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Abstract
The general volume of a star body, a notion that includes the usual volume, the qth dual 
vol-umes, and many previous types of dual mixed volumes, is introduced. A corresponding 
new general dual Orlicz curvature measure is defined that specializes to the ( p, q)-dual 
curvature measure introduced recently by Lutwak, Yang, and Zhang. General variational 
formulas are established for the general volume of two types of Orlicz linear combination. 
One of these is applied to the Minkowski problem for the new general dual Orlicz 
curvature measure, giving in particular a solution to the Minkowski problem posed by 
Lutwak, Yang, and Zhang for the ( p, q)-dual curvature measures when p > 0 and q < 0. A 
dual Orlicz–Brunn–Minkowski inequality for general volumes is obtained, as well as dual 
Orlicz–Minkowski-type inequali-ties and uniqueness results for star bodies. Finally, a very 
general Minkowski-type inequality, involving two Orlicz functions, two convex bodies, 
and a star body, is proved, that includes as special cases several others in the literature, in 
particular one due to Lutwak, Yang, and Zhang for the ( p, q)-mixed volume.

Mathematics Subject Classification Primary: 52A20 · 52A30 · Secondary: 52A39 and 
52A40

1 Introduction

The classical Brunn–Minkowski theory was developed by Minkowski, Aleksandrov, and 
many others into the powerful tool it is today. It focuses on compact convex sets and their 
orthogonal projections and metric properties such as volume and surface area, but has numer-
ous applications beyond geometry, both within and outside mathematics. In recent decades
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it has been significantly extended in various ways. Germinating a seed planted by Firey,
Lutwak [18] brought the L p-Brunn–Minkowski theory to fruition. A second extension, the
Orlicz–Brunn–Minkowski theory, arose from work of Ludwig [15], Ludwig and Reitzner
[16], and Lutwak et al. [19,20]. Each theory has a dual counterpart treating star-shaped sets
and their intersections with subspaces, and these also stem from the pioneering work [17]
of Lutwak. The main ingredients in each theory are a distinguished class of sets, a notion
of volume, and an operation, usually called addition, that combines two or more sets in the
class. Each theory has been described and motivated at length in previous work, so we refer
the reader to Schneider’s classic treatise [22] and the introductions of the articles [4–6], and
will focus henceforth on the contributions made in the present paper.

Our work is inspired by the recent groundbreaking work of Huang et al. [13] and Lutwak
et al. [21]. In [13], the various known measures that play an important part in the Brunn–
Minkowski theory—the classical area and curvature measures and their L p counterparts—
were joined by new dual curvature measures, and surprising relations between them were
discovered, revealing fresh connections between the classical and dual Brunn–Minkowski
theories. These connectionswere reinforced in the sequel [21], which defined the very general
L p dual curvature measures that involve both convex and star bodies and two real parameters
p and q. With each measure comes the challenge of solving the corresponding Minkowski
problem, a fundamental endeavor that goes back to the original work of Minkowski and
Aleksandrov.

The present paper focuses on the Orlicz–Brunn–Minkowski theory. Just as Orlicz spaces
generalize L p spaces, the Orlicz theory brings more generality, but presents additional chal-
lenges due to the loss of homogeneity. Here we introduce very general dual Orlicz curvature
measures which specialize to both the L p dual curvature measures in [21] and the dual Orlicz
curvature measures defined in [24,25]. We state the corresponding Minkowski problem and
present a partial solution, though one general enough to include those from [24,25] as well
as solving the case p > 0 and q < 0 of the Minkowski problem posed in [21, Problem 8.1].
(After we proved our result, we learned that Böröczky and Fodor [2] and Huang and Zhao
[14] have solved the cases p > 1, q > 0 and p > 0, q < 0, respectively.) The Minkowski
problem in [21, Problem 8.1] requires finding, for given p, q ∈ R, n-dimensional Banach
norm ‖ · ‖, and f : Sn−1 → [0,∞), an h : Sn−1 → (0,∞) that solves the Monge–Ampère
equation

h1−p ‖∇̄h + hι‖q−n det(∇̄2h + hI ) = f (1)

on the unit sphere Sn−1, where ∇̄ and ∇̄2 are the gradient vector and Hessian matrix of h,
respectively, with respect to an orthonormal frame on Sn−1, ι is the identity map on Sn−1, and
I is the identity matrix. The equation (1) is derived in [21, (5.8), p. 116]; previousMinkowski
problems correspond to taking p = 0 and ‖·‖ = |·|, the Euclidean norm (the dualMinkowski
problem from [13]), q = 0 and ‖ · ‖ = | · | (the L p Aleksandrov problem), and q = n (the
L p Minkowski problem, which reduces to the classical Minkowski problem when p = 1).

We refer the reader to the introductions of [13,21] and to [22, Sects. 8.2 and 9.2] for
detailed discussions and references to the extensive literature on these problems.

Also introduced here are newgeneralizations of volume. LetG : (0,∞)×Sn−1 → (0,∞)

be continuous (see Sect. 2 for definitions and notation). The general dual volume ˜VG(K ) of
a star body K is defined by

˜VG(K ) =
∫

Sn−1
G(ρK (u), u) du,



where ρK is the radial function of K , giving the distance from the origin to the boundary of
K in the direction u, while the general volume of a convex body K is defined by

VG(K ) =
∫

Sn−1
G(hK (u), u) dS(K , u),

where hK is the support function and S(K , ·) is the surface area measure of K . (Integrals
with respect to the i th area measures Si (K , ·), 1 ≤ i ≤ n − 1, may also be considered.) The
novel feature here is the extra argument u in G; this allows ˜VG(K ) and VG(K ) to include
not only the usual volume and variants of it, but also many of the mixed and dual mixed
volumes that have previously been found useful in the literature. The same function G(t, u)

is behind our general dual Orlicz curvature measures (see Definition 3.1). The present paper
focuses mainly on the dual theory, so from the outset we work with the general dual volume
˜VG(K ) and obtain variational formulas (necessary for the Minkowski problem) for it. The
corresponding study for VG(K ) and the classical theory is to be carried out in [8]. It should
be mentioned that in this context, Orlicz–Minkowski problems were first investigated by
Haberl, Lutwak, Yang, and Zhang [11].

The general dual Orlicz curvature measures mentioned above arise naturally from the
general dual volumes and are denoted by ˜CG,ψ (K , ·), where G : (0,∞) × Sn−1 → (0,∞)

and ψ : (0,∞) → (0,∞) are continuous. The corresponding Minkowski problem is:
For which nonzero finite Borel measures μ on Sn−1 and continuous functions G and ψ

do there exist τ ∈ R and K ∈ Kn
(o) such that μ = τ ˜CG,ψ (K , ·)?

In our partial solution, presented in Theorem 6.4 below, the lack of homogeneity neces-
sitates extra care in the variational method we employ. The problem requires finding, for
given G, ψ , and f : Sn−1 → [0,∞), an h : Sn−1 → (0,∞) and τ ∈ R that solve the
Monge–Ampère equation

τh

ψ ◦ h
P(∇̄h + hι) det(∇̄2h + hI ) = f , (2)

where P(x) = |x |1−nGt (|x |, x/|x |). Equation (2) is derived before Theorem 6.4 in a brief
discussion where we also show that (2) is more general than (1).

In a third contribution, we prove very general Orlicz inequalities of the Minkowski and
Brunn–Minkowski type which include others in the literature, such as [21, Theorem 7.4], as
special cases. Some general uniqueness theorems are also demonstrated.

The paper is organized as follows. The preliminary Sect. 2 gives definitions and notation,
as well as the necessary background on two types of Orlicz linear combination. In Sect. 3, we
define the new general dual volumes and general dual Orlicz curvature measures. Sections 4
and 5 contain our variational formulas. In Sect. 6, we state our Minkowski problem and
provide a partial solution (see Problem6.3 andTheorem6.4).DualOrlicz–Brunn–Minkowski
inequalities can be found in Sect. 7 and dual Orlicz–Minkowski inequalities and uniqueness
results are the focus of Sect. 8.

2 Preliminaries and background

Weuse the standard notationso, {e1, . . . , en}, and‖·‖ for the origin, the canonical orthonormal
basis, and a norm, respectively, in R

n . The Euclidean norm and inner product on R
n are

denoted by | · | and 〈·, ·〉, respectively. Let Bn = {x ∈ R
n : |x | ≤ 1} and Sn−1 = {x ∈ R

n :
|x | = 1} be the unit ball and sphere in Rn . The characteristic function of a set E is signified
by 1E .



We write Hk for k-dimensional Hausdorff measure in R
n , where k ∈ {1, . . . , n}. For

compact sets E , we also write Vn(E) = Hn(E) for the volume of E . The notation dx means
dHk(x) for the appropriate k = 1, . . . , n, unless stated otherwise. In particular, integration
on Sn−1 is usually denoted by du = dHn−1(u).

The class of nonempty compact convex sets in Rn is written Kn . We will often work with
Kn

(o), the set of convex bodies (i.e., compact convex subsets of Rn with nonempty interiors)
containing o in their interiors. For the following information about convex sets, we refer the
reader to [10,22]. The standard metric on Kn is the Hausdorff metric δ(·, ·), which can be
defined by

δ(K , L) = ‖hK − hL‖∞ = sup
u∈Sn−1

|hK (u) − hL(u)|

for K , L ∈ Kn , where hK : Sn−1 → R is the support function of K ∈ Kn , given by
hK (u) = supx∈K 〈u, x〉 for u ∈ Sn−1. We say that the sequence K1, K2, . . . of sets in Kn

converges to K ∈ Kn if and only if limi→∞ δ(Ki , K ) = 0. The Blaschke selection theorem
states that every bounded sequence inKn has a subsequence that converges to a set inKn . The
surface area measure S(K , ·) of a convex body K in Rn is defined for Borel sets E ⊂ Sn−1

by
S(K , E) = Hn−1(ν−1

K (E)), (3)

where ν−1
K (E) = {x ∈ ∂K : νK (x) ∈ E} is the inverse Gauss map of K (see Sect. 2.2).

Let μ be a nonzero finite Borel measure on Sn−1. We say that μ is not concentrated on
any closed hemisphere if

∫

Sn−1
〈u, v〉+ dμ(u) > 0 for v ∈ Sn−1, (4)

where a+ = max{a, 0} for a ∈ R. We write |μ| = μ(Sn−1).
As usual, C(E) denotes the class of continuous functions on E and we shall write C+(E)

for the strictly positive functions in C(E). Let 	 ⊂ Sn−1 be a closed set not contained in
any closed hemisphere of Sn−1. For each f ∈ C+(	), one can define a convex body [ f ],
the Aleksandrov body (or Wulff shape), associated to it, by setting

[ f ] =
⋂

u∈	

{

x ∈ R
n : 〈x, u〉 ≤ f (u)

}

.

In particular, when 	 = Sn−1 and f = hK for K ∈ Kn , one has

K = [hK ] =
⋂

u∈Sn−1

{

x ∈ R
n : 〈x, u〉 ≤ hK (u)

}

.

Note that

H(K , u) = {

x ∈ R
n : 〈x, u〉 = hK (u)

}

is the supporting hyperplane of K in the direction u ∈ Sn−1.
A set  L in Rn is star-shaped at o if o ∈ L and for each x ∈ Rn\{o}, the intersection 

L ∩ {cx : c ≥ 0} is a (possibly degenerate) compact line segment. For each such L and for 
x ∈ Rn\{o}, let

ρL (x) = max{c ≥ 0 : cx ∈ L}.
Then ρL : Rn\{o} →  R is called the radial function of L . The function ρL is homogeneous 
of degree −1, that is, ρL (r x ) = r−1ρL (x) for x ∈ Rn\{o}. This allows us to consider ρL as



a function on Sn−1. Let Sn be the class of star-shaped sets at o in Rn that are bounded Borel
sets and whose radial functions are therefore bounded Borel measurable functions on Sn−1.
The class of L ∈ Sn with ρL > 0 is denoted by Sn+ and the class Sn

c+ of compact star bodies
comprises those L ∈ Sn+ such that ρL is continuous on Sn−1. If L ∈ Sn+, then ρL(u)u ∈ ∂L
and ρL(x) = 1 for x ∈ ∂L , the boundary of L . The natural metric on Sn is the radial metric
˜δ(·, ·), which can be defined by

˜δ(L1, L2) = ‖ρL1 − ρL2‖∞ = sup
u∈Sn−1

|ρL1(u) − ρL2(u)|,

for L1, L2 ∈ Sn . Consequently, we can define convergence in Sn by lim j→∞˜δ(L j , L) = 0
for L, L1, L2, . . . ∈ Sn . Clearly, Kn

(o) ⊂ Sn
c+. It follows directly from the relations between

the metrics δ and˜δ in [9, Lemma 2.3.2, (2.3.15) and (2.3.16)] that if K , K1, K2, . . . ∈ Kn
(o),

then Ki → K in the Hausdorff metric if and only if Ki → K in the radial metric.
If K ∈ Kn

(o), the polar body K ∗ of K is defined by

K ∗ = {x ∈ R
n : 〈x, y〉 ≤ 1 for y ∈ K }.

Then (K ∗)∗ = K and (see [22, (1.52), p. 57])

ρK (x)hK ∗(x) = hK (x)ρK ∗(x) = 1 for x ∈ R
n\{o}. (5)

One can define convex bodies associated to radial functions of star bodies. In general, if
	 ⊂ Sn−1 is a closed set not contained in any closed hemisphere of Sn−1, and f ∈ C+(	),
define 〈 f 〉 ∈ Kn

(o), the convex hull of f , by

〈 f 〉 = conv { f (u)u : u ∈ 	}.
The properties of 〈 f 〉 are similar to those of the Aleksandrov body. In particular, taking
	 = Sn−1, we have 〈ρK 〉 = K for each K ∈ Kn

(o). It can be checked (see [13, Lemma 2.8])
that

[ f ]∗ = 〈1/ f 〉. (6)

Throughout the paper, we will need certain classes of functions ϕ : (0,∞) → (0,∞).
Let

I = {ϕ is continuous and strictly increasing with ϕ(1) = 1, ϕ(0) = 0, and ϕ(∞) = ∞},
D = {ϕ is continuous and strictly decreasing with ϕ(1) = 1, ϕ(0) = ∞, and ϕ(∞) = 0},
where ϕ(0) and ϕ(∞) are considered as limits, ϕ(0) = limt→0+ ϕ(t) and ϕ(∞) =
limt→∞ ϕ(t). Note that the values of ϕ at t = 0, 1, ∞ are chosen for technical reasons;
results may still hold for other values of ϕ at t = 0, 1, ∞.

For a ∈ R∪{−∞}, we also require the following class of functionsϕ : (0,∞) → (a,∞):

Ja = {ϕ is continuous and strictly monotonic, inf t>0 ϕ(t) = a, and supt>0 ϕ(t) = ∞}.
Note that the log function belongs to J−∞ and I ∪ D ⊂ J0.

Let f0 ∈ C+(Sn−1), let g ∈ C(Sn−1), and let ϕ ∈ Ja for some a ∈ R ∪ {−∞}.
Then ϕ−1 : (a,∞) → (0,∞), and since Sn−1 is compact, we have 0 < c ≤ f0 ≤ C
for some 0 < c ≤ C . It is then easy to check that for ε ∈ R close to 0, one can define
fε = fε( f0, g, ϕ) ∈ C+(Sn−1) by

fε(u) = ϕ−1 (ϕ( f0(u)) + εg(u)) . (7)



Note that we can apply (7) when f0 = hK for some K ∈ Kn
(o) or when f0 = ρK for some

K ∈ Sn
c+. Sometimes we will use this definition when Sn−1 is replaced by a closed set

	 ⊂ Sn−1 not contained in any closed hemisphere of Sn−1.
The left derivative and right derivative of a real-valued function f are denoted by f ′

l and
f ′
r , respectively. Whenever we use this notation, we assume that the one-sided derivative

exists.

2.1 Orlicz linear combination

Let K , L ∈ Kn
(o). For ε > 0, and either ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D, define hε ∈ C+(Sn−1)

(implicitly and uniquely) by

ϕ1

(

hK (u)

hε(u)

)

+ εϕ2

(

hL(u)

hε(u)

)

= 1 for u ∈ Sn−1. (8)

Note that hε = hε(K , L, ϕ1, ϕ2) may not be a support function of a convex body unless
ϕ1, ϕ2 ∈ I are convex, in which case hε = hK+ϕ,εL , where K +ϕ,ε L ∈ Sn

c+ is an Orlicz
linear combination of K and L (see [5, p. 463]). However, the Aleksandrov body [hε] of hε

belongs to Kn
(o).

An alternative approach to formingOrlicz linear combinations is as follows. Let K ∈ Kn
(o),

let g ∈ C(Sn−1), let ϕ ∈ Ja for some a ∈ R ∪ {−∞}, and let ̂hε be defined by (7) with
f0 = hK . This approach goes back to Aleksandrov [1] in the case when ϕ(t) = t . Again, the
Aleksandrov body [̂hε] of̂hε belongs to Kn

(o). When g = ϕ ◦ hL and ϕ ∈ I ⊂ J0 is convex,

[̂hε] = K̂+ϕ ε · L , as defined in [5, (10.4), p. 471].
Suppose that K , L ∈ Kn

(o), that ϕ ∈ I is convex, and that K +ϕ,ε L is defined by (8)
with ϕ1 = ϕ2 = ϕ. Then both K +ϕ,ε L and K̂+ϕ ε · L belong to Kn

(o) and coincide when
ϕ(t) = t p for some p ≥ 1, but they differ in general (to see this, compare the corresponding
different variational formulas given by [5, (8.11) and (8.12), p. 466] and [5, p. 471]).

It is known (see [5, Lemma 8.2], [12, p. 18], and [23, Lemma 3.2]) that hε → hK and
̂hε → hK uniformly on Sn−1 as ε → 0 and hence, by [22, Lemma 7.5.2], both [hε] and [̂hε]
converge to K ∈ Kn

(o) as ε → 0. Part (ii) of the following lemma is proved in [12, (5.38)] for
the case when ϕ ∈ I ∪ D, but the same proof applies to the more general result stated.

Lemma 2.1 Let K , L ∈ Kn
(o).

(i) ([5, Lemma 8.4], [23, Lemma 5.2].) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

lim
ε→0+

hε(u) − hK (u)

ε
= hK (u)

(ϕ1)
′
l(1)

ϕ2

(

hL(u)

hK (u)

)

(9)

uniformly on Sn−1. For ϕ1, ϕ2 ∈ D, (9) holds when (ϕ1)
′
r (1) < 0, with (ϕ1)

′
l(1) replaced

by (ϕ1)
′
r (1).

(ii) (cf. [12, (5.38)].) Let a ∈ R ∪ {−∞}. If ϕ ∈ Ja and ϕ′ is continuous and nonzero on
(0,∞), then for g ∈ C(Sn−1),

lim
ε→0

̂hε(u) − hK (u)

ε
= g(u)

ϕ′ (hK (u))

uniformly on Sn−1, wherêhε is defined by (7) with f0 = hK .



Analogous results hold for radial functions of star bodies. Let K , L ∈ Sn
c+. For ε > 0,

and either ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D, define ρε ∈ C+(Sn−1) (implicitly and uniquely) by

ϕ1

(

ρK (u)

ρε(u)

)

+ εϕ2

(

ρL(u)

ρε(u)

)

= 1 for u ∈ Sn−1. (10)

Then ρε is the radial function of the radial Orlicz linear combination K˜+ϕ,εL of K and L
(see [6, (22), p. 822]).

Let a ∈ R∪{−∞}. Forϕ ∈ Ja , g ∈ C(Sn−1), and ε ∈ R close to 0, define ρ̂ε ∈ C+(Sn−1)

by (7)with f0 = ρK . The definitions of both ρε and ρ̂ε can be extended to K , L ∈ Sn+ (or even
L ∈ Sn), but we shall mainly work with star bodies and hence focus on Sn

c+. It is known (see
[6, Lemma 5.1], [12, p. 18] (with h replaced by ρ), and [26, Lemma 3.5]) that ρε → ρK and
ρ̂ε → ρK uniformly on Sn−1 as ε → 0. From this and the equivalence between convergence
in the Hausdorff and radial metrics for sets in Kn

(o), one sees that, for each K ∈ Kn
(o), both〈ρε〉 and 〈ρ̂ε〉 converge to K in either metric.

Lemma 2.2 Let K , L ∈ Sn
c+.

(i) ([6, Lemma 5.3]; see also [26, Lemma 4.1].) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

lim
ε→0+

ρε(u) − ρK (u)

ε
= ρK (u)

(ϕ1)
′
l(1)

ϕ2

(

ρL(u)

ρK (u)

)

(11)

uniformly on Sn−1. For ϕ1, ϕ2 ∈ D, (11) holds when (ϕ1)
′
r (1) > 0, with (ϕ1)

′
l(1)

replaced by (ϕ1)
′
r (1).

(ii) (cf. [12, (5.38)].) Let a ∈ R ∪ {−∞}. If ϕ ∈ Ja and ϕ′ is continuous and nonzero on
(0,∞), then for g ∈ C(Sn−1),

lim
ε→0

ρ̂ε(u) − ρK (u)

ε
= g(u)

ϕ′ (ρK (u))
(12)

uniformly on Sn−1, where ρ̂ε is defined by (7) with f0 = ρK .

2.2 Maps related to a convex body

We recall some terminology and facts from [13, Sect. 2.2]. Let K ∈ Kn
(o). Define

ννK (E) = {u ∈ Sn−1 : x ∈ H(K , u) for some x ∈ E}
for E ⊂ ∂K ,

xxxK (E) = {x ∈ ∂K : x ∈ H(K , u) for some u ∈ E}
for E ⊂ Sn−1, and

αK (E) = νK ({ρK (u)u ∈ ∂K : u ∈ E})
for E ⊂ Sn−1. Let σK ⊂ ∂K , ηK ⊂ Sn−1, and ωK ⊂ Sn−1 be the sets where ννK ({x}),
xxK ({u}), and ααK ({u}), respectively, have two or more elements. Then

Hn−1(σK ) = Hn−1(ηK ) = Hn−1(ωK ) = 0. (13)

Elements of Sn−1\ηK are called regular normal vectors of K and reg K = ∂K\σK is the
set of regular boundary points of K . We write νK (x), xK (u), and αK (u) instead of νννK ({x}),
xxxK ({u}), and αααK ({u}) if x ∈ reg K , u ∈ Sn−1\ηK , and u ∈ Sn−1\ωK , respectively.



Next, we define

αα∗
K (E) = {x/|x | : x ∈ ∂K ∩ H(K , u) for some u ∈ E} = {x/|x | : x ∈ xxK (E)}

for E ⊂ Sn−1. In particular, one can define a continuous map α∗
K (u) = xK (u)/|xK (u)| for

u ∈ Sn−1\ηK . For E ⊂ Sn−1, we have αα∗
K (E) = ααK ∗(E). Moreover, for Hn−1-almost all

u ∈ Sn−1,
α∗
K (u) = αK ∗(u) (14)

and
u ∈ αα∗

K (E) if and only if αK (u) ∈ E . (15)

3 General dual volumes and curvaturemeasures

Let G : (0,∞) × Sn−1 → (0,∞) be continuous. (Remark 5.4 addresses the possibility of
allowing G : (0,∞) × Sn−1 → R.) For K ∈ Sn+, define the general dual volume ˜VG(K ) of
K by

˜VG(K ) =
∫

Sn−1
G(ρK (u), u) du. (16)

Our approach will be to obtain results for this rather general set function that yield geomet-
rically interesting consequences for particular functions G.

Let φ : Rn\{o} → (0,∞) be a continuous function. One special case of interest is when
G = �, where

�(t, u) =
∫ ∞

t
φ(ru)rn−1 dr (17)

for t > 0 and u ∈ Sn−1. Then we define V φ(K ) = ˜V�(K ), so that

V φ(K ) =
∫

Sn−1
�(ρK (u), u) du

=
∫

Sn−1

∫ ∞

ρK (u)

φ(ru)rn−1 dr du =
∫

Rn\K
φ(x) dx, (18)

where the integral may be infinite. Similarly, taking G = �, where

�(t, u) =
∫ t

0
φ(ru)rn−1 dr

for t > 0 and u ∈ Sn−1, we define V φ(K ) = ˜V�(K ), whence

V φ(K ) =
∫

Sn−1
�(ρK (u), u) du =

∫

K
φ(x) dx, (19)

where again the integral may be infinite. We refer to both V φ(K ) and V φ(K ) as a general
dual Orlicz volume of K ∈ Sn . Indeed, if q �= 0 and φ(x) = (|q|/n)|x |q−n , then

˜Vq(K ) = 1

n

∫

Sn−1
ρK (u)q du =

{

V φ(K ), if q < 0,

V φ(K ), if q > 0,

is the qth dual volume of K ; see [3, p. 410]. In particular, when q = n, we have  V φ (K ) = 
Vn(K ), the volume of K . More generally, if  φ(x) = (|q|/n)|x |q−nρQ(x/|x |)n−q , where  
q �= 0 and  Q ∈ Sn , then



˜Vq(K , Q) = 1

n

∫

Sn−1
ρK (u)qρQ(u)n−q du =

{

V φ(K ), if q < 0,

V φ(K ), if q > 0,
(20)

is the qth dual mixed volume of K and Q; see [3, p. 410].
Other special cases of ˜VG(K ) of interest, the general Orlicz dual mixed volumes

˜Vφ,ϕ(K , L) and V̆φ,ϕ(K , g), are given in (44) and (45).
Next, we introduce a new general dual Orlicz curvature measure.

Definition 3.1 Let K ∈ Kn
(o), let ψ : (0,∞) → (0,∞) be continuous, and let Gt (t, u) =

∂G(t, u)/∂t be such that u �→ Gt (ρK (u), u) is integrable on Sn−1. Define the finite signed
Borel measure ˜CG,ψ (K , ·) on Sn−1 by

˜CG,ψ (K , E) = 1

n

∫

αα∗
K (E)

ρK (u)Gt (ρK (u), u)

ψ(hK (αK (u)))
du (21)

for each Borel set E ⊂ Sn−1. If ψ ≡ 1, we often write ˜CG(K , ·) instead of ˜CG,ψ (K , ·).

To see that ˜CG,ψ (K , ·) is indeed a finite signed Borel measure on Sn−1, note firstly
that ˜CG,ψ (K ,∅) = 0. Since K ∈ Kn

(o) and u �→ Gt (ρK (u), u) is integrable, ˜CG,ψ (K , ·)
is finite. Let Ei ⊂ Sn−1, i ∈ N, be disjoint Borel sets. By [13, Lemmas 2.3 and 2.4],
αα∗
K (∪i Ei ) = ∪iααα

∗
K (Ei ) and the intersection of any two of these sets has Hn−1-measure

zero. The dominated convergence theorem then implies that

˜CG,ψ (K ,∪i Ei ) = 1

n

∫

∪iααα
∗
K (Ei )

ρK (u)Gt (ρK (u), u)

ψ(hK (αK (u)))
du

= 1

n

∞
∑

i=1

∫

αα∗
K (Ei )

ρK (u)Gt (ρK (u), u)

ψ(hK (αK (u)))
du =

∞
∑

i=1

˜CG,ψ (K , Ei ),

so ˜CG,ψ (K , ·) is countably additive.
Integrals with respect to ˜CG,ψ (K , ·) can be calculated as follows. For any bounded Borel

function g : Sn−1 → R, we have

∫

Sn−1
g(u) d˜CG,ψ (K , u) = 1

n

∫

Sn−1
g(αK (u))

ρK (u)Gt (ρK (u), u)

ψ(hK (αK (u)))
du (22)

= 1

n

∫

∂K
g(νK (x))

〈x, νK (x)〉
ψ(〈x, νK (x)〉) |x |1−n Gt (|x |, x̄) dx,

(23)

where x̄ = x/|x |. (Recall our convention that integration on ∂K is denoted by dx =
dHn−1(x).) Relation (22) follows immediately from (15), and (23) follows from the fact
that the bi-Lipschitz radial map r : ∂K → Sn−1, given by r(x) = x/|x |, has Jacobian
Jr(x) = 〈x, νK (x)〉|x |−n for all regular boundary points, and hence for Hn−1-almost all
x ∈ ∂K .

If K is strictly convex, then the gradient ∇hK (u) of hK at u ∈ Sn−1 equals the unique
xK (u) ∈ ∂K with outer unit normal vector u, and ∇hK (νK (x)) = x for Hn−1-almost all



x ∈ ∂K . Using this and [21, Lemma 2.10], (23) yields
∫

Sn−1
g(u) d˜CG,ψ (K , u)

= 1

n

∫

Sn−1
g(u)

hK (u)

ψ(hK (u))
|∇hK (u)|1−n Gt

(

|∇hK (u)|, ∇hK (u)

|∇hK (u)|
)

dS(K , u).

(24)

The following result could be proved in the same way as [21, Lemma 5.5], using Weil’s
Approximation Lemma. Here we provide an argument which avoids the use of this lemma.

Theorem 3.2 Let K ∈ Kn
(o), and let G, ψ be as in Definition 3.1. Then the measure-valued

map K �→ ˜CG,ψ (K , ·) is a valuation on Kn
(o).

Proof Let K , L ∈ Kn
(o) be such that K ∪ L ∈ Kn

(o). It suffices to show that for any bounded

Borel function g : Sn−1 → R, we have

I (K ∩ L) + I (K ∪ L) = I (K ) + I (L), (25)

where I (M) = ∫

Sn−1 g(u) d˜CG,ψ (M, u) for M ∈ Kn
(o). The sets K ∩ L , K ∪ L , K , and L

can each be partitioned into three disjoint sets, as follows:

∂(K ∩ L) = (∂K ∩ int L) ∪ (∂L ∩ int K ) ∪ (∂K ∩ ∂L), (26)

∂(K ∪ L) = (∂K\L) ∪ (∂L\K ) ∪ (∂K ∩ ∂L), (27)

∂K = (∂K ∩ int L) ∪ (∂K\L) ∪ (∂K ∩ ∂L), (28)

∂L = (∂L ∩ int K ) ∪ (∂L\K ) ∪ (∂K ∩ ∂L). (29)

Let x̄ = x/|x |. For Hn−1-almost all x ∈ ∂(K ∩ L), we have

x ∈ ∂K ∩ int L ⇒ νK∩L (x) = νK (x) and ρK∩L (x̄) = ρK (x̄), (30)

x ∈ ∂L ∩ int K ⇒ νK∩L (x) = νL (x) and ρK∩L (x̄) = ρL(x̄), (31)

x ∈ ∂K ∩ ∂L ⇒ νK∩L (x) = νK (x) = νL (x) and ρK∩L (x̄) = ρK (x̄) = ρL(x̄),
(32)

where the first set of equations in (32) hold for x ∈ reg (K ∩ L) ∩ reg K ∩ reg L since
K ∩ L ⊂ K , L . Also, for Hn−1-almost all x ∈ ∂(K ∪ L), we have

x ∈ ∂K\L ⇒ νK∪L (x) = νK (x) and ρK∪L (x̄) = ρK (x̄), (33)

x ∈ ∂L\K ⇒ νK∪L (x) = νL(x) and ρK∪L (x̄) = ρL(x̄), (34)

x ∈ ∂K ∩ ∂L ⇒ νK∪L (x) = νK (x) = νL(x) and ρK∪L (x̄) = ρK (x̄) = ρL(x̄), (35)

where the first set of equations in (35) hold for x ∈ reg (K ∪ L) ∩ reg K ∩ reg L since
K , L ⊂ K ∪ L . Now (25) follows easily from (23), by first decomposing the integrations
over ∂(K ∩ L) and ∂(K ∪ L) into six contributions via (26) and (27), using (30–35), and
then recombining these contributions via (28) and (29). ��

Some particular cases of (21) are worthy of mention. Firstly, with G = � and general ψ ,
we prefer to write ˜Cφ,ψ(K , E) instead of ˜C�,ψ(K , E). Then we have

˜Cφ,ψ(K , E) = 1

n

∫

αα∗
K (E)

φ(ρK (u)u)ρK (u)n

ψ(hK (αK (u)))
du (36)



and by specializing (22) and (23) we get
∫

Sn−1
g(u) d˜Cφ,ψ(K , u) = 1

n

∫

Sn−1
g(νK (ρK (u)u))

φ(ρK (u)u)ρK (u)n

ψ(hK (αK (u)))
du

= 1

n

∫

∂K
g(νK (x))

〈x, νK (x)〉
ψ(〈x, νK (x)〉)φ(x) dx

for any bounded Borel function g : Sn−1 → R. Here we used

Gt (ρK (u), u) = φ(ρK (u)u)ρK (u)n−1. (37)

If we also choose ψ = 1 and write ˜Cφ(K , E) instead of ˜C�(K , E), we obtain

˜Cφ(K , E) = 1

n

∫

α∗
K (E)

φ(ρK (u)u)ρK (u)n du,

the general dual Orlicz curvature measure introduced in [24], and in particular we see that
∫

Sn−1
g(u) d˜Cφ(K , u) = 1

n

∫

Sn−1
g(αK (u))φ(ρK (u)u)ρK (u)n du

= 1

n

∫

∂K
g(νK (x)) φ(x) 〈x, νK (x)〉 dx,

as in [24, Lemma 3.1].
Note that when G = � is given by (17), we have ˜VG(K ) = V φ(K ) as in (18), in which

case Gt (ρK (u), u) = −φ(ρK (u)u)ρK (u)n−1 and hence ˜C�,ψ(K , E) = −˜Cφ,ψ(K , E).
Comparing (21) and (22), and using (37), we see that

∫

Sn−1

g(u)

ψ(hK (u))
d˜Cφ(K , u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
∫

Sn−1
g(u) d˜C�,ψ(K , u) (38a)

∫

Sn−1
g(u) d˜C�,ψ(K , u). (38b)

Taking φ(x) = |x |q−nρQ(x/|x |)n−q , for some Q ∈ Sn
c+ and q ∈ R, and ψ(t) = t p , p ∈ R,

from (36) we get ˜Cφ,ψ(K , E) = ˜Cp,q(K , Q, E), where

˜Cp,q(K , Q, E) = 1

n

∫

αα∗
K (E)

hK (αK (u))−p ρK (u)q ρQ(u)n−q du

is the (p, q)-dual curvature measure of K relative to Q introduced in [21, Definition 4.2].
The formula [21, (5.1), p. 114] or the preceding discussion show that for any bounded Borel
function g : Sn−1 → R, we have

∫

Sn−1
g(u) d˜Cp,q(K , Q, u) = 1

n

∫

Sn−1
g(αK (u)) hK (αK (u))−p ρK (u)q ρQ(u)n−q du.

(39)

4 General variational formulas for radial Orlicz linear combinations

Our main result in this section is the following variational formula for ˜VG , where Gt (t, u) =
∂G(t, u)/∂t .

Theorem 4.1 Let G and Gt be continuous on (0,∞) × Sn−1 and let K , L ∈ Sn
c+.



(i) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

lim
ε→0+

˜VG(Kε) − ˜VG(K )

ε
= 1

(ϕ1)
′
l(1)

∫

Sn−1
ϕ2

(

ρL(u)

ρK (u)

)

ρK (u)Gt (ρK (u), u) du,

(40)
where Kε = K˜+ϕ,εL ∈ Sn

c+ has radial function ρε given by (10). For ϕ1, ϕ2 ∈ D, (40)
holds when (ϕ1)

′
r (1) < 0, with (ϕ1)

′
l(1) replaced by (ϕ1)

′
r (1).

(ii) Let a ∈ R ∪ {−∞}. If ϕ ∈ Ja and ϕ′ is continuous and nonzero on (0,∞), then for
g ∈ C(Sn−1),

lim
ε→0

˜VG(̂Kε) − ˜VG(K )

ε
=

∫

Sn−1

g(u)Gt (ρK (u), u)

ϕ′ (ρK (u))
du,

where ̂Kε ∈ Sn
c+ has radial function ρ̂ε given by (7) with f0 = ρK .

Proof (i) By (16),

lim
ε→0+

˜VG(Kε) − ˜VG(K )

ε
= lim

ε→0+

∫

Sn−1

G(ρε(u), u) − G(ρK (u), u)

ε
du. (41)

Also, by (11),

lim
ε→0+

G(ρε(u), u) − G(ρK (u), u)

ε
= Gt (ρK (u), u) lim

ε→0+
ρε(u) − ρK (u)

ε

= 1

(ϕ1)
′
l(1)

ϕ2

(

ρL(u)

ρK (u)

)

ρK (u)Gt (ρK (u), u),

where the previous limit is uniform on Sn−1. Therefore (40) will follow if we show that
the limit and integral in (41) can be interchanged. To this end, assume that ϕ1, ϕ2 ∈ I and
(ϕ1)

′
l(1) > 0; the proof when ϕ1, ϕ2 ∈ D and (ϕ1)

′
r (1) < 0 is similar. If ρ1(u) = ρε(u)

∣

∣

ε=1,
it is easy to see from (10) that ρK ≤ ρε ≤ ρ1 on Sn−1 when ε ∈ (0, 1). SinceGt is continuous
on (0,∞) × Sn−1,

sup{|Gt (t, u)| : ρK (u) ≤ t ≤ ρ1(u), u ∈ Sn−1} = m1 < ∞.

By the mean value theorem and Lemma 2.2(i),
∣

∣

∣

∣

G(ρε(u), u) − G(ρK (u), u)

ε

∣

∣

∣

∣

≤ m2

for 0 < ε < 1. Thus we may apply the dominated convergence theorem in (41) to complete
the proof.
(ii) The argument is very similar to that for (i) above. Since

lim
ε→0

˜VG(̂Kε) − ˜VG(K )

ε
= lim

ε→0

∫

Sn−1

G(ρ̂ε(u), u) − G(ρK (u), u)

ε
du (42)

we can use (12) instead of (11) and need only justify interchanging the limit and integral in
(42). To see that this is valid, suppose that ϕ ∈ Ja is strictly increasing; the proof is similar
when ϕ is strictly decreasing. Then there exists ε0 > 0 such that for ε ∈ (−ε0, ε0) and
u ∈ Sn−1, we have

0 < b1(u) = ϕ−1 (ϕ (ρK (u)) − ε0m3) ≤ ρ̂ε(u)

≤ ϕ−1 (ϕ (ρK (u)) + ε0m3) = b2(u) < ∞,



wherem3 = supu∈Sn−1 |g(u)| < ∞ due to g ∈ C(Sn−1). SinceGt is continuous on (0,∞)×
Sn−1,

sup{|Gt (t, u)| : b1(u) ≤ t ≤ b2(u), u ∈ Sn−1} = m4 < ∞.

By the mean value theorem and Lemma 2.2(ii),
∣

∣

∣

∣

G(ρ̂ε(u), u) − G(ρK (u), u)

ε

∣

∣

∣

∣

≤ m5

for −ε0 < ε < ε0. Thus we may apply the dominated convergence theorem in (42) to
complete the proof.

Recall that V φ and V φ are defined by (18) and (19), respectively. Note that when G = �

or �, Gt (t, u) = ±φ(tu)tn−1 is continuous on (0,∞) × Sn−1 because φ is assumed to be
continuous. The following result is then a direct consequence of the previous theorem.

Corollary 4.2 Let φ : Rn\{o} → (0,∞) be a continuous function and let K , L ∈ Sn
c+.

(i) If ϕ1, ϕ2 ∈ I and (ϕ1)
′
l(1) > 0, then

1

(ϕ1)
′
l (1)

∫

Sn−1
φ(ρK (u)u) ϕ2

(

ρL (u)

ρK (u)

)

ρK (u)n du =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

lim
ε→0+

V φ(K ) − V φ(ρε)

ε
(43a)

lim
ε→0+

V φ(ρε) − V φ(K )

ε
, (43b)

where ρε is given by (10), provided � (or �, respectively) is continuous. For ϕ1, ϕ2 ∈ D,
(43a) and (43b) hold when (ϕ1)

′
r (1) < 0, with (ϕ1)

′
l(1) replaced by (ϕ1)

′
r (1).

(ii) Let a ∈ R ∪ {−∞}. If ϕ ∈ Ja and ϕ′ is continuous and nonzero on (0,∞), then for all
g ∈ C(Sn−1),

∫

Sn−1

φ(ρK (u)u) ρK (u)n−1

ϕ′ (ρK (u))
g(u) du =

{

limε→0
V φ(K )−V φ(ρ̂ε)

ε

limε→0
V φ(ρ̂ε)−V φ(K )

ε
,

where ρ̂ε is given by (7) with f0 = ρK .

Formulas (43a) and (43b) motivate the following definition of the general dual Orlicz
mixed volume ˜Vφ,ϕ(K , L). For K , L ∈ Sn

c+, continuous φ : Rn\{o} → (0,∞), and contin-
uous ϕ : (0,∞) → (0,∞), let

˜Vφ,ϕ(K , L) = 1

n

∫

Sn−1
φ(ρK (u)u) ϕ

(

ρL(u)

ρK (u)

)

ρK (u)n du. (44)

Then (43a) and (43b) become

˜Vφ,ϕ2(K , L) =
{

(ϕ1)
′
l (1)
n limε→0+ V φ(K )−V φ(ρε)

ε
(ϕ1)

′
l (1)
n limε→0+

V φ(ρε)−V φ(K )

ε
.

The special case of (43a) and (43b) when φ ≡ 1 was proved in [6, Theorem 5.4] (see also
[26, Theorem 4.1]) and the corresponding quantity ˜Vφ,ϕ(K , L) was called the Orlicz dual
mixed volume.

On the other hand, Corollary 4.2(ii) suggests an alternative definition of the general dual
mixed volume. For all K ∈ Sn

c+, g ∈ C(Sn−1), continuous φ : R
n\{o} → (0,∞), and

continuous ϕ : (0,∞) → (0,∞), define

V̆φ,ϕ(K , g) = 1

n

∫

Sn−1
φ(ρK (u)u) ϕ(ρK (u)) g(u) du. (45)



Then the formulas in Corollary 4.2(ii) can be rewritten as

V̆φ,ϕ0(K , g) =

⎧

⎪

⎨

⎪

⎩

lim
ε→0

V φ(K )−V φ(ρ̂ε)

ε

lim
ε→0

V φ(ρ̂ε)−V φ(K )

ε
,

(46)

where ϕ0(t) = ntn−1/ϕ′(t). In particular, one can define a dual Orlicz mixed volume of K
and L by letting g = ψ(ρL ), where ψ : (0,∞) → (0,∞) is continuous and L ∈ Sn

c+,
namely

V̆φ,ϕ,ψ(K , L) = 1

n

∫

Sn−1
φ(ρK (u)u) ϕ(ρK (u)) ψ(ρL(u)) du.

Note that both ˜Vφ,ϕ(K , L) and V̆φ,ϕ(K , g) are special cases of ˜VG(K ), corresponding to
setting

G(t, u) = 1

n
φ(tu) ϕ

(

ρL(u)

t

)

tn

or

G(t, u) = 1

n
φ(tu) ϕ(t) g(u),

respectively.

5 General variational formulas for Orlicz linear combinations

We shall assume throughout the section that 	 ⊂ Sn−1 is a closed set not contained in any
closed hemisphere of Sn−1.

Let h0, ρ0 ∈ C+(	) and let hε and ρε be defined by (7) with f0 = h0 and f0 = ρ0,
respectively. In Lemma 2.2(ii), we may replace ρK by h0 or ρ0 to conclude that hε → h0 and
ρε → ρ0 uniformly on 	. (In Sect. 2, hε and ρε were denoted bŷhε and ρ̂ε , but hereafter we
omit the hats for ease of notation.) Hence [hε] → [h0] and 〈ρε〉 → 〈ρ0〉 as ε → 0. However,
in order to get a variational formula for the general dual Orlicz volume, we shall need the
following lemma. It was proved for ϕ(t) = log t in [13, Lemmas 4.1 and 4.2] and was noted
for t p , p �= 0, in the proof of [21, Theorem 6.5]. Recall from Sect. 2.2 that Sn−1\η〈ρ0〉 is the
set of regular normal vectors of 〈ρ0〉 ∈ Kn

(o).

Lemma 5.1 Let g ∈ C(	), let ρ0 ∈ C+(	), and let a ∈ R ∪ {−∞}. Suppose that ϕ ∈ Ja is
continuously differentiable and such that ϕ′ is nonzero on (0,∞). For v ∈ Sn−1\η〈ρ0〉,

lim
ε→0

log h〈ρε〉(v) − log h〈ρ0〉(v)

ε
= g(α〈ρ0〉∗(v))

ρ0(α〈ρ0〉∗(v)) ϕ′(ρ0(α〈ρ0〉∗(v)))
, (47)

(48)

where ρε is defined by (7) with f0 = ρ0. Moreover, there exist δ, m0 > 0 such that

| log h〈ρε 〉(v) − log h〈ρ0〉(v)| ≤ m0|ε|
for ε ∈ (−δ, δ) and v ∈ Sn−1.



Proof We shall assume that ϕ ∈ Ja is strictly increasing, since the case when it is strictly
decreasing is similar. Since g ∈ C(	), we havem1 = supu∈	 |g(u)| < ∞. Then there exists
δ0 > 0 such that for ε ∈ [−δ0, δ0] and u ∈ 	,

0 < ϕ−1 (ϕ (ρ0(u)) − δ0m1) ≤ ρε(u) ≤ ϕ−1 (ϕ (ρ0(u)) + δ0m1)

and infu∈	 |ϕ′(ρε(u))| > 0. For u ∈ 	 and ε ∈ (−δ0, δ0), let

Hu(ε) = log ρε(u) = log
(

ϕ−1(ϕ(ρ0(u)) + ε g(u))
)

,

from which we obtain

H ′
u(ε) = g(u)

ρε(u)ϕ′(ρε(u))
.

By the mean value theorem, for all u ∈ 	 and ε ∈ (−δ0, δ0), we get

Hu(ε) − Hu(0) = ε H ′
u(θ ε),

where θ = θ(u, ε) ∈ (0, 1). In other words,

log ρε(u) − log ρ0(u) = ε
g(u)

ρθ(u,ε)ε(u) ϕ′(ρθ(u,ε)ε(u))
(49)

for u ∈ 	 and ε ∈ (−δ0, δ0).
Let v ∈ Sn−1\η〈ρ0〉. If ε ∈ (−δ0, δ0), there is a uε ∈ 	 such that for u ∈ 	,

h〈ρε〉(v) = 〈uε, v〉ρε(uε), h〈ρε〉(v) ≥ 〈u, v〉ρε(u), (50)

h〈ρ0〉(v) ≥ 〈uε, v〉ρ〈ρ0〉(uε), and ρ〈ρ0〉(uε) ≥ ρ0(uε).

Moreover, 〈uε, v〉 > 0 for ε ∈ (−δ0, δ0). Hence, using the equation in (50), the inequality in
(50) with u = uε, and (49) for u = uε, we get

log h〈ρε〉(v) − log h〈ρ0〉(v) ≤ log ρε(uε) − log ρ0(uε)

= ε
g(uε)

ρθ(uε,ε)ε(uε) ϕ′(ρθ(uε,ε)ε(uε))
. (51)

From the equation in (50) with ε = 0, the inequality in (50) with u = u0, and from (49) with
u = u0, we obtain

log h〈ρε〉(v) − log h〈ρ0〉(v) = log h〈ρε〉(v) − log ρ0(u0) − log〈u0, v〉
≥ log ρε(u0) − log ρ0(u0)

= ε
g(u0)

ρθ(u0,ε)ε(u0) ϕ′(ρθ(u0,ε)ε(u0))
. (52)

Exactly as in [13, (4.7), (4.8)], we have u0 = α∗〈ρ0〉(v) = α〈ρ0〉∗(v) and limε→0 uε = u0. Since
g is continuous and uε → u0, we get g(uε) → g(u0) as ε → 0. From θ(·) ∈ (0, 1) it follows
that θ(·)ε → 0 as ε → 0. Moreover, ρθ(·)ε(uε) = ϕ−1(ϕ(ρ0(uε)) + θ(·)εg(uε)) → ρ0(u0)
and, similarly, ρθ(·)ε(u0) → ρ0(u0) as ε → 0. Thus we conclude that

lim
ε→0

log h〈ρε〉(v) − log h〈ρ0〉(v)

ε
= g(u0)

ρ0(u0) ϕ′(ρ0(u0))
.

Substituting u0 = α∗〈ρ0〉(v), we obtain (47).



If δ0 is sufficiently small, then (51) and (52) imply that if v ∈ Sn−1\η〈ρ0〉 then

∣

∣log h〈ρε〉(v) − log h〈ρ0〉(v)
∣

∣ ≤ |ε| sup
u∈	, θ∈[0,1]

∣

∣

∣

∣

g(u)

ρθε(u) ϕ′(ρθε(u))

∣

∣

∣

∣

= m2|ε|,

say, for some m2 < ∞. From this, we see that (48) holds for v ∈ Sn−1\η〈ρ0〉 and hence, by
(13) and the continuity of support functions, for v ∈ Sn−1. ��

Lemma 5.2 Let g ∈ C(	), let h0 ∈ C+(	), and let a ∈ R ∪ {−∞}. Suppose that ϕ ∈ Ja is
continuously differentiable and such that ϕ′ is nonzero on (0,∞). If G and Gt are continuous
on (0,∞) × Sn−1, then

lim
ε→0

˜VG([hε]) − ˜VG([h0])
ε

=
∫

Sn−1\η〈κ0〉
J (0, u)

κ0(α〈κ0〉∗(u)) g(α〈κ0〉∗(u))

ϕ′(κ0(α〈κ0〉∗(u))−1)
du, (53)

where hε is given by (7) with f0 = h0, and for ε sufficiently close to 0, κε = 1/hε and

J (ε, u) = ρ〈κε〉∗(u)Gt (ρ〈κε〉∗(u), u). (54)

Proof Let ϕ(t) = ϕ(1/t) for all t ∈ (0,∞). Clearly ϕ ∈ Ja . Also, for t ∈ (0,∞), we have
ϕ′(t) = −t−2ϕ′(1/t). Hence ϕ satisfies the conditions for ϕ in Lemma 5.1. It is easy to check
that

κε(u) = ϕ−1 (ϕ (κ0(u)) + εg(u)) ,

that is, κε is given by (7) when ϕ and f0 are replaced by ϕ and κ0. By (47), with ρε and ϕ

replaced by κε and ϕ, respectively, for sufficiently small |ε|, we obtain, for u ∈ Sn−1\η〈κ0〉,

lim
ε→0

log ρ〈κε〉∗(u) − log ρ〈κ0〉∗(u)

ε
= − lim

ε→0

log h〈κε〉(u) − log h〈κ0〉(u)

ε

= − g(α〈κ0〉∗(u))

κ0(α〈κ0〉∗(u)) ϕ′(κ0(α〈κ0〉∗(u)))

= κ0(α〈κ0〉∗(u)) g(α〈κ0〉∗(u))

ϕ′(κ0(α〈κ0〉∗(u))−1)
. (55)

Moreover, comparing (48), there exist δ,m0 > 0 such that

| log h〈κε〉(u) − log h〈κ0〉(u)| ≤ m0|ε| (56)

for ε ∈ (−δ, δ) and u ∈ Sn−1.
Note that

dG(ρ〈κε〉∗(u), u)

dε
= Gt (ρ〈κε〉∗(u), u)

d

dε
ρ〈κε〉∗(u) = J (ε, u)

d

dε
log ρ〈κε〉∗(u). (57)

By our assumptions, there exists 0 < δ1 ≤ δ and m1 > 0 such that |J (ε, u)| < m1 for
ε ∈ (−δ1, δ1) and u ∈ Sn−1. It follows from (56), (57), and the mean value theorem that, for
ε ∈ (−δ1, δ1) and u ∈ Sn−1,

∣

∣

∣

∣

G(ρ〈κε〉∗(u), u) − G(ρ〈κ0〉∗(u), u)

ε

∣

∣

∣

∣

< m0m1.



From (6), we know that [hε] = 〈κε〉∗, so 〈κε〉∗ → 〈κ0〉∗ as ε → 0. By the dominated
convergence theorem, (55), and (57), we obtain

lim
ε→0

˜VG([hε]) − ˜VG([h0])
ε

= lim
ε→0

∫

Sn−1

G(ρ〈κε〉∗(u), u) − G(ρ〈κ0〉∗(u), u)

ε
du

=
∫

Sn−1
lim
ε→0

G(ρ〈κε〉∗(u), u) − G(ρ〈κ0〉∗(u), u)

ε
du

=
∫

Sn−1\η〈κ0〉
J (0, u)

κ0(α〈κ0〉∗(u)) g(α〈κ0〉∗(u))

ϕ′(κ0(α〈κ0〉∗(u))−1)
du,

where we have used the fact that Hn−1(η〈κ0〉) = 0 by (13). ��
The next theorem will be used in the proof of Theorem 6.4. It generalizes previous results

of this type, which originated with [13, Theorem 4.5]; see the discussion after Corollary 5.5.

Theorem 5.3 Let g ∈ C(	), let h0 ∈ C+(	), and let a ∈ R∪{−∞}. Suppose that ϕ ∈ Ja is
continuously differentiable and such that ϕ′ is nonzero on (0,∞). If G and Gt are continuous
on (0,∞) × Sn−1, then

lim
ε→0

˜VG([hε]) − ˜VG([h0])
ε

= n
∫

	

g(u) d˜CG,ψ ([h0], u), (58)

where hε is given by (7) with f0 = h0, and ψ(t) = tϕ′(t).

Proof It follows from [13, p. 364] that there exists a continuous function g : Sn−1 → R,
such that, for u ∈ Sn−1\η〈κ0〉,

g(α〈κ0〉∗(u)) = (g1	)(α〈κ0〉∗(u)).

Using this, κ0 = 1/h0, the relation 〈κ0〉∗ = [h0] given by (6), (14), (54) with ε = 0,
H(η〈κ0〉) = 0 from (13), and (22), the formula (53) becomes

lim
ε→0

˜VG([hε]) − ˜VG([h0])
ε

=
∫

Sn−1\η〈κ0〉

(g1	)(α[h0](u)) ρ[h0](u)Gt (ρ[h0](u), u)

h0(α[h0](u)) ϕ′(h0(α[h0](u)))
du

=
∫

Sn−1

(g1	)(α[h0](u)) ρ[h0](u)Gt (ρ[h0](u), u)

ψ(h0(α[h0](u)))
du

= n
∫

	

g(u) d˜CG,ψ ([h0], u),

where we also used the fact that

h[h0](α[h0](u)) = h0(α[h0](u)) for Hn−1-almost all u ∈ Sn−1.

To see this, note that forHn−1-almost all u ∈ Sn−1, we have α[h0](u) = ν[h0](ρ[h0](u)u) and
ρ[h0](u)u is a regular boundary point of [h0]. The rest is done by the proof of Lemma 7.5.1 in
[22, p. 411], which shows that if x ∈ ∂[h0] is a regular boundary point, then h[h0](ν[h0](x)) =
h0(ν[h0](x)). ��
Remark 5.4 It is possible to extend the definition (16) of the general dual volume ˜VG(K ) by
allowing continuous functions G : (0,∞)× Sn−1 → R. In this case, of course, ˜VG(K ) may
be negative, but the extended definition has the advantage of including fundamental concepts
such as the dual entropy ˜E(K ) of K . This is defined by

˜E(K ) = 1

n

∫

Sn−1
log ρK (u) du,



corresponding to taking G(t, u) = (1/n) log t in (16). Definition 3.1 of the measure ˜CG,ψ

and the integral formulas (22) and (23) remain valid for continuous functions G : (0,∞) ×
Sn−1 → R, as do Theorems 3.2, 4.1, and 5.3, as well as Theorem 5.6 below.

Theorem 5.3 and its extended form indicated in Remark 5.4 may be used to retrieve the
formulas in [21, Theorem 6.5], which in turn generalize those in [13, Corollary 4.8]. To see
this, let K , L ∈ Kn

(o) and let ϕ(t) = t p , p �= 0. Setting h0 = hK and g = h p
L , we see from

(7) with f0 = h0 that [hε] = K̂+p ε · L , the L p linear combination of K and L . Taking
G(t, u) = (1/n)tq ρQ(u)n−q , for some Q ∈ Sn

c+ and q �= 0, where t > 0 and u ∈ Sn−1, we
have ˜VG(K ) = ˜Vq(K , Q) as in (20). With 	 = Sn−1 and ψ(t) = tϕ′(t) = pt p , and using
(22) and (39), we obtain

n
∫

	

g(u) d˜CG,ψ ([h0], u) = n
∫

Sn−1
hL(u)p d˜CG,ψ (K , u)

= q

np

∫

Sn−1

(

hL(αK (u))

hK (αK (u))

)p

ρK (u)qρQ(u)n−q du

= q

p

∫

Sn−1
hL(u)p d˜Cp,q(K , Q, u).

Thus (58) becomes

lim
ε→0

˜Vq(K̂+p ε · L, Q) − ˜Vq(K , Q)

ε
= q

p

∫

Sn−1
hL(u)p d˜Cp,q(K , Q, u),

the formula in [21, (6.3), Theorem 6.5] (wherê+p is denoted by+p; in our usage, the two are
equivalent for p ≥ 1, when hε above is a support function). Next, we take insteadϕ(t) = log t
and g = log hL , noting from (7) with f0 = h0 that [hε] = K̂+0 ε · L , the logarithmic linear
combination of K and L . Then, again with 	 = Sn−1 and ψ(t) = tϕ′(t) = 1, an argument
similar to that above shows that (58) becomes

lim
ε→0

˜Vq(K̂+0 ε · L, Q) − ˜Vq(K , Q)

ε
= q

∫

Sn−1
log hL(u) d˜C0,q(K , Q, u),

the formula in [21, (6.4), Theorem 6.5] (where ̂+0 is denoted by +0).
If instead we takeG(t, u) = (1/n) log(t/ρQ(u)) ρQ(u)n , for some Q ∈ Sn

c+, where t > 0
and u ∈ Sn−1, we have

˜VG(K ) = 1

n

∫

Sn−1
log

(

ρK (u)

ρQ(u)

)

ρQ(u)n du = ˜E(K , Q),

the dual mixed entropy of K and Q. Then similar computations to those above show that (58)
(now justifiedviaRemark5.4) yield the variational formulas [21, (6.5) and (6.6), Theorem6.5]
for ˜E(K , Q).

The following corollary is a direct consequence of the previous theorem with G = �

or �, and (38a) and (38b) with ψ(t) = tϕ′(t). When ϕ(t) = log t , it was proved in [24,
Theorem 4.1].

Corollary 5.5 Let g ∈ C(	), let h0 ∈ C+(	), and let a ∈ R ∪ {−∞}. Suppose that ϕ ∈ Ja

is continuously differentiable and such that ϕ′ is nonzero on (0,∞). If φ : Rn\{o} → (0,∞)

and � (or �, as appropriate) are continuous, then

n
∫

	

g(u)

h0(u) ϕ′(h0(u))
d˜Cφ([h0], u) =

{

limε→0
V φ([h0])−V φ([hε])

ε

limε→0
V φ([hε])−V φ([h0])

ε
,



where hε is given by (7) with f0 = h0.

The following version of Theorem 5.3 for Orlicz linear combinations of the form (8) can
be proved in a similar fashion. We omit the proof. Recall that ˜CG([h1], ·) = ˜CG,ψ ([h1], ·)
when ψ ≡ 1, as in Definition 3.1.

Theorem 5.6 Let h1, h2 ∈ C+(	) and let ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D. Suppose that for
i = 1, 2, ϕi is continuously differentiable and such that ϕ′

i is nonzero on (0,∞). If G and
Gt are continuous on (0,∞) × Sn−1, then

lim
ε→0+

˜VG([hε]) − ˜VG([h1])
ε

= n

ϕ′
1(1)

∫

	

ϕ2

(

h2(u)

h1(u)

)

d˜CG([h1], u),

where hε is given by (8) with hK and hL replaced by h1 and h2, respectively.

Again, the following corollary is a direct consequence of the previous theoremwithG = �

or �.

Corollary 5.7 Let h1, h2 ∈ C+(	) and let ϕ1, ϕ2 ∈ I or ϕ1, ϕ2 ∈ D. Suppose that for
i = 1, 2, ϕi is continuously differentiable and such that ϕ′

i is nonzero on (0,∞). If φ :
R
n\{o} → (0,∞) and � (or �, as appropriate) are continuous, then

n

ϕ′
1(1)

∫

	

ϕ2

(

h2(u)

h1(u)

)

d˜Cφ([h1], u) =
{

limε→0+ V φ([h1])−V φ([hε])
ε

limε→0+
V φ([hε])−V φ([h1])

ε
,

where hε is given by (8) with hK and hL replaced by h1 and h2, respectively.

6 Minkowski-type problems

This section is dedicated to providing a partial solution to the Orlicz–Minkowski problem
for the measure ˜CG,ψ (K , ·).
Lemma 6.1 Let G : (0,∞) × Sn−1 → (0,∞) be continuous. If Ki ∈ Kn

(o), i ∈ N, and

Ki → K ∈ Kn
(o) as i → ∞, then limi→∞ ˜VG(Ki ) = ˜VG(K ).

Proof Since Ki → K ∈ Kn
(o),ρKi → ρK uniformly on Sn−1. By the continuity ofG, we have

limi→∞ G(ρKi (u), u) = G(ρK (u), u) and sup{G(ρKi (u), u) : i ∈ N, u ∈ Sn−1} < ∞. It
follows from the dominated convergence theorem that

lim
i→∞

˜VG(Ki ) = lim
i→∞

∫

Sn−1
G(ρKi (u), u) du =

∫

Sn−1
lim
i→∞G(ρKi (u), u) du = ˜VG(K ).

��
Proposition 6.2 Let G and Gt be continuous on (0,∞) × Sn−1, let ψ : (0,∞) → (0,∞)

be continuous, and let K ∈ Kn
(o). The following statements hold.

(i) The signed measure ˜CG,ψ (K , ·) is absolutely continuous with respect to S(K , ·).
(ii) If Ki ∈ Kn

(o), i ∈ N, and Ki → K ∈ Kn
(o) as i → ∞, then ˜CG,ψ (Ki , ·) → ˜CG,ψ (K , ·)

weakly.



(iii) If Gt > 0 on (0,∞) × Sn−1 (or Gt < 0 on (0,∞) × Sn−1), then ˜CG,ψ (K , ·) (or
−˜CG,ψ (K , ·), respectively) is a nonzero finite Borel measure not concentrated on any
closed hemisphere.

Proof (i) Let E ⊂ Sn−1 be a Borel set such that S(K , E) = 0. If g = 1E , the left-hand side
of (22) is ˜CG,ψ (K , E). This equals the expression in (23), in which we observe that since
K ∈ Kn

(o), for x ∈ ∂K both |x | and 〈x, νK (x)〉 = hK (νK (x)) are bounded away from zero
and bounded above, and hence our assumptions imply that

sup
x∈∂K

∣

∣

∣

∣

ρK (x̄)Gt (ρK (x̄), x̄) 〈x, νK (x)〉
ψ(〈x, νK (x)〉) |x |n

∣

∣

∣

∣

= c < ∞,

where x̄ = x/|x |. Then from (22) and (23) we conclude, using (3), that

∣

∣˜CG,ψ (K , E)
∣

∣ ≤ c
∫

∂K
1E (νK (x)) dx = cHn−1(ν−1

K (E)) = c S(K , E) = 0.

(ii) Let g : Sn−1 → R be continuous and let

IK (u) = g(αK (u))
ρK (u)Gt (ρK (u), u)

ψ(hK (αK (u)))

be the integrand of the right-hand side of (22). Suppose that Ki ∈ Kn
(o), i ∈ N, and Ki → K ∈

Kn
(o). By [13, Lemma 2.2], αKi → αK and hence, by the continuity of Gt and the continuity

of the map (K , u) �→ hK (u) (see [22, Lemma 1.8.12]), IKi → IK ,Hn−1-almost everywhere
on Sn−1. Moreover, our assumptions clearly yield sup{IKi (u) : i ∈ N, u ∈ Sn−1} < ∞. It
follows from (22) and the dominated convergence theorem that

∫

Sn−1
g(u) d˜CG,ψ (Ki , u) →

∫

Sn−1
g(u) d˜CG,ψ (K , u)

as i → ∞, as required.
(iii) Suppose that Gt > 0 on (0,∞) × Sn−1; the case when Gt < 0 on (0,∞) × Sn−1 is

similar. Let m = minx∈∂K JK (x), where

JK (x) = ρK (x̄)Gt (ρK (x̄), x̄) 〈x, νK (x)〉
ψ(〈x, νK (x)〉) |x |n , x ∈ ∂K ,

and x̄ = x/|x |. Since K ∈ Kn
(o), our assumptions imply that m > 0. By (22) and (23),

∫

Sn−1
〈u, v〉+ d˜CG,ψ (K , v) =

∫

∂K
〈u, νK (x)〉+ JK (x) dx

≥ m
∫

∂K
〈u, νK (x)〉+ dx = m

∫

Sn−1
〈u, v〉+ dS(K , v) > 0,

because S(K , ·) satisfies (4). This shows that ˜CG,ψ (K , ·) also satisfies (4). ��
In view of Proposition 6.2(iii), one can ask the following Minkowski-type problem for

the signed measure ˜CG,ψ (·, ·).
Problem 6.3 For which nonzero finite Borel measures μ on Sn−1 and continuous functions
G : (0,∞)× Sn−1 → (0,∞) and ψ : (0,∞) → (0,∞) do there exist τ ∈ R and K ∈ Kn

(o)

such that μ = τ ˜CG,ψ (K , ·)?



It follows immediately from (24), on using [21, (2.2), p. 93 and (3.28), p. 106], that solving
Problem 6.3 requires finding an h : Sn−1 → (0,∞) and τ ∈ R that solve (in the weak sense)
the Monge–Ampère equation

τh

ψ ◦ h
P(∇̄h + hι) det(∇̄2h + hI ) = f , (59)

where P(x) = |x |1−nGt (|x |, x/|x |) for x ∈ R
n \ {o}. Here f plays the role of the density

function of the measure μ in Problem 6.3 if μ is absolutely continuous with respect to
spherical Lebesgue measure. Formally, then, Problem 6.3 is more difficult, since it calls for
h in (59) to be the support function of a convex body and also a solution for measures that
may not have a density function f .

To see that (59) is more general than (1), note firstly that the homogeneity of the left-hand
side of (1) allows us to set τ = 1, without loss of generality (if p �= q, which is true in the
case p > 0, q < 0 of particular interest in the present paper). Let p, q ∈ R and let Q ∈ Sn

c+.
For t > 0 and u ∈ Sn−1, we set ψ(t) = t p and G(t, u) = (1/q)tqρQ(u)n−q , if q �= 0, and
G(t, u) = (log t)ρQ(u)n , otherwise. (When q ≤ 0, we have G : (0,∞) × Sn−1 → R and
Remark 5.4 applies.) Then, using the fact that ρQ is homogeneous of degree −1, we have
P(x) = ρQ(x)n−q , for q ∈ R and x ∈ R

n\{o}. Therefore (59) becomes

h1−p ‖∇̄h + hι‖q−n
Q det(∇̄2h + hI ) = f ,

where ‖ ·‖Q = 1/ρQ is the gauge function of Q. Note that ‖ ·‖Q is an n-dimensional Banach
norm if Q is convex and origin symmetric.

Our contribution to Problem 6.3 is as follows. For the statement and proof of the result,
we define

�ε(v) = {u ∈ Sn−1 : 〈u, v〉 ≥ ε}
for v ∈ Sn−1 and ε ∈ (0, 1).

Theorem 6.4 Letμ be a nonzero finite Borel measure on Sn−1 not concentrated on any closed
hemisphere. Let G and Gt be continuous on (0,∞)×Sn−1 and let Gt < 0 on (0,∞)×Sn−1.
Let 0 < ε0 < 1 and suppose that for v ∈ Sn−1,

lim
t→0+

∫

�ε0 (v)

G(t, u) du = ∞ and lim
t→∞

∫

Sn−1
G(t, u) du = 0. (60)

Let ψ : (0,∞) → (0,∞) be continuous and satisfy
∫ ∞

1

ψ(s)

s
ds = ∞. (61)

Then there exists K ∈ Kn
(o) such that

μ

|μ| = ˜CG,ψ (K , ·)
˜CG,ψ (K , Sn−1)

. (62)

Proof Note that the limits in (60) exist, since t �→ G(t, u) is decreasing. Define

ϕ(t) =
∫ t

1

ψ(s)

s
ds, t > 0, (63)

and

a = −
∫ 1

0

ψ(s)

s
ds ∈ R ∪ {−∞}. (64)



Then, by (61), (63), and (64), ϕ ∈ Ja is strictly increasing and continuously differentiable
with tϕ′(t) = ψ(t) for t > 0; the latter equality implies that ϕ′ is nonzero on (0,∞).

For f ∈ C+(Sn−1), let

F( f ) = 1

|μ|
∫

Sn−1
ϕ( f (u)) dμ(u), (65)

and for K ∈ Kn
(o), define F(K ) = F(hK ). We claim that

α = inf
{

F(K ) : ˜VG(K ) = |μ| and K ∈ Kn
(o)

}

(66)

is well defined with α ∈ R ∪ {−∞} because there is a K ∈ Kn
(o) with ˜VG(K ) = |μ|. To see

this, note that

˜VG(r Bn) =
∫

Sn−1
G(r , u) du ≥

∫

�ε0 (v)

G(r , u) du

for any v ∈ Sn−1. Then (60) yields ˜VG(r Bn) → ∞ as r → 0, and ˜VG(r Bn) → 0 as r → ∞.
Since r �→ ˜VG(r Bn) is continuous, there is an r0 > 0 such that ˜VG(r0Bn) = |μ|. It follows
from (66) that α ∈ R ∪ {−∞}.

By (66), there are Ki ∈ Kn
(o), i ∈ N, such that ˜VG(Ki ) = |μ| and

lim
i→∞ F(Ki ) = α. (67)

We aim to show that there is a K0 ∈ Kn
(o) with ˜VG(K0) = |μ| and F(K0) = α.

To this end, we first claim that there is an R > 0 such that K ∗
i ⊂ RBn , i ∈ N. Suppose on

the contrary that supi∈N Ri = ∞, where Ri = maxu∈Sn−1 ρK ∗
i
(u) = ρK ∗

i
(vi ), say. By taking

a subsequence, if necessary, we may suppose that vi → v0 ∈ Sn−1 and limi→∞ Ri = ∞.
There exists i0 ∈ N such that |vi − v0| < ε0/2 whenever i ≥ i0. Hence, if u ∈ �ε0(v0) and
i ≥ i0, then 〈u, vi 〉 ≥ ε0/2. It follows that for u ∈ �ε0(v0) and i ≥ i0, we have

hK ∗
i
(u) ≥ ρK ∗

i
(vi )〈u, vi 〉 = Ri 〈u, vi 〉 ≥ Riε0/2

and therefore

|μ| =
∫

Sn−1
G(ρKi (u), u) du =

∫

Sn−1
G(hK ∗

i
(u)−1, u) du

≥
∫

�ε0 (v0)

G(hK ∗
i
(u)−1, u) du ≥

∫

�ε0 (v0)

G(2/(Riε0), u) du → ∞

as i → ∞. This contradiction proves our claim.
By the Blaschke selection theorem, we may assume that K ∗

i → L for some L ∈ Kn .
Suppose that L /∈ Kn

(o). Theno ∈ ∂L , so there existsw0 ∈ Sn−1 such that limi→∞ hK ∗
i
(w0) =

hL(w0) = 0. Since |μ| > 0 and μ is not concentrated on any closed hemisphere, there is an
ε ∈ (0, 1) such that μ(�ε(w0)) > 0. Let v ∈ �ε(w0). Since

0 ≤ ρK ∗
i
(v) ≤ 1

〈v,w0〉hK
∗
i
(w0) ≤ 1

ε
hK ∗

i
(w0) → 0



as i → ∞, it follows that ρK ∗
i

→ 0 uniformly on�ε(w0). As ˜VG(Ki ) = |μ| and K ∗
i ⊂ RBn ,

using (5), (65), (66), and (67), we obtain

α = lim
i→∞ F(Ki ) = lim

i→∞
1

|μ|
∫

Sn−1
ϕ

(

ρK ∗
i
(u)−1

)

dμ(u)

≥ lim inf
i→∞

1

|μ|
∫

�ε(w0)

ϕ
(

ρK ∗
i
(u)−1

)

dμ(u)

+ 1

|μ|
∫

Sn−1\�ε(w0)

ϕ (1/R) dμ(u)

≥ μ(�ε(w0))

|μ| lim inf
i→∞ min

{

ϕ
(

ρK ∗
i
(u)−1

)

: u ∈ �ε(w0)
}

+μ(Sn−1\�ε(w0))

|μ| ϕ (1/R) = ∞.

This is not possible, so L ∈ Kn
(o).

Let K0 = L∗ ∈ Kn
(o). Then Ki → K0 as i → ∞ in Kn

(o). Hence, hKi → hK0 > 0

uniformly on Sn−1. The continuity of ϕ ensures that

sup{|ϕ(hKi (u))| : i ∈ N, u ∈ Sn−1} < ∞.

Now it follows from (65), (67), and the dominated convergence theorem that

α = lim
i→∞ F(Ki ) = 1

|μ|
∫

Sn−1
lim
i→∞ ϕ(hKi (u)) dμ(u)

= 1

|μ|
∫

Sn−1
ϕ(hK0(u)) dμ(u) = F(K0). (68)

Also, by Lemma 6.1, we have ˜VG(K0) = |μ|, so the aim stated earlier has been achieved. It
also follows from (68) that α ∈ R.

We now show that K0 satisfies (62) with K replaced by K0. Due to ϕ ∈ Ja and f ≥ h[ f ],
one has F( f ) ≥ F(h[ f ]) = F([ f ]) for f ∈ C+(Sn−1). By (68),

F(hK0) = F(K0) = α = inf{F( f ) : ˜VG([ f ]) = |μ| and f ∈ C+(Sn−1)}. (69)

Let g ∈ C(Sn−1). For u ∈ Sn−1 and sufficiently small ε1, ε2 ≥ 0, let hε1,ε2 be defined by
(7) with f0 and εg replaced by hK0 and ε1g + ε2, respectively, i.e.,

hε1,ε2(u) = ϕ−1 (

ϕ(hK0(u)) + ε1g(u) + ε2
)

. (70)

Then for sufficiently small ε, we have

hε1+ε,ε2(u) = ϕ−1 (

ϕ(hε1,ε2(u)) + εg(u)
)

and

hε1,ε2+ε(u) = ϕ−1 (

ϕ(hε1,ε2(u)) + ε
)

.

The properties of ϕ listed after (64) allow us to apply (58), with 	 = Sn−1 and with h0 and
hε replaced by hε1,ε2 and hε1+ε,ε2 , respectively, to obtain

∂

∂ε1
˜VG([hε1,ε2 ]) = lim

ε→0

˜VG([hε1+ε,ε2 ]) − ˜VG([hε1,ε2 ])
ε

= n
∫

Sn−1
g(u) d˜CG,ψ ([hε1,ε2 ], u)

(71)



and with g, h0, and hε replaced by 1, hε1,ε2 and hε1,ε2+ε , respectively, to yield

∂

∂ε2
˜VG([hε1,ε2 ]) = n

∫

Sn−1
1 d˜CG,ψ ([hε1,ε2 ], u) = n ˜CG,ψ ([hε1,ε2 ], Sn−1) �= 0. (72)

Since [hε1,ε2 ] depends continuously on ε1, ε2 and in view of Proposition 6.2(ii), (71) and
(72) show that the gradient of the map (ε1, ε2) �→ ˜VG([hε1,ε2 ]) has rank 1 and depends
continuously on (ε1, ε2), implying that this map is continuously differentiable. Hence we
may apply the method of Lagrange multipliers to conclude from (69) that there is a constant
τ = τ(g) such that

∂

∂ε1

(

F(hε1,ε2) + τ(log ˜VG([hε1,ε2 ]) − log |μ|))
∣

∣

∣

ε1=ε2=0
= 0 (73)

and
∂

∂ε2

(

F(hε1,ε2) + τ(log ˜VG([hε1,ε2 ]) − log |μ|))
∣

∣

∣

ε1=ε2=0
= 0. (74)

By (65) and (70), we have

∂

∂ε1
F(hε1,ε2)

∣

∣

∣

ε1=ε2=0
= 1

|μ|
(

∂

∂ε1

∫

Sn−1
(ϕ(h0(u)) + ε1g(u) + ε2) dμ(u)

)

∣

∣

∣

ε1=ε2=0

= 1

|μ|
∫

Sn−1
g(u) dμ(u) (75)

and
∂

∂ε2
F(hε1,ε2)

∣

∣

∣

ε1=ε2=0
= 1

|μ|
∫

Sn−1
1 dμ(u) = 1. (76)

Since ˜VG(K0) = |μ| and (70) gives h0,0 = hK0 , (71) and (72) imply that

∂

∂ε1
log ˜VG([hε1,ε2 ])

∣

∣

∣

ε1=ε2=0
= n

|μ|
∫

Sn−1
g(u) d˜CG,ψ (K0, u) (77)

and
∂

∂ε2
log ˜VG([hε1,ε2 ])

∣

∣

∣

ε1=ε2=0
= n

|μ| ˜CG,ψ (K0, S
n−1). (78)

It follows from (73), (75), and (77) that
∫

Sn−1
g(u) dμ(u) = −nτ

∫

Sn−1
g(u) d˜CG,ψ (K0, u) (79)

and from (74), (76), and (78) that

τ = − |μ|
n ˜CG,ψ (K0, Sn−1)

. (80)

In particular, we see from (80) that τ is independent of g. Finally, (79) and (80) show that
(62) holds with K replaced by K0. ��

We remark that−˜CG,ψ (K , ·) is a nonnegative measure sinceGt < 0. Note that (60) holds
if limt→0+ G(t, u) = ∞ for u ∈ Sn−1 and limt→∞ G(t, u) = 0 for u ∈ �ε(v). This follows 
from the monotone convergence theorem, since t �→ G(t, u) is decreasing. In order to solve 
Problem 6.3 when t �→ G(t, u) is increasing, one needs to use different techniques and we 
leave it for future work [7].

When ψ ≡ 1 (and hence ϕ(t) = log t ∈ J−∞), the following result was proved in [24, 
Theorem 5.1].



Corollary 6.5 Let μ be a nonzero finite Borel measure on Sn−1 not concentrated on any
closed hemisphere. Let φ : Rn\{o} → (0,∞) be continuous and such that � is continuous
on (0,∞)× Sn−1, where � is defined by (17). Let 0 < c < 1 and suppose that for v ∈ Sn−1,

lim
b→0+ V φ(C(v, b, c)) = ∞, (81)

where C(v, b, c) = {x ∈ R
n : |x | ≥ b and 〈x/|x |, v〉 ≥ c} and V φ(·) is defined by (18). Let

ψ : (0,∞) → (0,∞) be continuous and satisfy (61). Then there exists K ∈ Kn
(o) such that

μ

|μ| = ˜Cφ,ψ(K , ·)
˜Cφ,ψ(K , Sn−1)

.

Proof By assumption, � is continuous on (0,∞) × Sn−1, and limt→∞ �(t, u) = 0 for u ∈
Sn−1. Hence the second condition in (60) holdswithG replaced by�. Clearly, ∂�(t, u)/∂t =
−φ(tu)tn−1 < 0. By (81),

∞ = lim
b→0+ V φ(C(v, b, c)) = lim

b→0+

∫

�c(v)

∫ ∞

b
φ(ru)rn−1drdu = lim

b→0+

∫

�c(v)

�(b, u)du.

Therefore the first condition in (60) also holds with G replaced by �. Since ˜C�,ψ(K , ·) =
−˜Cφ,ψ(K , ·), Theorem 6.4 yields the result. ��

Another special case arises if μ is a discrete measure on Sn−1, that is, μ = ∑m
i=1 ciδvi ,

where ci > 0 for i = 1, . . . ,m, and v1, . . . , vm ∈ Sn−1 are not contained in any closed
hemisphere. Let G and ψ be as in Theorem 6.4. Then there exists a polytope P ∈ Kn

(o) such
that

μ

|μ| = ˜CG,ψ (P, ·)
˜CG,ψ (P, Sn−1)

.

To see this, note that Theorem 6.4 ensures the existence of a K ∈ Kn
(o) such that (62) holds.

Since μ is discrete, we obtain

˜CG,ψ (K , ·) =
m

∑

i=1

c̄iδvi ,

where c̄i = ˜CG,ψ (K , Sn−1)ci/|μ| < 0 for i = 1, . . . ,m. Proposition 6.2(i) shows that there
is a measurable function g : Sn−1 → (−∞, 0] such that

m
∑

i=1

c̄iδvi (E) =
∫

E
g(u) dS(K , u)

for Borel sets E ⊂ Sn−1. Hence S(K , ·) is a discrete measure and [22, Theorem 4.5.4]
implies that K is a polytope.

7 Dual Orlicz–Brunn–Minkowski inequalities

Let�m be the set of continuous functionsϕ : [0,∞)m → [0,∞) that are strictly increasing in
each component and such that ϕ(o) = 0, ϕ(e j ) = 1 for 1 ≤ j ≤ m, and limt→∞ ϕ(t x) = ∞



for x ∈ [0,∞)m\{o}. By�m wemean the set of continuous functionsϕ : (0,∞)m → (0,∞),
such that for x = (x1, . . . , xm) ∈ (0,∞)m ,

ϕ(x) = ϕ0(1/x1, . . . , 1/xm) (82)

for some ϕ0 ∈ �m . It is easy to see that if ϕ ∈ �m , then ϕ is strictly decreasing in each
component and such that limt→0 ϕ(t x) = ∞ and limt→∞ ϕ(t x) = 0 for x ∈ (0,∞)m .

Let K1, . . . , Km ∈ Sn
c+ and let ϕ ∈ �m ∪�m . Define ˜+ϕ(K1, . . . , Km) ∈ Sn

c+, the radial
Orlicz sum of K1, . . . , Km , to be the star body whose radial function satisfies

ϕ

(

ρK1(u)

ρ
˜+ϕ(K1,...,Km )(u)

, . . . ,
ρKm (u)

ρ
˜+ϕ(K1,...,Km )(u)

)

= 1 (83)

for u ∈ Sn−1. It was proved in [6, Theorem 3.2(v) and (vi)] that if ϕ ∈ �m , then

ρ
˜+ϕ(K1,...,Km )(u) > ρK j (u) for u ∈ Sn−1. (84)

Together with (82) and (83), this implies that if ϕ ∈ �m , then

ρ
˜+ϕ(K1,...,Km )(u) < ρK j (u) for u ∈ Sn−1. (85)

For each 0 �= q ∈ R and ϕ ∈ �m ∪ �m , let

ϕq(x) = ϕ
(

x1/q1 , x1/q2 , . . . , x1/qm

)

for x = (x1, . . . , xm) ∈ (0,∞)m . (86)

Then (83) is equivalent to

ϕq

((

ρK1(u)

ρ
˜+ϕ(K1,...,Km )(u)

)q

, . . . ,

(

ρKm (u)

ρ
˜+ϕ(K1,...,Km )(u)

)q)

= 1. (87)

For t ∈ (0,∞) and u ∈ Sn−1, let

Gq(t, u) = G(t, u)

tq
. (88)

The proof of the following result closely follows that of [6, Theorem 4.1].

Theorem 7.1 Let m, n ≥ 2, let ϕ ∈ �m ∪ �m, let K1, . . . , Km ∈ Sn
c+, let G : (0,∞) ×

Sn−1 → (0,∞) be continuous, and let ϕq and Gq be defined by (86) and (88). Suppose that
ϕq is convex and either q > 0 and Gq(t, ·) is increasing, or q < 0 and Gq(t, ·) is decreasing.
Then

1 ≥ ϕ

(

(

˜VG(K1)

˜VG(˜+ϕ(K1, . . . , Km))

)1/q

, . . . ,

(

˜VG(Km)

˜VG(˜+ϕ(K1, . . . , Km))

)1/q
)

. (89)

The reverse inequality holds if instead ϕq is concave and either q > 0 and Gq(t, ·) is
decreasing, or q < 0 and Gq(t, ·) is increasing.

If in addition ϕq is strictly convex (or strictly concave, as appropriate) and equality holds
in (89), then K1, . . . , Km are dilatates of each other.

Proof Let ϕ ∈ �m ∪ �m and let K1, . . . , Km ∈ Sn
c+. It follows from (83) that

ρ
˜+ϕ(K1,...,Km )(u) > 0 for u ∈ Sn−1. By (16), one can define a probability measure μ on

Sn−1 by

dμ(u) = G(ρ
˜+ϕ(K1,...,Km )(u), u)

˜VG(˜+ϕ(K1, . . . , Km))
du. (90)



Suppose that ϕ ∈ �m , q > 0, and Gq(t, ·) is increasing. By (87) and Jensen’s inequality [6,
Proposition 2.2] applied to the convex function ϕq , similarly to the proof of [6, Theorem 4.1],
we have

1 =
∫

Sn−1
ϕq

((

ρK1(u)

ρ
˜+ϕ(K1,...,Km )(u)

)q

, . . . ,

(

ρKm (u)

ρ
˜+ϕ(K1,...,Km )(u)

)q)

dμ(u)

≥ ϕq

(

∫

Sn−1

ρK1(u)q

ρ
˜+ϕ(K1,...,Km )(u)q

dμ(u), . . . ,

∫

Sn−1

ρKm (u)q

ρ
˜+ϕ(K1,...,Km )(u)q

dμ(u)

)

. (91)

Since ϕ ∈ �m and q > 0, ϕq is strictly increasing in each component. According to (84) and
the fact that Gq(t, ·) is increasing, we have

ρK j (u)q

ρ
˜+ϕ(K1,...,Km )(u)q

G(ρ
˜+ϕ(K1,...,Km )(u), u) ≥ G(ρK j (u), u) (92)

for j = 1, . . . ,m. Using (90), we obtain

˜VG(K j )

˜VG(˜+ϕ(K1, . . . , Km))
= 1

˜VG(˜+ϕ(K1, . . . , Km))

∫

Sn−1
G(ρK j (u), u) du

≤ 1
˜VG(˜+ϕ(K1, . . . , Km))

∫

Sn−1

ρK j (u)q G(ρ
˜+ϕ(K1,...,Km )(u), u)

ρ
˜+ϕ(K1,...,Km )(u)q

du

=
∫

Sn−1

ρK j (u)q

ρ
˜+ϕ(K1,...,Km )(u)q

dμ(u)

for j = 1, . . . ,m. Since ϕq is strictly increasing in each component and (91) holds, we get

1 ≥ ϕq

(

∫

Sn−1

ρK1(u)q

ρ
˜+ϕ(K1,...,Km )(u)q

dμ(u), . . . ,

∫

Sn−1

ρKm (u)q

ρ
˜+ϕ(K1,...,Km )(u)q

dμ(u)

)

≥ ϕq

(

˜VG(K1)

˜VG(˜+ϕ(K1, . . . , Km))
, . . . ,

˜VG(Km)

˜VG(˜+ϕ(K1, . . . , Km))

)

= ϕ

(

(

˜VG(K1)

˜VG(˜+ϕ(K1, . . . , Km))

)1/q

, . . . ,

(

˜VG(Km)

˜VG(˜+ϕ(K1, . . . , Km))

)1/q
)

, (93)

which yields (89).
Suppose in addition that ϕq is strictly convex and equality holds in (89). Then equality

holds throughout (93) and hence in (91). Therefore equality holds in Jensen’s inequality as
used above. Since G > 0, the definition (90) of μ shows that its support is the whole of
Sn−1. Then, exactly as in the proof of [6, Theorem 4.1], we can conclude that K1, . . . , Km

are dilatates of each other.
This proves (89) and the implication in case of equality when ϕ ∈ �m , q > 0, andGq(t, ·)

is increasing. The other cases are similar, noting that if ϕ ∈ �m , we can use (85) instead
of (84), and if ϕq is concave, Jensen’s inequality [6, Proposition 2.2] yields the reverse of
inequality (91). ��

It is possible to state more general versions of Theorem 7.1 that hold when K1, . . . , Km ∈
Sn . Indeed, the definition (83) of the radial Orlicz sum can be modified, as in [6, p. 817], so
that it applies when K1, . . . , Km ∈ Sn . Then extra assumptions would have to be made in
Theorem 7.1, analogous to the one in [6, Theorem 4.1] that Vn(K j ) > 0 for some j , but now



also involving the function G. Note that the stronger assumption that K1, . . . , Km ∈ Sn
c+ is

still required for the implication in case of equality, as it is in [6, Theorem 4.1].
Under certain circumstances, equality holds in Theorem 7.1 if and only if K1, . . . , Km

are dilatates of each other. One such is given in Corollary 7.2, and it is easy to see that this
is true more generally if G is of the form G(t, u) = tq H(u), where t > 0 and u ∈ Sn−1, for
some q �= 0 and suitable function H , since equality then holds in (92). However, it does not
seem straightforward to formulate a precise condition and we do not pursue the matter here.

Dual Orlicz–Brunn–Minkowski inequalities for V φ(·), V φ(·), and V̆φ,ϕ(·, ·) follow
directly from Theorem 7.1, once the corresponding assumptions are verified. We shall only
state the special case when G(t, u) = tqρQ(u)n−q/n for some Q ∈ Sn

c+. Then, for q �= 0,
we have

˜VG(K ) =
∫

Sn−1
G(ρK (u), u) du = 1

n

∫

Sn−1
ρK (u)q ρQ(u)n−q du = ˜Vq(K , Q), (94)

the qth dual mixed volume of K and Q, as in (20).
The following result was proved for q = n and Q = Bn in [6, Theorem 4.1].

Corollary 7.2 Let m, n ≥ 2, let q �= 0, let ϕ ∈ �m ∪ �m, and let Q, K1, . . . , Km ∈ Sn
c+. If

ϕq is convex, then

1 ≥ ϕ

⎛

⎝

(

˜Vq(K1, Q)

˜Vq(˜+ϕ(K1, . . . , Km), Q)

)1/q

, . . . ,

(

˜Vq(Km, Q)

˜Vq(˜+ϕ(K1, . . . , Km), Q)

)1/q
⎞

⎠ . (95)

If ϕq is concave, the inequality is reversed. If instead ϕq is strictly convex or strictly concave,
respectively, then equality holds in (89) if and only if K1, . . . , Km are dilatates of each other.

Proof The required inequalities and the necessity of the equality condition follow immedi-
ately from Theorem 7.1 on noting that Gq(t, u) = ρQ(u)n−q/n is a constant function of
t .

Suppose that K1, . . . , Km are dilatates of each other, so Ki = ci K and hence ρKi = ciρK

for some K ∈ Sn
c+ and ci > 0, i = 1, . . . ,m. Let d > 0 be the unique solution of

ϕ
(c1
d

, . . . ,
cm
d

)

= 1. (96)

Comparing (83), we obtain ρ
˜+ϕ(K1,...,Km )(u) = dρK (u) for u ∈ Sn−1 and hence we have

˜+ϕ(K1, . . . , Km) = dK . From (94), we get ˜Vq(Ki , Q) = cqi ˜Vq(K , Q), i = 1, . . . ,m, and
˜Vq(˜+ϕ(K1, . . . , Km), Q) = dq ˜Vq(K , Q). Substituting for ci , i = 1, . . . ,m, and d from the
latter two equations into (96), we obtain (95) with equality. ��

8 Dual Orlicz–Minkowski inequalities and uniqueness results

Let K , L, Q ∈ Sn
c+, let q �= 0, and let ϕ : (0,∞) → (0,∞) be continuous. It will be

convenient to define

˜Vq,ϕ(K , L, Q) = 1

n

∫

Sn−1
ϕ

(

ρL(u)

ρK (u)

)

ρK (u)q ρQ(u)n−q du. (97)

Note that this is a special case of the general dual Orlicz mixed volume ˜Vφ,ϕ(K , L) defined
in (44), obtained by setting φ(x) = |x |q−nρQ(x/|x |)n−q . When q = n, (97) becomes the 
dual Orlicz mixed volume introduced in [6,26], and when q = n and Q = Bn , the following



result yields the dual Orlicz–Minkowski inequality established in [6, Theorem 6.1] and [26,
Theorem 5.1].

Theorem 8.1 Let K , L, Q ∈ Sn
c+, let q �= 0, let ϕ : (0,∞) → (0,∞) be continuous, and

let ϕq(t) = ϕ(t1/q) for t ∈ (0,∞). If ϕq is convex, then

˜Vq,ϕ(K , L, Q) ≥ ˜Vq(K , Q) ϕ

⎛

⎝

(

˜Vq(L, Q)

˜Vq(K , Q)

)1/q
⎞

⎠ . (98)

The reverse inequality holds if ϕq is concave. If ϕq is strictly convex or strictly concave,
respectively, equality holds in the above inequalities if and only if K and L are dilatates of
each other.

Proof Let q �= 0 and let ϕq be convex. By (94), one can define a probability measure μ̃ by

dμ̃(u) = ρK (u)q ρQ(u)n−q

n˜Vq(K , Q)
du.

Jensen’s inequality [6, Proposition 2.2] implies that

˜Vq,ϕ(K , L, Q) = 1

n

∫

Sn−1
ϕ

(

ρL(u)

ρK (u)

)

ρK (u)q ρQ(u)n−q du

= ˜Vq(K , Q)

∫

Sn−1
ϕq

((

ρL(u)

ρK (u)

)q)

dμ̃(u)

≥ ˜Vq(K , Q) ϕq

(∫

Sn−1

(

ρL(u)

ρK (u)

)q

dμ̃(u)

)

= ˜Vq(K , Q) ϕq

(

∫

Sn−1

ρL(u)q ρQ(u)n−q

n˜Vq(K , Q)
du

)

= ˜Vq(K , Q) ϕ

⎛

⎝

(

˜Vq(L, Q)

˜Vq(K , Q)

)1/q
⎞

⎠ ,

where the first and the last equalities are due to (97) and (94), respectively.
Suppose that ϕq is strictly convex and equality holds in (98). Then the above proof and the

equality condition for Jensen’s equality show that ρL(u)/ρK (u) is a constant for μ̃-almost
all u ∈ Sn−1 and hence for Hn−1-almost all u ∈ Sn−1. Since ρK and ρL are continuous,
ρL(u)/ρK (u) is a constant for u ∈ Sn−1 and so K and L are dilatates of each other.

If instead ϕq is concave, the proof is similar since Jensen’s inequality [6, Proposition 2.2]
also reverses. ��
Corollary 8.2 Let K , L, Q ∈ Sn

c+, let q �= 0, let ϕ : (0,∞) → (0,∞), and let ϕq(t) =
ϕ(t1/q) for t ∈ (0,∞). Suppose that ϕ is either increasing or decreasing, and that ϕq is
either strictly convex or strictly concave. Then K = L if either

˜Vq,ϕ(K , M, Q)

˜Vq(K , Q)
= ˜Vq,ϕ(L, M, Q)

˜Vq(L, Q)
(99)

holds for all M ∈ Sn
c+, or

˜Vq,ϕ(M, K , Q) = ˜Vq,ϕ(M, L, Q) (100)

holds for all M ∈ Sn
c+.



Proof Let q �= 0 and suppose that (99) holds for all M ∈ Sn
c+. Assume that ϕ is increasing

and ϕq is strictly convex; the other three cases can be dealt with similarly. Taking M = K in
(99), it follows from (20), (97) with L = K , and (98) with K and L interchanged, that

ϕ(1) = ˜Vq,ϕ(K , K , Q)

˜Vq(K , Q)
= ˜Vq,ϕ(L, K , Q)

˜Vq(L, Q)
≥ ϕ

⎛

⎝

(

˜Vq(K , Q)

˜Vq(L, Q)

)1/q
⎞

⎠ . (101)

Since ϕ is increasing, we get

1 ≥
(

˜Vq(K , Q)

˜Vq(L, Q)

)1/q

. (102)

Repeating the argument with K and L interchanged yields the reverse inequality. Hence we
get ˜Vq(K , Q) = ˜Vq(L, Q), from which we obtain equality in (101). The equality condition
for (98) implies that L = r K for some r > 0. This together with ˜Vq(K , Q) = ˜Vq(L, Q)

easily yields K = L .
Now suppose that (100) holds for all M ∈ Sn

c+. Taking M = K and arguing as above, we
get

ϕ(1) ˜Vq(K , Q) = ˜Vq,ϕ(K , K , Q) = ˜Vq,ϕ(K , L, Q) ≥ ˜Vq(K , Q) ϕ

⎛

⎝

(

˜Vq(L, Q)

˜Vq(K , Q)

)1/q
⎞

⎠ .

(103)
Therefore (102) holds. Interchanging K and L yields the reverse inequality and hence we
have ˜Vq(K , Q) = ˜Vq(L, Q), giving equality in (103). Exactly as above, we conclude that
K = L . ��
Corollary 8.3 Let K , L, Q ∈ Sn

c+, let q �= 0, let ϕ : (0,∞) → (0,∞) be continuous, and
let ϕq(t) = ϕ(t1/q) for t ∈ (0,∞). If ϕq is strictly convex or strictly concave and

˜Vq,ϕ(K , M, Q) = ˜Vq,ϕ(L, M, Q) (104)

for all M ∈ Sn
c+, then K = L.

Proof Let q �= 0 and let α > 0. Replacing K and L by L and αL , respectively, in (97), and
taking (94) into account, we obtain,

˜Vq,ϕ(L, αL, Q) = ϕ(α)

ϕ(1)
˜Vq,ϕ(L, L, Q) = ϕ(α)˜Vq(L, Q).

Suppose that ϕq is strictly convex; the case when ϕq is strictly concave is similar. Using
(104) with M = αL , (98) implies that

ϕ(α)˜Vq(L, Q)= ˜Vq,ϕ(L, αL, Q)= ˜Vq,ϕ(K , αL, Q)≥ ˜Vq(K , Q) ϕ

⎛

⎝α

(

˜Vq(L, Q)

˜Vq(K , Q)

)1/q
⎞

⎠.

(105)
Let

c =
(

˜Vq(L, Q)

˜Vq(K , Q)

)1/q

.

Then (105) reads cqϕ(α) ≥ ϕ(αc). When α = 1, we obtain

cqϕ(1) ≥ ϕ(c). (106)



Repeating the argument with K and L interchanged yields c−qϕ(α) ≥ ϕ(αc−1). Setting
α = c, we get c−qϕ(c) ≥ ϕ(1) and hence

cqϕ(1) ≤ ϕ(c). (107)

By (106) and (107), ϕ(c) = cqϕ(1), which means that

ϕ

⎛

⎝

(

˜Vq(L, Q)

˜Vq(K , Q)

)1/q
⎞

⎠ = ˜Vq(L, Q)

˜Vq(K , Q)
ϕ(1).

Thus equality holds in (105) when α = 1. By the equality condition for (98), we conclude
that L = r K for some r > 0. That is, K and L are dilatates of each other.

Suppose that L = r K , where r > 0 and r �= 1. Let α > 0. Then (94), (97), and (104)
with M = αK yield

ϕ(α)˜Vq(K , Q) = ˜Vq,ϕ(K , αK , Q) = ˜Vq,ϕ(r K , αK , Q) = ϕ(α/r)rq ˜Vq(K , Q).

Consequently, ϕ(rs) = rqϕ(s) for s > 0. Equivalently, setting β = rq and t = sq , we obtain
ϕq(βt) = βϕq(t) for t > 0, where β �= 1. But then the points (βm, ϕq(β

m)), m ∈ N, all lie
on the line y = ϕ(1)x in R2, so ϕq cannot be strictly convex. This contradiction proves that
r = 1 and hence K = L . ��

Let K , L ∈ Kn
(o). We recall from [5,23] that for ϕ ∈ (0,∞) → (0,∞), the Orlicz mixed

volume Vϕ(K , L) is defined by

Vϕ(K , L) = 1

n

∫

Sn−1
ϕ

(

hL(u)

hK (u)

)

hK (u) dS(K , u). (108)

The Orlicz–Minkowski inequality [5, Theorem 9.2] (see also [23, Theorem 2]) states that if
ϕ ∈ I is convex, then

Vϕ(K , L) ≥ Vn(K ) ϕ

(

(

Vn(L)

Vn(K )

)1/n
)

. (109)

If ϕ is strictly convex, equality in (109) holds if and only if K and L are dilatates of each
other. When ϕ(t) = t , we write Vϕ(K , L) = V1(K , L) and retrieve from (109)Minkowski’s
first inequality

V1(K , L) ≥ Vn(K )(n−1)/nVn(L)1/n . (110)

Note that (110) actually holds for all K , L ∈ Kn , with equality if and only if K and L lie in
parallel hyperplanes or are homothetic; see [3, Theorem B.2.1] or [22, Theorem 6.2.1].

Let ϕ ∈ I∪D and let n ∈ N, n ≥ 2. We say that ϕ behaves like tn if there is r > 0, r �= 1,
such that ϕ(r t) = rnϕ(t) for t > 0. Of course, ifϕ(t) = tn , thenϕ behaves like tn , but there is
a ϕ ∈ I∪D that behaves like tn such that ϕ(t) �= tn for some t > 0. To see this, let f (t) = tn

and define ϕ(t) on [1, 2], such that (i) ϕ is increasing and strictly convex, (ii) ϕ(t) = f (t)
at t = 1 and t = 2, (iii) ϕ′

r (1) = f ′(1) and ϕ′
l (2) = f ′(2), and (iv) ϕ(t) < f (t) on (1, 2).

Then define ϕ on [1/2, 1] by ϕ(t) = ϕ(2t)/2n and on [2, 4] by ϕ(t) = 2nϕ(t/2). It follows
that ϕ is increasing and strictly convex on [1/2, 1] and on [2, 4], ϕ(t) = f (t) at t = 1/2 and
t = 4, ϕ′

r (1/2) = ϕ′
r (1)/2

n−1 = f ′(1/2), ϕ′
l (4) = 2n−1ϕ′

l (2) = f ′(4), and ϕ(t) < f (t)
on (1/2, 1) ∪ (2, 4). Moreover, ϕ′

l (t) = ϕ′
r (t) at t = 1 and t = 2, so ϕ is increasing and

strictly convex on [1/2, 4]. Continuing inductively, we define ϕ on [1/2m, 2m+1], m ∈ N,
and hence on (0,∞), so that it is increasing and strictly convex, ϕ(t) = tn for t = 1/2m and
t = 2m , m ∈ N, and ϕ(t/2) = 2−nϕ(t) for t > 0, but ϕ is not identically equal to tn . This



construction for r = 1/2 (or, equivalently, r = 2) can be easily modified for other values of
r > 0, r �= 1.

The following result can be obtained from (109) and the argument in the proof of Corol-
lary 8.3.

Corollary 8.4 Let K , L ∈ Kn
(o). Suppose that ϕ ∈ I is strictly convex and Vϕ(K , M) =

Vϕ(L, M) for all M ∈ Kn
(o). Then K and L are dilatates of each other. Moreover, K = L

unless ϕ behaves like tn.

Note that the restriction in the second statement of the previous theorem is necessary,
since it is evident from (108) that if ϕ behaves like tn , then for the corresponding r �= 1, we
have V (K , M) = V (r K , M) for all M ∈ Kn

(o).
Let K , L ∈ Kn

(o), let Q ∈ Sn
c+, and let p, q ∈ R. In [21, (1.13), p. 91], the (p, q)-mixed

volume ˜Vp,q(K , L, Q) was defined by setting g = h p
L in (39):

˜Vp,q(K , L, Q) =
∫

Sn−1
hL(u)p d˜Cp,q(K , Q, u)

= 1

n

∫

Sn−1
hL(αK (u))p hK (αK (u))−p ρK (u)q ρQ(u)n−q du.

= 1

n

∫

Sn−1

(

hL(αK (u))

hK (αK (u))

)p (

ρK (u)

ρQ(u)

)q

ρQ(u)n du. (111)

Inspired by (111), we can consider the nonlinear Orlicz dual curvature functionals defined
by

1

n

∫

Sn−1
ϕ

(

ψ

(

f (αK (u))

hK (αK (u))

) (

ρK (u)

ρQ(u)

)n)

ρQ(u)n du,

where ϕ,ψ : (0,∞) → (0,∞) are continuous functions and f ∈ C+(Sn−1). We can then
take f = hL to define the (ϕ, ψ)-mixed volume

˜Vϕ,ψ(K , L, Q) = 1

n

∫

Sn−1
ϕ

(

ψ

(

hL(αK (u))

hK (αK (u))

) (

ρK (u)

ρQ(u)

)n)

ρQ(u)n du.

This is a natural generalization of (111) when q �= 0, corresponding to taking ϕ(t) = tq/n

and ψ(t) = tnp/q .
When L ∈ Kn

(o), the following result provides a common generalization of [5, Theo-
rem 9.2], [6, Theorem 6.1] (see also [26, Theorem 2]), and [21, Theorem 7.4]. The first
corresponds to taking K = Q when ϕ there is replaced by ϕ ◦ ψ , the second corresponds
to taking K = L , and the third is obtained by the choices of ϕ and ψ given in the previous
paragraph. Note that in the latter case, for the convexity of ϕ and ψ we then require that
1 ≤ q/n ≤ p, which is precisely the assumption made in [21].

Theorem 8.5 Let K , L ∈ Kn
(o) and let Q ∈ Sn

c+. If ϕ,ψ : (0,∞) → (0,∞) are increasing
and convex, then

˜Vϕ,ψ(K , L, Q) ≥ ϕ

(

Vn(K )

Vn(Q)
ψ

(

(

Vn(L)

Vn(K )

)1/n
))

Vn(Q). (112)

If ϕ and ψ are strictly convex, equality holds if and only if K , L, and Q are dilatates of each 
other.



Proof Setting Q = K and p = 1 in [21, (7.6), Proposition 7.2], (111), and (39), we have,
for any q �= 0,

V1(K , L) = ˜V1,q(K , L, K )

=
∫

Sn−1
hL(u) d˜C1,q(K , K , u)

= 1

n

∫

Sn−1

hL(αK (u))

hK (αK (u))
ρK (u)n du. (113)

We use Jensen’s inequality [6, Proposition 2.2] twice, once with ϕ and once with ψ ,
Minkowski’s first inequality (110), and (113) to obtain

˜Vϕ,ψ(K , L, Q)

Vn(Q)
= 1

nVn(Q)

∫

Sn−1
ϕ

(

ψ

(

hL(αK (u))

hK (αK (u))

)(

ρK (u)

ρQ(u)

)n)

ρQ(u)n du

≥ ϕ

(

1

nVn(Q)

∫

Sn−1
ψ

(

hL(αK (u))

hK (αK (u))

)(

ρK (u)

ρQ(u)

)n

ρQ(u)n du

)

= ϕ

(

Vn(K )

Vn(Q)
· 1

nVn(K )

∫

Sn−1
ψ

(

hL(αK (u))

hK (αK (u))

)

ρK (u)n du

)

≥ ϕ

(

Vn(K )

Vn(Q)
ψ

(

1

nVn(K )

∫

Sn−1

hL(αK (u))

hK (αK (u))
ρK (u)n du

))

= ϕ

(

Vn(K )

Vn(Q)
ψ

(

V1(K , L)

Vn(K )

))

≥ ϕ

(

Vn(K )

Vn(Q)
ψ

(

(

Vn(L)

Vn(K )

)1/n
))

,

as required.
Suppose that ϕ and ψ are strictly convex and that equality holds in (112). Then equality

holds throughout the previous display. As in the proof of [5, Lemma 9.1], equalities in
Minkowski’s first inequality and in Jensen’s inequality with ψ implies that K and L are
dilatates of each other. Then equality in Jensen’s inequality with ϕ implies that K and Q are
dilatates of each other. ��

Weomit the proof of the following corollary, which is again similar to that of Corollary 8.3.

Corollary 8.6 Let K , L ∈ Kn
(o), and suppose that ϕ,ψ : (0,∞) → (0,∞) are increasing

and strictly convex. If ˜Vϕ,ψ(K , M, Q) = ˜Vϕ,ψ(L, M, Q) for M = αK, α > 0, Q = K and
for M = αL, α > 0, Q = L, then K and L are dilatates of each other. Moreover, K = L
unless ψ behaves like tn. If ψ behaves like tn with ψ(r t) = rnψ(t), t > 0, for some r > 0,
then ˜Vϕ,ψ(K , M, Q) = ˜Vϕ,ψ(r K , M, Q) for all K , M, Q ∈ Kn

(o).
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