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Abstract

The general volume of a star body, a notion that includes the usual volume, the gth dual
vol-umes, and many previous types of dual mixed volumes, is introduced. A corresponding
new general dual Orlicz curvature measure is defined that specializes to the ( p, ¢)-dual
curvature measure introduced recently by Lutwak, Yang, and Zhang. General variational
formulas are established for the general volume of two types of Orlicz linear combination.
One of these is applied to the Minkowski problem for the new general dual Orlicz
curvature measure, giving in particular a solution to the Minkowski problem posed by
Lutwak, Yang, and Zhang for the ( p, g)-dual curvature measures when p > 0 and ¢ < 0. A
dual Orlicz—Brunn—Minkowski inequality for general volumes is obtained, as well as dual
Orlicz-Minkowski-type inequali-ties and uniqueness results for star bodies. Finally, a very
general Minkowski-type inequality, involving two Orlicz functions, two convex bodies,
and a star body, is proved, that includes as special cases several others in the literature, in
particular one due to Lutwak, Yang, and Zhang for the ( p, ¢)-mixed volume.
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1 Introduction

The classical Brunn—Minkowski theory was developed by Minkowski, Aleksandrov, and
many others into the powerful tool it is today. It focuses on compact convex sets and their
orthogonal projections and metric properties such as volume and surface area, but has numer-
ous applications beyond geometry, both within and outside mathematics. In recent decades
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it has been significantly extended in various ways. Germinating a seed planted by Firey,
Lutwak [18] brought the L ,-Brunn—Minkowski theory to fruition. A second extension, the
Orlicz—Brunn—-Minkowski theory, arose from work of Ludwig [15], Ludwig and Reitzner
[16], and Lutwak et al. [19,20]. Each theory has a dual counterpart treating star-shaped sets
and their intersections with subspaces, and these also stem from the pioneering work [17]
of Lutwak. The main ingredients in each theory are a distinguished class of sets, a notion
of volume, and an operation, usually called addition, that combines two or more sets in the
class. Each theory has been described and motivated at length in previous work, so we refer
the reader to Schneider’s classic treatise [22] and the introductions of the articles [4—6], and
will focus henceforth on the contributions made in the present paper.

Our work is inspired by the recent groundbreaking work of Huang et al. [13] and Lutwak
et al. [21]. In [13], the various known measures that play an important part in the Brunn—
Minkowski theory—the classical area and curvature measures and their L, counterparts—
were joined by new dual curvature measures, and surprising relations between them were
discovered, revealing fresh connections between the classical and dual Brunn—Minkowski
theories. These connections were reinforced in the sequel [21], which defined the very general
L, dual curvature measures that involve both convex and star bodies and fwo real parameters
p and g. With each measure comes the challenge of solving the corresponding Minkowski
problem, a fundamental endeavor that goes back to the original work of Minkowski and
Aleksandrov.

The present paper focuses on the Orlicz-Brunn—Minkowski theory. Just as Orlicz spaces
generalize L, spaces, the Orlicz theory brings more generality, but presents additional chal-
lenges due to the loss of homogeneity. Here we introduce very general dual Orlicz curvature
measures which specialize to both the L, dual curvature measures in [21] and the dual Orlicz
curvature measures defined in [24,25]. We state the corresponding Minkowski problem and
present a partial solution, though one general enough to include those from [24,25] as well
as solving the case p > 0 and ¢ < 0 of the Minkowski problem posed in [21, Problem 8.1].
(After we proved our result, we learned that Boroczky and Fodor [2] and Huang and Zhao
[14] have solved the cases p > 1, ¢ > O and p > 0, g < 0, respectively.) The Minkowski
problem in [21, Problem 8.1] requires finding, for given p, ¢ € R, n-dimensional Banach
norm || - ||, and f : §"~' — [0, 00),an h : $"~! — (0, c0) that solves the Monge—Ampere
equation

7P |\ Vh + he|97" det(V2h + hl) = f 1)

on the unit sphere §”~!, where V and V? are the gradient vector and Hessian matrix of A,
respectively, with respect to an orthonormal frame on §” !, ¢ is the identity map on §”~!, and
1 is the identity matrix. The equation (1) is derived in [21, (5.8), p. 116]; previous Minkowski
problems correspond to taking p = O and ||-|| = |-|, the Euclidean norm (the dual Minkowski
problem from [13]),g =0 and || - | = | - | (the L}, Aleksandrov problem), and ¢ = n (the
L, Minkowski problem, which reduces to the classical Minkowski problem when p = 1).

We refer the reader to the introductions of [13,21] and to [22, Sects. 8.2 and 9.2] for
detailed discussions and references to the extensive literature on these problems.

Also introduced here are new generalizations of volume. Let G : (0, 00) x §"~! — (0, 00)
be continuous (see Sect. 2 for definitions and notation). The general dual volume \70 (K) of
a star body K is defined by

Vo (K) = fs G(px (u), ) du,



where pg is the radial function of K, giving the distance from the origin to the boundary of
K in the direction u, while the general volume of a convex body K is defined by

VG(K):/ G(hg W), u)dS(K, u),
sn—1

where hg is the support function and S(K, -) is the surface area measure of K. (Integrals
with respect to the ith area measures S; (K, -), 1 <i < n — 1, may also be considered.) The
novel feature here is the extra argument u in G; this allows \7@(1( ) and V5 (K) to include
not only the usual volume and variants of it, but also many of the mixed and dual mixed
volumes that have previously been found useful in the literature. The same function G (¢, u)
is behind our general dual Orlicz curvature measures (see Definition 3.1). The present paper
focuses mainly on the dual theory, so from the outset we work with the general dual volume
Vg(K ) and obtain variational formulas (necessary for the Minkowski problem) for it. The
corresponding study for Vi (K) and the classical theory is to be carried out in [8]. It should
be mentioned that in this context, Orlicz—-Minkowski problems were first investigated by
Haberl, Lutwak, Yang, and Zhang [11].

The general dual Orlicz curvature measures mentioned above arise naturally from the
general dual volumes and are denoted by EGM(K ,-), where G : (0, 00) x $"~! — (0, c0)
and v : (0, c0) — (0, 0o) are continuous. The corresponding Minkowski problem is:

For which nonzero finite Borel measures p on S*~' and continuous functions G and
do there exist 1 € Rand K € IC?O) such that u =t GG,]/,(K, ?

In our partial solution, presented in Theorem 6.4 below, the lack of homogeneity neces-
sitates extra care in the variational method we employ. The problem requires finding, for
given G, ¥, and f : §"1 5 [0,00),an h : "1 — (0,00) and 7 € R that solve the
Monge-Ampere equation

_th P(Vh + ht) det(V2h + hl) = f, )
Yoh
where P(x) = |x|'™"G,(|x|, x/|x|). Equation (2) is derived before Theorem 6.4 in a brief
discussion where we also show that (2) is more general than (1).

In a third contribution, we prove very general Orlicz inequalities of the Minkowski and
Brunn—Minkowski type which include others in the literature, such as [21, Theorem 7.4], as
special cases. Some general uniqueness theorems are also demonstrated.

The paper is organized as follows. The preliminary Sect. 2 gives definitions and notation,
as well as the necessary background on two types of Orlicz linear combination. In Sect. 3, we
define the new general dual volumes and general dual Orlicz curvature measures. Sections 4
and 5 contain our variational formulas. In Sect. 6, we state our Minkowski problem and
provide a partial solution (see Problem 6.3 and Theorem 6.4). Dual Orlicz-Brunn—Minkowski
inequalities can be found in Sect. 7 and dual Orlicz-Minkowski inequalities and uniqueness
results are the focus of Sect. 8.

2 Preliminaries and background

We use the standard notations o, {e1, . . ., e, }, and ||-|| for the origin, the canonical orthonormal
basis, and a norm, respectively, in R”. The Euclidean norm and inner product on R" are
denoted by | - | and (-, -), respectively. Let B” = {x ¢ R” : |x| < 1}and 8" ! = {x e R" :
|x| = 1} be the unit ball and sphere in R". The characteristic function of a set E is signified
by 1 E-



We write H* for k-dimensional Hausdorff measure in R”, where k € {1, ..., n}. For
compact sets E, we also write V, (E) = H" (E) for the volume of E. The notation dx means
dH*(x) for the appropriate k = 1, ..., n, unless stated otherwise. In particular, integration
on §"~! is usually denoted by du = dH" "' (u).

The class of nonempty compact convex sets in R” is written K". We will often work with
IC;’U), the set of convex bodies (i.e., compact convex subsets of R” with nonempty interiors)
containing o in their interiors. For the following information about convex sets, we refer the
reader to [10,22]. The standard metric on K" is the Hausdorff metric §(-, -), which can be
defined by

8(K, L) = llhxk —hrlloc = sup |hg(u)—hr(u)]
uesn—1

for K,L € K", where hg : S"~! — R is the support function of K € K", given by
hg(u) = sup, g {u, x) foru € sl We say that the sequence K1, K>, ... of sets in K"
converges to K € K" if and only if lim;_, » §(K;, K) = 0. The Blaschke selection theorem
states that every bounded sequence in " has a subsequence that converges to a setin K. The
surface area measure S(K , -) of a convex body K in R” is defined for Borel sets E C §"!
by

S(K, E) = H" (v (E)), 3)

where vgl (E) ={x € 0K : vg(x) € E} is the inverse Gauss map of K (see Sect. 2.2).
Let 11 be a nonzero finite Borel measure on $"~!'. We say that u is not concentrated on
any closed hemisphere if

/S s v)pdp@) >0 forve s “)

where ay = max{a, 0} for a € R. We write |u| = u(S"1).

As usual, C (E) denotes the class of continuous functions on E and we shall write CT(E)
for the strictly positive functions in C(E). Let Q C 5"~! be a closed set not contained in
any closed hemisphere of §"~!. For each f € C* (), one can define a convex body [ f],
the Aleksandrov body (or Wulff shape), associated to it, by setting

[f1=(){x eR": (x.u) < fw)}.
ue2
In particular, when Q = s~ and f =hg for K € K", one has
K=lhgl= [ {xeR":(x,u) <hgw)}.
uesn—1

Note that
H(K,u)={x eR": (x,u) = hg W)}

is the supporting hyperplane of K in the direction u € §"~!.
A set L in R” is star-shaped at o if o € L and for each x € R"\{0}, the intersection
L N{cx : ¢ > 0} is a (possibly degenerate) compact line segment. For each such L and for

x € R™\{o}, let
pr(x) =max{c >0:cx € L}.

Then pr, : R"\{0o} — R is called the radial function of L. The function p;, is homogeneous
of degree —1, that is, p, (rx) = r~Lpr (x) forx € R™\{0}. This allows us to consider oy, as



a function on §” 1. Let S" be the class of star-shaped sets at o in R” that are bounded Borel
sets and whose radial functions are therefore bounded Borel measurable functions on §"~!.
The class of L € S" with py > 01is denoted by S’} and the class S;, of compact star bodies
comprises those L € S such that p; is continuous on S"~VIf L € 8, then pr(u)u € 9L
and pr (x) = 1 for x € dL, the boundary of L. The natural metric on S” is the radial metric
§(~, -), which can be defined by

S(L1,Ly) = llpL, — pLolloo = sup |pL, () — pr,W)],

uesn—1
for Ly, L, € S". Consequently, we can define convergence in S" by lim_, E(L i»L)y=0
for L, Ly, L;,... € S". Clearly, IC’ZO) C §/,. It follows directly from the relations between
the metrics 8 and 3 in [9, Lemma 2.3.2, (2.3.15) and (2.3.16)] that if K, K, K», ... € K"

(0)°
then K; — K in the Hausdorff metric if and only if K; — K in the radial metric.

IfK e IC’(’U), the polar body K* of K is defined by

K*={xeR":(x,y)<lforyeK}.
Then (K*)* = K and (see [22, (1.52), p. 57])
Pk (X)hgs(x) = hg(X)pg+(x) =1 for x € R"\{o}. 5

One can define convex bodies associated to radial functions of star bodies. In general, if
Q c §"1is a closed set not contained in any closed hemisphere of $”~!, and f € CT(Q),

define (f) € ICE‘O), the convex hull of f, by

(fy=conv{f(u)u:u e }.

The properties of (f) are similar to those of the Aleksandrov body. In particular, taking
Q = 5""!, we have (px) = K foreach K € IC?O). It can be checked (see [13, Lemma 2.8])
that

LT =1/f). (6)

Throughout the paper, we will need certain classes of functions ¢ : (0, c0) — (0, 00).
Let

7 = {gp is continuous and strictly increasing with ¢(1) = 1, ¢(0) = 0, and ¢(c0) = oo},
D = {¢p is continuous and strictly decreasing with ¢(1) = 1, ¢(0) = oo, and ¢(co) = 0},

where ¢(0) and ¢(oco) are considered as limits, ¢(0) = lim;_ o+ ¢(¢t) and ¢(c0) =
lim;— ~ @(¢). Note that the values of ¢ at t = 0, 1, oo are chosen for technical reasons;
results may still hold for other values of g att = 0, 1, oo.

Fora € RU{—o00}, we also require the following class of functions ¢ : (0, c0) — (a, 00):

Ja = {¢ is continuous and strictly monotonic, inf;~o ¢(t) = a, and sup,_ ¢(t) = 00}.

Note that the log function belongs to J_ and ZU D C Jp.

Let fop € CH(S" 1), let g € C(S" 1), and let ¢ € J, for some a € R U {—o0}.
Then ¢! : (a,00) — (0, 00), and since S"~! is compact, we have 0 < ¢ < fo < C
for some 0 < ¢ < C. It is then easy to check that for ¢ € R close to 0, one can define
fe = fe(fo. 8. ¢) € CH(§" 1) by

fe) = o N @(fow)) +eg)) . 7



Note that we can apply (7) when fy = hg for some K € ICZ‘O) or when fp = pg for some
K € 8!, . Sometimes we will use this definition when §"~1 is replaced by a closed set
Q c 5" ! not contained in any closed hemisphere of §"~1.

The left derivative and right derivative of a real-valued function f are denoted by f; and
/7, respectively. Whenever we use this notation, we assume that the one-sided derivative

exists.

2.1 Orlicz linear combination

LetK,L € IC?O). For ¢ > 0, and either ¢, 92 € Z or ¢1, 92 € D, define h, € ctsmh
(implicitly and uniquely) by

h h
o () toom (g ) =1 torues™ ®

Note that h, = h(K, L, ¢1, ¢2) may not be a support function of a convex body unless
1, @2 € T are convex, in which case h, = hK+wL, where K +, . L € S, is an Orlicz
linear combination of K and L (see [5, p. 463]). However, the Aleksandrov body [A.] of &,
belongs to Kf,,).

An alternative approach to forming Orlicz linear combinations is as follows. Let K € ICZ’O),
let g € C(S" 1, let ¢ € J, for some a € R U {—o0}, and let ﬁg be defined by (7) with
fo = hk. This approach goes back to Aleksandrov [1] in the case when ¢(f) = t. Again, the
Aleksandrov body [71}] of ﬁg belongs to ICZ’U). When g =@pohy and ¢ € T C Jp is convex,
[he] = KTy ¢ - L, as defined in [5, (10.4), p. 471].

Suppose that K, L € IC’;O), that ¢ € T is convex, and that K +, . L is defined by (8)
with | = ¢ = ¢. Then both K +, . L and K 1(/, ¢ - L belong to IC;’O) and coincide when
@ (t) = tP for some p > 1, but they differ in general (to see this, compare the corresponding
different variational formulas given by [5, (8.11) and (8.12), p. 466] and [5, p. 471]).

It is known (see [5, Lemma 8.2], [12, p. 18], and [23, Lemma 3.2]) that h, — hg and
’h\g — hg uniformly on S§"~1 as ¢ — 0 and hence, by [22, Lemma 7.5.2], both [A.] and [ﬁa]
converge to K € IC:‘U) as ¢ — 0. Part (ii) of the following lemma is proved in [12, (5.38)] for
the case when ¢ € Z U D, but the same proof applies to the more general result stated.

Lemma2.1 Let K, L € IC’ZO).

(i) ([5, Lemma 8.4], [23, Lemma 5.2].) If 1, 92 € T and ((pl);(l) > 0, then

. he() — hg (u) hi (u) (hL(u))
im = 7 $2
e—0F € (p1);(1) hi (u)

(€))

uniformly on S"~1. For g1, ¢ € D, (9) holds when (o), (1) < 0, with ((pl)g(l) replaced
by (¢1),(1).

(ii) (cf. [12, (5.38)].) Leta € RU {—o0}. If ¢ € J, and ¢’ is continuous and nonzero on
(0, 00), then for g € C(§"™ 1),

i Te (u) — hi (u) g(u)
m =

e—0 e ¢ (hg(u)

uniformly on S"~', where e is defined by (7) with fo = hk.



Analogous results hold for radial functions of star bodies. Let K, L € S, . For ¢ > 0,
and either @1, @2 € Z or @1, ¢ € D, define p, € CT(S"1) (implicitly and uniquely) by

¥ (p;du)) + epo ('OL(u)> =1forue S (10)
Pe () pe (1)

Then p; is the radial function of the radial Orlicz linear combination K+, ¢ L of K and L
(see [6, (22), p. 822]).

Leta € RU{—o00}.Forg € J,,g € C(5""!),ande € Rcloseto0, define p, € CT(S"~ 1)
by (7) with fo = pk . The definitions of both p, and p, can be extendedto K, L € S’} (oreven
L € S"), but we shall mainly work with star bodies and hence focus on S/, . It is known (see
[6, Lemma 5.1], [12, p. 18] (with & replaced by p), and [26, Lemma 3.5]) that p, — pg and
P — px uniformly on $"~! as & — 0. From this and the equivalence between convergence
in the Hausdorff and radial metrics for sets in IC?’O), one sees that, for each K € IC’ZO), both
(pe) and (0, ) converge to K in either metric.

Lemma22 LetK,L € .
(i) ([6, Lemma 5.3]; see also [26, Lemma 4.1].) If g1, ¢2 € T and (¢1);(1) > 0, then

i e — k@) - px () <,0L(u))
im = 92
e—0T & (Qﬂl)[(l) ok (u)

an

uniformly on S"~'. For @1, ¢ € D, (11) holds when (oD, (1) > 0, with (gal);(l)
replaced by (¢1),.(1).

(ii) (cf. [12, (5.38)].) Leta € RU {—o0}. If ¢ € J, and ¢’ is continuous and nonzero on
(0, 00), then for g € C(S"™ 1),

o Pl —pr() _ W)
m

e—0 & B ¢ (pk (n))

(12)

uniformly on S"~', where p, is defined by (7) with fo = pk.

2.2 Maps related to a convex body

We recall some terminology and facts from [13, Sect. 2.2]. Let K € ICE’U). Define
Vk(E)={ue S ' x € H(K, u) for some x € E}
for E C 0K,
xx(E)={x € 0K : x € H(K, u) for some u € E}
for E c §"~!, and
ag(E) =vg({pxu)u € 0K :u € E})

for E ¢ $" ! Let ox C 9K, ng C §71 and wx c S"~! be the sets where v ({x}),
xx ({u}), and a g ({u}), respectively, have two or more elements. Then

H' N og) = H" ' (nx) = H" Nwk) = 0. (13)

Elements of $"~"\ng are called regular normal vectors of K and reg K = 9K \ok is the
set of regular boundary points of K. We write vk (x), xx (1), and ag (1) instead of vg ({x}),
xx({u)), andag ({u}) if x ereg K, u € S" "\ng,and u € S" "\ wg, respectively.



Next, we define
akx(E) ={x/|x| :x e 9K NH(K,u) forsome u € E} = {x/|x| : x € xg(E)}

for Ec §" 1. In particular, one can define a continuous map ok () = xk (u)/|xg (u)| for
u e S" "\ng.For E C §"!, we have @} (E) = ag+(E). Moreover, for H"~!-almost all
ue Sn—l,

o (u) = g (u) (14)

and
u eot}}(E) ifand only if ag (u) € E. (15)

3 General dual volumes and curvature measures

Let G : (0, 00) x §"~1 — (0, c0) be continuous. (Remark 5.4 addresses the posslbility of
allowing G : (0, 00) x §"~1 - R.) For K € 8", define the general dual volume Vg (K) of
K by

Vo(K) = /S G (pk (w), u) du. (16)

Our approach will be to obtain results for this rather general set function that yield geomet-
rically interesting consequences for particular functions G.

Let ¢ : R"\{0o} — (0, co) be a continuous function. One special case of interest is when
G = @, where

oo
D(r,u) = / ¢ ru)r" L dr (17)
t
forr > 0and u € §"~1. Then we define V¢(K) = \75(1(), so that

Vp(K) = /Sn_l D (pk (u), u) du

=/ /OC ¢(ru)r"—‘drdu=/ #(x)dx, (18)
s1=1 Jprew) R"\K

where the integral may be infinite. Similarly, taking G = ®, where
1
D(t,u) = / ¢ (ruyr"~ " dr
0

fort > Oand u € S"~!, we define Lﬁ(K) = \72(1(), whence

V4(K) = /Sn_IQ(pK(u),u) du = /K¢(X) dx, (19)

where again the integral may be infinite. We refer to both Lp(K ) and V,p(K ) as a general
dual Orlicz volume of K € S§". Indeed, if ¢ # 0 and ¢ (x) = (|¢|/n)|x|?™", then

~ 1 V4(K), ifg <0,
Vq<K>=*f oyt du = { VoK) 1
n Jgn-1 V,4(K), ifg >0,

is the gth dual volume of K ; see [3, p. 410]. In particular, when ¢ = n, we have L/¢ (K) =
Vu(K), the volume of K. More generally, if ¢(x) = (lg|/n)|x|?"po(x/|x])""4, where
g#0and Qe &", then



Vy(K), ifg <0,

. (20)
Lb(K), ifg >0,

54 1 n—
Tk 0 = [ orpotuw ™ du =

is the gth dual mixed volume of K and Q; see [3, p. 410].

Other special cases of Vg(K ) of interest, the general Orlicz dual mixed volumes
\7¢,W(K, L) and \74),(/)(1(, g), are given in (44) and (45).

Next, we introduce a new general dual Orlicz curvature measure.
Definition 3.1 Let K € IC?O), let ¢ : (0, 00) — (0, 00) be continuous, and let G;(t, u) =
dG(t, u)/0t be such that u — G;(pg (1), u) is integrable on $"~1. Define the finite signed
Borel measure 56,1/,(K, -) on §"~! by

@2y

~ 1 pk W) G, (pk (1), u)
C K,E)=—
G’]/j( ) n [;}}(E) Y(hg (ak (u)))

for each Borel set E  S"~ L. If Y = 1, we often write 5(; (K, -) instead of 5G,¢(K, ).

To see that 66,1//(1( ,+) is indeed a finite signed Borel measure on sl note firstly
that C.y (K, #) = 0. Since K € K, and u > G (pk (), u) is integrable, Cg y (K, )
is finite. Let E; ¢ §" ', i € N, be disjoint Borel sets. By [13, Lemmas 2.3 and 2.4],
@y (Ui E;j) = Uik (E;) and the intersection of any two of these sets has H"-measure
zero. The dominated convergence theorem then implies that

~ 1 Pk () G(pk (u), u)
C K,UE;) =—
G (K. Uiki) /u,.a;((E,.) ¥ e (e @)
1 o0

n
2 / pk W) Gi(pk (), u)
n wi ) V(g (ak(u)))

i=1

o0
du="Y " Cqy(K,E),
i=1

S0 5G,¢(K , +) is countably additive.
Integrals with respect to Cg, y (K, -) can be calculated as follows. For any bounded Borel
function g : §"~! — R, we have

5 1 px ) G (px (). 1)
/S 8 dCo (K u) = - /S gl )T S du (22)
_ 1 k@) i .
=~ fa 80K S Gl ) dx,
(23)

where x = x/|x|. (Recall our convention that integration on dK is denoted by dx =
dH"1(x).) Relation (22) follows immediately from (15), and (23) follows from the fact
that the bi-Lipschitz radial map r : 0K — sl given by r(x) = x/|x|, has Jacobian
Jr(x) = (x,vg(x))|x|™" for all regular boundary points, and hence for H"~!-almost all
x € K.

If K is strictly convex, then the gradient Vig (1) of hg at u € S"~! equals the unique
xk (1) € 9K with outer unit normal vector u, and Vhg (vg (x)) = x for H*~!-almost all



x € 0K. Using this and [21, Lemma 2.10], (23) yields

/S 8w dCo.y (K. u)

Vhi(u)

1 hi ) -
= /S 2@ Vhi)]' ™ G, (WhK(u)L Vo

_ dS(K, u).
n U (hg () ) ()

24)

The following result could be proved in the same way as [21, Lemma 5.5], using Weil’s
Approximation Lemma. Here we provide an argument which avoids the use of this lemma.

Theorem 3.2 Let K € IC?‘OY and let G, ¥ be as in Definition 3.1. Then the measure-valued

map K +— 5(;,,/,(1(, -) is a valuation on IC;’O).

Proof Let K, L € ICZ’U) be such that K U L € IC?O). It suffices to show that for any bounded
Borel function g : $"~! — R, we have
I(KNL)+I(KUL)=I1(K)+ I(L), (25)

where 1 (M) = fS"—l g(u) d&G,]/,(M, u) for M e IC’(’O). Thesets K "L, KUL, K,and L
can each be partitioned into three disjoint sets, as follows:

A(KNL)= @K NintL)U DL NintK) U 3K NIL), (26)
A(KUL) = (3K\L) U (AL\K) U (3K N L), 27
3K = (0K Nint L) U @K\L) U (3K N IL), (28)
9L = (0L Nint K) U (AL\K) U (3K NAL). (29)

Let X = x/|x|. For H"~!-almost all x € 3(K N L), we have

x €dKNintL = vgnr(x) =vk(x)and pgnp(x) = px (%), (30)
xedlNintK = vgnr(x) =vr(x)and pxnr(x) = pr(x), 31

x€dKNIL = vgnr(x) =vg(x)=vr(x)and pgnr(X) = pg (X) = prL(X),
(32)

where the first set of equations in (32) hold for x € reg(K N L) Nreg K N reg L since
KNLCK,L.Also, for H" 1-almost all x € d0(K U L), we have

x € dK\L = vgur(x) =vg(x)and pgurL(X) = pk (X), (33)

x €IL\K = vkgur(x) =vr(x) and pgur (X) = pr(X), (34)

x €K NIL = vgur(x) =vg(x) =vr(x)and pgurL(x) = pg(X) = pr(x), (35)
where the first set of equations in (35) hold for x € reg(K U L) Nreg K N reg L since
K,L C K UL.Now (25) follows easily from (23), by first decomposing the integrations

over (K N L) and 9(K U L) into six contributions via (26) and (27), using (30-35), and
then recombining these contributions via (28) and (29). ]

Some particular cases of (21) are Worthx of mention. Firstly, with G = & and general v,
we prefer to write Cy y (K, E) instead of Co,y (K, E). Then we have

_ | ¢ (pk (W) pr ()"
Coy(K, E) = — e d 36
o (K E) =2 / & Vor@xw) G0



and by specializing (22) and (23) we get

- 1 ¢ (px wu)px (u)"
dC K, = — T o
/S,,,.g(”) oy (Kow) = /Sl 8 oK ()= k)
1 (x, vk (x))
— — d
n faK 80K v o P 4

for any bounded Borel function g : $"~! — R. Here we used

Gi(pk ), u) = ¢ (px Wu)px ()" (37
If we also choose ¥ = 1 and write 5¢(K, E) instead of 52(1(, E), we obtain

~ 1
Cy(K,E)=—
o ) n/*

ak(

¢ ok (wu)pg ()" du,
E)
the general dual Orlicz curvature measure introduced in [24], and in particular we see that

~ 1
/SH gw)dCy(K,u) = — /SH glagx )¢ (pk W) pg ()" du

n

1
*/ 8k (x)) ¢(x) (x, vk (x)) dx,
n Jak

as in [24, Lemma 3.1].

Note that when G = @ is given by (17), we have Vg(K)V: V¢(K) as in (18), in which
case G;(px (u), u) = —¢ (px wu)pk (u)"~! and hence Cg’w(K, E) = —Cypy(K,E).
Comparing (21) and (22), and using (37), we see that

_ /SH g)dCq (K. u) (382)

g(u) ~
/ —————dCy(K,u) =
-1 Y(hg (u)) /S_l () dCo.y (K, u). (38b)

Taking ¢ (x) = |x|j_"pQ(x/|x|)”:‘1, forsome Q € S}, andg e R,and ¢ (t) =17, p € R,
from (36) we get Cy (K, E) = Cp 4(K, Q, E), where

~ 1
Cpq(K,Q,E)= - / " hg (g ()™ pg (W) po )"~ du
Ak

is the (p, g)-dual curvature measure of K relative to Q introduced in [21, Definition 4.2].
The formula [21, (5.1), p. 114] or the preceding discussion show that for any bounded Borel
function g : $"~! — R, we have

~ 1
/S"_l 8)dCpq(K, Q.u) = — /Sn_l glak ) hi (ak )" px )T po )"~ du.
(39)

4 General variational formulas for radial Orlicz linear combinations

Our main result in this section is the following variational formula for Vg, where G, (t, u) =
AG(t, u)/ot.

Theorem 4.1 Let G and G, be continuous on (0, 00) x S" L and let K, L € Sey



() If 1, 92 € T and (¢1);(1) > O, then

i VoKe) — VoK) 1 (pL(u)
m = 7 @2
e—0t 13 (p1); (1) Jgn-1 Pk (1)

) ok ) Gi(pk (), u) du,

(40)
where K; = K—T—%SL € 87, has radial function p, given by (10). For ¢y, @2 € D, (40)
holds when (¢1),.(1) < 0, with (¢1);(1) replaced by (¢1),(1).
(ii) Leta € RU {—oo}. If ¢ € J, and ¢’ is continuous and nonzero on (0, 00), then for
ge (s,

. Vo(Ke) = Vo(K) / g(u) G (pk (u), u)
m-——= Y N d
S)If

li
e—0 e ¢ (pk (u))

where 1/<\5 € 87, has radial function Pe given by (7) with fo = pk.

Proof (i) By (16),

lim V6 (Ke) = Vo(K) _ lim / G(pe(u), u) — G(pg (u), u) du. @1
e—0t & e—0t Jgn—1 fa)
Also, by (11),
lim Glpe(), u) — Glpgx W), u) _ Gy ok (). 1) lim pe(u) — pk (1)
e—0F 3 e—0F 3

1 oL (u)
= G 9 9
(wl)ﬁ(l)%(pk(u))pk(u) t(ok (), u)

where the previous limit is uniform on 7= Therefore (40) will follow if we show that
the limit and integral in (41) can be interchanged. To this end, assume that ¢, ¢» € Z and
(¢1);(1) > 0; the proof when ¢y, @2 € D and (¢1); (1) < 0 is similar. If py (1) = ,og(u)|£=],
itis easy to see from (10) that px < p. < pj on $"~!whene € (0, 1). Since G, is continuous
on (0, 00) x §"71,

sup{|G,(t, u)| : px () <t < p1(u), ue S" 'y =m < oc.
By the mean value theorem and Lemma 2.2(i),

‘G(ps(u), u) — G(pg (u), u)

<m
&

for 0 < ¢ < 1. Thus we may apply the dominated convergence theorem in (41) to complete
the proof.
(i1) The argument is very similar to that for (i) above. Since

i Vo (Ke) = VoK) _ / G (D (), u) — G(pk (1), )
im — = = lim e du
Sn—l

(42)

e—0 & e—0

we can use (12) instead of (11) and need only justify interchanging the limit and integral in
(42). To see that this is valid, suppose that ¢ € 7, is strictly increasing; the proof is similar
when ¢ is strictly decreasing. Then there exists &g > 0 such that for ¢ € (—e&p, &) and
u € S"!, we have

0 < bi(u) = ¢ (¢ (px () — eom3) < Pe(u)
< o7 (@ (px () + gom3) = ba(u) < 0,



where m3 = sup,cgn-1 |g(u)| < codueto g € C(S"1). Since G, is continuous on (0, co) x
Sn—l’

sup{|G, (t, u)| : by(u) <t < by(u), u € "'} =my < co.
By the mean value theorem and Lemma 2.2(ii),

G (Pe(u), u) = Glpg (), u) | _ "
- <

for —ep < € < &p. Thus we may apply the dominated convergence theorem in (42) to
complete the proof.

Recall that ng and L,) are defined by (18) and (19), respectively. Note that when G = ®
or @, G;(t,u) = +¢(tu)t"~! is continuous on (0, 00) x §"~! because ¢ is assumed to be
continuous. The following result is then a direct consequence of the previous theorem.
Corollary 4.2 Let ¢ : R"\{o} — (0, 00) be a continuous function and let K, L € S},.

@) If o1, 92 € Z and (¢1))(1) > 0, then

Vo (K) — Vg(pe)

! pL() lim, : (432)
7 ¢ (pk (wu) §02< ) ok du={ °7
1 n—1 V e) — V K
@i Js Pr(®) li% M (43b)

where pg is given by (10), provided ® (or ®, respectively) is continuous. For ¢y, ¢ € D,
(43a) and (43b) hold when (¢1),.(1) < 0, with ((pl);(l) replaced by (¢1)).(1).

(ii) Leta € RU {—o0}. If ¢ € J, and ¢’ is continuous and nonzero on (0, 00), then for all
g e (s,

VoK)=V (Pe)

&
Vi (P0) =V (K)
0=

® (o (Wu) pg (w)"~!
gn-1 @' (px (1))

where pg is given by (7) with fo = pk.

Formulas (43a) and (43b) motivate the following definition of the general dual Orlicz
mixed volume Vy (K, L). For K, L € S/, continuous ¢ : R"\{o} — (0, 00), and contin-
uous ¢ : (0, 00) — (0, 00), let

Vop(K. L) = o & (px (W)u) <p< prL(u)

Pk (1)

) pk ()" du. (44)

Then (43a) and (43b) become

(p); (D)

Voo (K, L) = { n
’ @) ;.
wl%hmgﬁm

Vo (K)=V(pe)

lim£*>0+ P
Vi (pe)=V 5 (K)
.
The special case of (43a) and (43b) when ¢ = 1 was proved in [6, Theorem 5.4] (see also
[26, Theorem 4.1]) and the corresponding quantity ‘7¢,¢,(K , L) was called the Orlicz dual
mixed volume.

On the other hand, Corollary 4.2(ii) suggests an alternative definition of the general dual
mixed volume. For all K € S, g € C (8"~ 1), continuous ¢ : R"\{o} — (0, 00), and
continuous ¢ : (0, 0c0) — (0, 00), define

“ 1
VoK)= [ 6ox 0w poxw) 2w du. (45)



Then the formulas in Corollary 4.2(ii) can be rewritten as

lim VoK)=V (Ps)

e—0 €

Vpgo (K, ) = (46)

i Yo @)=Yy (K)
e—0 € ’
where @o(r) = nt" 1 /¢/(t). In particular, one can define a dual Orlicz mixed volume of K
and L by letting ¢ = ¥ (o), where ¥ : (0, 00) — (0, 00) is continuous and L € S,
namely

. 1
Vo.oy (K, L) = — ¢ (px (W) p(px W) ¥ (pL(u))du.
n Jgn—1

Note that both V¢,¢(K, L) and \7¢,¢(K, g) are special cases of Vg(K), corresponding to
setting

|
Gt w) = ~¢(tu)g (@) "

or

1
Gt u) = —¢tu) (1) gw),

respectively.

5 General variational formulas for Orlicz linear combinations

We shall assume throughout the section that 2 C "' is a closed set not contained in any
closed hemisphere of S"~ 1.

Let ho, po € CT(RQ) and let i, and p. be defined by (7) with fo = ho and fo = po,
respectively. In Lemma 2.2(ii), we may replace pg by kg or pp to conclude that &, — hy and
pe — po uniformly on Q. (In Sect. 2, k. and p, were denoted by ﬁg and p,, but hereafter we
omit the hats for ease of notation.) Hence [h.] — [ho] and {p.) — (po) as ¢ — 0. However,
in order to get a variational formula for the general dual Orlicz volume, we shall need the
following lemma. It was proved for ¢(#) = logt in [13, Lemmas 4.1 and 4.2] and was noted
for t?, p # 0, in the proof of [21, Theorem 6.5]. Recall from Sect. 2.2 that §" !\, is the
set of regular normal vectors of {(pg) € IC;’U).
Lemma5.1 Let g € C(RQ), let pg € CT(RQ), and let a € R U {—o0}. Suppose that ¢ € J, is
continuously differentiable and such that ¢’ is nonzero on (0, 00). For v € S”_l\mpo),

m 108 11(p,) (V) = 1og hrpy) (V) _ 8(a(py)* (v))

li - ) : 47)
e—0 € £0(e(pg)x (V) @' (o (et (pg)* (V)
where p; is defined by (7) with fo = po. Moreover, there exist 6, mo > 0 such that
[og hi(p.) (v) —log h(py) (V)] < mole] (48)

foree (=8, 8) andv e "\,



Proof We shall assume that ¢ € 7, is strictly increasing, since the case when it is strictly
decreasing is similar. Since g € C(£2), we have m| = sup,cq |g(1)| < oo. Then there exists
8o > 0 such that for ¢ € [—8p, ép] and u € L,

0 < ¢ (¢ (o) — dom1) < pe(u) < @~ (¢ (po(w)) + Som 1)
and inf,cq |¢'(0:(1))| > 0. Foru € Q and ¢ € (=89, ), let
H,(¢) = log pe(u) = log (¢~ (p(po(w)) + & g(w))) ,
from which we obtain

H,(g) = &
Pe )@ (pe (1))
By the mean value theorem, for all u € 2 and ¢ € (-, dp), we get
H,(e) — H,(0) = ¢ H, (0 &),
where 6 = 6 (u, &) € (0, 1). In other words,

g(u)
1 3 -1 = 49
0g pe(u) —log po(u) = £ Po(u,e)e (1) @' (0o u,e)e (1)) “9)

foru € Q and ¢ € (—4p, 8p).
Letv e S”_l\n(m). If ¢ € (=60, 80), there is a u, € Q such that foru € 2,

hipey (V) = (e, V) pe(Ue),  hip,) (V) = (U, v)pe(u), (50)
Rpgy (V) = (ute, V) () (e), and p(p) (te) > po(ue).

Moreover, (u., v) > 0 for e € (—do, o). Hence, using the equation in (50), the inequality in
(50) with u = u,, and (49) for u = u,, we get

10gh<pg>(v) - logh(p())(v) < log pg(ue) — log po(us)
c g(ue)
PO(ue.e)e Ue) ©' (P9 (ug.e)e (Ue))

D

From the equation in (50) with ¢ = 0, the inequality in (50) with u = ug, and from (49) with
u = ugp, we obtain

log h(p,) (v) — log hpy) (v) = loghp,)(v) — log po(ug) — log{ug, v)
> log p (1) — log po(uto)
. g(uo) .
P9 (ug.e)e (10) @' (Po(ug.e)e (10))

(52)

Exactlyasin[13,(4.7), (4.8)], wehave ug = ozz*p())(v) = 0t(py)* (V) and limg_, o us = ug. Since
g is continuous and u, — ug, we get g(us) — g(up) ase — 0. From 0(-) € (0, 1) it follows
that 6(-)e — 0 as & — 0. Moreover, pg(s (its) = ¢ (9(po(ue)) + 0(-)eg(ue)) — po(uo)

and, similarly, pg(.)¢ (o) — po(uo) as € — 0. Thus we conclude that

lim log 1 p,) (V) —log hp) (v) g(uo)
e—0 e Po(u0) ¢’ (po(u0))

Substituting ug = ocz‘po> (v), we obtain (47).



If 49 is sufficiently small, then (51) and (52) imply that if v € S”’l\mpo) then

g(u)
log () (V) —loghpy) (V)| < [e]  sup  |———"————=| =myle|,
| (pe) {po) | ue2, 00,1] Poe (u) QO/()OGE (l/t))

say, for some my < oo. From this, we see that (48) holds for v € S"~1\7(,,) and hence, by
(13) and the continuity of support functions, for v € §"~1. O

Lemma5.2 Let g € C(RQ), let hg € CT(RQ), and let a € RU {—o0}. Suppose that ¢ € T, is
continuously differentiable and such that ¢’ is nonzero on (0, 00). If G and G, are continuous
on (0, 00) x S"1 then

lim Vo ([he]) = Vi (hol) =/ 70, M)KO(‘Y(KU)*(”))g(“(Ko)*l(”))
£—0 e SN\ @ (ko (0t iegy* (1)) ™)

du, (53)

where h is given by (7) with fo = ho, and for ¢ sufficiently close to 0, k. = 1/h, and
J (&, u) = piey () G (i, )+ (W), u). (54)

Proof Let (1) = ¢(1/1) forall ¢ € (0, 00). Clearly ¢ € [J,. Also, for ¢ € (0, 00), we have
@' (1) = —t~2¢/(1/1). Hence @ satisfies the conditions for ¢ in Lemma 5.1. It is easy to check
that

Ke(u) =@ (@ (ko(w) + eg(u)),

that is, k. is given by (7) when ¢ and fy are replaced by ¢ and k. By (47), with p, and ¢
replaced by «. and @, respectively, for sufficiently small |¢|, we obtain, for u € S ”_1\n<KU),
lim IOg ,O(Ké,yf (u) — log ,0(,(0)*(1,{) — — lim 10gh<,(8)(u) — lOgh(KO)(u)
e—0 & e—0 &
_ 8 (@ ip)= (1)
K0/(0 g (1)) @ (0 (@ (i) (1))
K0 (@ (g (1)) & (0= (1))

— . (55)
@' (ko (0t gy () ™)
Moreover, comparing (48), there exist §, mo > 0 such that
[10g A,y (1) — 10g Iy (u)| < mole| (56)
fore € (—8,8) andu € §"~ 1.
Note that
dG(py) (), u) d d
T = Gt (). 1) TPl ) = T (e, w) - 10g ply+ (o). (57)

By our assumptions, there exists 0 < §; < § and m; > 0 such that |J (e, u)] < m; for
e € (=81,81) and u € S" L. It follows from (56), (57), and the mean value theorem that, for
g€ (—8,8)andu € S",

G (o) (), ) — G(ppy (1), u)
&

< momj.



From (6), we know that [h.] = (k¢)*, so (k.)* — (Kko)*

convergence theorem, (55), and (57), we obtain

o Vg (he]) = Vo (thol) _ - / G (Ppey @), ) = G Py ), 1)
e—0 £ e—0 sn—1 £

_/ lim G (o) (), ) — G(pegy+ (1), 1) du
s

as ¢ — 0. By the dominated

n—1 ¢—0 e
= / J(O u) KO(O{(KOV< (M)) g(Ol(KO)* (u))
8"\ o) ' (P/(KO(OC(K())*(M))—I)

where we have used the fact that H"~! (M) = 0 by (13). ]

du,

The next theorem will be used in the proof of Theorem 6.4. It generalizes previous results
of this type, which originated with [13, Theorem 4.5]; see the discussion after Corollary 5.5.

Theorem 5.3 Letg € C(RQ), lethg € CT(Q), and let a € RU{—00}. Suppose that ¢ € T, is
continuously differentiable and such that ¢’ is nonzero on (0, 00). If G and G, are continuous
on (0, 00) x S"~1, then
i Vo (UheD) = Vo (lhol)
1m =

e—0 &

where hg is given by (7) with fo = ho, and ¥ (t) = t¢'(¢).

n fQ g(u)dCg y ([hol, u), (58)

Proof Tt follows from [13, p. 364] that there exists a continuous function g : sl 5 R,
such that, for u € S"’l\mm),
8oy (1)) = (gla) (@ kg)= (1)).

Using this, ko = 1/hg, the relation (ko)* = [ho] given by (6), (14), (54) with ¢ = 0,
H(M(kp)) = 0 from (13), and (22), the formula (53) becomes
Vg (Lhe]) — Vo (hol) _ / (Z12) (@) (1)) piig) () Gy (pagy (). 1)

S N\Nteg) ho(atghg) () @' (ho(atgng) (1))
_ / (& 1e) (g () prrg) (@) Gy (prhg) (), u)

gn-1 Y (ho(ong) ()

. /Q ¢(u) dCo.y (Thol, w),

lim
e—0 &

du

where we also used the fact that
Ring1 (@ng) () = ho(atgpg)(u)) for H*™'-almost all u € $"~'.

To see this, note that for 1"~ !-almost all u € §"~!, we have ;) (1) = Viny)(Pne) (4)u) and
Plho] ()u is a regular boundary point of [A¢]. The rest is done by the proof of Lemma 7.5.1 in
[22, p. 411], which shows thatif x € d[h¢] is aregular boundary point, then &, (Vizo) (%)) =

"o (Wing1 (). |

Remark 5.4 1t is possible to extend the definition (16) of the general dual volume \7@ (K) by
allowing continuous functions G : (0, 0o) X §7~1 5 R.In this case, of course, VG(K) may
be negative, but the extended definition has the advantage of including fundamental concepts
such as the dual entropy E (K) of K. This is defined by

~ 1
Ek) = ;/ log pic () du,
N



corresponding to taking G (¢, u) = (1/n)logt in (16). Definition 3.1 of the measure ’CVG,I//
and the integral formulas (22) and (23) remain valid for continuous functions G : (0, co) x
§"=1 5 R, as do Theorems 3.2, 4.1, and 5.3, as well as Theorem 5.6 below.

Theorem 5.3 and its extended form indicated in Remark 5.4 may be used to retrieve the
formulas in [21, Theorem 6.5], which in turn generalize those in [13, Corollary 4.8]. To see
this, let K, L € IC'ZO) and let (1) = 17, p # 0. Setting hg = hg and g = h¥, we see from
(7) with fo = hg that [h,] = K?,, ¢ - L, the L, linear combination of K and L. Taking
G(t,u) = (1/m)t? po )" 4, for some Q € S, and g # 0, wheret > Oandu € 51 we
have Vg (K) = V,(K, Q) as in (20). With Q = S$"~1 and ¥ (t) = t¢'(t) = ptP, and using
(22) and (39), we obtain

n /Q () dCo.y (thol, u) = n fs  h@? dCo.y (K. u)
_ 4 (hL(OtK(H))

P
— ) px W) po )"~ du
np Jgn—1

hk (ak (u))
= 1/ h )P dCp (K, Q, u).
P Jsn—1
Thus (58) becomes
Vo(KFpe - L.Q) — Vy(K, G
m G(K+pe 0) (K, Q) =g/ hp ()P dCp (K, Q,u),
e—0 & p Jsn—t

the formula in [21, (6.3), Theorem 6.5] (where F p is denoted by +,; in our usage, the two are
equivalent for p > 1, when &, above is a support function). Next, we take instead ¢ () = log ¢
and g = log i1, noting from (7) with fo = hg that [h;] = K Foe L, the logarithmic linear
combination of K and L. Then, again with Q = "' and ¥ (t) = 1¢/(¢) = 1, an argument
similar to that above shows that (58) becomes

; V,(KFoe-L, Q) — V,(K, Q)
m =
e—0 £

6]/ lloghL(u)dao,q(K, 0, u),
S”—

the formula in [21, (6.4), Theorem 6.5] (where F¢ is denoted by o).
If instead we take G (¢, u) = (1/n) log(t/po(u)) po(u)", forsome Q € S/, , wheret > 0
and u € S"!, we have

Vo (K) = 3/ log (pK(”)) pow) du = E(K. Q).
n Jgn-1 pou)

the dual mixed entropy of K and Q. Then similar computations to those above show that (58)
(now justified via Remark 5.4) yield the variational formulas [21, (6.5) and (6.6), Theorem 6.5]
for E(K, Q).

The following corollary is a direct consequence of the previous theorem with G = @
or ®, and (38a) and (38b) with ¥ (1) = r¢’(r). When ¢(t) = logt, it was proved in [24,
Theorem 4.1].

Corollary 5.5 Let g € C(Q), let hg € CT(R), and let a € R U {—00}. Suppose that ¢ € T,
is continuously differentiable and such that ¢’ is nonzero on (0, 00). If ¢ : R"\ {0} — (0, 00)
and ® (or ®, as appropriate) are continuous, then

Vo (lho) =V (he])

g(u) ~ lim,_ o
n| o dCy (ol u) = e
/Qho(uw’(ho(u)) ’ lim, _,o 22 —Lo (0D

e )



where hg is given by (7) with fo = ho.

The following version of Theorem 5.3 for Orlicz linear combNinations of the Nform (8) can
be proved in a similar fashion. We omit the proof. Recall that Cg ([A1], -) = Cg,y ([h1], )
when ¢ = 1, as in Definition 3.1.

Theorem 5.6 Let hy,hy € CT(Q) and let g1, 92 € T or @1, 92 € D. Suppose that for
i = 1,2, ¢; is continuously differentiable and such that ¢! is nonzero on (0, o). If G and
G, are continuous on (0, 00) x S"~1, then

i Yehe) = VoD _ /n /(pz(hz(u)) ACs (. ),
(/71(]) Q

e—0t & hy(u)

where h is given by (8) with hx and hy, replaced by h1 and h», respectively.

Again, the following corollary is a direct consequence of the previous theorem with G = &
or .

Corollary 5.7 Let hy,hy € CT(Q) and let 91,02 € T or @1, 92 € D. Suppose that for
i = 1,2, ¢; is continuously differentiable and such that ¢ is nonzero on (0,00). If ¢ :
R™\{0} — (0, 00) and ® (or P, as appropriate) are continuous, then

. Vg (1)~ Vg (he)

h ~ Vollm)=Velhel)

. /‘PZ< 2(“)> dCo(lh1]. u) = fime—o- V,(he )2V, (Ih11)
o1 (1) Jo hi(u) lim,_, o+ %’

where h is given by (8) with hx and hy replaced by hy and h», respectively.

6 Minkowski-type problems

This section is dedicated to providing a partial solution to the Orlicz-Minkowski problem
for the measure Cg y (K, -).

Lemma 6.1 Let G : (0,00) x $"~1 — (0, 00) be continuous. If K; € IC?O), i €N, and
Ki — K € Kl asi — oo, then lim; o0 Vi (K;) = V(K).

Proof Since K; — K € IC:‘O), pk; — px uniformly on $”~!. By the continuity of G, we have
lim; o0 G(pk,; (1), u) = G(pk (1), u) and sup{G(pk; (u),u) : i € N,u € "1 < oo. It
follows from the dominated convergence theorem that
lim Vg (K;) = lim
1—> 00 1—> 00

1 G(pk,; (u), u)du :/ 1 Iim G(pk, (u), u)du = Vg(K).

sn—

sn—
O

Proposition 6.2 Let G and G, be continuous on (0, 00) X S et ¥ : (0, 00) — (0, 00)
be continuous, and let K € IC?O). The following statements hold.

(i) The signed measure gc,,/,(K, -) is absolutely continuous wgh respect to S(L(, 2.
(i) IfK; € IC?O), ieNand K; —> K € IC?O) asi — oo, then Cg y (K;, ) = Cg y (K, )
weakly.



(iii) If G; > 0 on (0,00) x "™ (or G; < 0 on (0,00) x S"7!), then Co.y(K, ) (or
—Cg,y (K, -), respectively) is a nonzero finite Borel measure not concentrated on any
closed hemisphere.

Proof (i) Let E C S"~! be a Borel set such that S(K, E) = 0. If g = 1, the left-hand side
of (22) is ag,w(K , E). This equals the expression in (23), in which we observe that since
K e ICE’O), for x € 0K both |x| and (x, vk (x)) = hg (vk (x)) are bounded away from zero
and bounded above, and hence our assumptions imply that

Pk (X) G (pk (X), X) (x, vg (X))
Y ((x, vg (x)) |x]"

where X = x/|x|. Then from (22) and (23) we conclude, using (3), that

= < 00,

xedK

CowK.E) <c| 1pwk&)dx =cH' (v (E)) =cS(K,E)=0.
14 K K

(ii) Let g : $"~! — R be continuous and let

ok W) Gi(pk (u), u)
Y (hg (ak (u)))

be the integrand of the right-hand side of (22). Suppose that K; € ICE’U), ieNandK; > K €
ICZ’O). By [13, Lemma 2.2], ax; — ag and hence, by the continuity of G, and the continuity

I (u) = g(ak ()

of the map (K, u) — hg (u) (see [22, Lemma 1.8.12]), Ix, — Ik, H"L_almost everywhere
on §"~!. Moreover, our assumptions clearly yield sup{/g;(u) :i e Nyu e §*1) < oo, Tt
follows from (22) and the dominated convergence theorem that

/S g()dCo.y (Kiu) — fs () dCo,y (K, u)

as i — 00, as required.
(iii) Suppose that G; > 0 on (0, c0) x $7~1: the case when G, < 0 on (0, o) x S"!is
similar. Let m = min,cyx Jx (x), where
Pk (X) G (pk (X), X) {x, vk (x))
Jx(x) = m ;
Y ({x, vk (X)) x|

and x = x/|x|. Since K € IC’ZO), our assumptions imply that m > 0. By (22) and (23),

x € 0K,

/ (, )4+ dCq y (K, v) = / (u, vig (X)) 4 Jg (x) dx
sn—1 0K
me (u,vK(x))+dx:m/ (u,v)+ dS(K,v) > 0,
0K sn—1

because S(K, -) satisfies (4). This shows that 5G,1/,(K, -) also satisfies (4). O

In view of Proposition 6.2(iii), one can ask the following Minkowski-type problem for
the signed measure Cg v (-, -).

Problem 6.3 For which nonzero finite Borel measures 1 on $”~! and continuous functions
G :(0,00) x "1 — (0, 00) and ¥ : (0, 00) — (0, 00) do there exist T € Rand K € IC’(’O)
suchthat u =t 5(;,,//(1(, ?



It follows immediately from (24), on using [21, (2.2), p. 93 and (3.28), p. 106], that solving
Problem 6.3 requires finding an 4 : §"~1 — (0, 00) and T € R that solve (in the weak sense)
the Monge—Ampere equation

th
Y oh

where P(x) = |x|'™"G,(|x|, x/|x]) for x € R"\ {o}. Here f plays the role of the density
function of the measure p in Problem 6.3 if w is absolutely continuous with respect to
spherical Lebesgue measure. Formally, then, Problem 6.3 is more difficult, since it calls for
h in (59) to be the support function of a convex body and also a solution for measures that
may not have a density function f.

To see that (59) is more general than (1), note firstly that the homogeneity of the left-hand
side of (1) allows us to set T = 1, without loss of generality (if p # g, which is true in the
case p > 0, ¢ < 0 of particular interest in the present paper). Let p,qg € Randlet Q € S7,.
Fort > 0andu € §" !, weset ¥ (¢t) = t? and G (¢, u) = (/tipow)*~4,if g # 0, and
G(t,u) = (logt)pg(u)", otherwise. (When g < 0, we have G : (0, c0) x §"~1 5 Rand
Remark 5.4 applies.) Then, using the fact that pp is homogeneous of degree —1, we have
P(x) = po(x)'74,for g € R and x € R"\{o}. Therefore (59) becomes

P(Vh + ho) det(VZh + ki) = f, (59)

P |Vh + ht||’1Q_" det(V2h + hi) = f,

where || - | = 1/pg is the gauge function of Q. Note that || - || o is an n-dimensional Banach
norm if Q is convex and origin symmetric.

Our contribution to Problem 6.3 is as follows. For the statement and proof of the result,
we define

Ze() =f{ue S (u,v) =€)
forve S Lande € (0, 1).

Theorem 6.4 Let ju be a nonzero finite Borel measure on S™~ not concentrated on any closed
hemisphere. Let G and G be continuous on (0, 00) X $"Vandlet G, < 0on (0, 00) x §"~ 1L,
Let 0 < g9 < 1 and suppose that for v € S"~1,

lim G, u)du =00 and lim G(t,u)du = 0. (60)

t—0+ ):fo(v) =00 [en—1

Let  : (0, 00) — (0, 00) be continuous and satisfy

o0
/ AR 61)
1 S
Then there exists K € IC?O) such that
Cou(K,-
mo_ G.y(K,-) 62)

il Coy(K, Sn=1)

Proof Note that the limits in (60) exist, since r — G (¢, u) is decreasing. Define

t
(p(t):/ VG 45 i o, (63)
1

N

and

1
a= —/ V) 45 e RU (=00}, (64)
0

N



Then, by (61), (63), and (64), ¢ € J, is strictly increasing and continuously differentiable
with z¢/ () = ¥ (¢) for t > 0; the latter equality implies that ¢’ is nonzero on (0, 00).
For f € Ct(§" 1), let

1
F(f) = — / o(f (W) dp(u), 65)
[l Jsn—1

and for K € K"

() define F(K) = F(hg). We claim that

« = inf [F(K) : Vo (K) = |pe] and K € ic’go)} (66)

is well defined with @ € R U {—oo} because there is a K € IC’(’O) with ‘7G (K) = |u]. To see
this, note that

Vo (rB™) :/

G@r,u)du > / G(r,u)du
Sn—l

Zeo ()

forany v € $"~1. Then (60) yields Vg(rB") — ooasr — 0,and Vg(rB”) — Qasr — o0.
Since r VG (r B™) is continuous, there is an rg > 0 such that ‘76 (roB™) = |u|. It follows
from (66) that @ € R U {—o0}.

By (66), there are K; € K/, , i € N, such that Vi (K;) = || and

lim F(K;) =a. (67)

1—>00

We aim to show that there is a K € IC?’O) with \7@(1(0) = |u| and F(Kp) = a.

To this end, we first claim that there is an R > 0 such that K i* C RB",i € N. Suppose on
the contrary that sup; .y R; = 00, where R; = max, ¢ gn-1 Pk (u) = Pk} (v;), say. By taking
a subsequence, if necessary, we may suppose that v; — vg € 8"~ ! and lim; .o R; = 00.
There exists ip € N such that |v; — vg| < £0/2 whenever i > iy. Hence, if u € X, (vo) and
i > o, then (u, v;) > &o/2. It follows that for u € X, (vo) and i > i, we have

hix(u) = p(vi)(u, vi) = Riu, vi) = Rigo/2

and therefore
W= [ Gxwwdi= [ Gl wdu
N sn=

z/ Glhg()~", u) du z/ G2/ (Rieo), 1) du — o
Zep (v0) ' Bey (v0)

as i — oo. This contradiction proves our claim.

By the Blaschke selection theorem, we may assume that K — L for some L € K".
Suppose that L ¢ IC?O).Theno € 9L, sothereexists wg € $" ! such thatlim;_, oo hK[* (wp) =
hr (wo) = 0. Since || > 0 and w is not concentrated on any closed hemisphere, there is an
& € (0, 1) such that (X (wp)) > 0. Let v € X (wp). Since

1
0 < pky(v) = hi; (wo) = ~h; (wo) — 0

(v, wo)



asi — 00, it follows that Pk = 0 uniformly on ¥, (wg). As Vg(K ) = |uland K C RB",
using (5), (65), (66), and (67) we obtain

o= hm F(K;) = lim i 0 (pK_*(u)fl) du(u)
i—oo |u| Jsn-1 :
o1 -1
> liminf —/ 7 (pK.* (u) ) dp(u)
i=oo il Jz, (wo) ‘
1
— @ (1/R) du(u)
[l Jsn=1\5c (wo)
> Mhm inf min {(p (pK_»f(u)”) ‘u € Zg(wo)}
|l i—00 '
Sn—l ES
+w¢(1/m -

[

This is not possible, so L € ICE’O)
Let Ko = L* € IC?O). Then K; — Kp asi — oo in IC?O). Hence, hx, — hg, > 0
uniformly on S”~!. The continuity of ¢ ensures that

sup{|@(hk, ()] i € N,u € S"71} < o0.

Now it follows from (65), (67), and the dominated convergence theorem that
1
o= lim F(K;) = —/ lim @(hg,; (u))du(u)
i—00 || Jgn—1i—o0
1
= */ o(hg,(w) du(u) = F(Ko). (68)
el Jsn—1

Also, by Lemma 6.1, we have Vg(Ko) = ||, so the aim stated earlier has been achieved. It
also follows from (68) that o € R.

We now show that K| satisfies (62) with K replaced by K. Dueto ¢ € J, and f > hyz,
one has F(f) = F(his) = F([f]) for f € CcH(s" 1. By (68),

Fhg,) = F(Ko) = =inf(F(f) : Vg([f]) = |uland f € CT(s" D). (69)

Letg € C(S" Y. Foru € $"! and sufficiently small €1, &2 > 0, let A, ., be defined by
(7) with f and eg replaced by hg, and €1 g + &2, respectively, i.e.,

Reye, () = @71 (@(hk, () + £18(u) + &2) . (70)
Then for sufficiently small &, we have
Reyteney ) = @ (@(hey e, () + £g(u))
and
heyerre @) = @~ (p(hey e, ) +¢) .

The properties of ¢ listed after (64) allow us to apply (58), with @ = §"~! and with /¢ and
he replaced by hg, ¢, and hg, 4 ¢,, respectively, to obtain

d ~ Ve ([h — Vg ([h
TVG([hel,sz]) = lim G([ 61+£,52]) G([ 81,6‘2])
&1 e—0 &

= nv/:gnfl g(l/t) danw([hé‘l,Sz], M)
(71)



and with g, ho, and & replaced by 1, h¢, ¢, and hg, ¢, 4, respectively, to yield

0 ~ ~ ~
T&VG([}[ELSQ]) = n/S”fl 1dCa .y ([hey &), 1) = 1 Cg oy (hey 6,1, ") # 0. (72)

Since [h¢, ¢, ] depends continuously on g1, &2 and in view of Proposition 6.2(ii), (71) and
(72) show that the gradient of the map (e, &2) Vg([hgl,EZ]) has rank 1 and depends
continuously on (g1, &), implying that this map is continuously differentiable. Hence we
may apply the method of Lagrange multipliers to conclude from (69) that there is a constant
7 = t(g) such that

d ~
= (Flhey.e0) + T0log Vg ey o) — loglu) | =0 73)
881 e1=e2=0
and 5
= (Flhe, e0) + 70g Vo (lhe ) — logluh) | =0, 74)
882 e1=e2=0
By (65) and (70), we have
8F(h ) ! a/((h())-l- (u) + &2) dp(u)
— = — | — & &
deg e e1=62=0 || \ dep Jgn—1 pliaotu 188 2)aptu g1=62=0
1
= 7/ g(u)du(u) (75)
el Jsn—1
and 9
—F(h = — 1d =1. 76
PP (hey.er) ermerm0 Tl Jou w(u) (76)
Since VG (Ko) = || and (70) gives ho,0 = hk,, (71) and (72) imply that
d ~ ~
— log Vg ([h = — dC Ko, 77
g loe Vot ed| = | s aCoy (Ko w )
and
rog Vollhey oh| = 8oy (Ko, (78)
den P2 g =ey=0 [l v ' .
It follows from (73), (75), and (77) that
[z dnw ==nr [ oo 79)
and from (74), (76), and (78) that
. — [ 80)

o Ca,y (Ko, S"1)’

In particular, we see from (80) that t is independent of g. Finally, (79) and (80) show that
(62) holds with K replaced by Kj. O

‘We remark that —50,1# (K, -) is anonnegative measure since G, < 0. Note that (60) holds
iflim,, o4 G(t,u) = ooforu € $"1and limy_, 00 G(¢, u) = 0 foru € =, (v). This follows
from the monotone convergence theorem, since ¢ — G (, u) is decreasing. In order to solve
Problem 6.3 when ¢t — G(t, u) is increasing, one needs to use different techniques and we
leave it for future work [7].

When ¥ = 1 (and hence ¢(t) = logt € J_), the following result was proved in [24,
Theorem 5.1].



Corollary 6.5 Let y1 be a nonzero finite Borel measure on S"~' not concentrated on any
closed hemisphere. Let ¢ : R"\{o} — (0, 00) be continuous and such that ® is continuous
on (0, 00) x §"~1 where ® is defined by (17). Let 0 < ¢ < 1 and suppose that forv € §"~1,

lim Vg4(C(v,b = 81
Jim Ve(C(v. b, e)) = oo, 81)

where C(v,b,c) = {x € R" : |x| > b and (x/|x|, v) > ¢} and V¢(-) is defined by (18). Let

Y 1 (0, 00) — (0, 00) be continuous and satisfy (61). Then there exists K € K'(lo) such that

7 5¢,w(K, 2)

il Cyy (K, Sn=1)

Proof By assumption, ® is continuous on (0, c0) x §"~!, and lim; o0 D(r, u) =0foru e
S§7—1 Hence the second condition in (60) holds with G replaced by ®. Clearly, 0®(¢, u)/dt =
—¢(ru)"~ ! < 0. By (81),

o0
0o = lim V4(C,b,c) = li "~lgrdu = i Db, u)du.
b—l>r(l)l+ ¢( (U ) b:}%l"‘/c(v)/b d)(ru)r rau b—l>r(r)1+ S (v) ( u)du

Therefore the first condition in (60) also holds with G replaced by ®. Since 55”//(1( L) =
—’(Z;,,,/, (K, ), Theorem 6.4 yields the result. O

Another special case arises if p is a discrete measure on §"=1 that is, n= Z:": 1 CiBu;s
where ¢; > Ofori = 1,...,m, and vy, ..., v, € S"! are not contained in any closed
hemisphere. Let G and ¥ be as in Theorem 6.4. Then there exists a polytope P € IC?’O) such
that

n Ce.y(P,-)

Il Coy(P, S0
To see this, note that Theorem 6.4 ensures the existence of a K € IC?O) such that (62) holds.
Since u is discrete, we obtain

m

CGyw(K, ) = ZEi(Sviv

i=1
where ¢; = 5G,1/,(K, S”_])c,-/|,u| <Ofori =1,..., m.Proposition 6.2(i) shows that there
is a measurable function g : S§"~1 5 (=00, 0] such that

> sy (E) = / gu)dS(K, u)
i=1 E

for Borel sets E C $"!. Hence S(K, -) is a discrete measure and [22, Theorem 4.5.4]
implies that K is a polytope.
7 Dual Orlicz-Brunn-Minkowski inequalities

Let ®,, be the set of continuous functions ¢ : [0, 00)™ — [0, co) that are strictly increasing in
each component and such that ¢(0) = 0, ¢(e;) = 1forl < j < m,and lim;, o, ¢(tx) = 00



forx € [0, 0c0)"™\{o}. By ¥,, we mean the set of continuous functions ¢ : (0, c0)™ — (0, 00),
such that for x = (xq, ..., x;) € (0, c0)™,

p(x) =go(1/x1, ..., 1/xpm) (82)

for some @y € ®,,. It is easy to see that if ¢ € W, then ¢ is strictly decreasing in each
component and such that lim;_, ¢ w(th: o0 and lim;_, o ¢ (tx) = 0 for x € (0, c0)™.
LetKy, ..., Ky € S, andletg € ®,, UW,,. Define T4 (K1, ..., Ky) € S, , the radial

Orlicz sum of K1, ..., K, to be the star body whose radial function satisfies
u u
© pK]( ) o me( ) -1 (83)
pj':(p(Kl ~~~~~ Km)(u) p"F¢(K1 ~~~~~ Km)(u)

foru € "1 It was proved in [6, Theorem 3.2(v) and (vi)] that if ¢ € ®,,, then
T (Ky.oo Koy () > p; () foru € §"71, (84)
Together with (82) and (83), this implies that if ¢ € V,,, then
PT g (Koo 0) < PK; () foru € §". (85)
Foreach0 # g e Rand ¢ € ®,, UW,,, let
00 =g (x 0/ ) forx = (xr. o x) € (0,00, (86)

Then (83) is equivalent to

w w \
g Npkl— . N'OK'"— =1 (87)
PT (K1 K) @) PT (K1 K) @)

Fort € (0, 00) and u € S"~ 1, let

Gy(t.u) = G(ttq’ “ (88)

The proof of the following result closely follows that of [6, Theorem 4.1].

Theorem 7.1 Let m,n > 2, let ¢ € ®,, U W, let Ky, ..., K,y € SIy, let G : (0, 00) x
S§"=1 5 (0, 00) be continuous, and let @q and G4 be defined by (86) and (88). Suppose that
@q is convex and either g > 0 and G 4(t, -) is increasing, or ¢ < 0 and G4(t, -) is decreasing.
Then

ey (N Vo (K1) )”‘1 (~ V6 (Kn) )”" )
- Vo(Fo(Ki, ... Kn)) /) 7 T\ Va(Fp(Ki, ..., Kn)) '

The reverse inequality holds if instead ¢4 is concave and either ¢ > 0 and G4(t, ") is
decreasing, or g < 0 and G4(t, -) is increasing.

If in addition @, is strictly convex (or strictly concave, as appropriate) and equality holds
in (89), then K1, ..., Ky, are dilatates of each other.

Proof Let ¢ € ®&,, U W, and let Ky,..., K, € SP,. It follows from (83) that
PT Ky, K@) > 0 foru € $"=1. By (16), one can define a probability measure ;. on
Snfl by

G(p‘T’w(Klw---,Km)(u)’u)d
— u
Ve (+o(Kis .oy Kim))

du(u) = (90)



Suppose that ¢ € ®,,, ¢ > 0, and G, (t, ) is increasing. By (87) and Jensen’s inequality [6,
Proposition 2.2] applied to the convex function ¢, similarly to the proof of [6, Theorem 4.1],
we have

q a
1=/ ool (—L9 ) (2 ) ) g
sn-1 PF (K. Ky (1) PF (K. Ky (1)

Z“’q(/s o | %W’du(“)). o1

1=t PF (Ko Ky) (W) 11 OF (K Ko ()

Since ¢ € ®,, and g > 0, g, is strictly increasing in each component. According to (84) and
the fact that G, (¢, -) is increasing, we have

Pk, (u)?

WG(PI-W(KI ,,,,, Ko@), u) = G(pk,; (), u) 92)
+(p Kl ~~~~~ Km

for j =1, ..., m. Using (90), we obtain

Vo (K ;) 1
~ === G(pk; (), u)du
VG(+</J(K]»--~5Km)) VG(+¢(K17-~-’Km)) N
1 pi; )T G(pF (k... K, W), 1)
< u
Vo(+o(Ki, ..., Kp)) Jsn—1 PE (K. K )7
pk; ()7
= f e dpw)
Sl PF (Ko Ko @)Y
for j =1, ..., m. Since g, is strictly increasing in each component and (91) holds, we get
Pk, W) PK,, ()4
1> g, / ‘—du(u),...,/ — P )
171 P (Koo Ki) W1 11 PF (K K) )
- ( Vg (K1) Vi (Kin) >
T\ Ve(FeKr o Kn)) T Ve(F(Kr o K))

B < Vo (K1) )”q ( Vo (Kn) )”"
=g — e | == , 93)
VG(+<p(K15~~-aKm)) VG(+<p(Kls-~-,Km))

which yields (89).

Suppose in addition that ¢, is strictly convex and equality holds in (89). Then equality
holds throughout (93) and hence in (91). Therefore equality holds in Jensen’s inequality as
used above. Since G > 0, the definition (90) of u shows that its support is the whole of
S§"=1 Then, exactly as in the proof of [6, Theorem 4.1], we can conclude that K1, ..., K,
are dilatates of each other.

This proves (89) and the implication in case of equality when ¢ € ®,,,¢ > 0, and Gy(t,-)
is increasing. The other cases are similar, noting that if ¢ € W,,, we can use (85) instead
of (84), and if ¢, is concave, Jensen’s inequality [6, Proposition 2.2] yields the reverse of
inequality (91). O

It is possible to state more general versions of Theorem 7.1 that hold when K1, ..., K, €
S". Indeed, the definition (83) of the radial Orlicz sum can be modified, as in [6, p. 817], so
that it applies when K7y, ..., K,, € S§". Then extra assumptions would have to be made in
Theorem 7.1, analogous to the one in [6, Theorem 4.1] that V;,(K ;) > 0 for some j, but now



also involving the function G. Note that the stronger assumption that K1, ..., K,;, € S, is
still required for the implication in case of equality, as it is in [6, Theorem 4.1].

Under certain circumstances, equality holds in Theorem 7.1 if and only if K1, ..., K,
are dilatates of each other. One such is given in Corollary 7.2, and it is easy to see that this
is true more generally if G is of the form G (¢, u) = t9 H(u), where t > O and u € s for
some ¢ # 0 and suitable function H, since equality then holds in (92). However, it does not
seem straightforward to formulate a precise condition and we do not pursue the matter here.

Dual Orlicz—Brunn—Minkowski inequalities for V¢ ), Lp(-), and \74),(/,(-, -) follow
directly from Theorem 7.1, once the corresponding assumptions are verified. We shall only
state the special case when G (¢, u) = t?pp(u)" "4 /n for some Q € S/, . Then, for g # 0,
we have

~ 1 ~
Ve (K) = /SH Glog (), u)du = — /SH px W po()"™du=Vy(K,Q), (94

the gth dual mixed volume of K and Q, as in (20).
The following result was proved for ¢ = n and Q = B”" in [6, Theorem 4.1].

Corollary7.2 Letm,n > 2, letq # 0, let ¢ € ®,, UW,y,, and let Q, K1, ..., Ky € Sl If
@q is convex, then

e 7, (K1, ) . AL R N B
- Vq(‘TTp(Klsn-’Km), Q) T Vq(‘T‘(p(Klw-me)’ Q) .

If @4 is concave, the inequality is reversed. If instead g is strictly convex or strictly concave,
respectively, then equality holds in (89) if and only if K1, . . ., K, are dilatates of each other.

Proof The required inequalities and the necessity of the equality condition follow immedi-
ately from Theorem 7.1 on noting that G, (t, u) = pg(u)"~9/n is a constant function of
t.

Suppose that K1, ..., K,, are dilatates of each other, so K; = ¢; K and hence pk, = c;pk
for some K € Sg’+ andc¢; > 0,i =1,...,m.Letd > 0 be the unique solution of
c cm)
— ., =1. 96
o(50 (96)

Comparing (83), we obtain PE, (K. k,) ) = dpg (u) foru € $"~! and hence we have
'E‘ﬂ(!,(l’ ..., K,;) =dK.From (24), we get Vq(Ki, 0) = c? ‘7,1(1(, 0),i=1,...,m,and
V(o (K1, ..., Kp), Q) =d? V, (K, Q). Substituting for ¢;,i =1, ..., m, and d from the
latter two equations into (96), we obtain (95) with equality. ]

8 Dual Orlicz-Minkowski inequalities and uniqueness results

Let K,L,Q € S, ,letq # 0, and let ¢ : (0,00) — (0, 00) be continuous. It will be
convenient to define

~ 1
Vou (K. L. Q) =~ /S v ( Z %i) pr @) po ()" du. ©7)

Note that this is a special case of the general dual Orlicz mixed volume \7¢,¢, (K, L) defined
in (44), obtained by setting ¢ (x) = [x|97" po(x/Ix]|)""9. When g = n, (97) becomes the
dual Orlicz mixed volume introduced in [6,26], and when ¢ = n and Q = B", the following



result yields the dual Orlicz—Minkowski inequality established in [6, Theorem 6.1] and [26,
Theorem 5.1].

Theorem 8.1 Let K, L, Q € S, letq # 0, let ¢ : (0, 00) — (0, 00) be continuous, and
let @4 (1) = (p(tl/q)fort € (0, 00). If 4 is convex, then

VL. 0) ) " (98)

V(K. L. Q)= V,(K. Q) (v(K o
q s

The reverse inequality holds if ¢, is concave. If @, is strictly convex or strictly concave,
respectively, equality holds in the above inequalities if and only if K and L are dilatates of
each other.

Proof Let g # 0 and let ¢, be convex. By (94), one can define a probability measure /i by

px W) po )4

dp(u) = an(K, 0)

Jensen’s inequality [6, Proposition 2.2] implies that

~ 1
ot 0= [ (250 e e

_ 5 pL)\1\ -
=YK O gn-1 wq((ﬂl{(u)) ) drn
~ pr)\? )
V, (K, d

q( 0) Dq </§n_] <,0K(M)) a(u)

_ 5 pL)? po(u)"~1
= V4 (K, 0) ¢4 (/S”_l W d“)

v

7o\
V,(K, Q) '

=V,(K, Q)¢ <

where the first and the last equalities are due to (97) and (94), respectively.

Suppose that ¢, is strictly convex and equality holds in (98). Then the above proof and the
equality condition for Jensen’s equality show that p; (1)/pg (1) is a constant for fi-almost
all u € $"~! and hence for H"'-almost all u € $"~!. Since px and p; are continuous,
pL(u)/pk (1) is a constant for u € S~ and so K and L are dilatates of each other.

If instead ¢, is concave, the proof is similar since Jensen’s inequality [6, Proposition 2.2]
also reverses. O

Corollary8.2 Let K, L, Q € S, let g # 0, let ¢ : (0,00) — (0, 00), and let ¢,(t) =
oY1) fort € (0, 00). Suppose that ¢ is either increasing or decreasing, and that @q is
either strictly convex or strictly concave. Then K = L if either
Voo (K. M. Q) Vg (L. M. Q)

Ve(K, Q) V(L. Q)

99)

holds for all M € S, or
Voo(M. K. Q)= Vg (M. L. Q) (100)
holds for all M € S, .



Proof Let g # 0 and suppose that (99) holds for all M € S, . Assume that ¢ is increasing
and ¢, is strictly convex; the other three cases can be dealt with similarly. Taking M = K in
(99), it follows from (20), (97) with L = K, and (98) with K and L interchanged, that

Voo KK 0) _ VypLK, Q) _ (Vq(K, Q))”q

1) = +Z = = 101
AT Y7} Vy(L. Q) Vy(L. Q) (ob
Since ¢ is increasing, we get
~ 1/q
> M . (102)
Vg(L, Q)

Repeating the argument with K and L interchanged yields the reverse inequality. Hence we
get Vq (K, Q) = Vq (L, Q), from which we obtain equality in (101). The equality condmon
for (98) implies that L = rK for some r > 0. This together with Vq(K 0) = Vq (L, Q)
easily yields K = L.

Now suppose that (100) holds for all M € S, . Taking M = K and arguing as above, we
get

o() Vy(K, Q) = Vg o(K, K, Q) =V, 4(K, L, Q) > V,(K, Q) ¢ M
’ ’ V,(K, Q)

(103)
Therefore (102) holds. Interchanging K and L yields the reverse inequality and hence we
have Vq(K Q) = Vq (L, Q), giving equality in (103). Exactly as above, we conclude that
K =1L. O

Corollary8.3 Let K, L, Q € S, letq # 0, let ¢ : (0, 00) — (0, 00) be continuous, and
let g4 (1) = (p(tl/q)fort € (0, 00). If @, is strictly convex or strictly concave and

Ve (K. M. Q) =V, (L. M. Q) (104)
forallM € S, then K = L.

Proof Let g # 0 and let @ > 0. Replacing K and L by L and « L, respectively, in (97), and
taking (94) into account, we obtain,
(a)
o(1)

Suppose that ¢, is strictly convex; the case when ¢, is strictly concave is similar. Using
(104) with M = oL, (98) implies that

Vgo(L,aL, Q) = Vao(L, L, Q) = p(@)Vy(L, Q).

Vq(L,Q>)”"

0@V (L, 0=V (L, aL, 0)=Vy (K, aL, Q)= V4 (K, Q)| « (Vq(K, 0)

(105)
Let

AN
Ve(K, Q)
Then (105) reads c?¢(a) > ¢(ac). When o = 1, we obtain
lo(1) = p(c). (106)



Repeating the argument with K and L interchanged yields ¢ 7¢(a) > @(ac™!). Setting
a=c,wegetc p(c) > ¢(1) and hence

co(1) < p(c). (107)

By (106) and (107), ¢(c) = c?¢(1), which means that
~ 1/q ~
Lo\ _heo
V,(K, Q) VoK, Q)"

Thus equality holds in (105) when « = 1. By the equality condition for (98), we conclude
that L = r K for some r > 0. That is, K and L are dilatates of each other.

Suppose that L = rK, where r > 0 and r # 1. Let « > 0. Then (94), (97), and (104)
with M = K yield

P@Vy(K, Q) =V, o(K,aK, Q) = V, ,(rK,aK, Q) = ¢(a/r)r! V,(K, Q).

Consequently, p(rs) = rf¢(s) fors > 0. Equivalently, setting 8 = ¢ and t = s9, we obtain
@q(Bt) = Byy(t) fort > 0, where B # 1. But then the points (8™, ¢, (™)), m € N, all lie
on the line y = ¢(1)x in R, so ¢4 cannot be strictly convex. This contradiction proves that
r = 1and hence K = L. O

LetK,L € IC’(’O). We recall from [5,23] that for ¢ € (0, co) — (0, 00), the Orlicz mixed
volume V, (K, L) is defined by

1 h
kD= [ o (FED ) e dS K. w. (108)
n Jgn-t hi (u)
The Orlicz—Minkowski inequality [5, Theorem 9.2] (see also [23, Theorem 2]) states that if
¢ € T is convex, then
Va (@) \"
Vo,(K,L) > V,(K) ( ) . (109)
v " “’( Vi (K)

If ¢ is strictly convex, equality in (109) holds if and only if K and L are dilatates of each
other. When ¢(t) = t, we write V,(K, L) = V1(K, L) and retrieve from (109) Minkowski’s
first inequality

Vi(K, L) = Vo (K)" Vv, (. (110)

Note that (110) actually holds for all K, L € K", with equality if and only if K and L lie in
parallel hyperplanes or are homothetic; see [3, Theorem B.2.1] or [22, Theorem 6.2.1].
Letgp €e ZUDandletn € N, n > 2. We say that ¢ behaves like t" if thereisr > 0,r # 1,
suchthat p(rt) = r'*¢(t) fort > 0. Of course, if p(¢) = t", then ¢ behaves like t"*, but there is
a@ € ZUD thatbehaves like " such that ¢(¢) # t" for some r > 0. To see this, let f(t) = t"
and define ¢(¢) on [1, 2], such that (i) ¢ is increasing and strictly convex, (ii) ¢(¢) = f(¢)
att = land r = 2, (i) ¢,.(1) = f'(1) and ¢;(2) = f'(2), and (iv) () < f(t) on (1,2).
Then define ¢ on [1/2, 1] by ¢(t) = ¢(2t)/2" and on [2, 4] by ¢(t) = 2"¢(t/2). It follows
that ¢ is increasing and strictly convex on [1/2, 1Jand on [2, 4], ¢(¢) = f(¢) att = 1/2 and
t=4,¢.(1/2) = ¢L()/2"" = f'(1/2), gj&) = 2" 1g[(2) = f'(4), and ¢(1) < [ (1)
on (1/2,1) U (2,4). Moreover, ¢;(t) = ¢,(t) att = 1 and t = 2, so ¢ is increasing and
strictly convex on [1/2, 4]. Continuing inductively, we define ¢ on [1/2™, 2ty e N,
and hence on (0, 00), so that it is increasing and strictly convex, ¢ () = " fort = 1/2" and
t =2",meN,and ¢(1/2) = 27"¢(¢t) for t > 0, but ¢ is not identically equal to #". This



construction for r = 1/2 (or, equivalently, » = 2) can be easily modified for other values of
r>0,r#1l.

The following result can be obtained from (109) and the argument in the proof of Corol-
lary 8.3.

Corollary 8.4 Let K, L € IC?O). Suppose that ¢ € 1 is strictly convex and V,(K, M) =
Vo(L, M) for all M e K?o). Then K and L are dilatates of each other. Moreover, K = L
unless ¢ behaves like t".

Note that the restriction in the second statement of the previous theorem is necessary,
since it is evident from (108) that if ¢ behaves like ¢", then for the corresponding r # 1, we
have V(K, M) = V(rK, M) forall M € ICE’O)‘

Let Ii, L e ICZ’U), let O € S/, ,andlet p,g € R. In [21, (1.13), p. 91], the (p, q)-mixed
volume Vp, (K, L, Q) was defined by setting g = hi in (39):

Vpg(K, L, Q) :/

sn
1

= /L;"*‘ hi (g )P hg (g )P pg ) po )"~ du.

_ 1 he(ax @)\ ([ px@)\? .
‘;/SH (hk(am))) (pQ<u)> po )" du. (111)

Inspired by (111), we can consider the nonlinear Orlicz dual curvature functionals defined

by

1 / ( ( flak ) ) <pk(u)>”> 0

= o\v po )" du,

n Jg hi(ax@) ) \pow)) ) "°
where ¢, ¥ : (0, 00) — (0, 00) are continuous functions and f € C1(S"~!). We can then
take f = hp to define the (¢, ¥)-mixed volume

~ 1 ho(ag @)\ ((px@)\" 0

on B L O = /s ")<"’<h1<(a1<(u>)> (pQ(u)> ) poluydu
This is a natural generalization of (111) when ¢ # 0, corresponding to taking ¢(¢) = t4/n
and ¥ (r) = 1"P/4.

When L € IC?D), the following result provides a common generalization of [5, Theo-
rem 9.2], [6, Theorem 6.1] (see also [26, Theorem 2]), and [21, Theorem 7.4]. The first
corresponds to taking K = Q when ¢ there is replaced by ¢ o v, the second corresponds
to taking K = L, and the third is obtained by the choices of ¢ and v given in the previous
paragraph. Note that in the latter case, for the convexity of ¢ and ¥ we then require that
1 < g/n < p, which is precisely the assumption made in [21].

 h@)?dCp (K. Q. u)

Theorem 8.5 Let K, L € IC’(’O) andlet Q € S!,. If ¢, ¥ : (0, 00) — (0, 00) are increasing
and convex, then

~ V, (K V(L) \ /"
V(K. L. Q) > w(VHEQ; w((v((K))> )) V,(0). (112)

If  and r are strictly convex, equality holds if and only if K, L, and Q are dilatates of each
other:




Proof Setting Q = K and p = 1 in [21, (7.6), Proposition 7.2], (111), and (39), we have,
for any g # 0,

Vi(K,L) = Vi 4(K,L,K)
=/ th(u)dan(K,K,u)

Sll*
1/ hi(ag(u))

n Jgn-1 hi (ag ()

ox W) du. (113)

We use Jensen’s inequality [6, Proposition 2.2] twice, once with ¢ and once with v,
Minkowski’s first inequality (110), and (113) to obtain

Vow(K.L.O) 1 ((hL<aK(u)>><pK<u)>”> "y
@ @ Joo A\ ikaran ) g ) ) 720"

I (o ) /OK(M)>" . )
d
Zg"(nvn(Q) S,,ﬁ(,mmu))) <pQ(u> po(u)” du

W(VH(K) ) 1 1)0<I/1L(05K(M))>IO ()" du)
V(@) nVu(K) Jsit " \ g (ax )y )%

Vu(K) 1 hi (o (1))
"d
(Vn(Q) 1//<nV,,(K) gt hK(OtK(u))pK(u) u))

(vn(K)¢<v1<K,L)>>
AN ARANATS)

Vi (K) V(L) \'"
Zg”(v,,(Qf/’((Vn(K)) ))
as required.

Suppose that ¢ and  are strictly convex and that equality holds in (112). Then equality
holds throughout the previous display. As in the proof of [5, Lemma 9.1], equalities in
Minkowski’s first inequality and in Jensen’s inequality with ¢ implies that K and L are
dilatates of each other. Then equality in Jensen’s inequality with ¢ implies that K and Q are
dilatates of each other. O

%
S

‘We omit the proof of the following corollary, which is again similar to that of Corollary 8.3.

Corollary 8.6 Let K, L € IC’(’O), and suppose that ¢, ¥ : (0, 00) — (0, 00) are increasing

and strictly convex. Iff/;p,g/,(K, M, Q) = Vw,y,(L, M, Q) forM =aK,a >0, Q=K and
for M = oL, a >0, Q = L, then K and L are dilatates of each other. Moreover, K = L
unless r behaves like t”.NIfl// behaves like t" with  (rt) = r"y (t), t > 0, for some r > 0,

then Vi (K, M, Q) = Vy 4 (rK, M, Q) forall K, M, Q € KI., .
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