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Abstract
In this work, the reconstruction quality of an approach for neutrospheric water vapor tomography based on Slant Wet Delays
(SWDs) obtained fromGlobal Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) is
investigated. The novelties of this approach are (1) the use of both absolute GNSS and absolute InSAR SWDs for tomography
and (2) the solution of the tomographic system by means of compressive sensing (CS). The tomographic reconstruction is
performed based on (i) a synthetic SWD dataset generated using wet refractivity information from the Weather Research and
Forecasting (WRF) model and (ii) a real dataset using GNSS and InSAR SWDs. Thus, the validation of the achieved results
focuses (i) on a comparison of the refractivity estimates with the input WRF refractivities and (ii) on radiosonde profiles. In
case of the synthetic dataset, the results show that the CS approach yields a more accurate and more precise solution than least
squares (LSQ). In addition, the benefit of adding synthetic InSAR SWDs into the tomographic system is analyzed. When
applying CS, adding synthetic InSAR SWDs into the tomographic system improves the solution both in magnitude and in
scattering. When solving the tomographic system by means of LSQ, no clear behavior is observed. In case of the real dataset,
the estimated refractivities of both methodologies show a consistent behavior although the LSQ and CS solution strategies
differ.

Keywords Global navigation satellite system (GNSS) · GNSS tomography · SAR interferometry (InSAR) · Water vapor
tomography · Compressive sensing · Least squares

1 Introduction

An accurate knowledge of the three-dimensional (3D) dis-
tribution of water vapor in the atmosphere is a key element
for weather forecasting and atmospheric modeling. Also, a
precise determination of water vapor is required for accu-
rate positioning and deformation monitoring using Global
Navigation Satellite Systems (GNSS) and Interferometric
Synthetic Aperture Radar (InSAR). The water vapor content
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is highly variable both in horizontal and vertical direc-
tions, particularly in the lowest atmospheric layers. Several
approaches for 3D tomographic water vapor reconstruction
from GNSS-based slant wet delay (SWD) estimates using
the least squares (LSQ) adjustment were presented in the
previous years, e.g., in Benevides et al. (2016), Champol-
lion et al. (2004), Chen and Liu (2016), Flores et al. (2000),
Hirahara (2000), Notarpietro et al. (2008), Song et al. (2006),
Troller et al. (2006), Xia et al. (2013), Yao and Zhao (2016),
and Yao and Zhao (2017).

Thanks to the launch of modern SAR missions such as
Envisat, TerraSAR, CosmoSkymed, or Sentinel-1, activi-
ties of Persistent Scatterer Interferometry (PSI) processing
increased a lot. During PSI processing, atmospheric phase
screen (APS) can be estimated over wide areas (Hanssen
2001; Parker 2017; Tang et al. 2016) at a relatively high
temporal sampling of six days. Therefore, InSAR became a
valuable resource for water vapor research.

The main challenges for tomographic approaches consist
in the limited number of rays in different ray directions and
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in the ill-posed nature of the inverse problem. Yet, the ray
geometry is fix. Even when using observations from differ-
ent GNSS and from several consecutive epochs, some parts
of the atmosphere will not be crossed by any rays. The ill-
conditioning is commonly overcome by adding constraints
and prior information. However, the constraints often impose
an unnatural behavior to the refractivity estimate, and the
solution is not adaptive to the real water vapor distribution
anymore.

In this work, absolute InSAR SWDs are introduced as
additional observations and a new constraint for the stabiliza-
tion of the tomographic system is proposed. The presented
compressing sensing (CS) approach benefits of the spar-
sity of the solution as prior for regularization. A signal
is called sparse, if it contains only a few nonzero coeffi-
cients and many coefficients equal or very close to zero. Yet,
in water vapor tomography approaches, the 3D refractivity
signal is not sparse at all. Therefore, the CS estimation is
performed in a transform domain, in which the refractiv-
ity signal can be sparsely represented. The main motivation
for using CS instead of a classical least squares approach
lies in the capacity of CS to recover sparse signals using
only a small number of measurements. In addition, when
using CS, there is no need anymore for the explicitly defined
geometric constraints applied in many previous tomography
studies.

The main contributions of this paper are

– the use of absolute GNSS and InSAR SWDs for water
vapor tomography and

– the introduction of a compressive sensing solution for the
tomographic equation.

2 Related work

The current methodologies for tomographic water vapor
reconstruction based on GNSS SWD estimates can be dis-
tinguished into iterative and non-iterative techniques. The
work in Bender et al. (2011) analyzes different algebraic
reconstruction techniques (ART) that iteratively process
observation by observation without performing any matrix
inversion. In contrast, Champollion et al. (2004), Flores
et al. (2000), Hirahara (2000), Notarpietro et al. (2008),
Rohm (2013), Song et al. (2006), and Troller et al. (2006)
apply non-iterative approaches solving the inverse system
by means of singular value decomposition (SVD). Alterna-
tively, Gradinarsky and Jarlemark (2004) propose a Kalman
filter approach. A combination of iterative and non-iterative
techniques is presented by Xia et al. (2013). They firstly use
iterative reconstruction algorithms in order to determine a
refractivity field that they then use as initial values for a non-
iterative tomography approach.

For both iterative andnon-iterative reconstructionmethod-
ologies, the regularization of the ill-conditioned tomographic
systems for neutrospheric water vapor reconstruction can be
achieved i) by adding constraint equations, which can be con-
sidered as pseudo-observations, ii) by adding additional data
from other sensors, models, or simulations, or iii) by increas-
ing the number of voxels crossed by rays. The number of
voxels crossed by rays can be increased, e.g., by adapting
the voxel sizes to the ray density, or by including rays enter-
ing the study area both on its top and on its side, instead of
only using rays entering the volume on its top. In addition,
when considering a general inverse approach based on singu-
lar value decomposition, the inverse system can be stabilized
by carefully selecting the meaningful singular values.

Both Flores et al. (2000) and Gradinarsky and Jarlemark
(2004) apply horizontal and vertical smoothing constraints
as well as a boundary constraint assuming zero refractivity
above a certain height. In Song et al. (2006), the hori-
zontal smoothing constraints are implemented by assuming
a certain degree of correlation between neighboring vox-
els using Gaussian weighted mean with controllable width.
The authors of Gradinarsky and Jarlemark (2004) state that
this Gaussian weighted mean can also be applied to the
vertical direction. Alternatively, an exponential refractivity
decay with increasing height can be assumed, as proposed in
Elosegui et al. (1998). Thework inHeublein et al. (2015) uses
the sparsity of the signal in a specific, predefined transform
domain as a prior for regularization and then reconstructs the
signal by means of L1 norm minimization. While helping a
lot in regularizing the solution, both geometric constraints
and exponential decay in most cases do not reflect the real
atmospheric state.

In addition to the constraints, prior knowledge can be
added as pseudo-observations to the ill-posed systemof equa-
tions. The authors of Flores et al. (2000) add radiosonde
profiles, and Champollion et al. (2005) state that instead of
radiosonde profiles, a standard atmosphere could be used as
a priori field. Moreover, Champollion et al. (2005) and Xia
et al. (2013) propose the use of water vapor profiles above
2 km from radio occultation, e.g., from the Constellation
Observing System for Meteorology, Ionosphere and Climate
(COSMIC). In addition, Champollion et al. (2005) propose
the use of surface meteorological observations in order to
gain stability in the lowest layer. Besides, Song et al. (2006)
use a priori knowledge from numerical weather prediction.
According to Chen and Liu (2016), data from water vapor
radiometers and sun photometers can also be introduced into
the tomographic system. In order to minimize smoothing
effects of geometrical constraints, Benevides et al. (2016)
introduce maps of temporal changes of precipitable water
vapor provided by InSAR as a constraint to GNSS tomogra-
phy.
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The studies in Yao and Zhao (2016) and Yao and Zhao
(2017) suggest a tomography approach which helps to fur-
ther reduce the number of voxels without crossing signals. In
Yao and Zhao (2016), first of all, they increase the utilization
rate of SWD observations by selecting a reasonable vertical
tomography boundary based on several years of radiosonde
observations. Then, they propose a two-step refractivity esti-
mation in order to optimally use GNSS rays entering the
study area both on its top and on its side. They first define
a study area larger than the tomographic grid of interest and
estimate the refractivities of this study area by only using the
rays entering the area on its top. Thereafter, they reduce the
study area to the final tomographic grid. Based on the refrac-
tivities determined within the larger study area, they are able
to introduce a scale factor describing, for each ray, the ratio
of SWD within or outside of the study area. By means of
this scale factor, the total SWDs of side rays can be reduced
to the portion of SWDs corresponding to the tomographic
grid, and the reduced side ray SWDs can be appended to the
observation equation. Although the number of voxels passed
by rays of the Global Positioning System (GPS) is increased
by the work of Yao and Zhao (2016), horizontal smoothing
constraints and vertical a priori conditions are still neces-
sary for the solution of the tomographic system. The work
in Yao and Zhao (2017) is based on a non-uniform symmet-
rical division of horizontal voxels distributing the available
information more evenly among all voxels than in the case
of regular voxel divisions.

A similar idea of decreasing the number of voxels with-
out crossing rays is pursued by Rohm (2013), introducing
a combination of consecutive epochs of data and assuming
the availability of at least three interoperable GNSS. Based
on the combination of many epochs of observations linked
with one state of the atmosphere, Rohm (2013) presents an
unconstrained approach for water vapor tomography. The
approach relies on a careful selection of meaningful singular
values in the process of pseudo-inverse and is applied to a
synthetic dataset. Adding SWD estimates from other GNSS
than GPS to the tomographic system increases the number
of crossed voxels. However, as there are only rays travel-
ing from satellites in space to receivers on ground, the ray
geometry remains limited and there still remain voxels that
are not crossed by any rays at all. That is, the tomographic
system is still under-determined and needs to be regularized
by constraints, or, as proposed by Rohm (2013), by care-
fully selecting the singular values used for the solution of the
inverse system.

Introducing InSAR SWD differences into the tomo-
graphic system as proposed by Benevides et al. (2016)
reduces the smoothing effects observed when using hori-
zontal constraints for the regularization of the tomographic
system. However, Benevides et al. (2016) consider tempo-
ral changes of precipitable water (PW ) only. Moreover, they

do not carefully distinguish the different components com-
posing the precipitable water. As shown in Alshawaf et al.
(2015b), the PW is composed of a stratified (elevation-
dependent) component, a turbulently mixed short-scale com-
ponent, as well as a long-wavelength component. If InSAR
atmospheric phases are transformed into PW maps as shown
in Benevides et al. (2016), due to InSAR processing, parts
of the elevation-dependent component as well as the long-
wavelength PW may bemissing. These drawbacks of InSAR
processing for water vapor analyses are overcome in the
work of Alshawaf et al. (2015b), presenting a method to
combine PW estimated at GNSS sites and PW -difference
maps extracted from InSAR interferograms to produce maps
of absolute PW at high spatial resolution. In addition, in
Alshawaf et al. (2015a), a data fusion of InSAR, GNSS, and
simulations of theWeather Research and Forecasting (WRF)
model is applied to produce PW maps.

In this work, we will explore compressive sensing and
sparse reconstruction for 3D tomographic water vapor recon-
struction. As sparse signals are commonly expected, pioneer
research has been carried out to apply CS for solving various
remote sensing problems (Zhu and Bamler 2015). Examples
include SAR imaging (Potter et al. 2010; Alonso et al. 2010),
optimizing remote sensing systems (Zhang et al. 2012), SAR
tomography (Aguilera et al. 2013; Budillon et al. 2011; Zhu
andBamler 2010, 2014), groundmoving target identification
(GMTI) (Pruente 2010), inverse SAR (ISAR) (Zhang et al.
2010), pan-sharpening and hyperspectral image enhance-
ment (Grohnfeldt et al. 2013; Jiang et al. 2014; Li and Yang
2011; Zhu et al. 2016; Zhu and Bamler 2013), and spec-
tral unmixing for hyperspectral data (Bieniarz et al. 2015;
Iordache et al. 2011). For all above-mentioned applications,
compared to the classic LSQ (possibly along with L2 norm
regularization), compressive sensing and sparse reconstruc-
tion led to exciting results.

3 Characteristics of GNSS and InSAR

Both GNSS and InSAR have an all-weather observing capa-
bility. Using the method of Precise Point Positioning (PPP)
described in Kouba and Héroux (2001), GNSS yield point-
wise estimates of integrated slant wet delays caused by
neutrospheric water vapor. Their spatial resolution depends
on the density of the observing sites, and each estimated value
represents the neutrospheric effect within a cone with vertex
at the GNSS site. In contrast to the GNSS horizontal resolu-
tion depending on the GNSS inter-site distances, the spatial
resolution of InSAR is significantly high, e.g., 5 m×20 m in
C-band interferometric wide-swath mode (Envisat, Sentinel-
1), as indicated in Berger et al. (2012). In PSI, depending on
the local PSdistribution, even better spatial resolutions can be
obtained. The InSAR data processing for this study is based
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Fig. 1 Observing geometry of GNSS and InSAR. The Envisat satellite
following a sun-synchronous orbit observed the Upper Rhine Graben
study area 2 (real dataset) at 9h48UTCunder a slightly variable viewing
angle. In contrast, both the elevation and azimuth angles of the GNSS
satellites observed from study area 2 are not constant over time

on Envisat ASAR observations and is done using the Per-
sistent Scatterer Interferometry introduced by Hooper et al.
(2007).

The observing geometry of GNSS and InSAR is illus-
trated in Fig. 1. In the case of SAR satellites traveling in
a near-circular sun-synchronous orbit, the study region is
observed from a geometry varying only slightly from acqui-
sition time to acquisition time. The traversed atmospheric
section remains almost the same. This is different for GNSS,
where the visibility of the satellites at a constant acquisition
time varies from day to day. Hence, the GNSS azimuth and
elevation angles vary at the different acquisition dates, and
theGNSS signal does not travel the same atmospheric section
as the InSAR signal.

4 Physical foundations

The total refractivity and the total delay on radio wave sig-
nals caused by refractivity are commonly subdivided into
two parts, e.g., into a dry and a wet component or into a
hydrostatic and a non-hydrostatic part. The dry component
only contains the delay caused by the dry gases. In contrast,
the hydrostatic component also contains contributions of
water vapor. If a hydrostatic equilibrium can be assumed, the
hydrostatic component can be accurately computed based on
surface pressure. Therefore, in this work, the total refractivity
or delay is subdivided into a hydrostatic and anon-hydrostatic
part. However, for reasons of readability, and consistently
with the IERS conventions of Petit and Luzum (2010), the
terms wet refractivity resp. wet delay are used in the fol-

lowing for the non-hydrostatic component of the refractivity
resp. of the delay.
Then, according to Bevis et al. (1992), the 3D wet refractiv-
ity field Nwet (ppm) with (ppm) standing for (mm/km) is
related to the partial pressure of water vapor e (hPa) and to
the temperature T (K) as follows:

Nwet (ppm) = k′
2 · e

T
+ k3 · e

T 2 (1)

with

k′
2 = k2 − k1 · Mwater vapor

Mdry air
(2)

from Davis et al. (1985) and constant factors k1, k2, and k3,
e.g., from Smith and Weintraub (1953):

k1 = 77.6 K/hPa
k2 = 72 K/hPa
k3 = 3.75 × 105 K2/hPa

(3)

The variables Mwater vapor and Mdry air in Eq. 2 stand for the
molar masses of water vapor and dry air.

Alternatively, the 3D water vapor distribution can be
expressed by the water vapor mixing ratio

wv (g/kg) = mwater vapor

mdry air
(4)

or the specific humidity

qv (g/kg) = wv

1 + wv

= mwater vapor

mtotal air
, (5)

which canbe related to the 3Dwet refractivity field by solving

qv (g/kg) = ε′ · e
p − e (1 − ε′)

(6)

from Stull (2016) for the partial pressure of water vapor:

e (hPa) = qv · p
ε′ + qv · (1 − ε′)

(7)

In Eq. 7, p (hPa) is the atmospheric pressure andmwater vapor

(g) and mtotal air (kg) are the mass of water vapor within
the air and the mass of the total air, respectively. The ratio
between the gas constant of dry air and the gas constant of
pure water vapor ε′ = 0.622 is used.

Integrating Nwet along the i th slant ray path spi with dif-
ferentials dl yields the observation equation for SWDs

SWDi (m) = 10−6 ·
∫

spi

Nwet (ppm) dl (m), (8)
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or, along discretized segments di j of the slant ray path,

SWDi (mm) =
L∑
j=1

Nwet, j (ppm) · di j (km), (9)

where di j is the distance passed by the slant ray path i within
voxel j , and L is the total number of voxels within some
tomographic grid. In addition, the 3D wet refractivity field
can be related to further integrated quantities like the Pre-
cipitable Water, the Integrated Water Vapor (IWV ), or the
Zenith Wet Delay (ZWD) as indicated in Fig. 2. The dis-
cretized formula for obtaining PW is given in the following
equation:

PW (mm) =
L∑
j=1

qv j (g/kg) · ρ · dzenith, j (km) (10)

where dzenith, j represents the distance passed by the zenith
ray path crossing the voxel j , and ρ = 1 g/cm3 is the density
of water.

The precipitable water is related to the integrated water
vapor (IWV zenith) and to the ZWD as follows:

PW = IWV zenith

ρ
= Π · ZWD (11)

According to Schüler (2001), the conversion factor

Q = 0.1022 + 1708.08 (K)

Tm
= 1

Π
(12)

can be approximated using

Tm ≈ 70.2 + 0.72 · T0 (13)

for the computation of the neutrospheric mean temperature
Tm based on the surface temperature T0.

Figure 2 summarizes the relation between GNSS or
InSAR integrated wet delays or Precipitable Water and the
3D water vapor mixing ratios simulated by the WRF model.

5 Methodology

The least squares and compressive sensingmethodologies are
applied to both a synthetic SWD dataset deduced fromWRF
and a real SWD dataset originating from GNSS and InSAR
observations. In Sect. 5.1, the tomographic model is intro-
duced. In the following two subsections, the least squares and
the compressive sensing solution strategies are described.

Fig. 2 Meteorological quantities describing the 2D and 3Dwater vapor
distribution in the neutrosphere. The SWD input data for tomography
are highlighted in dark green. In case of the synthetic dataset, they are
deduced from the WRF water vapor mixing ratios wv highlighted in
dark red. The numbers in the diagram indicate the formula used for the
respective steps

5.1 Tomograhic model

The work in Flores et al. (2000) introduces the functional
model for neutrospheric tomography using GNSS slant wet
delays as given in Eq. 8. When aiming at a tomographic
reconstruction of the wet refractivity, however, the problem
from Eq. 8 is discretized into L volume pixels (voxels) in
which the refractivity values, estimated at the voxel centers,
are assumed to be constant for this study. These voxels are
defined by horizontal and vertical layers of constant geodetic
longitude, latitude, and height. The total number of unknown
parameters L is defined by the numbers of voxels in longitude
P , in latitude Q, and in height K :

L = P · Q · K (14)

This discretization of the study area into a tomographic grid
composed of L voxels is illustrated in Fig. 3.

The raytracing in ellipsoidal coordinate systems is done
according to Perler (2011) and the slant wet delay is calcu-
lated as in Eq. 9. The raytracing of Perler (2011) allows for
three different kinds of intersections between the voxel bor-
ders and the ray path. The intersections of a straight ray path
with the voxels must be situated (i) at the intersection of the
ray path with an unbent plane of constant longitude corre-
sponding to a voxel border in longitude, or (ii) on a cone of
constant latitude corresponding to a voxel border in latitude,
or (iii) on one of the layers of constant height representing the
vertical voxel borders. The intersection points of the first two
intersection types are obtained by parameterizing the straight
ray, the unbent plane, and the cone mathematically, and by
setting equal the expressions (i) for the ray and for the plane
resp. (ii) for the ray and for the cone. In case of the third
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Fig. 3 Schematic illustration of a ray crossing the tomographic voxel
grid. Only a vertical 2D slice of the 3D tomographic grid is represented
and, schematically, a ray crossing only this 2D slice is shown. The 3D
voxel grid would be composed of P voxels in longitude, Q voxels in
latitude, and K voxels in height. The black numbers and the variables
in the voxel centers represent the voxel numbers. All those voxels that
are crossed by ray i are highlighted in light gray. The distance di j cor-
responds to the distance that ray i passes within the voxel j highlighted
in dark gray

intersection type, a nonlinear system of equations is solved
in order to deduce the intersections. This system of equations
is obtained by parameterizing constant height layers in ellip-
soidal coordinates and by setting these coordinates equal to
the parameterization of the straight ray path. For each ray i ,
di j corresponds to the distance that the ray passes within a
voxel j .

Summarizing all observations SWDi in an observation
vector y ∈ R

N×1 with N being the number of observations,
all unknowns Nwet, j in a parameter vector x ∈ R

L×1, and
all distances di j in a design matrix Φ ∈ R

N×L , the linear
system of equations from Eq. 9 can be reformulated in the
form

y = Φ · x, (15)

or, including a weighting matrix P ∈ R
N×N for the obser-

vations,

P · y = P · Φ · x, (16)

where

Φi, j =
{
di j if ray i crosses voxel j

0 elsewhere.
(17)

As each ray only crosses a small subsection of the voxel
grid, the matrix Φ contains many zero elements and just a

few nonzero elements. For each row i of the design matrix
Φ, the entries Φi j correspond to the distances di j that ray
i passes within the voxels, as illustrated in Fig. 3. Voxels
that are not crossed by any rays yield a zero column in Φ.
Only rays entering the study area on its top at 10 km are
considered. According to radiosonde measurements, nearly
all atmospheric water vapor should reside below this height.
Only for the rays entering the study area on its top, the
observed SWD can be totally assigned to the voxels within
the tomographic grid. If rays entering the study area below
its top were considered, the portion of SWD belonging to
the study area would have to be estimated, e.g., based on
weather models, assuming an exponential humidity decay,
or applying a two-step refractivity estimation introducing a
scale factor for the water vapor portions within the study area
as proposed in Yao and Zhao (2016).

5.2 Classical least squares solution

The term least squares solution already indicates how such
a solution is obtained based on a linear functional model as
given in Eq. 16. The squares of the observation residuals are
minimized:

x̂ = argmin
x

‖P · y − P · Φ · x‖22 (18)

In the unconstrained Gauß-Markov solution, this is done by
means of

x̂ = (ΦT · P · Φ)−1 · ΦT · P · y. (19)

Assuming a voxel’s refractivity to equal the mean refrac-
tivity of the surrounding voxels within the same height layer,
horizontal smoothing constraints can be applied for regular-
ization:

Nweta,b,k =
∑
p,q

wp−a,q−b · Nwet p,q,k (20)

Here, the voxel indices p �= a and q �= b correspond to the
remaining voxels in the kth height layer. The refractivity of
voxel (a, b) is set to the weighted mean of all but the (a, b)
refractivity on the kth height layer. The weights can be, e.g.,
computed according to inverse distance weighting

wp−a,q−b =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

dp−a,qb∑
p,q

1

dp−a,q−b

if (a, b) �= (p, q)

−1 if (a, b) = (p, q).

(21)
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The distances dp−a,q−b are the distances between the center
of voxel (p, q) and the center of voxel (a, b)of the considered
height layer.

In addition, according to Davis et al. (1993), an average
refractivity profile can be approximated by an exponential
decay with height:

Nwet(hk) = Nwet(h0) · exp
(

−hk − h0
Hscale

)
(22)

The height of the kth layer is represented by hk , h0 cor-
responds to some reference height at which the refractivity
equals Nwet(h0), and Hscale is the scale height of the local
troposphere.

As Hscale is a crucial parameter for the definition of an
exponential decay with height, its value has been selected
during the solution of the tomographic system from a set
of realistic values for Hscale between 1000 and 2000 m. As
detailed below, the selection of Hscale is performed in com-
bination with the selection of trade-off parameters weighting
the constraints and potential prior knowledge with respect to
the SWD estimates.

The value of Nwet(h0) could, e.g., be set to surface refrac-
tivities deduced from surfacemeteorology, or is, in this study,
estimatedwithin the adjustment. In order to include Nwet(h0)
into the parameters x , the representation of Eq. 22 is slightly
modified. For each Nwet(hl), l = 1 . . . L , Eq. 22 yields one
line of a system of equations for the vertical constraint. In
matrix notation, with a matrix

Φ̃vert =

⎛
⎜⎜⎜⎝

exp
(
− h0−h0

Hscale

)
0 · · · 0

...
...

...
...

exp
(
− h0−hL

Hscale

)
0 · · · 0

⎞
⎟⎟⎟⎠ (23)

and a parameter vector

x =
⎛
⎜⎝

Nwet(h0)
...

Nwet(hL)

⎞
⎟⎠ , (24)

these lines can be summarized to

x = Φ̃vert · x. (25)

Consequently, if x is factored out,

(Φ̃vert − I) · x = 0 (26)

holds, and with

Φvert = (Φ̃vert − I), (27)

this can be written as

Φvert · x = 0. (28)

Applying the horizontal and the vertical constraints and
introducing prior knowledge from surface meteorology, the
observation equation in Eq. 16 can be extended to

⎛
⎜⎜⎝

Pdata · ydata
Phz · yhz
Pvert · yvert
Pmeteo · ymeteo

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Pdata · Φdata

Phz · Φhz

Pvert · Φvert

Pmeteo · Φmeteo

⎞
⎟⎟⎠ · x. (29)

The matrix Φdata ∈ R
N×(L+1) is composed of

Φdata = (0 Φ) (30)

and the constraint matrices Φhz ∈ R
L×(L+1)

Φhz =

⎛
⎜⎜⎜⎜⎝

0 −1 w1,2,1 . . . wP,Q,1

0 w2,1,1 −1 . . .
...

0
...

...
. . . wP,Q,K−1

0 w1,1,K . . . wP,Q,K −1

⎞
⎟⎟⎟⎟⎠ (31)

using wa,b,k from Eq. 21 and Φvert ∈ R
(L+1)×(L+1) from

Eq. 28 are used.
Moreover, additional observations yhz ∈ R

L×1

yhz = 0 (32)

and yvert ∈ R
(L+1)×1

yvert = 0 (33)

as well as prior knowledge from surface meteorology

ymeteo = Φmeteo · x (34)

are introduced, with ymeteo ∈ R
(L+1)×1 and entries of

Φmeteo ∈ R
(L+1)×(L+1)

Φmeteo a,b,k =
{
1 if synoptic site in voxel (a, b, k)

0 elsewhere.
(35)

No prior knowledge of the surface meteorological site
Stuttgart is included.

For equally precise observations, the weighting matrix
Pdata ∈ R

N×N can be set to the identity matrix. Alter-
natively, Pdata can, e.g., express a proportionality to the
elevation angle of the considered ray path. High elevation
observations could be considered to be more precise than
observations at low elevation angles. In this study, Pdata is
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set to the identity matrix. Since each constraint shall have
a similar impact on all voxels, and since the a priori infor-
mation from surface meteorology is equally weighted for
all voxels in which prior knowledge is available, the entries
of Phz ∈ R

N×N , Pvert ∈ R
(L+1)×(L+1), and Pmeteo ∈

R
(L+1)×(L+1) only contain the impact of the horizontal and

vertical constraints as well as of the prior knowledge from
surface meteorology on the data fidelity term. Consequently,
Eq. 29 can be reformulated as

⎛
⎜⎜⎝

I · ydata
I · λhz · yhz
I · λvert · yvert
I · λmeteo · ymeteo

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

I · Φdata

I · λhz · Φhz

I · λvert · Φvert

I · λmeteo · Φmeteo

⎞
⎟⎟⎠ · x (36)

with identity matrices I of appropriate sizes.
Omitting the identity matrices, the LSQ solution to Eq. 29

is then obtained by solving the following minimization prob-
lem with the trade-off parameters λhz, λvert, and λmeteo for
the constraints as well as for the prior knowledge:

x̂ = argmin
x

{
‖ ydata − Φdata · x‖22

+ λhz · ‖ yhz − Φhz · x‖22
+ λvert · ‖ yvert − Φvert · x‖22
+ λmeteo · ‖ ymeteo − Φmeteo · x‖22

}
.

(37)

At the same time as the value of Hscale is chosen, the
trade-off parameters λvert, λhz, and λmeteo are selected from
a certain number of logarithmically scaled possible trade-off
parameters. This is done in two steps. First, all those combi-
nations of trade-off parameters are preselected that satisfy the
eigenvalue cutoff criterion defined in Flores et al. (2000). The
work in Hajj et al. (1994) and Wiggins (1972) indicate that
the input noise is amplified into the solution by a factor given
by the smallest nonzero eigenvalue. Based on σy = 5 mm,
and using σx = 3.5 mm/km from Flores et al. (2000), the
cutoff value w for the eigenvalues is

w =
(

σy

σx

)2

= 2 km2. (38)

This preselection guarantees a large set of stable solu-
tions, which do not necessarily match equally well with the
observations. Therefore, in a second step, the combination
of trade-off parameters yielding the minimum observation
residuals is chosen as final trade-off parameters.

5.3 Proposed compressive sensing solution

If the signal to be reconstructed is sparse, its coefficients
only have a small number of nonzeros. In this study, the wet

refractivity signal x itself is not sparse, but the assumption
is that a sparse representation s of it can be obtained after
an appropriate transform x = Ψ · s. Then, a compressive
sensing solution as introduced, e.g., by Baraniuk et al. (2011)
and Candès and Wakin (2008), can be applied in order to
reconstruct the sparse signal s in the transform domain.
Instead of estimating the parameters x in the original domain,
the sparse parameters s are estimated by

ŝ = argmin
s

{
‖ y − Φ · Ψ · s‖22 + λCS · ‖s‖1

+ λmeteo · ‖ ymeteo − Φmeteo · Ψ · s‖22
}

. (39)

That is, instead of adding horizontal and vertical constraints
to the data fidelity term as in Eq. 37, an L1 norm regulariza-
tion term is introduced to promote sparse solutions for s. The
L1 norm of s equals the sum of the coefficients in s:

‖s‖1 =
M∑

m=1

|sm | (40)

Subsequently, the wet refractivity x can be reconstructed by

x̂ = Ψ · ŝ (41)

with a dictionary Ψ ∈ R
L×M . The dimension M of the

parameters s ∈ R
M×1 in the transform domain depends on

the number of base functions resp. atomsdefined inΨ . Abase
function resp. atom corresponds to one column of Ψ . If Ψ is
orthogonal, the terms transformmatrix and base function are
commonly used. For more generalΨ that may be rectangular
but non-square and therefore not orthogonal at all, the terms
dictionary and atom are preferred. The latter expressions can
also be used in a generalizing way for transform matrix and
base functions. When referring to languages, an atom would
correspond to awordwithin a dictionary.As eachwordwithin
a language dictionarywould be composed of different letters,
each atom within the dictionary for sparse representation is
obtained by Kronecker multiplication of smaller items that
will be called letters in the following.
Considering a tomographic reconstruction ofwater vapor, we
assert that a sparse representation of the refractivity field can
be obtained using, e.g., a dictionary composed of Kronecker
products of Discrete Cosine Transform (DCT) letters in lon-
gitude and latitude directions and of Euler letters and Dirac
letters in the height direction. That is, the lettersC illustrated
in Fig. 4 correspond to DCT letters in longitude and latitude
and the letters D and E correspond to Dirac letters and to
Euler letters in the height direction.

In the context of neutrospheric water vapor tomography,
the DCT letters in longitude and latitude shall represent hor-
izontal refractivity variations, the Euler letters describe the
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Fig. 4 Relationof letters,atoms, anddictionaries.Anatom corresponds
to one columnof the dictionaryΨ .When referring to languages, an atom
would correspond to a word within a dictionary. As each word within a
language dictionary would be composed of different letters, each atom
within the dictionary for sparse representation is obtained by Kronecker
multiplication of smaller items, called letters in the following. The dic-
tionary Ψ is used in order to transform the coefficients in the sparse
representation to the parameters in the original domain: x = Ψ · s.

In this study, the square C summarizes P DCT letters of size P × 1 in
longitude or Q letters of size Q × 1 in latitude. The squares D and E
summarize K Dirac letters of size K × 1 and the K Euler letters of size
K × 1 in the height direction. In case of the DCT letters and the Dirac
letters, the number of letters is consciously chosen equal to the letters’
dimension in order to span the whole DCT space and the whole Dirac
space. In contrast, when considering the Euler letters, the number of
letters could also differ from K

Fig. 5 Representation of six 1D Discrete Cosine Transform letters
describing the neutrospheric behavior in the longitude or latitude direc-
tions. Atoms for the 3D dictionary for sparse representation can be
deduced by Kronecker multiplication of the DCT letters in longitude
with those in latitude and with the Euler and Dirac letters in the height
direction. The black dotted lines indicate the course of the function of
the DCT letters. The sampling points are highlighted in blue. The axis
of abscissae shows the voxel number in longitude or in latitude

refractivity decay with height, and the Dirac letters model
deviations from a decay that could exactly be described by
a linear combination of Euler letters. Examples for the men-
tioned letters are shown in Figs. 5 and 6, and an example for
atoms of a 3D dictionary is shown in Fig. 7.

Fig. 6 Representation of six 1D Euler letters modeling the refractivity
decrease with height. Atoms for the 3D dictionary for sparse represen-
tation can be deduced by Kronecker multiplication of the Euler letters
in the height direction with the letters chosen for the longitude and
the latitude directions. The black dotted lines indicate the course of
the function. The sampling points are highlighted in blue. The axis of
abscissae shows the voxel number in height

According to Annadurai (2007), the inverse DCT yielding
a signal f (r1) based on its transform F(r2) is defined as

f (r1) =
R∑

r2=1

w(r2) ·cos
[
(2 · r1 − 1) · (r2 − 1) · π

2 · R
]

· F(r2)

(42)
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Fig. 7 Representation of six atomsof a 3DDirac basis dictionary,which
might be used in order to correct deviations from a decay with height
represented by linear combinations of atoms that are based on Euler
letters in the height direction. The Dirac letters in the height direction
are combined with constant letters in longitude and latitude. The black
dotted lines indicate the course of the function of the 3D Dirac basis.
The sampling points are highlighted in blue. The axis of abscissae shows
the parameter numbers 1 . . . M in the transform domain. The estimated
solution in the transform domain corresponds to a linear combination
of all atoms

with parameter indices r1 = 1 . . . R in the original domain,
r2 = 1 . . . R in the transform domain, and

w(r2) =

⎧⎪⎪⎨
⎪⎪⎩

1√
R

if r2 = 1√
2

R
else.

(43)

In case of the representation of a 3D water vapor signal
in a sparse transform domain, the transform F(r2) is still
unknown when the letters building the atoms of the trans-
form are defined. However, a single letter only corresponds
to one addend of the sum in Eq. 42 and thus is defined as

C(r1, r2) = w(r2) · cos
( π

2 · R · (2 · r1 − 1) · (r2 − 1)
)

.

(44)

The r1 1D Euler letters Er1rh for the vertical direction are
given by

E(r1, rh) = exp

(
− r1 · (rh − 1)

α

)
(45)

where the kth element of rh (k = 1 . . . K ) is proportional to
the height of the upper border of the kth voxel layer.

Each letter can be imagined to describe the neutrospheric
behavior in one of the three signal dimensions longitude,

latitude, and height. The parameter R in Eqs. 44 and 45
stands for the number of voxels in the respective dimension.
The steepness of the Euler decay is represented by α. For
this study, different values of α out of the reasonable interval
α ∈ [2; 10] are introduced.

The Dirac atoms have compact support: they deviate from
zero only in a small interval. If Dirac letters in the height
direction are considered, they can, e.g., be zero for all but
one height layer.

Based on many different 1D letters Ψ1D for each of the
three signal directions longitude, latitude, and height, a Kro-
necker product (⊗) yields the corresponding 3D dictionary:

� = �1D,h ⊗ �1D,’ ⊗ �1D, λ (46)

Thework inHenderson and Searle (1981) defines theKro-
necker product of the matrices A ∈ R

s×t and B ∈ R
u×v as

the su × tv matrix

A ⊗ B = {
ai j · B}

i j =

⎡
⎢⎢⎢⎣

a11·B a12·B · · · a1u ·B
a21·B a22·B · · · a2u ·B

...
...

. . .
...

as1·B as2·B · · · asu ·B

⎤
⎥⎥⎥⎦ .

(47)

Figure 7 shows atoms of a 3D dictionary obtained by
Kronecker multiplication of two constant functions corre-
sponding to letters in longitude and latitude and Dirac letters
in the height direction.

Similar to the common Fourier transform, the signal rep-
resentation in the original domain is obtained by building
linear combinations of the atoms resp. base functions. The
coefficients of s are obtained from solving Eq. 39, where
the minimization of the L1 norm in the regularization term
ensures that only a small number of atoms are selected and
most of the coefficients are zero. As in the LSQ case, equal
weights have again been assigned to the observations, and
prior knowledge from three surface meteorological sites is
introduced. The trade-off parameter λCS between L1 norm
and L2 norm term in Eq. 39 is selected in a similar way as
the trade-off parameters λhz, λvert and λmeteo in the LSQ case
in Sect. 5.2.

However, instead of setting an eigenvalue cutoff criterion
as in the LSQ case, a set of stable solutions is selected based
on the sparsity of the solution. The number of sparse coef-
ficients in the DCT Euler Dirac domain containing 99.9 %
of the signal power is required to lie between 5 and 15 % of
the total number M of coefficients in the transform domain,
which ensures a sparse, yet not too sparse solution. There-
after, based on the preselection above, the final trade-off
parameter is again chosen by minimizing the observation
residuals. As Hscale is crucial for the vertical constraint in the
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Fig. 8 Study areas for the
synthetic and the real dataset.
The study area 2 (real data)
contains the Envisat SAR frame
of track 22 in the Upper Rhine
Graben. Yellow squares indicate
the available GNSS sites. The
black triangle indicates the
radiosonde site 10739 in
Stuttgart. The surface
meteorological sites yielding
prior knowledge on the surface
refractivity are represented by
green triangles

LSQ case, the definition of an appropriate steepness param-
eter α is crucial for the parametrization of the vertical decay
in CS. In contrast to the LSQ case, where Hscale is chosen
during the selection of the trade-off parameters, in the case
of CS, α is selected automatically by choosing appropriate
atoms out of the dictionary within the minimization process.

6 Study regions and datasets

GNSS observations of seven resp. eight GNSS receivers are
availablewithin each of the two 95× 99 km2 resp. 117 × 122
km2 large study areas in the Upper Rhine Graben (URG)
in southern Germany and eastern France shown in Fig. 8.
As indicated in Fuhrmann et al. (2013), the URG region
is geophysically very stable, disposing of annual deforma-
tions in the order of 0.5 mm in the horizontal direction and
about± 0.2mm in the vertical direction. Therefore, the study
region is suitable for our research, in which InSAR atmo-
spheric phases need to be distinguished from the InSAR
deformation phases.

Within study region 1, GNSS observations and surface
meteorological information define a real observing geometry
that can be used to generate a synthetic dataset. We use 3D
water vapor fields with a resolution of 900 m in longitude
and in latitude from the WRF modeling system in order to
produce synthetic SWD observations.

Within the real dataset corresponding to study region 2,
GNSS SWD estimates of eight observing sites can be used.
Moreover, InSAR neutrospheric phase maps derived from
a total number of seven ASAR acquisitions of the C-band

Envisat satellite track 22 are available at a 35 days repeat
cycle. The SAR acquisition time in track 22 is 9h48 UTC. A
total number of 332828 PS points has been detected. Finally,
radiosonde profiles at the radiosonde site 10739 in Stuttgart
as well as observations of three surface meteorological sites
are available for study region 2.

The study regions 1 and 2 are discretized into 7× 5× 11
resp. 9 × 6 × 11 voxels, each of a horizontal size of about
20 km × 20 km. The height layer thicknesses are set to 500,
500, 500, 500, 750, 750, 1000, 1000, 1500, 1500, and 1500m,
increasing from the surface to the higher layers.

In this study, only GPS observations are used. The cutoff
elevation angle is set to εcut = 7◦, and GPS observation
epochs of ±15 min around the SAR acquisition time are
used. The sampling rate of theGPS observations corresponds
to 30 seconds.

6.1 Synthetic dataset based onWRF

Based on the observing geometry of the available GNSS and
InSAR measurements, synthetic SWDs are calculated from
the WRF data. This enables a direct comparison of the later
estimated 3D water vapor field with the reference data avail-
able from WRF.

The synthetic GNSS dataset is generated based on WRF
using the azimuth and elevation angles of real GNSS rays as
well as real GNSS site coordinates in longitude and latitude.
The height of the sites for the synthetic dataset corresponds
to the height of the WRF Digital Elevation Model (DEM)
at the longitude and latitude given by the GNSS sites. The
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WRF simulation output (water vapor mixing ratios, pressure,
temperature) is transformed into wet refractivities as shown
in Fig. 2. Thereafter, Eq. 9 and a direct raytracing along the
real GNSS rays yield the synthetic GNSS SWDs.

For the synthetic InSAR dataset, additional sites and rays
can be simulated at any point on the WRF DEM using arti-
ficial directions that emulate a possible satellite geometry,
e.g., with azimuth angles A between 0◦ and 360◦ and with
elevation angles ε between εcut = 7◦ and εmax = 90◦. For
these synthetic InSAR sites, the procedure generating syn-
thetic SWDs is the following. All those WRF cells of the
lowest WRF layer are determined that are horizontally situ-
ated within a radius raverage

raverage = Hscale

tan εcut
(48)

around the considered synthetic InSAR site, where Hscale

is set to some mean scale height for the considered study
region, e.g., to 1500 m. For each of the selected WRF cells
of the lowest layer, a ZWD value is then integrated along the
vertical column above the cell. These ZWDs for the WRF
cell columns surrounding the synthetic InSAR site are aver-
aged, and the corresponding SWDs are obtained by means
of mapping the cylindric average ZWDs into the artificial
ray directions defined above. The mapping of the ZWDs to
the slant direction is performed by dividing the ZWDs by
the sine of the respective elevation angle. No gradients are
considered in the synthetic dataset. In this study, 35 synthetic
InSAR sites are defined within the horizontal centers of the
7× 5 ground voxels, at a height given by the WRF DEM. A
total of 20 rays per site is defined.

As described in Sect. 5, the tomographic system is regu-
larized bymeans of horizontal and vertical constraints aswell
as prior knowledge from surface meteorology. In case of the
synthetic dataset, this prior knowledge is obtained from the
WRF model.

A 3D validation of the reconstructed refractivities within
the tomographic voxels is done using the input WRF refrac-
tivities averaged in the tomographic grid.

6.2 Real dataset based on GNSS and InSAR

In case of the real dataset, the tomographic reconstruction
relies on total SWD estimates from GNSS PPP and PSI. On
the one hand, GNSS SWD estimates are included into the
system of equations. These ZWDs are separated from the
Zenith Total Delays (ZT Ds) estimated by Bernese GNSS
Software 5.0 by means of subtracting the Zenith Hydrostatic
Delays (ZHDs) derived from the Saastamoinen model

ZHDmodel, meteo = 0.002277 · Dh,ϕ · p0. (49)

The quantity p0 (hPa) corresponds to the surface pressure.
The variable Dh,ϕ depends on the latitude ϕ and on the height
h of the site at which the neutrospheric delay is computed:

Dh,ϕ = 1 + 0.0026 · cos(2 · ϕ) + 0.00028 · h (km) (50)

In addition, the complete GNSS SWDs include horizontal
gradients in northing �N and easting �E estimated by the
Bernese GNSS Software 5.0:

SWD =
(
ZT Destimate − ZHDmodel, meteo

)
· m fwet

+ �N · cot ε
sin ε

· cos A + �E · cot ε
sin ε

· sin A,

(51)

where the mapping function

m fwet = 1

sin ε
(52)

is used. No observation residuals are considered. The neu-
trospheric model within the GNSS processing is composed
of the Saastamoinen model (hydrostatic, wet), the hydro-
static and wet Niell mapping functions, and a tilting gradient
model. The estimation interval of the ZT Ds corresponds to
15 min. Each set of total horizontal gradient parameters is
estimated for 24 h.

The optimal scenario for building 3D wet refractivity
fields using GNSS tomography is to have a dense GNSS
network. At each GNSS site, a SWD estimate is available as
input for the tomographic system. In reality, the GNSS mean
inter-site distance in the considered study region is about
50 km, i.e., the site density is quite low. However, InSAR
provides a dense network of PS points at which atmospheric
phases are available. Consequently, while considering GNSS
SWDs on the one hand, on the other hand, 2Dabsolute ZWD
maps are introduced into the tomographic system.
In general, InSAR phases are, per definition, relative mea-
surements given as a temporal difference between two dates.
Therefore, the key idea presented in Alshawaf et al. (2015b)
is the understanding of the differences between GNSS and
InSAR estimates of the neutrsopheric delays. Based on the
understanding that GNSS and InSAR show complementary
features, Alshawaf et al. (2015b) developed an approach that
yields the absolute wet delay at each PS point based on
GNSS SWDs, relative InSAR atmospheric phases, and sur-
face meteorological information.
This synergy of GNSS and InSAR solves the problem of
InSAR measurements being relative and provides absolute
ZWDs at each InSAR PS point. Hence, in the following,
the term InSAR ZWD stands for the described, absolute
ZWDs obtained from GNSS InSAR combination. These
InSAR ZWD estimates can be aggregated to derive real wet
delay input data at given points as if corresponding to GNSS
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Fig. 9 Schematic illustration of the PS distribution around an InSAR
site. In the figure, the ZWDs of the PS points (blue dots) are averaged
within a radius of 5 km (black circle) around the shown InSAR site

sites within the study area. Such InSAR ZWDs can be esti-
mated for any InSAR site simulated within the InSAR swath.
This is done similarly to the integration of synthetic SWDs
based on WRF simulations in Sect. 6.1. As illustrated in
Fig. 9, the InSAR ZWDs of all those persistent scatterers are
averaged that fall within a radius raverage around the defined
InSAR site. That is, the InSAR ZWDs are averaged around
the InSAR sites, as if corresponding to averaging cylinders
approximating averaging cones around each GNSS site in
the GNSS observing geometry. The obtained mean ZWD
values per cylinder can be mapped into artificial directions
that emulate a possible satellite geometry, e.g., with azimuth
angles A between 0◦ and 360◦ and elevation angles ε between
εcut = 7◦ and εmax = 90◦. The mapping to the slant direc-
tions is performed by dividing the ZWDs by the sine of the
respective elevation angle. In this study, one InSAR site is
defined in the horizontal center of each voxel of the low-
est tomographic layer and 20 artificial rays are defined per
InSAR site. The heights of the InSAR sites are deduced from
the height of the PS points situated within raverage around the
InSAR site.

Surfacemeteorological information of three synoptic sites
is included as prior knowledge into the tomographic system.
The validation of the tomographic reconstruction using exter-
nal data is only possible in Stuttgart.

7 Results

Section 7.1 gives the tomographic results for the synthetic
dataset. Thereafter, Sect. 7.2 compares radiosonde andGNSS
ZWDs in order to get a good basis for the validation of
GNSS-based resp. GNSS- and InSAR-based wet refractivi-
ties using radiosonde profiles in Sect. 7.3.

7.1 Sensitivity analysis: reconstruction quality vs.
number of rays per voxel within the synthetic
dataset

Within the synthetic dataset, a 3D validation of the recon-
structed wet refractivity Nwet is possible. Analyzing the
absolute value of the difference between the tomographically
reconstructed refractivities and those given by WRF, Fig. 10
shows that

– on all but one acquisition date, both the mean and the
standard deviation of the difference are smaller in case
of CS than in case of LSQ,

– both themean and the standard deviation of the difference
decrease when adding InSAR into the CS solution, yet

– no clear effect of adding InSAR SWDs can be observed
in the case of LSQ.

When interpreting Fig. 10, the seasonal variability of water
vapor has to be taken into account. In the case of increas-
ing humidity in the summer time, i.e., in the case of larger
absolute values of Nwet, the reconstruction quality decreases,
i.e., larger values are obtained for the mean difference and
the standard deviation of the difference between the WRF
refractivities and the reconstructed refractivities.

For the different acquisition dates of study region 1, a total
of 474 to 712 GNSS observations are available. Considering
one acquisition date in more detail, a total of 712 rays are
available for the seven GNSS sites available within study
region 1 on 2005-01-03. Figure 11a shows how many GNSS
rays are crossing the tomographic voxels on that date. Due
to the cone-shaped GNSS observing geometry, most of the
voxels close to the surface are crossed bymuch less rays than
voxels in the higher tomographic layers. However, if a low
voxel is crossed, the number of rays passing through it is
larger than in higher atmospheric layers. On 2005-01-03, the
percentage of crossed voxels increases from 20 to 94 % from
the lowest to the highest layer. If synthetic InSAR observa-
tions are added, the number of crossed voxels increases, as
shown in Fig. 11b. However, the absolute values of the ray
numbers in Fig. 11b are smaller than those in Fig. 11a. This
can be explained by the fact that in the case of GNSS, the
satellite constellations of ±15min around the SAR acquisi-
tion time are considered, whereas in the case of InSAR only
a single artificial satellite constellation is considered. More-
over, there may still remain uncrossed voxels in Fig. 11b,
e.g., if an InSAR site is defined above the lowest tomographic
layer or if only low elevation signals are available.

A layer-wise comparison of the estimated refractivities
and theWRF refractivities for 2005-04-18 is given in Fig. 12.
The refractivity differences between the tomographic recon-
struction and the WRF data decrease with increasing height
layers. This can be explained both by the decrease of the
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Fig. 10 Upper plot: mean of the
absolute difference between
estimated refractivities and
WRF refractivities over all
voxels. Lower plot: standard
deviation (STD) of the
difference between estimated
refractivities and WRF
refractivities over all voxels. On
all but one date, using CS
instead of LSQ significantly
improves the reconstruction
accuracy and precision. Adding
synthetic InSAR SWDs to the
synthetic GNSS SWD only
improves the solution in the case
of CS

(p
pm

)
(p

pm
)

absolute value of Nwet with height and by the increase in
rays per voxel observed in most voxels when reaching higher
atmospheric layers.

The accuracy of the estimated refractivities w.r.t. the num-
ber of rays crossing the respective voxels is presented in
Fig. 13. As expected, for both synthetic GNSS only and syn-
thetic GNSS and InSAR, the refractivities within crossed
voxels are more accurately and more precisely reconstructed
than the refractivities within empty voxels.

7.2 Consistency of radiosonde, GNSS, and InSAR

When aiming at a validation of a GNSS- or GNSS-
and InSAR-based water vapor tomography by means of
radiosonde profiles, the consistency of radiosonde andGNSS
observations has to be checked. If the radiosonde humidity
information and that estimated fromGNSSare not consistent,
a validation is not possible. Therefore, we compare the pre-
cipitable water PW measured within the whole radiosonde
profiles with the PW derived from GNSS ZWDs. There-
after, the quality of the GNSS and InSAR fusion yielding
absolute water vapor maps is analyzed.

The radiosonde GNSS PW comparison is performed
at 0h00 UTC and 12h00 UTC, which correspond to the
start times of the available radiosonde 10739 ascents over

Stuttgart. As the distance between the Stuttgart radiosonde
site and the Stuttgart GNSS site 0384 is about 6 km, the
radiosonde ascent section should be covered by the GNSS
geometry, even if the radiosonde does not ascend exactly
vertically but is driven by winds. In addition, GNSS PW
values have been computed for the SAR acquisition time at
9h48UTC. This is done in order to get an idea of the humidity
change between 0h00 UTC and 12h00 UTC.

Asneutrosphericwater vapor is highly variable in time and
space, a validation of refractivities estimated around 9h48
UTC by means of radiosonde observations at 0h00 UTC and
12h00 UTC is not the best option. However, a linear inter-
polation between the two radiosonde acquisition times is an
acceptable option if i) the two sensors radiosonde and GNSS
match well at both 0h00 UTC and 12h00 UTC, and if ii) a
linear interpolation of the GNSS PW values at 0h00 UTC
and 12h00 UTC is close to the GNSS PW value observed
at 9h48 UTC. In this context, we speak of a good matching
and close PW values, if the PW differences between GNSS
and the radiosonde are smaller than 2 mm PW at the three
considered times of day. As shown in Fig. 14, this is the case
on 2005-01-19, 2005-07-13, 2005-10-26, 2006-03-15, and
2006-05-24 at the radiosonde site 10739 in Stuttgart. The
accepted value of 2 mm PW difference is selected based
on other studies comparing radiosonde and GNSS PW . The
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(a)

(b)

Number of synthetic GNSS rays per voxel

Number of synthetic InSAR rays per voxel

Fig. 11 Number of rays crossing the tomographic voxels on2005-01-03
within the synthetic dataset. aThe number of rays in the syntheticGNSS
only observing geometry. bThe number of additional rays from the syn-
thetic InSAR observing geometry. The 5 × 7 voxels per height layer
correspond to the 5 voxels in latitude and to the 7 voxels in longitude.
Longitude increases along the abscissae, latitude along the ordinate.
Above the plots, the heights of the layers are given. The number of rays
crossing a voxel is represented by the color of the voxel. Dark voxels
correspond to voxels that are crossed bymany rays, white voxels are not
crossed by any ray. The higher a layer is situatedwithin the tomographic
grid in a, the more voxels per layer are crossed. Many of the voxels in

the lowest layers are not crossed by any ray. However, if a low voxel
is crossed, then the number of rays passing through it is larger than in
higher atmospheric layers. The absolute values of the ray numbers of
(b) is smaller than in the crossed ground voxels in (a). This is due to
the fact that in the case of synthetic GNSS, the satellite constellations
of ±15min around the SAR acquisition time are considered, whereas
in the case of synthetic InSAR, only a single time stamp of artificially
defined rays is considered. If due to topography synthetic InSAR sites
are defined above the ground voxel, there remain voxels without any
crossing rays. In this study, 20 synthetic rays are defined for each of the
35 synthetic InSAR sites
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Fig. 12 Plot of 2005-04-18 layer-wise WRF refractivities, estimated
refractivities from CS, and the differences between the estimation and
the WRF refractivities in ppm. The 5 × 7 voxels per height layer cor-
respond to the 5 voxels in latitude and to the 7 voxels in longitude.

Longitude increases along the abscissae, latitude along the ordinate.
Above the plots, the heights of the layers are given. The estimates are
deduced from synthetic GNSS and InSAR SWDs

Fig. 13 Comparison of the
reconstruction accuracy within
crossed voxels and voxels that
are not crossed by any rays. The
absolute mean value and the
STD of the differences between
estimated and WRF
refractivities are shown for the
different acquisition dates

(p
pm

)
(p

pm
)

studies in Bock et al. (2005) and Niell et al. (2001) obtained
mean PW differences between the two sensors of 1 to 2 mm,
Bock et al. (2007) even 3 mm or more.

The low temporal resolution as well as the unassured
consistency of GNSS and radiosonde observations already
indicate some weaknesses of a radiosonde validation. In
addition, in reality, the radiosonde ascent takes some time,
whereas the validation for this work assumes the radiosonde
to take all themeasures along the profilewithin a time instant.

Moreover, when introducing both GNSS and InSAR into
the tomographic system, the absolute ZWD maps from
InSAR must match well with the GNSS ZWDs. Therefore,
the InSAR ZWDs of all PS points situated within raverage
around the available GNSS sites are averaged and compared

with the respective GNSS ZWDs. If the mean difference of
GNSS and InSAR ZWDs is less than 10 mm over all GNSS
sites per acquisition date, i.e., less than 2 · σy , the InSAR
ZWDs are introduced into the tomographic system. In this
study, this is the case for all acquisition dates except 2005-
07-13 and 2006-06-28.

All in all, considering both the consistency of radiosonde
andGNSSaswell as that ofGNSSand InSAR, the acquisition
dates 2005-01-19, 2005-10-26, 2005-03-15, and 2006-05-24
remain for validation. Within these dates, the most resp. the
fewest water vapor resides in the atmosphere on 2005-10-26
resp. on 2006-03-15. Therefore, these two dates representing
different atmospheric states are selected for the radiosonde
validation in Sect. 7.3.
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Fig. 14 Precipitable water (mm) from GNSS and radiosonde at the
SAR acquisition dates of track 22. The radiosonde PW values at 0h00
UTC and 12h00 UTC correspond to radiosonde ascents starting at these
times above the Stuttgart radiosonde site 10739. In the case of GNSS,
the PW values are deduced fromGNSS ZWD estimates of 0h00 UTC,
9h48 UTC, and 12h00 UTC. The dotted lines indicate linear interpola-
tions between the sampling points at 0h00 UTC and 12h00 UTC

7.3 Validation of GNSS- and InSAR-based wet
refractivities using radiosonde profiles

For the acquisition dates 2005-10-26 and 2006-03-15, Fig. 15
shows the agreement between the wet refractivities recon-
structed by means of LSQ or CS and the radiosonde profiles.
The accuracy of the tomographic results is similar for LSQ
and CS. For both LSQ and CS, the deviations of the tomo-
graphic solution from the Euler decay resp. from the linear

combination of atoms based on Euler letters and Dirac letters
in the height direction are not represented by the recon-
structed refractivities. The height resp. the refractivity in
Fig. 15 are consciously plotted on the abscisse resp. on the
ordinate, in order to make the Euler refractivity decay with
height visibly similar to the Euler letters used in the height
direction. As the radiosonde observations correspond, both
temporally and locally, to other atmospheric snapshots than
the GNSS- and InSAR-based tomographic results, no quan-
titative comparisons are drawn. No prior knowledge of the
surfacemeteorological site Stuttgart is included into the solu-
tion of the tomographic system.

8 Discussion and outlook

The presented research has shown that CS is a valuable
method for tomographic water vapor reconstructions based
on SWD observations. In the case of synthetic data,CSyields
more accurate and more precise results than LSQ. When
considering theGNSSonly solution in average over all acqui-
sition dates and all voxels, usingCS instead of LSQdecreases
the mean resp. the standard deviation of the absolute differ-
ences between estimated refractivities andWRFrefractivities
by about 1.5 ppm inmean resp. by about 1.4 ppm in standard
deviation. In the case of the GNSS and InSAR solution, the
respective values are even slightly larger, with a decrease of
about 1.8 ppm in mean resp. by about 2.1 ppm in standard
deviation.

In the case of CS, adding synthetic InSAR SWDs slightly
improves the reconstruction quality for all acquisition dates.
The mean improvement over all voxels and all dates is nearly
1 ppm. In contrast, adding synthetic InSAR SWDs to the
LSQ solution does not show any clear effect. In general,
for both LSQ and CS, voxels that are crossed by many rays
are reconstructed more accurately and more precisely than
voxels that are crossed by less rays. In the case of real data,
no preference can be given to any solution strategy. The LSQ
and the CS tomography solutions are widely consistent for
both GNSS only and for GNSS and InSAR.

When comparing the LSQ and the CS solutions, we can
state that in the case of LSQ, there is a risk of over-smoothing
the solution by applying geometric constraints that might not
be able to represent the true atmospheric behavior. Similarly,
CS can only represent linear combinations of the introduced
atoms, which implies that the CS solution is, for example,
not very adaptive to refractivity variations in height that dif-
fer from the Euler and Dirac letters introduced in the height
direction. Depending on the dictionary, there might be atmo-
spheric behaviors that cannot be well represented by the CS
atoms. However, as many different Euler letters with varying
steepness are introduced in the height direction and as linear
combinations of the resulting atoms can be built, the CS solu-
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Fig. 15 Wet refractivity (ppm) on 2005-10-26 and 2006-03-15. The
tomographic refractivity estimates are based onGNSS SWDs only resp.
on GNSS and InSAR SWDs. The tomography solution corresponds to

9h48 UTC. The temporal window of GNSS SWDs introduced into the
tomographic system is set to 15 min

tion should be more adaptive than the LSQ solution. More
or better atoms are still necessary for further improvement
of the CS solution. When local disturbances are to be recon-
structed, i.e., if the refractivity is much higher in a small area
of, e.g., one or two voxels, the DCT letters in longitude and
latitude may not be the best option. This is due to the fact
that different DCT letters may have to cancel out each other
in the atmospheric sections around the disturbance. How-
ever, in order to cancel out some atoms in some parts of the
study region, but not in others, the total number of atoms
with nonzero coefficients must be high. This, in turn, is not
favored at all by the CS solution algorithm.

The balance between a potential accuracy improvement
induced by a larger variety of atoms and the cost of these addi-
tional atoms in terms of sparsity of the solution should always
be kept inmind. Since theCS solution requires a sparse repre-
sentation of the parameters in the transformdomain, selecting
a high number of atoms is not possible. As in LSQ, there is
a risk of over-constraining the solution. The challenge of
accurately representing local atmospheric disturbances and
keeping the solution sparse at the same time, might be met
by introducing compactly supported letters in longitude and
latitude, e.g., wavelets, instead of DCT atoms only.

In addition, the scaling of the atoms is essential for an
accurate solution. We do not seek a very sparse solution with

only a single, very high coefficient corresponding to one of
the decreasing Euler atoms, but we are interested in a linear
combination of, e.g., 5 to 15 % of the atoms, generating a
more accurate solution than a single atom could produce.
This is only possible if the scaling of the most prominent
Euler atoms is reasonable.

For both LSQ and CS, a good tuning of the trade-off
parameters is essential. In both methodologies, a two-step
trade-off parameter selection is implemented that ensures
both the stability of the solution and small observation resid-
uals. If the trade-off parameters are selected inappropriately,
both LSQ and CS are incapable to produce an accurate solu-
tion. Similarly, the selection of appropriate values for the
scale height Hscale resp. for the parameter α defining the
steepness of the Euler letters is essential in the LSQ resp. CS
solution.

As stated in Sect. 7.2, the validation of the tomographic
solution in the real dataset is challenging: There is only
one radiosonde profile available, i.e., no 3D validation is
possible, but just a validation along a single profile. There
might be solutions matching well along this profile, but hav-
ing a bad reconstruction accuracy in the remaining parts
of the study region. Furthermore, there are only radiosonde
profiles available around 0 UTC and 12 UTC. As the tempo-
ral resolution of 12h is low and as the atmospheric water
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vapor is highly variable in time, no interpolation of the
radiosonde data at 9h48 UTC is performed. Finally, although
the radiosonde moves horizontally during its ascent, we sup-
pose the whole profile to be situated vertically above the
radiosonde site,whichmight cause inaccuracies in the valida-
tion. A 3D validation w.r.t. a numerical weather model could
be a good alternative to the radiosonde validation. Alterna-
tively, if temporal variations in the refractivity are included
into the tomographic model, the GNSS and InSAR solution
could be temporally propagated until the radiosonde ascent
time. Thus, the radiosonde observations could be used in
order to validate the inclusion of InSAR data into the tomo-
graphic system even though the acquisition times of InSAR
and of the radiosonde differ. In the future, the potential of
CS shall be investigated based on a GNSS only solution for a
study region disposing of up to five radiosonde site. In order
to avoid temporal interpolations, the validation will then be
performed at a radiosonde acquisition time, which is, due to
the InSAR data with fix acquisition time, not possible in this
study.

According to Champollion et al. (2005), the optimal hor-
izontal voxel size for GNSS-based water vapor tomography
should correspond to the mean GNSS inter-site distance. In
this study, the mean inter-site distance is about 50 km, and
the voxel size is therefore much too small. However, if larger
voxels, e.g., 2 × 2 × 11 voxels of a horizontal size of about
50×50 km2, are defined, the spatially highly variable refrac-
tivity would be averaged over too large areas. Moreover, no
sparse solution would be possible anymore, because the total
number of voxels would be too small. However, as CS is
capable to recover sparse signals using only a small number
of measurements, even smaller voxels than in this study shall
be tested in the future.

Finally, the integration of synthetic absolute GNSS and
InSAR SWDs into the tomographic system might be
improved. The GNSS and InSAR observing geometries dif-
fer, and therefore, the two measurement techniques observe
different sections of the atmosphere. The horizontal resolu-
tion of InSAR atmospheric phase maps is much higher than
the point-wise GNSS ZWD resolution. Reversely, each of
the atmospheric phases at a persistent scatterer contains infor-
mation on a much smaller atmospheric section than a GNSS
ZWD averaging the atmospheric behavior within a large
cone above the respective GNSS site. The mapping of such
GNSS ZWDs into different ray directions aswell as themap-
ping of InSAR ZWDs into different azimuth and elevation
angles has to be further investigated. In this context, particu-
lar focus should be set on the choice of the mapping function
and on amapping of the InSAR ZWDs into appropriate slant
directions. Themapping into uniformly distributed directions
with elevation angles between 7◦ and 90◦ and with azimuth
angles between 0◦ and 360◦ may cause unrealistic InSAR
SWDs corrupting the tomographic solution, especially in

the case of significant horizontal variations in the wet refrac-
tivity.Moreover, the simple sin ε mapping should be avoided,
especially in the case of low elevation rays within the voxels
limited by elliptical upper and lower boundaries. Therefore,
in future studies, we will use more complex mapping func-
tions depending, e.g., on the day of year, on meteorological
parameters, and on the height of the considered site.

As an alternative to the proposed approach, InSAR and
GNSS could also be introduced as independent inputs into
the tomographic system. However, the tomographic system
would then have to be solved for more unknowns and the
differences between the GNSS and the InSAR observing
geometries would have to be understood exactly. As the com-
plete SWD product resulting from the GNSS and InSAR
combination is used in this study, the observing geometries
of the two systems are combined. This proceeding does not
necessarily imply a loss of information. Instead, this synergy
highly densified the available ZWD network. The ZWD
resp. PW product generated by combining InSARandGNSS
was validated and proved to show strong correlation with
other datasets. Alshawaf et al. (2015b) compared the derived
PW maps with PW maps measured by the optical sen-
sor MEdium-Resolution Imaging Spectrometer. The results
of Alshawaf et al. (2015b) show strong spatial correlation
between the two datasets, with values of uncertainty of less
than 1.5 mm.

In future work, the potential of including observations
of two SAR satellites with different viewing angles, e.g.,
in descending and in ascending mode, shall be analyzed.
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