

14th International Workshop on Spallation Materials Technology IWSMT-1411th - 16th Nov., 2018 Iwaki, Fukushima, Japan,

Effect of oxygen concentration in static Pb at 700 °C and Pb-Bi eutectic at 550°C on corrosion behavior of aluminium-alloyed austenitic steels

Valentyn Tsisar ^a, Carsten Schroer ^a, Zhangjian Zhou ^b, Olaf Wedemeyer ª, Aleksandr Skrypnik ª, Jürgen Konys ª

- a. Karlsruhe Institute of Technology (KIT), Institute for Applied Materials Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 *Eggenstein-Leopoldshafen, Germany*
- b. School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS (IAM-WPT)

Outline

BACKGROUND ON COMPATIBILITY ISSUES OF STEELS IN CONTACT WITH HEAVY-LIQUID METALS AS APPLIED FOR GEN-IV REACTORS AND ADS

 EFFECT OF OXYGEN CONCENTRATION IN HEAVY-LIQUID METALS ON THE CORROSION RESPONSE OF ALUMINIUM-ALLOYED AUSTENITIC STEELS

- *Corrosion test in static Pb at 700˚C*
- **I** *Corrosion test in static Pb-Bi eutectic at 550˚C*
- **PRECIPITATIONS AND DEPOSITS FOUND IN THE CORRIDA LOOP AFTER OPERATION FOR 113000 h**

 PHENOMENOLOGICAL MODEL DESCRIBING LIQUID-METAL EMBRITTLEMENT OF STEELS (LME) IN HEAVY-LIQUID METALS DEVELOPED IN PhMI NASU

DISSOLUTION OF STEELS IN HLM

(a) Solution-based attack is controlled by the Cr diffusion in the near surface layer of steel;

(b, c) Solution-based attack is controlled by the diffusion in boundary layer of liquid metal. $\qquad \qquad \qquad \textbf{(c)}$

BACKGROUND ON COMPATIBILITY ISSUES OF STEELS AND HEAVY-LIQUID METALS AS APPLIED FOR NOVEL REACTORS

Main corrosion modes

- **1. Dissolution**
	- $\mathcal{L}_{\mathcal{A}}$ Leaching of Ni, Cr and Fe
- **2. Oxidation**
	- \mathbf{m} Formation of Fe-based scale

- **Bi-layer scale, with outer Fe₃O₄ (magnetite spinel) and inner Fe(Fe,Cr)₂O₄ spinel-type oxide layers,** typically forms on the surface of steels in contact with oxygen-containing Pb and Pb-Bi melts
- \Box Growth of scale is governed by the outward diffusion of iron cations
- **□** Inward growth of Fe-Cr spinel at the oxide/steel interface could be accessed from the **dissociative** *growth theory*: vacancies generated by outward diffusion of iron cations precipitate at the oxide/steel interface forming cavities (pores) into which the oxide dissociates with evaporating oxygen providing further oxidation of steel (S. Mrowec, Corrosion Science 7 (1967) 563-578).

EXAMPLE OF SCALE EVOLUTION WITH TIMEFlowing Pb-Bi (2 m/s), 10^{-7} mass%O, 400° C 13144h 1007h 2015h 4746hPb-Bi Pb-Bi Pb-Bi Pb-Bi $Fe₃O₄$ $(Fe, Cr)_{3}O_{4}$ Bi-layer scale Bi-layer scale Crack Pb, Bi $-7 \mu m$ F/M Steel T91 -711

Initial steel / liquid Pb-Bi interface

- \Box Degradation of scale with time results in initiation of local dissolution attack
- \Box Re-healing of scale does not take place
- \Box The long-term viability of protective scale on the surface of steels facing Pb melts is one of the main task for successful application of oxygen-controlled Pb melts

Dissolution attack as a result of scale failure

□ Formation of single-layer Cr-rich oxide film is a short-time period (incubation)

EFFECT OF ALLOYING ON CORROSION

Effect of alloying on dissolution

Solubility of pure metals in LBE as a function of temperature

- \Box Transfer from Fe-based bi-layer scale to single layer oxide films based on Cr, Si, Al is highly desirable
- **Alloying elements in steels which might improve** oxidation resistance are typically highly soluble in HLM

Aluminum-alloyed F/M steels

Static Pb, Fe-10Cr-6Al-RE alloy, 550 °C, 10-7 wt.% oxygen, 10000h

J. Ejenstam, P. Szakálos /Journal of Nuclear Materials 443 (2013) 161–170

- **■** Thin Al-rich oxide layer, formed at the metal– oxide interface, prevented Pb penetration into the bulk steel at least up to 10000 h
- **□** Synergetic effect of Cr and AI is important for formation of protective oxide film
- **Preliminary results shows ^a potential for using Al-alloyed steels at higher temperatures (˃500 °C)**
- **Tests in dynamic HLM are necessary** to investigate viability of alumina films and it selfhealing abilities

BACKGROUND ON COMPATIBILITY ISSUES OF STEELS AND HEAVY-LIQUID METALS AS APPLIED FOR NOVEL REACTORS

EFFECT OF OXYGEN CONCENTRATION IN HEAVY-LIQUID METALS ON THE CORROSION RESPONSE OF ALUMINUM-ALLOYED AUSTENITIC STEELS

- $\mathcal{L}_{\mathcal{A}}$ *Corrosion test in static Pb at 700˚C*
- *Corrosion test in static Pb-Bi eutectic at 550˚C*
- **PRECIPITATIONS AND DEPOSITS FOUND IN THE CORRIDA LOOP AFTER OPERATION FOR 113000 h**
- **PHENOMENOLOGICAL MODEL DESCRIBING LIQUID-METAL EMBRITTLEMENT OF STEELS (LME) IN HEAVY-LIQUID METALS DEVELOPED IN PhMI NASU**

CHEMICAL COMPOSITION AND STRUCTURE OFAUSTENITIC STEELS ALLOYED BY ALUMINIUM

- Alumina-Forming Austenitic (AFA) stainless steels with improved creep resistance (strengthening with Laves phases and carbides) and oxidation resistance due to formation of Al $_2\mathrm{O}_3$ at high temperatures in gaseous media are under developing (Y. Yamamoto et al., Metall and Mat Trans A 42 (2011) 922–931)
- □ Applicability of AFA steels in Pb and Pb-Bi arouses interest and requires experimental **investigations !**

Fe-18Ni-12Cr-Al

School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

APPARATUS FOR STATIC CORROSION TESTS IN HEAVY LIQUID METALS Specimen holder (Mo) Gas inlet Gas outlet KIT oes *O*xygen *C*ontrol *S*ystem Ar $Ar-5$ vol $%H₂$ Oxygen Air Oxygen sensor 1 sensor₂ Thermocouple 2 Thermocouple 1

POST-TEST QUANTIFICATION OF CORROSION LOSS USING METALLOGRAPHIC METHOD FOR CYLINDRICALSPECIMENS

- 1.Measurement of initial diameter in ^a laser micrometer (0.1 µm resolution)
- 2. Measurement of post-test diameter (12th measurements with rotation angle 15°) or radius of unaffected material on the cross-section
- 3. Measurement of thickness of corrosion zones $(1 \mu m$ resolution)
- 4.% of occurrence of different corrosion modes
- 5. Extra measurements for determination of maximum depth of corrosion attack

Cleaning of samples from solidified rests of HLM is a prerequisite for surface topography!

BACKGROUND ON COMPATIBILITY ISSUES OF STEELS AND HEAVY-LIQUID METALS AS APPLIED FOR NOVEL REACTORS

EFFECT OF OXYGEN CONCENTRATION IN HEAVY-LIQUID METALS ON THE CORROSION RESPONSE OF ALUMINIUM-ALLOYED AUSTENITIC STEELS

- $\mathcal{L}_{\mathcal{A}}$ *Corrosion test in static Pb at 700˚C*
- *Corrosion test in static Pb-Bi eutectic at 550˚C*
- **PRECIPITATIONS AND DEPOSITS FOUND IN THE CORRIDA LOOP AFTER OPERATION FOR 113000 h**
- **PHENOMENOLOGICAL MODEL DESCRIBING LIQUID-METAL EMBRITTLEMENT OF STEELS (LME) IN HEAVY-LIQUID METALS DEVELOPED IN PhMI NASU**

- Thin (<100 nm) protective Al-rich oxide film was formed on the14Ni AFA alloy after one year indicating that this alloy is ^a potential candidate for use in Pb-cooled reactors
- **Tests in flowing oxygen-controlled HLM are of interest** to show the long-term viability of protective oxide film on the alloy surface
- **High-temperature tests are of interest** as well

CORROSION TESTS IN STATIC Pb

Test conditions

 \Box Constant:

- П volume of Pb = 2 kg
- $\overline{}$ ratio of Pb volume to surface of samples is 25 cm
- П temperature 700°C
- П exposure time ~1000 h
- **□** Varying oxygen concentration in Pb
	- Test 1: 5×10-9 mass%O
	- Test $2 \cdot 210^{-6}$ mass% Ω

Dependence of the thermodynamic stability of selected oxides of steel constituents on temperature and the concentration of oxygen dissolved in liquid Pb [C. Schroer, J. Konys. FZKA 7364]

Appearance of corrosion attack after test 1 - 5×10-9 mass%O

Steel Fe-18Ni-12Cr-AlNbC

□ Dissolution is a dominating (general) corrosion mode

Appearance of corrosion attack after test 2 - ≥10-6 mass%O

General corrosion trend – protective oxide film

Steel Fe-18Ni-12Cr-AlNbC

Local corrosion trend - scale formation

QUANTIFICATION OF CORROSION LOSS

 \Box With increase in oxygen concentration in Pb the corrosion mode changes from dissolution to oxidation resulting in substantial decreasing in corrosion loss

BACKGROUND ON COMPATIBILITY ISSUES OF STEELS AND HEAVY-LIQUID METALS AS APPLIED FOR NOVEL REACTORS

EFFECT OF OXYGEN CONCENTRATION IN HEAVY-LIQUID METALS ON THE CORROSION RESPONSE OF ALUMINIUM-ALLOYED AUSTENITIC STEELS

- *Corrosion test in static Pb at 700˚C*
- $\overline{}$ *Corrosion test in static Pb-Bi eutectic at 550˚C*
- **PRECIPITATIONS AND DEPOSITS FOUND IN THE CORRIDA LOOP AFTER OPERATION FOR 113000 h**
- **PHENOMENOLOGICAL MODEL DESCRIBING LIQUID-METAL EMBRITTLEMENT OF STEELS (LME) IN HEAVY-LIQUID METALS DEVELOPED IN PhMI NASU**

Scarce literature data:M. Roy, L. Martinelli, K. Ginestar et al., Journal of Nuclear Materials 468 (2016) 153-163 Fe-14Cr-25Ni-3.5Al-2Mn-2Mo-2.5Nb \square 520 $^{\circ}$ C 1850 hEDS profile Alley 5 um

- **□ Static Pb-Bi**
- \Box 10⁻⁹ ≤ [O] ≤ <u>5x10⁻⁴</u>

- \Box The test was carried out mostly at comparable high oxygen concentration in the LBE, i.e. \sim 10⁻⁴ wt%
- \Box Bi-layer magnetite scale formed on the AFA alloy shows that there is no substantial gain in using this alloy in comparison with conventional austenitic steels not-alloyed by Al

26

IWSMT-14

CORROSION TEST 5

General corrosion appearances on AFA steels

on 80% of surface)

Dissolution + oxidation

 \Box Slight oxidation reflects the general corrosion trend in the case of Fe-

18Ni-12Cr-AlNbC steel

□ Dissolution attack in combination with oxidation reflects the general corrosion trend on Fe-18Ni-12Cr-Al steel

CORROSION TEST 5

Characterization of general corrosion appearance (80%) on Fe-18Ni-12Cr-AlNbC steel

 \Box Cr/Al-rich oxide film (on 80% of surface appearance) is formed on steel surface indicating synergetic effect of Cr and Al on the formation of oxide layer

CORROSION TEST 5

Characterization of local corrosion appearances (20%) on Fe-18Ni-12Cr-AlNbC steel

- **■** Local protrusions of bi-layer magnetite scale or inner Fe-Cr-Al-O spinel are observed
- Local accelerated oxidation is observed on 20% of surface

CHEMICAL COMPOSITION OF LIQUID METAL AFTER TESTS

- Al < 0.00005Cr 0.00019 (±0.00002)
- Fe 0.00023 (±0.00007)
- Ni 0.00230 (±0.00004)

SUMMARY on corrosion of aluminium-alloyed austenitic steels in HLM

- \Box The effect of oxygen concentration in static Pb at 700°C and Pb-Bi eutectic at 550°C on the corrosion behavior of Fe-18Ni-12Cr-2.3Al and Fe-18Ni-12Cr-2.9Al-Nb-Caustenitic steels is investigated for about 1000 h
- \Box The oxidation potential of the liquid metal, similar to the conventional austenitic steels not-alloyed by Al, should be higher than required for the thermodynamic stability of magnetite ($Fe₃O₄$) in order to promote oxidation of AFA steels in Pb and Pb-Bi eutectic
- The more complex alloying in Fe-18Ni-12Cr-2.9AI-Nb-C steel seems favors the formation of more protective oxide film
- \Box Single layer of Al₂O₃ is not formed while the multi-layer oxides are detected: Cr/Al-O in Pb-Bi and Fe/Cr/Al-O in Pb
- **Long-term tests under the flowing conditions are necessary to investigate the viability of thin Fe/Cr/Al-based oxide film**

- **BACKGROUND ON COMPATIBILITY ISSUES OF STEELS AND HEAVY-LIQUID METALS AS APPLIED FOR NOVEL REACTORS**
- **EFFECT OF OXYGEN CONCENTRATION IN HEAVY-LIQUID METALS ON THE CORROSION RESPONSE OF ALUMINUM-ALLOYED AUSTENITIC STEELS**
	- *Corrosion test in static Pb at 700˚C*
	- *Corrosion test in static Pb-Bi eutectic at 550˚C*
- **PRECIPITATIONS AND DEPOSITS FOUND IN THE CORRIDA LOOP AFTER OPERATION FOR 113,000 h**
- **PHENOMENOLOGICAL MODEL DESCRIBING LIQUID-METAL EMBRITTLEMENT OF STEELS (LME) IN HEAVY-LIQUID METALS DEVELOPED IN PhMI NASU**

CORRosion Iⁿ Dynamic lead Alloys - CORRIDA loop

The CORRIDA facility – ^a forced-convection loop made of austenitic stainless steel (1.4571) designed to expose material (steel) specimens to flowing (2 m/s) Pb-Bi eutectic (~1000 kg) with controlled oxygen concentration.

Operating history of the CORRIDA loop

Carsten Schroer (KIT), ICONE26

Commissioning in Feb 2003.

Start of operation at 550 °C/ 10⁻⁶ % oxygen in Jul 2003. Oxygen transfer with Ar-H₂-H₂O.

Manual air addition to Ar-H₂-H₂O. \odot Optimization.

Dry gas.

10,000

Optimized manual air addition to humidified Ar. Tube failure at the inlet of the second testsection after total operation for 29,000 h. \odot

20,000

450 °C/10⁻⁶ % oxygen.

30,000

40,000

Effective operating time (h)

50,000

Oxygen concentration (%)

 10^{-3}

 10^{-5}

 10^{-7}

 10^{-9}

E According to the output of the thermocouples the solidified Pb-Bi is located among thermocouples T11 and T16.

IWSMT-14

 BACKGROUND ON COMPATIBILITY ISSUES OF STEELS AND HEAVY-LIQUID METALS AS APPLIED FOR NOVEL REACTORS

 EFFECT OF OXYGEN CONCENTRATION IN HEAVY-LIQUID METALS ON THE CORROSION RESPONSE OF ALUMINUM-ALLOYED AUSTENITIC STEELS

- Corrosion test in static Pb at 700 $^{\circ}$ C
- *Corrosion test in static Pb-Bi eutectic at 550˚C*
- **PRECIPITATIONS AND DEPOSITS FOUND IN THE CORRIDA LOOP AFTER OPERATION FOR 113,000 h**
- **O PHENOMENOLOGICAL PHENOMENOLOGICAL MODEL DESCRIBING LIQUID-METAL EMBRITTLEMENT OF STEELS (LME) IN HEAVY-LIQUID METALS DEVELOPED IN PhMI NASU**

LIQUID-METAL EMBRITTLEMENT (LME) OF STEELS IN

HEAVY-LIQUID METALS (HLM)

- \Box Liquid metal embrittlement (LME) is ^a phenomenon which can be defined as the brittle fracture (or loss of ductility) of ^a usually ductile material in presence of heavy-liquid metals (HLM) when external stress is applied.
- \Box Wetting of the material surface by HLM is an important prerequisite for LME to occur.
- \Box LME occurs in the specific temperature range and deformation rate.
- \Box F/M steels suffers from LME while austenitic steels vice-versa show plastification.

^{} PhMI NASU - Physical–Mechanical Institute of National Academy of Science of Ukraine, 5, Naukova Street, Lviv 79601, Ukraine http://www.ipm.lviv.ua/new/eng/index.php*

- 1. Facilitating the plastic flow of ^a thin surface layer δ of solid metal due to the reduction of surface energy by absorbed liquid metal and as ^a result facilitating the movement of dislocations under the simultaneous action of ^a melt and tensile stress (red line)
- 2. Active plastic deformation of surface layer intensifies in turn the deformation strengthening, in comparison with core, that facilitates origin and distribution of surface cracks on the depth δ.
- 3.After passing the strengthened layer, the cracks facing the ductile material and arrested.
- 4.When liquid metal percolate the crack and facing ductile material the process repeats.

Materials Science, Volume 18, Issue 6, 1982, Pages 461-467. https://link.springer.com/article/10.1007/BF00729424

Thank you for attention !!!

