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ON THE COMPARISON OF ASYMPTOTIC EXPANSION

TECHNIQUES FOR THE NONLINEAR KLEIN-GORDON

EQUATION IN THE NONRELATIVISTIC LIMIT REGIME

KATHARINA SCHRATZ AND XIAOFEI ZHAO

Abstract. This work concerns the time averaging techniques for the nonlin-
ear Klein-Gordon (KG) equation in the nonrelativistic limit regime which have

recently gained a lot attention in numerical analysis. This is due to the fact

that the solution becomes highly-oscillatory in time in this regime which causes
the breakdown of classical integration schemes. To overcome this numerical

burden various novel numerical methods with excellent efficiency were derived

in recent years. The construction of each method thereby requests essentially
the averaged model of the problem. However, the averaged model of each

approach is found by different kinds of asymptotic approximation techniques

reaching from the modulated Fourier expansion over the multiscale expansion
by frequency up to the Chapman-Enskog expansion. In this work we give a

first comparison of these recently introduced asymptotic series, reviewing their
approximation validity to the KG in the asymptotic limit, their smoothness

assumptions as well as their geometric properties, e.g., energy conservation

and long-time behaviour of the remainder.

1. Introduction

In this paper, we consider the dimensionless nonlinear Klein-Gordon (KG) equa-
tion in d-dimensions (d = 1, 2, 3) [5, 4, 16, 17, 19, 7]:

ε2∂ttu(x, t)−∆u(x, t) +
1

ε2
u(x, t) + f(u(x, t)) = 0, x ∈ Rd, t > 0,

u(x, 0) = φ1(x), ∂tu(x, 0) =
1

ε2
φ2(x), x ∈ Rd.

(1.1)

Here t is the time, x is the spatial variable, u = u(x, t) is a unknown real-valued
scalar field and 0 < ε ≤ 1 is a dimensionless parameter inversely proportional to
the speed of light. φ1 and φ2 are given real-valued initial data independent of ε and
f : R→ R is a given nonlinear function. It is a model widely occurred in quantum
and particle physics.

The so-called non relativistic limit ε → 0 of the KG equation (1.1) has been
extensively studied in literature from a physical and mathematical point of view.
Nowadays it is well understood that the KG equation converges to a nonlinear
Schrödinger (NLS) equation when ε tends to zero. In Section 2 below we present
the detailed structure of the NLS limit system. For recent analytic approximations
results we refer to [26, 24, 25], and in the context of Birkhoff normal form trans-
formations in particular to the recent work [28], as well as the references therein.
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From a numerical point of view, however, the Klein-Gordon equation in the non-
relativistic was an open problem for a long time. Classical methods are not able to
resolve the highly-oscillatory nature of the solution which leads to severe step size
restrictions (at least at order τ = O(ε−2)) and huge computational costs ([5]). This
failure of classical integration schemes triggered intensive studies on the numerical
averaging of the model, serving to describe better asymptotic behaviour of the so-
lution and to design efficient numerical approximations. Based on this idea, very
recently novel numerical integrators were proposed which allow us to numerically
solve the KG equation (1.1) in the non relativistic regime ε → 0, capturing the
highly-oscillatory behaviour of the solution.

Three novel schemes for the Klein-Gordon equation in the non relativistic limit
regime were presented so far in literature [19, 4, 12]. Each of the proposed numerical
schemes for KG is essentially based on an asymptotic expansion techinque for the
averaged model, and each of the asymptotic expansion is mathematically obtained
by different analytic techniques, reaching from the modulated Fourier expansion
(see, e.g., [21, 15, 18, 19]) over multiscale expansion by frequency (see, e.g., [4, 6,
8, 9]) up to the Chapman-Enskog expansion (see, e.g., [12, 14]).

The aim of this work is to for the first time give a comparison of the novel
techniques, highlighting the gap to the KG in the asymptotic limit, reviewing their
approximation validity, their geometric properties (e.g., energy conservation), the
regularity requirement of each expansion to maintain the optimal asymptotic order,
and the long-time behaviour of the expansion. It is worth noting that the asymp-
totic series [28] found by the Birkhoff normal form transformation is the same as
the one derived from the modulated Fourier expansion [19]. In our analysis, we
in particular focus on the three asymptotic methods: the modulated Fourier ex-
pansion [19], the multiscale expansion by frequency [4] and the Chapman-Enskog
expansion [12]. Each expansion allows at leading order a remainder at order O(ε2)
in the approximation of the KG solution (1.1). However, each expansion is based
on different mathematically techniques, allowing different approximation validity.
This will be highlighted in Section 2.4 on the dynamics and comparison of the ex-
pansions, and underlined with numerical experiments.

We will consider in the following as most of the work in the literature did [4, 7, 5],
the cubic nonlinearity case, i.e.

f(u(x, t)) = λu(x, t)3, (1.2)

for some given constant λ ∈ R. More importantly, under this case, the concerned
asymptotic expansions of the solution of KG as ε→ 0 could be derived in explicit
forms. When λ < 0, the solution of KG has finite time blow-up [1]. Hence, our
discussion is always away from the maximum existence time of solution T ∗ > 0.

The paper is organized as follows. In Section 2, we present and compare the
leading order version of the modulated Fourier expansion, the multiscale expansion
by frequency and the Chapman-Enskog expansion. The higher order version the
three expansions and results are presented in Section 3. Conclusions are drawn in
Section 4.
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2. Leading order expansion

In this section, we revise the modulated Fourier expansion [19], the multiscale
frequency expansion [4] and the Chapman-Enskog expansion [12] of the KG (1.1)
up to the leading order terms.

2.1. Modulated Fourier expansion. The modulated Fourier expansion is a well
known approach in the mathematical and numerical analysis of oscillatory problems
(e.g., [15, 18, 21]). This technique was also recently introduced ([19]) as a numerical
integrator for the KG equation (1.1) in the non relativistic regime ε → 0. The
general idea lies in expanding the solution according to the frequency and amplitude
of the small parameter, i.e. for the KG (1.1)

u(x, t) =
∑
m∈N+

eimt/ε
2

um(x, t),

where the functions um(x, t) have all the time derivatives uniformly bounded as
ε→ 0 (for sufficiently smooth solutions). Up to the leading order term, i.e. m = 1,
the modulated Fourier expansion of the solution of the KG (1.1), reads [25, 19]

u(x, t) = eit/ε
2

z(x, t) + e−it/ε
2

z(x, t) + o(1), ε→ 0, (2.1)

where z(x, t) solves the smooth (not highly oscillatory) nonlinear Schrödinger equa-
tion 2i∂tz(x, t)−∆z(x, t) + 3λ|z(x, t)|2z(x, t) = 0, x ∈ Rd, t > 0,

z(x, 0) =
1

2
[φ1(x)− iφ2(x)] , x ∈ Rd.

(2.2)

The convergence from u(x, t) to uMFo(x, t)

uMFo(x, t) = eit/ε
2

z(x, t) + e−it/ε
2

z(x, t) (2.3)

as ε→ 0 – up to the maximum existence time of the solution – has been rigorously
proven in some energy space, see for instance the recent work [24, 25]. Here, we
give a short time justification with address of the convergence rate in terms of ε
and the required regularity.

Lemma 2.1. Define R(x, t) = u(x, t) − uMFo(x, t). Under the assumption that
φ1, φ2 ∈ Hm0+4(Rd), m0 > d/2, we have

‖R(·, t)‖Hm0 . ε2, 0 ≤ t ≤ T, (2.4)

for some T independent of ε and 0 < T < T ∗.

Remark 2.2. Here we give a new (shorter) proof of the general result obtained in [19]
for the leading order ε2. Our regularity assumptions on the solution nevertheless
go in line with [19, Theorem 2] (with ε = c−1).

Proof of Lemma 2.1. Plugging u = uMFo +R into the KG equation (1.1), we get

eit/ε
2 [
ε2∂ttz + 2i∂tz −∆z

]
+ e−it/ε

2 [
ε2∂ttz − 2i∂tz −∆z

]
+ ε2∂ttR+ ∆R+

R

ε2
+ f(u) = 0.

The cubic nonlinearity f(u) can be expanded as

f(u) = eit/ε
2

3λ|z|2z + e−it/ε
2

3λ|z|2z + e3it/ε2λz3 + e−3it/ε2λz3 + fR,
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with

fR := 6λ|z|2R+ e2it/ε23λz2R+ e−2it/ε23λz2R+ eit/ε
2

3λzR2 + e−it/ε
2

3λzR2 +R3.

Since z satisfies the NLS equation (2.2), so we have

ε2∂ttR(x, t) + ∆R(x, t) +
R(x, t)

ε2
+ e3it/ε2λz(x, t)3 + e−3it/ε2λz(x, t)3 (2.5)

+ eit/ε
2

ε2∂ttz(x, t) + e−it/ε
2

ε2∂ttz(x, t) + fR(x, t) = 0, x ∈ Rd, t > 0.

At t = 0, according to the expansion we have

z(x, 0) + z(x, 0) +R(x, 0) = φ1(x), x ∈ Rd,
i

ε2
[z(x, 0)− z(x, 0)] + ∂tz(x, 0) + ∂tz(x, 0) + ∂tR(x, 0) =

φ2(x)

ε2
.

Hence by noting in (2.2) z(x, 0) = 1
2 (φ1(x)− iφ2(x)), we get

R(x, 0) = 0, ∂tR(x, 0) = −∂tz(x, 0)− ∂tz(x, 0),

and from the NLS equation, we can further get

∂tR(x, 0) = Im
(
−∆z(x, 0) + 3λ|z(x, 0)|2z(x, 0)

)
∈ Hm0+2(Rd).

Using Duhamel’s principle in the Fourier space of (2.5), we have

R̂(ξ, t) =
sin(ωξt)

ωξ
R̂′(ξ, 0)−

∫ t

0

λ sin(ωξ(t− θ))
ε2ωξ

F̂R(ξ, θ)dθ, (2.6)

−
∫ t

0

λ sin(ωξ(t− θ))
ε2ωξ

[
e3iθ/ε2 (̂z3)(ξ, θ) + e−3iθ/ε2 (̂z3)(ξ, θ)

]
dθ

−
∫ t

0

sin(ωξ(t− θ))
ωξ

[
eiθ/ε

2

ẑ′′(ξ, θ) + e−iθ/ε
2

ẑ
′′
(ξ, θ)

]
dθ,

for ωξ = 1
ε2

√
1 + ε2|ξ|2. The second integral term does not have resonance in the

oscillatory part for |ξ| . 1/ε2, and we can use a integration-by-part to see∫ t

0

sin(ωξ(t− θ))
ε2ωξ

e3iθ/ε2dθ =
ε2ωξ(e

3it/ε2 − cos(ωξt))− 3i sin(ωξt)

ωξ(ε4ω2
ξ − 9)

= O(ε2).

By differentiating the NLS, we see ∂ttz ∈ Hm0 . Noting FR = O(R), we can use the
bootstrap argument to show assertion (2.4). �

In a natural way, the limit model should be completely independent of ε. The
NLS equation (2.2) obtained by the modulated Fourier expansion is the classical
limit model of KG widely used among physicists [29, 20]. In [25] it is shown that if
the initial data of KG (1.1) is perturbed by an O(ε) function, i.e.

u(x, 0) = φ1(x) + εϕ1(x), ∂tu(x, 0) =

√
1− ε2∆

ε2
(φ2(x) + εϕ2(x)) ,

for some ϕ1, ϕ2 independent of ε, then the remainder of the leading order modulated
Fourier expansion is no longer O(ε2). Instead, one only obtains asymptotically that

u(x, t) = uMFo(x, t) +O(ε), ε→ 0.
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To improve the asymptotic convergence and obtain a remainder of order O(ε2),
one has to include the next term in modulated Fourier expansion. In detail, the
improved expansion (up to second order) reads

u(x, t) = eit/ε
2

[z(x, t) + εw(x, t)] + e−it/ε
2

[z(x, t) + εw(x, t)] +O(ε2), (2.7)

where z solves the NLS (2.2) and w solves a Schrödinger-type coupled nonlinear
equation (for details see also [25]) 2i∂tw(x, t)−∆w(x, t) + 3λ

[
2|z(x, t)|2w(x, t) + z(x, t)2w(x, t)

]
= 0, t > 0,

w(x, 0) =
1

2
[ϕ1(x)− iϕ2(x)] , x ∈ Rd. (2.8)

In the proof of Lemma 2.1 we can readily include a perturbation at order O(ε).
More precisely, let us take a O(ε) correction in the initial data of the NLS model
(2.2), i.e.,

z(x, 0) =
1

2

(
u(x, 0)− iε2∂tu(x, 0)

)
, (2.9)

then the proof of Lemma 2.1 is still valid and we readily obtain that

u(x, t) = uMFo(x, t) +O(ε2), ε→ 0.

In particular, we do not need to include further equations from the higher order
term in the modulated Fourier expansion. Getting the higher order approximation
of the model with less involved equations, is certainly more efficient in the numerical
simulation. Here the NLS (2.2) can be easily solved by splitting methods (see for
instance [23]).

In the following, we will refer to the classical expansion (2.7) as the two-term
expansion, and for the expansion (2.1) with high order corrections (2.9) as the one-
term expansion. The aim is to study and compare the two approaches numerically.
We choose the initial value in (1.1) as follows

u(x, 0) =
sech(x2)

2
+ εe−x

2

, ∂tu(x, 0) =

√
1− ε2∆

ε2

[
e−x

2

2
+ ε

sech(x2)√
2

]
,

and numerically simulate the remainder of the two kinds of expansions. The re-
mainders in the H1-norm at T = 0.5 and T = 1 under different ε are shown in Table
1. The dynamics of the remainders ‖R‖H1/ε2 are plotted in Figure 1. As can be
seen from the results, the approximations of the two approaches are quite close.
The H1-norm of the remainders of the expansions are both linearly increasing with
respect to time. Therefore, we conclude that the one-term expansion approach is
more efficient numerically. The same strategy applies to all the other expansions
presented below. Hence, we shall not address this issue any further.

2.2. Multiscale frequency expansion. The multiscale frequency expansion is
introduced in [4, 6, 8, 9]. Formally, it goes similarly as the modulated Fourier

expansion, i.e. u(x, t) =
∑
m∈N+

eimt/ε
2

um(x, t), but it allows ε-dependent pertur-

bations and oscillations in the function um. The important thing is that um(x, t)
oscillates much weaker than the original solution u(x, t) in time. In other words,
the time derivatives of um(x, t) up to some order are uniformly bounded as ε→ 0.
The leading order expansion for the KG (1.1) as given in [4] reads

u(x, t) = eit/ε
2

zε(x, t) + e−it/ε
2

zε(x, t) + o(1), ε→ 0, (2.10)
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Table 1. Remainders (in H1-norm) of the classical two-term ex-
pansion and the one-term with perturbation

t = 0.5 ε = 0.05 ε/2 ε/22 ε/23

two-term 9.00E-3 2.40E-3 5.98E-4 1.51E-4
one-term 9.60E-3 2.50E-3 6.45E-4 1.64E-4
t = 1 ε = 0.05 ε/2 ε/22 ε/23

two-term 1.79E-2 4.80E-3 1.20E-3 3.05E-4
one-term 1.84E-2 4.90E-3 1.30E-3 3.15E-4
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Figure 1. Behavior of the remainder ‖R‖H1/ε2 of the two-term
expansion and the one-term expansion with respect to time.

where zε(x, t) solves the nonlinear Schrödinger equation with wave operator (NLSW)
2i∂tz

ε(x, t) + ε2∂ttz
ε(x, t)−∆zε(x, t) + 3λ|zε(x, t)|2zε(x, t) = 0, x ∈ Rd, t > 0,

zε(x, 0) =
1

2
[φ1(x)− iφ2(x)] , x ∈ Rd, (2.11)

∂tz
ε(x, 0) =

i

2

[
−∆zε(x, 0) + 3λ|zε(x, 0)|2zε(x, 0)

]
, x ∈ Rd.

The above NLSW with the so-called well-prepared initial data offers [4] ∂kt z
ε(x, t) =

O(1) for k = 0, 1, 2, as ε→ 0, and the expansion

uMFe(x, t) = eit/ε
2

zε(x, t) + e−it/ε
2

zε(x, t)

has the estimate [4]:

Lemma 2.3. Define R(x, t) = u(x, t) − uMFe(x, t). Under the assumption that
φ1, φ2 ∈ Hm0+2(Rd), m0 > d/2, we have

‖R(·, t)‖Hm0 . ε2, 0 ≤ t ≤ T, (2.12)

for some T independent of ε and 0 < T < T ∗.

The proof can be carried out similarly to the proof of Lemma 2.1 and will be
therefor omitted. For a detailed proof we refer to [4].

Comparison of Modulated Fourier Expansion and Multiscale Frequency Expan-
sion: Comparing the approximation result in Lemma 2.3 to Lemma 2.1 we observe
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that the multiscale frequency expansion (2.10) requires less regularity assumptions
on the exact solution than the modulated Fourier expansion (2.1) to get optimal
quadratic convergence in ε. This can be formally justified as follows: Note that in
the multiscale frequency expansion the second order time derivative term ∂ttz

ε is
the dominant term in the equation of zε, whereas the modulated Fourier expansion
suffers from a less regular source term in the remainder’s equation (see (2.5)). This
leads to stronger regularity requirements on the solution in the latter.

The drawback of the mulsticale frequency expasion is that the limit model NLSW
(2.11) is still highly oscillatory. One can solve (2.11) by exponential integrators
[3, 30, 22] with uniform accuracy up to second order for all 0 < ε ≤ 1, since
∂ttz = O(1). However, to obtain higher order numerical methods, one will again
need to incorporate a CFL-type condition restricting the time step by ε.

2.3. Chapman-Enskog expansion. The Chapman-Enskog expansion is origi-
nal used to derive the Navier-Stokes equation from the Boltzmann equation, and
is nowadays a popular tool for analysis in thermal dynamics [11]. In [12], the
Chapman-Enskog expansion has been applied to the nonlinear KG. Thereby, in a
first step we have to transform the KG wave equation into a first-order system in
time. This will allow a form, where the fast time scale contributes at the next order
term of the asymptotic series.

This is achieved by introducing the new variable (see [12] for the detailed con-
struction)

v(x, t) = u(x, t)− iε2(1− ε2∆)−1/2∂tu(x, t).

This transformation allows to write the KG (1.1) as a first order system in time i∂tv = − 1

ε2
(1− ε2∆)1/2v − λ

8
(1− ε2∆)−1/2 (v + v)

3
,

v(x, 0) = v0(x) := φ1(x)− i(1− ε2∆)−1/2φ2(x).

By introducing the filtered variable

w(x, t) = e−it/ε
2
√

1−ε2∆v(x, t),

one furthermore obtains that ∂tw =
iλ

8
(1− ε2∆)−1/2e−it/ε

2
√

1−ε2∆
(

eit/ε
2
√

1−ε2∆w + e−it/ε
2
√

1−ε2∆w
)3

,

w(x, 0) = v0(x). (2.13)

We observe from the above equation that the new unknown function w(x, t) satisfies

w(x, t) = O(1), ∂tw(x, t) = O(1), ∂ttw(x, t) = O(ε−2), ε→ 0,

which indicates that the fast time scale t/ε2 does not appear in the leading order
expansion of w(x, t).

Next, we isolate the fast time scale t/ε2 in (2.13). This will allow us to carry out
a time averaging technique later on. Define

Dε =
1

ε2

[√
1− ε2∆− 1

]
,

F (t, ξ, φ) :=
iλ

8
(1− ε2∆)−1/2e−iξe−itDε

(
eiξeitDεφ+ e−iξe−itDεφ

)3
,

such that (2.13) reads

∂tw(x, t) = F (t, t/ε2, w(x, t)), x ∈ Rd, t > 0. (2.14)
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Here it is important to note the 2π-periodicity of F (t, ξ, φ) in the ξ variable. The
Chapmam-Enskog expansion for w then reads as

w(x, t) = w(x, t) + o(1), ε→ 0,

where w(x, t) solves the averaged equation

∂tw(x, t) = ΠF (t, ξ, w(x, t)) :=
1

2π

∫ 2π

0

F (t, ξ, w(x, t)) dξ, x ∈ Rd, t > 0,

with w(x, 0) = w(x, 0). Since we are considering the cubic nonlinearity, i.e. f(u) =
λu3, the average of F (t, ξ, φ) in ξ can be written down explicitly, In particular, we
obtain the following leading order equation (or limit model) ∂tw(x, t) =

3iλ

8
√

1− ε2∆
e−itDε

∣∣eitDεw
∣∣2 (eitDεw

)
, x ∈ Rd, t > 0,

w(x, 0) = v0(x). (2.15)

Lemma 2.4. Define h(x, t) = w(x, t)−w(x, t). Under the assumption that φ1, φ2 ∈
Hm0+2(Rd), m0 > d/2, we have

‖h(·, t)‖Hm0 . ε2, 0 ≤ t ≤ T, (2.16)

for some T independent of ε and 0 < T < T ∗.

Proof. Taking the difference between (2.13) and (2.15), we get

∂th(x, t) =
iλ

8
√

1− ε2∆

[
e2it/ε2e−itDε

(
eitDεw

)3
+ e−4it/ε2e−itDε

(
e−itDεw

)3
+ 3e−2it/ε2e−itDε

∣∣eitDεw
∣∣2 (e−itDεw

)
+ fh(x, t)

]
, t > 0,

with h(x, 0) = 0 and

fh(x, t) := 3e−itDε

[∣∣eitDεw
∣∣2 (eitDεw

)
−
∣∣eitDεw

∣∣2 (eitDεw
)]

= O(h).

Hence, the solution reads

h(x, t) =
iλ

8
√

1− ε2∆

[ ∫ t

0

fh(x, θ)dθ +

∫ t

0

3e−2iθ/ε2e−iθDε
∣∣eiθDεw

∣∣2 (e−iθDεw
)
dθ

+

∫ t

0

e2iθ/ε2e−iθDε
(
eiθDεw

)3
dθ +

∫ t

0

e−4iθ/ε2e−iθDε
(
e−iθDεw

)3
dθ
]
.

Based on the assumption, we have v0 ∈ Hm0+2. Therefore from (2.13),

‖w(·, t)‖Hm0+2 + ‖∂tw(·, t)‖Hm0+2 . 1, 0 ≤ t < T,

for some T > 0. Also note that in the sense of operator, 0 ≤ Dε ≤ −∆/2. Then for
the three integral terms with highly oscillatory phases, by doing the integration-
by-parts on the phase, we can get

‖h(·, t)‖Hm0 . ε2, 0 < t < T,

for another T > 0 independent of ε. �

The system (2.15) is the leading order limit model of (2.13). By reversing the
transforms, we define

uCE(x, t) :=
1

2

[
eit/ε

2
√

1−ε2∆w(x, t) + e−it/ε
2
√

1−ε2∆w(x, t)
]
,
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to get the leading order Chapman-Enskog expansion for KG (1.1) as follows

u(x, t) = uCE(x, t) + o(1), ε→ 0.

Corollary 2.5. Define R(x, t) = u(x, t) − uCE(x, t). Under the assumption that
φ1, φ2 ∈ Hm0+2(Rd), m0 > d/2, we have

‖R(·, t)‖Hm0 . ε2, 0 ≤ t ≤ T, (2.17)

for some T independent of ε and 0 < T < T ∗.

Proof. By noting

u(x, t) :=
1

2

[
eit/ε

2
√

1−ε2∆w(x, t) + e−it/ε
2
√

1−ε2∆w(x, t)
]
, x ∈ Rd, t ≥ 0,

it becomes obvious from Lemma 2.4. �

Comparison of Modulated Fourier Expansion (MFo), the Multiscale Frequency
Expansion (MFe) and Chapman-Enkog expansion (CE): In contrast to the modu-
lated Fourier expansion (2.1) and the multiscale expansion by frequency (2.10), the
Chapman-Enkog expansion (2.15) incorporates more higher order corrections into
the limit model. Therefore, though all the three expansions converge quadratically
in ε, one would expect the Chapman-Enskog expansion (2.15) being closer to the
solution of KG in the nonrelativistic limit regime.

The drawback is however that (2.15) involves the evaluation of the pseudo-
differential operation for several times, which is more expensive than solving (2.1)
or (2.10) in practical computing. (Note that the limit equation (2.15) can be solved
for instance with a finite difference time integration scheme.) When the whole
space KG equation (1.1) is truncated onto a periodic domain or zero-boundary
domain, those pseudo-differential operations can be computed by FFT quite ef-
ficiently. However, if the KG equation is imposed on a general domain, spatial
approximations for (2.15) are not easily obtained.

2.4. Dynamics and comparisons. In this section, we consider the KG (1.1) in
one space dimension (d = 1, x = x). As a reference solution we employ the uni-
formly accurate method [7] with a very small step size to obtain a very accurate
approximation to the solution u(x, t) under different 0 < ε ≤ 1.

As we are interested in the comparison of the asymptotic error introduced under
the different expansion techniques we solve the corresponding limit model of each
expansion accurately by proper numerical methods as discussed before. We study
and compare the three presented expansions by the size of the remainders at a fixed
time and the dynamics of the remainders. For simplicity, we refer to the modulated
Fourier expansion by MFo, the multiscale frequency expansion by MFe and the
Chapman-Enskog expansion by CE. We denote the remainder of each as RMFo,
RMFe and RCE .

Example 2.6 (Comparison in accuracy). We begin with the comparison of the
accuracy of each expansion at a fixed time under different ε. We choose the following
initial value in (1.1)

u(x, 0) =
sech(x2)

2
, ∂tu(x, 0) =

e−x
2

2
, x ∈ R (2.18)

and compute the remainder of the MFo, MFe and CE expansions presented above.
The remainders RMFo RMFe and RCE measured in a discrete H1-norm at T = 0.5
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Table 2. Remainders (in H1-norm) of the leading order modu-
lated Fourier (MFo) expansion, the multiscale expansion by fre-
quency (MFe) and the Chapman-Enskog (CE) expansion.

t = 0.5 ε = 0.1 ε/2 ε/22 ε/23

MFo 3.46E-2 9.90E-3 2.60E-3 6.50E-4
MFe 1.00E-2 2.10E-3 5.35E-4 1.31E-4
CE 1.20E-3 2.58E-4 6.59E-5 1.79E-5
t = 1 ε = 0.1 ε/2 ε/22 ε/23

MFo 6.15E-2 1.88E-2 5.00E-3 1.30E-3
MFe 9.70E-3 2.40E-3 5.94E-4 1.51E-4
CE 9.29E-4 2.87E-4 7.23E-5 1.74E-5

and T = 1 are shown in Table 2. The quadratic convergence rate in ε of the
three expansions is clearly justified in the numerical experiments. Furthermore, as
presumed, the CE expansion allows the closest approximation to the solution of
KG in the nonrelativistic limit regime (introducing the smallest error).

Example 2.7 (Dynamics of remainders). We compute the dynamics of the re-
mainder term of the each expansion. Firstly, we consider the one-dimensional KG
equation (1.1) with smooth initial data in two cases: Once we choose an initially
localized wave in the whole space R, i.e., (2.18). In the other case we choose a
planewave on a 2π-torus T, i.e.,

φ1(x) =
2 cos(x)√

3
, φ2(x) =

sin(x) + 2 cos(x)

2
, x ∈ T. (2.19)

We simulate the dynamics of the remainder terms RMFo, RMFe and RCE under the
three expansions for the above two cases (2.18) and (2.19). Their behavior in the
H1-norm divided by ε2 is plotted in Figure 2. The profiles given by the expansions
uMFo, uMFe and uCE as approximations to the solution of the KG u(x, t) at time
t = 3 are plotted in Figure 3.

The numerical results demonstrate the following: 1) The remainders of all the
expansions retain at order O(ε2) within the O(1) time scale. 2) In the whole space
case, MFo has a (linearly) increasing remainder with respect to time, while the
remainders of MFe and CE are O(ε2) uniformly in time. 3) In the case of the torus,
all the expansions lead to an increasing remainder, whereby the remainders of MFe
and CE start to increase only after some time (after t = 1 from the figure).

Example 2.8 (Energy conservation). Under the cubic nonlinearity (1.2), one of
the most important conserved physical quantity of the KG equation is the energy
or Hamiltonian:

H(t) :=

∫
Rd

[
ε2(∂tu)2 + |∇u|2 +

1

ε2
u2 +

λ

2
u4

]
dx ≡ H(0), t ≥ 0.

We compute the approximated energy H(t) by using the three leading order ex-
pansions of u. Note that the exact energy H(0) is given exactly from the initial
data. The relative energy error |H(t) −H(0)|/|H(0)| as a function of time in the
case of the whole space (2.18) and torus (2.19), respectively, is plotted in Figure
4. The results show that the errors in the energy converges relatively with rate
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Figure 2. Behavior of the remainder terms ‖RMFo‖H1/ε2,
‖RMFe‖H1/ε2 and ‖RCE‖H1/ε2 with respect to time under two
cases: initial smooth localized wave (2.18) in R (left) and smooth
planewave (2.19) on torus T (right).

O(ε2). Moreover, the energy error of the three expansions appears to be uniformly
bounded in time.

Example 2.9 (Comparison in regularity). Next, we numerically investigate the
behavior of the remainders under non-smooth initial data. By doing so, we are
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Figure 3. Profiles of the expansions uMFo(x, 3), uMFe(x, 3),
uCE(x, 3) and exact solution u(x, 3) at t = 3 under ε = 0.1: the
whole space example (2.18) (up) and the torus example (2.19)
(down).

aiming to justify the critical regularity requirement of each expansion as given in
the Lemmas 2.1-2.4. In the case of the torus, we follow the construction in [27] to
obtain the low regularity initial data. More precisely, we choose in KG (1.1)

φ1(x) =

√
2|∂x,N |−θUN

‖|∂x,N |−θUN‖L∞
, φ2(x) =

√
2|∂x,N |−θUN

‖|∂x,N |−θUN‖L∞
, x ∈ T, (2.20)

where N is an even integer, UN ∈ [0, 1]N is a uniformly distributed random vector
and the pseudo-differential operator |∂x,N |−θ with θ ≥ 0 reads for Fourier modes
k = −N/2, . . . N/2− 1, (

|∂x,N |−θ
)
k

:=

{
|k|−θ if k 6= 0,

0 if k = 0.

Apparently, we can choose θ such that the data φ1, φ2 ∈ Hθ(T). For the modulated
Fourier expansion, we choose θ = 5 and 4, respectively, and measure the remainder
in the discrete H1-norm and L2-norm. For the multiscale expansion by frequency
or the Chapman-Enskog expansion, we choose the critical values for θ as 3 and 2,
respectively. The results are plotted in Figures 5-7.
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Figure 4. Energy error |H(t)−H(0)|/|H(0)| of the three expan-
sions to the leading order under whole space case (up) and torus
case (down).
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Figure 5. Behavior of the MFo remainder under lower regu-
larity initial data (2.20): ‖RMFo‖H1/ε2 (left) under H5-data,
‖RMFo‖H1/ε2 (middle) and ‖RMFo‖L2/ε2 (right) under H4-data.

From the results, we can see: 1) Hm0+4 regularity requirement of the initial data
is critical for MFo to allow the quadratic convergence ‖RMFo‖Hm0 = O(ε2). 2)
Hm0+2-initial data is critical for MFe and CE to allow ‖RMFo‖Hm0 , ‖RCE‖Hm0 =
O(ε2).



14 K. SCHRATZ AND X. ZHAO

0 1 2 3 4
0

5

10

15

t

||
R

M
F

e
||

H
1
 /

 ε
2

H
3
 data

 

 

ε=0.2

ε=0.1

ε=0.05

0 1 2 3 4
0

20

40

60

80

100

120

t
||
R

M
F

e
||

H
1
 /

 ε
2

H
2
 data

 

 

0 1 2 3 4
0

5

10

15

20

t

||
R

M
F

e
||

L
2
 /

 ε
2

H
2
 data

 

 

Figure 6. Behavior of the MFe remainder under lower regu-
larity initial data (2.20): ‖RMFe‖H1/ε2 (left) under H3-data,
‖RMFe‖H1/ε2 (middle) and ‖RMFe‖L2/ε2 (right) under H2-data.
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Figure 7. Behavior of the CE remainder under lower regu-
larity initial data (2.20): ‖RCE‖H1/ε2 (left) under H3-data,
‖RCE‖H1/ε2 (middle) and ‖RCE‖L2/ε2 (right) under H2-data.

3. Next order expansion

In this section, we present the higher order version of the discussed expansions.

3.1. Modulated Fourier expansion. Here we shall adopt the notations intro-
duced in Section 2.1. The modulated Fourier expansion of the solution of KG (1.1)
were found in [19] up to the next order term as follows

u(x, t) = eit/ε
2

z(x, t) + e−it/ε
2

z(x, t) + ε2w(x, t) + o(ε2), x ∈ Rd, t ≥ 0,
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where w := w(x, t) ∈ R satisfies

w(x, t) =v(x, t)eit/ε
2

+ v(x, t)e−it/ε
2

+
λ

8

[
z(x, t)3e3it/ε2 + z(x, t)3e−3it/ε2

]
− 3λ

4
|z(x, t)|2

[
z(x, t)eit/ε

2

+ z(x, t)e−it/ε
2
]
, x ∈ Rd, t ≥ 0.

Thereby, z := z(x, t) solves the NLS system (2.2) and v := v(x, t) solves an addi-
tional NLS-type equation

2i∂tv −∆v + 6λ|z|2v + 3λ(z)2v =
1

4
∆2z +

51λ2

8
|z|4z − 3λ

2
∆(|z|2z), t ≥ 0,

v(x, 0) = −λ
4
z(x, 0)3 +

λ

8
z(x, 0)3 +

3λ

4
|z(x, 0)|2z(x, 0) +

1

4
∆(z(x, 0)− z(x, 0)).

(3.1)
The convergence from u(x, t) to uMFo(x, t)

uMFo(x, t) = eit/ε
2

z(x, t) + e−it/ε
2

z(x, t) + ε2w(x, t)

as ε→ 0 is given as follows.

Lemma 3.1. Define r(x, t) = u(x, t) − uMFo(x, t). Under the assumption that
φ1, φ2 ∈ Hm0+8(Rd), m0 > d/2, we have

‖r(·, t)‖Hm0 . ε4, 0 ≤ t ≤ T, (3.2)

for some T independent of ε and 0 < T < T ∗.

Remark 3.2. Again we give a new (shorter) proof of the general result obtained in
[19] for the fourth order correction ε4. Again our regularity assumptions on the
solution go in line with [19, Theorem 2] (with ε = c−1).

Proof of Lemma 3.1. Based the leading order expansion (2.3) and the remainder
equation for R (2.5), now we compute each term with R = ε2w+ r. For the initial
data of r, we find

r(x, 0) = −ε2w(x, 0) = −ε2

(
v(x, 0) +

λ

8
z(x, 0)3 − 3λ

4
|z(x, 0)|2z(x, 0) + c.c.

)
= 0.

For the initial derivative of r, we have

∂tr(x, 0) = ∂tR(x, 0)− ε2∂tw(x, 0)

= ε2∂tv(x, 0) + ε2λ

8
∂t(z

3)(x, 0)− ε2 3λ

4
∂t(|z|2z)(x, 0) + c.c. =: ε2γ(x),

where γ ∈ Hm0+2. Now let us firstly check the time derivative term in the equation
(2.5). We have

ε2∂ttR = ε4∂ttw + ε2∂ttr,

with

ε4∂ttw =ε2eit/ε
2

2i∂tv − eit/ε
2

v − e3it/ε2 9λ

8
z3 + ε2e3it/ε2 6iλ

8
∂t(z

3) + eit/ε
2 3λ

4
|z|2z

− ε2eit/ε
2 3iλ

2
∂t(|z|2z) + c.c.+ ε4O(∂ttv) + ε4O(∂ttz).
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Next, we compute the nonlinear term fR:

fR = ε26λ|z|2w + ε2e2it/ε23λz2w + ε2e−2it/ε23λz2w + ε4O(w2) +O(r)

=ε2eit/ε
2

6λ|z|2v − ε2eit/ε
2 51λ2

8
|z|4z + ε2eit/ε

2

3λz2v + c.c.+ ε2g + ε4O(w2) +O(r),

with

g =e3it/ε2 3λ2

4
|z|2z3 + e3it/ε23λz2

[
v − 3λ

4
|z|2z

]
+ e5it/ε2 3λ2

8
z5w + c.c..

Then together with

−∆R+
R

ε2
=− ε2eit/ε

2

∆v + ε2eit/ε
2 3λ

4
∆
(
|z|2z

)
+ ε2e3it/ε2 λ

8
∆z3

+ eit/ε
2

v − eit/ε
2 3λ

4
|z|2z + e3it/ε2 λ

8
z3 + c.c.−∆r +

r

ε2
,

and noting (3.1) and

∂ttz =
1

4

[
−∆2z + 3λ∆

(
|z|2z

)]
+

3iλ

2
∂t
(
|z|2z

)
,

the equation (2.5) becomes{
ε2∂ttr −∆r +

r

ε2
+ ε4O(∂ttv) + ε4O(∂ttz) + ε2g̃ + ε4O(w2) +O(r) = 0,

r(x, 0) = 0, ∂tr(x, 0) = ε2γ(x), (3.3)

with

g̃ = e3it/ε2 6iλ

8
∂t(z

3) + e3it/ε2 λ

8
∆z3 + c.c.+ g.

By the regularity assumption, we have z(x, t) ∈ Hm0+8. Hence, from equation
(3.1), we find v ∈ Hm0+4 and ∂ttv ∈ Hm0 . Therefore, by standard techniques, we
can get ‖r‖Hm0 . ε4. �

3.2. Multiscale expansion by frequency. The high order multiscale expansion
by frequency of the solution u = u(x, t) of the KG (1.1) has recently been described
in [10]:

u(x, t) = eit/ε
2

zε(x, t) +
ε2λ

8
e3it/ε2zε(x, t)3 + c.c.+ o(ε2), x ∈ Rd, t ≥ 0, (3.4)

where zε = zε(x, t) satisfying
2i∂tz

ε + ε2∂ttz
ε −∆zε + 3

(
λ|zε|2 +

ε2λ2

8
|zε|4

)
zε = 0, x ∈ Rd, t > 0, (3.5)

zε(x, 0) = w0(x) + ε2r0(x), ∂tz
ε(x, 0) =

i

2

(
−∆w0(x) + 3λ|w0(x)|2w0(x)

)
,

with

w0(x) =
1

2
(φ1(x)− iφ2(x)), r0(x) =

λ

8
w0(x)3 − λ

4
w0(x)3 +

3iλ

4
|w0|2φ2 −

i

4
∆φ2.

The expansion

uMFe(x, t) = eit/ε
2

zε(x, t) +
ε2λ

8
e3it/ε2zε(x, t)3 + c.c., (3.6)

has following short time estimate [10].
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Lemma 3.3. Let R(x, t) := u(x, t)−uMFe(x, t), under the assumption that φ1, φ2 ∈
Hm0+5(Rd), m0 > d/2, we have the following prior estimate on the solution

‖R(·, t)‖Hm0 . ε4, 0 ≤ t ≤ T, (3.7)

for some T independent of ε and 0 < T < T ∗.

Proof. See detailed proof in [10]. �

Compared to the modulated Fourier expansion, the above high order multiscale
frequency expansion (3.6) is more compact, since it only involves one limit equation,
i.e. (3.5) to solve. It allows high order asymptotic convergence in ε4 by absorbing
some corrections to the limit model. The limit model (3.5) can again be numerically
solved by exponential integrators.

3.3. Chapman-Enskog expansion. The high order version of the Chapman-
Enskog expansion presented below is introduced by Mohammed Lemou et al, and
it has been utilised to design uniformly accurate scheme in [13].

Recall the formulation (2.14). The expansion of w(x, t) reads

w(x, t) = w(x, t) + ε2Θ(t, t/ε2, w(x, t)) + o(ε2), ε→ 0,

where

Θ(t, ξ, w) := (I −Π)

∫ ξ

0

[F (t, θ, w)−ΠF (t, ·, w)] dθ, (3.8)

and w = w(x, t) solves ∂tw =
1

2π

∫ 2π

0

F (t, ξ, w + ε2Θ(t, ξ, w)) dξ, (3.9)

w(x, 0) = v0(x)− ε2Θ(0, 0, v0(x)).

Due to our cubic nonlinearity, one can explicitly obtain that

Θ(t, ξ, w) =
λ

16
√

1− ε2∆

[
e2iξe−itDε

(
eitDεw

)3 − 3e−2iξe−itDε
∣∣eitDεw

∣∣2 e−itDεw

− 1

2
e−4iξ

(
e−itDεw

)3 ]
. (3.10)

Denote

ρ0 = eitDεw, ρ1 =
−3ε2λ

16
√

1− ε2∆

∣∣eitDεw
∣∣2 e−itDεw,

ρ2 =
ε2λ

16
√

1− ε2∆

(
eitDεw

)3
, ρ3 =

−ε2λ

32
√

1− ε2∆

(
e−itDεw

)3
.

The limit equation (3.9) for w can be written explicitly down as

∂tw =
iλ

8
√

1− ε2∆
[3g0 + 3g1 + g2 + g3] ,

where

g0 = |ρ0|2ρ0 + 2|ρ2|2ρ0 + 2ρ0ρ1ρ2 + 2ρ0|ρ1|2 + 2ρ2ρ1ρ3 + ρ2
1ρ3 + 2ρ0|ρ3|2,

g1 = ρ2
0ρ2 + 2|ρ0|2ρ1 + 2ρ1|ρ2|2 + |ρ1|2ρ1 + 2ρ0ρ2ρ3 + 2ρ0ρ1ρ3 + 2ρ1|ρ3|2,

g2 = 3ρ2
0ρ1 + 3ρ2

1ρ2 + 6ρ0ρ2ρ3, g3 = 3ρ2
1ρ0 + 3(ρ0)2ρ3 + 6ρ1ρ2ρ3.
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Lemma 3.4. Define h(x, t) = w(x, t) − w(x, t) − ε2Θ(t, t/ε2, w(x, t)). Under the
assumption that φ1, φ2 ∈ Hm0+4(Rd), m0 > d/2, we have

‖h(·, t)‖Hm0 . ε4, 0 ≤ t ≤ T, (3.11)

for some T independent of ε and 0 < T < T ∗.

Proof. In this case the explicit formulas are lengthy. For reasons of ease and clarity
of presentation we will not carry out the proof with detailed terms as we did in
Lemma 2.4. Instead, we will write things in an abstract form.

Firstly, we verify (3.11) at initial time.

h(x, 0) = w(x, 0)− w(x, 0)− ε2Θ(0, 0, w(x, 0))

= ε2 [Θ (0, 0, v0(x))−Θ (0, 0, w(x, 0))]

= ε4

∫ 1

0

∇Θ
(
0, 0, v0(x)− θε2Θ(0, 0, v0(x))

)
Θ(0, 0, v0(x))dθ

where we denote ∇Θ(t, ξ, w) = ∂wΘ(t, ξ, w). With v0 ∈ Hm0+4, we have

‖h(·, 0)‖Hm0+4(Rd) . ε
4.

By the regularity assumption, one has for the limit model:

∂kt w(x, t) ∈ Hm0+4−2k(Rd), k = 0, 1, 2, 0 ≤ t ≤ T,
for some T > 0.

Now for simplicity of notation, we would drop the space variable x. By differen-
tiation, we get

∂th =F (t, t/ε2, w)−ΠF
(
t, ·, w + ε2Θ(t, ·, w)

)
− ε2∂tΘ(t, t/ε2, w)− ∂ξΘ(t, t/ε2, w)

− ε2∇Θ
(
t, t/ε2, w

)
∂tw, t > 0. (3.12)

By (3.8), we find

∂ξΘ(t, ξ, w) = F (t, ξ, w)−ΠF (t, ·, w).

By Taylor’s expansion, we get

ΠF
(
t, ·, w + ε2Θ(t, ·, w)

)
=ΠF (t, ·, w) + ε2Π

∫ 1

0

∇F
(
t, ·, w + θε2Θ(t, ·, w)

)
Θ(t, ·, w)dθ,

and

F (t, t/ε2, w) =F (t, t/ε2, w) +

∫ 1

0

∇F
(
t, t/ε2, w + θ(ε2Θ + h)

)
(ε2Θ + h)dθ

=F (t, t/ε2, w) +

∫ 1

0

∇F
(
t, t/ε2, w + θε2Θ

)
(ε2Θ + h)dθ

+

∫ 1

0

∫ 1

0

∇2F
(
t, t/ε2, w + θ(ε2Θ + σh)

)
θh(ε2Θ + h)dσdθ.

Denote

F[h](t, ξ) :=

∫ 1

0

∇F
(
t, ξ, w(t) + θε2Θ

)
h(t) dθ

+

∫ 1

0

∫ 1

0

∇2F
(
t, ξ, w(t) + θ(ε2Θ + σh(t))

)
θh(t)(ε2Θ + h(t))dσdθ.
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with Θ = Θ(t, ξ, w(t)), then we have

F (t, t/ε2, w) =F (t, t/ε2, w) + ε2

∫ 1

0

∇F
(
t, t/ε2, w + θε2Θ(t, t/ε2, w)

)
Θ(t, t/ε2, w)dθ

+ F[h](t, t/ε
2).

Therefore, we find

F (t, t/ε2, w)−ΠF
(
t, ·, w + ε2Θ(t, ·, w)

)
− ∂ξΘ(t, t/ε2, w)

=ε2

∫ 1

0

∇F
(
t, t/ε2, w + θε2Θ(t, t/ε2, w)

)
Θ(t, t/ε2, w)dθ + F[h](t, t/ε

2)

− ε2Π

∫ 1

0

∇F
(
t, ·, w + θε2Θ(t, ·, w)

)
Θ(t, ·, w)dθ

Denote

G(t, ξ) :=

∫ 1

0

∇F
(
t, ξ, w(t) + θε2Θ(t, ξ, w(t))

)
Θ(t, ξ, w(t))dθ −∇Θ (t, ξ, w(t)) ∂tw(t)

−Π

∫ 1

0

∇F
(
t, ·, w(t) + θε2Θ(t, ·, w(t))

)
Θ(t, ·, w(t))dθ − ∂tΘ(t, ξ, w(t)),

and then we can write (3.12) as

∂th(t) = ε2G(t, t/ε2) + F[h](t, t/ε
2), t > 0.

Now we consider a function H(t, ξ) that solves ∂tH(t, ξ) +
1

ε2
∂ξH(t, ξ) = ε2G(t, ξ) + F[H](t, ξ), t > 0, ξ ∈ T,

H(0, ξ) = ε2 [Θ (0, ξ, v0)−Θ (0, ξ, w(0))] , ξ ∈ T.
(3.13)

One can observe that

‖H(0, ·)‖H1(T)×Hm0+4(Rd) . ε
4 and H(0, 0) = h(0),

which by the uniqueness of the solution leads to

H(t, t/ε2) = h(t), t ≥ 0. (3.14)

Take Fourier transform of (3.13) on the ξ,

∂tĤl(t) +
il

ε2
Ĥl(t) = ε2Ĝl(t) + (̂F[H])l(t), t > 0, l ∈ N.

By Duhamel’s formula, we get

Ĥl(t) = e−ilt/ε
2

Ĥl(0) +

∫ t

0

e−il(t−s)/ε
2
[
ε2Ĝl(s) + (̂F[H])l(s)

]
ds. (3.15)

We carry out an integration-by-parts for l 6= 0,∫ t

0

e−il(t−s)/ε
2

ε2Ĝl(s)ds =− ε4i

l

(
Ĝl(t)− e−ilt/ε

2

Ĝl(0)
)

+
ε4i

l

∫ t

0

e−il(t−s)/ε
2

Ĝ′l(s)ds,

with noting meanwhile

Ĝ0(t) = ΠG(t, ·) = 0, t ≥ 0.
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From (3.10) and the regularity of the limit model (3.9), we can find

‖∂tΘ(t, ·, w(t))‖H1(T)×Hm0+2(Rd) . 1, ‖∂2
t Θ(t, ·, w(t))‖H1(T)×Hm0 (Rd) . 1,

and therefore we can further have

‖G(t, ·)‖H1(T)×Hm0+2(Rd) . 1, ‖∂tG(t, ·)‖H1(T)×Hm0 (Rd) . 1.

Then by squaring (3.15) and using Hölder’s inequality and Parserval’s identity, we
get

‖H(t, ·)‖H1(T)×Hm0 (Rd) . ε
4 +

∫ t

0

‖F[H](s, ·)‖H1(T)×Hm0 (Rd)ds.

Thanks to the fact:

F[H](t, ξ) = O(H(t, ξ)),

by a bootstrap argument, one can get

‖H(t, ·)‖H1(T)×Hm0 (Rd) . ε
4, 0 ≤ t ≤ T,

for some T > 0 independent of ε. Finally using (3.14) and the Sobolev imbedding,

‖h(t)‖H1(Rd) . ‖H(t, ·)‖L∞(T)×H1(Rd) . ε
4, 0 ≤ t ≤ T.

�

Again by defining

uCE(x, t) :=
1

2

[
eit/ε

2
√

1−ε2∆
(
w(x, t) + ε2Θ(t, t/ε2, w(x, t))

)
+ c.c.

]
, (3.16)

we get the next order Chapman-Enskog expansion for KG (1.1) as

u(x, t) = uCE(x, t) + o(ε2), ε→ 0.

Corollary 3.5. Define R(x, t) = u(x, t) − uCE(x, t). Under the assumption that
φ1, φ2 ∈ Hm0+4(Rd), m0 > d/2, we have

‖R(·, t)‖Hm0 . ε4, 0 ≤ t ≤ T, (3.17)

for some T independent of ε and 0 < T < T ∗.

We see that similarly to the high order multiscale frequency expansion, the high
order Chapman-Enskog expansion (3.16) is also in a rather compact form. That
is to say, the expansion (3.16) only involves a limit equation, i.e. (3.9) to solve.
However, the limit equation (3.9) is much more complicated than (3.5). Note that
again (3.9) can be solved by a finite time difference integrator.

3.4. Dynamics and comparisons. We consider again the one dimensional KG
to study and compare the high order versions of the three expansions.

Example 3.6 (Comparison in accuracy). Firstly, we compare the remainders of the
three expansions at a fixed time. The remainders RMFo RMFe and RCE measured
in a discrete H1-norm at T = 0.5 and T = 1 with initial values (2.18) are shown in
Table 3. The results show that the higher order MFe expansion is the most accurate
approximation to the KG.
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Table 3. Remainders (in H1-norm) of the next order modulated
Fourier (MFo) expansion, the multiscale frequency (MFe) expan-
sion and the Chapman-Enskog (CE) expansion.

t = 0.5 ε = 0.1 ε/2 ε/22 ε/23

MFo 2.30E-2 2.30E-3 1.82E-4 1.20E-5
MFe 4.99E-6 1.61E-7 1.06E-8 6.69E-10
CE 3.64E-5 1.87E-6 1.20E-7 7.29E-9
t = 1 ε = 0.1 ε/2 ε/22 ε/23

MFo 5.68E-2 7.60E-3 6.84E-4 4.61E-5
MFe 3.03E-6 2.42E-7 1.56E-8 1.23E-9
CE 2.20E-5 1.58E-6 1.03E-7 6.48E-9

Example 3.7 (Dynamics of remainder). Next, we study the long-time behavior of
the expansions under smooth initial data. The dynamics of the remainder terms
RMFo, RMFe and RCE of three expansions in H1 divided by ε4 in the whole space
case (2.18) and torus (2.19) are plotted in Figure 8. From the results, we can see:
1) In the whole space case, the remainder of MFo increases with time rapidly, but
in the torus case it increases linearly. 2) In the whole space case, the remainder of
MFe has an increasing drift, while CE has remainder uniformly bounded in time.
3) In the torus case, the remainders of both MFe and CE start to increase after
some time, but MFe has less increment.

Example 3.8 (Energy conservation). The relative energy error |H(t)−H(0)|/|H(0)|
by using the next order expansions under case (2.18) or (2.19) is plotted in Figure
9. The results show: 1) The energy by the expansions converges relatively with
rate O(ε4) to the exact energy. 2) CE has uniformly bounded energy error with
respect to time. 3) MFe in the whole space case has a drift in the error similarly
as the behavior of the remainder. In the torus case, the error of MFe is bouncing.

Example 3.9 (Comparison in regularity). At last but not least, we test the behav-
ior of the remainders of the high order expansions under the initial data of lower
regularity (2.20) on the torus. We plot in Figure 10 the dynamics of the remain-
ders ‖RMFo‖H1/ε4 under H7-data or H8-data, ‖RMFe‖H1/ε4 and ‖RCE‖H1/ε4

under H3-data or H4-data. Based on the numerical results, we observe that
‖RMFo‖H1 = O(ε4) under H8-data and ‖RMFe‖H1 , ‖RCE‖H1 = O(ε4) under H4-
data. All the three expansions seem to hold the fourth order convergence rate in
ε with less required regularity than the analytical results in Lemmas 3.1-3.5. Cer-
tainly more dedicated and deep analysis is needed to seek for the sharp regularity
requirement.

4. Conclusion

We studied and compared three kinds of popular asymptotic expansions applied
to the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. The
expansions include the modulated Fourier expansion, multiscale expansion by fre-
quency and the Chapman-Enskog expansion up to the leading and higher order
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Figure 8. Behavior of the remainder terms ‖RMFo‖H1/ε4,
‖RMFe‖H1/ε4 and ‖RCE‖H1/ε4 with respect to time under two
cases: initial smooth localized wave (2.18) in R (left) and smooth
planewave (2.19) on torus T (right).

term. The comparisons of the expansions were made on the accuracy, the regular-
ity and the dynamics. We commented on the advantages and disadvantages of each
expansion.
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Figure 9. Energy error |H(t)−H(0)|/|H(0)| of the three expan-
sions to the next order under whole space case (up) and torus case
(down).
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