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Abstract
In the WIND FARM CABLING PROBLEM (WCP) the task is to design the internal cabling of a
wind farm such that all power from the turbines can be transmitted to the substations
and the costs for the cabling are minimized. Cables can be chosen from several
available cable types, each of which has a thermal capacity and cost. Until now, solution
approaches mainly use MIXED-INTEGER LINEAR PROGRAMs (MILP) or metaheuristics.
We present our current state of research on a fast heuristic specifically designed
for WCP. We introduce an algorithm that iteratively improves a cable layout by finding
and canceling negative cycles in a suitably defined network. Our simulations on
publicly available benchmark sets show that the heuristic is not only fast but it tends to
produce good results. Currently our algorithm gives better solutions on large wind
farms compared to an MILP solver. However, on small to medium instances the solver
performs better in terms of solution quality, which represents a starting point for future
work.

Keywords: Wind farm cable layout, Negative cycle canceling, Network flow, Step
function, Heuristic

Introduction
In view of the European Union’s ‘2030 Energy Strategy’, which, among other things, aims
at having “at least a 27% share of renewable energy consumption” (European Commission
2018), renewable energy sources have become increasingly important. In terms of elec-
tricity, the gross generation in the EU28 in 2016 came with a 30.2% share from renewable
energy, out of which a 30.9% share was due to wind energy (European Commission DG
ENER Unit A4 2018). WindEurope states that in 2017, additional 15,638 MW of wind
power capacitity were installed in the EU28, out of which 3154 MW come from offshore
wind farms (WindEurope asbl/vzw 2018).

A typical offshore wind farm consists of turbines and substations. Turbines convert
wind energy to electricity which is transported through medium-voltage sea cables,
possibly via other turbines, to substations (internal cabling) where the electricity is trans-
formed to the high-voltage level and transported to an onshore grid point (external
cabling).
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In the process of planning wind farms, various stages have to be completed. Turbines
have to be placed in a way to maximize wind usage and minimize wake effects, substations
should be close to the turbines and both the internal and the external cabling need to be
found adhering to geographical, economic, and electrical constraints. Ideally, an optimal
planning process would unify all stages in a single process.

With the increasing size of newly planned wind farms (e.g., Hornsea Project Three may
include up to 300 turbines (Hornsea Project Three Offshore Wind Farm 2018)), planning
by hand becomes more difficult and hence automated approaches become more desirable.
Automated approaches, however, tend to have difficulties with the complexity of a unified
planning process (Santos et al. 2014), which leads to considering subsets of the planning
stages separately.

The cost for the internal cabling accounts for approximately 17% of the total cost for
planning and building a wind farm (Santos et al. 2014). Therefore, it is essential to find
a cost-efficient cabling. When designing the internal cabling isolatedly, the positions of
turbines and substations are considered fixed and grid points and high-voltage cabling
are not of interest at this time. Also as an input to the problem, there are given possible
connections between turbines and between turbines and substations. These connections
can be used for routing the electricity produced by the turbines. Furthermore, there is a
set of possible cable types that can be installed on the connections in order to transmit
electricity. Each cable type has a thermal capacity and a cost per unit length for mate-
rial and installation. The goal of this planning stage is to identify connections on which
electricity is routed and to assign a cable type to every connection such that all electricity
can be transported to substations. We call this planning stage the WIND FARM CABLING

PROBLEM (WCP). Since WCP includes the NP-hard problem CAPACITATED MINIMUM

SPANNING TREE (Cerveira et al. 2014), it is NP-hard as well.

Contribution and Outline We present a basic implementation of a heuristic for WCP,
which first computes a feasible solution and iteratively improves it by finding and can-
celing negative cycles in a suitably defined graph. To find these negative cycles we use
a slight modification of the Bellman-Ford Algorithm (Bellman 1958; Ford et al. 2010).
Evaluating the heuristic on the wind farm benchmark sets presented by Lehmann et al.
(2017) shows that it runs fast and gives good results compared to the solution com-
puted by the MILP solver Gurobi (Gurobi optimizer reference manual 2018) within
one hour.

In the following section we review the literature on the WIND FARM CABLING PROB-
LEM (WCP), applications of negative cycle canceling, and other related problems. We
model WCP formally in the “Model” section. In the “Algorithmic overview” section, we
explain our heuristic in detail. We report and discuss the results of the simulation of our
heuristic in the “Simulations” section and conclude with a thorough overview of possible
research directions.

Related work
Since the integrated planning process which includes turbine and substation placement
as well as internal and external cabling comes with a level of complexity that is hard
to manage, often a single planning step at a time is considered for optimization in the
literature.
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For finding the optimal cable layout between turbines and substations with fixed
positions—which is also the scope of this work—one of the first papers was by Berzan
et al. (2016), in which they propose a hierarchical decomposition of the problem into
several layers. They use well-studied graph problems to solve the so-called Circuit and
Substation layers, in which only one substation is considered at a time, when there is only
one cable type available.

Since then, various approaches have been taken for more elaborate problems consider-
ing different optimization functions and sets of constraints. With the high complexity of
the problem in mind, metaheuristics, such as Genetic Algorithms (Zhao et al. 2004; Shir-
shak et al. 2017; Dahmani et al. 2015) or Simulated Annealing, (Lehmann et al. 2017) are
very popular. While these approaches do not guarantee provably optimal solutions, they
are able to provide good solutions within short running times. To the contrary, exact solu-
tions can be provided by INTEGER LINEAR PROGRAM (ILP) or MIXED-INTEGER LINEAR

PROGRAM (MILP) formulations, which need more time and therefore only work on small
instances. Lumbreras and Ramos (2013), for example, consider losses along branches,
stochasticity in wind inputs and component failures in an ILP and Cerveira et al. (2014)
use a graph-theoretic flow model on wind farms with a single substation and use the
resemblance to the CAPACITATED MINIMUM SPANNING TREE (CMST). Based on the
flow model, they include constraints representing the CMST into an MILP formulation.

In our work, we use a flow model similar to the one presented by Cerveira et al. (2014)
representing how turbine production is routed to one of multiple substations. We aim at
finding a flow of minimum cabling cost and apply a well-known technique from network
flow theory called negative cycle canceling. Negative cycle canceling was first proposed in
the context of finding minimum cost circulations in flow networks (Klein 1967). Goldberg
and Tarjan (1989) achieve a strongly polynomial running time for a cycle-canceling-based
algorithm for the minimum cost flow by suitably choosing the cycles to cancel. The bound
for the running time of this algorithm was later tightened by Radzik and Goldberg (1994).

Ouorou and Mahey (2000) employ negative cycle canceling to solve the Minimum
Multicommodity Flow Problem with nonlinear cost functions. Negative cycle cancel-
ing is also used in combination with tabu search to tackle the Capacity Expansion
Problem for multicommodity flow networks (de Souza et al. 2008), which can be
modeled as a Multicommodity Flow Problem with non-convex and non-smooth cost
functions.

Optimization problems that are similar to WCP appear for example in logistics. In the
Single-Sink Edge Installation Problem introduced by Salman et al. (2001) the production
of multiple sources must be transported to a single sink. On every connection a mixture
of various cable types (including multiple copies of the same type) needs to be installed
such that the cables provide sufficient capacity. Similarly, in the Buy-at-Bulk Problem (see
(Gupta and Könemann 2011)), the cost of routing flow along a connection is given by a
concave function representing economies of scale. In both cases, the amount of flow on a
single connection is unlimited.

One of the main characteristics of our problem is the step cost function with an upper
limit on every connection. Gabrel et al. (1999) consider similar step cost functions in a
Multicommodity Flow Problem and provide a method for finding exact solutions using a
specialized Bender’s Decomposition procedure. The exact solutions, however, come at the
price of only being able to solve small instances with up to 20 vertices in reasonable time.
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Our approach, on the other hand, has been tested on instances with up to 500 vertices
providing good solutions within 50 seconds on average and 7.5 minutes in the worst case.

Model
In this section, we formalize the WIND FARM CABLING PROBLEM (WCP). We understand
turbines and substations as vertices of a graph G = (V , E), i.e., if VT and VS denote the
sets of turbines and substations, respectively, then V = VT ∪ VS and VT ∩ VS = ∅.
While the direction of a connection between a turbine and a substation or between two
turbines does not matter in the real world, for the sake of modeling we impose an arbitrary
direction on every connection. This implies that G is a directed graph, i.e., for every edge e
there are vertices u and v such that e = (u, v) and we say e goes from u to v. We assume that
turbine production that is transmitted to a substation is transmitted into the connection
to the grid point. In particular, it is not routed to a second substation first. To simplify
the description of our algorithm, we therefore assume that there are no edges connecting
two substations. Moreover, we assume that each turbine has a standardized production
of one unit and each substation has a capacity modeled by a function capsub : VS → N.
Additionally, each edge is assigned a positive length by the function len : E → R>0, which
represents the geographic distance between the endpoints of the edge.

Along each edge we may place a single cable, whose type is chosen from a finite set
of cable types. Each cable type is uniquely determined by its capacity capcab ∈ N and
its cost per unit length ccab ∈ R≥0. We therefore identify each cable type with the pair
(capcab, ccab) and define the set K of all allowed cable types represented by these pairs.
For the ease of representation we assume that K contains the two special cable types (0, 0)

and (∞, ∞) called trivial cable types. The former represents the case that no cable is built
along an edge and the latter the case that no cable has sufficient capacity. Based on the
cable types we define a cost function c : Z → R≥0 ∪ {∞} by

c(x) = min{ccab : (capcab, ccab) ∈ K , |x| ≤ capcab} ∀x ∈ Z, (1)

i.e., we choose the cheapest cable type that has sufficient capacity to transport |x| units of
flow.

In total, a wind farm is then modeled as a network N = (G, VT , VS, len, capsub, c). The
network incorporates turbines VT , substations VS with a capacity capsub each, and con-
nections between turbines and substations described by the graph G, as well as the length
of the connections len and costs per length c for using the connections. Note that we
do not explicitly include the set of cable types K as all necessary information on them is
incorporated in the function c.

A flow in the network N is a function f : E → R. Since we imposed an arbitrary
direction on each edge, we are able to identify the direction of a flow on an edge. More
formally, if f (u, v) > 0 (resp. < 0) for some edge (u, v), we interpret that as f (u, v) (resp.
−f (u, v)) units flowing from u to v (resp. from v to u). For every vertex u we define its net
flow by fnet(u) = ∑

(w,u)∈E f (w, u) − ∑
(u,w)∈E f (u, w). A flow f is feasible if it satisfies the

conservation of flow for both turbines (Eq. 2) and substations (Eq. 3) and if there is no
outflow at any substation (Eq. 4). Recall that we assume a standardized production of one
unit at each turbine.
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fnet(u) = −1 ∀u ∈ VT , (2)

fnet(u) ≤ capsub(u) ∀u ∈ VS, (3)

f (u, v) ≥ 0

f (v, w) ≤ 0 ∀v ∈ VS, ∀(u, v), (v, w) ∈ E (4)

The costs of a feasible flow f are computed as the sum of the individual costs of every
edge.

cost(N , f ) =
∑

e∈E
c(f (e)) · len(e). (5)

The goal of WCP is to find a feasible flow f with minimum costs. Hence, it can be
summarized as follows.

Negative cycle algorithm
In this section, we describe an approach of finding and canceling negative cycles in order
to solve WCP heuristically. The main idea of our heuristic is to repeatedly set up a residual
graph from a flow, finding a negative cycle, and cancel negative cycles in the residual
graph. Every cancellation yields a better solution to WCP. In the first part, we give an
overview of our heuristic. Whereas in the second part, we describe the components used
in the heuristic in more detail.

Algorithmic overview

Before we describe the algorithm, we introduce essential graph theoretical terms. We
define a walk from u to w as a sequence of—not necessarily distinct—edges ((u, v1) =:
e0, e1, . . . , ek := (vk , w)) such that the end vertex of ei−1 is the same as the start vertex of ei
for i ∈ {1, . . . , k}. A walk is closed if u = w and it is side-trip free if ei is not the reverse edge
of ei−1 for all i ∈ {1, . . . , k}, i.e., the walk does not contain a closed subwalk of length 2.
Closed walks where the end vertices of all edges are distinct are called cycles.

Given a wind farm N we first compute an initial feasible flow f (Lines 2–4; all line
references in this section refer to Algorithm 1). For each turbine u ∈ VT we perform
a breadth-first search from u ignoring all edges and substations without free capacity.
When the search finds a substation for the first time, the flow on the path from u to the
substation is increased by 1. Starting with this initial flow, we iteratively identify simple
changes of the flow that decrease the costs.

In each iteration of the heuristic, we set up the residual graph R (Line 8), which we
define as follows. We denote the underlying directed graph of the wind farm N by G as
defined in the “Model” section. We set V (R) = V (G) ∪ {s} and E(R) = E(G) ∪ {(u, v) :
(v, u) ∈ E(G)} ∪ {(u, s), (s, u) : u ∈ VS}, where s is a special vertex representing a super
substation.
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Algorithm 1: Our Heuristic for WCP

Input: A wind farm N = (G, VT , VS, len, capsub, c).
Result: A feasible flow f on G whose costs cannot be improved by canceling negative

cycles in any residual graph.
1 f (e) := 0 ∀e ∈ E
2 for u ∈ VT do
3 π := BFS(N , u, f ) � ignores all edges and substations without free capacity
4 f (e)++ ∀e ∈ π

5 � := 0
6 while � < 2 · max{x ∈ Z : c(x) < ∞} do
7 �++; �′ := �

8 R := getResidualGraph(N , f, �)
9 W := NegativeCycleDetection(R) � Bellman-Ford Algorithm

10 for cycle C in W do
11 if

∑
e∈C γ (e) < 0 and |C| > 2 then

12 f := NegativeCycleCancellation(C, f , �) � see Eq. 6
13 �′ := 0

14 � := �′

Let f be the flow computed in the previous iteration and � ∈ N with initialization
shown in Lines 5 and 7. In addition, we define the cost function γ : E(R) → R as explained
below. We then search for a closed side-trip-free walk with negative total costs in R
(Line 9). To this end, we use a slight adaptation of the Bellman-Ford Algorithm. If there
is no such walk, we increment � and set up a new residual graph. Otherwise, if there is
such a walk W in R, we split W into cycles C1, . . . , Cl. Figure 1 shows an example of this
decomposition into cycles. We check for each cycle Ci whether its total costs are nega-
tive and whether Ci has length at least 3 (Line 11). If both conditions hold, we cancel Ci
(see Eq. 6 and Line 12). Note that the cost function γ is defined in such a way that cycles
that decrease the cost have negative total costs. We cancel C by changing the flow f by �

along C. More formally, we define a new flow f ′ for all (u, v) ∈ E(G) by

f ′(u, v) =

⎧
⎪⎨

⎪⎩

f (u, v) + �, if (u, v) ∈ E(C),
f (u, v) − �, if (v, u) ∈ E(C),
f (u, v), if (u, v), (v, u) 
∈ E(C).

(6)

Here, E(C) denotes the set of edges that form the cycle C; see Fig. 2 for an example of
canceling a cycle.

Fig. 1 Decomposing a side-trip-free walk into cycles. A side-trip-free closed walk W with total costs −1. It can
be decomposed into four cycles C1, . . . , C4. Two of them (C2 and C3) consist of two edges and are discarded.
Of the other two, C4 has positive total costs and is discarded as well. The remaining cycle C1 has total costs
−2 and is canceled
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Note that if a cycle has length exactly 2, it consists of an edge (u, v) and its reverse (v, u).
Hence, canceling it means sending � units in both directions specified by (u, v) and (v, u),
which does not change the flow. Canceling it would result in an infinite loop in Line 10.

Finally, if at least one cycle Ci in W was canceled, we reset � to 1 and build a new
residual graph based on the new flow after the cycle cancellation in the current iteration.
The heuristic terminates once it does not cancel a negative cycle in the residual graphs of
the currently cheapest feasible flow for all values of �.

The residual costs

The description above assumes a cost function γ on the residual graph R such that nega-
tive cycles in R correspond to cycles that decrease the costs of the flow if they are canceled.
We define γ in this section.

Let f be a feasible flow in N and � ∈ N. We define γ : E(R) → R ∪ {∞} such that
canceling a cycle with negative costs, i.e., a cycle C with

∑
e∈E(C) γ (e) < 0, preserves

feasibility and reduces the total costs. Consider an edge (u, v) ∈ E(G). Intuitively, γ (u, v)
represents the change of costs for the original flow f (u, v) if additional � units are sent
from u to v. More formally, if both u and v are turbines, the costs of the corresponding
edges in the residual network R are defined by

γ (u, v) =
(

c
(
f (u, v) + �

) − c
(
f (u, v)

)) · len(u, v), (7)

γ (v, u) =
(

c
(
f (u, v) − �

) − c
(
f (u, v)

)) · len(u, v). (8)

Note that by this definition if f (u, v)+� or −f (v, u)+� exceeds the largest non-trivial
cable capacity, we define γ (u, v) = ∞ or γ (v, u) = ∞, respectively. If one of the vertices,
say v, is a substation, we define the costs in the same way unless f (u, v) < �. In this case,
we define γ (v, u) = ∞ to ensure that no flow leaves the substation (see Eq. 4). Therefore,
we have γ (v1, u1) = ∞ in Fig. 2. For the edges between a substation w and the super
substation s we define γ (w, s) = 0 if fnet(w)+� ≤ capsub(w), and γ (w, s) = ∞ otherwise.

Fig. 2 Canceling a negative cycle. (a) A feasible flow f on the network N is shown. Turbines are represented
by circles with a cross and substations by filled squares. All substations have capacity 2. The edge (u1, v2) has
length 3, all others have length 2. Dashed lines represent edges without flow, regular edges have a flow of 1.
(b) The cost function c induced by the cable types (0, 0), (1, 1), (3, 2), and (∞, ∞). (c) The residual graph R
based on f and � = 1. The fat red edges mark a negative cycle. (d) The new flow after canceling the negative
cycle
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This ensures that the substation capacity will not be exceeded (see Eq. 3). In Fig. 2 the
substation v2 has reached its capacity and hence we set γ (v2, s) = ∞. For the reverse
edge, we set γ (s, w) = 0 if � ≤ fnet(w) and γ (s, w) = ∞ otherwise, which makes sure
that w has a non-negative net flow. As v1 has no incoming flow in Fig. 2, the residual cost
γ (s, v1) is set to ∞.

Clearly, the cost function γ on R can have negative values since it is possible that after
a change of flow by � a cheaper cable type suffices for the new flow. Hence, cycles of
negative total costs can exist in R. By the definition of γ , it holds for any cycle C in R with
finite costs that the flow f ′ obtained from f by canceling C is feasible. Moreover, we have

cost(N , f ′) = cost(N , f ) +
∑

e∈E(C)

γ (e). (9)

Hence, if C has negative total costs, f ′ incurs less cost than the previous flow f .

Simulations
In this paper, we introduce a heuristic that is able to calculate feasible solutions for WCP

in milliseconds and thus, it provides an alternative to MILPs, even though our algorithm
may not solve the problem to optimality. In this section, we evaluate the solution quality
and running time of our heuristic and compare it to the baseline MILP which minimizes
the step cost function in Eq. 5 subject to the constraints given by Eqs. 2–4. We ana-
lyze the solution quality and performance on the benchmark sets published by Lehmann
et al. (2017) using different criteria namely the number of turbines |VT | (Fig. 3a), and the
benchmark sets Ni with 1 ≤ i ≤ 4 (Fig. 3b). The benchmark sets include data on cables
and their characteristics.

We calculate the baseline by the MILP using Gurobi 7.0.2 (Gurobi optimizer reference
manual 2018). Our code is written in C++14; compiled with GCC 7.3.1 using the -O3
-march=native flags. The simulations run on a 64-bit architecture with four 12-core
CPUs of AMD 6172 clocked at 2.1 GHz with 256 GB RAM running OpenSUSE 42.3.
Though we have a multi-core machine, we run all simulations—including the MILP—
in single-threaded mode to ensure comparability. In addition, for the simulations with
regards to the MILP we opt for a quantity measurement (similar to (Lehmann et al. 2017)).
That means we run a large fraction of benchmark instances with a time limit of one

Fig. 3 Evaluation of the Negative Cycle Algorithm using different criteria: (a) number of turbines |VT |, and (b)
benchmark sets Ni with 1 ≤ i ≤ 4. We compare all criteria with the relative cost—meaning the ratio of the
best solution found by our algorithm to the best solution found by Gurobi. Some instances are identified as
infeasible (green marked range)
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hour for every instance instead of running a few instances for a longer time and solving
them—if possible—to optimality. This provides us with a broader range of results.

The small benchmark sets N1 and N2 consist of 500 instances each, each of which has
10 to 80 turbines. The instances of N1 have exactly one substation each and N2-instances
have two to seven substations. For these benchmark sets our algorithm finds solutions
that are at least as good as the MILP within one hour in 47.2% and 80.7% of the cases (see
Fig. 3b). However, our algorithm finds the solutions in milliseconds (see Table 1). The
benchmark sets N3 and N4 each have 1000 instances. The instances of N3 are medium-
sized with 80 to 200 turbines and four to ten substations each, whereas the instances in
N4 are large-sized with 200 to 1000 turbines and 10 to 40 substations. Here, our algorithm
performs much better than the MILP within one hour. In 93.6% and 99.6% of the instances
of N3 and N4, respectively, our algorithm finds solutions that are at least as good as the
MILP within one hour (see Fig. 3b). From Figs. 3a and 3b we can see that our algorithm is
mostly outperformed by the MILP on instances with small number of turbines and with a
small number of substations.

Summarizing the evaluation, the Negative Cycle Algorithm is a good alternative espe-
cially when it comes to large instances. For small instances there is room for improvement,
e.g., by analyzing cases where the MILP is better.

Conclusion and future work
Based on canceling negative cycles we present a heuristic for the WIND FARM CABLING

PROBLEM (WCP). It runs very quickly—in the order of milliseconds to a few minutes
depending on the size of the wind farm given as input—and provides very good results.
Our comparison to the solutions of an MILP solver after one hour indicates that our
heuristic often produces better solutions even though it takes only a fraction of the time.

Moving forward in this research in progress, we want to continue identifying strengths
and weaknesses of our heuristic by running further analysis on the data provided by our
simulations and by elaborating on the correctness of our algorithm. We plan to con-
duct further simulations on the MILP-side with longer running times of several days
or even weeks. Furthermore, we hope we are able to compare our heuristic to other
(meta-)heuristics tackling WCP. All of these will help us improve our algorithmic
approach to solving WCP by canceling negative cycles.

So far, in all our simulations we only considered one set of cable types. It would be inter-
esting to run our algorithm for different cable types and compare the findings depending
on the characteristics of various cable type sets. We also assume standardized turbine
production throughout the wind farm. We hope we are able to account for non-uniform
productions by adjusting the residual graph so that the non-uniform net-flow at turbines
is maintained.

Table 1 Performance indicators of the Negative Cycle Algorithm, where Columns 2 to 4 represent
numbers of iterations and Columns 5 to 7 show the running times in milliseconds

Ni Iterations Time in ms

(min) (avg) (max) (min) (avg) (max)

1 8 41.20 143 0.72 40.63 293.42

2 17 49.97 106 3.77 51.72 220.92

3 71 124.87 235 157.69 575.02 2968.56

4 189 376.27 638 2815.12 149,209.92 440,235.07
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Those instances, for which the MILP provides better solutions, show that there are non-
optimal feasible flows that are not further improvable by our algorithm. Such a flow can
be seen as a local minimum for our heuristic. To escape these local minima there are
multiple viable strategies. One way could be to allow changes that temporarily increase
the total costs, e.g., by canceling cycles with small positive total costs if no negative cycle
is found—similar to metaheuristics like Simulated Annealing. As another approach we
could search for more complex circulations with negative total costs in the residual graph,
e.g., two cycles that share an edge, and cancel those. From a more theoretical standpoint,
it would be very interesting to see if optimality can be achieved by identifying only a small
set of more complex circulations.

So far, we restricted our heuristic to a single initialization strategy, namely breadth-first
search. Other techniques might influence the trajectory of canceling negative cycles and
therefore our heuristic might converge to other local minima.

Since our heuristic finds good solution within a short period of time, it might be
interesting to see how those solutions can help the MILP to solve WCP. More specifi-
cally, a solution given by our algorithm can be given to the solver as an initial feasible
solution from which the optimization procedure can be started (warm start). Then, the
performances of the MILP with warm and with cold start can be compared in further
simulations.

In our model, it is not required that every turbine has only one edge with outgoing flow.
When applying AC-flow or its DC-approximation including phase angles at vertices, it
might be desirable to prohibit splitting flow at vertices. In the existing literature, requiring
unsplittable flow is often neglected to reduce the complexity of the problem. In terms of
future work, allowing only one edge per turbine with outgoing flow in our heuristic seems
to be possible by suitably modifying the residual graph and the residual costs. With that,
we hope that our model represents real-world wind farms more realistically.
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