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Abstract

Probabilistic prediction of cutting and ploughing forces is performed by applying Bayesian inference to an extended Kienzle force model. Prior
probabilities are established and posterior force predictions are completed. The results of the probabilistic force predictions are then verified using
forces measured under other cutting conditions, as well as a simplified slip-line force model. Additionally, probabilistic simulation results are
compared with the results of a non-linear least squares fitting technique to isolate the shearing and ploughing force components of the cutting

force.
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1 Introduction

Machining process models describe relationships between
the input variables (i.e., feed, cutting speed, and cutting tool
geometry) and the outputs, such as tool life and cutting force.
In this context, several models have been developed to predict
the cutting force [1]. The semi-empirical Kienzle force model
describes a nonlinear relationship between the uncut chip
thickness and cutting force using a power law [2]. The model
predicts the force value deterministically and, therefore, the
process uncertainties, including the machining and
measurement processes variability, are not inherently
incorporated. They can be quantified and minimized using
Bayesian inference. Additionally, the traditional Kienzle
model does not isolate the ploughing force from the cutting
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force. The model can be enhanced by incorporating the
ploughing force component.

In this research, orthogonal turning is performed to
measure cutting forces over a range of uncut chip thickness
values. An extended Kienzle force model is proposed to
include the ploughing force component and a non-linear least
squares fitting (LSF) method is used to identify the force model
coefficients using the experimental data. Additionally, the
Bayesian Markov Chain Monte Carlo (MCMC) approach is
used to develop a probabilistic model. The model is verified
using forces measured under other cutting conditions. Finally,
the LSF and Bayesian inference predictions are compared.

2 Orthogonal turning experiments

Tube turning experiments were performed on a Haas
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TL-1 CNC lathe; see Figure 1. The dry machining tests were
completed using an uncoated insert SPGW09T308 with the
ISO grade of P25, a rake angle of -10 deg and an edge radius
of 20 um. The tubular workpiece material was 1020 steel with
an outer diameter of 25.4 mm and wall thickness of 2.1 mm.
The corresponding chip width was 2.1 mm. Four feed values of
h = {0.051, 0,076, 0.102, and 0.127} mm/rev, as well as three
cutting speeds of V. = {60, 80 and 100} m/min, were selected.
The experiments were repeated three times for each cutting
speed-feed combination. Therefore, the total number of
experiments was 36.

Figure 1. Orthogonal turning setup

A three-axis force dynamometer (Kistler 9257B) was used
to measure the cutting force. Three data sets were used to
identify the force model parameters and establish the prior for
the probabilistic models, while the others were used for model
verification. Figure 2 displays the tangential force component
data for identification of the force model coefficients (using
non-linear LSF) and prior training purpose. The mean is
provided together with one standard deviation error bars. As
can be seen, the forces increase with an increase in feed.
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Figure 2. Tangential force components for training of the prior

3 Extended Kienzle force model

The Kienzle force model, Eq. (1), describes the
relationship between the uncut chip thickness, 4, and the
tangential direction cutting force component, F;, [2]:

F, = K. b. Rl ¢ (1)

where 1-¢;, is a positive constant less than one and Ky is the
specific cutting force.

Since the cutting edge corner radius is nonzero, there is an
increase of chip plastic deformation without material cutting
for small chip thickness values. This phenomenon is referred to
as ploughing [1]; see Figure 3.
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Ploughing zone

Figure 3. Schematic representation of ploughing

Ploughing can be included to the force model by adding a
constant force coefficient that scales with the chip width, b.

Ft—ploughing

F,=Kgb.h % + Kb

Ft—sheuring

2)

In Eq. (2), K, is associated with shearing (cutting), while K is
a ploughing (rubbing) term. The shearing component is
dependent on the chip thickness, while the ploughing term is
not.

4 Determination of model parameters

The parameters, Ky, K, and c;, are determined using the
nonlinear LSF and Bayesian inference methods. The results are
provided in the following sections.

4.1  Parameter determination using non-linear LSF

Figure 4 shows the force data curve fit (using Eq. (2)); the
regression fit quality is R?= 0.99, where the lower and upper
bounds for the fit parameters were selected to be 0 and 1000.
Although the fit quality is high, and three training data were
used to identify the force model coefficients, the approach was
not able to identify the ploughing force coefficient, K.

4.2 Parameter identification using Bayesian inference
(MCMC simulation)

Bayesian inference enables the prior, or initial belief about
a parameter, to be updated by new experimental results.
According to Eq. (3), the posterior probability, p(x|y), is
calculated by multiplying the prior, p(x), by the likelihood
function p(y|x) and dividing by the normalizing function p(y).
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p(x) p(y| x) 3)

p(xly) = 20

Markov Chain Monte Carlo (MCMC) algorithms are used
to approximate the posterior distribution of the parameters. The

detailed application of MCMC to force prediction was reported
in [3].
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Figure 4. Non-linear LSF to determine the model parameters

To develop the probabilistic model for the extended
Kienzle force model, prior values for the parameters Ky, Ke,
and ¢, must be selected. The mean and standard deviation of the
parameters were taken from [2] for a range of low carbon steel
cutting operations:

1. K;=1560 =96 MPa (one standard deviation)
2. ¢=0.21 +£0.06 (one standard deviation)

Waldorf et al. [4] described the “separation point on edge”
model to study the ploughing force in orthogonal cutting
processes. According to the model, the separation point, S, of
the material in front of a rounded cutting edge is defined, where
the upper part converts to the chip (cut chip thickness, 4, and
shear angle, @.,) and travels along the rake face, while the
lower part with the ploughing layer thickness, J, remains
attached to the workpiece; see Figure 3. The locating angle, as,
for the separation point was reported to be approximately 65
deg. Therefore, the 0 layer was calculated to be 2 um (for a tool
edge radius of 20 wum). The corresponding ploughing force
coefficient can be approximated using the following steps.

a. K, and ¢, are inserted in the shearing component of
Eq. (2) to find the cutting force.

b. The force is set equal to the ploughing component of
the equation.

c. The prior value of K, is found by dividing the force
by the chip width, b.

The corresponding prior value for the ploughing force
coefficient is given as follows.

3. Kw=12+2.4 MPa (one standard deviation)

Monte Carlo simulation was used to represent the prior for
the cutting force model. Figure 5 illustrates the functional form
of the prior mean value, two standard deviation (20)
uncertainty intervals, and the training force data points.
According to the figure, the prior mean function under-predicts
the forces.
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Figure 5. Prior function with +2 o standard deviation uncertainty
intervals

The prior distribution of the model parameters, K, K., and
¢1, 1s updated by experiments results. MCMC simulation is used
to update and calculate the posterior distribution of the
parameters. The updating process of the parameters is
performed using only F; =427 N, so that the uncertainty of the
distributions is minimized after the training process.
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Figure 6. Posterior function with +2 o standard deviation uncertainty
intervals

Figure 6 depicts the functional form of the posterior
distribution with the mean and standard deviation of 2o
(R? = 0.989). The function approximates the shearing and
ploughing components of the cutting force using only one
training data, ; = 427 N. This demonstrates that Bayesian
inference is able to identify the model parameters with the
minimum input thanks to the informative prior knowledge. The
ploughing force is shown based on extrapolation to the zero
chip thickness [5]. The corresponding mean values of the
posterior parameters, Ky, K;. and c;, parameters, are 1597 MPa,
12.25 MPa, and 0.27, while the standard deviations are



M. Salehi et al. / Procedia CIRP 77 (2018) 90-93 93

66 MPa, 2.37 MPa, and 0.024, respectively. Furthermore, the
uncertainty of the posterior function is significantly reduced.

The predicted ploughing force is verified using the
simplified slip-line model [6], which has been proposed for
turning processes:

T Q

Fyp =1.b.7,.tan (E + 7) “)
where F, is the ploughing force, 7 is the shear stress, r. is the
edge radius, and o, is the cutting edge rake angle. The ¢
parameter was computed to be 684 MPa using Merchant’s
force model [1]. From Eq. (4), F}, is calculated to be 24.22 N,
showing that the probabilistic model successfully approximates
the ploughing force, 25.84 + 2.37 N. Therefore, comparing the
Bayesian and the non-linear LSF methods, the ploughing force
identification was performed using the former, while it was not
successful using the latter method, despite three training force
data were used.

Table 1 shows the cutting conditions and forces used for
the prediction purpose. According to the table, each row
contains one to three force values as a result of repeated tests.
Figure 7 illustrates the prediction of the cutting forces obtained
under other cutting conditions using the posterior function. As
can be seen, all of the force data appear within the uncertainty
intervals.

Table 1. Cutting conditions and forces for prediction

No. Ve (m/min) f(mm/rev) Fit(N)
1 80 0.051 415, 422
2 100 0.051 386
3 80 0.076 546, 576
4 100 0.076 500
5 80 0.102 647
6 100 0.102 667, 691
7 100 0.127 723, 730, 749
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Figure 7. Posterior function for prediction with +2 o standard
deviation uncertainty intervals

5 Conclusions

In this research, cutting and ploughing force prediction
was performed using nonlinear least squares fitting and
Bayesian inference (MCMC simulation) methods. The
prediction results were compared with orthogonal turning data
and a simplified slip-line model. Comparing the fitting and
inference approaches, it was shown that Bayesian inference can
predict the cutting and ploughing forces with minimal initial
data (one data point in this case) thanks to the informative prior
knowledge. Further, the nonlinear fitting was not able to
determine the ploughing force from the cutting force despite
three training force data were used and a high fit quality
(R? ~ 0.99) was achieved. This suggests that Bayesian
inference offers a preferred approach to force modelling with
minimum input and inherent uncertainty.
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