KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000088931
Veröffentlicht am 21.12.2018

Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates

Hipp, David; Kovács, Balázs

$L^2$ error estimates of semi- and full discretisations of wave equations with dynamic boundary conditions are studied, using bulk–surface finite elements and Runge–Kutta methods. The analysis resides on an abstract formulation and error estimates, via energy techniques, within this abstract setting. Four prototypical linear wave equations with dynamic boundary conditions are analysed within the abstract framework. For problems with velocity terms, or with acoustic boundary conditions we prove a spatial convergence order which is less than two. These can also be observed in the presented numerical experiments.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-889318
KITopen-ID: 1000088931
Verlag KIT, Karlsruhe
Umfang 40 S.
Serie CRC 1173 ; 2018/53
Projektinformation SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagworte wave equations, dynamic boundary conditions, abstract error analysis, Ritz map, $L^2$ error estimates, Runge–Kutta methods
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page