KIT | KIT-Bibliothek | Impressum | Datenschutz

Boundary stabilization of quasilinear Maxwell equations

Pokojovy, Michael; Schnaubelt, Roland

We investigate an initial-boundary value problem for a quasilinear nonhomogeneous, anisotropic Maxwell system subject to an absorbing boundary condition of Silver & Müller type in a smooth, bounded, strictly star-shaped domain of $\mathbb{R^3}$. Imposing usual smallness assumptions in addition to standard regularity and compatibility conditions, a nonlinear stabilizability inequality is obtained by showing nonlinear dissipativity and observability-like estimates enhanced by an intricate regularity analysis. With the stabilizability inequality at hand, the classic nonlinear barrier method
is employed to prove that small initial data admit unique classical solutions that exist globally and decay to zero at an exponential rate. Our approach is based on a ecently established local well-posedness theory in a class of $\mathcal{H}^3$-valued functions.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000088599
Veröffentlicht am 14.12.2018
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000088599
Verlag KIT, Karlsruhe
Umfang 22 S.
Serie CRC 1173 ; 2018/48
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagworte Maxwell equations, Silver-Müller boundary conditions, nonhomogeneous anisotropic materials, global existence, exponential stability
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page