First results of the bundle test QUENCH-19 with FeCrAl claddings.

The QUENCH-19 bundle experiment with FeCrAl(Y) claddings and 4 FeCrAl(Y) spacer grids as well as 8 KANTHAL APM corner rods and KANTHAL APM shroud was conducted at KIT on 29th August 2018. This was performed in cooperation with the Oakridge National Laboratory (ORNL).

The test objective was the comparison of FeCrAl(Y) and ZIRLO™ claddings under similar electrical power and gas flow conditions. In common with the previous QUENCH-15 experiment, the bundle was heated by a series of stepwise increases of electrical power from room temperature to a maximum of \(\approx 600 \) °C in an atmosphere of flowing argon (3.45 g/s) and superheated steam (3.6 g/s). The bundle was stabilised at this temperature, the electrical power being \(\approx 4 \) kW. During this time the operation of the various systems was checked.

In a first transient, the electrical power was controlled with the same electrical power history as the QUENCH-15 test. As a result, the bundle was heated to peak cladding temperature of about 1000 °C reached at about 4000 s. It showed a slowed bundle heating than for the QUENCH-15 bundle (1200 °C reached at about 3000 s). In this test phase about 0.3 g of hydrogen were produced (QUENCH-15: 23.3 g).

In the following phase, the power was increased continuously to 18.12 kW (corresponds to maximal power of the QUENCH-15 test). After reaching of this value the power was kept constant during about 2000 s. At the end of this phase the maximal peak cladding temperature of \(T_{\text{pct}} \approx 1500 \) °C was reached. Much lower heating rate in comparison to QUENCH-15 was measured. Exceeding \(T_{\text{pct}} \approx 1400 \) °C sharp increase of hydrogen release rate was observed.

Then reflood was initiated at \(\approx 9100 \) s, connected with switching the argon injection to the top of the bundle, first rapidly filling the lower plenum of the test section with 4 kg of water, and continuing by injecting \(\approx 48 \) g/s of water. The electrical power was reduced to 4.1 kW during the reflood.

A temperature excursion was not observed. The temperatures at all elevations decrease immediately after water injection. The total hydrogen release during the whole test was 9.2 g compared to 47.6 g in the QUENCH-15 test with much shorter high electrical power phase.

The videoscope observation of the bundle at the positions of the withdrawn corner rods showed the damage of several claddings at the bundle elevations between 850 and 1000 mm. The claddings were failed either due to interaction with melted thermocouples (mostly) or by spalling of small annular cladding parts.
First results of the bundle test QUENCH-19 with FeCrAl claddings

QWS-24, Karlsruhe 2018
Chemical compositions and oxidation in steam of FeCrAl alloys

<table>
<thead>
<tr>
<th>Material</th>
<th>Fe</th>
<th>Cr</th>
<th>Al</th>
<th>Y</th>
<th>Si</th>
<th>Mn</th>
<th>C</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Kanthal APM</td>
<td>Balance</td>
<td>22</td>
<td>5.8</td>
<td>-</td>
<td>0.7</td>
<td>0.4</td>
<td>0.08</td>
<td>used for shroud and corner rods in QUENCH-19</td>
</tr>
<tr>
<td>FeCrAl(Y) alloy B136Y3</td>
<td>Balance</td>
<td>13*</td>
<td>6.2</td>
<td>0.03</td>
<td>0.01</td>
<td></td>
<td>used for claddings of heated rods in QUENCH-19</td>
<td></td>
</tr>
</tbody>
</table>

reduced in comparison to Kanthal to decrease the hardening under irradiation

\[
\Delta m / S = K_m \sqrt{t}
\]

\[
K_m(T) = K_0 \exp\left(-\frac{E_0}{RT}\right)
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>(E_0) (J/mol)</th>
<th>(K_0) (g/cm²s⁰.⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zry-4*</td>
<td>87144</td>
<td>0.724</td>
</tr>
<tr>
<td>APMT**</td>
<td>172000</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Oxidation kinetics in steam

*G. Schanz, FZKA 6827, https://publikationen.bibliothek.kit.edu/270054544/3814367

Oxidation in steam at 1200 °C in comparison with Zry-4
Cladding tubes B136Y3 (by Century Tubes Inc./ORNL)

- Made by **cold-drawing**
- OD: 9.52 mm
- WT: 382 µm ± 12 µm
- Grain size: ~80-100 µm

Hardness: 254 ± 7 HV
Cross sections of fuel rod simulators
(in comparison to reference test QUENCH-15 with ZIRLO claddings)

QUENCH-15 (ZIRLO cladding with OD=9.5 mm, WT=572 µm)

QUENCH-19 (FeCrAl(Y) cladding with OD=9.52 mm, WT=381 µm)

<table>
<thead>
<tr>
<th></th>
<th>Heat capacity</th>
<th>Heat conductivity</th>
<th>Thermal expansion</th>
<th>Melting point</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCrAl (Kanthal)</td>
<td>≈ 460 J/(kg·K)</td>
<td>≈ 11 W/(m·K)</td>
<td>14·10^{-6} /K</td>
<td>≈ 1790 K</td>
</tr>
<tr>
<td>ZIRLO</td>
<td>≈ 270 J/(kg·K)</td>
<td>≈ 23 W/(m·K)</td>
<td>5.7·10^{-6} /K</td>
<td>≈ 2030 K</td>
</tr>
</tbody>
</table>
QUENCH test section

- Cooling bundle foot
- Cooling bundle head
- Power supply
- Ar cooling jacket
- Containment
- Top quenching (option)
- Water (H₂O)
- Steam + Ar
- ZrO₂ insulation
- Ar purge flow
- Shroud
- Test bundle
- He (fuel rods)
- Quenching

Dimensions:
- φ 800 mm
- 1350 mm bundle outlet
- 1000 mm
- 2.9 m
- 0 mm
- ≈ 1 m
- 1 m ~ 2.9 m
- 800 mm
Composition of test bundle QUENCH-19

- **ZrO₂ fiber insulation**
- **24 heated rods** (FeCrAl(Y) clad, ZrO₂ pellet, W heater)
- **8 corner rods** (FeCrAl Kanthal APM)
- **cross section** (arrangement the same as for QUENCH-15)
- **cooling jacket (Inconel)**
- **test bundle (length 2m)**

ORNL FeCrAl(Y) spacer grids:
- Height 22 mm
- Sheet thickness 0.5 mm

AREVA Inconel spacer grid:
- Height 45 mm
- Sheet thickness 0.5 mm

Spacers:
- **A**: FeCrAl Kanthal APM
- **B**: FeCrAl Kanthal APM
- **C**: FeCrAl Kanthal APM
- **D**: FeCrAl Kanthal APM
- **E**: FeCrAl Kanthal APM
- **F**: FeCrAl Kanthal APM
- **G**: FeCrAl Kanthal APM
- **H**: FeCrAl Kanthal APM
QUENCH-19 bundle instrumentation (thermocouples at cladding surface)

- TFS 15/13: W/Re TC sheathed by steel at 950 mm, rod #15
- TFS 12/15: W/Re TC sheathed by steel at 1150 mm, rod #12
- TFS 14/14: W/Re TC sheathed by steel at 1050 mm, rod #14
Test performance: comparison of QUENCH-15 (ZIRLO) and -19 (FeCrAl)

Energy release during Q15 pre-oxidation (i.e. until 6000 s):
- electrical $E_e = 63.7$ MJ
- chemical $E_{ch} = 3.5$ MJ

$\Rightarrow E_{ch} \ll E_e$

$T_{max_{Q15}} = 1880 \degree C$

$T_{max_{Q19}} = 1455 \degree C$

The same electrical power profile for Q-15 and -19

Constant el. power for Q-19

Significant difference during pre-oxidation

Energy release during Q15 pre-oxidation (i.e. until 6000 s): $E_e = 63.7$ MJ

Chemical energy $E_{ch} = 3.5$ MJ

$\Rightarrow E_{ch} \ll E_e$
Parameters of gas atmosphere at bundle inlet and outlet

QUENCH-15:
- inlet gas (steam + Ar) $T_g \approx 720$ K;
- steam flow rate $3.2 < F_s < 3.4$ g/s;
- Ar flow rate $F_{Ar} = 3.5$ g/s

QUENCH-19:
- inlet gas (steam + Ar) $640 < T_g < 700$ K;
- steam flow rate $F_s \approx 3.8$ g/s;
- Ar flow rate $F_{Ar} = 3.5$ g/s

(Q15 \approx Q19) similar inlet and outlet
Boundary conditions
(temperatures behind heat insulation)

(Q15 ≠ Q19)

porous heat insulation filled with dry Ar in Q15 and with humid Ar in Q19 (leakage of steam into insulation)

TCI thermocouple at cooling jacket
thermal insulation

(gradual increase of temperatures)

water film at the inner wall of cooling jacket (boiling point ≈ 400 K at p = 2.3 bar)
evaporation of water film at elevations 350...850 mm
Readings of thermocouples at 850 mm (hottest elevation for QUENCH-19)

QUENCH-15:
strong T escalation during transient

QUENCH-19:
1) no temperature escalation during extended transition;
2) special features of test (the reason is not yet clarified):
 a) lower temperatures; b) larger radial \(\nabla T \).

cooling jacket (TCI)

210 K less

170 K less
at the test beginning

20 K more
Axial temperature profiles at shroud

At the beginning of transient

-250
-50
150
350
550
750
950
1150
1350
400 700 1000 1300 1600 1900
Elevation, mm
Temperature, K
QUENCH-19
QUENCH-15

At the onset of reflood

shifted

T_{max}
Quench stage: evaporation of injected water, collapsed water front progress

QUENCH-15: water rise duration 330 s

QUENCH-19: water rise duration 270 s
QUENCH-19: wetting of thermocouples by two-phase fluid

- Condensation of steam at bundle top
- Wetting of TFS 9/15 at 1150 mm
- Wetting of TFS 8/16 at 1250 mm
- Height of 2-phase fluid: 230 mm
Hydrogen release

QUENCH-15: max rate 1830 mg/s; totally 47.6 g H₂

QUENCH-19: max rate 280 mg/s; totally 9.2 g H₂

max $T_{\text{clad}} \approx 1400$ °C
QUENCH-19: videoscope observations of damaged (partly melted) claddings at upper part of heated zone

rods 19, 8, 7 (front look at 1000 mm)

rods 19, 8, 7 (side look at 1000 mm)

rods 5, 17, 16, 15, 24 (front look at 950 mm)

rods 16, 15, 24 (side look at 950 mm)

melt from TFS 19/14

TFS 15/13
Videoscope observations of claddings at hottest positions of bundles QUENCH-15 (ZIRLO) and -19 (FeCrAl)

Q15: circumferential cladding cracks at hottest elevation of 950 mm

Q19: side look: molten claddings of rods 14 and 13

Q19 front look at 1000 mm

Q15: circumferential cladding cracks at hottest elevation of 950 mm

Q19: side look: molten claddings of rods 14 and 13

900 mm

pellet

850 mm

800 mm

thick oxide

partially molten metal captured between pellet and oxide

molten claddings of rods 13 and 12 (Q19 front look at 1000 mm)

shroud

corner rod E

Videoscope observations of claddings at hottest positions of bundles QUENCH-15 (ZIRLO) and -19 (FeCrAl)
QUENCH-19 bundle extracting

Bundle inside cooling jacket

Bundle surrounded by porous ZrO₂ heat insulation

Bundle surrounded by FeCrAl shroud (KANTHAL APM)

Bundle
QUENCH-19 bundle at elevations between 900 and 1100 mm: cladding damages by molten thermocouple steel (AISI 304) sheaths

- the melting range of 304 steel is 1400...1450°C
- the melting range of FeCrAl alloys is 1500...1520°C

Positions of TC (●) at elevations 13 (950 mm) and 14 (1050 mm)
Summary

The QUENCH-19 test with bundle containing 24 heated rods with FeCrAl(Y) cladding and 4 FeCrAl(Y) spacer grids as well as 8 KANTHAL APM corner rods and KANTHAL APM shroud was performed at KIT on August 29, 2018 with similar electrical power history as reference test QUENCH-15 (ZIRLO™ claddings).

Four test stages of QUENCH-19:

1) pre-oxidation during about 6000 s (similar to QUENCH-15),
2) transient during about 1130 s (similar to QUENCH-15),
3) extended period with constant electrical power of 18.32 kW during 1970 s (to extend the temperature increase stage),
4) test termination by water flooding with rate of 48 g/s (similar to QUENCH-15).

The peak cladding temperatures during the pre-oxidation stage were about 200 K lower in comparison to QUENCH-15. The radial temperature gradient was noticeable larger in comparison to QUENCH-15. The reason of these test differences are not yet completely clarified.
Summary (cont.)

Much lower heating rate in comparison to QUENCH-15 was measured. A temperature of about 1150°C was reached at the time point as a local melting of QUENCH-15 claddings occurred. No temperature escalation was observed during the extended transient. Maximum cladding temperature measured before reflood was about 1460 °C.

The coping time was about 3200 s (≈ 1200 s for QUENCH-15).

Sharp increase of hydrogen release rate was observed about 800 s before reflood. Probable trigger of this event could be the melting of steel thermocouple claddings. The maximum hydrogen release rate reached before reflood was 280 mg/s (1830 mg/s for QUENCH-15). Total hydrogen production 9.2 g (47.6 g for QUENCH-15).

Many claddings were damaged at elevations between 850 and 1000 mm: 1) by interaction with melted thermocouples or 2) parts of claddings were spalled (probably due to thermal expansion followed by quench shrinkage).
Acknowledgment

The QUENCH-19 experiment was supported by the KIT program NUSAFE and partly sponsored by ORNL. The cladding materials and thermocouples were provided by ORNL. IKET/KIT colleagues were involved into bundle dismounting.

The authors would like to thank all colleagues involved in the pre-test calculations (GRS, ORNL, PSI).

Thank you for your attention

http://www.iam.kit.edu/awp/666.php
http://quench.forschung.kit.edu/