10 and 30, and
at LOD=2 between 15 and 45. Note that at LOD=2, a decrease of precision
loss was observed for patch radii < 10, unlike at the other LODs. Thus, the
Dice-%-loss appears elevated between 15 and 45, however, absolute precision
was not lower than at the other LODs.

Results for the forest convergence in Fig. 44 again reflect the findings of the
precision loss analysis. Convergence is clearly flawed for the 3 smallest patch
radii at LOD=0, for the largest 2 smallest reduction levels at LOD=1, and
for patch radii 5 and 10 at LOD=2. All other forest results show convergence
towards a common solution, with a final overall precision of ∼ 95% Dice.
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6.5.3 Summary and Conclusion
A high performance of the trained landmark detectors was reached in the pre-
sented scenario, for a large range of the considered training parameter settings.
A high quality of convergence was achieved for the regression forest results,
within a wide range for patch size and training sample count. Same conver-
gence was guaranteed for an ensemble tree count of 8 and larger, regardless
of the chosen forest type. High accuracy and precision of model fitting results
were achieved within the determined range.

The use of extremely randomized trees instead of the default forest type
has shown to be beneficial in terms of training duration and robustness. Also,
training duration could significantly be reduced without loss of accuracy using
the proposed measures. Altogether, the well-known robustness of the employed
random regression forests was confirmed by the experiments with the proposed
method.

From a practical point of view, this significantly facilitates training and ap-
plication of the proposed method to different use-cases, by means of a straight-
forward choice of training parameters and reliable and strong performance for
the proposed landmark detectors. Although there is no guarantee for equiva-
lent results in all future cases, the shown robustness and simplicity of the con-
sidered random regression forests, as well as many examples for their success
in other applications underline their contribution to a higher generalizability
of the proposed 3D-SSM.
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Discussion of Methods and Results

Well-known problems of strong dependence from model initialization, of pose-
dependent landmark visibility and of limited capture range for 3D-SSM were
successfully addressed by the proposed method. Highly reproducible results
were achieved for arbitrary pose changes and from large distances during seg-
mentation, and the previously strong influence from model initialization was
effectively alleviated. Susceptibility to locally optimal solutions during seg-
mentation was significantly decreased by the proposed measures, leading to
an overall reduced segmentation error and to a generally higher accuracy for
3D-SSM. High robustness and easy applicability of the employed random re-
gression forests, and a strong independence from model initialization signifi-
cantly facilitate an application of 3D-SSM to different use-cases. Altogether,
this increases the availability of typical benefits from 3D-SSM in terms of their
higher-level information modeling, to a broader scope of medical imaging ap-
plications.

In this chapter, the findings of this thesis will be discussed with regard to
the achieved independence from model initialization (Sect. 7.1), to a wide-
spread applicability for 3D-SSM (Sect. 7.2), to the capabilities and limitations
considering imaging conditions (Sect. 7.3), encountered anatomical variabili-
ties and pathologies (Sect. 7.4), to the computational performance (Sect. 7.5),
and to the general implications of the proposed method for model-based image
segmentation (Sect. 7.7).
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7.1 Segmentation without Initialization
The results from Sect. 6.2 demonstrate that the proposed method has reached
a strong independence from the model initialization step during segmentation.
Two criteria were met that provide an independence of the proposed 3D-SSM
from its model initialization: first, a high reproducibility of results was achieved
for arbitrary variations of the initial placement (cf. Sect. 6.2.2). And second,
the high reproducibility of results was sustained for starting positions that
were widely distributed across the image (cf. Sect. 6.2.3).

The reached reproducibility of results can be attributed to the proposed
omni-directional landmark detectors and to their ability to pinpoint separate
surface landmarks from a 3D scope. This is in contrast to the exclusive 1D
search of previous 3D-SSM, where a reproducible detection of landmark posi-
tions is highly unlikely for changes of model pose, e.g. from different model
initializations. However, a comparably small local spread of results could also
be observed for the proposed method in the corresponding experiments. This
is likely to be caused by the profile-based finalization of the previous sparse
model segmentation for all surface landmarks as described in Sect. 5.3.

The final profile-based step of the proposed model fitting was incorporated
as a solution to several problems that are encountered when incorporating
landmark-wise detectors in 3D-SSM. First, the computational complexity dur-
ing segmentation renders an application for all landmarks in all stages of the
model fitting unfeasible. This was also reported earlier in [136], concerning an
extension of a regression-voting optimization to 3D domain. Unfortunately,
no solution was proposed afterwards for an efficient extension to higher di-
mension. Secondly, the free and omni-directional deformation of landmarks
for 3D-SSM quickly leads to overlapping landmark shifts, that require further
regularization. In [29], [135], additional freedom from the shape constraint was
allowed in the later stages of the CLM model fitting. However, for the pre-
sented 2D contour models, the problem of landmark intersections is much less
prominent, due to the rigid shape deformations of the considered objects, and
due to the smaller number of contour landmarks in comparison to 3D surface
models. Therefore, no regularization of intersections was proposed.

The use of the proposed sparse modeling during the regression-voting based
model fitting, and of the profile-based approach for the last part of the model
fitting has shown to provide a good solution to the aforementioned problems.
Regarding the final profile-based fitting, the proposed method builds on the
high reproducibility of results provided by the landmark detectors in the pre-
vious stages of the model fitting.
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As a solution to the observed smaller spreads of results during the profile-
based model fitting, an introduction of free deformation for the omni-directional
landmark detectors could be of interest. Approaches which use 3D shape de-
formations were e.g. proposed in [156], [239]. The approach from [239] however
does not constrain model displacements in the underlying deformation field,
and the absence of shape model regularization gives rise to surface smoothing
and remeshing operations. The approach from [156] introduces a MRF-based
regularization of omni-directional landmark displacements, which fits the pro-
posed method. Well defined displacements could however also not be guaran-
teed in all cases. Therefore, compensatory measures can be introduced that
take effect at different parts of the surface model [110], which might hamper
generalizability to other cases.

The high reproducibility of results means that model initialization is no
longer a greater source of error for the proposed model fitting. Thus, the
influence from model initialization can practically be neglected for an appli-
cation of the proposed method. For 3D-SSM in general, this is a significant
trait since their former sensitivity to the model initialization necessarily lead
to an increased optimization effort, which includes highly complex measures
for an accurate initialization and for the robustness of the subsequent model
fitting. In this regard now, only the performance of the employed model fit-
ting has to be considered during an application of the proposed method. Due
to its considerable capture range, the proposed method does not require any
placement at the organ of interest, which makes additional methods for pre-
vious organ detection obsolete. In practice, this considerably facilitates an
application of 3D-SSM. As illustrated in the capture range experiments, the
non-local appearance modeling of the proposed method allowed an effective
use of widespread image information. This was shown in direct contrast to the
local appearance modeling of the compared 3D-SSM, where a drastic decrease
of usable information was observed with growing distance from the sought
organs of interest.

In the experiments from Sect. 6.2.3, the achieved capture range for liver
and spleen had actually exceeded the previously chosen sampling range during
training. In contrast, the capture range for the kidney was rather in accor-
dance with the sampling range. This could be attributed to the more constant
locations of liver and spleen, when compared with the highly variable loca-
tion of the kidney. The latter seemed to counteract the effect of the salient
landmark regions that would otherwise provide meaningful information in the
absence of local training samples (Sect. 5.3).
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With its robustness against changes of model pose and its capture range,
the proposed method is the first 3D-SSM that reaches the described degree of
independence from model initialization. In [144], a similar reproducibility was
reached for a 3D-SSM of the liver. However, for this purpose, a rule-based
model-fitting was introduced where different surface parts were controlled by
a set of numerous parameters during segmentation. The presented free pa-
rameters are expected to significantly impede an applicability to other use-
cases. Also, the method only worked in the vicinity of the liver and required
a rough initialization near the target organ. The shape regression machine
from [133] showed sensitivity of results from initial pose estimation, and the
approach was limited to 2D domain. In [239], model fitting of a deformable
surface model was proposed by means of boundary regression. Application
without previous model initialization was achieved, however, information on
unambiguous landmark positions got lost in the boundary regression, and re-
producibility of model fitting for model pose changes is unclear. Furthermore,
surface regularization like smoothing and remeshing was regularly applied,
which substantially alters surface topology and thus did not preserve point-to-
point correspondences like 3D-SSM based approaches.

7.2 Wide-spread Applicability
The experiment in Sect. 6.3.3 has shown that the segmentation accuracy of 3D-
SSM can significantly be improved by the proposed omni-directional landmark
detectors. This was reflected by a generally lower number of false boundary
segmentations, and by a more detailed delineation of higher curvature parts
of the liver. There, the landmark detectors were beneficial in providing land-
mark positions that effectively promoted a more favorable model fitting during
segmentation. This is in contrast to the purely profile-based 3D-SSM, where
model fitting was more often mislead to boundaries outside the liver. In prac-
tice, such segmentation errors can often only be avoided by a more accurate
thus elaborate model initialization.

The shown improvements of accuracy also support the applicability of the
proposed method to different cases, as it is easier to reach higher accuracy in
these cases without the necessity for measures that compensate for segmenta-
tion errors from the previous limitations of 3D-SSM. These measures typically
increase complexity by involving additional free parameters that are difficult
to optimize for many specific cases (cf. e.g. [110], [144]). By contrast, the
benefits of accuracy for the proposed 3D-SSM were reached by means of the
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employed landmark detectors, where the patent robustness and flexibility of
random regression forests greatly facilitate training and application to different
scenarios. Finally, the proposed method acts as a standalone technique with-
out using additional methods for an accurate model initialization. This also
significantly reduces complexity in terms of extra algorithms, additional free
parameters and limiting basic assumptions. As a consequence, the proposed
enhancements can foster the role of 3D-SSM towards a more general-purpose
segmentation methodology.

Concerning the whole model training process, no adaptations or algorithmic
changes were required for the presented applications. Still, there are model
fitting parameters of the proposed method that needed optimization in the
shown experiments, so as to reach best performance. The tuning of the land-
mark detectors was relatively easy and followed an intuitive rationale. The
basic strategy was to increase the degree of freedom of the shape prior model
step-wise from LOD 0 through 2, in order to bring the model fitting as close
to the sought organ boundary as possible, i.e. to the predicted positions of
the landmark detectors. This is then supposed to provide best conditions for
the final profile-based adaptation step. In addition, three choices have proved
effective to improve results for single outlier cases that are usually encountered
in each dataset (also cf. Sect. 6.3.2): to employ a shift of vote displacements
or a scaling step at any of the LODs, and to limit the degree of freedom of the
shape prior model at any of the LODs 1 and 2.

The profile-based adaptation step of the proposed method remains as a more
finicky part regarding its optimization. In contrast to the intuitive nature of
the regression voting, it is still subject to the described unpredictable nature
of the profile-based search. Although larger principles for improved accuracy
can be identified, they are not so easily understood and definitely require ex-
pert knowledge, in contrast to the regression voting step. Nevertheless, the
known robustness against locally optimal solutions, the lifted major influence
from model pose and from initialization, and the absence of many additional
measures for the proposed method notably facilitate an application to differ-
ent cases. This is in contrast to known previous measures to compensate for
the original limitations of 3D-SSM, where fine grain tailoring of appearance
modeling and of model fitting at different surface parts have shown to deliver
the best remedies so far [110], [144] (cf. Sect. 6.3 for further details).

This was illustrated by the application of the proposed method in the pub-
lic segmentation challenge ’SLIVER’ (cf. Sect. 6.3). There in its role as an
adaptable standalone tool, the proposed method has shown to produce simi-
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lar results like customized segmentation approaches that rely on a variety of
techniques to reach high performance. With its results, the proposed method
entered the range of the best-performing methods. Higher performance was
only reached by methods that employ an elaborate design and an apt combina-
tion of techniques that necessarily impede an immediate application to other
use-cases.

Regarding the other 3D-SSMs of the challenge, the proposed method counts
towards a rather small number of approaches that also aim at a higher gen-
eralizability in addition to accuracy (cf. Sect. 6.3.3). The proposed method
extends the family of these generalizable 3D-SSM into the performance range
of highly specialized segmentation approaches. In this endeavor, it ties in with
the previous strong learning-based approach from [129]. Also, the proposed
method has reached a similar performance like the highly successful, expert
tailored 3D-SSM from [110].

With its combined flexibility and performance, the proposed method can
serve as a convenient platform for future development. In terms of mere seg-
mentation performance, additional improvements can be added to take further
steps in the direction of a more generalizable and accurate 3D-SSM. The pro-
posed method can also build the foundation for special applications with a
strong focus on high accuracy in particularly challenging image data.

In the experiment from Sect. 6.4.1, the proposed method was successfully
applied to the multi-organ segmentation task, without necessity for a previous
adaptation of the model training. In this scenario, the simultaneous detection
and segmentation of distributed organs had to be provided by the proposed
method. This is in contrast to the often encountered task of single organ seg-
mentation from a more localized image context. Also during application, large
variations of the underlying image geometry had to be coped with, in terms of
field of view, size and spatial resolution of the images. These challenges were
successfully handled by the proposed method, which was in accordance with
the model fitting results shown in Sect. 6.2.3.

In the presented labeling challenge, the proposed method reached a similar
performance like state-of-the-art multi-atlas registration methods. This is of
particular relevance for the proposed method and for 3D-SSM in general. It
was shown that 3D-SSM can generalize well beyond the role of a dedicated
tool for single organ segmentation. In case of the proposed method, this was
reached by transforming 3D-SSM from being less robust and highly dependent
to a more robust and autonomous technique. It was demonstrated that these
3D-SSM can autonomously produce results of comparable quality when de-
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tached from their involvement in complex multi-organ segmentation systems.
Regarding the challenge results for the liver and spleen segmentation, lower

overall dice scores were reached for the left kidney by all competitors, due to
the shown outliers from Sect. 6.4.1.5, Fig. 30. The first case - an extraordinary
kidney positioning from breath-hold disruption - was expectedly not covered
by the trained appearance model of the proposed method. This is because
the modeled neighborhood of the kidney was fundamentally altered, from an
expected adjacency of visceral cavity, spleen and bowel, to an adjacency of
spine, diaphragm and lung. The same problem also applied to the other ap-
proaches due to their data-driven nature, although some of them managed to
reach better results. For all approaches in the challenge, a representation of
such cases in the training data can be regarded as a prerequisite for their suc-
cessful segmentation. The second case - an atrophic kidney - was indiscernible
in the underlying image, hence it was not segmented by any of the challenge
competitors. Apart from these cases, the resected liver in the challenge dataset
was only handled with partial success across the challenge competitors.

Finally in comparison with the voxel-wise results from the atlas-based meth-
ods, the more well-defined surface delineations of the proposed method can
promote a higher plausibility of results in the clinic. However, if more of the
inner details of the segmented organs are required, additional measures will
have to be taken, e.g. for liver vessel and for renal cavity segmentation.

Regarding an application to other anatomical structures, adaptations to the
surface and shape modeling components of the proposed method are expected
to be required in particular cases. For example, the segmentation of tubu-
lar structures can be of interest in different medical applications. Examples
are the aorta, the inferior vena cava, the esophagus and the rectum. It was
shown earlier in the literature that decomposition approaches are much better
suited for shape model construction in these cases [98]. Other additions to the
shape prior modeling of the proposed method are expected for non-tubular,
but highly eccentric shapes, e.g. pancreas and stomach. They are known to
cause distortions in the spherical parameterizations, which were used for shape
modeling in this thesis.

Non parametric approaches can therefore be preferred. For example, particle-
based correspondence optimization techniques have been shown to provide
high topological and geometrical flexibility, also for thin structure parts [240].
In [241], a correspondence optimization based on non-rigid mesh registration
was shown to be applicable to thin, elongated structures and large intra-class
variability like the pancreas. These approaches are also equally well suited
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for a modeling of non-genus 0 topologies, like hip-bone or vertebrae. For a
modeling of non-linear shape variation of structures like the pancreas, various
techniques have been proposed in the literature (cf. Sect. 2.3.3). Kernel-PCA
has been proposed as an effective non-linear shape modeling technique [85],
which has been shown to provide a suitable means for shape modeling of more
complex shape variation [241]. Altogether, the aforementioned techniques for
a shape modeling of more arbitrarily shaped geometries explicitly allow a cor-
respondence optimization and a shape prior modeling based on landmarks.
Therefore, they also fit the landmark-based appearance modeling and detec-
tion techniques that were developed in this thesis.

7.3 Imaging Heterogeneity
The applicability of the proposed method was demonstrated for a variety of
imaging conditions. The datasets in the abdominal organ segmentation ex-
periments (Sect. 6.2 - 6.4.1) largely differed in slice distance and in-plane
resolution, contrast, and in the displayed field of view. The datasets in the left
ventricle and lung segmentation experiments introduced variability in terms of
noise, occlusion, field of view, image artifacts and intensity distribution, due
to the employed modalities and reconstruction kernels of the data. Further-
more, the effectiveness of the proposed Haar-like feature normalization was
successfully shown for liver segmentation in T2 MRI.

The shown results reconfirm the known robustness of regression forest based
methods in medical imaging applications. Nevertheless, without further de-
velopment, previous regression-based approaches have often put focus on a
single domain, i.e. bone segmentation in x-ray images [135], [136] or CT im-
ages [130], [239]. Successful application for more heterogeneous data from dual
energy x-ray absorptiometry was e.g. proposed in [168].

Limitations of the proposed techniques are expected for larger changes of
intensity distribution that are not reflected during the previous model training,
e.g. for use of contrast agent in part of the data, or in case of changing
acquisition protocols. In general, an application can be desirable in cases
where encountered imaging conditions are unknown in advance, e.g. in large
datasets from mixed image acquisition. To this end, additional research will
be required, and techniques for transfer learning, for optimized model training
and for an on-line model selection will be of particular interest.

Recent developments have e.g. focused on design of high-level features that
are particularly robust against strong local heterogeneities like metal artifacts
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[242]. The recent proposition regarding model transfer learning from [243] has
shown that a regression forest based shape model matching can be adapted on-
line to different data annotation styles. These techniques show great promise
for the goal of an automatic analysis of heterogeneous image data using 3D-
SSM like the proposed method in the future.

7.4 Anatomical Variability
The dependency of model- and learning-based segmentation methods from a
representative quantity of training data is a common problem. For 3D-SSM,
which incorporate both modeling and learning paradigms, the handling of
scarce anatomical aberrations can become a particular limitation. In addition
to the disparity from information learned in the previous appearance model
training, the explicit shape constraint from the underlying shape prior can
limit the flexibility of 3D-SSM to cope with unexpected cases.

Several pathologies and anatomical aberrations were encountered in the
images during the experiments of this thesis. They comprise visible lesions of
variable size in liver and kidney, lung fibrosis, liver resection, kidney atrophy,
elevated hemidiaphragm and attempted breath-hold.

Overall, the proposed method has demonstrated a high robustness against
pathologies that mainly affect the appearance of the modeled target organs (i.e.
liver and kidney lesions, lung fibrosis). There, the pathological variabilities of
the underlying image intensities were successfully learned during the proposed
appearance model training. In particular, the encountered cases of lung fibrosis
in the segmentation experiments from Sect. 6.4.4 are good examples for a
strong alteration of overall organ appearance by a pathology. Also in many
cases, no clear separation of the lung from its adjacent tissue was provided.
Here, the incorporated shape and appearance priors of the proposed 3D-SSM
have shown to be beneficial for a separation of object and background.

The proposed method has also succeeded in cases where organs other than
the actual organ of interest were unexpectedly missing. The atrophic kidney
from Sect. 6.4.1 represents an example that was encountered in this thesis.

According to the aforementioned problems of explicit shape prior in cases of
unexpected anatomical aberrations, difficulties were encountered by the pro-
posed method for pathologies that affect more than tissue appearance. En-
countered examples were the liver resection (cf. Sect. 6.4.1), kidney displace-
ment (cf. Sect. 6.4.1), elevated hemidiaphgram (cf. Sect. 6.4.4), and kidney
atrophy (cf. Sect. 6.4.1). In these abnormal cases, search for a meaningful
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shape lead to a generally worse solution than the compared multi-atlas labeling
approaches. Also, non-linear shape variation of pathological organs is known
to cause problems for typical shape prior modeling techniques. This usually
adds to the problem of under-representation of pathological cases in datasets
used for model training.

Different strategies have recently been proposed to address these problems.
For example, deformation of a surface model was proposed in [244], to cover
pathological shapes at relevant locations identified by previous landmark de-
tection. Another approach was proposed in [245], where a low rank sparse
decomposition technique [246] was proposed to recover shape and appearance
prior from the presence of non-linear gross errors. Promising results were
achieved by these approaches. Their focus on landmarking and on shape prior
models also fit the landmark-based techniques of the proposed method. Gen-
erally, modeling multi-modal distributions of shape can be a reasonable means
for tackling pathological shape variation (cf. Sect. 2.3.3).

However, with the growing interest in an automatic analysis of clinical im-
age data, the diversity of encountered pathologies and imaging modalities is
expected to increase drastically. With growing size and heterogeneity of the
data, a visual inspection of segmentations becomes unfeasible, and it will at
some point be necessary to assess uncertainties of segmentations produced by
3D-SSM. Propositions have been made to assess goodness of fit based on the
confidence of trained appearance models [247]–[250]. Random regression forest
based approaches like the proposed method store basic information on sample
distribution within the leaf nodes of the trained forests. They can cast this in-
formation to the image space in various ways (cf. Sect. 5.1.1), which similarly
allows to asses landmark detection confidence during and after segmentation.

7.5 Runtime and Robustness
In the conducted runtime and performance experiments, a significant speedup
of the random regression forest training without performance loss was reached
for the proposed method by the tested measures, with a total speedup of ∼ 17
hours (∼ 53% of 32 hours total). The trained forests have shown high sta-
bility of performance during the reduction of training samples. The choice of
extremely randomized trees as a faster alternative has been shown to deliver
equivalent results like their default counterpart. Furthermore, extremely ran-
domized trees have shown a generally higher robustness against an influence
from sample reduction during training. Both measures are recommendable for
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a reduction of training times in the shown scenario. Extremely randomized
trees have not been examined by other related regression-based approaches
[239], [251], and their use might be beneficial in various scenarios.

Fast convergence with a high precision of results was observed for both for-
est types within a large range of training samples, patch sizes and tree counts.
Convergence was quickly reached for tree counts between 4 and 8 trees, de-
pending on the observed setting of LOD, sample count and forest type. All
tests beyond this point revealed no further improvement for up to 12 trees.
Onset of performance loss for suboptimal parameters was always observed si-
multaneously for segmentation accuracy, for tree precision and for convergence
of forest results. Generally, the observed precision of results produced by the
different ensemble trees seemed to be a strong indicator for a possible loss of
segmentation accuracy. For the proposed multi-stage model fitting, this means
that for a loss of convergence, dispersion of model fitting results is induced by
the regression forests. The final profile-based stage of the proposed method is
known to be sensitive against these effects, which is then immediately reflected
by the shown results. In case of convergence, high precision of results from
the regression forests provides the means for accuracy in the final profile-based
adaptation.

Similar tree counts were reported to produce best results for related ap-
proaches [239], [251]. Depending on the examined settings of the presented
scenarios, no more than 10-15 trees were required for optimal results. Whereas
the experiments in this thesis were aimed at runtime and robustness of the
model training, a more extensive performance evaluation was presented for
face and hand landmark detection in [251]. It was found that as a general
rule, segmentation accuracy of the presented scenarios improved up to a cer-
tain point with a growing number of trees, of considered split features, of tree
depth, and with an allowed smaller number of samples in each leaf.

Furthermore in [251], it was reported that voting information from more
distributed votes could compensate for a small tree count, which was not ob-
served for applications of the proposed method. In comparison with the overall
appearance of hand bones and facial images, a more heterogeneous neighbor-
hood of organs was encountered in the examined segmentation scenarios of the
proposed method, which made votes from the direct landmark neighborhood
preferable over more widely distributed votes. Apart from the above, further
implications from the presented scenarios were rather difficult to obtain, due
to the underlying differences of model fitting schemes, target structures and
imaging modalities.
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Altogether, the conducted sensitivity analysis has reconfirmed the known
robustness of the employed random forests for the proposed method. This
is of significance for the intended high generalizability of the proposed stan-
dalone 3D-SSM. The latter strongly relies on the straightforward translation of
the landmark detector training to varying use-cases. In practice, the presented
findings mean that within a wide range of reasonably chosen forest parameters,
a constant, high performance of the proposed method is to be expected. This
greatly reduces the required optimization effort prior to an application of the
proposed method, which significantly facilitates translation to different seg-
mentation scenarios. Finally, much shorter training times can be reached with
little risk of performance loss, which additionally promotes the applicability of
the proposed method.

During application, a segmentation runtime was reached by the proposed
method that allows an inspection of results within minutes and a fully auto-
mated background application on larger datasets within days. For the segmen-
tation of both lungs in the 418 CT volumes presented in Sect. 6.4.4, 3 days
were required on an Intel Core i7 Hexacore CPU (multi-threaded).

This makes the proposed method generally well suited for a retrospective
analysis of clinical data. The annotation of images from a rather big data con-
text becomes similarly feasible if additional computational power is employed.
Also, in a server-based application of the proposed method, annotation times
of less than 3 days were reached for 4 abdominal organs in ∼ 20000 clinical
CT volumes.

7.6 Implications for Model-based Image Seg-
mentation

The shown results of the proposed method have a general impact on the wide-
spread availability of 3D-SSM as a model-based segmentation methodology.
3D-SSM are involved in a large variety of medical scenarios, where they are
used for image segmentation and where higher-level modeling information is
incorporated for image analysis tasks. During segmentation, 3D-SSM are gen-
erally used in conjunction with additional, auxiliary techniques in order to be
successfully applicable and to promote good results. Sometimes, 3D-SSM are
only used as a helper tool for the subsequent refinement by other techniques,
like for the final graph cut algorithm in [154]. In other cases, only the robust
shape prior is utilized as a part of other methods to perform a segmentation
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[142], [143]. Or, simply a surface model is employed to carry out the segmen-
tation, based on the results from previously applied techniques [130].

Summarized, 3D-SSM and their components are often found as a part of
more complex systems, and they are rarely used as a self sufficient technique
during segmentation. With the facilitated use of a more proficient 3D-SSM as
described above, the necessity for auxiliary methods can be removed that are
otherwise needed to compensate the limitations of previous 3D-SSM.

Altogether, this helps to promote the availability of higher-level information
modeling from 3D-SSM to different use-cases, where each new segmentation
can immediately be put in context with previously analyzed object classes,
thus linking higher-level modeling information with low-level image informa-
tion. Different kinds of higher-level information have been proposed for use
in medical applications. They also define current directions of research for
statistical shape models.

For example, various works have addressed the joint modeling of image
structures, to capture information on shape and spatial interrelation of sev-
eral objects, using medial models [252]–[255] or conditional models [256], [257].
Information on object interrelation can be used for robust, simultaneous seg-
mentation of objects [258]–[260] or for an analysis of object shape and pose
interrelation [261]. In [257], object sub-composition has been proposed as an-
other domain for modeling shape interrelation using conditional shape model-
ing.

Another use of higher-level modeling information is focused on motion mod-
eling. Information on organ motion is learned an encoded in temporal models.
They can be used for model-based registration of 3D+t image data, or to in-
crease robustness of model-based segmentation in presence of heavy motion
artifacts. Furthermore, pathologies can be revealed from patient-specific mo-
tion patterns. Exemplary fields of application involve respiratory motion [262],
respiration induced liver motion [263], or cardiac motion [264], [265].

Apart from facilitating use of 3D-SSM in applications like the aforemen-
tioned scenarios, the proposed concept of unambiguous landmark detection
in medical images also has certain additional benefits. For example, an omni-
directional detection can deliver candidates during segmentation that are more
meaningful for an adaptation of temporal modeling techniques. Whereas so-
lutions from typical previous 3D-SSM can again be strongly dependent from
the visibility of landmark positions during the unidirectional search. This
generally applies to any scenario where search results also have an impact on
higher-level interpretation of the final model fitting outcome.
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7.7 Contributions of the Proposed Method
The proposed techniques of context appearance modeling and of landmark-
wise omni-directional detection have significantly improved the intrinsic ca-
pabilities of 3D-SSM. By the use of these techniques, the proposed 3D-SSM
has displayed a set of new characteristics that differ from previous 3D-SSM.
The high robustness against model placements and the high reproducibility of
results lead to a predictable and intuitive model fitting for 3D-SSM. Further-
more, no model initialization is required for an application of the proposed
method. This makes segmentation with 3D-SSM much easier in contrast to
the unpredictable and error-prone nature of typical previous 3D-SSM. Also,
good results can be obtained more easily.

The proposed method complements the previous approaches from [29], [135].
They are the first who have introduced the use of regression voting to the
domain of model-based medical image segmentation. In the meantime, they
have tuned their method into a fast and highly accurate expert system for
bone segmentation in x-ray images and for facial detection. The proposed use
of the constrained local model (CLM) allows a joint detection of landmarks,
and the presented 2D image segmentation tasks fit the degree of freedom from
the CLM model constraint well.

Unlike the work from [29], [135], the development of the proposed method
was directly aimed at the well-known problems of 3D-SSM that particularly
occur during soft tissue segmentation in volumetric image data, i.e. sensitiv-
ity from model pose and from model initialization, limited capture range and
sensitivity against locally optimal solutions during segmentation. In contrast
to the 2D femur and facial segmentation problems from [29], [135], the ex-
amined scenarios of the proposed method are characterized by higher shape
variability, and by lower contrast of the considered soft tissue organs and their
neighborhood, and furthermore, by a significantly larger size and variability of
the shown field of view in the images. These conditions strongly promote the
presence of the aforementioned problems for 3D-SSM. The higher modeling
complexity in 3D domain makes computational performance a stronger issue.
And finally, the problem of high shape variability of 3D soft tissue organs
makes a free surface deformation from the rigid shape constraint much more
challenging.

Altogether, this hampers an immediate application of the proposed CLM in
3D domain. Actually, in the joint shape and appearance optimization of the
CLM, detection results and shape constraint are strongly intertwined. This
can impede a separate and unambiguous detection of landmark positions as a

180



7.7. Contributions

solution for the described problems. The problems were however well addressed
by means of the separate multi-stage landmark detectors and the profile-based
deformable model fitting of the proposed method.

In addition to the proposed method, the regression-based methods from
[239] and from [136] were developed for segmentation in 3D domain. In contrast
to [239], the proposed method builds on a 3D-SSM, whereas no statistical shape
model was involved in their approach. Therefore, smoothing and remeshing
steps were required during segmentation, and in contrast with a 3D-SSM based
segmentation, no information from prior modeling is available for further use
and deduction after segmentation. More importantly, the method from [239]
builds on a detection of nearest boundaries instead of the omni-directional
landmark detection by the proposed method. As a result, unambiguous results
are not guaranteed, and after the first rough positioning of the surface model at
the organ of interest, proper visibility of boundaries had first to be established
through an extra rotational optimization step of the model fitting. Unlike the
method from [239], not only an application without model initialization was
shown for the proposed method, but also high robustness against pose changes
during segmentation, and a high reproducibility of results.

Finally, a global optimization of regression votes across different patches
was introduced for 2D bone segmentation in [136]. Optimality was reached
via convex optimization of the regression-based cost functions. Although the
global optimization scheme was promising for the landmark detection task in
3D-SSM, problem of high computational complexity was reported for 3D do-
main in a preliminary study on CT data. Regression-based landmark detection
was proposed in subsequent studies for detection of intervertebral disks in MRI
data [266] and for a landmark-based initialization of probabilistic atlases for
hip joint segmentation in CT data [267]. However, no time-efficient solution
of the original regression approach for 3D-SSM was proposed, and the use of
classifiers, of probabilistic atlases and of a previous 3D-SSM was preferred in
the presented applications.
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CHAPTER 8

Conclusions

The proposed techniques of non-local appearance modeling and of landmark-
wise regression voting have notably extended the intrinsic segmentation capa-
bilities of previous 3D Statistical Shape Models (3D-SSM).

This essentially concerns the well-known model initialization problem of
3D-SSM, which is effectively addressed by the proposed method. It reaches
a high robustness of results against positional changes prior to the segmen-
tation, within a large capture range around the organs of interest. With the
proposed method, 3D-SSM obtain the ability to perform image segmentation
autonomously from arbitrary image positions, without need for a previous
model initialization. Generalizability of the proposed method across different
use-cases was supported by the robustness and flexibility of the trained random
regression forests. Also, the presented model fitting without need for previ-
ous initialization significantly facilitates an application of 3D-SSM in medical
image segmentation tasks. From the state-of-the-art, the proposed method is
the first 3D-SSM that has demonstrated a combination of these benefits.

The proposed landmark detectors have also shown to promote a higher seg-
mentation accuracy in comparison with the previous unidirectional search.
With its combined accuracy and generalizability, the proposed standalone
3D-SSM has successfully extended the capabilities of 3D-SSM when used as
a generic segmentation methodology, and higher segmentation accuracy can
more easily be achieved with the proposed 3D-SSM. In the presented cases,
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similar performance was reached like other, more specialized segmentation ap-
proaches.

The robustness of the proposed method was demonstrated in a variety of
clinical segmentation tasks under diverse conditions. Without modifications,
the proposed method was successfully applied to different anatomical struc-
tures, to changing imaging conditions, and to different pathologies of varying
severity. Similar results were produced in comparison with other state-of-the-
art approaches on the same datasets and from the literature. Seamless and
time efficient background application on a larger clinical dataset, and an ex-
traction of meaningful biomarkers from segmentations of the proposed method
were demonstrated.

Finally, effective measures for a reduction of training times without per-
formance loss were proposed and validated experimentally. In addition, the
robustness of the employed random regression forests was shown for a wide
range of training parameters. Both findings underline the generalizability of
the employed regressors in terms of tuning-free straightforward application and
of upscaled training.

The translation of computational methods to different clinical scenarios of-
ten requires considerable effort and modifications of underlying algorithms
prior to a successful application. Often, these adaptations arise from the basic
limitations of the used algorithms, like the problems for 3D-SSM that were
addressed in this thesis. The shown solutions for these problems allow a more
easily achievable performance of 3D-SSM in different scenarios, and also pro-
mote the availability of higher-level modeling information from 3D-SSM for
clinical use-cases. Altogether, the shown benefits can be considered a signifi-
cant step towards a more widespread translation of 3D-SSM for image analysis
tasks in the clinic.

Future work will focus on incorporating the aforementioned higher-level
modeling information into the landmark detection framework of the proposed
3D-SSM. The omni-directional search can offer more meaningful landmark po-
sitions for scenarios where higher-level information is based on landmark corre-
spondences, e.g. in applications for shape and motion analysis. To fully exploit
this benefit of a meaningful landmark extraction using 3D-SSM, new model de-
formation schemes will be required where constraints for omni-directional land-
mark shifts can be imposed during the final stages of the model fitting. Also,
a combination of deep learning and model-based image processing promises
to be beneficial for both fields of research. Popular deep learning approaches
in medical image analysis, like convolutional neural networks and generative
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adversarial networks, generally refrain from explicit, model-based shape con-
straints on image outputs. However, they can be expected to strongly benefit
from a pronounced modeling of shape priors, in terms of more accurate and
geometrically more meaningful results. Overall, deep learning promises high
speed and accuracy for image processing tasks, and it also allows an elegant
synthesis of different sources of information during training and application.
This naturally suits the original modeling paradigm of 3D-SSM, and thus fur-
ther encourages an incorporation of deep learning for training and application
of future model-based approaches.
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