Kyoto Univ. Nov. 27 and 28

EXPERIMENTAL ACTIVITY IN KARLSRUHE INSTITUTE OF TECHNOLOGY TOWARDS CORROSION PERFORMANCE OF STEELS IN Pb-Bi EUTECTIC

Valentyn Tsisar, Carsten Schroer, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS (IAM-WPT)

KIT - The Research University in the Helmholtz Association

Outline

- □ BACKGROUND ON COMPATIBILITY OF STEELS IN CONTACT WITH HEAVY-LIQUID METALS AS APPLIED FOR GEN-IV REACTORS AND ADS
- GENERALIZATION OF RESULTS ON CORROSION OF STEELS IN FLOWING Pb-Bi – KIT ACTIVITY
- PRECIPITATIONS FOUND IN THE CORRIDA LOOP AFTER 113,000 h OPERATION
- PERFORMANCE OF ALUMINUM ALLOYED STEELS IN STATIC Pb-Bi AT 550°C FOR 1000 h

Kyoto Univ. Nov. 27 and 28

Effect of oxygen on the corrosion modes in steel / HLM system

Positive effect of non-metallic impurity on corrosion

Issue!

- Dissolution of Ni, Cr and Fe from the steel by liquid metal:
- Formation of week corrosion zone with ferrite structure on initially austenitic matrix
- Liquid metal penetrates into the ferrite

Solution !?

- Oxidation instead of dissolution:
- Formation of continuous and protective oxide layer
- Long-term operation of scale in protective mode

TODAYS ACTIVITY TOWARDS HLM TECHNOLOGIES

- Principal understanding of corrosion phenomena taking place in the steel / Heavy Liquid Metals system does not free from the experimental activity!
- □ Main aim of the corrosion tests is to determine the optimum temperature-oxygen

concentration parameters for save and long-term operation of structural materials in

contact with liquid Pb and Pb-Bi eutectic

Todays task is to produce the reliable quantitative data on corrosion loss based on the long-run tests performed in liquid metals with controlled oxygen concentration

Outline

□ BACKGROUND ON COMPATIBILITY OF STEELS IN CONTACT WITH HEAVY-LIQUID METALS AS APPLIED FOR GEN-IV REACTORS AND ADS

GENERALIZATION OF RESULTS ON CORROSION OF STEELS IN FLOWING Pb-Bi – KIT ACTIVITY

- PRECIPITATIONS FOUND IN THE CORRIDA LOOP AFTER 113,000 h OPERATION
- PERFORMANCE OF ALUMINUM ALLOYED STEELS IN STATIC Pb-Bi AT 550°C FOR 1000 h

The CORRIDA facility – a forced-convection loop made of austenitic stainless steel (1.4571) designed to expose material (steel) specimens to flowing (2 m/s) Pb-Bi eutectic (~1000 kg) with controlled oxygen concentration.

Kyoto Univ. Nov. 27 and 28

Oxygen-Control System (OCS)

$$log(CO_{Pb-Bi}) = -3.2837 + \frac{6949.8}{T} - 10080\frac{E}{T}$$

□ Conversion to partial pressure, concentration of dissolved oxygen, etc.

Kyoto Univ. Nov. 27 and 28

EXPERIMENTAL DATA ON CORROSION OF STEELS IN HLM

Austenitic steels tested in the CORRIDA loop

(Fe – Bal.)	Cr	Ni	Мо	Mn	Si	Cu	V	W	AI	Ti	С	Ν	Р	S	В
316L	16.73	9.97	2.05	1.81	0.67	0.23	0.07	0.02	0.018	-	0.019	0.029	0.032	0.0035	-
1.4970	15.95	15.4	1.2	1.49	0.52	0.026	0.036	< 0.005	0.023	0.44	0.1	0.009	< 0.01	0.0036	< 0.01
1.4571	17.50	12	2.0	2.0	1.0	-	-	-	-	0.70	0.08	-	0.045	0.015	-

1.4970 (15-15Ti)

- HV₃₀ = 253;
- Grain size ranged from 20 to 65 μm;
- Intersecting deformation twins.

316L

- HV₃₀ = 132;
- Grain size averaged 50 µm (G 5.5);
- Annealing twins.

1.4571 (material of CORRIDA loop)

- HV₃₀ = 245;
- Fine-grained structure with grain size averaged 15 µm (G 9.5).

F/M steels tested in the CORRIDA loop

Concentration (in mass%) of alloying elements other than Fe

(Fe – Bal.)	Cr	Мо	W	V	Nb	Та	Mn	Ni	Si	С
T91-A	9.44	0.850	<0.003	0.196	0.072	n.a.	0.588	0.100	0.272	0.075
Т91-В	8.99	0.89	0.01	0.21	0.06	n.a.	0.38	0.11	0.22	0.1025
P92	8.99	0.49	1.75	0.20	0.06	-	0.43	0.12	0.26	0.11
E911*	8.50- 9.50	0.90- 1.10	0.90- 1.10	0.18- 0.25	0.06- 0.10	-	0.30- 0.60	0.10- 0.40	0.10- 0.50	0.09- 0.13
EUROFER	8.82	0.0010	1.09	0.20	n.a	0.13	0.47	0.020	0.040	0.11

*nominal composition

Nominally 9 mass% Cr

Element besides Cr that improves oxidation resistance

Corrosion tests performed for period from 2012 to 2018 years

Effective operating time of CORRIDA loop (h)

Flow velocity 2 m/s

Target oxygen concentration in Pb-Bi = 10^{-7} mass%

□ T = 550°C

excursion to 10^{-4} – 10^{-5} mass%O

t = 288; 715; 1007; 2011 h

□ T = 450°C

excursion to 10⁻⁵ mass% O

t = 500; 1007; 1925; 2015; 3749; 5015; 8766 h

□ **T** = 400°C

t = 1007; 2015; 4746; 13194 h

- □ 10% of wall thinning for cladding tube corrosion criterion suggested for "steel / sodium" system
- Corrosion limit for 450 μm thick cladding tube made of 1.4970 steel is 45 μm
- □ 550 and 450°C could not be a working temperatures in Pb-Bi with 10^{-7} mass% O
- At 400°C, corrosion limit for 1.4970 could be reached for about 33000 h (~4 years) that is probably within an appropriate time for life-time of cladding tube made of 1.4970 (15-15 Ti) steel

□ In comparison to 450 or 550°C the oxidation is significantly reduced at 400°C

Severe local dissolution attack, as a result of scale failure, occurs

Comparison of earlier findings and today's vision !

Earlier findings ! Today's vision ! Average corrosion loss I.V. Gorynin et al. Met. Sci. Heat Treat. 41 (9) (1999) 384-388. C. Schroer (KIT) Local corrosion loss **Dissolution** Unfavourable **Oxidation** concentration 200 gradients Transition zone No stable 550°C, 3000h Corrosion loss (µm) 00 00 solid oxide **Material loss** Transition from solution- to oxidation-Ð based corrosion Oxides form surface layer 50 Oxygen concentration in the bulk of the liquid metal — 10 - 10 10 - 9 10 - 7 10-5 □ In the oxide-protection regime the failure of scale 10 - 8 10-6 might result in local and severe solution-based Oxygen concentration in Pb (mass %) 1 and 2 – austenitic steels of 316L type corrosion attack instead of expected re-oxidation of steel surface! □ Local solution-based attack is a critical factor In general correct affecting corrosion resistance of steels in Pb-Bi !!! In particular - too idealistic !

Transfer from general to loca

corrosion mode

Outline

- BACKGROUND ON COMPATIBILITY OF STEELS IN CONTACT WITH HEAVY-LIQUID METALS AS APPLIED FOR GEN-IV REACTORS AND ADS
- GENERALIZATION OF RESULTS ON CORROSION OF STEELS IN FLOWING Pb-Bi – KIT ACTIVITY
- PRECIPITATIONS FOUND IN THE CORRIDA LOOP AFTER 113,000 h OPERATION
- PERFORMANCE OF ALUMINUM ALLOYED STEELS IN STATIC Pb-Bi AT 550°C FOR 1000 h

Mass transfer under temperature gradient

Solid metal

"Hot" zone

Dissolution

"Cold" zone

Mass transfer

Plug formation

Nucleation of crystals

LMF – Liquid Metal Flow

1.

2.

Simplified scheme of non-isothermal mass-transfer

Tortorelli, 1987

Kyoto Univ. Nov. 27 and 28

Operating history of the CORRIDA loop

Carsten Schroer (KIT), ICONE26

❑ According to the output of the thermocouples the solidified Pb-Bi is located among thermocouples T11 and T16.

Kyoto Univ. Nov. 27 and 28

Array of needle-type crystals NiBi₃

Literature data on NiBi₃

K. Kikuchi, S. Saito, D. Hamaguchi, M. Tezuka. K. Journal of Nuclear Materials 398 (2010) 104–108.

- □ NiBi₃ needle-type precipitates existed on the surface of solidified LBE
- □ A size is tens micron meters in width and over hundreds micron meters in length
- Needle-type precipitates existed at both the low temperature part of the loop and high temperature parts
- It can be assumed that Ni-rich precipitates formed on the surface of residual LBE during a cooling period

Outline

- □ BACKGROUND ON COMPATIBILITY OF STEELS IN CONTACT WITH HEAVY-LIQUID METALS AS APPLIED FOR GEN-IV REACTORS AND ADS
- GENERALIZATION OF RESULTS ON CORROSION OF STEELS IN FLOWING Pb-Bi – KIT ACTIVITY
- PRECIPITATIONS FOUND IN THE CORRIDA LOOP AFTER 113,000 h OPERATION
- PERFORMANCE OF ALUMINUM ALLOYED STEELS IN STATIC Pb-Bi AT 550°C FOR 1000 h

APPARATUS FOR STATIC CORROSION TESTS IN HEAVY LIQUID METALS

CHEMICAL COMPOSITION AND STRUCTURE OF AUSTENITIC STEELS ALLOYED BY ALUMINIUM

- Alumina-Forming Austenitic (AFA) stainless steels with improved creep resistance (strengthening with Laves phases and carbides) and oxidation resistance due to formation of Al₂O₃ at high temperatures in gaseous media are under developing (Y. Yamamoto et al., Metall and Mat Trans A 42 (2011) 922–931)
- □ Applicability of AFA steels in Pb and Pb-Bi arouses interest and requires experimental investigations !

(Fe–Bal.)	Cr	Ni	Мо	Mn	Si	AI	Nb	С
# 1-AINbC	11.7	18.0	1.99	0.0887	0.401	2.32	0.577	0.0086
	(±0.02)	(±0.02)	(±0.003)	(±0.0003)	(±0.0006)	(±0.008)	(±0.003)	(±0.0003)
# 3-AI	11.7	18.0	2.00	0.118	0.377	2.90	-0.001	0.0300
	(±0.02)	(±0.05)	(±0.007)	(±0.0005)	(±0.0009)	(±0.010)	<0.001	(±0.0006)

Fe-18Ni-12Cr-AINbC

School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

Kyoto Univ. Nov. 27 and 28

CORROSION TEST 5

Pb-Bi

⊢ 40 µm ⊣

Characterization of general corrosion appearance (80%) on Fe-18Ni-12Cr-AINbC steel

□ Cr/Al-rich oxide film (on 80% of surface appearance) is formed on steel surface indicating synergetic effect of Cr and Al on the formation of oxide layer

CORROSION TEST 5

Characterization of local corrosion appearances (20%) on Fe-18Ni-12Cr-AINbC steel

- □ Local protrusions of bi-layer magnetite scale or inner Fe-Cr-Al-O spinel are observed
- □ Local accelerated oxidation is observed on 20% of surface

QUANTIFICATION OF CORROSION LOSS

- With increase in oxygen concentration in Pb the corrosion mode changes from dissolution to oxidation resulting in substantial decreasing in corrosion loss
- Change in corrosion loss with increase in concentration is not straight-proportional

CHEMICAL COMPOSITION OF LIQUID METAL AFTER TESTS

AI

Cr

Fe

Ni

	AI	-				
	Cr	0.0016				
	Fe	0.00048				
	Ni	3.2				
Composition of LBE after test 1						
	mass%					
Al	< 0.00005					

0.00019 (±0.00002) Cr Fe 0.00023 (±0.00007)

0.00230 (±0.00004) Ni

SUMMARY on corrosion of aluminium-alloyed austenitic steels in HLM

- The effect of oxygen concentration in static Pb-Bi eutectic at 550°C on the corrosion behavior of Fe-18Ni-12Cr-2.3Al and Fe-18Ni-12Cr-2.9Al-Nb-C austenitic steels is investigated for about 1000 h
- ❑ The oxidation potential of the liquid metal, similar to the conventional austenitic steels not-alloyed by AI, should be higher than required for the thermodynamic stability of magnetite (Fe₃O₄) in order to promote oxidation of AFA steels in Pb-Bi eutectic
- ❑ The more complex alloying in Fe-18Ni-12Cr-2.9Al-Nb-C steel seems favors the formation of more protective oxide film
- Single layer of Al₂0₃ is not formed while the multi-layer oxides are detected: Cr/Al-O in Pb-Bi and Fe/Cr/Al-O in Pb
- Long-term tests under the flowing conditions are necessary to investigate the viability of thin Fe/Cr/AI-based oxide film

Thank you for attention !!!

