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Abstract—One of the scientific communities that generate
the largest amounts of data today are the climate sciences.
New climate models enable model integration at unprecedented
resolution, simulating decades and centuries of climate change,
including many complex interactions in the Earth system, under
different scenarios. Previously, the CPU intensive numerical
integration’s used to be the bottleneck. Nowadays, limited storage
space and ever increasing model output is the bigger challenge.
The number of variables stored for post-processing analysis has
to be limited to keep the data amounts small. For this reason,
we look at lossless compression of climate data to make better
use of available storage space. More specifically, we investigate
prediction-based data compression. In prediction-based compres-
sion, data is processed in a predefined sequence. A prediction is
provided for each data point based on prior data in the sequence.
We show that there is a significant dependence of the compression
ratio on the chosen traversal method and the underlying spatio-
temporal data model. We examine the influence of this structural
dependency on compression algorithms and explore possibilities
to retrieve this information to improve compression ratios. To do
this, we introduce the concept of Information Spaces (IS), which
helps improve the predictions made by individual predictors
by nearly 10% on average. More importantly, the standard
deviation of the compression results is decreased by over 20%
on average. The use of IS provides better predictions and more
consistent compression ratios. Furthermore, it allows options for
consolidation and fine-granular tuning of predictions, which are
not possible with many common approaches used today.

Index Terms—compression, information retrieval, information
spaces, climate, data model, prediction-based compression

I. INTRODUCTION

Climate sciences are in a state of upheaval. New climate
models such as ICON-ART [1] make it possible to run high-
resolution simulations of the atmosphere and its composi-
tion at an unprecedented scale while making full use of
the available capacity of high-performance computers. But
with these improvements, the storage space required to save
the output of the simulations also increases. The current
European ReAnalysis (ERA5) dataset, which is being used
for evaluation and initialisation of simulations, is comprised
of hourly data starting from 1979 to the present on a 1440×721
(about 31 km) horizontal and 137 level vertical (up to

0.01 hPa = 80 km) grid1. If we assume 16 bit integer values
for each variable this amounts to 2.26 TiB p.a. per variable
with support for 120 variables2.

In such situations an efficient compression method can help
reduce the required storage space. Although studies suggest
that scientific results obtained from lossily compressed data
are not distinguishable from lossless compressed ones [2], for
most scientists only lossless compression is an option. For this
reason we focus our work on lossless compression.

Lossless compression works in two steps: decorrelation
and encoding. The decorrelation step transforms the data
by removing correlation with itself (auto-correlation) or with
others (cross-correlation). Since decorrelated data is easier to
compress the result overall will be a better compressed file.
The encoding step writes the data as a compressed stream on
disk. Prediction-based compression for climate data reduces
autocorrelation by using data points along the temporal di-
mension and cross-correlation by using data points on the
spatial dimensions. This work contributes to the decision
making which neighbouring data points should be used for
the decorrelation of the dataset.

While there are several factors important for evaluating
a good compression algorithm like compression ratio and
throughput, our method concentrates on compression ratio.
The main reason for this is the increase in storage requirements
in climate research mentioned above.

There are four main contributions of this paper: (1) we
analyse how the choice of a starting point and traversal
sequence can influence the compression ratio, (2) we introduce
new traversal sequences which help stabilise the compression
ratio, (3) we define the notion of Information Spaces (IS) and
show how they can help gain robust compression ratios, and
(4) we introduce consolidation techniques to further improve
compression ratios.

In the next section we describe related work in prediction-
based compression and make clear how our work differs. Sec-
tion III provides preliminaries to prediction-based compression

1European Centre for Medium-Range Weather Forecasts (ECMWF)
Newsletter No. 147 – Spring 2016 (p.7)

2While some of these variables are simulated, others can be deduced from
simulated variables. For reference http://apps.ecmwf.int/codes/grib/param-db



and defines necessary notations used in this paper. In Section
IV we introduce IS and describe our proposed method. We
further describe new traversal sequences complementing IS
and consolidation methods used to improve the predictions.
Section V then moves on to describe our test dataset, metrics
used for evaluation and explain the conducted experiments. In
Section VI we evaluate our results. Finally we conclude with
a summary and outlook.

II. RELATED WORK

Prediction-based compression algorithms have long been
used in image [3], [4] , audio [5], [6] and floating-point data
[7]–[10] compression. Recently, these methods have been used
more frequently for the compression of structured climate data
[11]–[13].

The work so far has concentrated on the predictor compo-
nent of the prediction-based compression algorithm [14], [15].
It is irrevocable that the predictor plays a major role in the
success or failure of the process, but other important questions
such as the available traversal options and its relationship to
the structure of the data has either been only scratched on the
surface [12] or completely neglected.

Many algorithms rely on linear traversal of the data [7], [16].
Other traversal sequences so far have only been considered in
image compression, but not in relationship with climate data.
Huang et. al [12] look at the first couple of data points along
each dimension to decide how to traverse the data, but do not
adjust later in the processing chain.

Furthermore, investigating the effect of the selection of a
starting point on the compression ratio is missing in previous
work. The quality of the prediction might be affected by the
chosen point and its surrounding data points and changing it
could improve the overall compression ratio.

Our work is a key step to solve these problems. Different
starting points are tested and their effects on the compression
ratio are evaluated. The internal structure of the data and its
influence on the compression are quantified.

III. PRELIMINARIES

In this section we will give a brief introduction to
prediction-based compression and explain the terms and nota-
tion used throughout the paper.

A. Prediction-based compression

A prediction-based compression algorithm involves follow-
ing steps:

1) Reading in the floating-point values
2) Mapping the data to integer values
3) Defining a traversal sequence
4) Giving a prediction for each value
5) Calculating the difference between prediction and true

value
6) Encoding these residuals and saving on disk
The output of each step is depicted in Figure 1. We improve

steps three and four of this process. Section IV-A introduces
the proposed method, which will help improve the predictions

Fig. 1: Output of each step of a prediction-based compression
algorithm. Our work improves the Sequencer and Predictor
involved (white and right aligned). The dotted QA depicts the
step in which the quality of the predictors will be assessed.
The last encoding step is not analysed further.

in step four. Complementary traversal sequences are presented
in Section IV-C, which can be used by arbitrary predictors.

Before we examine the proposed method in more detail, we
define the basic concepts and introduce our notation.

B. Definitions and Notations

The most common data used in environmental sciences
are structured data cubes with four dimensions representing
longitude, latitude, altitude and time. Each data point can can
be identified by its coordinate c.

a) Coordinate: A coordinate c is a d-tuple which defines
the position of a data point.

c = (a1, . . . , ad−1, ad) (1)

with aj ∈ N0 and ∀j ∈ {1, 2, . . . , d − 1, d}.
For the application of prediction-based compression the

following components of the algorithm must be determined
in advance: Mapping function, starting point, traversal and
prediction method, residual calculation method and encoding
method.

b) Mapping function: The mapping function m defines a
method for mapping floating-point values to unsigned integers.
This step is necessary for reproducible calculations across
CPU architectures due to possible errors in numerical precision
if calculations were to be done via floating-point operations.

m : R 7→ N0 (2)

c) Starting point: The starting point s0 is the coordinate
which defines the position from which the traversal will start.

s0 = (a01, . . . , a
0
d−1, a

0
d) (3)

d) Traversal method: Given a starting point s0 the traver-
sal method defines the order of data points to be predicted. The
result is a sequence S of coordinate positions to be traversed.

S = {si|∀i ∈ N0 and 0 ≤ i <

d∏
j=1

Dj} (4)

with Dj representing the size of dimension j.



e) Prediction method: The prediction method p gives a
prediction v̂i for value vi at coordinate position si of sequence
S using the set Si of known elements.

p(Si) = v̂i with
Si = {sj |sj ∈ S and ∀j < i}

(5)

The predictor p can either use all values vi at position si
with si ∈ Si to calculate v̂i or only a subset of values.

f) Residual calculation: The residual calculation method
defines the method to be used for calculating the difference
between the prediction and true value. This difference is called
the residual. In most cases (e.g. [12], [14], [17]) this will be
the XOR on bit level between the prediction v̂i and true value
vi.

r(v̂i, vi) = v̂i XOR vi (6)

The better the prediction, the more zeros are at the beginning
of the residual. With a lossless compression method, the
number of zeros must be encoded and the remaining binary
values must be stored verbatim. The original binary value can
then be reconstructed using the prediction method and residual.

g) Encoding method: The encoding method will define
the coding of the residuals on disk. In prediction-based com-
pression there is a clear distinction between the prediction
and encoding phase. The goal of the prediction phase is to
use the available information in the best possible way so that
the residual is close to 0. The task of the encoding method
is to write these residuals on disk in a space-efficient way.
There are several options to choose from: Huffman Coding
[18], Arithmetic Coding [19], Range Coding [20], Golomb
Coding [21], Asymmetric Numeral System Coding [22] or any
combination of them. The effects of the encoding method on
the compression ratio are outside the scope of this article.

After introducing the necessary terms and notations, we will
now present our proposed method.

IV. PROPOSED METHOD

In this section we will define our concept of IS and their
components the Information Contexts (IC). Afterwards we will
present methods for merging predictions from different Infor-
mation Contexts and consolidate the final prediction. Finally,
we introduce three new traversal methods before ending the
section with a description of the individual predictors.

A. Information Spaces and Contexts

Our proposed method calculates position and neighbour-
hood information of each point si during the traversal to
improve prediction results. While the term Information Space
is mainly associated with Max Boisot [23], we define the term
Information Space in the rest of this paper as follows:

Definition IV-A.1. The Information Space of a data point si
is the set of data points sk ∈ Si with k < i and a Chebyshev
distance [24] of r with si.

IS(si) = {sk|∀sk ∈ Si : a
i
j − r ≤ akj ≤ aij + r} (7)

Fig. 2: Information Space for example given in IV-A0a. The
value to be predicted is depicted as a dotted X and values
known at the time of prediction are marked with a filled X.

with anm defining the coordinate position at dimension m of
element n of sequence S.

The restriction r is necessary to constrain locally close
information for the prediction of si. This Information Space
is a first selection of d-dimensional data that can be used
to predict si. The Information Space is now divided into its
components to isolate the information contained in the various
dimensions. These components are called Information Context
which divide the existing information into d levels (one per
dimension).

Definition IV-A.2. The Information Context splits the Infor-
mation Space into different subsets based on their information
level for each dimension and if applicable to each combination
of dimensions.

ICp
l (si) = {sk :

d∑
j=0

zj(si, sk) = l}

zj(si, sk) =

{
1 if aij = akj
0 else

(8)

with 0 ≤ p ≤
(
d
l

)
being the index position of ICl at level l.

Each Information Context contains information along one
or more dimensions. All Information Contexts on one level
can contain overlapping data points, but none is a subset of
the others. This distribution of data allows predictions to be
made on the basis of information from different dimensions
and later merge them into a consolidated prediction.

a) Example: Given a grid of size 3 × 4 and following
sequence: S = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (1, 1), (0, 0), (2, 3)}. For the prediction of s10 =
(1, 1) the resulting Information Space is depicted in Figure 2.
This Information Space consists of five different Information
Contexts depicted in Figure 3. These Information Contexts can
then be used to improve the prediction of the value at s10 by
using different methods described in the next section.

B. Consolidation of predictions

Each IC generates a prediction v̂i for the value vi. These
predictions then need to be consolidated to achieve the IS
prediction. Therefore appropriate consolidation methods are
necessary. We have implemented and tested five different
techniques:



Fig. 3: The Information Space in Figure 2 can be split into
five Information Contexts on two levels. These IC can then be
used to predict the value depicted as a dotted X.

• Average (AV)
Takes the average of the IC predictions.

• Minimum (Min)
Takes the minimum of the IC predictions.

• Maximum (Max)
Takes the maximum of the IC predictions.

• LastBest (LB)
Tracks which IC was best for si−1 and uses its prediction.

• Reforced (R)
Given an order of dimensions, the ICs are sorted ac-
cording to the number of data points used from each
dimension and the prediction from the IC with the most
data points from the preferred dimension is used.

The motivation behind using Minimum and Maximum for the
consolidation process is to find out if the predictor has a bias
towards one or the other.

With the introduction of Information Spaces and Contexts,
as well as methods for consolidation of the prediction, we
will now go into more detail of the traversal step building the
sequence S in Eq. 4.

C. Traversal methods

In order to ensure an ideal use of the Information Spaces
we have to look at the traversal method again. Complementary
traversal methods to the use of Information Spaces could
improve the predictions. For this purpose we propose next
to the common linear traversal three new ones:

• Linear Traversal
• Chequerboard Traversal
• Blossom Traversal
• Block Traversal
An example for each traversal method is given in Figure 4.

a) Linear Traversal: The linear traversal determines an
order for the dimensions and processes the data in this order.
For the example given in Figure 4 the order is to first traverse
the x-axis and then the y-axis.

b) Chequerboard Traversal: The sequence based on the
chequerboard traversal is structured like a chessboard. As in
the linear traversal an order must first be determined for the
dimensions. For Figure 4 it is first x-axis and then y-axis.

c) Blossom Traversal: This traversal is structured like a
blossoming rose which spreads around the starting point. Here,
too, an order must be determined in which the dimensions will

Fig. 4: Each traversal method creates a different Information
Context to be used for the prediction of a point in the grid of
size 3× 4. Since building the sequence is an iterative process
the colours depict each step. All traversals use an ordering for
the dimensions to create reproducible results.

be processed. In Figure 4 the traversal runs clockwise starting
at 12 o’clock.

d) Block Traversal: The block traversal follows a se-
quence around the starting point with the aim of building fully
connected blocks. In the two dimensional case this may look
like a spiral around the starting point (see Fig. 4). Again, an
order for the dimension needs to be considered.

Following our description of the common prediction-based
compression algorithm at the beginning of this section we
have defined the concept of Information Spaces, described new
traversal methods for generating these Spaces and introduced
techniques for merging the predictions of each Information
Context defining the Information Space. Now we will describe
the predictors used in the experiments followed by our applied
metrics.

D. Predictors

Following predictors have been implemented and tested
during our experiments:

• Akumuli [16]
• LastValue [15]
• Stride, TwoStride, Stride Confidence [15]
• Ratana 3, Ratana 5 [14]
• Pascal 1, Pascal 2, ... , Pascal 5 (based on [25])
The details for the individual predictors can be found in the

respective articles in which they were introduced. The different
variations of the predictors Ratana x and Pascal x define the
number of elements used for prediction. In case of Ratana 3
this would be: Si = {si−3, si−2, si−1}.

a) Pascal predictor: The Pascal predictor makes a pre-
diction for an element si using the last k elements assuming
that no noise is in the dataset. The predictor used here is based
on an prediction method used in audio compression [25] and
polynomial interpolation. The Pascal k is the optimal predictor
for data without white noise and on a uniform grid which can



be described by a polynomial function f of degree i− 1 (Eq.
9). The coefficients of Pascal 1-5 are shown in Table I.

f(x) =

i−1∑
j=0

aj xj (9)

TABLE I: Coefficients for Pascal k predictor using the last k
values for prediction of si

Predictor Formula

Pascal 1 si = si−1

Pascal 2 si = 2 si−1 − si−2

Pascal 3 si = 3 si−1 − 3 si−2 + si−3

Pascal 4 si = 4 si−1 − 6 si−2 + 4 si−3 − si−4

Pascal 5 si = 5 si−1 − 10 si−2 + 10 si−3 − 5 si−4 + si−5

The coefficients of Pascal k predictor can predict a polyno-
mial function of order k − 1 exactly.

Lemma IV-D.1. Given the n-th order backwards dif-
ference ∇n

h[p](x) the optimal coefficients are p(x) =∑n
i=1(−1)i+1

(
n
i

)
p(x− i) for uniform spacing h = 1.

Proof. This can be shown using finite differences (which are
zero in orders higher than those of the polynomial function):

∇n
h[p](x) =

n∑
i=0

(−1)i
(
n

i

)
p(x− ih)

with h = 1 and ∇n
h[p](x) := 0

0 =

n∑
i=0

(−1)i
(
n

i

)
p(x− i)

0 = −10
(
n

0

)
p(x) +

n∑
i=1

(−1)i
(
n

i

)
p(x− i)

p(x) =

n∑
i=1

(−1)i+1

(
n

i

)
p(x− i)

The name Pascal has been chosen, because the coefficients
can also be derived from Pascal’s triangle. Now we will
describe the experiments carried out and the data and metrics
used in evaluation.

V. EXPERIMENTAL SETUP

This section will start with a description of the data used
in the experiments and move on to the metrics for evaluation.
Finally we will describe the experiments carried out.

A. Data

The data used in this paper was obtained from a composi-
tion simulation created by the ECHAM/MESSy3 Atmospheric
Chemistry (EMAC) model [26]. It consisted of a 128x64
(longitude, latitude) grid with 47 vertical levels. Three different
time scales were used:

• January, 2013 with 74 time steps (every 10 hours)

3ECMWF Hamburg (ECHAM)/Modular Earth Submodel System (MESSy)

• The year of 2013 with 365 time steps (every 24 hours)
• The years 2000-2013 with 168 time steps (every month)

The variables given in Table II were available as single-
precision 32 bit floating-point values. For more representative
results the experiments were contucted on randomly selected
subsamples of the datasets described above (more details in
Section V-C). The computations were done on an Intel Xeon
E5-2640 v2 with 16 cores and 128 GiB memory.

B. Metrics

The main metric we will analyse is the leading zero count
(LZC) of each residual defined in Equation 6. The LZC
represents the amount of significant zeros of a number in
binary representation.

The LZC is a measure for the quality of the prediction. It
represents how many bits we do not need to safe on disk.
Further on we can save an additional bit for each value
since we know that the first bit of the residual must be one.
Therefore we will use the following definition for LZC:

LZC(r) = #Significant zeros of r + 1 (10)

Another metric we will use is the compression ratio (CR)
of the files being compressed:

CR =
Number of bits of compressed file

Number of bits of original file
(11)

A ratio closer to zero suggests ideal compression and closer
to one a bad compression4.

C. Experiments

Several experiments have been conducted to investigate each
step of the compression algorithm.

1) Expt 1: Influence of starting point: First we focus on the
influence of different starting points on the compression ratio.
For this purpose, we first choose random blocks5 with 1024
data points from each data set and for each variable. Then we
randomly select ten starting points per block and compress
the data. This gives us unbiased information on whether and
how susceptible the predictors (and therefore the compression
ratio) are to different starting points.

2) Expt 2: Traversal order of dimensions: Since most
prediction methods use linear traversal as described in Section
II, in our second experiment, we analyse how the order of
dimensions influences the CR of the files. We choose random
blocks of 1024 data points. After this step we traverse along
every possible ordering of dimensions using linear traversal.
This experiment provides us information if the predictors need
to be adjusted to the data structure and order of dimensions.

4Please note that this is not the final compression ratio, since the encoding
process (described in Section III-B0g) creates additional overhead.

5Most compression algorithm split the data into several blocks and com-
press each separately to save time during decompression by decompressing
only the requested blocks of data.



TABLE II: Variables available in each dataset being used in
the experiments.

Variable Abbreviation

Specific humidity Spec.Hum.
Relative humidity Rel.Hum.
Pressure Press.
Dry air temperature Temp.
Zonal wind (S-N) Wind (S-N)
Meridional wind (W-E) Wind (E-W)

3) Expt 3: New traversal without the use of Information
Spaces: In the third experiment we apply the newly proposed
traversal methods but do not change the predictors. Since most
of the predictors consider the traversal sequence as a data
stream we are expecting changes in the compression ratio
using the new traversal methods.

4) Expt 4: New traversal with the use of Information
Spaces: Finally we conduct experiments with the fully ad-
justed predictors to the Information Space and the different
consolidation methods suggested in Section IV-B. In case that
no IS could be constructed (at start or in case of an empty
IC) a Stride predictor was used as a fall-back predictor. For
the neighbourhood constraints of IS (see Eq. 7) a value of r =
5 was chosen, since this is the highest amount of neighbours
considered by the predictors (see Section IV-D).

This concludes our description of the experiments and
metrics used. In the next section we will discuss and evaluate
the results.

VI. EVALUATION

In this section we will present and evaluate the results of
the experiments described in the previous section.

A. Expt 1: Influence of starting point

The influence of different starting points are depicted in
Table IIIa. The achieved LZC seems to be independent of
the initial value for most predictors. The Stride Conf (SC)
predictor had the highest relative standard deviation (SD) in
the monthly data record. Here the LZC was 11.192 with SD
being 0.124 which is about 1.1%. While overall the SD seems
very low for starting point changes for any of the predictors,
the SC and Ratana x predictor seem to be the most prone for
changes of s0. The SD of the remaining predictor were usually
around 3% . This is a magnitude lower than SC and Ratana.

This sensitivity can also be observed by looking at the
difference plots in Figure 5. With Akumuli and Pascal one can
see the two starting points of the different sequences. After a
short time, the predictors give the same predictions as if the
starting point had not changed. This is not the case with Stride
Conf and Ratana. The differently predicted values are much
more scattered or do not show a uniform pattern.

Another observation is the steady increase of SD of Pascal
x. The more values are used for the prediction, the higher
the fluctuation. This is valid across all datasets. The reason
for this is that high order polynomials such as Pascal 4 and
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Fig. 5: [Expt 1] Difference plot of LZC for two different
starting points s0. The starting points were at (11,7) and
(5,3) with (y, x). Akumuli and Pascal have only differences
around the starting points, while the differences from Ratana
and Stride Conf are distributed and more frequent (hence the
higher SD).

Pascal 5 lead to large local fluctuations and therefore worse
extrapolation.

B. Expt 2: Traversal order of dimensions

In our second experiment we analysed the effect of traversal
order (see Table IIIb). The standard deviation has worsened
several magnitudes, which confirms that the simple walk
through the data in an arbitrary order does not lead to success.

In comparison to Expt 1 the LZC decreased and SD
increased dramatically. The SD reaches rates higher than 21%
for Pascal 1 and is significant. These results are not dependent
on the variable being compressed.

This fluctuation is also reflected in Figure 6. The quality of
the predictions are wildly disrupted for Pascal 3 and Ratana
3. The traversal order (0, 1, 2) seems to have been almost
consistently better for Akumuli than the order of (1,2,0).

Also the observation done in the first experiment regarding
the SD of the different Pascal predictors is not valid any more
and the SD does not steadily increase.

C. Expt 3: New traversal without the use of Information
Spaces

In most cases the predictors are getting the best results
using linear traversal. Only twice did one of the new traver-
sal methods perform slightly better: The Akumuli predictor
reached 5.360 (before: 5.213) bits using block instead of linear
traversal and Stride Conf reached 11.99 (before: 11.843) bits



TABLE III: [Expt 1 & 2] Leading Zero Count (LZC) and standard deviation (SD) across predictors for the daily, monthly and
10h dataset. On the left for varying starting points and on the right for all possible dimension orders using linear traversal.

(a) Expt 1: Starting points

Daily Monthly 10h
LZC SD LZC SD LZC SD

Akumuli 11.55 0.041 12.89 0.036 12.73 0.029
Last Value 13.04 0.004 14.20 0.003 14.31 0.003
Stride 13.30 0.007 14.95 0.006 14.24 0.005
Stride Conf 10.77 0.056 11.19 0.124 13.64 0.053
Stride 2 12.36 0.011 13.59 0.010 13.80 0.006
Ratana 3 12.76 0.048 14.24 0.038 13.84 0.024
Ratana 5 12.76 0.048 14.24 0.039 13.84 0.023
Pascal 1 13.04 0.004 14.19 0.003 14.31 0.003
Pascal 2 11.42 0.005 12.57 0.005 12.97 0.004
Pascal 3 13.15 0.009 14.78 0.008 13.88 0.006
Pascal 4 12.51 0.011 14.20 0.010 13.07 0.008
Pascal 5 12.05 0.014 13.45 0.014 12.38 0.010

(b) Expt 2: Traversal order

Daily Monthly 10h
LZC SD LZC SD LZC SD

Akumuli 9.90 0.98 9.81 1.09 10.70 0.57
Last Value 10.82 1.59 10.82 1.55 10.87 1.90
Stride 10.95 1.43 11.26 1.50 10.71 1.82
Stride Conf 9.53 0.68 9.50 0.66 9.88 1.00
Stride 2 10.27 1.48 10.13 1.56 10.24 1.88
Ratana 3 10.77 1.19 10.79 1.38 10.85 1.60
Ratana 5 10.77 1.19 10.79 1.38 10.84 1.60
Pascal 1 10.82 1.59 10.82 1.55 10.87 1.90
Pascal 2 9.30 1.47 9.17 1.58 9.37 1.83
Pascal 3 10.56 1.22 10.86 1.40 10.07 2.03
Pascal 4 9.69 1.27 9.87 1.45 9.25 2.00
Pascal 5 8.85 1.27 9.13 1.40 8.34 2.17
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Fig. 6: [Expt 2] Difference plot of LZC for traversal orders (0,
1, 2) and (1,2,0). The figure suggests that the traversal order of
the dimensions greatly influences the compression ratio. This
explains the high variance in the LZC depicted in Table IIIb.

compared to the linear traversal. This suggests that the linear
traversal (given the correct ordering) is a safe choice.

Figure 7 depicts the maximum reached LZC for each
variable across predictors for the monthly dataset. While the
linear traversal is several bits better than the other traversal
methods, there is close order for the other traversal methods:
Block > Blossom > Chequerboard. There might be several
reasons for this.

a) Chequerboard: Due to the usage of every other data
point in the first half of the algorithm (described in IV-C) the
data locality of the points in the sequence is scattered. This
has more significance at the borders of the data cube since
a jump might occur very often depending on the size of the

Fig. 7: [Expt 3] Depicted is the maximum reached LZC for
each variable in the daily dataset without the use of IS.

cube. The value differences of jumps along a big dimension
could be larger than those along a small dimension, because
the distance covered is a larger one.

b) Blossom v Blocks: While the difference between both
traversal algorithms is small, the data suggests that the Block
algorithm is on average better for the tested predictors. The
reason for this might be the building and prediction structure
of Blocks. The number of interpolations vs. extrapolation is
higher in the Block traversal than Blossom.

Now that we have seen the results without the use of IS in
the next section we describe the results with the use of IS.

D. Expt 4: New traversal with the use of Information Spaces

Before we go into the details lets first give an overview
of the overall results (Table IV). The LZC was increased
by 9.622% ± .364% and SD decreased by 23.547 ± .932 %
on average. For Pascal 5 the LZC climbed from 9.448 to
12.416 bits (+31.411%, 10h dataset, LB consolidation) while
the effective SD declined by 5.077%.

a) Performance of individual predictors: Next, we will
rank all predictors by their LZC performance on each dataset.
Each predictor was used with and without IS using each



TABLE IV: [Expt 4] Changes induced to LZC and SD by
using IS for each dataset with linear traversal.

10h daily monthly

∆LZC 12.26% 9.03% 7.60%
∆SD -12.91% -29.17% -34.72%

consolidation method described in Section IV-B. The results
are depicted in Table V.

TABLE V: [Expt 4] Ranking of individual predictors for each
dataset. Due to reasons of space the Pascal x predictor is
abbreviated with Px. The consolidation method is given in
round brackets, if the predictor used our proposed method.

10h daily monthly
Predictor LZC Predictor LZC Predictor LZC

1. P2 (LB) 13.29 1. P3 (LB) 13.33 1. P3 (LB) 15.88
2. P3 (LB) 13.13 2. P2 (LB) 13.26 2. P3 (R) 15.76
3. P1 (LB) 13.00 3. P3 (R) 13.11 3. P4 (LB) 15.75
. . . . . . . . . . . . . . . . . .
17. P1 12.30 16. P2 12.48 12. P2 14.86
17. Last Value 12.30 18. Stride 12.47 13. Stride 14.84
23. P2 12.11 19. P1 12.40 14. P3 14.62

The best results were achieved by predictors using IS with
15.88 (monthly dataset), 13.33 (daily dataset) and 13.29 LZC
for the 10h dataset. These results were achieved by Pascal 3
(for the monthly and daily dataset) and Pascal 2 (10h dataset)
in combination with the Last Best (LB) consolidation method.

The best predictors without the use of IS were ranked 12th
(14.86 LZC, monthly), 16th (12.48, daily) and 17th (12.30,
10h) overall. While the best predictor for the monthly and
daily dataset was Pascal 2, the best performance for the 10h
dataset delivered Pascal 1 and Last Value.

Using IS helped Pascal 3 improve the LZC from 11.40 to
13.13 LZC for the 10h dataset. It jumped from 50th to the
2nd place in the ranking. This is a huge gain considering that
we are dealing with 32 bit integers and the goal is lossless
compression.

The results for each consolidation and traversal method
for the daily dataset is represented in Figure 8. The relative
differences to the common method are given in Table VI and
VII, while Table VIII shows the compression ratios for each
variable. For brevity we only depict the results for the daily
dataset since the results for the monthly and 10h dataset are
similar.

b) Comparing of traversal methods: In almost all cases
the linear traversal method delivered better LZC results on
average. The only exception was the Minimum consolida-
tion method in combination with Blossom traversal. The LB
method also had less fluctuation in its results than most other
traversal method being in worst case the runner-up.

The results are interesting since the in Section VI-C
mentioned possible order of traversal: Block > Blossom >
Chequerboard does not seem to be valid any more. While

TABLE VI: [Expt 4] LZC comparison (higher is better) of
consolidation methods with the common method (SQ) using
linear traversal. These results were obtained using the daily
dataset.

Block Blossom Cheq. Linear

AV 70.69% 76.63% 67.04% 77.26%
LB 90.85% 105.82% 80.48% 107.55%
Max 73.08% 83.40% 65.86% 83.82%
Min 83.30% 89.74% 66.41% 90.16%
R 88.60% 100.77% 69.73% 105.07%
SQ 64.83% 69.70% 66.32% 100.00%

TABLE VII: [Expt 4] SD comparison (lower is better) of
consolidation methods with the common method (SQ) using
linear traversal. These results were obtained using the daily
dataset.

Block Blossom Cheq. Linear

AV 214.50% 167.36% 195.66% 178.82%
LB 50.47% 63.67% 223.30% 50.66%
Max 253.35% 212.16% 537.39% 215.39%
Min 80.04% 87.71% 316.41% 95.48%
R 112.90% 122.96% 418.52% 60.37%
SQ 168.09% 194.27% 201.06% 100.00%

the Chequerboard still performs worst, the Blossom method
outperforms Block in every case regarding LZC.

c) Maximum and Minimum consolidation: At the begin-
ning of the experiments the Maximum and Minimum consol-
idation methods were used to gain information about possible
biases of the predictions, interesting results came to be. While
the LZC of both methods are similar the SD of Maximum is
several times worse than the Minimum method. Using Block
traversal the SD of the Maximum method increases by a factor
of three compared to Minimum. This could suggest that the
predictors are somewhat biased against the minima.

d) Performance per variable: In this section we will
discuss the performance of IS with respect to the individual
variables to find out whether the performance we have seen so
far depended on the variable under consideration or not. The
results are represented in Table VIII. A visual comparison of
the best performing IS and the common sequential method is
shown in Figure 9.

As in the previous results the LB consolidation method
dominates in comparison to all other methods. With the
exception for pressure and temperature it always emerges as
the best method. In these two cases the method is only second
best. The common method (SQ in Table VIII) is for every
variable worse than LB and R consolidation.

It seems that the results are independent of the variables
and it is recommended to use IC across the board.

e) Poor performance of AV: The results in Table VIII and
VI suggest a poor performance of the Average method for
consolidation. Each IC considers different neighbour points
for the prediction of a single data point, but all of them
are calculated using the same predictor. A bias - which the
results from the Maximum/Minimum consolidation hints to -



(a) Leading Zero Count

(b) Standard deviation

Fig. 8: [Expt 4] Leading Zero Count and standard deviation of predictors using IS and not IS. Depicted are the mean leading
zero counts/standard deviations across all variables for the daily dataset. Each bar represents a consolidation method described
in Section IV-B with SQ being the classic approach without the use of Information Spaces.

might be affirmed by averaging and would explain the poor
performance.

TABLE VIII: [Expt 4] Highest achieved compression ratio
using the best traversal and prediction method per variable
for the daily dataset.

Spec. Rel. Wind Wind
bpf Press. Hum. Hum. Temp. (N-S) (E-W)

AV 0.376 0.659 0.673 0.520 0.736 0.795
LB 0.337 0.623 0.644 0.464 0.681 0.740
Max 0.350 0.657 0.671 0.512 0.729 0.775
Min 0.375 0.654 0.673 0.508 0.725 0.786
R 0.360 0.619 0.641 0.459 0.692 0.750
SQ 0.381 0.631 0.655 0.488 0.713 0.772

VII. SUMMARY AND OUTLOOK

We analysed the performance of different prediction-based
compression algorithms on climate data. The results of our
experiments showed that changing the starting point of the
compression algorithm has only negligible effects on the
compression ratio, while changing the traversal direction can
influence the compression ratio significantly.

We further introduced the concept of Information Spaces
(IS) and showed that with the help of IS it is possible to
improve the predictions of each predictor. More importantly,
the stability of the predictions was increased. The Information

Fig. 9: [Expt 4] LZC per variable using the best traversal and
prediction method per variable for the daily dataset.

Contexts which define the Information Space helped consol-
idate information from several dimensions. This resulted in
higher quality forecasts with less fluctuation than with the
usual method.

The advantages of our method are higher stability and better
compression ratios. Of course, the use of Information Spaces
increased the complexity of the process. The calculation of
the IS on each step was memory intensive and created an
overhead. However, the potential advantages of this new model
have not yet been exhausted.

There are still different optimisation possibilities. For ex-



ample, possible weights can be considered which can be
used within the Information Contexts for the prediction. The
individual Information Contexts can be evaluated by calcu-
lating grading factors (such as information density), which
might allow to decide which Information Contexts to use or
to avoid using for the prediction. The different subgrids of
the Information Contexts could also be considered separately
in this grading process. However, our current configuration
achieved already a 10% improvement on LZC and decreased
the standard deviation of the compression results by over 20%
on average.

While 10% for LZC and 20% may not be high for small
scale datasets (<10 GiB) but for climate research, which is
dealing with high volume of data (>300 TiB) a lossless data
reduction of 10% is rather significant. This gain in storage
space could reduce acquisition costs for new HPC systems
and help improve more efficient usage of available storage
space.

The use of Information Spaces offers new possibilities
and levers to further increase compression ratios and gain
independence from the internal structure of the data. While
our focus is on high volume spatio-temporal climate data, the
proposed method can also be used for any kind of gridded or
meshed data.

CODE AND DATA AVAILABILITY

The data and an implementation of the concepts described
in this work will be made available under GNU GPLv3 license
at [27].
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