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Abstract: Inorganic-organic hybrid nanoparticles (IOH-NPs)

with a general composition [ZrO]2 +[RDyeOPO3]2�, [Ln]3 +
n/3[RDye

(SO3)n]n�, [Ln(OH)]2 +
n/2[RDye(SO3)n]n�, or [LnO]+

n[RDye(SO3)n]n�

(Ln: lanthanide) are a novel class of nanomaterials for

fluorescence detection and optical imaging. IOH-NPs are

characterized by an extremely high load of the fluorescent

dye (70–85 wt-%), high photochemical stability, straightfor-

ward aqueous synthesis, low material complexity, intense

emission and high cell uptake at low toxicity. Besides full-

color emission, IOH-NPs are suitable for multimodal imaging,

singlet-oxygen generation as well as drug delivery and drug

release. This focus review presents the material concept of

the IOH-NPs as well as their synthesis and characterization.

Their characteristic features are illustrated by selected in vitro

and in vivo studies to initiate application in biology and

medicine.

1. Introduction

Medicine and molecular biology belong to the most fascinating

and most challenging areas of nanoparticle application.[1] Here,

nanoparticles generally address two different subjects: Diag-

nosis and therapy.[2] Aiming at diagnosis, nanoparticles can

serve as contrast agents for all kinds of imaging techniques

including optical imaging (OI), photoacoustic imaging (PAI),

magnetic resonance imaging (MRI), ultrasonic imaging (US),

computed tomography (CT), scintigraphy (SC), or positron

emission tomography (PET).[3] In regard of therapy, nano-

particles are promising carriers for drug delivery and release.

For instance, this includes analgesic, anti-tumor, anti-inflamma-

tory, antibiotic or antiviral agents and allows to address a wide

range of disease patterns.[4]

In the recent decade, imaging techniques have made

tremendous progress due to the technological development of

imaging devices (i. e. hardware), enormous advancements in

the evaluation and processing of great amounts of data (i. e.

software),[3] and finally due to powerful additives – so-called

contrast agents – that allow enhancing contrast, significance,

reliability and specificity.[3] Whereas the first areas belong to

engineering and computer science, contrast agents are the

domain of natural science. In general, the role of contrast

agents is to visualize whole organisms, specific organs and

tissue, or even single cells in animals (e. g., mice, rats) and

humans.[1,5] Certain contrast agents are long used in the clinics

for almost all imaging techniques.[3,5] Prominent examples

comprise, for instance, Gd complexes for MRI,[6] BaSO4 for CT,[7]

or 99Tc and 131I compounds in nuclear medicine.[8]

Imaging techniques are widely used in clinical practice and

suitable for obtaining detailed information at high resolution.

However, they also require cumbersome equipment and time-

consuming data acquisition.[3] In this regard, especially OI offers

new opportunities for non-invasive diagnosis and in vivo

observation of complex vital functions.[9] OI is fast and easy to

operate and requires comparably cheap equipment as well as

uncomplex data manipulation. Tremendous efforts have been

already made to unveil organ distribution with deep tissue

information and to improve optical contrast and spatial

resolution. However, OI essentially requires suitable fluorescent

contrast agents. Even more interesting than single-modality

contrast agents is the option of multimodal detection to

combine the specific assets of different imaging techniques for

the visualization of various types of tissue on different scales of

resolution, for the translation from preclinical to clinical

imaging, or the translation of preoperational to intraoperative

imaging.[10]

This review is specifically focused on fluorescent nano-

particles as powerful tags for fluorescence detection and OI. In

general, various requirements are prerequisite to contrast

agents for any application in basic medical research and life

sciences, including: i) Low toxicity and sufficient biocompati-

bility; ii) Easy detectability with standard hardware equipment;

iii) Highly specific signals to prevent optical overlap with

autofluorescence from cells and tissue; iv) Deep tissue pene-

tration of the irradiation used for excitation and emission; v)

Straightforward synthesis of contrast agents with low material

complexity. In this regard, three types of fluorescent nano-

particles have been yet applied most often: i) Semiconductor-

type quantum dots (Q-dots);[11] ii) Up-converting nanopar-

ticles;[12] iii) Immobilized organic dyes.[13]

Aiming at fluorescent nanoparticles, Q-dots beyond doubt

represent the most prominent and most widely applied class of

inorganic nanoparticles.[11] They are designated by unrivalled

brightness, intense size-depending emission, likewise in the UV

to IR spectral regime, superior photostability, and low photo-
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bleaching.[14] Since the emission of Q-dots relates to a

quantum-confinement effect – i. e. a size-depending band gap,

and thus, a size-depending emission – precise size control is

essential to guarantee the quantum-confinement effect (i. e.
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mean particle diameter <10 nm) and the color purity of

emission (i. e. maximum deviation from the mean diameter

�0.5 nm).[15] Moreover, high crystallinity and high purity are

necessary to exclude defect-driven loss processes. The latter

requirement also demands core-shell structures (e. g.

CdSe@ZnS) with a luminescent core (e. g. CdSe) that is coated

by a non-luminescent shell (e. g. ZnS) to eliminate the solid-to-

liquid surface of the luminescent core.[16] The above require-

ments – size control, low defect level, core-shell structure – lead

to high efforts for chemical synthesis. The applicability of Q-

dots, finally, suffers from additional inherent drawbacks such as

harmful elements (e. g. Cd2 +), sensitivity to hydrolysis, and the

hydrophobic properties of the as-prepared material (e. g. due to

alkyl-terminated surfaces).[17] All in all, advanced strategies of

synthesis and surface conditioning are needed to obtain state-

of-the-art water-dispersible core-shell Q-dots showing intense

emission.[18] As an alternative class of fluorescent nanoparticles,

moreover, carbon dots (C-dots) came up recently and turned

out as very promising due to their improved biocompatibility.[19]

Similar demands regarding crystallinity, purity, and surface

conditioning with core-shell structures also apply to up-

converting nanoparticles (e. g. NaYF4:Er,Yb@NaYF4) to avoid all

kinds of defects, which otherwise reduce the emission inten-

sity.[12] Up-conversion – meaning the absorption of two or more

photons of lower energy (e. g. IR) followed by the emission of

one photon at higher energy (e. g. green) – is established by

photon-cascade processes on the precisely defined energy

levels of rare-earth-metal ions (e. g., Er3 +, Yb3 +).[20] Up-conver-

sion-based fluorescence guarantees low background and

excellent tissue penetration. On the other hand, up-conversion

materials suffer from poor absorption and high photon density.

The latter is needed for sufficient excitation (e. g. by mono-

chromatic laser light) of the quantum-mechanically forbidden f-

f transitions on rare-earth-metal ions.

Besides inorganic nanoparticles, such as Q-dots and up-

converting materials, fluorescent organic dyes in aqueous

solution are, of course, most often used as tags for fluorescence

detection and optical imaging.[13] Thus, a great number of

fluorescent dyes showing emission from the blue to the

infrared spectral regime has been discovered since the

beginning of fluorescence microscopy in the early 20th century

to analyze all kinds of biological probes.[21] However, fluorescent

organic dyes often do not meet the demands on high emission

intensity, sufficient photostability, and chemical resistance

under the conditions of investigation.[2g,22] In particular, low

intensity and rapid photobleaching are severe limitations of

many fluorescent organic dyes. To evade these intrinsic

weaknesses, fluorescent organic dyes – most often including

derivatives of rhodamine, cyanine, squaraine, boron-dipyrrome-

thene, porphyrin, phthalocyanine, etc.[23] – were attached to or

encapsulated in inorganic matrices (e. g., silica, calcium

phosphate),[24] metalorganic frameworks and coordination poly-

mers,[25] organic polymers (e. g., polyglycolic acid/PGA, polylactic

acid/PLA, poly(lactic-co-glycolic) acid/PLGA, polycaprolactone/

PCL, chitosan),[13a,26] as well as liposomes and dendrimers.[27]

However, surface-attached dyes hold the risk of abrasive

debonding. Encapsulation of fluorescent organic dyes in a

matrix, on the other hand, is typically performed via micro-

emulsion techniques, which limits the amount of available

material.[28] Moreover, the concentration of the fluorescent dye

in relation to the inert matrix is usually low (�5 wt-%). The

limited number of fluorescent centers per nanoparticle volume,

however, reduces the emission intensity and increases the

threat of photobleaching.

Although fascinating chemical compositions and material

structures of fluorescent nanoparticles were realized, aspects

such as the emission intensity, photostability, biocompatibility,

or biodegradability still need further improvement. The com-

plexity and great number of constituents of certain nano-

particular architectures, in fact, can be a limitation in itself since

synthesis and material are becoming more and more complex

and expensive. Aiming at medical application, furthermore, all

individual constituents as well as all their combinations might

need clinical approval.[29] Based on the above discussed state-

of-the-art, we present inorganic-organic hybrid nanoparticles

(IOH-NPs) as a novel concept and class of fluorescent nano-

particles for biomedical issues. We have explored these IOH-NPs

since 2008,[30] with the intention to identify uncomplex, low-

cost nanoparticles showing intense emission and high bio-

compatibility.

2. Fluorescent Inorganic-Organic Hybrid
Nanoparticles (IOH-NPs)

The concept of the IOH-NPs is illustrated with phosphate-based

IOH-NPs and sulfonate-based IOH-NPs as examples. This

includes the chemical synthesis, the material composition as

well as the luminescence properties with the specific focus on

biomedical application.

2.1. Material Concept

Aiming at uncomplex, low-cost nanoparticles for biomedical

use, we intended to perform the synthesis in water only, since

the addressed area of application – for obvious reasons – is

limited to water. Consequently, the aspired nanoparticles need

to be insoluble in water. In terms of biocompatibility,

phosphates seemed reasonable as they are essential for the

energy metabolism of almost all cells.[31] In this regard, the most

insoluble metal phosphate in water is zirconium phosphate,

which is well-known in qualitative analysis to prove the

presence either of zirconium or phosphate.[32] The precipitation

is highly indicative since zirconium phosphate is the only

insoluble metal phosphate even in hydrochloric acid at low pH

(i. e. pH�2).

Although the qualitative test reaction is described in many

textbooks, the chemical composition of the aqueous precipitate

at room temperature is still not clear. Typically, the composition

is denoted as Zr3(PO4)4 or Zr(HPO4)2 � H2O.[32,33] With aqueous

conditions at room temperature and at moderate pH (4 to 9), in

fact, neither Zr4 + nor PO4
3� are likely as dissolved species due
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to their high acidity or alkalinity, respectively. The expected

species rather are [ZrO]2 + and [HPO4]2� or [H2PO4]�. Aiming at

nanoparticles, a composition [ZrO]2 +[HPO4]2� is indeed formed

upon injection of an aqueous solution of ZrOCl2 into an

aqueous solution of Na2(HPO4) (Figure 1a). It needs to be noted

that [ZrO]2 +[HPO4]2� – similar to all IOH-NPs presented in the

following – is amorphous and does not show any Bragg peak.

This complicates the determination of composition and

structure, hence requiring different independent tools to prove

the adopted composition (e. g. Zr : P ratio of [ZrO]2 +[HPO4]2�

determined to 1 : 1; see 2.4 for details).

Although not showing any luminescence, [ZrO]2 +[HPO4]2� is

the initial point of all IOH-NPs and the origin of a platform of

compounds with different compositions.[34] To obtain fluores-

cent IOH-NPs, the simple hydrogen phosphate anion is replaced

by a phosphate with a fluorescent organic dye (RDye) bound via

a P�O�C ester bond, resulting in a general composition [ZrO]2 +

[RDyeOPO3]2� (Figure 1b).[34,35] With this composition, it is obvious

that RDye, in principle, can comprise a great number of different

fluorescent dyes. Essentially, the fluorescent organic dye needs

to contain a phosphate functionality to obtain insoluble nano-

particles in water.[34,35]

Phosphate-based IOH-NPs [ZrO]2 +[RDyeOPO3]2� are com-

posed of [ZrO]2 + as an inorganic cation and [RDyeOPO3]2� as a

fluorescent organic anion.[36] Due to charge neutrality, cation

and anion are available in 1 : 1 ratio (in the case of identical

charges) and in molar quantities. Such saline composition is

similar to simple sodium chloride that consists of equimolar

amounts of Na+ cations and Cl� anions. The saline composition

also accounts for a specific advantage of the IOH-NPs, which is

an unprecedentedly high dye load (70–85 wt-%). Due to the

intermixing of the inorganic part (the cation) and the organic

part (the anion) on the molecular level, the nanoparticles are

designated as “inorganic-organic hybrid nanoparticles”, accord-

ing to the Latin origin: “hybrid”: crossbreed.[34,35]

The predominant role of [ZrO]2 + in the IOH-NPs is to

guarantee their insolubility in water, which is prerequisite for

obtaining nanoparticles as well as for the intended water-

limited biomedical application.[34,35] A comparable approach was

yet only reported for bisphosphonates, which serve as organic

bridging ligands in coordination polymers.[25b,37] Zirconium as a

metal cation is known for its low toxicity and has been clinically

approved in the US and the EU, for instance, in the form of

sodium zirconium cyclosilicate (Lokelma, AstraZeneca) for the

treatment of hyperkalemia[38] or in the case of different

zirconium complexes as antiperspirants.[39] The fluorescent

organic anion [RDyeOPO3]2� entails the fluorescence features of

the IOH-NPs.[34,35] In regard of the above considerations, [ZrO]2 +

[RDyeOPO3]2� IOH-NPs already offer the following advantages: i)

Uncomplex aqueous synthesis; ii) Low material complexity; iii)

High dye load leading to intense emission; iv) Wide variability

of fluorescent organic anions.

2.2. Phosphate-based IOH-NPs

Phosphate-based IOH-NPs with a general chemical composition

[ZrO]2 +[RDyeOPO3]2� are here introduced with the exemplary

system [ZrO]2 +[(HPO4)1�x(FMN)x]
2� (x = 0–1) containing the in-

organic cation [ZrO]2 + as well as the anions [HPO4]2� and

[FMN]2�.[34] FMN represents the fluorescent organic anion flavin

mononucleotide and is a derivative of vitamin B2 (Figure 2a).[40]

Already in 2008,[30,34] [ZrO]2 +[(HPO4)1�x(FMN)x]
2�, and in partic-

ular [ZrO]2 +[FMN]2�, attracted our attention in regard of several

aspects: i) Its insolubility in water that supports nucleation and

growth of nanoparticles; ii) The chemical inertness of zirconium

phosphates; iii) The good biocompatibility of all components

(e. g. lethal intake of ZrCl4 >1 g/kg);[41] iv) The replaceability of

[HPO4]2� and [FMN]2� in variable ratios.

Due to the low solubility of [ZrO]2 +[(HPO4)1�x(FMN)x]
2� in

water, straightforward aqueous synthesis is possible, avoiding

expensive precursors, multistep procedures, and complex

structures. Specifically, the synthesis of [ZrO]2 +[(HPO4)1�x

(FMN)x]
2� IOH-NPs comprises the injection of an aqueous

solution of ZrOCl2 � 8H2O to an aqueous solution of Na2(FMN)

and Na2(HPO4) (Figure 2a).[34] For controlling particle nucleation

and particle growth and for obtaining uniform nanoparticles

and colloidally stable suspensions, general aspects of colloid

chemistry need to be considered as expressed by the LaMer-

Dinegar model.[42] Thus, the injection was performed whilst

Figure 1. Scheme illustrating the synthesis of: a) [ZrO]2 +[HPO4]2� NPs and b)
fluorescent inorganic-organic hybrid nanoparticles (IOH-NPs) with a general
composition [ZrO]2 +[RDyeOPO3]2�.

Figure 2. [ZrO]2 +[FMN]2� IOH-NPs (FMN: flavin mononucleotide) with: a)
Scheme of synthesis; b) Particle size according to SEM; c) Aqueous
suspensions at daylight and with blue-light excitation; d) Excitation and
emission spectra; e) Optical microscopy, f) fluorescence microscopy imaging
in cells, and g) in mice after intradermal injection of nanoparticles (Cy5-NHS
intravascular vessel stain), (modified reproduction from ref. [34]).
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vigorously stirring at slightly elevated temperatures (55 8C).

Moreover, the dye anion was added with 5–10 mol-% excess to

guarantee anion-terminated particle surfaces. Subsequent to

the synthesis, the IOH-NPs were washed by repeated redis-

persion and centrifugation in/from water and/or ethanol to

remove remaining salts and starting materials. After the

purification, the [ZrO]2 +[(HPO4)1�x(FMN)x]
2� IOH-NPs can be

easily suspended in polar solvents (e. g., water, ethanol,

diethylene glycol) or biological buffers (e. g., HEPES, aqueous

dextran). The as-prepared suspensions are colloidally stable

over several months and can contain up to 10 wt-% of the IOH-

NPs.[34]

Suspensions of [ZrO]2 +[(HPO4)1�x(FMN)x]
2� IOH-NPs are

transparent and – depending on their concentration – exhibit a

yellow to orange color (Figure 2c). Upon blue-light excitation

(LED with lmax = 465 nm), bright green emission (480-650 nm) is

observed with its maximum at 530 nm (Figure 2d).[34] According

to dynamic light scattering (DLS), scanning electron microscopy

(SEM), and transmission electron microscopy (TEM), the as-

prepared [ZrO]2 +[(HPO4)1�x(FMN)x]
2� IOH-NPs have a mean

hydrodynamic diameter of 39(�12) nm and a primary particle

diameter of 25–40 nm, respectively (Figure 2b).[34] The size

distribution indicates that all particles are below 100 nm. In this

regard it needs to be taken into account that the synthesis was

performed in water without any specific surface agent for

controlling nucleation and growth. The determination of the

chemical composition of the IOH-NPs is generally challenging,

and hence, described in detail in a separate chapter (see 2.4).

The fluorescence of [ZrO]2 +[(HPO4)1�x(FMN)x]
2� – as ex-

pected – originates from the FMN anion. Quantum size effects

are naturally not involved. Thus, excitation and emission of the

[ZrO]2 +[(HPO4)1�x(FMN)x]
2� IOH-NPs (in suspension) can be

directly compared to free FMN in solution (Figure 2d).[34] The

quantum yield of FMN even in solution is comparably low

(about 30%).[43] Interestingly, the quantum yield of [ZrO]2 +

[(HPO4)1�x(FMN)x]
2� with 28�2% is identical when considering

the experimental significance. Although the [FMN]2� anions –

and thus, the fluorescence centers – are in close proximity, no

concentration quenching was observed. This finding can be

ascribed to the amorphous nature of the IOH-NPs that do not

exhibit any periodic packing and long-ranging order. Actually,

this random distribution of [FMN]2� guarantees intense emis-

sion. In particular for [ZrO]2 +[FMN]2�, the enormous dye load of

81 wt-% and the resulting quasi-infinite reservoir of fluorescent

centers per volume of each single nanoparticle leads to intense

spotlight-type emission.[34] Even certain photobleaching does

not noticeably reduce the emission intensity since a great

number of fluorescence centers still remains intact (see 2.3:

Figure 6c).

Since the IOH-NP concept – including aqueous synthesis,

uncomplex material composition and structure, high load of

FMN per nanoparticle (81 wt-%) – aims at biomedical applica-

tion, [ZrO]2 +[(HPO4)1�x(FMN)x]
2�, and especially [ZrO]2 +[FMN]2�,

were evaluated in in vitro and in vivo studies regarding

fluorescence and imaging performance. Indeed, [ZrO]2 +[FMN]2�

IOH-NPs show massive uptake into cells. They exhibit high

biocompatibility and show intense green emission (Fig-

ure 2f,g).[34] In cells or mice the green fluorescence is typically

stable over several hours and disappears after 2–3 days with

complete dissolution of the IOH-NPs. Toxic or allergic effects –

even after a period of two months – were not observed.[34]

According to TEM and electron-energy loss spectroscopy (EELS),

the [ZrO]2 +[FMN]2� IOH-NPs localize exclusively in vesicles

(Figure 2e). They do not colocalize with mitochondria or nuclei.

Thus, [ZrO]2 +[FMN]2� IOH-NPs appear to be a suitable tool for

staining viable structures.

In spite of the discussed advantages of the [ZrO]2 +

[(HPO4)1�x(FMN)x]
2� IOH-NPs, FMN-related green emission is less

favorable for biomedical application. On the one hand, cells

and tissue show green autofluorescence themselves so that a

considerable background is present in addition to the green

emission of the IOH-NPs. Moreover, green emission and – even

more important – blue light, required for excitation, exhibit low

tissue penetration.[9b,44] Biomedical issues and optical imaging-

based applications in animal models and in humans, therefore,

require long-wavelength emission rather in the far-red and

near-infrared range, since the light absorption by water and

hemoglobin is minimal in this spectral range, resulting in

optimal tissue penetration. Taking the composition [ZrO]2 +

[RDyeOPO3]2� and the concept of the IOH-NPs as a general

strategy, phosphate-functionalized fluorescent organic dyes

with other luminescence properties as FMN are needed.

Indeed, the IOH-NP concept allows using further fluorescent

organic anions and creating a platform of materials. Here, we

show the expansion of the concept to [ZrO]2 +[PUP]2�, [ZrO]2 +

[MFP]2�, [ZrO]2 +[RRP]2�, and [ZrO]2 +[DUT]2� with PUP: phenyl-

umbelliferon phosphate, MFP: methylfluorescein phosphate,

RRP: resorufin phosphate, and DUT: DY-647 uridine triphosphate

(Figure 3a).[35,36] All these additional phosphate-based IOH-NPs

are insoluble in water, too, and can be prepared via aqueous

synthesis. They exhibit mean particle diameters of 20–40 nm at

high colloidal stability (Figure 4a). [ZrO]2 +[PUP]2�, [ZrO]2 +

[MFP]2�, [ZrO]2 +[RRP]2�, and [ZrO]2 +[DUT]2� show full color

emission in the blue (380–600 nm, lmax = 458 nm), green (460–

700 nm, lmax = 518 nm), red (550–700 nm, lmax = 584 nm) and

near-infrared (630–780 nm, lmax = 675 nm) spectral regime (Fig-

Figure 3. [ZrO]2 +[PUP]2�, [ZrO]2 +[MFP]2�, [ZrO]2 +[RRP]2�, and [ZrO]2 +[DUT]2�

IOH-NPs with: a) Structure of fluorescent dye anions; b) Excitation and c)
emission spectra (modified reproduction from ref. [35]).
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ure 3b,c).[35] Due to the quasi-infinite number of fluorescence

centers (dye content up to 85 wt-%), all these phosphate-based

IOH-NPs again show intense spotlight emission in aqueous

suspensions.

To illustrate the biomedical performance, [ZrO]2 +[MFP]2�,

[ZrO]2 +[RRP]2� and [ZrO]2 +[DUT]2� were incubated in vitro with

murine alveolar macrophages (MHS) cell lines (50 mg IOH-NPs

per mL of cell culture medium) to analyze uptake and

fluorescence. After incubation (5 h at 37 8C), the internalization

of the IOH-NPs is clearly demonstrated and becomes even

more evident after 24 h (Figure 4b).[35] The granularly structured

fluorescence in the macrophages indicates the presence of the

IOH-NPs, which was also confirmed by EELS, showing a similar

granular structure for the localization of zirconium in the

macrophages. Controls with macrophages incubated with the

IOH-NPs at 4 8C at reduced metabolic activity as well as

macrophages cultivated without IOH-NPs do not show any

comparable fluorescence. Furthermore, no relevant toxic effects

of [ZrO]2 +[MFP]2�, [ZrO]2 +[RRP]2� and [ZrO]2 +[DUT]2� were

observed with concentrations up to 250 mM.[35] After subcuta-

neous injection in nude mice, the emission is also clearly visible

in vivo (Figure 4c). Thus, the capability of phosphate-based IOH-

NPs for in vitro optical imaging is confirmed as a proof-of-the-

concept.

2.3. Sulfonate-based IOH-NPs

Although phosphate-based IOH-NPs [ZrO]2 +[RDyeOPO3]2� already

stand for a broad platform of materials with different

fluorescent organic anions [RDyeOPO3]2�, the number of com-

mercially available fluorescent organic dyes containing a

phosphate functionality is limited. Moreover, phosphate-func-

tionalized dyes, and in particular those showing red and

infrared emission, are often extremely expensive (up to 500 E

per 1 mg).[45] In contrast, almost all conventional fluorescent

organic dyes are commercially available with sulfonate func-

tions. Functionalization of aromatic organic molecules by

sulfonate groups is synthetically straightforward and often used

to make such dyes soluble in water.[21] As a consequence,

almost all organic dye systems – such as coumarins, rhod-

amines, oxazines, cyanines, etc. – are available with one or

more sulfonate group. Introducing such sulfonate-based fluo-

rescent anions [RDye(SO3)n]n� into the IOH-NP concept could, of

course, dramatically broaden the platform of fluorescent nano-

materials.

In contrast to phosphate-based fluorescent anions

[RDyeOPO3]2�, however, sulfonate-based fluorescent anions

[RDye(SO3)n]n� do not form any insoluble compound upon

addition of [ZrO]2 + in water. Taking binary metal sulfates as

most suitable reference systems, BaSO4 and PbSO4 are actually

known as the most insoluble sulfates in water.[32] Both cations

Ba2 + and Pb2 +, however, are also known as severely harmful to

animate beings.[46] Anyway, both cations are not suitable

though they also do not form insoluble compounds with

sulfonate-based fluorescent anions [RDye(SO3)n]n�. This can be

rationalized based on the monovalent charge of the sulfonate

group in comparison to the divalent sulfate ion, which reduces

the Coulomb interaction significantly. Since the charge of a

sulfonate group is fixed, the only option is to choose a cation

having a comparable radius as Ba2 +/Pb2 + (149/133 pm)[47] but a

higher charge. In this regard, La3 + (117 pm)[47] is promising and

indeed results in the formation of insoluble compounds

together with sulfonate-based fluorescent anions

[RDye(SO3)n]n�.[48] Due to the similarity of the lanthanides, in

principle, this holds for all rare-earth-metal ions Ln3 + (Ln3 + : La3 +

to Lu3 +). From all these ions, La3 + is interesting due to its low

cost. Aiming at novel contrast agents, however, Gd3 + is even

more interesting as it opens the option of multimodal imaging

via the fluorescence of the dye anion and the paramagnetism

of Gd3 +.[6]

Sulfonate-based IOH-NPs with a general composition M3 +
n/3

[RDye(SO3)n]n�, [M(OH)]2 +
n/2[RDye(SO3)n]n�, or [MO]+

n[RDye(SO3)n]n�

with M: rare-earth metal, and most preferentially with La3 + or

Gd3 +, can indeed contain a great number of different sulfonate-

based dye anions.[36,48] As an illustrative example, we take M3 +

[AMA]3� (M = La, Gd) with amaranth red (AMA) as the sulfonate-

based fluorescent dye anion (Figure 5a),[36] which is also known

as E123, C.I. 16185, Acid Red 27, C-Red 46, Echtrot D, or Food

Figure 4. [ZrO]2 +[PUP]2�, [ZrO]2 +[MFP]2�, [ZrO]2 +[RRP]2�, and [ZrO]2 +[DUT]2�

IOH-NPs with: a) Aqueous suspensions at daylight and with excitation; b)
Emission after uptake by MHS macrophages; c) Emission after subcutaneous
injection in nude mouse (modified reproduction from ref. [35]).

Figure 5. Gd3 +[AMA]3� IOH-NPs (AMA: amaranth red) with: a) Scheme of
synthesis; b) Particle size according to SEM; c) Particle size according to DLS
in DEG and in water; d) Zeta potential in water (modified reproduction from
ref. [48]).
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Red 9.[49] AMA is widely used, for instance, in food industry, and

can be considered as a less harmful fluorescent dye in

comparison to many azo-dyes.

The synthesis of M3 +[AMA]3� (M = La, Gd) is comparable to

the synthesis of the phosphate-based IOH-NPs and performed

by injecting an aqueous solution of LaCl3 � 7H2O or GdCl3 �

6H2O to an aqueous solution of Na3(AMA). Again, general

aspects of colloid chemistry according to LaMer’s model[42]

need to be considered to control particle nucleation and

particle growth and to obtain nanoparticles and colloidally

stable suspensions (Figure 5c). Hence, injection was again

performed whilst vigorously stirring at slightly elevated temper-

ature (55 8C). Moreover, the dye anion was used with 10 mol-%

excess in relation to the cation to guarantee anion-terminated

particle surfaces. After synthesis and purification, M3 +[AMA]3�

IOH-NPs can be easily suspended in solvents, such as water,

ethanol, diethylene glycol, or biological buffers like HEPES or

aqueous dextran. According to the chemical composition, La3 +

[AMA]3� and Gd3 +[AMA]3� contain extraordinarily high dye

loads of 79 wt-% and 77 wt-% [AMA]3�, respectively.[48]

The particle diameter of the as-prepared M3 +[AMA]3� IOH-

NPs was at first measured in DEG, which is known for excellent

stabilization of nanoparticles via surface coordination.[50] Here, a

mean hydrodynamic diameter of 68�10 nm with narrow size

distribution was observed (Figure 5c). In water, nanoparticles

generally show larger hydrodynamic radii due to a rigid layer of

adsorbed solvent molecules. Based on the high polarity and

extensive hydrogen bonding networks, this rigid solvent layer is

largely expanded in water.[51] Thus, a mean hydrodynamic

diameter of 105�30 nm was obtained (Figure 5c). Finally,

overview SEM images show uniform spherical particles with a

mean diameter of 47�10 nm, which was calculated by

statistical evaluation of 130 nanoparticles (Figure 5b). Zeta

potential analysis of La3 +[AMA]3� and Gd3 +[AMA]3� show

negative charging at �12.5 mV in the biologically most relevant

pH range of pH 4 to 8 (Figure 5d).[48] The resulting electrostatic

stabilization is beneficial for both controlling the particle size as

well as suppressing agglomeration.

Suspensions of La3 +[AMA]3� and Gd3 +[AMA]3� exhibit a

brilliant red color (Figure 6a) and an intense red emission upon

excitation by green light (glass fiber with green filter, lmax =

555 nm) (Figure 6a).[48] Fluorescence spectroscopy indicates

strong absorption at 400 to 650 nm and emission at 650 to

800 nm peaking at lmax = 700 nm (Figure 6b). Such lumines-

cence features are ideal for biomedical application in terms of

low background from autofluorescence and deep penetration

of tissue.[44]

M3 +[AMA]3� IOH-NPs show higher photostability than

dissolved AMA (Na3(AMA)) in solution at identical concentration

(33 mmol/mL AMA). UV-irradiation of M3 +[AMA]3� suspensions

and of dissolved AMA (lexc = 310 nm, 15 h) displays continuous

photobleaching with only 27% of pristine emission intensity

remaining for dissolved AMA (Figure 6c). In contrast, M3 +

[AMA]3� suspensions show almost constant emission intensity

over the complete period of irradiation.[48] The photostability of

the IOH-NPs is even more remarkable when compared to

conventional nanoparticle systems with fluorescent organic

dyes encapsulated in inorganic or polymeric matrices (Table 1).

They all show considerable photobleaching even on short

timescales. The high photostability of the M3 +[AMA]3� IOH-NPs

can be attributed, on the one hand, to the extremely high dye

load so that certain photobleaching at the particle surface

leaves the emission intensity more-or-less unaffected. Despite

of strong absorption in the visible (450–700 nm), on the other

hand, the IOH-NPs exhibit a high reflectivity in the UV spectral

regime (<450 nm).[48] In particular, the absorption of high-

energy light is lower, resulting in a reduced formation of

reactive oxygen species (ROS), and therefore, a higher photo-

stability. SiO2 or Ca3(PO4)2, as widely applied inorganic matrices

to encapsulate fluorescent organic dyes, are much less UV-

reflective, resulting in a significant photobleaching at daylight

(Table 1).

Besides the AMA-based fluorescence, Gd3 +-related para-

magnetism of seven unpaired electrons is expected for Gd3 +

[AMA]3�. Indeed, powder samples of the IOH-NPs can be

already attracted by a bar magnet (Figure 7a). Magnetic

measurements quantify the magnetic properties of the as-

prepared Gd3 +[AMA]3� to an effective magnetic moment of

meff = 6.83(1) mB per Gd atom and a Weiss constant of qp = 4.3(5)

K (Figure 7b).[48] These data are comparable to Gd3 +-based MRI

contrast agents, such as the coordination complexes Gd-DPTA

(DPTA: diethylenetriaminepentaacetate) and Gd-DOTA (DOTA:

1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid),[55]

which are clinically applied with about 0.1 mmol Gd3 + per kg of

body weight.[56] An equal Gd3 + content would require about

70 mg of Gd3 +[AMA]3� per kg of body weight. In comparison to

standard Gd-DPTA and Gd-DOTA, it must be noted that Gd3 +

Figure 6. Gd3 +[AMA]3� IOH-NPs with: a) Aqueous suspension at daylight and
with green light excitation (glass fiber with green filter, lmax = 555 nm); b)
Excitation and emission spectra; c) Photostability of Gd3 +[AMA]3� (suspen-
sion) in comparison to free AMA (solution of Na3(AMA)), all in water,
33 mmol/mL AMA, lexc = 310 nm for 15 h), (modified reproduction from ref.
[48]).
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[AMA]3� IOH-NPs also show fluorescence so that they become

suitable for multimodal imaging (OI, MRI).

To further evaluate the applicability of Gd3 +[AMA]3� as a

contrast agent, the IOH-NPs were incubated with MHS macro-

phages.[57] Similar to [ZrO]2 +[FMN]2�, a massive uptake of the

IOH-NPs was demonstrated by fluorescence microscopy after

5 h of incubation at 37 8C (Figure 8a), whereas internalization is

strongly reduced at 4 8C. The viability of the macrophages is

unaffected by the uptake of the Gd3 +[AMA]3� IOH-NPs (Fig-

ure 8b). Only at high concentrations (�200 mg/mL), the cell

viability is decreasing, which, in fact, can be related to a

reduced concentration of culture medium. This finding points

to a good biocompatibility of the Gd3 +[AMA]3� IOH-NPs.[48]

As discussed for phosphate-based IOH-NPs [ZrO]2 +

[RDyeOPO3]2�, M3 +[AMA]3� (M = La, Gd) can be also considered as

first representative of a wider platform of sulfonate-based IOH-

NPs with a general composition [M]3 +
n/3[RDye(SO3)n]n�, [M(OH)]2 +

n/2[RDye(SO3)n]n�, or [MO]+
n[RDye(SO3)n]n�.[58] Additional examples

are, for instance, [Gd(OH)]2 +
2[CSB]4�, [Gd(OH)]2 +

2[DB71]4�,

[Gd(OH)]2 +[NFR]2�, [Gd(OH)]2 +[AR97]2�, and [Gd(OH)]2 +
2[EB]4�

containing the sulfonate-based fluorescent anions Chicago Sky

Blue ([CSB]4�), Direct Blue 71 ([DB71]4�), Nuclear Fast Red

([NFR]2�), Acid Red 97 ([AR97]2�), or Evans Blue ([EB]4�) (Fig-

ure 9a). All these fluorescent dyes are commercially available

and used in solution for staining in cell biology and

histology.[3,9,10] In particular, this holds for Chicago Sky Blue,[59]

Table 1. Photobleaching of conventional nanocomposites with fluorescent organic dyes encapsulated in inorganic or polymer matrices.

Encapsulated
fluorescent dye

Matrix
material

Time of UV
irradiation

Intensity after
irradiation

Half-lifetime
of emission

Ref.

Cy3
Cy3

Ca3(PO4)2

SiO2

300 s
7 h

97%
98%

Not measured
Not measured

[24f] [52]

Cy5 SiO2 200 s 25% 60 s [24g]
Tetramethyl-rhodamine isothio-cyanate/TRITC SiO2 30 min 88% Not measured [53]
Fluorescein iso-thiocyanate/FITC SiO2 30 min 70% Not measured [24d]
Indocyanine green/ICG Ca3(PO4)2 633 s 50% 633 s [24h]
Indocyanine green/ICG
Nile red

PLGA[a]

PVK[a]

60 min

55 min

52%

87%

60 min

Not measured

[26b] [54]

M3 +[AMA]3�

(M: La, Gd)
Hybrid
(no matrix)

15 h 100% Infinite[b] [48]

[a] PLGA: poly(lactic-co-glycolic acid); PVK: poly-N-vinylcarbazole. [b] As no photobleaching and decrease of intensity was observed for M3+[AMA]3� IOH-NPs
on a timescale of 15 h, the formal half-lifetime of emission is infinite.

Figure 7. Magnetic properties of Gd3 +[AMA]3� IOH-NPs: a) Powder sample
upside down with a bar magnet attracting the nanoparticles; b) Magnet-
ization at 70 K and 300 K in dependence of the external magnetic field
(modified reproduction from ref. [48]).

Figure 8. Gd3 +[AMA]3� IOH-NPs incubated with MHS macrophages: a)
Fluorescence microscopy showing incubated Gd3 +[AMA]3� (24 h after
incubation with 50 mg/mL); b) Viability of MHS cells 24 h and 48 h after
incubation with different concentrations of the IOH-NPs (scale bar: 20 mm),
(modified reproduction from ref. [48]).

Figure 9. [Gd(OH)]2 +
2[CSB]4�, [Gd(OH)]2 +

2[DB71]4�, [Gd(OH)]2 +[NFR]2�, [Gd(O-
H)]2 +[AR97]2�, and [Gd(OH)]2 +

2[EB]4� IOH-NPs with: a) Structure of fluores-
cent dye anions; b) Aqueous suspensions at daylight and with excitation
([Gd(OH)]2 +

2[CSB]4�, [Gd(OH)]2 +
2[DB71]4�, [Gd(OH)]2 +[AR97]2� excited via UV-

LED; [Gd(OH)]2 +[NFR]2� excited via halogen lamp with green glass filter;
[Gd(OH)]2 +

2[EB]4� excited via white light halogen lamp); c) Excitation and d)
emission spectra (normalized on maximum intensity for direct comparison),
(modified reproduction from ref. [48]).
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Nuclear Fast Red,[60] and Evans Blue.[61] Similar to M3 +[AMA]3�,

the sulfonate-based fluorescent dye anions can be made

insoluble upon addition of rare-earth-metal ions such as La3 + or

Gd3 + to form IOH-NPs with unprecedentedly high dye loads

(Table 2).[58]

All these sulfonate-based IOH-NPs have mean particle

diameters of 40–50 nm at narrow size distribution (Table 2).

Additional stabilizers are not required. Moreover, the sulfonate-

based IOH-NPs exhibit intense absorption leading to the blue

color of [Gd(OH)]2 +
2[CSB]4� and [Gd(OH)]2 +

2[EB]4� as well as to

the orange to red color of [Gd(OH)]2 +[NFR]2�, [Gd(OH)]2 +

[AR97]2� and [Gd(OH)]2 +
2[DB71]4� (Figure 9b).[58] The absorptive

color of the IOH-NPs is similar to the pure organic dyes and

again very intense due to the quasi-infinite number of dye

anions in each IOH-NP. Accordingly, the IOH-NPs can be also

interesting for staining in cell biology and histology as a

promising alternative to molecular dyes in solution.

Sulfonate-based IOH-NPs show intense emission upon

excitation with visible light (e. g. blue-light LED). Whereas

[Gd(OH)]2 +
2[CSB]4� and [Gd(OH)]2 +

2[DB71]4� exhibits emission

in the blue spectral regime (Table 3, Figure 9d), [Gd(OH)]2 +

[NFR]2� and [Gd(OH)]2 +
2[AR97]4� emit yellow and red light.

[Gd(OH)]2 +[EB]2� shows deep red to infrared emission (Table 3,

Figures 9d).[58] Most interestingly, fluorescence was yet only

reported for NFR, CSB, and EB in the case of the molecular dyes

(in solution),[62] whereas an emission of DB71 and AR97 was not

reported before. Again, the great number of fluorescent centers

per nanoparticle not only guarantees intense light absorption

but also sufficient emission to be detected by the naked eye or

via fluorescence microscopy. All in all, the fluorescent sulfonate-

based IOH-NPs can be very interesting for optical imaging in

cell biology and histology but also for in vitro and in vivo

studies.[5d,9,63] Due to the quasi-infinite number of fluorescence

centers per nanoparticle – similar to La3 +[AMA]3� and Gd3 +

[AMA]3� – low photobleaching is observed (see 2.3: Figure 6c).

2.4. Chemical Composition

Proving the chemical composition of the IOH-NPs is challeng-

ing. First of all, it needs to be noticed that all IOH-NPs are non-

crystalline. They do not show any specific Bragg peak in X-ray

diffraction or electron diffraction experiments.[34,35,48,58] Conse-

quently, crystal structures of the compounds are unknown. On

the other hand, the absence of periodically ordered arrays is

advantageous, if not essential in regard of the fluorescence of

the IOH-NPs. In the case of crystalline structures with periodi-

cally aligned fluorescent organic anions, severe concentration

quenching would have been expected that could eradicate the

emission of the IOH-NPs partly or completely.[13]

In order to elucidate the chemical composition of the IOH-

NPs, different analytical methods need to be involved to gain

insights at different levels of priority. Obviously, it is the highest

priority to prove the presence of the fluorescent organic anion

[RDyeOPO3]2� or [RDye(SO3)n]n�. Besides fluorescence spectroscopy,

here, Fourier-transformed infrared (FT-IR) spectroscopy is

indicative, as exemplarily shown for Gd3 +[AMA]3� (Fig-

ure 10a).[48] A comparison with the starting material Na3(AMA)

as reference shows all characteristic vibrations of AMA,

including n(O�H): 3600–3000 cm�1, n(N=N): 1370 cm�1, n(C�N=

Table 2. Average particle size (obtained from SEM), zeta potential (in water
at pH 7.0), and dye load of sulfonate-based IOH-NPs.

IOH-NP composition Particle size
from SEM (nm)[a]

Zeta potential
(mV)

Dye load
(wt-%)

Gd3 +[AMA]3� 47�10 �13 77
[Gd(OH)]2 +

2[CSB]4� 38�5 �26 74
[Gd(OH)]2 +

2[DB71]4� 37�7 �42 73
[Gd(OH)]2 +[NFR]2� 44�9 �28 70
[Gd(OH)]2 +[AR97]2� 47�6 �19 79
[Gd(OH)]2 +

2[EB]4� 42�10 �42 77
[GdO]+[ICG]� [b] 49�8 �27 81
La4

3 +[TPPS4]3
4� [c] 68�8 �34 83

Gd4
3 +[AlPCS4]3

4� [c] 47�7 �26 81

[a] Statistical average based on >100 nanoparticles. [b] See 3.1; [c] See 3.2.

Table 3. Excitation and emission of sulfonate-based IOH-NPs.

IOH-NP composition Excitation range
(nm)

Emission range
(nm)

Emission
lmax (nm)

Gd3 +[AMA]3� 400–650 650–800 700
[Gd(OH)]2 +

2[CSB]4� 240–460 400–550 437
[Gd(OH)]2 +

2[DB71]4� 320–440 400–550 444
[Gd(OH)]2 +[NFR]2� 400–580 520–740 578
[Gd(OH)]2 +[AR97]2� 550–730 550–640 592
[Gd(OH)]2 +

2[EB]4� 350–640 700–880 782
[GdO]+[ICG]� [a] 700–820 780–840 810
La4

3 +[TPPS4]3
4� [b] 380–600 540–700 585

Gd4
3 +[AlPCS4]3

4� [b] 250–400, 550–720 650–770 686

[a] See 3.1; [b] See 3.2.

Figure 10. Chemical composition of as-prepared Gd3 +[AMA]3� IOH-NPs with:
a) FT-IR spectra (Na3(AMA) as a reference); b) TG (Na3(AMA) as a reference),
(modified reproduction from ref. [48]).
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N�C): 1230 cm�1, n(SO3): 680–420 cm�1.[64] Certain broadening

of the vibrations in the case of the IOH-NPs originates from

their non-crystallinity. In addition to the fluorescent dye anion,

the presence of the inorganic metal cation is important and

qualitatively proven by energy dispersive X-ray spectroscopy

(EDXS). Quantification is usually not possible via EDXS since

both electron absorption and X-ray emission of the heavy

elements (e. g., La, Gd) are too different from the light elements

(C, H, N, S, O) for reliable determination.[48]

After proving the presence of the inorganic cation and the

fluorescent organic anion, their ratio becomes most relevant in

order to determine the chemical composition of the IOH-NPs.

In this regard, first of all, the charge of the inorganic cation and

the fluorescent organic anion should be considered. In addition,

the analysis of the total organics content is indicative, especially

since inorganic cation and organic anion are of comparable

molecular weight. Taking Gd3 +[AMA]3� again as an example,

the charges of cation and anion already suggest a cation-to-

anion ratio of 1 : 1, which is validated by performing thermo-

gravimetry (TG) to obtain the total organics content.[48] Prior to

TG, the as-prepared Gd3 +[AMA]3� IOH-NPs were dried in vacuo

at room temperature for 8 h to remove all adsorbed volatiles

(e. g. water). Thereafter, TG shows a total weight loss of 72% up

to a temperature of 1000 8C, which corresponds well to the

calculated weight loss of 69% of total organics combustion for

the assumed composition Gd3 +[AMA]3� (Figure 10b). Moreover,

the thermal remnant of TG analysis was identified via XRD as

Gd2O2(SO4). Accordingly, the thermal combustion reaction can

be rationalized as follows:[48]

2Gd3þ½C20H11N2O10S3�3� þ 531=2O2 !
Gd2O2ðSO4Þ þ 40CO2 þ 11H2Oþ 2 N2 þ 5SO2

In addition to TG analysis, the composition of Gd3 +[AMA]3�

can be independently verified by elemental analysis (EA)

resulting in C/H/N/S contents of: 32 wt-% C, 3 wt-% H, 4 wt-%

N, and 12 wt-% S. Within the experimental error, these data are

well in accordance with the calculated values: 36 wt-% C, 2 wt-

% H, 4 wt-% N, and 14 wt-% S. Taking all analytical data

together (FT-IR, EDX, TG, EA), the chemical composition of Gd3 +

[AMA]3� is reliably substantiated.[48] With similar investigations

the chemical composition of other phosphate- or sulfonate-

based IOH-NPs was determined, as well (Tables 4, 5).

For different reasons the determination of the chemical

composition of the IOH-NPs still remains challenging. Thus, the

thermal decomposition is complicated in the case of the

phosphate-based IOH-NPs due to the encapsulation of the

organic content within the metal phosphate formed during

thermal decomposition. Actually, such effect is well-known for

flame retarding materials. They often contain phosphates to

encapsulate organic materials, and thereby, to increase the

ignition temperature.[65] For analysis of the IOH-NPs, slow

heating needs to be performed to guarantee the total

combustion of all organic constituents via TG and EA.

For all IOH-NPs, and in particular for sulfonate-based IOH-

NPs, oxide atoms and/or hydroxide and water molecules could

be coordinated to the metal cation. This is another option to

vary the chemical composition of the IOH-NPs as expressed by

the formula [M]3 +
n/3[RDye(SO3)n]n�, [M(OH)]2 +

n/2[RDye(SO3)n]n�, or

[MO]+
n[RDye(SO3)n]n�. Due to its low weight (relative to the

inorganic cation and the fluorescent dye anion), the coordina-

tion of charged species like O2� or OH� to the metal cation

cannot be reliably evidenced based on the above described

analytical techniques. On the other hand, the presence of O2�

or OH� would naturally change the net charge of the inorganic

cation, and thereby also the ratio of inorganic cation and

fluorescent dye anion. This molar ratio, however, can be

precisely determined based on TG and EA. Finally, non-charged

H2O molecules could be coordinated to the inorganic cation. As

they do not influence the net charge of the cation or the

charge neutrality of the IOH-NPs, and as they only have low

weight, such H2O coordination (most probably of 1–2 H2O

molecules per formula unit) cannot be excluded.

Although non-crystalline, finally, the IOH-NPs can be

assumed to exhibit layer-type structures. Especially in the case

of zirconium phosphates, such as Zr(HPO4)2 � H2O, layered

arrangements have been described.[66] Layered structures were

also often observed for zirconium in combination with organo-

phosphates, and especially, organophosphonates.[67] Actually,

these compounds are highly relevant as flame retardants.[68]

Table 4. Chemical composition of phosphate-based IOH-NPs according to
EA (C,H,N,S content), EDX (Zr : P ratio), and TG (total organic combustion).

Compound[a] C con-
tent
(%-wt,
EA)
(calcd)

H con-
tent
(%-wt,
EA)
(calcd)

N con-
tent
(%-wt,
EA)
(calcd)

Zr : P ra-
tio
(EDX)
(calcd)

Weight
loss
(%-wt,
TG)
(calcd)

[ZrO]2 +[RRP]2� 26 (34) 3 (2) 3 (4) 1.2 : 1
(1 : 1)

43 (48)

[ZrO]2 +[FMN]2� 34 (36) / 9 (10) 1.0 : 1
(1 : 1)

61 (64)

[ZrO]2 +[MFP]2� 42 (47) 4 (3) 0 (0) 1.1 : 1
(1 : 1)

62 (64)

[ZrO]2 +[PUP]2� 32 (42) 3 (2) 0 (0) 1.3 : 1
(1 : 1)

50 (54)

[a] Note that the composition of [ZrO]2 +[DUT]2� was not studied in detail
due to the very high cost of [DUT]2� (about 500 E for 1 mg).

Table 5. Chemical composition of sulfonate-based IOH-NPs according to
EA (C,H,N,S content) and TG (total organic combustion).

Compound C con-
tent
(%-wt,
EA)
(calcd)

H con-
tent
(%-wt,
EA)
(calcd)

N con-
tent
(%-wt,
EA)
(calcd)

S con-
tent
(%-wt,
EA)
(calcd)

Weight
loss
(%-wt,
TG)
(calcd)

Gd3 +[AMA]3� 32 (36) 3 (2) 4 (4) 12 (14) 72 (69)
[Gd(OH)]2 +

2[CSB]4� 30 (33) 4 (2) 6 (7) 9 (10) 68 (64)
[Gd(OH)]2 +

2[DB71]4� 26 (27) 3 (2) 5 (8) 7 (10) 59 (66)
[Gd(OH)]2 +[NFR]2� 35 (33) 3 (2) 3 (3) 8 (6) 62 (56)
[Gd(OH)]2 +[AR97]2� 46 (48) 4 (3) 6 (7) 8 (8) 75 (73)
[Gd(OH)]2 +

2[EB]4� 31 (33) 4 (2) 6 (7) 9 (11) 67 (64)
[GdO]+[ICG]� [a] 55 (56) 5 (5) 3 (0) 7 (7) 83 (78)
La4

3 +[TPPS4]3
4� [b] 46 (47) 3 (2) 5 (5) 10 (11) 76 (76)

Gd4
3 +[AlPCS4]3

4� [b] 36 (35) 3 (1) 13 (10) 8 (11) 79 (78)

[a] See 3.1; [b] See 3.2.
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Nevertheless, it must be stated that the structural character-

ization of zirconium phosphates is still lacking, in general.

3. Specific Properties of Inorganic-Organic
Hybrid Nanoparticles (IOH-NPs)

Subsequent to the illustration of the material concept of the

IOH-NPs and after having shown their feasibility for

fluorescence detection and optical imaging, we now address

more specific functionalities of selected IOH-NPs. This includes

[GdO]+[ICG]� (ICG: indocyanine green) for multimodal imag-

ing,[69] Gd4
3 +[AlPCS4]3

4� (AlPCS4: aluminium(III) chloride phthalo-

cyanine tetrasulfonate) showing singlet-oxygen generation,[70]

as well as the dissolution of the IOH-NPs and their use for drug

delivery and drug release.

3.1. Multimodal Imaging

To combine the specific assets of different imaging techniques

(e. g., resolution, imaging of different types of tissue) and/or to

translate preoperative to intraoperative imaging (and vice

versa), suitable contrast agents for multimodal imaging are

highly interesting.[10] In this regard, materials with different

functionalities were often integrated with high virtuosity into

complex nanoarchitectures. This includes, for instance, super-

paramagnetic iron oxide nanoparticles (SPIONs) and inorganic

fluorescent nanoparticles (e. g., Q-dots, lanthanide-doped ox-

ides) or molecular fluorescent dyes (e. g., coumarins, rhod-

amines, oxazines, cyanines) that were encapsulated in or

attached to inorganic or organic matrices (e. g., SiO2, calcium

phosphate, polymers, liposomes, dendrimers).[3,10] As discussed

before, the complexity of the resulting contrast agents and the

sheer number of constituents can be a restriction in itself as all

constituents and combinations must be verified individually for

clinical approval. In practice, in vivo application becomes the

more prohibitive the greater the complexity and the more

multi-component the employed materials.[29] Moreover, the

amount of active contrast agent can be very low in an inert

matrix as majority component, which reduces the detection

limit.[24–27]

In regard to the IOH-NPs, we already discussed optical

absorption and fluorescence (see 2.2, 2.3), and we also pointed

to Gd3 + as an optional cation in sulfonate-based IOH-NPs (see

2.3) to implement the IOH-NPs in regard of OI and MRI. Besides

imaging, optical absorption, fluorescence, and magnetism can

be also used to locate the IOH-NPs in cells and tissue and to

determine their in vitro and in vivo behavior and dissolution. A

most interesting type of IOH-NP for multimodal imaging, in this

regard, is [GdO]+[ICG]�, which consists of equimolar amounts

of paramagnetic gadolinium as the inorganic cation and [ICG]�

as the organic fluorescent dye anion (Figure 11a).[69]

Again, an aqueous synthesis was applied to prepare [GdO]+

[ICG]� using GdCl3 � 6H2O and Na(ICG) as the starting materials.

[GdO]+[ICG]� contains 81 wt-% [ICG]� and can be easily

suspended in polar solvents (e. g., water, ethanol, diethylene

glycol) or biological media (e. g., HEPES, aqueous dextran) with

concentrations up to 10 mg/mL. The analytical characterization

regarding particle size and chemical composition was per-

formed as described before (see 2.3/2.4: Tables 2, 5). Accord-

ingly, SEM and DLS show mean particle diameters of 49�8 nm

and 50�9 nm, respectively, with narrow size distribution (Fig-

ure 11b) and a zeta potential of �20 to �35 mV at pH 6–8

(Figure 11c).[69]

Aiming at OI, ICG is optimal for biomedical application in

many aspects. On the one hand, its strong visible absorption

(700–820 nm) and its NIR emission (780–840 nm) are ideal for

deep-tissue penetration minimizing the absorbance by water

and hemoglobin (Figure 11d).[9b,44] Moreover, ICG is well-toler-

ated (LD50: 50–80 mg/kg), approved for clinical use, and already

widely used in the clinic for histology.[71] Furthermore, ICG is

cheap (about 50 E per 1 g)[72] in comparison to many alter-

native commercial red- and infrared-emitting dyes that are

conventionally used for OI.[13,21,45] On the other hand, ICG as a

dissolved molecule has several weaknesses such as: i) Rapid

binding to human serum albumin and high-density lipoproteins

causing agglomeration and rapid clearance via the liver; ii) Very

short circulation time (half-life of only 2–4 min in mice); iii) Low

fluorescence quantum yield (only about 5% in water); iv) Low

chemical stability under physiological conditions due to fast

biodegradation; v) Rapid photobleaching under light expo-

sure.[71,73] Similar to other fluorescent organic dyes, ICG was also

often encapsulated in stabilizing matrices (e. g., organic poly-

mers, liposomes, micelles, silica) to overcome these limitation-

s.[71a,84] Moreover, ICG has been intercalated in layered double

hydroxides (LDHs).[75] Again, such inert matrices reduce the

available amount of ICG per nanoparticle and lower the

intrinsically weak emission intensity even further.

In contrast to ICG solutions, suspensions of [GdO]+[ICG]�

IOH-NPs show intense emission due to the high ICG load

(81 wt-%) and the great number of fluorescent centers per

nanoparticle (see 2.3: Table 3). Naturally, [GdO]+[ICG]� (in

suspension) exhibits identical fluorescence features as ICG (in

solution).[69] Accordingly, the dark green aqueous suspensions

show deep red emission upon visible light excitation (Fig-

Figure 11. [GdO+][ICG]� IOH-NPs (ICG: indocyanine green) with: a) Scheme
of synthesis; b) Particle size according to SEM; c) Zeta potential in water; d)
Excitation and emission spectra (free ICG in solution as reference); e)
Aqueous suspension at daylight and excited with white light (modified
reproduction from ref. [69]).
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ure 11e). Similar to Gd3 +[AMA]3� (see 2.3: Figure 6c), [GdO]+

[ICG]� IOH-NPs show a higher photostability as well as a greater

storage stability and a higher emission intensity as ICG

solutions (at identical ICG concentration).[69] These features are

highly relevant to practical handling since exactly those

weaknesses of ICG (in solution) are addressed, which limit its

use for fluorescence detection and OI.[71,73]

In vitro studies with MHS macrophages show an excellent

uptake of [GdO]+[ICG]� as indicated by their intense emission

(Figure 12a). Massive uptake of IOH-NPs was again observed

upon incubation at 37 8C, whereas only minimal uptake was

observed at 4 8C. This observation indicates an active acquis-

ition of [GdO]+[ICG]� by the macrophages. It is to be noticed

that the IOH-NPs were coated by dextran to improve the

membrane permeability and cell uptake.[76] Despite massive

internalization of [GdO]+[ICG]� IOH-NPs, the metabolic activity

and viability of the MHS cells – according to cell proliferation

assays – remain almost unaffected (Figure 12b).[69] When

comparing [GdO]+[ICG]� (in suspension) with ICG (in solution)

or Gd-DOTA/Gd-DTPA (in solution) as references, the viability of

MHS cells treated with the IOH-NPs turned out as only slightly

lower as compared to dissolved ICG and significantly higher

than for the standard MRI contrast agents Gd-DOTA/Gd-DTPA

(Figure 12b).[69] Naturally, this comparison was performed at

similar concentration of ICG and/or Gd. In regard of its

performance as a contrast agent, finally, it must be noted that

only [GdO]+[ICG]� is multimodal and suitable as contrast agent

for OI and MRI.

Whereas free ICG (in solution) is typically not suitable for

fluorescence detection due to its low emission,[71,73] it is one of

the most promising absorptive contrast agents for PAI.[9a,77]

Therefore, an evaluation of [GdO]+[ICG]� IOH-NPs in regard of

its feasibility for PAI seemed obvious. The performance of

[GdO]+[ICG]� (in suspension) indeed turned out as similar to

ICG (in solution) at identical ICG concentration (Figure 12c).

Blood vessel phantoms, chicken-breast phantoms, and dead-

mouse phantoms showed promising signal intensity and depth

of detection, indicating the feasibility of [GdO]+[ICG]� IOH-NPs

also for PAI.[69]

Besides in vitro studies, the multimodal features of [GdO]+

[ICG]� in terms of MRI and OI were evaluated in vivo. In

response to increasing concentrations, the IOH-NPs clearly

result in a reduction of the T1-relaxation (Figure 13a).[69] The

specific relaxivity (r1) per gadolinium at 7 Tesla was determined

to 8.0�0.4 mM�1 s�1 for dextran-coated [GdO]+[ICG]�. In fact,

the relaxivity is even higher than for Gd-DTPA or Gd-DOTA (3–

5 mM�1 s�1).[6,55] In vivo, mice were imaged before and 5 h after

intravenous injection of [GdO]+[ICG]� IOH-NP suspensions

resulting in T1-relaxation heat maps with a noticeable decrease

in relaxation time in the gall bladder and liver (Figure 13b).

Both results indicate that [GdO]+[ICG]� IOH-NPs can be a

promising MRI contrast agent.

In parallel with MRI, mice were also imaged in vivo with

fluorescence molecular tomography (FMT) and post mortem –

after exposing the organs – using fluorescence reflectance

imaging (FRI) (Figure 14). Again, [GdO]+[ICG]� IOH-NPs can be

clearly detected.[69] Detection via FMT is even possible over a

time range of several hours. In combination, FMT and FRI

demonstrate that [GdO]+[ICG]� IOH-NPs are suitable as multi-

modal contrast agents in vitro as well as in vivo for OI, PAI and

MRI. Straightforward synthesis and low material complexity of

[GdO]+[ICG]� IOH-NPs are additional assets in comparison to

many contrast agents discussed in the literature. In the clinics,

[GdO]+[ICG]� IOH-NPs could allow to combine the presentation

of different types of tissue, for instance, soft tissue via MRI,

blood vessels via PAI, and single cells via OI.[3,5,55]

Figure 12. In vitro studies with [GdO]+[ICG]� IOH-NPs: a) Fluorescence
images of [GdO]+[ICG]� (10 mg/mL of medium) after 24 h incubation with
MHS macrophages at 37 8C; b) Metabolic activity of MHS macrophages after
0, 24, 48 and 72 h cultivation with [GdO]+[ICG]� suspensions (dextran-
coated); ICG, Gd-DOTA and Gd-DTPA solutions as references (0-0.200 mmol/
mL of [GdO]+[ICG]�, ICG, Gd-DOTA, Gd-DTPA); c) PAI with [GdO]+[ICG]�

(suspension) and ICG (solution) at identical concentrations in a dead-mouse
phantom (modified reproduction from ref. [69]).

Figure 13. [GdO]+[ICG]� IOH-NPs (dextran-coated) as MR contrast agent: a)
Maps of T1-relaxation time calculated for varying concentrations of dextran-
coated IOH-NPs; b) Mice imaged before and 5 h after injection with
[GdO]+[ICG]� IOH-NPs. Images show T1-relaxation time heat maps with a
noticeably reduced relaxation in the gall bladder and liver (by 35%),
(modified reproduction from ref. [69]).
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3.2. Singlet Oxygen Production

In addition to multimodal imaging, specific IOH-NPs are also

suitable for photoactivated singlet-oxygen (1O2) generation. For

this purpose, the sulfonate-based anions aluminium(III) chloride

phthalocyanine tetrasulfonate ([AlPCS4]4�, Figure 15a) and tetra-

phenylporphyrin sulfonate ([TPPS4]4�, not shown) were applied

as functional organic anions.[70,78] The resulting IOH-NPs have a

composition Gd4
3 +[AlPCS4]3

4� and La4
3 +[TPPS4]3

4�. Both contain

extremely high photoactivator concentrations with 81 wt-%

[AlPCS4]3
4� in Gd4

3 +[AlPCS4]3
4� and 83 wt-% [TPPS4]3

4� in La4
3 +

[TPPS4]3
4�. The synthesis was again performed in water using

GdCl3 � 6H2O or LaCl3 � 6H2O and H4AlPCS4 or H4TPPS4 as

starting materials and resulted in transparent greenish blue

Gd4
3 +[AlPCS4]3

4� and brownish La4
3 +[TPPS4]3

4� suspensions (Fig-

ure 15c). Gd4
3 +[AlPCS4]3

4� and La4
3 +[TPPS4]3

4� exhibit mean

diameters of 47 and 56 nm, respectively (Figure 15b; see 2.3:

Table 2).[70,78] Their chemical composition was validated by FT-IR,

TG, EDXS and EA (see 2.4: Table 5). Both Gd4
3 +[AlPCS4]3

4� and

La4
3 +[TPPS4]3

4� also show visible emission, which, in principle, is

also sufficient for fluorescence detection and OI (see 2.3:

Table 3).

In fact, phthalocyanines as well as porphyrins are well-

known for efficient photoactivated 1O2 generation. Both are

already discussed for applications such as the selective

oxidation in organic synthesis (e. g., cycloadditions, Diels-Alder

reactions, Ene reactions, heteroatom oxidations),[79] the degra-

dation of organic molecules and germs (e. g. for water

purification),[80] and photodynamic therapy (PDT) (most often

used for tumor therapy).[81] Certain porphyrins and phthalocya-

nines are already approved in the clinics.[81c,d,82] Aiming at PDT,

molecular photosensitizers in solution, however, have certain

disadvantages, such as low solubility in water and rapid

aggregation under physiological conditions. Both reduce the

efficiency of 1O2 production and result in limited membrane

permeability and poor cell uptake.[83] Again, it was suggested to

immobilize the molecular porphyrins and phthalocyanines on/

in nanosized/nanoporous substrates, such as silica and gold

nanoparticles as well as carbon nanotubes,[81b,83,84] which again

leads to only low amounts of the active molecular photo-

catalyst (typically <10 wt-%). Moreover, metalorganic frame-

works containing porphyrin linkers were presented.[85] For

medical application, in particular, encapsulation in vesicles and

liposomes or functionalization with hydrophilic capping ligands

was established.[86] However, these measures also enhance the

material complexity, and any encapsulation/capping, as a

matter of fact, blocks the active sites of the photocatalysts.

The feasibility of Gd4
3 +[AlPCS4]3

4� and La4
3 +[TPPS4]3

4� for 1O2

production was validated by the DPBF method (DPBF: 1,3-

diphenylisobenzofuran)[87] and the iodide method.[88] DPBF is

oxidized in the presence of 1O2 as indicated by the vanishing

characteristic red color of DPBF (Figure 15d). The decreasing

absorption at 420 nm can be easily monitored by UV-Vis

spectroscopy and results in a quantum yield of 33% for 1O2

production of Gd4
3 +[AlPCS4]3

4� IOH-NPs (in suspension). This

value matches very well with molecular H4AlPCS4 (35%, in

solution).[87] This finding is even more interesting, since

H4AlPCS4 is known for rapid photodegradation in solution. In

contrast, Gd4
3 +[AlPCS4]3

4� IOH-NPs show good photostability

without any considerable concentration quenching.[70] Both can

be explained, on the one hand, by the great phthalocyanine/

porphyrin reservoir, and, on the other hand, by the non-

crystallinity of the IOH-NPs that avoids any ordered alignment

of the phthalocyanine anions. The quantum yield of 1O2

generation of La4
3 +[TPPS4]3

4� cannot be performed via the

more common DPBF method since the absorption of [TPPS4]3
4�

overlays the DPBF absorption band. Instead, the iodide method

Figure 14. [GdO]+[ICG]� IOH-NPs (dextran-coated) as OI contrast agent: a) In
vivo and post mortem fluorescence images acquired of mice 0, 5 and 24 h
after [GdO]+[ICG]� injection using fluorescence molecular tomography
(FMT) and fluorescence reflectance imaging (FRI). Organs were removed and
the fluorescence distribution quantified for (b) [GdO]+[ICG]� (modified
reproduction from ref. [69]).

Figure 15. Gd4
3 +[AlPCS4]3

4� IOH-NPs (AlPCS4: aluminium(III) chloride phthalo-
cyanine tetrasulfonate) with: a) Scheme of synthesis; b) Particle size
according to SEM; c) Excitation and emission spectra with aqueous
suspensions at daylight and with excitation (blue-light LED); d) Determi-
nation of the quantum yield (fD) for 1O2 production via the DPBF method
(modified reproduction from ref. [70]).
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was applied here,[88] resulting in a quantum yield of 49% for

La4
3 +[TPPS4]3

4� (in suspension), which is again close to the value

of molecular H4TPPS4 (51%, in solution).[88]

To determine the photocatalytic performance of Gd4
3 +

[AlPCS4]3
4� and La4

3 +[TPPS4]3
4� (Figure 16a), both were first

conceptually evaluated in regard of the photocatalytic degrada-

tion of Eriochrome Black T (EBT). EBT was chosen as a model

dye since its absorption (lmax = 525 nm) does not overlap that

of Gd4
3 +[AlPCS4]3

4� (lmax = 670 nm) and La4
3 +[TPPS4]3

4� (lmax =

425 nm). The photocatalytic degradation was studied with

simulated daylight (halogen lamp) as well as with red-light

illumination (glass filter with l> 610 nm) by comparing Gd4
3 +

[AlPCS4]3
4� and La4

3 +[TPPS4]3
4� (in suspension) with H4AlPCS4

and H4TPPS4 (in solution) as references.[70] Despite of identical

concentrations of the photoactive phthalocyanine/porphyrin,

the IOH-NPs (in suspension) show significantly higher photo-

activity and faster EBT degradation than the dissolved refer-

ences (Figure 16b,c). This higher performance can be rational-

ized when considering the negative charges of all sulfonate-

based anions at neutral pH (i. e., [AlPCS4]3
4�, [TPPS4]3

4�, [EBT]�)

leading to a stronger electrostatic repulsion of the dissolved

species than to the non-charged IOH-NPs.[89] Moreover, the local

absorption intensity of the IOH-NPs (in suspension) is higher

due to the great number of absorbing centers per volume of

each nanoparticle compared to the widely separated H4AlPCS4

and H4TPPS4 molecules (in solution).

With the above described features and performance –

including the extremely high phthalocyanine/porphyrin load

and the promising photocatalytic effect with daylight illumina-

tion – the Gd4
3 +[AlPCS4]3

4� and La4
3 +[TPPS4]3

4� IOH-NPs can be

highly interesting not only for photocatalytic dye degradation

but also for PDT.[78] PDT is generally considered as a useful

addition to the armory against cancer since it is minimally

invasive and non-damaging to healthy tissue. Specifically, PDT

is known for treatment of near-surface tumors (e. g., skin,

esophagus or intestinal cancer)[90] and intensely discussed for

post-surgery treatment to kill cancer cells that may remain after

extraction of the solid primary tumor.[91] In view of deep-tissue

penetration, the long-wavelength excitation of Gd4
3 +[AlPCS4]3

4�

(550–720 nm) seems most interesting to PDT and was therefore

studied in vitro and in vivo. Gd4
3 +[AlPCS4]3

4� IOH-NPs are even

more interesting since H4AlPCS4 (in solution) is already

approved for PDT.[92] Based on the paramagnetism of Gd3 + and

the deep red emission of [AlPCS4]3
4�, furthermore, Gd4

3 +

[AlPCS4]3
4� IOH-NPs are also suitable for multimodal imaging

including MRI and OI. With these features, Gd4
3 +[AlPCS4]3

4� can

be an advantageous addition to existing nanoparticulate

photosensitizers for PDT. So far, this includes inorganic nano-

particles such as TiO2 or ZnO as well as rare-earth based up-

converters,[93] which suffer from UV-activation (i. e., TiO2, ZnO)

being harmful to cells[93a,b] or narrow-line laser-type excitation

(i. e. up-conversion via f-f transitions on rare-earth metals).[93c,d]

The feasibility of Gd4
3 +[AlPCS4]3

4� IOH-NPs was demon-

strated in vitro with human liver carcinoma (HepG2) cells and

human cervix carcinoma (HeLa) cells.[78] The incubation of cells

with dextran-coated Gd4
3 +[AlPCS4]3

4� IOH-NPs proves good

cellular uptake as indicated by an intense red fluorescence

(Figure 17a, b). Moreover, efficient photoactivated 1O2 genera-

tion and ROS production upon illumination (lexc = 635 nm) was

evidenced with DCFDA-treated (DCFDA: profluorescent 2’,7’-
dichlorofluorescein diacetate) cells, which show bright green

fluorescence due to 7’-dichlorofluorescein (DCF) produced in

the presence of ROS (Figure 17c, d). Furthermore, a comparison

of the Gd4
3 +[AlPCS4]3

4� IOH-NPs (in suspension) with free

H4AlPCS4 (in solution) at identical phthalocyanine concentration

(20 mM) indicates the Gd4
3 +[AlPCS4]3

4�-treated cells to be much

more active in generating photoinduced ROS.[78]

The phototoxic effect of the Gd4
3 +[AlPCS4]3

4� IOH-NPs (in

suspension) was quantified by MTT toxicity assays and

compared to molecular H4AlPCS4 (in solution) at identical

Figure 16. Photocatalytic dye degradation of Eriochrome Black T (EBT,
monitored at 528 nm, c(EBT) = 0.03 mmol/L) with: a) Scheme of photo-
catalytic degradation with structure of EBT; b) Comparison of
Gd4

3 +[AlPCS4]3
4� (in suspension) with H4AlPCS4 (in solution); c) Comparison

of La4
3 +[TPPS4]3

4� (in suspension) with H4TPPS4 (in solution). Illumination
with simulated daylight (halogen lamp) and red light (halogen lamp with
red filter, l > 610 nm). Gd4

3 +[AlPCS4]3
4�, La4

3 +[TPPS4]3
4�, H4AlPCS4, and

H4TPPS4 compared at identical phthalocyanine/porphyrin concentration
(8 mM Gd4

3 +[AlPCS4]3
4�/La4

3 +[TPPS4]3
4�; 24 mM H4AlPCS4/H4TPPS4), (modified

reproduction from ref. [70]).

Figure 17. In vitro evaluation of Gd4
3 +[AlPCS4]3

4� IOH-NPs (20 mM) in HepG2
cells after 24 h of incubation: a) Prior to illumination in daylight and b) after
10 min of illumination with red fluorescence indicating the IOH-NP uptake
(nuclei stained with Hoechst 33342); c) Cells treated with DCFDA prior and
d) after illumination with green fluorescence of DCF indicating ROS
generation. Illumination performed by scanning slides 4-times for 13 min
using scan cycles at 670 nm (Pearl Imager, LI–COR Biosciences; N: nucleus;
scale bar: 20 mm), (modified reproduction from ref. [78]).
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phthalocyanine concentrations (1–20 mM) (Figure 18).[78] Meta-

bolically active cells reduce the yellow tetrazolium compound

3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide

(MTT) to a purple formazan, which can be monitored photo-

metrically. First of all, the dark toxicity was assessed and

showed slightly higher toxicity of the IOH-NPs in comparison to

H4AlPCS4 in solution (Figure 18a). Thereafter, the phototoxicity

subsequent to light exposure (2 � 5 min, 670 nm) was deter-

mined and results in a significantly higher cytotoxic effect with

Gd4
3 +[AlPCS4]3

4�-treated cells (in suspension, LD50<5 mM) com-

pared to cells treated with molecular H4AlPCS4 (in solution,

LD50>20 mM) (Figure 18b). Moreover, a suppressed angiogene-

sis of microcapillary networks was detected after treatment of

endothelial cells with Gd4
3 +[AlPCS4]3

4� in vitro and subsequent

illumination.[78] Altogether, these results validate the phototoxic

activity and performance of the Gd4
3 +[AlPCS4]3

4� IOH-NPs and

their advantage over dissolved H4AlPCS4.

Finally, the phototoxic effect of the Gd4
3 +[AlPCS4]3

4� IOH-

NPs was evaluated in an in vivo zebrafish tumor model.

Zebrafishes are generally known as a suitable platform for

testing and refining therapies in the preclinical phase of drug

development.[94] They are easier to handle than mice and allow

a direct readout by OI due to their small size and transparency.

In our study, Gd4
3 +[AlPCS4]3

4� IOH-NPs were first incubated with

HeLa-GFP cells expressing green fluorescent proteins (GFP).

Thereafter, the IOH-NP-pretreated HeLa-GFP cells were injected

into the cardinal vein of zebrafish larvae to induce tumors

(Figure 19a). The Gd4
3 +[AlPCS4]3

4� IOH-NP-pretreated HeLa-GFP

cells could be easily detected in the zebrafish larvae by their

red and green emission (Figure 19b). Upon light exposure over

a certain period of time (10 min, 670 nm), the green emission of

the HeLa-GFP cells is significantly decreased, which indicates

their reduced viability. Finally, only the red emission of the

Gd4
3 +[AlPCS4]3

4� IOH-NPs remains at the position of cellular

debris and necrotic tumors (Figure 19b).[78] HeLa-GFP cells

without Gd4
3 +[AlPCS4]3

4� IOH-NPs were injected into zebrafish

larvae as a control and did not show any effect and vanishing

of the green emission at all (Figure 19a). As a result, the

phototoxic performance of the Gd4
3 +[AlPCS4]3

4� IOH-NPs is

clearly shown in vivo. Specific optimization of parameters –

such as the concentration of the IOH-NPs, the duration of

illumination, certain repeat treatments – is of course needed to

reliably explore the optimal treatment efficiency and to

establish therapy protocols.

3.3. Dissolution of IOH-NPs

In cell and mouse studies of all IOH-NPs, and in particular of the

phosphate-based [ZrO]2 +[RDyeOPO3]2� IOH-NPs, the fluorescence

was observed to vanish on a timescale of several hours to some

days.[34,35] Typically, no fluorescence and no nanoparticle

remains could be identified after 3–4 days. This finding points

to a slow dissolution of the IOH-NPs, which can be rationalized

upon hydrolysis of the P�O�C phosphorus acid ester bond,

resulting in the dissolved species [ZrO]2 +, [HPO4]2� and RDyeOH

(Figure 20). Such dissolution can be triggered by acid or base

catalysis as well as by ubiquitous phosphatases in cells and

tissue.[95] In fact, such dissolution is ideal in terms of biocompat-

ibility and biodegradability, especially if there is no specific

toxicity of the dissolved species and if all species are completely

released from cells, tissue and body after certain period of time.

Figure 18. In vitro phototoxicity of Gd4
3 +[AlPCS4]3

4� IOH-NPs as indicated by
MTT assays: a) Cells treated with Gd4

3 +[AlPCS4]3
4� IOH-NPs (green bars) and

with dissolved H4AlPCS4 (black bars) after 72 h of incubation in darkness; b)
Cells treated similarly and with illumination at 670 nm for 2 � 5 min
(statistical error bars calculated from n = 6; significance determined accord-
ing to student’s t-test with p <0.05; N: nucleus), (reproduction from ref.
[78]).

Figure 19. In vivo phototoxicity and imaging of Gd4
3 +[AlPCS4]3

4� IOH-NP-
treated HeLa-GFP cells in zebrafish larvae after NIR illumination. Larvae were
xenografted with GFP expressing and Gd4

3 +[AlPCS4]3
4� IOH-NPs (5 mM)

pretreated HeLa cells. After 24 h, the larvae were illuminated for 10 min at
670 nm and thereafter imaged using fluorescent confocal microscopy: a)
GFP expression exited at 488 nm (Argon laser) and the emission detected at
498–540 nm; b) Gd4

3 +[AlPCS4]3
4� IOH-NPs excited at 635 nm and the

emission detected at 644–786 nm. Upon illumination the cells were losing
GFP expression and the tumors were reduced in size (N: nucleus; scale bar:
200 mm), (modified reproduction from ref. [78]).

Figure 20. Model reaction for the slow metabolic dissolution of
[ZrO]2 +[RDyeOPO3]2� IOH-NPs (modified reproduction from ref. [35]).
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Various in vitro and in vivo studies in the meantime have

proven that no specific toxicity or allergic reaction is caused by

the IOH-NPs.[34,35,48,58,69,78] In particular, this holds for the cations

[ZrO]2 + and Gd3 +/[Gd(OH)]2 +/[GdO]+. Even for the latter, a

lower toxicity as compared to the standard MRI contrast agents

Gd-DOTA and Gd-DTPA was observed.[48,58,69,78] A detection of

the dissolved species after their release from the IOH-NPs,

however, is not straightforward. On the one hand, immediate

dilution of the dissolved species in the volume of cells, tissue

and body leads to only low concentrations remaining, and

thereby hampers the detection. Analyzing [HPO4]2� and RDyeOH

is difficult anyway due to the ubiquitous physiological avail-

ability of phosphate and the rapid metabolic decomposition of

the fluorescent dye anion. Here, radio-labeling could be a useful

option. Tracking of [ZrO]2 + is easier due to its absence in

animate beings. In vivo studies indeed show that the pristine

amount of injected zirconium in [ZrO]2 +[RDyeOPO3]2� IOH-NPs

can be typically retrieved from urine on a time scale of 2–4

days.

To verify the dissolution of the IOH-NPs, we have initiated

several test reactions with suitable model compounds. A first

example relates to [ZrO]2 +[UFP]2� IOH-NPs (UFP: umbelliferone

phosphate).[96] [ZrO]2 +[UFP]2� exhibits a typical particle size of

47�9 nm and shows characteristic, but weak blue emission

(lmax = 455 nm) of UFP upon UV excitation (lexc = 366 nm).

Although less interesting for imaging purposes (see 2.2), [ZrO]2 +

[UFP]2� is very interesting since the emission intensity of free

umbelliferone (UF) in solution is considerably higher compared

to the solid IOH-NPs (in suspension). Thus, UF release from the

IOH-NPs, and thereupon, their dissolution can be directly

monitored by fluorescence spectroscopy.[96] Whereas the UF

release in aqueous suspensions at pH 7 and 37 8C is very slow, it

can be significantly accelerated upon addition of acid phospha-

tase (Figure 21). Accordingly, the emission intensity rises

continuously after phosphatase addition over a period of 10 h

indicating the release of UF from the [ZrO]2 +[UFP]2� IOH-NPs

via hydrolytic cleavage of the P�O�C ester bond (Figure 21). On

the one hand, this verifies the dissolution of the IOH-NPs, and

on the other hand, this specific reaction can also serve as a

fluorescent probe of the presence of phosphatases.[96] To

classify the timescale of the release reaction, it must be noticed

that the hydrolysis of P�O�C ester bonds is particularly fast if

the phosphate group is directly linked to an aromatic system

P�O�Caromatic.
[97] In the case of aliphatic systems P�O�Caliphatic,

the release is significantly slower and moves on a timescale of

several days.[35]

A second example to illustrate the dissolution of the IOH-

NPs is [ZrO]2 +[AAP]2�, containing the analgetic prodrug acet-

aminophen phosphate (AAP).[98] Here, the dissolution of the

IOH-NPs and the release of acetaminophen (AA) were evaluated

based on two different approaches. First, the carbon content of

[ZrO]2 +[AAP]2� was determined by EA (Figure 22a). Second, the

fluorescence of mixed-anion [ZrO]2 +[(AAP)0.9(UFP)0.1]2� IOH-NPs

containing 90 mol-% of [AAP]2� and 10 mol-% of fluorescent

[UFP]2� was monitored.[98] Whereas EA is indicative for the AAP-

related carbon content in the residual solid IOH-NPs, the

fluorescence intensity refers to the released amounts of AA and

UF in the solution. During the experiments, the IOH-NPs were

continuously stirred in aqueous HEPES buffer at neutral pH and

25 8C. After certain periods of time, a defined aliquot of the

suspension was extracted and centrifuged to obtain the IOH-

Figure 21. Monitoring the dissolution of [ZrO]2 +[UFP]2� IOH-NPs:
Fluorescence of aqueous suspensions prior (left cuvette) and after (right
cuvette) the addition of acid phosphatase (lexc. = 366 nm), (modified
reproduction from ref. [96]).

Figure 22. Monitoring the dissolution of [ZrO]2 +[AAP]2� and [ZrO]2 +[(AAP)0.9

(UFP)0.1]2� IOH-NPs with: a) Determination of carbon content of the residual
solid IOH-NPs via EA; b) Fluorescence detection of released UF (in solution)
via fluorescence spectroscopy (48 h, pH 7, 25 8C), (modified reproduction
from ref. [98]).
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NPs and to perform EA. [ZrO]2 +[(AAP)0.9(UFP)0.1]2� was treated

similarly with repetitive measurements of the emission intensity

(Figure 22b). Both measures – determination of carbon content

and of emission intensity – indicate a continuous release of AA

and UF with the as-expected exponential slope. Over 18 and

48 h, a total release of about 60 and 80% was observed,

respectively. All in all, the release data stemming from carbon

content and fluorescence detection show good coincidence.[98]

Again, the timescale of release is comparably fast, since both

AAP and UFP exhibit direct bonding of the phosphate group to

an aromatic system (P�O�Caromatic).
[97]

3.4. Drug Release and Delivery

Slow dissolution of IOH-NPs is not only relevant in terms of

biocompatibility and biodegradability, but it is also the key to

transfer the IOH-NP concept to drug release and drug delivery.

Hence, the material platform and the feasibility of the IOH-NPs

can become even broader. [ZrO]2 +[AAP]2�, containing the

analgetic prodrug acetaminophen phosphate, can be consid-

ered as a very first example for drug delivery and release that

combines uncomplex synthesis in water with very high drug

load of 68 wt-% AAP.[98]

Actually, the material concept has been already expanded

to drug delivery and drug release, especially in the case of

phosphate-based IOH-NPs. In this regard, numerous

phosphate-functionalized pharmaceutical agents are available.

Similar to the fluorescent [ZrO]2 +[RDyeOPO3]2� IOH-NPs, a general

composition [ZrO]2 +[RDrugOPO3]2� can be derived for drug-

containing IOH-NPs with a phosphate-functionalized pharma-

ceutical anion [RDrugOPO3]2�.[99] Illustrative examples comprise,

for instance, [ZrO]2 +[FdUMP]2�, [ZrO]2 +[BMP]2� and [ZrO]2 +

[CLP]2� that contain the cytostatic agent 5’-fluoro-2’-deoxyur-

idine 5’-monophosphate (FdUMP),[35,100] the anti-inflammatory

agent betamethasone phosphate (BMP),[35,101] and the antibiotic

agent clindamycin phosphate (CLP) (Figure 23).[102] Similar to

fluorescent IOH-NPs, [ZrO]2 +[RDrugOPO3]2� also show excellent

uptake into cells at high biocompatibility.[35,100–102] In difference

to [ZrO]2 +[UFP]2� and [ZrO]2 +[AAP]2� (see 3.3), the phosphate

group in [ZrO]2 +[FdUMP]2�, [ZrO]2 +[BMP]2� and [ZrO]2 +[CLP]2�

is linked to an aliphatic system (P�O�Caliphatic) that only shows

slow hydrolysis and drug release (i. e. 5–10% release of total

drug content after 48 h).[35,100–102]

The anti-proliferative potential of [ZrO]2 +[FdUMP]2� (in

suspension) with 75 wt-% load of active FdUMP was exempla-

rily shown on human mammary carcinoma cells and compared

to non-active [ZrO]2 +[UMP]2� IOH-NPs (in suspension) as

negative control (UMP: uridine monophosphate) as well as to

the clinically applied 5-FU (in solution) as positive control (5-FU:

5-fluorouracil).[100] Whereas [ZrO]2 +[UMP]2� (negative control)

had no effect on the cell viability, 5-FU (positive control) and

[ZrO]2 +[FdUMP]2� IOH-NPs show considerable cytostatic effects.

Interestingly, the anti-proliferative activity of the [ZrO]2 +

[FdUMP]2� IOH-NPs is even higher than of 5-FU (positive

control), although applied with identical concentration of the

active agent.[100] [ZrO]2 +[BMP]2� – as the second example –

contains 81 wt-% of the glucocorticoid BMP and shows

excellent anti-inflammatory response in vitro (MHS macro-

phages, primary mouse macrophages, human peripheral blood

monocytes).[35,101] In vivo studies, furthermore, indicate a promis-

ing therapeutic efficiency in a mouse model of multiple

sclerosis with a strongly increased cell-type specificity for

macrophages compared to conventional free glucocorticoids

(in solution).[101] [ZrO]2 +[CLP]2� IOH-NPs, finally, represent a

novel nanoparticle-based strategy to treat persisting and

recurrent Staphylococcus aureus-caused infections. [ZrO]2 +

[CLP]2� also contains an extremely high amount of 82 wt-% of

the clinically approved antibiotic clindamycin phosphate and

shows high uptake at low toxicity. In comparison to the free

drug in solution, most interestingly, the [ZrO]2 +[CLP]2� IOH-NPs

(in suspension) result in a 70 to 150-times higher drug uptake

into cells, although both – free drug and IOH-NPs – were

administered in identical concentrations.

Besides [ZrO]2 +[FdUMP]2�, [ZrO]2 +[BMP]2� and [ZrO]2 +

[CLP]2� and their application for tumors, inflammation and

infection, we could realize phosphate-based [ZrO]2 +

[RDrugOPO3]2� IOH-NPs with about 50 different pharmaceutical

agents, which illustrates the feasibility of the concept as a

general platform of materials. Drug delivery and drug release,

however, are not a subject of this review and therefore only

conceptually discussed as an additional option. Similar to

[ZrO]2 +[(HPO4)1�x(FMN)x]
2� (see 2.2), the pharmaceutical anion

[RDrugOPO3]2� can be also partially exchanged by a fluorescent

dye anion [RDyeOPO3]2�. In order to maintain maximum drug

load, the fluorescent dye anion is available only in low

concentrations of 0.005 to 0.05 mol-%. Specifically, this results

in [ZrO]2 +[(FdUMP)0.95(ICG)0.05]2�, [ZrO]2 +[(BMP)0.95(FMN)0.05]2� or

[ZrO]2 +[(CLP)0.995(DUT)0.005]2�, which show drug release and

which can be also detected via their fluorescence (see 2.2, 2.3,

3.1, Figure 23).[100–102]

Figure 23. IOH-NPs for drug release with fluorescence labelling exemplarily
shown for: a) [ZrO]2 +[(FdUMP)0.95(ICG)0.05]2�, b) [ZrO]2 +[(BMP)0.95(FMN)0.05]2�,
and c) [ZrO]2 +[(CLP)0.995(DUT)0.005]2� (modified reproduction from ref. [100–
102]).
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4. Conclusions

Phosphate- and sulfonate-based IOH-NPs with a general

composition [ZrO]2 +[RDyeOPO3]2�, [Ln]3 +
n/3[RDye(SO3)n]n�,

[Ln(OH)]2 +
n/2[RDye(SO3)n]n�, or [LnO]+

n[RDye(SO3)n]n� (Ln: lantha-

nide) are presented as a novel platform of functional nano-

particles for fluorescence detection and optical imaging.

Specifically, the here discussed IOH-NPs include [ZrO]2 +

[HPO4]2�, [ZrO]2 +[(HPO4)1�x(FMN)x]
2�, [ZrO]2 +[FMN]2�, [ZrO]2 +

[MFP]2�, [ZrO]2 +[RRP]2�, [ZrO]2 +[DUT]2�, La3 +[AMA]3�, Gd3 +

[AMA]3�, [Gd(OH)]2 +
2[CSB]4�, [Gd(OH)]2 +

2[DB71]4�, [Gd(OH)]2 +

[NFR]2�, [Gd(OH)]2 +[AR97]2�, [Gd(OH)]2 +
2[EB]4�, [GdO]+[ICG]�,

Gd4
3 +[AlPCS4]3

4�, La4
3 +[TPPS4]3

4�, [ZrO]2 +[UFP]2�, [ZrO]2 +[AAP]2�,

[ZrO]2 +[FdUMP]2�, [ZrO]2 +[(FdUMP)0.95(ICG)0.05]2�, [ZrO]2 +

[BMP]2�, [ZrO]2 +[(BMP)0.95(FMN)0.05]2�, [ZrO]2 +[CLP]2�, and [ZrO]2 +

[(CLP)0.995(DUT)0.005]2�. Although already comprising a great

number of compounds, these IOH-NPs stand as representatives

for a much greater number of nanomaterials and an even

broader platform of materials.

Besides the variability of the chemical composition, the

IOH-NPs exhibit several features that differ from alternative

fluorescent nanomaterials, including: i) Straightforward aqueous

synthesis; ii) Low material complexity; iii) Extraordinarily high

load of fluorescent dye and/or pharmaceutical drug (70–85 wt-

% per nanoparticle); iv) Use of many approved fluorescent dyes;

v) High biocompatibility and high biodegradability. All these

aspects are highly relevant to medicine and clinical practice.

In addition to full-color emission, the IOH-NPs can feature

even more functionalities. With Gd3 + as the inorganic cation,

for instance, the IOH-NPs are magnetic and suitable for MRI.

IOH-NPs such as [GdO]+[ICG]� are multimodal and applicable

for OI (due to the emission of ICG), PAI (due to the absorption

of ICG) and MRI (due to the paramagnetism of Gd3 +). Moreover,

IOH-NPs like Gd4
3 +[AlPCS4]3

4� or La4
3 +[TPPS4]3

4� show photo-

induced ROS generation (singlet oxygen) and become suitable

for photodynamic therapy. Finally, the phosphate- and/or

sulfonate-based fluorescent anion can be replaced by pharma-

ceutical anions to realize IOH-NPs showing drug delivery and

drug release. All these different features can be available in a

single IOH-NP by combining two or more functional organic

anions. All in all, the combination of inorganic cations and

functional organic anions, like from a construction kit, allows

realizing multimodal and multifunctional IOH-NPs with many

more compositions and functions, which, in fact, is the most

relevant feature and advantage of the IOH-NPs.
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FOCUS REVIEW

Extremely high dye contents (70–
85 wt-%) are available in inorganic-
organic hybrid nanoparticles (IOH-
NPs) such as [ZrO]2 +[RDyeOPO3]2�.
They show intense emission, high
photostability, high cell uptake at
low toxicity, and they are also
suitable for multimodal imaging,
singlet-oxygen generation and drug
delivery.
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