KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000088928
Veröffentlicht am 21.12.2018

Trigonometric integrators for quasilinear wave equations

Gauckler, Ludwig; Lu, Jianfeng; Marzuola, Jeremy L.; Rousset, Frédéric; Schratz, Katharina

Abstract:
Trigonometric time integrators are introduced as a class of explicit numerical methods for quasilinear wave equations. Second-order convergence for the semi-discretization in time with these integrators is shown for a sufficiently regular exact solution. The time integrators are also combined with a Fourier spectral method into a fully discrete scheme, for which error bounds are provided without requiring any CFL-type coupling of the discretization parameters. The proofs of the error bounds are based on energy techniques and on the semiclassical Gårding inequality.


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-889282
KITopen-ID: 1000088928
Verlag KIT, Karlsruhe
Umfang 36 S.
Serie CRC 1173 ; 2018/50
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagworte quasilinear wave equation, trigonometric integrators, exponential integrators, error bounds, loss of derivatives, energy estimates
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page