
Eine Bewertung des dieselmotorischen Umwelteinflusses

T. Koch, O. Toedter

Ludwigsburg, 10. Internationales AVL Forum Abgas- und Partikelemissionen 20. Februar 2018

INSTITUT FÜR KOLBENMASCHINEN

Leiter Prof. Dr. sc. techn. Thomas Koch

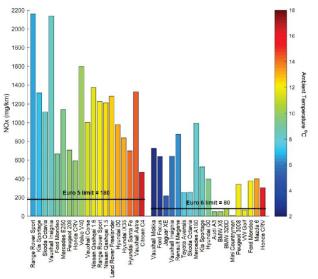
Diesel-Affäre

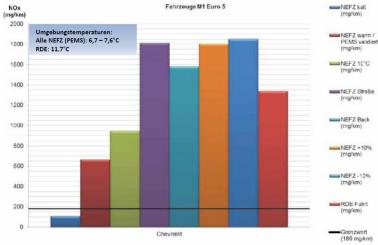
38.000 Todesfälle durch erhöhten Stickoxid-Ausstoß

Stickoxide sind ungesund, für Diesel-Fahrzeuge gelten deshalb Grenzwerte - die in den vergangenen Jahren zum Teil nicht eingehalten wurden. Forscher haben jetzt abgeschätzt, wie viele Menschen deshalb vorzeitig verstorben sind.

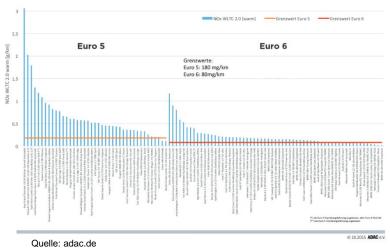
Quelle: spiegel.de

Agenda


- Einleitung
- Feinstaub / Partikel
- $3 NO_x/NO_2$
- Exposition / Gesundheit / Statistik
- Zusammenfassung


Einleitung

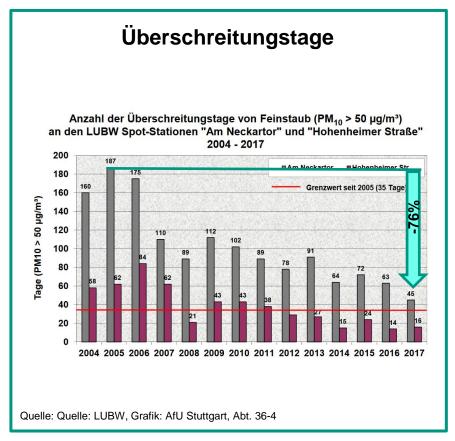
Die Emissionssituation

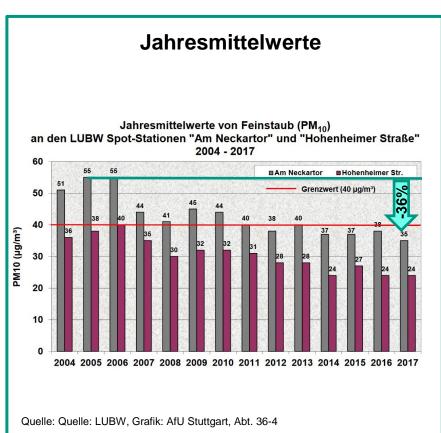


Quelle: "Vehicle Emissions Testing", Department for Transport GB, 2016

Quelle: Bericht der Untersuchungskommission "Volkswagen" Untersuchungen und verwaltungsrechtliche Maßnahmen zu Volkswagen, Ergebnisse der Felduntersuchung des Kraftfahrt-Bundesamtes zu unzulässigen Abschalteinrichtungen bei Dieselfahrzeugen und Schlussfolgerungen

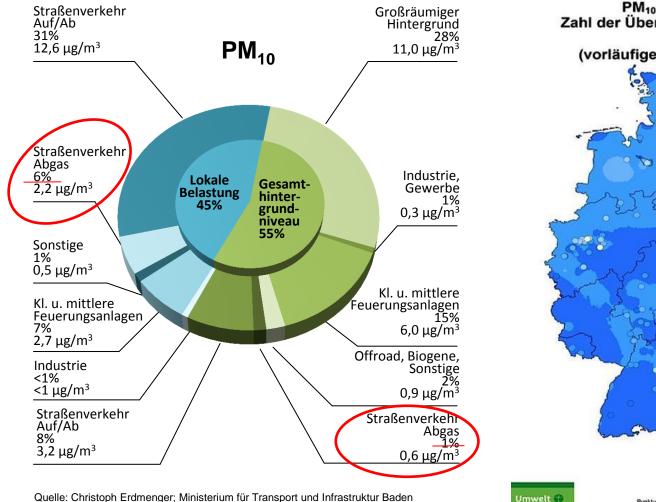
ADAC EcoTest: Stickoxide im WLTC 2.0 (warm) Euro 5 und Euro 6 Diesel Pkw - getestet ab 2014


Agenda

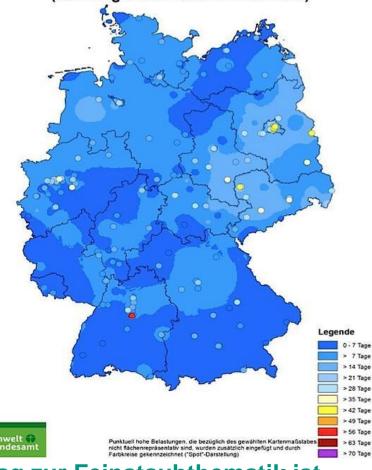


- 1 Einleitung
- 2 Feinstaub / Partikel
- $3 NO_{\rm X}/NO_{\rm 2}$
- 4 Exposition / Gesundheit / Statistik
- 5 Zusammenfassung

Zeitliche Entwicklung der Immissionssituation PM₁₀ am Beispiel "Stuttgart-Neckartor"

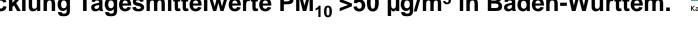


Der PM₁₀ Jahresmittelwert von S-Neckartor ist im Ziel! Die Überschreitungstage sind im "Zielanflug"!

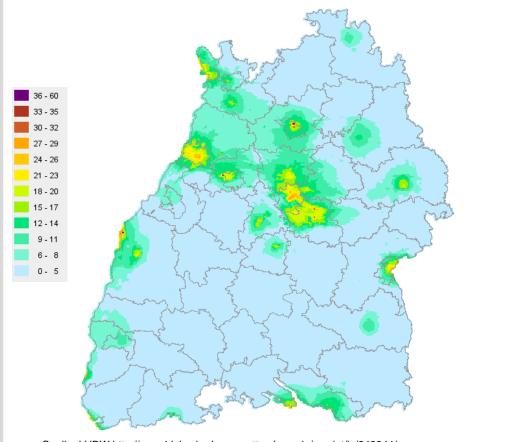


Gesamtsituation Feinstaub/PM₁₀ in Deutschland

PM₁₀ - Tagesmittelwerte Zahl der Überschreitungen von 50 μg/m³ Jahr 2014 (vorläufige Daten Stand 21.01.2015)


Württemberg; IFKM/KIT – NO_X Conference, Heidelberg, 01.2016

Der Verbrennungsmotoren / Dieselbeitrag zur Feinstaubthematik ist vernachlässigbar!



Entwicklung Tagesmittelwerte $PM_{10} > 50 \mu g/m^3$ in Baden-Württem.

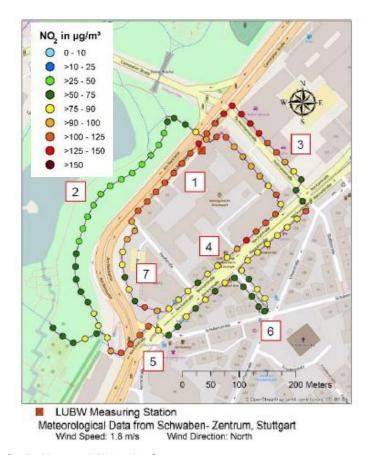
TMW>50μg/m³ 2020(Modelrechnung)

Quelle: LUBW http://www4.lubw.baden-wuerttemberg.de/servlet/is/242644/

Eine signifikante Verbesserung der Partikelimmissionssituation ist seit 30 Jahren zu beobachten und zeichnet sich auch in Zukunft ab.

Agenda

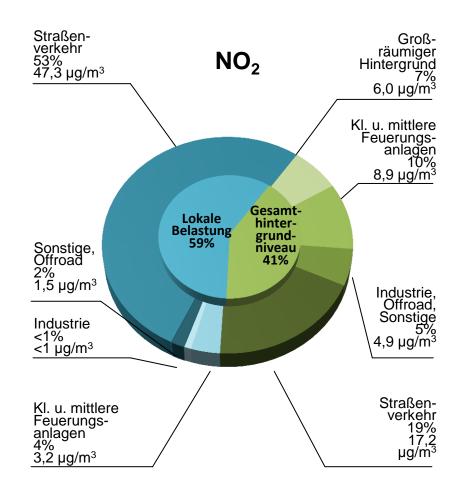
- 1 Einleitung
- 2 Feinstaub / Partikel
- $3 NO_x/NO_2$
- 4 Exposition / Gesundheit / Statistik
- 5 Zusammenfassung



Immissionssituation NO₂ am Beispiel "Stuttgart Neckartor"

Tägliches Verkehrsvolumen in Stuttgart am Neckartor in 2012

65.980 PKW 2.200 INfz 2.000 sNfz 70.300 gesamt (71.100 in 2013)

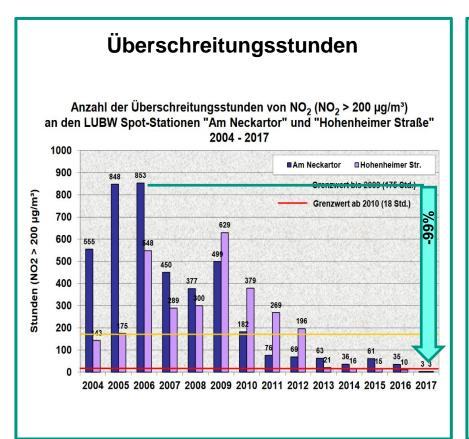

Quelle: Vogt et. al. Universität Stuttgart 25. ALS-Kolloquium "Stickstoffoxide und Feintsaub in Städten"

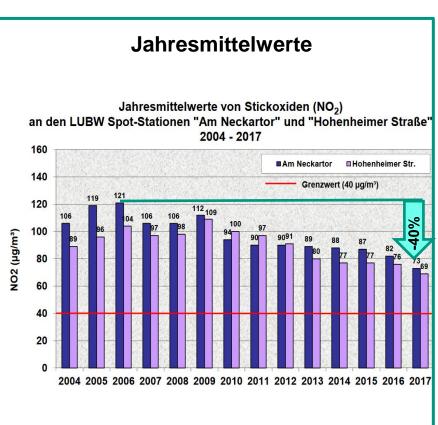
Das Neckartor steht für den Bereichs mit den höchsten NO₂-Werten, welche in Deutschland gefunden wurde. Es ist eine Hot-Spot Messung!

Ursachen für NO₂ Immission

Quelle: Christoph Erdmenger; Ministerium für Transport und Infrastruktur Baden Württemberg;, IFKM/KIT – NO_x Conference, Heidelberg, 01.2016

Noch ist der Dieselmotor wesentliche Ursache der NO₂-Situation.

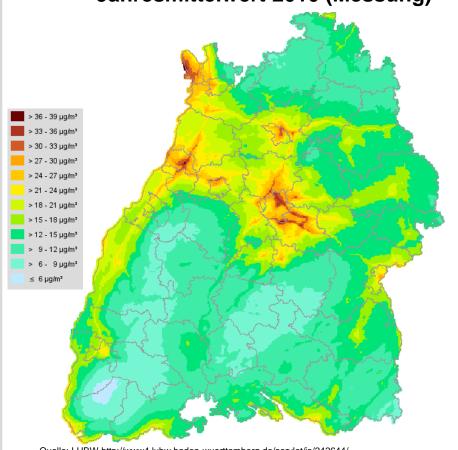


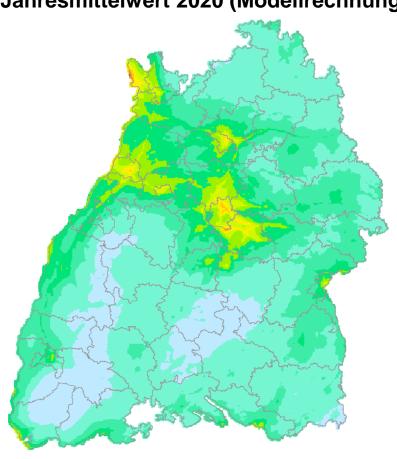


NO,

Zeitliche Entwicklung der Immissionssituation NO₂ am Beispiel "Stuttgart-Neckartor"

Die Immissionswerte werden kontinuierlich besser. Das Niveau am Hotspot ist noch zu hoch!





Entwicklung von NO₂ in Baden-Württemberg

Jahresmittelwert 2020 (Modellrechnung)

Quelle: LUBW http://www4.lubw.baden-wuerttemberg.de/servlet/is/242644/

Eine signifikante Verbesserung der NO₂-Immissionssituation ist seit 10 Jahren zu beobachten und zeichnet sich auch in der Zukunft ab.

Agenda

- 1 Einleitung
- 2 Feinstaub / Partikel
- $3 NO_{\rm X}/NO_{\rm 2}$
- Exposition / Gesundheit / Statistik
- 5 Zusammenfassung

Expositionen

Vorzeitige Todesfälle durch Luftverschmutzung

Sprache ändern

Seite - Zuletzt geändert 21.04.2016

Topics: Luftverschmutzung Umwelt und Gesundheit

Todesfälle, die 2012 in 40 europäischen Ländern und den EU-28 auf die Aussetzung gegenüber Feinstaub (PM2,5), Ozon (O3) und Stickstoffdioxid (NO2) zurückzuführen sind.

Land	PM _{2.5}	03	NO ₂
Österreich	6 100	320	660
Belgien	9 300	170	2 300
Bulgarien	14 100	500	700
Kroatien	4 500	270	50
Zypern	790	40	0
Tschechien	10 400	380	290
Dänemark	2 900	110	50
Estland	620	30	0
Finnland	1 900	60	0
Frankreich	43 400	1 500	7 700
Deutschland	59 500	2 100	10 400
Griechenland	11 100	780	1 300
Ungarn	12 800	610	720
Irland	1 200	30	0
Italien	59 500	3 300	21 600

EEA Air quality report: Todesafälle durch Luftverschmutzung

Air quality report 2015

bei einem Jahresmittelwert in Deutschland von 20,63 μg/m³ NO₂ ergeben sich für Deutschland 10.400 Todesfälle

Air quality report 2016

bei einem Jahresmittelwert in Deutschland von 20,4 μg/m³ NO₂ ergeben sich für Deutschland 10.610 Todesfälle

Air quality report 2017

bei einem Jahresmittelwert in Deutschland von 20,2 μg/m³ NO₂ ergeben sich für Deutschland 12.860 Todesfälle

Table 10.1	Premature deaths attributable to $PM_{2.5},NO_2$ and O_3 exposure in 41 European countries and the EU-28 in 2013										
Country	Population	PI	M _{2.5}	N	02	O ₃					
		Annual mean (°)	Premature deaths	Annual mean (°)	Premature deaths	SOMO35 (°)	Premature deaths				
Austria	8 451 860	15.7	6 960	19.3	910	5 389	330				
Belgium	11 161 642	16.6	10 050	23.6	2 320	2 520	210				
Bulgaria	7 284 552	24.1	13 700	16.5	570	4 082	330				
Croatia	4 262 140	16.8	4 820	15.8	160	5 989	240				
Cyprus	865 878	17.1	450	7.3	< 5	7 900	30				
Czech Republic	10 516 125	19.6	12 030	17.1	330	4 266	370				
Denmark	5 602 628	9.6	2 890	13.0	60	2 749	110				
Estonia	1 320 174	7.8	690	10.8	< 5	2 545	30				
Finland	5 426 674	5.9	1 730	9.4	< 5	2 011	80				
France	63 697 865	14.5	45 120	18.7	8 230	4 098	1 780				
Germany	80 523 746	14.2	73 400	20.4	10 610	3 506	2 500				

EEA - Air quality report 2016 [2]

Country	tries and the		0,			NO ₂			Table 9.2	Premature deaths attributable to PM ₂₅ , O ₃ and NO ₂ exposure in 2012 in 40 European countries and the EU-28			
	Annual mean	YLL	YLL/10 ⁵ inhabi- tants	SOMO35	YLL	YLL/10 ⁵ inhabi- tants	Annual mean	YLL	YLL/10 ⁵ inhabi- tants	Country	PM _{2.5}	O _s	NO ₂
Austria	14.8	65 400	776	5 419	3 800	46	18.81	7 000	83	Austria	6 100	320	660
Belgium	15.8	99 500	894	2 050	2 100	19	23.41	24 200	218	Belgium	9 300	170	2 300
Bulgaria	24.9	141 500	1 937	5 960	5 900	81	16.38	7 100	97	Bulgaria	14 100	500	700
Croatia	16.8	46 900	1 099	7 143	3 200	74	14.89	500	12	Croatia	4 500	270	50
Cyprus	25.0	8 000	729	8 369	500	47	9.42	0	0	Cyprus	790	40	0
Czech Republic	18.8	116 300	1 106	4 805	4 700	44	17.14	3 200	31	Czech Republic	10 400	380	290
Denmark	10.0	31 400	562	2 662	1 300	24	12.90	500	10	Denmark	2 900	110	50
Estonia	7.9	7 000	532	2 310	300	24	10.30	0	0	Estonia	620	30	0
Finland	7.1	20 800	385	1 650	700	14	10.12	0	0	Finland	1 900	60	0
France	14.7	508 900	778	3 635	21 100	32	18.71	89 900	137	France	43 400	1.500	7 700
Germany	13.3	645 200	802	3 357	25 100	31	20.63	112 400	140	Germany	59 500	2 100	10 400

Table 10.1	Premature deaths attributable to PM $_{25}$ (°), NO $_{2}$ (°) and O $_{3}$ exposure in 41 European countries and the EU-28, 2014										
Country	Population (1 000)		PM _{2.5}			NO ₂	O ₃				
		Annual mean (°)	Premature deaths (*)		Annual mean (*)	Premature deaths (*)		SOMO35 (*)	Premature deaths		
					C ₀ = 0	C ₀ = 2.5		C ₀ = 20	C ₀ = 10		
Austria	8 507	12.9	5 570	4 520	19.2	1 140	3 630	4 423	260		
Belgium	11 181	13.7	8 340	6 860	21.9	1 870	6 470	2 297	190		
Bulgaria	7 246	24	13 620	12 280	16.5	740	3 570	2 519	200		
Croatia	4 247	15.6	4 430	3 750	15.7	300	1 650	4 503	180		
Cyprus	1 172 (°)	17	600	518	12.8	20	130	5 426	30		
Czech Republic	10 512	18.6	10 810	9 430	16.8	550	3 640	3 822	310		
Denmark	5 627	11.6	3 470	2 740	11	130	790	2 611	110		
Estonia	1 316	8.7	750	540	9	10	130	1 991	20		
Finland	5 451	7.4	2 150	1 440	8.3	40	450	1 615	60		
France	63 798	11	34 880	27 170	17.7	9 330	23 420	3 786	1 630		
Germany	80 767	13.4	66 080	54 180	20.2	12 860	44 960	3 287	2 220		

EEA - Air quality report 2017 [3]

EIA EEA-Air quality in Europe 2015 (http://www.eea.europa.eu/publications/air-quality-in-europe-2015) accessed 06 März 2017. 15 [2] EEA-Air quality in Europe 2016 (http://www.eea.europa.eu/publications/air-quality-in-europe-2016) accessed 06 März 2017.

Agenda

- 1 Einleitung
- 2 Feinstaub / Partikel
- $3 NO_{\rm X}/NO_{\rm 2}$
- 4 Exposition / Gesundheit / Statistik
- Zusammenfassung

Zusammenfassung

Schlussfolgerung und Zusammenfassung

- Der Einsatz einer Zykluserkennung ist inakzeptabel!
- NO_x-seitig war bei EURO5 (2009-2015) im Wesentlichen ohne NOx-Abgasnachbehandlung "kaum mehr drin"! Trotzdem erfolgt aktuell eine sinnvolle Nachbesserung im Rahmen des Möglichen (- 25-30% NO_x).
- Die Automobilindustrie hat bei der Auslegung der ersten EURO6 Generation (ab 2014) die kritikwürdige Einschätzung verfolgt, vor allem alles auf die CO₂ Reduzierung zu setzen! Dieser Fehler wird aktuell im Rahmen des Sinnvollen korrigiert! (- 40-85% NO_x).
- Jedoch werden bereits seit Jahrzehnten PM und NO_x kontinuierlich verbessert. Mittlerweile sind beide Herausforderungen "quasi wirkungsneutral" gelöst! Mit den RDE-Fahrzeugen (EURO6_{d,temp}) wird die letzte Flanke geschlossen!
- Bei berechtigter Kritik in Teilen hat keine andere Aktivität derart zur Luftverbesserung beigetragen wie die fortwährende Forschung und Entwicklung am Verbrennungsmotor.!

Zusammenfassung

Schlussfolgerung und Zusammenfassung

- Der NO₂-Beitrag ist an den Hot-Spots noch erhöht durch Alttechnologien, jedoch deutlich fallend!
- Die aktuelle Situation wird langfristig wertvoll für den Diesel durch die schnellere Eliminierung der NO_x-Diskussion!
- Weitere Optimierungen auf zusehends homöopathischem Niveau werden folgen!
- Der Dieselmotor ist viel besser als sein Ruf; die NO_x-Reduzierung hat schlicht sehr lange benötigt.

