
Guidance of Architectural Changes in Technical
Systems with Varying Operational Modes

Lukas Märtin1, Nils-André Forjahn1,
Anne Koziolek2, and Ralf Reussner2

1 TU Braunschweig, Braunschweig, Germany,
{l.maertin,n.forjahn}@tu-braunschweig.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany,
{koziolek,reussner}@kit.edu

Abstract. Technical systems often rely on redundant platforms. One
way to increase dependability is to define various QoS modes, applied
to different hardware resources. Switching between modes is limited by
resource availability and causes costs for structural changes. Hence, se-
lecting appropriate system architectures for specific resource sets and
defining cost-efficient mode sequences is challenging. This short paper
proposes an approach to support reconfiguration decisions for varying
modes. We extend our decision graphs for traversing architectures to-
wards multi-purpose applicability. We optimise reconfigurations within
individual modes while reducing costs of mode changes simultaneously.
Graph-based differentiations lead to most efficient mode sequences, tran-
sition configurations and visualisations. To respect high reconfigurability,
we particularly inspect impacts of resource faults. For evaluation, we ap-
ply a subsystem of a micro satellite with multiple operational modes.

1 Introduction

Developing technical systems often incorporates grouping of redundant resources.
Each feasible system configuration is evaluated by quality demands wrt. an op-
erational mode. A multi-purpose system executes tasks in varying modes and
redundancy groups. Due to modes changes and resources faults this is chal-
lenging. Thus, for cost-efficient maintenance, it is essential to identify relations
between modes and optimal transitions. Here, we propose to prioritise configura-
tions according architectural quality at design time to reduce maintenance costs.
Thus, a prioritised reconfiguration space is tailored to modes and continuously
synchronised to resource availability for reducing efforts of manual exploration.

In previous work, we introduced an architecture-oriented approach to sup-
port reconfiguration decisions, the Deterministic Architecture Relation Graph
(DARG) [10]. Our existing approach is integrated [9] with the concept of De-
grees of Freedom [6] for architecture optimisation to generate quality-accessed
configurations from large decision spaces.

In this short paper, we refine our work towards multi-purpose application.
Thus, an DARG instance is exchanged for each mode change and appropriate

The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-00761-4_3

https://doi.org/10.1007/978-3-030-00761-4_3

2 L. Märtin et al.

transition configurations are explored. To define a cost-efficient ordering of modes
and efficient transitions, we inspect commonalities and efficient reconfigurations
in intersections of DARG pairs. For evaluation, we apply our approach to a
satellite subsystem with varying resource constellations and multiple modes. For
dependability, the result stability is checked to assure a fault-aware solution.

The remainder of this paper is organised as follows. Sect. 2 summarises re-
lated work. Our approach is described in Sect. 3 and evaluated in Sect. 4. We
conclude and promote future work in Sect. 5.

2 Related Work

We make use of knowledge from configuration generator to relate alternate solu-
tions with slight differences in resource demands and qualities. Similar to that,
Barnes et al. [1] define relations between architectures on candidate evolution
paths. These paths specify a search-based reconfiguration process from a source
to a user-defined target architecture via a sequence of transient architectures. We
intend to explore such targets automatically. Jung et al. [5] determine policies
to adapt running systems in the cloud. A decision-tree learner that is trained
with feasible system configurations, generated by queuing models, derives these
policies at design time. Close to that, Frey et al. [4] inspect reconfigurations as
deployment options derived by genetic algorithms. The authors define rules at
design time to systematically change the deployment of a system at run time.
Both approaches neither explicitly represent the reconfiguration space nor the
qualitative trade-offs between design options. Our approach preserves knowledge
from the configuration generation to prioritise near-optimal candidates. Malek
et al. [8] proposes a more hardware-oriented approach in context of self-adaptive
systems. The authors provide a trade-off model to identify a suitable deploy-
ment architecture. Even though that approach is applicable to distinguish be-
tween configurations, the authors did not integrate a prioritisation of all feasible
design alternatives for decision support at run time.

3 Reconfiguration Support for Varying Operation Modes

We extend our work by multi-purpose capabilities to reduce maintenance efforts.

3.1 Baseline Models

Due to space constraints all models [9, 10] are summarised here. A resource plat-
form RP defines properties and constraints of resources. Redundancies are rep-
resented by groups. Properties provide value assignments for quality attributes
from the configuration generation. We model configurations as sets of software
components with bindings bind to resources in RP . A configuration has a unique
id and holds aggregated values val for attributes. An ARG defines an unsorted
reconfiguration space. Its nodes are parametrised by generated configurations

Guidance of Architectural Changes with Varying Operational Modes 3

and their bindings to RP . Edges relate configurations via transient nodes or di-
rectly. Changes in resource bindings and reconfiguration costs are annotated as
edge labels. Initially an ARG is ambiguous as labels might be non-deterministic.
To fix that, we adapt Quality Attribute Directed Acyclic Graphs [3] (QADAG)
to describe operational modes as weighted sums with constraints for attributes.
Values for attributes are extracted from ARG nodes. For aggregation, each value
is normalised. The user customises a QADAG wrt. an operational mode by set-
ting weightings and minimal acceptance values. A value drops to 0 if its minimal
acceptance is violated. DARG instances are derived as mode-specific refinements
of the ARG for each QADAG instance by evaluating a utility for all configura-
tion results. Hence, edges are qualitatively definable now. A DARG instance is
an architecture-based model of the reconfiguration space for a specific mode.

3.2 Aligning Changes of Operational Modes and DARG Instances

The interrelationships of multiple QADAG and DARG instances are considered
by deriving optimal orders. Built on existing analysis methods a QADAG is
customised to derive a corresponding DARG instance. The multi-mode analysis
inspects the importance of a configuration within its origin instance and extracts
an optimal order between all instances. Faults are injected to check robustness.

Prioritise Configurations for Mode Transitions. Each configuration in
a DARG instance is rated by its fitness for mode transitions. In addition to
existing indicators, we apply centralities to specify the intra-graph importance
of each node. According to graph size, the inexpensive degree centrality, the
path-oriented closeness centrality or the expensive graph-spanning betweenness
centrality might be applied.

Three transition criteria result to rate reconfiguration abilities. The (1) nor-
malised utility defines the fitness to the mode, the (2) amount of resource bind-
ings bind characterises the degree of redundancies and the (3) centrality cen
of the corresponding node quantises the reconfiguration options wrt. related
configurations. The resource amounts and centrality is normalised over all oc-
currences. By setting constant weighting the criteria are prioritised. Each config-
uration ci is rated by a transition value in its reconfiguration space Di, defined
by tvci,Di := w1 ∗ utilityci + w2 ∗ cenci + w3 ∗ |bindci |.

Extracting Optimal Mode Sequences. For extracting optimal mode se-
quences, we inspect all transition values of configurations in pairs of DARG
instances. Because of the common ARG, the configurations of DARG instances
intersect, matched by id. Let Ds and Dt be reconfiguration spaces in D, then
Ds ∩id Dt ⇐⇒ ∀ci ∈ Ds, cj ∈ Dt: ciid

== cjid
is the configuration intersection

of the pair. Although it is unlikely that an intersection is empty, then an ordering
of this pair is infeasible and is done randomly instead. To inspect the transition
values between reconfiguration spaces, we aggregate the values to sums. Due to
asymmetries in the values wrt. the source spaces, we inspect two values per pair.

4 L. Märtin et al.

For the pair of reconfiguration spaces Ds and Dt the transition value sum is

defined by tvsDs∩idDt
:=
(∑|Ds∩idDt|

i=1 tvci,Ds
+ tvci,Dt

)
| ci ∈ Ds ∩id Dt.

To explore all pairs, we permute over D by S ⊂ P(D) with Si ∈ S is an
ordered sequence and |Si| == |D| the permutation size equals the amount of all
DARG instances. All transition value sums in S are inspected for the overall

maximum by tvsmax := max
∑|S|

i=1 (tvsDs∩idDt∀Ds, Dt ∈ Si) | Si ∈ S.
The highest sum characterises the optimal sequence of all DARG instances

with the set of transition configurations. By backtracking DARG to QADAG
instances, the order of reconfiguration spaces lead to the optimal mode sequence.

Consideration of Resource Faults. Each resource fault reduces the amount
of configurations. If all options in a redundancy group are affected, a configu-
ration is invalid. This causes changes in commonalities between reconfiguration
spaces as well as centralities within the graphs. Thus, faults have significant im-
pacts on the selection of transition configurations and optimal mode sequences.
Hence, expected resource faults are injected in DARG instances. The transition
configurations and the optimal sequence are checked for stability in an iterative
process. If a pair of DARG instances is affected by a fault in the resource plat-
form, it is marked for re-ordering and all transition values are re-calculated. The
ordering might be updated due to the new maximum transition value sums.

4 Validation

We validate our approach along a subsystem of the TET-1 satellite.

4.1 Application Scenario

TET-1 is designed for verifying experimental hardware. We apply our approach
to the attitude control system (ACS) [7]. The ACS architecture is threefold.
Sensor resources estimate the position and orientation then necessary attitude
changes are predicted and at least required actions are controlled on actuation
resources. Such resource dependencies are represented by components on the low-
est level. To enhance reconfiguration abilities for heterogeneous redundancies, we
relaxed constraints and added sensing variations to the original design. For ac-
tuation two groups with reaction wheels (RWS) and magnetic coils (MCS) exist.
Sensing is performed by five groups consisting of star compasses (ASC), sun sen-
sors (CSS), magnetic field sensors (MFS), inertial measurement units (IMU) and
on-board navigation systems (ONS). We model the ACS as variant-rich Palladio
Component Model [2] instance with several degrees of freedom with Palladio
DSE. Our tool AREva3 generates an ARG model and a default QADAG. We
apply three experiments [7] with varying modes: A Li-Polymer battery (N1),
a pico propulsion system (N7) and an infra-red camera (N15). Based on six
quality attributes and data sheets, three QADAG with corresponding DARG
instances are derived for validation. For sake of space, we leave out details.

3 AREva tool and validation data, https://www.github.com/lmaertin/areva

Guidance of Architectural Changes with Varying Operational Modes 5

4.2 Design of Experiment

The exploration is challenging if operational modes vary and faults occur. Thus,
we (1) define optimal mode sequences and (2) approve its fault robustness.

The importance of a configuration in a DARG is vital to define appropriate
transition configurations for sequencing modes. Maximum classification values
for configurations are identified to differentiate pairs of reconfiguration spaces
efficiently. For that, we aggregate transition values within each DARG instance
to rate orders of mode sequences. The maximum sums over all transition values
in intersections of all pairs of reconfiguration spaces are calculated. By ordering
of the sums, an optimal mode sequence is determined.

High reconfigurability is only assured if the mode sequence is robust against
faults. Thus, if a fault affects a valid configuration the corresponding mode se-
quence must hold. The impact of faults on the validity of mode ordering is
examined on level of relative changes of transition values. The ordering needs to
be proven as stable. Here, we adapt the previous fault-less measurements to esti-
mate impacts of faults. For that, we inspect the distance of changes in the sums
of transition values. The order of these relative values is checked for compliance
to the recent order of modes. If the maximum changes, the mode sequence is no
longer stable and a re-ordering is initiated.

4.3 Measurements and Explanation

Our measurement are done on basis of our ACS model and the sequence of ex-
pected faults from Tab. 1. For each experiment, we choose an initial configuration
with a high amount of resources to enhance reconfigurability.

1) Identifying Optimal Mode Sequences. We perform a multi-mode anal-
ysis on basis of DARG instances for each experiment. At first, we explore tran-
sition configurations and optimal mode sequences in a faultless setting. After-
wards, we inject a fault sequence and observe impacts on the initial results. For
both settings, the calculation of the transition values is parametrised to 0.33 for
w1, w2 and w3. We applied all three kinds of centralities. Even though all mea-
surements perform well, we show the results for betweenness due to lack of space.
The analysis calculates individual transition values and explores maximum sums
in six possible orders of intersecting DARG instances. For each order, the tran-
sition value sum consists of sums from two transitions. The order N15→N1→N7
has the highest sum and is the optimal mode sequence when no faults occur. It
is followed by N1→N15→N7 and N7→N1→N15.

For explanation, we take a deeper look into the amount of transition con-
figurations between a pair of modes and their transition value distribution. A
transition between N1 and N7, and vice versa, has the most transition configura-
tions with 86. N17↔N15 has a sum of 85 and N77→N15 at least 77. Therefore,
mode orders containing transitions between N1 and N7 are more likely to have
higher transition value sums than other transitions if the transition value distri-
butions are similar. This means that reconfigurations due to mode transitions

6 L. Märtin et al.

between N1 and N7 are more effective because the reconfiguration spaces are
more structurally similar than all other combinations. Fig. 1 shows the transi-
tion value distribution of the configurations for each mode transition. While the

N1−>N15 N1−>N7 N15−>N1 N15−>N7 N7−>N1 N7−>N15

0.
2

0.
3

0.
4

0.
5

Transition

Tr
an

si
tio

n
V

al
ue

Fig. 1. Transition Value Distribution per Transition Direction

medians and value ranges for each transition are different, they are still within
similar value ranges. For instance, the transition N15→N1 provides higher rated
transition configurations in average. Therefore, this transition probably leads to
highly rated configurations to perform the experiment N1 well. The high amount
of transition configurations in both transitions of N15→N1→N7 leads to re-
duced reconfiguration costs. Additionally, high average transition values promote
appropriate configurations.

2) Inspecting Fault Robustness. We derived a sequence of faults that ef-
fectively harms the ACS wrt. fault analysis methods in Tab. 1. To examine the
robustness of our results, the changes of transition value sums for each pos-
sible order is shown after fault injection. The initial optimal mode order of

Table 1. Fault Sequence and Impacts on Transition Value Sums

Fault 1→7→15 7→1→15 7→15→1 1→15→7 15→1→7 15→7→1
GPS LNA1+Antenna1 37.33 39.93 37.36 40.03 41.30 37.48
GPS Receiver1 37.24 38.65 36.98 40.26 42.33 37.03
GPS LNA2+Antenna2 10.09 12.31 11.55 12.86 13.02 10.08
MFS Fluxgate1 10.11 12.20 11.61 12.83 13.07 10.12
CSS RearHead2 9.90 12.19 11.61 12.78 12.90 10.12
ASC DPU1 High Res. 10.15 12.41 11.63 13.01 13.11 10.13
ASC DPU2 Low Res. 10.07 12.21 11.53 12.77 13.04 10.03
CSS Chipset1 High Res. 9.88 12.07 11.49 12.65 12.78 10.06
CSS RearHead1 2.15 3.28 2.92 3.11 3.36 2.10
CSS FrontHead2 2.14 3.27 2.93 3.10 3.35 2.10
CSS Chipset2 Low Res. 2.13 3.27 2.92 3.11 3.34 2.10
RW1 1.84 2.68 2.60 2.78 2.74 1.81
MC1x 0.58 0.74 0.73 0.76 0.76 0.57
RW2, MC2y, MC2x -, -, - -, -, - -, -, - -, -, - -, -, - -, -, -

N15→N1→N7 that was calculated under a faultless state is stable for most
of the injected faults. However, when RW1 fails the transition value sum of

Guidance of Architectural Changes with Varying Operational Modes 7

N1→N15→N7 beats the original optimal order. After injecting the fault of
RW2, no transition configurations are left and the reconfiguration process stops.
Overall, the complete failure of the ONS, CSS and the majority of actuation
resources have the biggest impacts on available transition configurations. At the
beginning in particular, the redundancy groups are thinned out. If a group be-
comes disadvantageous or invalid, similar resources from other groups are used.
However, other resources in the affected resource groups already failed before,
like the first GPS Antenna1+LNA1 or the second CSS RearHead2. That is why
the fault of the second GPS LNA2+Antenna2, the CSS RearHead1 and the
MC1x led to the complete failure of their corresponding group.

Following, we inspect the reasons for the change of the optimal order after
RW1. While the amount of transition configurations has already been heavily
reduced by faults before, transitions of N1↔N7 and N1↔N15 are still more
beneficial from a structural standpoint with 8 and 13 transition configurations
respectively. After the failure of RW1 the transitions of N1↔N15 and N7↔N15
are both equally disadvantageous in terms of structural similarity compared to
N1↔N15 with only 6 transition configurations left. Even though, N15→N1→N7
overall had more transition configurations than N1→N15→N7, now both have
the same amount. Therefore, the choice of optimal mode order is completely
reliant on the transition value distribution and the highest average. Fig. 2 shows
the distribution of transition values per mode transition direction. The plot

N1−>N15 N1−>N7 N15−>N1 N15−>N7 N7−>N1 N7−>N15

0.
14

0.
15

0.
16

0.
17

0.
18

Transition

Tr
an

si
tio

n
V

al
ue

Fig. 2. Transition Value Distribution per Transition Direction

shows that the two partial transitions of N15→N1→N7 as well as N1→N15→N7
both are very similar. The first transitions N15→N1 and N1→N15 have almost
the same high median. The second transitions N15→N7 and N1→N7 both have
a similar low median. So both orders are also very similar in terms of average
transition value. The biggest impact on the final result of ranking N1→N15→N7
higher than N15→N1→N7 is the first transition value sum, which is sufficient
at this point to induce a higher overall sum.

Overall N15→N1→N7 should remain as optimal mode sequence because it is
stable until the 13th fault. Additionally, it provides the best trade-off between the
amounts of similarities between all modes, and thus keeping the reconfiguration
cost low, and the average transition values for each configuration, improving the
experiments by providing alternate configurations with high utilities.

8 L. Märtin et al.

5 Conclusions

We presented an approach to support maintenance of fault-tolerant technical
systems in multi-purpose setting. By performing pre-calculations at design time,
we generate knowledge for efficient reconfigurations at run time for varying op-
erational modes. The extended decision model DARG supports mode transi-
tions and guides architectural changes by mode sequences. We evaluated our
tool-supported approach on a satellite subsystem and proven fault robustness
of results. Because of extensive efforts in processing the reconfiguration space,
we settled our approach at design time and build upon static data for quality
predictions. Consequently, the results might have a lack of precision.

In on-going research, we are doing an empirical study with experts from
space industry to explore possible integrations of the approach in the develop-
ment process. Further improvements are possible by integrating runtime data to
continuously update the DARG. Here, the computational efforts and delays for
reconfiguration at runtime need to be respected to justify our analyses against
traditional explorations.

Acknowledgments. This work was partially supported by the DFG under Pri-
ority Programme SPP1593: Design For Future – Managed Software Evolution.

References

1. Barnes, J.M., Pandey, A., Garlan, D.: Automated planning for software architec-
ture evolution. In: 28th Int. Conf. on Automated Software Eng. pp. 213–223 (2013)

2. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. Systems and Software 82(1), 3–22 (2009)

3. Florentz, B., Huhn, M.: Embedded systems architecture: Evaluation and analysis.
In: Quality of Softw. Architectures, LNCS, vol. 4214, pp. 145–162. Springer (2006)

4. Frey, S., Fittkau, F., Hasselbring, W.: Search-based genetic optimization for deploy-
ment and reconfiguration of software in the cloud. In: 35th Int. Conf. on Software
Engineering. pp. 512–521 (2013)

5. Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: Generating adaptation
policies for multi-tier applications in consolidated server environments. In: 5th Int.
Conf. on Autonomic Computing. pp. 23–32 (2008)

6. Koziolek, A., Reussner, R.: Towards a generic quality optimisation framework for
component-based system models. In: 14th Int. ACM Sigsoft Sympos. on Compo-
nent based Software Engineering. pp. 103–108 (2011)

7. Löw, S., Herman, J., Schulze, D., Raschke, C.: Modes and more – finding the right
attitude for TET-1. In: 12th Int. Conf. on Space Operations (2012)

8. Malek, S., Medvidovic, N., Mikic-Rakic, M.: An extensible framework for improving
a distributed software system’s deployment architecture. IEEE Trans. on Software
Engineering 38(1), 73–100 (2012)

9. Märtin, L., Koziolek, A., Reussner, R.H.: Quality-oriented decision support for
maintaining architectures of fault-tolerant space systems. In: 2015 European Con-
ference on Software Architecture Workshops. pp. 49:1–49:5 (2015)

10. Märtin, L., Nicolai, A.: Towards self-reconfiguration of space systems on architec-
tural level based on qualitative ratings. In: 35th Int. Aerospace Conf. (2014)

