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Abstract: Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing technique
able to measure deformation of the earth’s surface over large areas. InSAR deformation analysis
uses two main categories of backscatter: Persistent Scatterers (PS) and Distributed Scatterers (DS).
While PS are characterized by a high signal-to-noise ratio and predominantly occur as single pixels,
DS possess a medium or low signal-to-noise ratio and can only be exploited if they form homogeneous
groups of pixels that are large enough to allow for statistical analysis. Although DS have been used
by InSAR since its beginnings for different purposes, new methods developed during the last decade
have advanced the field significantly. Preprocessing of DS with spatio-temporal filtering allows today
the use of DS in PS algorithms as if they were PS, thereby enlarging spatial coverage and stabilizing
algorithms. This review explores the relations between different lines of research and discusses open
questions regarding DS preprocessing for deformation analysis. The review is complemented with an
experiment that demonstrates that significantly improved results can be achieved for preprocessed
DS during parameter estimation if their statistical properties are used.

Keywords: InSAR; Persistent Scatterer; Distributed Scatterer; preprocessing; adaptive neighborhood;
covariance; coherence; deformation

1. Introduction

The subject of this review will be multitemporal deformation analysis with spaceborne (Synthetic
Aperture Radar) SAR interferometry. More precisely, the methods that have been developed pertaining
to preprocessing of Distributed Scatterers (DS) for use in Persistent Scatterers (PS) algorithms will be
discussed with a focus on progress in the last decade.

Interferometric Synthetic Aperture Radar (InSAR) is a technique that has its origin in the late
1970s, when spaceborne imaging radars began to play an important role in remote sensing [1–4].
It became popular when, after the launch of the European Space Agency (ESA) satellite ERS-1 in
1991, an enormous amount of suitable SAR data became available. Since that time, its importance has
increased steadily and today about one and a half dozen SAR satellites are orbiting the earth that are
continuously acquiring data for scientific, governmental, and commercial purposes (e.g., Sentinel 1,
TerraSAR-X, TanDEM-X, CosmoSkymed, RADARSAT-2, ALOS II, SAOCOM, PAZ). Data are used to
gather information over land, ice, and sea. They allow mapping and change detection for a multitude
of purposes. Applications comprise, for example, land cover classification, mapping of ocean currents,
intelligence, or situational awareness in case of natural catastrophes, e.g., mapping of flooded or
destroyed areas. However, the unique capability of spaceborne SAR is the acquisition of large area
interferometric data. Devoted missions (SRTM, TanDEM-X) have provided Digital Elevation Models
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(DEMs) of the whole surface of the earth, allowing for glaciologists to study extent, flow, and mass
balance of glaciers and ice sheets, for climatologists to estimate the biomass of the world’s forests,
and for geologists to use SAR data to study phenomena like earthquakes, volcanoes, and tectonic
processes. For other geoscientists and for governmental and economic stakeholders, it is of high
importance to monitor movements of the earth’s surface that go along with tunneling, mining, gas,
water, and oil withdrawal.

Deformation analysis with InSAR is based on the following idea that will be given for the moment
largely simplified, ignoring varying positions of the sensor, atmospheric delay, phase ambiguity,
presence of complex scattering mechanisms, physical changes in the illuminated scene, and other
complications [1–4]: The SAR data processing gives a complex valued image, where the amplitude of
a pixel is conceived as the magnitude of the signal scattered back from a resolution cell on the ground
and where the argument is interpreted as the phase shift between emitted and received signal (instead
of phase shifts, one simply speaks of phases). If a movement of the earth’s surface occurs between
acquisitions, the signal travels a different distance and the phases change accordingly. By integrating
spatially and temporally these changes of phases, the deformation is obtained. The changes of phase
are found in the name giving interferograms, which are formed by multiplying the pixel values of
the one acquisition with the complex conjugated pixel values of the other acquisition. However,
processing of real data cannot ignore the mentioned complications and requires solutions. The basis
for developing corresponding algorithms is usually a decomposition of the interferogram phase as in
the following formula (observe that phases are only known modulo 2π):

ϕm − ϕs = ϕsynth −
4π

λ

(
B⊥
rm
· ∆h
tan(θ)

+ ∆r
)
+ αm − αs + ν (1)

where ϕm and ϕs are the phases of acquisitions m and s. ϕsynth is the synthetic phase corresponding
to geometric path lengths calculated based on orbit information and a DEM, λ is the wavelength,
B⊥ is the perpendicular baseline, rm is the distance corresponding to the pixel center, θ is the looking
angle, ∆h is the DEM error, ∆r is the displacement in line of sight of the sensor, αm and αs account
for atmospheric delay and other spatially correlated errors (e.g., caused by imprecise orbits)—in
the sequel named atmospheric phase screen (APS)—and ν is everything else, usually called noise.
The relevant contribution for deformation analysis is the displacement, and the question is under what
circumstances it can be extracted. In general, the phase model tells us that the deformation signal can
be accurately determined if the other terms can either be compensated or are insignificant (e.g., DEM
and orbit data are precise or atmosphere over an arid region might be stable). Of particular interest here
is the miscellaneous term ν. It accounts for sensor noise and processing errors, which can be assumed
to be small. However, it comprises also decorrelation effects and changes in reflectivity that might
make estimation infeasible. Deformation analysis is feasible mainly for two categories of scattering
mechanisms. The first are Persistent Scatterers (PS), the case where ν is small. This corresponds most
often to one dominant scatterer in the resolution cell, e.g., a trihedral manmade structure, a pole,
or a single rock. There have been several papers that investigated the physical origin of PS, e.g., [5],
where six main types of PS are described. The second are Distributed Scatterers (DS), which is the case
where a sufficiently large group of adjacent pixels shares the same scattering mechanism and ν can
be mitigated by statistical methods. Usually, these are pixels with many small scatterers of similar
size. If the resolution is some 10 meters, this is true for most natural scatterers (forest, agricultural
fields, bare soil, rock surfaces). If the resolution is some meters, DS are mostly found in arid areas
with low vegetation and debris, but even rough asphalt or plaster can constitute a DS. There are also
exploitable pixels, where a small number (e.g., two or three) of pointlike scatterers are contained.
The corresponding field of research is SAR tomography (cp. e.g., [6,7]) and will be left aside as DS are
the focus of this review.

The history of InSAR deformation analysis exploiting DS commenced with Differential InSAR
(DInSAR), for the first time described in [8] for L-band data from Seasat (a comprehensive overview
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on DInSAR is given in [2]). The initial approach consisted of using three images that were used
to form interferograms and a DEM. The DEM served to calculate and remove the synthetic phase.
Furthermore, phase unwrapping was applied to generate the DEM and to obtain the deformation
field. An algorithm for phase unwrapping was developed somewhat earlier for DEM generation from
InSAR data in [9]. During the following years, techniques for most of the basic challenges of InSAR
were developed. Early work on phase statistics and the phenomenon of decorrelation can be found
in [10–15]. Enhancement of signal quality by filtering was considered, e.g., in [16,17]. Investigations,
where stacking of interferograms is used to mitigate atmospheric delay, are discussed in [18–20].
Theory and algorithms were based on DS until the existence of PS was observed in the late 1990s
by Ferretti while working on DEM reconstruction from a stack of SAR images [21]. In the sequel,
they developed the first Persistent Scatterer Interferometry (PSI) algorithm [22,23], which extended the
applicability of InSAR to scenes where enough PS are found but large parts are strongly decorrelated
and hence unwrapping on the full interferograms cannot succeed. For several years from this time on,
DInSAR and PSI developed in parallel. The next big step for DInSAR was the small-baseline subset
(SBAS) technique [24]. By considering a redundant graph of small baseline interferograms, the effects
of decorrelation could be mitigated and the redundancy enhanced robustness of estimation. In this first
version, only DS were considered (using boxcar multilooking), but the next step [25] was to include
processing of PS: coherent targets in the full resolution interferograms were recognized as having
small residuals relative to the spatially filtered interferograms. In the same year, a new approach [26]
for processing PS was proposed that later became the Stanford Method for PS (StaMPS; [27,28]).
It aims at exploiting low amplitude PS on volcanoes and other natural terrains and likewise detects
these PS as pixels that have small phase differences to the filtered interferograms. A peculiarity of
StaMPS is the application of an extensive iterative spatiotemporal filtering. This might be seen as an
example from a third line of development beside PS and SBAS techniques, where SAR image filters
progress from boxcar filtering to ever more sophisticated approaches. Later, the ideas from SBAS were
included in StaMPS, allowing joint processing of PS and DS [29]. At that time, several research groups
worked towards integrated processing of DS and PS with the goal of increasing the spatial coverage
with measurements. Also, at Milano progress was made. An important step was the first estimator
making use of the full covariance matrix for estimating the parameters of a deterministic phase model
(linear deformation rate and height error) of a DS relative to a reference PS [30,31]. The effect is that,
during estimation, phases are weighted in an optimal way; under assumption of Gaussianity, it is the
maximum likelihood estimator (MLE). To prevent APS from deteriorating results, it is necessary that
DS are added to the result of a PS analysis. This allows for extension of the APS estimated for the PS to
DS positions and removal it before the MLE is applied. This way, DS are not used to bridge gaps in the
PS net, which would make results more robust. DS are added in a postprocessing step. Transforming
DS in a preprocessing step in such a way that they can be used like PS in any PS algorithm was the
next stage of development. De Zan [31] describes an experiment where he observes that the phases of
the eigenvector of the covariance matrix to the largest eigenvalue correspond to deformation, DEM
error, and APS averaged over the DS pixel. [32,33] derived an MLE (likewise under assumption of
Gaussianity) for the phase history of DS that approximates the phases of the complex covariance matrix
by triangular phases, assuming that all pixels in the neighborhood corresponding to a DS are affected
by the same deformation, DEM error, and APS. The original phases of the DS are then replaced by the
estimated phase history. At Fringe 2009, the power of this idea was demonstrated when SqueeSAR
was presented, a framework for the preprocessing of DS [34]. In [35], this approach was explained in
more detail, adding suggestions for adaptive neighborhood (AN) forming (DeSpecKS) and DS quality
assessment. Shortly afterwards, AN forming and phase triangulation were integrated in the SBAS
framework in [36]. For SBAS, this opened the applicability of spatiotemporal unwrapping [37–40],
which is not possible directly from independently spatially unwrapped interferograms because phases
are not triangular (cp. [41] for phase triangulation without consideration of statistics).
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Here, this historical survey ends. It has been intended to show on a very coarse scale how the
processing of DS and PS evolved over time and how they fused a decade ago with spatiotemporal
filtering techniques together in approaches that can be described as preprocessing of DS for the use in
PSI algorithms. Preprocessing of DS for the use in PSI algorithms is the main subject of this review.
It has seen tremendous further progress since that time, which is visible, e.g., in a number of excellent
doctoral theses related to the subject [42–46]. Although in each of them the state of the art has been
discussed, not all aspects are covered, partly because of new developments that resulted since their
publication, partly because they necessarily concentrated on a certain issue. The present review is
intended to give a broad view of the subject, with a focus on giving a survey on methods and ideas and
presenting phase triangulation as a unifying concept that allows extraction of DS signals in a general
manner from weighted filtered interferograms. Furthermore, a complement was included in the review.
Although preprocessing of DS is often simplistically depicted as transforming DS into PS, preprocessed
DS are statistically not equivalent to PS. An experiment demonstrates that parameter estimation from
preprocessed DS gives significantly better results if statistical information is considered.

In Section 2, statistical modeling of DS is surveyed. Section 3 is the core of the review.
It commences with an estimation of DS signals because of the pivotal role we assign to this element.
Then filtering of interferograms and coherence estimation are treated. Points to be addressed are
nonstationary phases, grouping of statistically homogeneous neighborhoods resp. of adaptive
neighborhoods, nonlocal methods, bias correction and regularization, and quality numbers for DS.
In Section 4, phase model parameter estimation for preprocessed DS is discussed and the announced
experiment presented. In Section 5, a short discussion of what has been achieved is given and
interesting possibilities for future research are indicated. Conclusions and a brief synopsis in Section 6
complete the review.

2. Statistics for Distributed Scatterers

A DS pixel is supposed to originate from many small scatterers of comparable size in a resolution
cell. If the SAR image contains a larger area with such a scattering mechanism, a so-called speckle
pattern is visible that can be stochastically modeled. This does not contradict the fact that the scattering
process is deterministic, and if the acquisition is repeated from precisely the same position and with
no changes having affected the terrain, the same pattern would result again. One should rather think
of a repeated random experiment, where a random number of scatterers is randomly distributed in
each resolution cell and the range positions are uniformly distributed. In case the range extension
of the pixel is much larger than the wavelength, the latter has the consequence that phases can be
described with good precision by a uniform distribution. This concept allows for successfully dealing
with a situation where the detailed information is missing that would be necessary for a deterministic
treatment. To derive a specific statistical model, traditionally several assumptions are made [47,48]:

1. the backscatter from a resolution cell is the superposition of the backscatter of stochastically
independent elementary scatterers;

2. their number is large;
3. amplitude and phase are independent random variables;
4. the phase is uniformly distributed;
5. no individual scatterer dominates the resolution cell;
6. the resolution cell is large compared to the single scatterer.

From the generalized central limit theorem, it can be concluded that the real and imaginary
parts of backscatter are approximately α-stable distributed (0 < α ≤ 2). The α-stable distributions
form a four-parameter family: location, scale, stability, and skewness parameter (note: skewness
requiring the third central moment is not defined). The particular case α = 2 occurs if standard
deviations of the elementary random variables are bounded and the central limit theorem can be
applied. The limiting distribution is then consequentially normal. While Goodman [49] assumed
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bounded standard deviations and obtained a complex circular (i.e., z ∼ eiδ·z independent of angle
δ) normal distribution in the limit, other authors favor the more general framework of symmetric
α-stable distributions [47,50] to be able to account for impulsive behavior of the signal, e.g., found in
high-resolution SAR images of urban areas (or of the sea surface).

Symmetric α-stable random vectors belong to the larger class of complex elliptically symmetric
(CES) distributed random vectors [51–53]. CES distributions comprise, e.g., complex normal, complex
t-, complex K-, generalized Gaussian, and inverse Gaussian distributions that are used to model
radar clutter. They provide alternative statistic models for DS in cases where the assumption of
complex normal distribution does not hold, e.g., because of high-resolution SAR data or, more
importantly, because deviating scattering mechanisms are wrongly included in the DS neighborhood.
A comprehensive theory of robust estimation has been developed for CES distributions that will be
discussed at the end of the section. A survey on statistical modeling of SAR images was given by [54].

Usually for DS, Goodmann’s model is adopted, i.e., that they can modeled as circular complex
normally distributed random vectors, and it will also be the basis for most of the work presented
here. A circular complex normally distributed random vector y ∼ CN(0, C, 0), C = E[yyH ] is complex
normally distributed with mean and relation matrix equal to zero [55]. For the entries of the covariance
matrix C, let cmn = |cmn|·exp(i·φmn), and σm =

√
cmm is the square root of the backscatter coefficient

in acquisition m. Then, the complex correlation or coherence is

γmn = |γmn|·eiφmn =
cmn

σm·σn
. (2)

Because of its importance for InSAR, this correlation has been investigated by many authors.
Zebker and Villasenor [12] studied the causes for loss of correlation between two images in
basic situations:

1. presence of thermal noise (thermal decorrelation);
2. effect of different viewing geometry (spatial baseline and rotation decorrelation);
3. small random movements of the scatterers (temporal decorrelation).

They derived a formula presenting the total correlation as the product of the basic correlations.
In [56] the formula for the total correlation of [12] is modified by thresholding with a bias term
dependent on the number of independent looks and replacing the critical baseline by an effective
baseline that is intended to account for volumetric effects. In [57], the authors investigate the
development of a temporal correlation for sensors in L-, C- and X-band and different revisit times over
drained peat soils in the Netherlands. To this end, a model for correlation is formulated that contains
a long-term coherence and its parameters are estimated (e.g., about 10 days for C-band in summer).
The finding is that, “it is the combination of longer wavelengths, shorter repeat interval, and higher
spatial resolution that increases the likelihood to obtain a coherent signal” [57]. Because of the large
decorrelation rate, it is difficult to perform deformation estimations on this terrain. Afterwards, they
succeeded estimating deformation via a multisatellite approach presented in [58]. Models considering
a periodic factor are given in [46] and later in Section 4.2.

An observation that is of importance for the stochastic model for DS that will be introduced
next is that γmn ∈ R≥0 holds for the complex correlation coefficients in the formula of [12]. Likewise,
this is the case for temporal correlation as modeled in [59] or [31]. If a common phase history
φ = (φ1, · · · , φN)

t is superposed that accounts for deformation, atmospheric delay and large area
DEM errors cmn = |cmn|·exp(i·(φm − φn)) are obtained. This is equivalent to saying that phase
triangularity is given, i.e., φmn = φml − φln, for all l, m, and n. In many situations, this is a plausible
model for the shape of the covariance matrix of a DS, but not always. For certain scattering phenomena
connected with soil moisture changes or thawing permafrost, it is known that phase triangularity
might be corrupted [60–62].
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In [33], the following stochastic model for a DS is given that consists of a neighborhood Ω of pixels:
The complex vectors of N image values are realizations of random vectors yk = (yk1, · · · , ykN)

t ∼
CN(0, C, 0) (k ∈ Ω) that result from independent identically circular complex normal distributed
random vectors. (For the sake of simple notation, it is not distinguished between the random vectors
and their realizations in the following.) C ∈ CN×N denotes the covariance matrix. It is assumed
that the shape of the covariance matrix is as discussed above. All pixels in Ω have a common phase
history φ = (φ1, · · · , φN)

t that accounts for deformation, atmospheric delay, large area DEM errors,
and other contributions that do not vary spatially. In the hypothetical case that there were no such
contributions and φ were equal zero, cmn ∈ R≥0 for all entries of C can be assumed. The consequence
is the assumption that, in general, cmn = |cmn|·exp(i·(φm − φn)) holds. All yk are collected in one
random vector with covariance matrix CΩ = CΩ(φ) ∈ CKN×KN , where K = #Ω:

y =

 y1
...

yK

 ∼ CN(0, CΩ, 0). (3)

Then the following holds

(CΩ)kmln = E
[
ykmyln

H
]
= δkl ·|cmn|·exp(i·(φm − φn)). (4)

Furthermore, the pdf (probability density function) for a given φ is

p(y|φ) = const.·exp
(
−yHCΩ

−1y
)

. (5)

Note that the constant is not dependent on φ. A short calculation leads to

yHCΩ
−1y = · · · = K·ξH ·

(
|C|−1 ◦ Ĉ

)
·ξ (6)

where Ĉ is the sample covariance matrix (SaCM). Ĉ is the MLE for the covariance matrix of circular
complex normally distributed random vectors and its probability density function is the complex
Wishart distribution [63]. This last equation is the basis for the MLE for the phase history of a DS
discussed later. From Ĉ = (ĉmn), the coherence matrix is obtained:

Γ̂ =


√

ĉ11 0
. . .

0
√

ĉNN


−1

·Ĉ·


√

ĉ11 0
. . .

0
√

ĉNN


−1

. (7)

Its entries are the sample complex coherences for each interferogram:

γ̂mn = |γ̂mn|·eiφ̂mn =
Σk∈Ωykmy∗kn√

Σk∈Ω|ykm|2·Σk∈Ω|ykn|2
(8)

where |γ̂mn| is a measure of the variation of phase inside Ω and the MLE for coherence magnitude [64]
(p. 581). φ̂mn is the MLE for the joint interferogram phase under circular complex normal distribution
(stochastic model and proof in [14], already stated in [11]). Note that in [14], the MLE of the coherence
magnitude was derived under the assumption that the variance in both acquisitions is the same.
Its expectation is always smaller than that of the magnitude of the sample coherence [14]. |γ̂mn|
is known [65–67] to be biased towards larger values but is asymptotically unbiased (with growing
number of looks). The bias for a given number of looks is worst for a small magnitude of coherence.
In [68], a refined speckle noise model was given and used to derive a bias corrected estimator for
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coherence magnitude. Formulas for pdf, mean, and moments of |γ̂mn| have been given [66,67]. To use
|γ̂mn| as a reliable indicator of phase quality, no phase ramp must be present [69], as quality is otherwise
underestimated. The pdf for φ̂mn can be found, e.g., in [65,66,70]. Its standard deviation drops with
increasing coherence and with an increasing number of looks. For a more detailed discussion of errors
in coherence estimation, see [44]. As a reliable estimation of γ̂mn is paramount, the following crucial
issues will be discussed in Section 3.2 in more detail:

1. removal of residual fringes;
2. grouping of a statistically homogeneous neighborhood Ω;
3. bias reduction.

Still under the assumption that the statistics of a DS in two repeat-pass SAR images can be
described as a complex circular normal random vector, formulas for several related random variables
were derived: joint pdf of magnitude and phase of the interferogram [70,71], pdf of interferometric
phase [15,70], pdf of interferogram magnitude [70], pdf, and expectation and standard deviation of
the multilooked interferometric phase [64]. Inspection of the joint pdf of magnitude and phase shows
that samples with a phase close to the mean phase more likely have a high amplitude, while larger
phase deviations more often correspond to small amplitudes. Although the simplified exposition
in the introduction might have given the impression that only phases matter, amplitudes are also
relevant as they reflect the quality of the phase, and it often makes sense to use the complex signal for
processing. A trivial example is the use for estimation of the SaCM. Further examples can be found in
Equations (26) and (27) of the subsection on estimation of model parameters.

For the case of symmetric α-stable distributions, a modified estimator for coherence based
on fractional lower order statistics was given in [72]. Their examples of coherence estimation
with the proposed estimator show less artifacts near strong scatterers. DS are supposed to be
statistically homogeneous, so assuming a distribution made to account for strong heterogeneous
scattering would improve DS-processing means that pixels that do not belong to the DS may be
contained in the neighborhood and hence, at least for high resolution data, grouping was suboptimal.
Jiang [44] reports that neighborhoods generated with his adaptive neighborhood (AN) selection
algorithm are approximately Gaussian distributed and therefore no advantage can be expected from
an estimator modified for symmetric α-stable distributions. Nevertheless, if there is reason to think
that neighborhoods are less homogeneous than necessary, it can make sense to invest the additional
computational effort and use a robust M-estimator of scatter [52]. Scatter means the scatter matrix,
one of the defining parameters of a CES distribution. It is a positive constant times the covariance
matrix and hence provides the same useful information as the covariance matrix. Compared to
amplitude-based outlier rejection, M-estimators of scatter have the advantage of being sensitive versus
phase when weighting down outlying pixels. As they use the Mahalanobis length and therefore
weight down all values of a pixel, it still makes sense to detect outliers beforehand and discard
them before estimating the scatter matrix. They are not recommended for small neighborhoods as
they involve inversion of the estimated covariance matrix. In this case, regularized M-estimators
perform better [53]. Robust M-estimators of scatter matrix are robust in the sense that they have a
bounded influence function. This means that small contaminations may not have an arbitrarily large
effect on the estimation result, e.g., the SaCM is an M-estimator of scatter but not robust. Robust
examples are the Huber estimator, the MLE for the complex t-distribution, or the S-estimator with
Rocke’s weight function according (for implementing S-estimators, see [73]). The latter M-estimators
of scatter lend themselves for MLE of phase history, as has been derived in [74]. There is a trade-off
between robustness and precision of estimation that can be measured via the asymptotic relative
efficiency [52,75]. While the MLE might be sensitive to outliers, a very robust estimator might have a
too strongly varying asymptotic distribution, and a better solution is found in the middle between
those extremes. Finally, under reasonable conditions, M-estimators of scatter for CES distributions are
asymptotically normal and the limiting covariance matrix can be calculated based on the parameters
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of the underlying CES distribution [52]. This could be a starting point to develop new quality numbers
for the scatter matrix.

3. Estimation of Distributed Scatterer Signals for Preprocessing of Multitemporal InSAR Data

In this section, the estimation of DS signals from the wrapped interferogram phases is discussed.
The estimated DS signal constitutes a filtered version of the original data and can be used afterwards
for any InSAR application which might benefit from a filtered input. Good DS can be used like PS
in any PSI algorithm. This latter conception is from our point of view a key idea of SqueeSAR [35].
In [35] and other approaches, it is realized via the following steps for estimation of DS signals:

1. Grouping of a neighborhood Ω;
2. Estimation of the covariance matrix;
3. Phase triangulation or more generally estimation of the DS signal;
4. Calculation of a quality number for the DS.

For grouping of a neighborhood for a pixel, a search window is centered on it. In case of DespecKS,
a method suggested in [35], the amplitudes of all other pixels in the search window are compared
with those of the center pixel via the KS two-sample test. Those pixels accepted to have the same
distribution of amplitudes form the neighborhood. Often, the connectedness of the neighborhood is
enforced with the argument that pixels then are more likely to belong to the same physical structure.
For the pixels in the neighborhood, the SaCM is calculated. A phase history is estimated that optimally
fits to the phases of the SaCM. As a quality number for goodness of fit, the phase triangulation
coherence is calculated. These steps and also the scheme itself can be modified in various ways.
An important further example is the SBAS approach. It has been demonstrated that it gives improved
results if boxcar multilooking is replaced with more refined techniques, and if due to triangular
phases, 3D-unwrapping algorithms are applicable [36,40,76]. A difference here is that not all possible
interferograms are calculated but only those with small baselines. There are also other algorithms that
do not exactly fit this scheme. This section is devoted to discussing the different solutions found in the
literature. As the unifying ingredient common to all preprocessing schemes discussed in this work is
phase triangulation, the exposition does not follow the succession of the above steps but starts with
explaining estimators of DS signal. This facilitates the discussion in the sequel.

3.1. Estimators of Distributed Scatterer Signal

In this section, estimators of the DS signal are presented. In some cases, amplitudes are neglected
and only the phase history of the DS is provided. They allow to preprocess the data stack and to
replace the noisy original signal with the estimated signal. If the estimation is successful, then these
pixels can be used like PS. Some of these estimators can also be used to determine the parameters of a
phase model. This will be the subject of Section 4.

The first estimator of phase history for multitemporal InSAR was introduced and investigated
in [32,33]. It is the maximum likelihood estimator (ML), which is asymptotically optimal and close to
the Cramér–Rao lower bound:

φ̂ = arg max
φ

exp
(
−yHCΩ

−1y
)
= arg min

φ
ξH ·(|C|−1 ◦ Ĉ)·ξ (9)

where C is the covariance matrix, Ĉ is the sample covariance matrix, and

ξ =

 eiφ1

...
eiφN

 (10)
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contains the sought phase history φ1, . . . , φN . Please observe that in [33], it was assumed that all
variances are one, and therefore, the coherence matrix replaces the covariance matrix in their formulas.
An historical side note: this estimator has an early predecessor that was developed at the end of the
1990s to retrieve heights from data of an airborne three-antenna SAR system, cp. e.g., [77]. To make
the result unique, the master phase φm is assumed to be zero. The ML estimator is not available for
real data, as it requires the unknown covariance matrix. In [33], a test case is presented, where no
deformation was expected and a replacement for C was calculated from acquisition geometry and a
SRTM DEM under the assumption that only spatial decorrelation matters. If the covariance matrix
is replaced by an estimation Ĉ of the covariance matrix and if |Ĉ|−1 exists, an applicable estimator is
obtained, which is different from the ML estimator and that could be named a pseudo ML estimator:

φ̂ = arg min
φ

ξH ·
(
|Ĉ|−1 ◦ Ĉ

)
·ξ = arg min

φ
∑
m,n

ζ̂mn·|ĉmn|·exp(i·(ϕ̂mn − (φm − φn))). (11)

Here, |Ĉ|−1
= (ζ̂mn), Ĉ = (ĉmn), and ĉmn = |ĉmn|·exp(i·ϕ̂mn). In cases where |Ĉ|−1 does not

exist, some regularization has to be applied or the pseudoinverse can be taken. If a PSI algorithm is
applied that is able to benefit from a DS signal comprising phases and amplitudes, a natural choice
for amplitudes would be the square roots of the diagonal entries of Ĉ. We will refer to this type of
estimator, which consists of estimation of covariance or coherence matrix plus execution of the phase
linking algorithm also as phase linking (PhL), although the authors of [33] introduced the notion of
phase linking for the iterative determination of the minimum with the following formula:

φ
(k)
p = ]

− ∑
n( 6=p)

ζ̂pn·ĉpn·exp(i·φ(k−1)
p )

. (12)

The minimization can also be solved by more advanced algorithms, e.g., the Broyden–
Fletcher–Goldfarb–Shanno algorithm [78], but probably less effectively. As |Ĉ|−1 ◦ Ĉ = |Γ̂|−1 ◦ Γ̂
holds, PhL can also be stated using the coherence matrix. However, for other estimators of DS
signal, the choice between Ĉ and Γ̂ might result in different estimators. [32,33] provide also the
hybrid Cramér–Rao bound for PhL. We give a slightly modified formulation. Let φ(ϑ) = Θ·ϑ + Ĩ·ω,
Θ = Ĩ·Θ̃ with Θ̃ ∈ R(N−1)×p, so that Ĩ ∈ RN×(N−1) is obtained by the identity matrix by removing the
master column, ϑ contains the sought model parameters (PhL corresponds to the case where Θ̃ is the
identity matrix), and ω denotes interferogram atmosphere. Furthermore, assume that atmosphere
α can be modelled as a Gaussian iid signal with standard deviation σa. ωn = αn − αmaster has then
covariance matrix V ∈ R(N−1)×(N−1) with entries vmn = σa

2·(1 + δmn). The Fisher information matrix
is X = 2L·(|Γ|−1 ◦ |Γ| − I), where L is the number of looks. From a theorem of Fiedler, it follows that
it is positive semidefinite [79]. Define X̃ := Ĩ

t·X ·̃I. Assume Θt·X·Θ is invertible. Then, the following
inequality is obtained:

Ey,ω

[
(ϑ̂− ϑ)(ϑ̂− ϑ)

t
]
≥
(

Θ̃
t·
(

X̃− X̃V
1
2

(
V

1
2 X̃V

1
2 + I

)−1
V

1
2 X̃
)
·Θ̃
)−1

(13)

and the inverse matrices on the right-hand side exist (here A ≥ B means A-B is positive semidefinite).
Although this formulation looks on first sight more complicated than the one given in [32,33], it has
the advantage of avoiding a limit process and allows for setting V = 0 in case ω is negligible
without further thinking. In case V = 0, the equation simplifies to the standard Cramér–Rao bound.
Furthermore, it is still easily verified that the matrix is symmetric.
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SAR polarimetry inspired a second way of estimating DS signals [31,80,81]. The method can be
applied either to Ĉ or Γ̂ and is derived from the dyadic decomposition

Γ̂ =
N

∑
n=1

λn·unuH
n (14)

with eigenvalues λn and orthonormal eigenvectors un. Here, the eigenvector to the largest eigenvalue
is taken as an estimator of DS signal (abbreviation for the method: EVG). If there is more than one
significant eigenvalue in analogy to polarimetry, this often is interpreted as the superposition of several
scattering mechanisms. In such a case, this approach is supposed to capture the dominant scattering
mechanism, while the other estimators of phase history give degraded results. The presence of more
than one scattering mechanism can be detected with the help of entropy.

A third possibility to estimate DS signals from Ĉ or from Γ̂ = (γ̂mn) is phase triangulation
coherence maximization (PTCM), as described in [82]:

φ̂ = arg max
φ

Σm,n|γ̂mn|α·exp(i·(ϕ̂mn − (φm − φn))). (15)

Here, α is a positive real number, e.g., 1 or 2. Analogous to PhL, the maximum can be found
iteratively with the help of the following formula:

φ
(k)
p = ]

 ∑
n( 6=p)

|γ̂pn|α−1·γ̂pn·exp(i·φ(k−1)
p )

. (16)

A related approach can be found in [83]. Although they do estimate the parameters of a model with
linear deformation and DEM error and not the phase history, they also perform PTCM. An interesting
difference is that they consider a more general situation, where the summation does not necessarily
take over the full set of all possible interferograms, but over graphs that are for each target individually
optimized. They state that, “the links of a complete graph are not necessarily all informative” and
argue that different decorrelation mechanisms require different graphs. For example, in the same
scene, one DS might be mostly sensitive to perpendicular baselines (debris), while another is afflicted
strongly by temporal decorrelation (sparse vegetation). A third might display a seasonal dependence
(changes in vegetation or occasional snow cover). As a rule, to construct such a graph, they suggest
commencing with a spanning tree with edges of maximal coherence and to complement it with all
edges having coherence larger than a threshold. A similar idea was presented by [40], who, under
the designation improved EMCF-SBAS processing, also applied PTCM over an optimized graph to
estimate phase history. Starting from a reduced Delaunay triangulation in the baseline plane, they
optimized their triangulation with the help of a simulated annealing approach. Other than suggested
by [83], the same SBAS graph was taken for all points. A very noteworthy observation of [40] is that
results achieved with this optimized graph were significantly improved compared to the use of the
full covariance matrix. For algorithms that apply PTCM with the full covariance or coherence matrix,
these ideas can easily be adopted by simply setting the coherences to zero for interferograms that are
not used. For PhL or EVG, there is no obvious way of doing this. Finally, it is an advantage that EVG
and PTCM are still valid in case the coherence matrix approaches the coherence matrix of an ideal
quasi-PS: Γ −→ ξξH (see Section 4.1 for more on this). On the other hand, PhL is prone to diverge in
this transition.

As a fourth method, an estimator using a weighted integer least squares (ILS) approach has been
introduced [46,84] that solves for the integer ambiguities to unwrap the phase. It searches a solution
for the following problem:
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E[ϕ̂mn] =


φm n = master

−φn m = master

φm − φn + 2π·amn otherwise

(17)

where amn ∈ {−1, 0, 1} is an integer. This can be reformulated for suitable arrangement of ϕ̂ = (ϕ̂mn),
a = (amn) and φ = (φn) and with appropriate matrices A and B as

[â, φ̂] = arg min
a,φ

||ϕ̂− 2π·A·a− B·φ||2W (18)

where the constraints φn ∈ [−π, π), φmaster = 0 and amn ∈ {−1, 0, 1} have to be obeyed. W is a weight
matrix. In case of normally distributed data, the inverse of the covariance matrix would be a natural
choice for W. However, as phases are far from being normally distributed, other options might provide
better estimators. Nevertheless, Samiei-Esfahany [46] derives an approximation to the covariance
matrix Qϕ of interferometric phases of a DS pixel:

(
Qϕ

)
ij,kl = cov

[
ϕij, ϕkl

]
≈
|γik||γjl | − |γij||γkl |

2L|γij||γkl |
. (19)

For this formula, he demonstrates, with the help of Monte Carlo simulation, that it provides a
good approximation if the number of looks L is >50 and a better approximation than a formula derived
earlier based on simpler assumptions [59,60]. Beside the inverse of the approximated covariance matrix,
he considers for W the diagonal matrices with coherences γ̂mn respectively with the Fisher information
index 2Lγ̂2

mn·(1− γ̂2
mn)
−1 as entries. His experiments with simulated data for an exponential decay and

a seasonal decay scenario show best results for the Fisher information index. For these two scenarios,
he also performs comparisons between PhL, EVG, PTCM, and ILS. Best results were achieved for
PTCM and ILS. PhL performed distinctly worse than the other estimators. This is due to the small
5 × 5 search window, which leads to an imprecise estimation of |Γ̂| and corresponding problems with
its inversion. Furthermore, for both scenarios, experiments with ILS plus Fisher info are performed
with true and estimated coherences as well as the complete graph and a small baseline graph. For the
complete graph, standard deviations double for estimated compared to true coherences, while those
for the small baseline graph are very similar. In the exponential decay scenario, the results for the
small baseline graph are distinctly better than for the complete graph, and for the seasonal scenario,
it is vice versa. In an experiment with real data, ILS outperforms StaMPS. ILS performs very well but
has the drawback of high computation time. Finally, a big advantage of ILS is that it provides quality
control via the covariance matrix for the estimated phase history:

Qφ̂ =
(

BtWB
)−1BtWQϕWB

(
BtWB

)−1. (20)

In [85], the authors introduce their concept of Joint-Scatterer InSAR (JSInSAR). They estimate a
covariance matrix from blocks of pixels, that is of dimension PN × PN, where P is the size of a patch
in the spatial domain. By requiring that the signal and the noise space obtained from the covariance
matrix are orthogonal, they derive an expression that must be a minimized analog of that occurring
during PhL to find the phase history.

An independent approach with the name Multi-Link SAR has been developed in [86]. The idea is
to improve multilooked interferograms. For two acquisitions in the interferogram graph, the paths
connecting them are integrated and weighted. The result of the integration is an estimation of the
phase for the interferogram between these two acquisitions obtained by adding up the multilooked
phases of the consecutive interferograms. It is demonstrated that in case all these phases are reliable,
e.g., because they have a short baseline, this wrapped sum of phases is for problematic interferograms
a significantly better estimate than the original multilooked phase. The weighted sum of these integrals
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serves to replace the original wrapped phase. The weights reflect the reliability of the integrated phases
and are obtained based on the quality criterion colinearity introduced by the authors. Results from
simulated data demonstrate that colinearity measures phase errors significantly more reliably than
coherence [87] for a 3 × 3 estimation window on multilooked data.

As already noted by [46], the estimators for DS signal PhL, EVG, PTCM, and JSInSAR explained
and discussed in this subsection can be interpreted as special cases of the following general
estimation approach:

φ̂ = arg max
φ

Σm,nwmn·exp(i·(ϕ̂mn − (φm − φn))). (21)

W ∈ RN×N is a symmetric weight matrix (depending on the DS). If phases ϕ̂mn are only available for
certain interferograms, as in SBAS approaches, the corresponding weights are set to zero. Indications
that this can be advantageous have been reported. The estimators named before weights will be
nonnegative, with the exemption of PhL, where negative weights might occur. The merit of this
formulation, and this is likewise true for ILS, is that it is obvious that anyhow filtered wrapped
interferogram phases can be triangulated, while weights are a steering quality. Notwithstanding
this very general formulation, in all the cases discussed here, weights can be calculated from the
scatter matrix Ĉ. Consequentially, the next section will review (phase) filtering of interferograms and
coherence estimation with regard to the purpose of preprocessing DS.

3.2. Filtering of Interferograms and Coherence Estimation

In the preceding subsection, different possibilities for estimating a DS signal for preprocessing of
InSAR data stacks were presented. The required input to all these estimators consisted in interferogram
phases and weights, where phases were filtered and weights were derived from coherence, or more
generally, from the scatter matrix. In the current subsection, it will be studied how these can be
obtained from techniques that either are applied separately to each interferogram or work on the stack.
Some basic facts were already addressed in the section on DS statistics: estimators of scatter matrix,
sample coherence, and the MLE of [14]. Furthermore, it was reported on intrinsic biases of estimators,
the consequences of heterogeneous data and biases caused by nonstationary phases. Now, methods
will be discussed that have been developed to deal with these issues and to get the best out of the data.

3.2.1. Nonstationary Phases

In this section, approaches will be addressed for dealing with the presence of nonstationary
phases during preprocessing of an InSAR data stack. We assume that the synthetic phase has already
been removed [8]. There are approaches that implicitly handle nonstationarity and such that estimate
the interferogram phase explicitly for correcting the bias in coherence estimation. Examples for
implicit approaches will be given in the section on nonlocal methods (e.g., InSAR-BM3D). The explicit
approach occurs in several variants. Either it is applied separately for each DS or it is realized on the
interferogram or stack level and passes through the following steps:

1. denoising of the phases and correction of interferograms;
2. estimation of covariance or coherence from the corrected interferograms;
3. adding back denoised phases to covariances;
4. DS signal estimation.

This approach is compatible with most of the methods developed for interferogram filtering by
the InSAR community during the last 20 years. Examples are [16] (several suggestions, e.g., MUSIC;
applied in [88]), Goldstein, et al. [17] that works in the frequency domain, Davidson, et al. [89] an
adaptive multiresolution defringe algorithmus (e.g., applied in [90]), a modification of the filter of
Goldstein and Werner that reduces overfiltering by adapting the parameters to coherence [91], [62]
was mentioned before, a combination of the filter of Goldstein and Werner with a narrow low-pass
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filter iteratively applied in StaMPS [28], or [92] that is devised for frequency estimation on adaptive
neighborhoods (cp. IDAN in the section on grouping of statistically homogeneous neighborhoods).

An approach for InSAR stacks that works DS-wise and is based on a model describing the totality
of local phase ramps at the DS position in all interferograms caused by DEM errors was given in [93].
Slopes in range and azimuth are estimated from a sum of periodograms over the interferograms.
Each periodogram is calculated on the pixels of the adaptive neighborhood corresponding to the DS.
This approach was extended to gradients in the deformation field in [94] monitoring. They point to
the importance of including periodograms calculated for interferograms with large baselines for the
precision of this approach.

In [44], likewise, local phase ramps at the DS position are estimated, but in each interferogram
separately. The fringe frequency is obtained as the position of the peak after FFT with optimal window
size. The optimal window size is defined to result in minimal mean phase standard deviation.

3.2.2. Grouping of Statistically Homogeneous Neighborhoods

Heterogeneous data are the rule. The use of all pixels in a rectangular window entails the
dilemma of either using a small window and hoping that homogeneity is thus achieved or taking
a larger window, which would lead to precise estimation if the statistical assumptions remained
valid but often spoils the result by including unsuitable pixels. Therefore, it is an important question
how to build up effectively so-called adaptive neighborhoods (AN) that have variable shape but
are statistically homogeneous. ANs seem to have been used for the first time for speckle filtering
of multitemporal InSAR imagery in [95]. The authors report to be inspired by the use of ANs in
other fields of image exploitation [96]. It is also noteworthy that they already sought for a proper
3D-neighborhood, by which is meant that although a pixel is included in the neighborhood, some of
its values corresponding to certain channels (polarimetry) or points in time (multitemporal InSAR)
may be excluded. From Lee‘s sigma filter [97], they borrowed the idea of checking if the amplitudes
of neighbors of the pixel to be processed have less than two standard deviations difference from the
processed pixels amplitude. As the speckle effect in SAR imagery behaves like multiplicative noise,
some modifications to this approach developed for additive noise have been introduced. In particular,
a region growing in two steps proved to be seminal. The idea is to apply first a stricter criterion
(confidence interval for amplitudes at level 50%) in order that the region does not grow into statistically
unsuitable areas. Furthermore, this neighborhood provides a larger sample that allows for a more
precise re-estimation of mean and standard deviation, which are used to define the confidence interval
used during the second step. Here, pixels in gaps and at the rim of the region of the first step are
added to the region if their amplitudes fulfill a weaker criterion (amplitudes are contained in a larger
confidence interval at level 95%). This approach was adopted also from other researchers. For the
intensity-driven AN (IDAN) technique, [98] also let the region grow in two steps. However, they do not
compare the value of a pixel corresponding to a channel or to a point in time with another but compare
the vectors assigned to the two pixels. This might have been an inspiration for the authors of [35],
where the application of two-sample tests for the amplitudes of the pixels is advocated. In particular,
they introduce DeSpecKS, where the Kolmogorov–Smirnov two-sample test (KS) is used. As a second
example, they name the Anderson–Darling two sample test (AD). They do not build up a region in
two steps but test every pixel in a search window versus the center pixel. The accepted pixels form
the AN. Finally, pixels not belonging to the connected component of the center pixel are discarded
in order “to increase the probability that nearby pixels belong to the same radar target and share the
same geophysical parameters”. In [99], four two-sample tests are compared: generalized likelihood
ratio test (GLRT) for the scale parameter of the Rayleigh distribution, AD, KS, and Kullback–Leibler.
The best detection rates in different simulation scenarios were achieved for GLRT and AD. In particular,
GLRT performed best when Rayleigh-distributed amplitudes or different scale parameters for the
K-distribution were simulated but was third when the shape parameter of the K-distribution was
varied. KS was somewhat inferior to AD. Kullback–Leibler performed always worst. The subjective
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impression from results of filtering real data with GLRT and AD is that GLRT has a more confetti like
appearance. These results have convinced several authors [42,58,90] that AD is the better test to be
used for forming an AN. Its superiority over KS is explained with the higher sensitivity towards big
amplitudes. However, findings of [100] show that this advantage is lost in case an outlier removal was
performed before the tests. Furthermore, as outlier removal is highly recommended and KS is faster,
there is a little advantage for KS. Another small advantage of KS is that critical values can be precisely
calculated by a simple recursion that also works for samples of different sizes [101] (Section 6.3),
while for AD, usually an approximation described in [102] is used. On the other hand, critical values
for KS come in discrete steps, which for small sample size and high significance level restricts the
possible choices. [103] again grew a region requiring the relaxed criterion and then applied k-means
clustering to separate the homogeneous neighborhood of the center pixel from unsuitable pixels.
In [104], a new approach was taken for preventing running into unsuitable areas. The idea is to replace
the noisy stack of SAR amplitudes by a denoised extract of its information. To this purpose, a new
image is generated. The vector of amplitudes is projected to the main principal component of the
covariance matrix for amplitudes calculated by averaging over all pixels. The result is an image that
gets denoised in a further step. The denoised image is now the basis for determining the neighborhood
of a center pixel by thresholding on the square of the difference of image value of the center pixel and
the other pixels inside a search window. The advantage is faster processing.

In [105], the authors introduced a criterion for similarity that also makes use of phase information.
In a small neighborhood of the center pixel, the covariance matrix gets estimated with the MLT.
This allows for checking the other pixels in the search window. A pixel is accepted if a certain
threshold on the probability density corresponding to the estimated covariance matrix is exceeded.
All these approaches continue from here the same way. The four- or eight-connected component of the
neighborhood containing the center pixel is taken to estimate the SaCM. This step is carried out in
order to enhance the probability that all pixels of the adaptively chosen neighborhood actually belong
to a homogeneous area. An analysis of results in [105] demonstrates that the probabilistic method
performs best for small stacks up to 16 images when compared with boxcar multilooking, DeSpecKS,
or PCA-TV (the method of [104]). DeSpecKS proves even inferior to boxcar multilooking in this study.
If applied to a single interferogram, its results are comparable to the NL-InSAR filter of Deledalle [106],
discussed in the section on nonlocal methods.

In [44], the author proposes two different algorithms for forming an AN, introducing important
new ideas. A third is suggested in [107], which aims at fast processing. The first proposed algorithm
starts with a classification of pixels based on their amplitudes. A boxplot approach is used to detect
and remove outliers and afterwards determine the skewness and tailweight of the pixels. These
characteristics are decisive for an adaptive two-sample test (ADT). They serve to select the appropriate
test that decides over the statistical similarity of the two pixels compared. The pixels statistically
similar to the center pixel and in its connected component form the AN. The ADT scheme has been
developed starting from a set of candidate tests with the help of simulated data in order to compile an
optimal configuration. Regarding the power of the test, it is demonstrated that the ADT significantly
outperforms nonadaptive tests (KS, AD, Wilcoxon–Mann–Whitney) for several scenarios. The second
proposed algorithm provides a solution for the problem of low test power for small data stacks. To this
purpose, the number of available samples is enlarged by considering all amplitudes of all pixels in
a little neighborhood of each of the two pixels to be compared. The little neighborhood is chosen
among 8 directed windows containing 15 pixels each (as suggested in [108,109]) to be the one with
the smallest coefficient of variance of amplitudes. For the chosen directed window, amplitudes that
lie outside a relaxed confidence interval are discarded. The remaining samples are compared with a
differently set up ADT adapted to more strongly varying sample sizes. The third proposed algorithm
makes use of the observation that the mean of amplitudes of a pixel (in a multilook image) over time is
approximately normally distributed according to the central limit theorem for sufficiently big stacks
(e.g., N ≥ 10). For the mean amplitude image, an AN is grown with the help of a two-step procedure
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like the one described above. The definition of confidence intervals uses an estimation of the equivalent
number of looks from the data cleaned from outliers with help of the adjusted boxplot [110].

In this section, different possibilities of forming neighborhoods have been discussed that serve for
phase estimation (usually via the argument of the complex coherence). Most approaches proceed in
two steps: first, a conservative estimation in order to prepare a more precise second one. The shape of
the neighborhood developed from boxcar to ANs to 3D-ANs. Grouping criteria were applied to values
adjacent, either in space or time, to pixels or to blocks of pixels. They were based only on amplitudes
or also considering phase. Region growing was applied or all blocks inside a search window were
included that are similar to the center block. Then, several years ago, the next level of generality has
been entered. Approaches were introduced, where patches (in case of a single interferogram) or blocks
(in case of stacks of interferograms) are not used for grouping but rather for weighting. The use for
InSAR of the so-called nonlocal methods will be the subject of the next section.

3.2.3. Nonlocal (NL) Methods

The origin of nonlocal (NL) methods for image denoising is the NL means algorithm for optical
data introduced in [111]. The name-giving basic idea is to obtain the denoised pixel value as a
weighted sum over all pixel values in the image (or in a not too small search window). The weights are
computed from the distance between the vectors of the pixel values in a small patch around the pixel to
be denoised and the vector of pixel values of the patch shifted to the pixel to be weighted. [111] argues
that under the assumption of additive white Gaussian noise, the weighted Euclidean distance has
desirable statistical properties. Their approach already comprises the three basic steps characteristic of
the NL methods discussed in this section:

1. for each pixel to be estimated, a patch is shifted around and a similarity measure (based on the
statistical characteristics of the data) is calculated for every position; for multichannel data, it can
be a 3D block instead of a patch;

2. weights are computed from the calculated similarity measure;
3. a weighted mean or a weighted MLE provides the result.

The weighted mean is generalized to a weighted maximum likelihood approach in [112], where
weights are defined via probability of patch similarity given a noise model (probabilistic patch-based
(PPB) filter). In particular, they derive weights applicable for speckle noise in SAR images based on the
Nakagami–Rayleigh distribution. Furthermore, an iterative application of PPB is suggested using the
result of the previous iteration as a prior. The same authors extend their approach in [106] to InSAR
data (named the NL-InSAR estimator), obtaining estimations of reflectivity, phase, and coherence.
Weights are now defined under assumption of zero-mean circular Gaussian distribution, with patch
similarity making use of amplitudes as well as phases. Comparisons of simulated data with the
boxcar, the refined Lee [108,109], the IDAN, and the noniterative NL-InSAR estimator demonstrate
a better bias-variance trade-off and better signal-to-noise ratio of the iterative NL-InSAR estimator.
Likewise, the subjective impression from comparisons on simulated and on real data of the same
estimators indicates a superior performance of the iterative NL-InSAR estimator. Similarity criteria for
patches were studied systematically for different types of noise in different types of imagery, including
InSAR data, but also X-ray, in [113]. The finding was that the generalized likelihood ratio test is
the best basis for defining patch similarity criteria among the numerous investigated alternatives.
Building on this, a survey is given in [114] on patch-based nonlocal filtering of SAR imagery (speckle
filtering, InSAR, PolSAR, PolInSAR), e.g., estimation of covariance matrices for multitemporal InSAR
is discussed. Finally, a framework for nonlocal filtering of SAR imagery (NL-SAR) is presented in [115]
that displays several new features. It is adaptive to scale and contrast of local structures by trying
multiple parameter settings and automatically choosing locally the best suited one. With the help of
the empirical cumulative distribution function of the dissimilarities determined on a homogeneous
region selected by the user, the weights are defined in a way such that they are independent of choice
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of patch size, scale of averaging, number of looks, and number of channels. Following the strategy
of the local linear minimum mean square estimator (LLMMSE), the weighted mean of SaCM and
the NL estimate of the covariance is calculated to debias the covariance matrix. The criterion for
automatic selection of parameters is the maximum equivalent number of looks calculated in a way that
respects the debiasing step. Comparisons among IDAN, refined Lee filter, and NL-InSAR for several
data sets demonstrate the superiority of NL-SAR. Examples prove that each of the newly introduced
improvements is necessary to achieve this success. In particular, the occurrence of the “rare patch”
effect can be avoided by adaptive parameter settings. It consists of large local variation, where, for a
unique structure, only few similar partner patches are found. If the patch size is optimized to find
many partners, it is chosen in such a way that the unique structure is not contained if possible. Thus,
the surroundings of the unique structure are smoothed and show no artefacts. Also, for filtering of
speckle and PolSAR data, NL-SAR obtains better results than the techniques used for comparison.
Open source code for NL-SAR is available (see [115]).

The potential of NL filtering for SBAS processing was investigated in [76]. To limit the
computational effort, the algorithm was kept simple. Amplitudes were despeckled. For these three
variants were tested: not despeckled, boxcar, and SAR-Block Matching 3D (SAR-BM3D, cp. [116]).
The similarity measure was calculated for pairs of pixels based on their vectors of despeckled
amplitudes and the filtered stack was obtained as a weighted mean. Among the studied similarity
measures were KS and a probabilistic distance based on the assumption of multiplicative noise. The
latter, unlike KS, depends on the succession of values over time. The clear winner of the comparison
on synthetic and real data was the combination SAR-BM3D plus probabilistic distance.

InSAR-BM3D is introduced in [117] (remark: block is here synonymous to patch). Processing
runs through two passes. In the first pass, a basic estimate is obtained that serves to steer the filtering
during the second pass. Both passes consist of three steps: During grouping, similar patches are
collected to a stack. This stack is filtered considering intra- and inter-patch dependencies (collaborative
filtering). Each pixel in the image is now contained in multiple filtered patches from different stacks.
During the aggregation step, the final value for the pixel is calculated as the weighted average over
all these patches. During the first pass, collaborative filtering involves a hard threshold that during
the second pass is replaced by Wiener filtering based on the statistics of the result from the first pass.
As adaptations for InSAR data, the real and imaginary part of the interferogram are transformed
to decorrelate their noise. The transforms are filtered and the result is transformed back. Together
with the phase, an estimate of coherence is obtained. The coherence is calculated such that identical
phase patterns in the reference and the partner patch cancel out, thereby preventing bias caused by
phase gradients. Comparisons among boxcar, some version of Lee filter, Goldstein–Werner, NL-InSAR,
and NL-SAR are performed on several simulated and real data sets. InSAR-BM3D proves superior
on simulated data and shows good results on real data. On real data, the method noise seems almost
white, while for NL-InSAR and NL-SAR, artifacts are visible. Subjectively, the Goldstein–Werner
filter gives the best results on real data but was inferior on simulated data at higher noise levels
to InSAR-BM3D. NL-InSAR and NL-SAR have problems in recovering the simulated phase fields,
while Goldstein–Werner and InSAR-BM3D perform this task much better. The executable code and
simulated data are available (see [117]).

An interesting new option is proposed in [118] under the name multichannel logarithm with
Gaussian denoising (MuLoG). It transforms the field of sample covariance matrices of a stack of
multichannel SAR data in such a way that denoising algorithms for additive white noise are applicable.
After the transform of the denoised data backwards, filtered covariance matrices for the SAR data
are available. Comparisons of this approach with two transforms, different Gaussian denoisers,
and NL-SAR demonstrate that NL-SAR better preserves details and contrast but is a bit less smooth
in homogeneous areas. The Gaussian denoiser TV distinctly displays artefacts. The combinations of
MuLoG or homomorphic and DDID or BM3D give results of similar quality, while the homomorphic
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approach tends to oversmooth bright targets and MuLoG gives slightly better values of SSIM. DDID
and BM3D show small oscillatory artefacts. The open source code for MuLoG is available (see [118]).

The NL methods discussed in this section count as state of the art in image filtering. Its success is
often explained by the use of more intelligent prediction. The assumption of “local” methods was that
similar pixels belong to the same radar target and therefore are found nearby. Often, they enforced
the connectedness of the DS neighborhood to make this sure. NL methods do explicitly check for
similarity and invest in its reliability by using a patch. They can search on a larger area for suitable
partners and do not require connectedness, which in a richly structured area may prevent growing
sufficiently large neighborhoods even though suitable pixels are available. Furthermore, weighting
appears to be more efficient than deciding over membership in a neighborhood (this is a feature shared
with robust estimators of scatter). Hence, more pixels contribute to the result and make it more reliable.
Nevertheless, it still seems miraculous that enough similar patches are found and that averaging with
them improves results even if they cannot be ascribed to the same physical phenomenon. However,
the success of these approaches indicates that this requirement is often fulfilled.

3.2.4. Bias Correction and Regularization

As mentioned in the section on DS statistics, |γ̂mn| is a biased but asymptotically unbiased
estimator for coherence magnitude. Also, as coherence approaches one, the bias tends versus zero.
For small coherences and a small number of looks, values are overestimated. Correcting for this bias
is an important task because the quality of many InSAR applications depends on precise values of
coherence. For estimation of DS signal, it has for all DS with a small to medium number of pixels an
adverse effect as soon as large baselines occur in the stack.

In [67], several methods of coherence estimation with bias correction were investigated. The first
step is estimation of the complex coherence |γ̂mn|, e.g., as sample coherence or as mean over a sample
from a coherence map estimated for a certain number of looks (e.g., L = 20). The latter is a nearly
unbiased estimator. The second step makes use of the analytic expression for the expectation value of
|γ̂mn| in dependence of the number of looks and true coherence. The unbiased estimation is that value
of true coherence which has the expectation value |γ̂mn|. Unfortunately, the standard deviation of this
estimator is significant for small number of looks, a situation where debiasing is most needed. [31]
(p. 42) comments on the difficulty of obtaining a positive definite covariance matrix from this approach.
In [119], several methods for bias correction were compared. For simulated Gaussian data, bias
corrections with log-sample coherence (cp. [120]) and double bootstrapping were able to mitigate
bias, while double bootstrapping was more effective. For simulated contaminated Gaussian data
with true coherences in the range 0.5–1.0, bias corrections with double bootstrapping were very
effective, although the bias was now towards lower values. The bias correction of the second method
of [67], as explained before, decreases coherence, further making things even worse. Furthermore, an
experiment was performed with ASAR and TSX data sets of a scene where large homogeneous areas of
different types were contained, having a different parameter α. Again, double bootstrapping mitigated
bias more effectively than the method of [120]. Moreover, the performance of double bootstrapping
proved less dependent on α. In conclusion, double bootstrapping proved the most accurate among
the investigated estimators. Unfortunately, it is computationally quite expensive. Because of that,
the jackknife was investigated as an alternative [121]. It proved to be approximately 30 times faster.
An experiment with simulated data and true coherence values 0.2 and 0.6 demonstrated almost perfect
debiasing for sample sizes bigger than 20. Furthermore, ADT plus jackknife lead to a distinctly better
signal-to-noise ratio than ADT alone or DeSpecKS. A coherence image from real data generated with
DeSpecKS seems blurred compared to ADT plus jackknife.

Another strategy in case of a small sample size is not to debias each |γ̂mn| separately but to
improve on the estimated coherence matrix. In [108], the local linear minimum mean square estimator
was given for multiplicative noise. For each pixel, coefficients for a convex combination of mean signal
and signal of the pixel are determined that minimize the mean square error of estimation of the noise
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free signal. These coefficients are also used to obtain the estimation of the covariance matrix as a convex
combination of SaCM and a dyad of the pixel signal, thus constituting a shrinkage estimator. This idea
is used until today, e.g., in IDAN, SAR-BM3D, NL-SAR, and in a wide sense, also in InSAR-BM3D.
Similar to the approach of [108], the same starting point was taken by [122], where the well-known
Ledoit–Wolf estimator has been introduced. No specific assumption on the probability distribution
is required, only that fourth order moments are finite. They also give several interpretations of the
minimum mean square approach, e.g., as a trade-off between bias and variance. An extension of
shrinkage estimators of the SaCM (also termed general linear estimation estimators) were developed
in [53] as an alternative for regularized M-estimators of the scatter matrix in situations with insufficient
sample support. That is where the inverse of the SaCM cannot be computed or is poorly conditioned
and hence robust estimators of the scatter matrix cannot be applied. Regularized M-estimators of
scatter share with M-estimators of scatter the disadvantage of a computationally expensive iterative
calculation involving the repeated inversion of the scatter matrix.

3.3. Quality Numbers for Distributed Scatterers for Preprocessing

A prerequisite for the successful use of preprocessed DS is to be able to assess the quality of
the estimated signal. Remember that the phase standard deviation is a function of the coherence
magnitude and the number of looks [1]. In [35], phase triangulation coherence was introduced as a
measure of successful phase triangulation:

γPTA =
1

N(N − 1) ∑
m

∑
n( 6=m)

ei·(ϕ̂mn−(φ̂m−φ̂n)). (22)

Although this is a measure of goodness of fit, it is rather improbable that a very high γPTA
corresponds to a meaningless signal. It should be used in combination with other criteria, e.g.,
requiring a minimum number of samples. In [46], this approach was taken. He required in one
experiment γPTA ≥ 0.7 and a number of samples ≥ 50, a and in a second γPTA ≥ 0.4 and a number of
samples ≥ 25 for DS candidates. γPTA can be sharpened by weighting the phasors with the coherence
magnitudes (cp. Equation (20) in [33]):

γPTAw =
ΣmΣn( 6=m)|γ̂mn|·ei·(ϕ̂mn−(φ̂m−φ̂n))

ΣmΣn( 6=m)|γ̂mn|
. (23)

In [123], those signals are accepted as DS that have a mean coherence magnitude larger than 0.25
(4 × 20 looks). This measure is also used in [76].

In [124], those are accepted that have coherence magnitude larger than 0.15 in at least 60% of the
interferograms (64 looks).

In [42,125], a minimum average coherence and minimum number of samples were used (e.g., 0.3
or 0.4 and 20).

In the context of multitemporal polarimetric InSAR, [126] suggest establishing a common quality
criterion for DS and PS measuring phase standard deviation. In both cases, it can be approximately
calculated: In the case of PS for small values, the phase standard deviation is approximately equal to
the amplitude dispersion [23]. For DS, they use an approximation depending on coherence magnitude
and the number of looks. Coherence magnitude is replaced by the average coherence magnitude and
number of looks is calculated as the number of DS pixels divided by the oversampling factors in range
and azimuth.

In [58], a low coherence situation is given. Therefore, the authors calculate from the formulas for
expectation and standard deviation of coherence magnitude the corresponding values for coherence
magnitude zero. The sum serves as threshold for DS selection.

One should be aware that thresholds suited for an SBAS framework might have to be adopted if
all interferograms are used.



Remote Sens. 2018, 10, 744 19 of 30

3.4. Algorithmic Approaches to Reduce Run Time

Preprocessing of DS is computationally very expensive. Therefore, it is necessary to optimize
algorithms for better utilization of computing resources. Besides basic improvements like
parallelization, there is also the possibility to modify the formulation of the task. The crucial property
of a DS that can be used to achieve some time savings is its spatial extension. Given a coarse mask,
either derived from the data themselves or from GIS, areas where no DS can be expected are annotated
and do not have to be processed (water, forest, shadow, layover, etc.). While a PS consisting of a
single pixel can hide in the forest, a DS necessarily consists of a larger group of pixels and cannot.
Likewise, not every pixel belonging to the neighborhood determined for a DS must be processed on
its own. An approach that uses a raster, where each cell at most contains one DS, was given in [93].
Later, this algorithm was completed by fitting a smooth deformation field to estimations [94]. Also,
NL methods could be adapted for the use of DS processing. If the reference patch is recognized as
inhomogeneous, it needs not be processed.

Sentinel-1 and the future missions NISAR and Tandem-L with wide swaths and short revisit
times will provide huge data volumes. In addition, near real-time monitoring has been defined as a
future objective, e.g., for use in early warning systems. To answer to this challenge, the Sequential
Estimator [127] has been developed. Long time series are subdivided in ministacks that are sequentially
processed. A compression method allows for representation of the information of each ministack
needed for further processing in artificial interferograms. This results in an impressive reduction
of computing operations without significant loss of quality and even displays a more balanced
performance than conventional estimators in two scenarios (fast exponentially decaying and long-term
coherence) with simulated data.

4. Phase Model Parameter Estimation for Distributed Scatterers

This section is devoted to an experiment that proves that parameter estimation from preprocessed
DS provides significantly improved results if statistical information available for the DS is used.
The modeled phase accounts for linear deformation rates and DEM errors.

4.1. Estimators of Model Parameters

A big advantage of estimation of DS signals is that a start net can be built up containing DS
as well as PS. This allows bridging gaps between PS by DS. Phase histories of DS can be used as
if DS has been transformed to PS. Nevertheless, DS are not PS and have other statistical properties
that still matter after preprocessing is finished. The experiments with simulated data described in
this section show that using the additional information (covariances, amplitudes) available for DS
allows to obtain better estimates of model parameters, here, linear deformation rates and DEM errors,
for DS–PS pairs and DS–DS pairs. To formulate the new approach, some notation is needed. It is
assumed that the signal of the PS can be written as p = c·ξ, c ∈ R>0. By abuse of terminology, we
write in the case of a PS Ĉ = p·pH and Γ̂ = ξ·ξH to achieve a uniform notation for PS and DS. This is
close to what [31] (p. 52) named quasi-PS, only that the noise is omitted. The trick here is that a zero
mean Gaussian random vector with nonzero variance and covariance matrix of rank 1 is the same
as a one-dimensional zero mean Gaussian random variable times the (nonrandom) eigenvector of
the covariance matrix with an eigenvalue greater than zero. With M as the model matrix, ϑ as the
parameter vector, and φ(ϑ) = M·ϑ ∈ RN :

η =

 eiφ1(ϑ)

...
eiφN(ϑ)

. (24)
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Given a pixel pair with matrices Γ̂1 and Γ̂2, the model increments can now be estimated by

ϑ̂ = max
ϑ

ηH ·
(

Γ̂1 ◦ Γ̂2

)
·η. (25)

In the case of two PS, the estimate is the same as with the periodogram. This estimator will be
denoted as pair-PTCM (pPTCM). Another estimator of model parameters that is of interest is

ϑ̂ = min
ϑ

(z1 ◦ z2 ◦ η)H ·
∣∣∣Ĉ1 ◦ Ĉ2

∣∣∣−1
·(z1 ◦ z2 ◦ η) (26)

where z1 and z2 are the complex signals of the two pixels of the pair as estimated during preprocessing.
It can be considered a |Ĉ|−1-weighted periodogram (wPdg). In the case of DS, it is supposed that
the signal z has been estimated during preprocessing with some estimator of the DS signal, e.g.,
the eigenvector ẑ to the largest eigenvalue of the covariance matrix Ĉ. For a PS–DS pair, this corresponds
to the estimator introduced in [30] for a single pixel, only that the authors did use the original signal
from the center pixel of the DS and not an estimated signal. In case the true covariance matrix is used,
the latter is the ML estimator:

ϑ̂ = min
ϑ

(z ◦ η)H ·|C|−1·(z ◦ η). (27)

The use of the original pixel phase by [30] is a crucial difference to the other estimators explained
here. In [31] (p. 77), it was remarked that this prevents compromising the resolution. An opposed
view is that all pixels of the DS neighborhood share the same phase history (plus re-added fringes if
necessary). Any adverse effects caused by wrongly grouped pixels or because of imprecise estimation
of fringes are estimation errors but do not pertain to resolution. A further development that retained
the use of the original pixel phase is the RIO estimator of [45,128]. It has the interesting feature of
providing a robust estimation of |C| also for nonstationary data without needing a prior estimation
and subtraction of residual fringes.

4.2. Results of Investigations on Simulated Data for Parameter Estimation from Pixel Pairs

In this section some tests with simulated data are described that were run with the goal to
compare performance of some of the estimators introduced before, in particular regarding estimation
of parameters from pixel pairs. First, the simulated data are described. Afterwards, tests and their
results are presented and discussed.

The data are simulated based on acquisition parameters of a stack of 26 TSX high-resolution
spotlight-mode images from the town of Lüneburg in Germany that is available to the scientific
community via ISPRS. The basic model used for the coherence matrix is the following (cp. [12,56]):

ckl = γ0·exp
(
−|tk − tl |

τ

)
·max

{
0, 1− |Bk − Bl |

Bcrit

}
(28)

where γ0 accounts for noise and processing artefacts, tk are the acquisition times, τ is a parameter
describing temporal deccorelation, Bk are the perpendicular baselines, and Bcrit is the critical baseline.
In some of the simulations, the covariance matrix was modified by the introduction of one or two snow
days, i.e., for the corresponding acquisition dates, all nondiagonal coherences were multiplied by 0.25.
Furthermore, we defined a seasonal model to complement the basic model:

ckl = γseason
kl ·exp

(
−|tk − tl |

τ

)
·max

{
0, 1− |Bk − Bl |

Bcrit

}
(29)

where for given γ0 = (A + B)2 and γmin = (A− B)2

γseason
kl =

(
A + B cos

(
2πtk
365

))
·
(

A + B cos
(

2πtl
365

))
. (30)
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Note that the coherence matrix remains positive definite after introduction of γseason
kl . The seasonal

model is intended to capture a situation where a good DS is periodically deteriorated by correlation,
e.g., debris or enduring parts of low vegetation partly covered by grass or leaves in the growth phase.
In all simulations, complex circular normally distributed data with a given covariance matrix were
generated and superposed with a phase history corresponding to some linear deformation and some
DEM error. Additionally, in several cases, the data were contaminated by replacing a certain percentage
of values by complex circular normally independently distributed numbers of twice the standard
deviation as the original data. A list of the simulation settings used for the generation of the test data
can be found in Table 1. For each setting, 1000 DS were simulated.

Table 1. Settings for simulations.

γ0 τ (Days) Modifications

0.9 30, 45, 60, 90, 720, 1440 -
0.9 90 One snow date
0.9 60 Two snow dates
0.95 720 Seasonal model γmin = 0.05
0.9 60, 720 Contaminated with 10% or 20% outliers

For tests of the PS–DS pairs, the PS signal was assumed to be constant over time. As DS in these
pairs, all simulated data sets described in Table 1 were considered. For DS–DS pairs, 19 representative
combinations between data sets described in Table 1 were investigated.

The first comparison that will be discussed is between two types of estimation strategies for
PS–DS pairs. The older one was introduced by [30] and uses an estimate of the covariance matrix Ĉ
for a |Ĉ|−1-weighted periodogram estimation. What is characteristic for this strategy is that it takes
the unmodified signal of the DS center pixel as the input to the estimator. A more refined version of
this strategy that is not included in the present comparison is the RIO estimator of [128]. The newer
strategy originates in the SqueeSAR paper of 2011 [35]. Its characteristic is that during preprocessing,
the signal of the DS is estimated by one of the estimators introduced earlier and replaces the original
signal of the center pixel henceforth, in particular for model parameter estimation. The finding is that
the first strategy as suggested by the De Zan performed distinctly worse in all tests than the second.
As illustration Figure 1 displays, the histograms of error of deformation velocity estimation for three
estimator combinations and for different search window sizes obtained for the data simulated for the
basic covariance matrix model with γ0 = 0.9 and γ0 = 60 days. The second strategy is represented by
the result of PhL combined with the periodogram (Pdg). As a benchmark, the combination of the two
ML estimators is added.
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Figure 1. Histograms of error of deformation velocity estimation for three estimator combinations and
for different search window sizes obtained for the data simulated for the basic covariance matrix model
with γ0 = 0.9 and τ = 60 days. The search window sizes are (a) 25 pixels, (b) 49 pixels and, (c) 441 pixels.

The second comparison is between estimators following the second strategy. Figure 2 displays
results for the given search window size for all datasets of PS–DS and DS–DS pairs as described above.
The combination of marker and color identifies the combination of estimators. For each test case,
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the marker is plotted at the position corresponding to the medians of absolute values of estimation
errors for the parameters velocity and height. Best results are achieved with the benchmark ML + ML.
From the estimators applicable for real data, pPTCM performs best, followed by EV + Pdg and PTCM
+ Pdg. For a larger search window size, PhL + Pdg and PhL + |Ĉ|−1-weighted Pdg estimation are of
comparable quality, but they fail for small window sizes. Using the 90% percentiles instead of the
median confirms this assessment.
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The observation that estimators making use of an inverse of the covariance or coherence matrix
give for small search window sizes worse results is easily brought into connection with their bad
condition. However, plotting the condition number or its logarithm versus the absolute estimation
error does not clearly confirm this expectation. What happens seems to be more indirectly caused
by the indeed bad condition of the covariance matrices. For PhL, the coherence matrix is weighted,
allowing negative numbers, with |Γ̂|−1. The bad condition entails that sometimes these weights are
very adversely distributed. To capture this in a number, the ratio of the sum of the absolute values
of the entries of |Γ̂|−1 in diagonals of higher order divided by the sum of the absolute values of all
entries has been calculated. In Figure 3, evidence for this hypothesis is given by showing the plots
of the absolute values of errors in height estimation versus these weight ratios for two examples (the
main diagonal and the first secondary diagonal were spared).
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5. Discussion

In this review, preprocessing of DS for use in PS algorithms was explored. The extraction of
DS signals from weighted interferograms, which then can be used like PS in further processing, was
identified as a key concept. Because of this concept’s general nature, elements from a large variety of
different approaches can be combined to realize a preprocessing algorithm. Naturally, this poses the
question: what would a preprocessing algorithm look like that provides optimal quality of results?
For the moment, a concluding answer seems out of scope given the large number of techniques and
the relative low number of comparative studies. Nevertheless, some very promising approaches have
been suggested that give indications of what should be part of the solution. For the choice of the
estimator of DS signal, one could make the answer dependent on circumstances:

1. large #Ω, entropy close to 0: PhL;
2. small #Ω, entropy close to 0: PTCM;
3. entropy not close to 0: EVG.

If time is not critical, ILS could be used, having the advantage of providing quality control.
To estimate the DS signal, it is necessary to determine the coherence matrix or more generally phases
and weights. A feasible way would be to follow [44]: use the ADT to find a 3D AN; defringe;
estimate the SaCM; and debias with double bootstrapping or jackknife. However, there are many other
options, e.g., for removal of fringes, there are algorithms with more evidence for good performance.
InSAR-BM3D has been run on a representative selection of test cases with superior results in phase
restoration. This could be the basis for an alternative. However, this approach has just been published
and nothing is known about its use for deformation analysis. Moreover, although the concept of DS
preprocessing via interferogram filtering plus phase triangulation allows many possible combinations
of algorithms, to our knowledge, there are only a few publications concerning such an approach
(cp. [36,40,76,83]). In all of these examples, presumably better results could be achieved with advanced
filtering taking into account:

1. use of a proper 3D neighborhood in the sense that, although a pixel is included in the
neighborhood, some of its values corresponding to certain points in time may be excluded;
alternatively, a NL analog of this might be taken;

2. robust and effective treatment of fringes;
3. some bias correction or regularization.

Furthermore, NL-SAR provides coherence matrices ready to use with phase triangulation.
It would be interesting to see comparisons of deformation maps generated with all these different
approaches. The techniques presented in this review use various methods and it is not obvious
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which are to be preferred. This demands systematic comparisons with the goal of identifying best
practices. A suggestion would be to define a set of standardized test cases for interferogram filtering
available to everyone that allows for the assessment and comparison of the performance of algorithms
in the most relevant typical situations. Steps in this direction have already been taken by the authors
of [115,117,118] by providing downloadable code for their algorithms and by [117] by also providing
part of their test data.

Another aspect is that for most algorithms, no theoretical framework is known that would
provide quality indicators like standard deviation or covariance matrices together with the estimations.
Exceptions are, e.g., PhL and ILS (see Equation (13) or (20)). It would be advantageous to have this
available at least for the basic estimators.

Finally, an issue that we ignored so far in this discussion is that today’s best performing algorithms
with respect to precision are often not applicable to very large datasets because of enormous computing
times or costly investment in computing facilities. Of course, further progress also in this direction
is required.

6. Conclusions

During the last decade, different lines of development in InSAR research have converged.
Today, it is common that algorithms have some capability of jointly processing DS and PS, that
advanced filtering algorithms are applied, and estimators of DS signal provide triangular phases.
Jointly processing DS and PS allows for more stable algorithms and increases coverage with the
desired information. Triangular phases enable 3D unwrapping, which is superior to 2D unwrapping.
Consequentially, one main focus of this review has been the preprocessing of DS, which enables their
use in PS software without the need of further adaptation of the algorithms. In this regard, relevant
work on estimation of DS signals has been discussed. It has been pointed out that this is the key that
makes available the whole variety of InSAR filtering algorithms for DS preprocessing. Referring to this
matter, recently developed new techniques for filtering of interferograms and coherence estimation
have been presented and been put into context. Interesting possibilities for future research have been
highlighted (cp. Discussion).

As second leg of this work, this review on DS preprocessing has been complemented by
preliminary experiments demonstrating that statistical information on DS is still valuable for
post-preprocessing. A heuristically motivated method was described for parameter estimation for
DS–PS and DS–DS pairs that makes use of the coherence matrices extracted for DS during preprocessing.
It was demonstrated that significantly more precise results for transformed DS can be obtained this
way than are achieved when treating them as PS. A solid theoretical underpinning is lacking for the
moment, but its possibilities are sure worth to be further explored.

Finally, it can be stated that the progress and success of InSAR is an ongoing story. There are
many important applications in geoscience, the economy, and governance that are reflected in the
investments in today’s and scheduled future systems, with their tight orbit tubes, short repeat cycles,
high resolution, and large swaths ensuring good conditions for exploitation of DS. Research and
improvement of algorithms to make optimal use of data is of high importance also in the future.

Author Contributions: M.E. and K.S. jointly wrote the review. The experiment was conceived, performed and
analyzed by M.E.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bamler, R.; Hartl, P. Synthetic Aperture Radar Interferometry. Inverse Probl. 1998, 14, 1–54. [CrossRef]
2. Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface.

Rev. Geophys. 1998, 36, 441–500. [CrossRef]

http://dx.doi.org/10.1088/0266-5611/14/4/001
http://dx.doi.org/10.1029/97RG03139


Remote Sens. 2018, 10, 744 25 of 30

3. Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.; Madsen, S.; Rodrìguez, E.; Goldstein, R.M. Synthetic Aperture
Radar Interferometry. Proc. IEEE 2000, 83, 333–382. [CrossRef]

4. Hanssen, R. Radar Interferometry: Data Interpretation and Error Analysis, 1st ed.; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 2001; ISBN 978-0-7923-6945-5.

5. Perissin, D.; Ferretti, A. Urban-Target Recognition by Means of Repeated Spaceborne SAR Images. IEEE Trans.
Geosci. Remote Sens. 2007, 45, 4043–4058. [CrossRef]

6. Fornaro, G.; Lombardini, F.; Pauciullo, A.; Reale, D.; Viviani, F. Tomographic Processing of Interferometric
SAR data: Developments, applications and future research perspectives. IEEE Signal Process. Mag. 2014, 31,
41–50. [CrossRef]

7. Zhu, X.; Montazeri, S.; Gisinger, C.; Hanssen, R.F.; Bamler, R. Geodetic SAR Tomography. IEEE Trans. Geosci.
Remote Sens. 2016, 54, 18–35. [CrossRef]

8. Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping Small Elevation Changes over Large Areas: Differential
Radar Interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [CrossRef]

9. Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite Radar Interferometry: Two-dimensional phase
unwrapping. Radio Sci. 1988, 23, 713–720. [CrossRef]

10. Li, F.; Goldstein, R.M. Studies of multi-baseline spaceborne interferometric synthetic aperture radars.
IEEE Trans. Geosci. Remote Sens. 1990, 28, 88–97. [CrossRef]

11. Rodrìguez, E.; Martin, J.M. Theory and design of interferometric synthetic aperture radars. IEE Proc. F 1992,
139, 147–159. [CrossRef]

12. Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992,
30, 950–959. [CrossRef]

13. Prati, C.; Rocca, F. Improving slant-range resolution with multiple SAR surveys. IEEE Trans. Aerosp.
Electr. Syst. 1993, 29, 135–143. [CrossRef]

14. Seymour, M.S.; Cumming, I.G. Maximum likelihood estimator for SAR interferometry. In Proceedings of the
IGARSS, Pasadena, CA, USA, 8–12 August 1994; pp. 2272–2275. [CrossRef]

15. Just, D.; Bamler, R. Phase Statistics of Interferograms with Applications to Synthetic Aperture Radar.
Appl. Opt. 1994, 33, 4361–4368. [CrossRef] [PubMed]

16. Trouvé, E.; Caramma, M.; Maître, H. Fringe detection in noisy complex interferograms. Appl. Opt. 1996, 35,
3799–3806. [CrossRef] [PubMed]

17. Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Radio Sci. 1998, 25,
4035–4038. [CrossRef]

18. Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface
deformation and topographic maps. J. Geophys. Res. 1997, 102, 7547–7563. [CrossRef]

19. Sandwell, D.T.; Price, E.J. Phase gradient approach to stacking interferograms. J. Geophys. Res. 1998, 103,
30183–30204. [CrossRef]

20. Wright, T.; Parsons, B.; Fielding, E. Measurement of interseismic strain accumulation across the North
Anatolian Fault by satellite radar interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [CrossRef]

21. Ferretti, A.; Monti Guarnieri, A.; Prati, C.; Rocca, F. Multi-image DEM reconstruction. In Proceedings of the
IGARSS, Seattle, WA, USA, 6–10 July 1998; pp. 1367–1369. [CrossRef]

22. Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential
SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [CrossRef]

23. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens.
2001, 39, 8–20. [CrossRef]

24. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based
on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383.
[CrossRef]

25. Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small baseline approach for
investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens.
2004, 42, 1377–1386. [CrossRef]

26. Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and
other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [CrossRef]

27. Hooper, A.J. Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of
Volcanic Deformation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, May 2006.

http://dx.doi.org/10.1109/5.838084
http://dx.doi.org/10.1109/TGRS.2007.906092
http://dx.doi.org/10.1109/MSP.2014.2312073
http://dx.doi.org/10.1109/TGRS.2015.2448686
http://dx.doi.org/10.1029/JB094iB07p09183
http://dx.doi.org/10.1029/RS023i004p00713
http://dx.doi.org/10.1109/36.45749
http://dx.doi.org/10.1049/ip-f-2.1992.0018
http://dx.doi.org/10.1109/36.175330
http://dx.doi.org/10.1109/7.249119
http://dx.doi.org/10.1109/IGARSS.1994.399711
http://dx.doi.org/10.1364/AO.33.004361
http://www.ncbi.nlm.nih.gov/pubmed/20935795
http://dx.doi.org/10.1364/AO.35.003799
http://www.ncbi.nlm.nih.gov/pubmed/21102777
http://dx.doi.org/10.1029/1998GL900033
http://dx.doi.org/10.1029/96JB03804
http://dx.doi.org/10.1029/1998JB900008
http://dx.doi.org/10.1029/2000GL012850
http://dx.doi.org/10.1109/IGARSS.1998.691426
http://dx.doi.org/10.1109/36.868878
http://dx.doi.org/10.1109/36.898661
http://dx.doi.org/10.1109/TGRS.2002.803792
http://dx.doi.org/10.1109/TGRS.2004.828196
http://dx.doi.org/10.1029/2004GL021737


Remote Sens. 2018, 10, 744 26 of 30

28. Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal
deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112. [CrossRef]

29. Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline
approaches. Geophys. Res. Lett. 2008, 35. [CrossRef]

30. De Zan, F.; Rocca, F. Coherent Processing of Long Series of SAR Images. In Proceedings of the IGARSS,
Seoul, Korea, 25–29 July 2005; pp. 1987–1990.

31. De Zan, F. Optimizing SAR Interferometry for Decorrelating Scatterers. Ph.D. Thesis, Politecnico di Milano,
Milano, Italy, 2008.

32. Monti Guarnieri, A.; Tebaldini, S. Hybrid Cramér-Rao Bounds for Crustal Displacement Field Estimators in
SAR Interferometry. IEEE Signal Proc. Lett. 2007, 14, 1012–1015. [CrossRef]

33. Monti Guarnieri, A.; Tebaldini, S. On the Exploitation of Target Statistics for SAR Interferometry Applications.
IEEE Trans. Geosci. Remote Sens. 2008, 46, 3436–3443. [CrossRef]

34. Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. The second generation PSInSAR
approach: SqueeSAR. In Proceedings of the International Fringe Workshop, Frascati, Italy, 30 November–4
December 2009.

35. Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing
Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [CrossRef]

36. Fornaro, G.; Reale, D.; Verde, S. Adaptive spatial multilooking and temporal multilinking in SBAS
interferometry. In Proceedings of the IGARSS, Munich, Germany, 22–27 July 2012; p. 4. [CrossRef]

37. Piyush Shanker, A.; Zebker, H. Edgelist phase unwrapping algorithm for time series InSAR analysis. J. Opt.
Soc. Am. A 2010, 27, 605–612. [CrossRef] [PubMed]

38. Fornaro, G.; Pauciullo, A.; Reale, D. A Null-Space Method for the Phase Unwrapping of Multitemporal SAR
Interferometric Stacks. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2323–2334. [CrossRef]

39. Costantini, M.; Malvarosa, F.; Minati, F. A General Formulation for Redundant Integration of Finite
Differences and Phase Unwrapping on a Sparse Multidimensional Domain. IEEE Trans. Geosci. Remote Sens.
2012, 50, 758–768. [CrossRef]

40. Pepe, A.; Yang, Y.; Manzo, M.; Lanari, R. Improved EMCF-SBAS processing chain based on advanced
techniques for the noise-filtering and selection of small baseline multilook DInSAR interferograms.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 4394–4417. [CrossRef]

41. Pepe, A.; Lanari, R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of
Multitemporal Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383.
[CrossRef]

42. Goel, K. Advanced Stacking Techniques and Applications in High Resolution SAR Interferometry.
Ph.D. Thesis, Technische Universität München, München, Germany, 27 January 2014.

43. Schmitt, M. Reconstruction of Urban Surface Models from Multi-Aspect and Multi-Baseline Interferometric
SAR. Ph.D. Thesis, Technische Universität München, München, Germany, 2014.

44. Jiang, M. InSAR Coherence Estimation and Applications to Earth Observation. Ph.D. Thesis, Hong Kong
Polytechnic University, Hong Kong, China, 2014.

45. Wang, Y. Advances in Meter-resolution Multipass Synthetic Aperture Radar Interferometry. Ph.D. Thesis,
Technische Universität München, München, Germany, 19 October 2015.

46. Samiei-Esfahany, S. Exploitation of Distributed Scatterers in Synthetic Aperture Radar Interferometry.
Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 31 May 2017.
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