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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Probabilistic prediction of cutting and ploughing forces is performed by applying Bayesian inference to an extended Kienzle force model. Prior 
probabilities are established and posterior force predictions are completed. The results of the probabilistic force predictions are then verified using 
forces measured under other cutting conditions, as well as a simplified slip-line force model. Additionally, probabilistic simulation results are 
compared with the results of a non-linear least squares fitting technique to isolate the shearing and ploughing force components of the cutting 
force. 
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1 Introduction 

Machining process models describe relationships between 
the input variables (i.e., feed, cutting speed, and cutting tool 
geometry) and the outputs, such as tool life and cutting force. 
In this context, several models have been developed to predict 
the cutting force [1]. The semi-empirical Kienzle force model 
describes a nonlinear relationship between the uncut chip 
thickness and cutting force using a power law [2]. The model 
predicts the force value deterministically and, therefore, the 
process uncertainties, including the machining and 
measurement processes variability, are not inherently 
incorporated. They can be quantified and minimized using 
Bayesian inference. Additionally, the traditional Kienzle 
model does not isolate the ploughing force from the cutting 

force. The model can be enhanced by incorporating the 
ploughing force component.  

In this research, orthogonal turning is performed to 
measure cutting forces over a range of uncut chip thickness 
values. An extended Kienzle force model is proposed to 
include the ploughing force component and a non-linear least 
squares fitting (LSF) method is used to identify the force model 
coefficients using the experimental data. Additionally, the 
Bayesian Markov Chain Monte Carlo (MCMC) approach is 
used to develop a probabilistic model. The model is verified 
using forces measured under other cutting conditions. Finally, 
the LSF and Bayesian inference predictions are compared. 

2 Orthogonal turning experiments 

Tube turning experiments were performed on a Haas  
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TL-1 CNC lathe; see Figure 1.  The dry machining tests were 
completed using an uncoated insert SPGW09T308 with the 
ISO grade of P25, a rake angle of -10 deg and an edge radius 
of 20 µm. The tubular workpiece material was 1020 steel with 
an outer diameter of 25.4 mm and wall thickness of 2.1 mm. 
The corresponding chip width was 2.1 mm. Four feed values of 
h = {0.051, 0,076, 0.102, and 0.127} mm/rev, as well as three 
cutting speeds of Vc = {60, 80 and 100} m/min, were selected. 
The experiments were repeated three times for each cutting 
speed-feed combination. Therefore, the total number of 
experiments was 36.  

 
Figure 1. Orthogonal turning setup 

A three-axis force dynamometer (Kistler 9257B) was used 
to measure the cutting force. Three data sets were used to 
identify the force model parameters and establish the prior for 
the probabilistic models, while the others were used for model 
verification. Figure 2 displays the tangential force component 
data for identification of the force model coefficients (using 
non-linear LSF) and prior training purpose. The mean is 
provided together with one standard deviation error bars. As 
can be seen, the forces increase with an increase in feed. 

 
Figure 2. Tangential force components for training of the prior 

3 Extended Kienzle force model  

The Kienzle force model, Eq. (1), describes the 
relationship between the uncut chip thickness, h, and the 
tangential direction cutting force component, Ft, [2]: 

𝐹𝐹𝑡𝑡 = 𝐾𝐾𝑡𝑡𝑡𝑡. 𝑏𝑏. ℎ1−𝑐𝑐𝑡𝑡 (1) 

where 1-ct, is a positive constant less than one and Ktt is the 
specific cutting force. 

Since the cutting edge corner radius is nonzero, there is an 
increase of chip plastic deformation without material cutting 
for small chip thickness values. This phenomenon is referred to 
as ploughing [1]; see Figure 3.   

 
Figure 3. Schematic representation of ploughing 

Ploughing can be included to the force model by adding a 
constant force coefficient that scales with the chip width, b.  

𝐹𝐹𝑡𝑡 = 𝐾𝐾𝑡𝑡𝑡𝑡. 𝑏𝑏. ℎ1−𝑐𝑐𝑡𝑡⏞      
𝐹𝐹𝑡𝑡−𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 + 𝐾𝐾𝑡𝑡𝑡𝑡. 𝑏𝑏⏞  
𝐹𝐹𝑡𝑡−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖

 
(2) 

In Eq. (2), Ktt is associated with shearing (cutting), while Kte is 
a ploughing (rubbing) term. The shearing component is 
dependent on the chip thickness, while the ploughing term is 
not. 

4 Determination of model parameters  

The parameters, Ktt, Kte, and ct, are determined using the 
nonlinear LSF and Bayesian inference methods. The results are 
provided in the following sections. 

4.1 Parameter determination using non-linear LSF 

Figure 4 shows the force data curve fit (using Eq. (2)); the 
regression fit quality is R2 = 0.99, where the lower and upper 
bounds for the fit parameters were selected to be 0 and 1000. 
Although the fit quality is high, and three training data were 
used to identify the force model coefficients, the approach was 
not able to identify the ploughing force coefficient, Kte.  

4.2 Parameter identification using Bayesian inference 
(MCMC simulation) 

Bayesian inference enables the prior, or initial belief about 
a parameter, to be updated by new experimental results. 
According to Eq. (3), the posterior probability, p(x|y), is 
calculated by multiplying the prior, p(x), by the likelihood 
function p(y|x) and dividing by the normalizing function p(y). 
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𝑝𝑝(𝑥𝑥|𝑦𝑦) = 𝑝𝑝(𝑥𝑥) 𝑝𝑝(𝑦𝑦| 𝑥𝑥)
𝑝𝑝(𝑦𝑦)  

(3) 

Markov Chain Monte Carlo (MCMC) algorithms are used 
to approximate the posterior distribution of the parameters. The 
detailed application of MCMC to force prediction was reported 
in [3]. 

 
Figure 4. Non-linear LSF to determine the model parameters  

To develop the probabilistic model for the extended 
Kienzle force model, prior values for the parameters Ktt, Kte, 
and ct must be selected. The mean and standard deviation of the 
parameters were taken from [2] for a range of low carbon steel 
cutting operations: 

1. Ktt = 1560 ± 96 MPa (one standard deviation) 
2. ct = 0.21 ± 0.06 (one standard deviation)  

Waldorf et al. [4] described the “separation point on edge” 
model to study the ploughing force in orthogonal cutting 
processes. According to the model, the separation point, S, of 
the material in front of a rounded cutting edge is defined, where 
the upper part converts to the chip (cut chip thickness, hm, and 
shear angle, Φc,) and travels along the rake face, while the 
lower part with the ploughing layer thickness, δ, remains 
attached to the workpiece; see Figure 3. The locating angle, αs, 
for the separation point was reported to be approximately 65 
deg. Therefore, the δ layer was calculated to be 2 µm (for a tool 
edge radius of 20 µm). The corresponding ploughing force 
coefficient can be approximated using the following steps.  

a. Ktt and ct are inserted in the shearing component of 
Eq. (2) to find the cutting force.  

b. The force is set equal to the ploughing component of 
the equation.  

c. The prior value of Kte is found by dividing the force 
by the chip width, b. 

The corresponding prior value for the ploughing force 
coefficient is given as follows. 

3. Kte = 12 ± 2.4 MPa (one standard deviation) 

Monte Carlo simulation was used to represent the prior for 
the cutting force model. Figure 5 illustrates the functional form 
of the prior mean value, two standard deviation (2) 
uncertainty intervals, and the training force data points. 
According to the figure, the prior mean function under-predicts 
the forces.  

 
Figure 5. Prior function with ±2 standard deviation uncertainty 

intervals 

The prior distribution of the model parameters, Ktt, Kte, and 
ct, is updated by experiments results. MCMC simulation is used 
to update and calculate the posterior distribution of the 
parameters. The updating process of the parameters is 
performed using only Ft = 427 N, so that the uncertainty of the 
distributions is minimized after the training process.  

 
Figure 6. Posterior function with ±2 standard deviation uncertainty 

intervals  

Figure 6 depicts the functional form of the posterior 
distribution with the mean and standard deviation of 2   
(R2 = 0.989). The function approximates the shearing and 
ploughing components of the cutting force using only one 
training data, Ft = 427 N. This demonstrates that Bayesian 
inference is able to identify the model parameters with the 
minimum input thanks to the informative prior knowledge. The 
ploughing force is shown based on extrapolation to the zero 
chip thickness [5]. The corresponding mean values of the 
posterior parameters, Ktt, Kte and ct, parameters, are 1597 MPa, 
12.25 MPa, and 0.27, while the standard deviations are  
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66 MPa, 2.37 MPa, and 0.024, respectively. Furthermore, the 
uncertainty of the posterior function is significantly reduced.  

The predicted ploughing force is verified using the 
simplified slip-line model [6], which has been proposed for 
turning processes:  

𝐹𝐹𝑡𝑡𝑡𝑡 = 𝜏𝜏. 𝑏𝑏. 𝑟𝑟𝑒𝑒. tan (𝜋𝜋
2 + 𝛼𝛼𝑟𝑟

2 ) (4) 

where Ftp is the ploughing force, τ is the shear stress, re is the 
edge radius, and αr is the cutting edge rake angle. The τ 
parameter was computed to be 684 MPa using Merchant’s 
force model [1]. From Eq. (4), Ftp is calculated to be 24.22 N, 
showing that the probabilistic model successfully approximates 
the ploughing force, 25.84 ± 2.37 N. Therefore, comparing the 
Bayesian and the non-linear LSF methods, the ploughing force 
identification was performed using the former, while it was not 
successful using the latter method, despite three training force 
data were used. 

Table 1 shows the cutting conditions and forces used for 
the prediction purpose. According to the table, each row 
contains one to three force values as a result of repeated tests. 
Figure 7 illustrates the prediction of the cutting forces obtained 
under other cutting conditions using the posterior function. As 
can be seen, all of the force data appear within the uncertainty 
intervals.  

Table 1. Cutting conditions and forces for prediction 
No. Vc (m/min) f (mm/rev) Ft (N) 
1  80 0.051 415, 422 
2 100 0.051 386 
3 80 0.076 546, 576 
4 100 0.076 500 
5 80 0.102 647 
6 100 0.102 667, 691 
7 100 0.127 723, 730, 749 

 
Figure 7. Posterior function for prediction with ±2 standard 

deviation uncertainty intervals 

5 Conclusions 

In this research, cutting and ploughing force prediction 
was performed using nonlinear least squares fitting and 
Bayesian inference (MCMC simulation) methods. The 
prediction results were compared with orthogonal turning data 
and a simplified slip-line model. Comparing the fitting and 
inference approaches, it was shown that Bayesian inference can 
predict the cutting and ploughing forces with minimal initial 
data (one data point in this case) thanks to the informative prior 
knowledge. Further, the nonlinear fitting was not able to 
determine the ploughing force from the cutting force despite 
three training force data were used and a high fit quality  
(R2 ~ 0.99) was achieved. This suggests that Bayesian 
inference offers a preferred approach to force modelling with 
minimum input and inherent uncertainty.  
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