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GENERAL CLASS OF OPTIMAL SOBOLEV INEQUALITIES AND

NONLINEAR SCALAR FIELD EQUATIONS

JAROSŁAW MEDERSKI

Abstract. We find a class of optimal Sobolev inequalities
(∫

RN

|∇u|2 dx
) N

N−2

≥ CN,G

∫

RN

G(u) dx, u ∈ D1,2(RN ), N ≥ 3,

where the nonlinear function G : R → R satisfies general assumptions in the spirit of the

fundamental works of Berestycki and Lions involving zero, positive as well as infinite mass

cases. We show that any minimizer is radial up to a translation, moreover, up to a dilation,

it is a least energy solution of the nonlinear scalar field equation

−∆u = g(u) in R
N , with g = G′.

In particular, if G(u) = u2 log |u|, then the sharp constant is CN,G := 2∗(N
2
)2

∗

e
2(N−1)
N−2 (π)

N

N−2

and uλ(x) = e
N−1

2 −λ
2

2 |x|2 with λ > 0 constitutes the whole family of minimizers up to trans-

lations. The above optimal inequality provides a simple proof of the classical logarithmic

Sobolev inequality.

Moreover, if N ≥ 4, then there is at least one nonradial solution and if, in addition, N 6= 5,

then there are infinitely many nonradial solutions of the nonlinear scalar field equation. The

energy functional associated with the problem may be infinite on D1,2(RN ) and is not Fréchet

differentiable in its domain. We present a variational approach to this problem based on a

new variant of Lions’ lemma in D1,2(RN ).
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Introduction

In view of the classical Sobolev inequality one can show that there is a constant CN,G > 0

such that the following inequality

(1.1)
(∫

RN

|∇u|2 dx
) N

N−2
≥ CN,G

∫

RN

G(u) dx

holds for all u ∈ D1,2(RN), where D1,2(RN) stands for the completion of C∞
0 (RN) with respect

to the norm ‖u‖ =
( ∫

RN |∇u|2 dx
) 1

2

, N ≥ 3, and G satisfies the following assumptions

1
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2 J. Mederski

(g0) g : R → R is continuous, g(0) = 0, G(s) =
∫ s

0
g(t) dt, G+(s) =

∫ s

0
max{g(t), 0} dt for

s ≥ 0 and G+(s) =
∫ 0

s
max{−g(t), 0} dt for s < 0.

(g1) lims→0G+(s)/|s|
2∗ = 0, where 2∗ = 2N

N−2
.

(g2) There exists ξ0 > 0 such that G(ξ0) > 0.

(g3) lim|s|→∞G+(s)/|s|
2∗ = 0 and lim sup|s|→∞ |g(s)|/|s|2

∗−1 <∞.

We show that (1.2) is optimal, that is the equality holds in (1.1) for some u 6= 0, and

then u is called a minimizer. Observe that, if u is a minimizer, then u(λ·) and u(· + y) are

minimizers for any λ > 0 and y ∈ R
N . The first main result reads as follows.

Theorem 1.1. Suppose that (g0)–(g3) are satisfied.

(a) There is a radially symmetric solution u ∈ D1,2(RN) of

(1.2) −∆u = g(u) in R
N

such that u ∈ M and J(u) = infM J > 0, where J is the associated energy functional

(1.3) J(u) =
1

2

∫

RN

|∇u|2 −

∫

RN

G(u) dx,

and

(1.4) M =
{
u ∈ D1,2(RN) \ {0} :

∫

RN

|∇u|2 = 2∗
∫

RN

G(u) dx
}
.

If in addition g is odd, then u is positive.

(b) If u ∈ M and J(u) = infM J , then u is a radial (up to a translation) solution of (1.2).

(c) The optimal constant in (1.1) is

CN,G = 2∗
(1
2
−

1

2∗

)− 2
N−2

(inf
M
J)

2
N−2 .

Moreover, if u ∈ M and J(u) = infM J , then u is a minimizer of (1.1). If u is a minimizer

of (1.1), then u(λ·) ∈ M and J(u(λ·)) = infM J for a unique λ > 0. In particular, there is a

radially symmetric solution of (1.2) such that the equality holds in (1.1).

Using standard arguments we show that any (weak) solution u of (1.2) such that |G(u)| ∈

L1(RN) satisfies the Pohozaev identity

(1.5)

∫

RN

|∇u|2 = 2∗
∫

RN

G(u) dx,

see Proposition 3.1. Hence M contains all nontrivial finite energy solutions, and u obtained

in Theorem 1.1 (a) is a least energy solution. Moreover if, in addition,

G(s) ≤ −c1s
2 + c2s

2∗

for some constants c1, c2 > 0, for instance in the positive mass case below (1.6), then (1.5)

implies that u ∈ M ⊂ H1(RN).

If g is odd, then positive and radially symmetric solutions of (1.2) have been considered

by Berestycki and Lions in their fundamental papers [5,6] and multiplicity of radial solutions
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have been given in [6, 7]. In fact, by the strong maximum principle we can solve (1.2) under

the following more general growth assumption introduced in [7]:

(g3’) Let ξ1 := inf{ξ > 0 : G(ξ) > 0}. If g(s) > 0 for all s > ξ1, then

lim
s→∞

G(s)/s2
∗

= 0, and lim sup
s→∞

g(s)/s2
∗−1 <∞.

Namely, suppose that g is odd and satisfies (g0)–(g2) and (g3’). Similarly as in [5], we

modify g in the following way. If g(s) > 0 for all s > ξ0, then g̃ = g. Otherwise we set

ξ1 := inf{ξ ≥ ξ0 : g(ξ) ≤ 0},

g̃(s) =

{
g(s) if 0 ≤ s ≤ ξ1,

g(ξ1) if s > ξ1,

and g̃(s) = −g̃(−s) for s < 0. Hence g̃ satisfies assumptions (g0)–(g3) of Theorem 1.1 and by

the strong maximum principle if u ∈ D1,2(RN ) solves −∆u = g̃(u), then |u(x)| ≤ ξ1 and u is

a solution of (1.2). However, it is not clear whether J(u) = infM J and u is a least energy

solution. So far, a positive, radially symmetric and least energy solution has been obtained

in [5][Theorem 3] in the positive mass case for the modified nonlinearity g̃. Namely, instead

of (g1), we have

(1.6) −∞ < lim inf
s→0

g(s)/s ≤ lim sup
s→0

g(s)/s = −m < 0,

and after the above modification of g, in fact, it has been assumed that

lim
|s|→∞

g(s)/|s|2
∗−1 = 0,(1.7)

also in other works [17,18,24]. The latter condition excludes some important examples, which

are taken into account in our assumptions (g0)–(g3). Indeed, take

(1.8) g(s) = |s|p−2s− |s|2
∗−2s−ms, 2 < p < 2∗,

and note that g satisfies (g0)–(g3) if and only if m ∈ (0, m0), where

m0 :=
(N − 2)(2∗ − p)

N(p− 2)

(N(p− 2)

2p

) 2∗−2
2∗−p

.

Therefore we get the following result.

Theorem 1.2. Suppose that g is given by (1.8).

(a) For any ω ∈ (0, m0) there is a positive and radially symmetric solution u of (1.2) mini-

mizing J on M ⊂ H1(RN ), which is also a minimizer of (1.1).

(b) If ω /∈ (0, m0), then (1.2) has only trivial finite energy solution.

In a particular case N = 3 and p = 4 we solve the cubic-quintic problem recently studied

by Killip et al. in [19][Theorem 2.2.(i)]. Theorem 1.2 provides an additional information about

this solution, that is, J(u) = infM J and u is a minimizer of (1.1). If N ≥ 4, we also show

below the existence of nonradial solutions and their multiplicity.



4 J. Mederski

The relation between solutions of (1.2) and minimizers of (1.1) allows to provide a new

and simple proof of the classical logarithmic Sobolev inequality given in [33]:

(1.9)
N

4
log

( 2

πeN

∫

RN

|∇u|2 dx
)
≥

∫

RN

|u|2 ln(|u|) dx, for u ∈ H1(RN),

∫

RN

|u|2 dx = 1,

which is also equivalent to the Gross inequality [15]. Indeed, note that the following nonlin-

earity

(1.10) G(s) = s2 log |s| for s 6= 0, and G(0) = 0

is in the infinite mass case and satisfies (g0)–(g3). In view of Theorem 1.1 there is a positive

and radially symmetric solution of (1.2) with g(s) = 2s log |s|+ s. The Gausson [8]

(1.11) u1(x) = e
N−1

2
− 1

2
|x|2

solves (1.2) and in view of Serrin and Tang [28] (cf. [12]), u1 is a unique positive and radial

solution of (1.2) up to a translation. Thus, one easy verifies that J(u1) =
(
1
2
− 1

2∗

)
eN−1N

2
(π)

N
2 =

infM J and by Theorem 1.1 (c)

(1.12) CN,G := 2∗
(N
2

)2∗

e
2(N−1)
N−2 (π)

N
N−2 .

Moreover u1 is a unique minimizer of (1.1) solving (1.2) up to a translation. Now observe that

(1.1) is equivalent to

(1.13)
(∫

RN

|∇u|2 dx
) N

N−2
≥ CN,Gmax

α∈R

{
e−α/2∗

∫

RN

G(eαu) dx
}
, for u ∈ D1,2(RN ),

and the equality holds if and only if u = eβu1(λ·) for some β ∈ R, λ > 0 and up to a

translation. Assuming that
∫
RN u

2 dx = 1, the maximum of the right hand side of (1.13) is

attained at α = N−2
4

−
∫
RN G(u) dx. Hence, taking into account (1.12) we verify that (1.13)

is equivalent to (1.9) provided that
∫
RN |u|2 dx = 1. Moreover, (1.9) is sharp and the family

λ
N
2 u1(λ·), λ > 0 are unique minimizers up to translations.

Recall that the optimality of (1.9) and the characterization of minimizers have been already

proved by Carlen [10] in the context of the Gross inequality as well as by del Pino and

Dolbeault [13] for Lp-Sobolev logarithmic inequality. A generalization of the optimal Gross

inequality in the context of Orlicz spaces is given by Adams [1]. The optimal inequality

(1.1) can be also regarded as a generalization of (1.9) and note that we do not need any

structural assumptions in the Orlicz setting as in [1]. We would like to also mention that Wang

and Zhang [32] have recently provided another proof of the logarithmic Sobolev inequality

due to Lieb and Loss [20] based on an approximation by minimizers of the classical Sobolev

inequalities.

In order to solve (1.2) under the above assumptions (g0)–(g3), we consider the associated

energy functional J : D1,2(RN) → R ∪ {∞} given by (1.3) and observe that J may be infinite

on a dense subset of D1,2(RN). We look for weak solutions of (1.2), i.e. J ′(u)(v) = 0 for any

v ∈ C∞
0 (RN), however, J cannot be Fréchet differentiable and this is the first main difficulty

in comparison to the the positive mass case (1.6) studied e.g. in [5, 6, 17, 18, 24]. Note that in

the positive mass case and under assumption (1.7), J is well-defined, of class C1 on H1(RN)
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and Jeanjean and Tanaka [17] showed that the least energy solution obtained in [5] minimizes

the energy on the Pohozaev manifold M defined by (1.4) in H1(RN). This result has been

proved directly in [24] by a critical point theory developed therein. In Theorem 1.1 (a) we

prove that there is a least energy solution minimizing J on the Pohozaev manifold M under

more general assumptions (g0)–(g3) including also the zero mass case (m = 0) as well as the

infinite mass case (m = ∞), e.g. (1.10). We also present a new and simple approach of finding

minimizers on M, see Lemma 3.3, which is equivalent to finding minimizers of (1.1).

Note that in [24] we have indeed studied the positive mass case, and if N ≥ 4 we have

found nonradial solutions and answered to the open problem [6][Section 10.8] concerning the

existence and multiplicity of nonradial solutions of (1.2). Moreover Jeanjean and Lu [18] have

recently provided a mountain pass approach and reproved the main results from [24] based on

the monotonicity trick [16]. Therefore, our next aim is to show that the similar results hold

under assumptions (g0)–(g3) and we give an answer to this problem also in the zero mass case

as well as in the infinite mass case.

Namely, let N ≥ 4 and similarly as in [4], let us fix τ ∈ O(N) such that τ(x1, x2, x3) =

(x2, x1, x3) for x1, x2 ∈ R
m and x3 ∈ R

N−2m, where x = (x1, x2, x3) ∈ R
N = R

m×R
m×R

N−2m

and 2 ≤ m ≤ N/2. We define

(1.14) Xτ :=
{
u ∈ D1,2(RN) : u(x) = −u(τx) for all x ∈ R

N
}
.

Clearly, if u ∈ Xτ is radial, i.e. u(x) = u(ρx) for any ρ ∈ O(N), then u = 0. Hence Xτ

does not contain nontrivial radial functions. Then O1 := O(m) × O(m) × id ⊂ O(N) acts

isometrically on D1,2(RN) and let D1,2
O1
(RN ) denote the subspace of invariant functions with

respect to O1.

Theorem 1.3. If N ≥ 4, then there is a solution u ∈ M∩Xτ ∩ D1,2
O1
(RN) of (1.2) such that

(1.15) J(u) = inf
M∩Xτ∩D

1,2
O1

(RN )
J > 2 inf

M
J.

Clearly, we infer that problem (1.2) with (1.8) or with (1.10) has a nonradial solution for

N ≥ 4. If, in addition, N 6= 5, then we find infinitely many nonradial solutions. Indeed, we

may assume that N − 2m 6= 1 and let us consider O2 := O(m)×O(m)×O(N − 2m) ⊂ O(N)

acting isometrically on D1,2(RN) with the subspace of invariant function denoted by D1,2
O2
(RN).

Theorem 1.4. If N ≥ 4 and N 6= 5, then the following statements hold.

(a) There is a solution u ∈ M∩Xτ ∩ D1,2
O2
(RN) of (1.2) such that

(1.16) J(u) = inf
M∩Xτ∩D

1,2
O2

(RN )
J ≥ inf

M∩Xτ∩H1
O1

(RN )
J.

(b) If, in addition, g is odd, then there is an infinite sequence of solutions (un) ⊂ M∩Xτ ∩

D1,2
O2
(RN) of (1.2) such that J(un) → ∞ as n→ ∞.

Note that there is little work on the problem (1.2) involving the zero or infinite mass

case expressed by general assumptions without Ambrosetti-Rabinowitz-type condition [2], or



6 J. Mederski

any monotonicity behaviour. The first difficulty is that J may be infinite and is not Fréchet

differentiable in its domain. The second one is related with the lack of compactness of the

problem in R
N ; even if we find a Palais-Smale sequence, we do not know whether the sequence

is bounded and contains a (weakly) convergent subsequence. Berestycki and Lions in [5]

minimized u 7→
∫
RN |∇u|2 dx on the constraint of radial functions such that |G(u)| ∈ L1(RN)

and
∫
RN G(u) dx = 1. In order to get multiplicity of solutions they approximated the zero mass

case g by suitable functions gε in the positive mass case, i.e. −g′ε(0) > 0 and gε → g uniformly

on compact subsets of R as ε→ 0+. Using results of [6] they solved the approximated problem

in the positive mass case. Letting ε → 0, a sequence of radial solutions of (1.2) have been

obtained. Another approach based on approximations of D1,2
O(N)(R

N) by
{
u ∈ D1,2

O(N)(R
N) :

u(x) = 0 for |x| ≥ L
}

for L → ∞ is due to Struwe [30]. Observe that in all these works

the radial symmetry plays an important role, since one gets the uniform decay at infinity of

functions from D1,2
O(N)(R

N) (see [5][Radial Lemma A.III]) and the the compactness lemma of

Strauss [5][Lemma A.I] is applicable. In the nonradial setting these arguments are no longer

available.

Now we sketch our approach with a new and simple approximation Jε of J . Let g+(s) =

G′
+(s), g−(s) := g+(s) − g(s) and G−(s) := G+(s) − G(s) ≥ 0 for s ∈ R. In view of (g3),

G+(u) ∈ L1(RN) for u ∈ D1,2(RN) ⊂ L2∗(RN), however G−(u) may not be integrable unless

G−(u) ≤ c|u|2
∗

for some c > 0. In order to overcome this problem, for any ε ∈ [0, 1) let us take

any even function ϕε : R → [0, 1] of class C1 such that ϕε(s) =
1
2∗
|s|2

∗

for |s| ≤ ε, ϕε(s) = 1

for |s| ≥ 2ε, and |ϕ′
ε(s)| ≤ ε2

∗−1 for any s ∈ R. Moreover we may assume that ϕε(s) ≥ ϕ1/2(s)

for s ∈ R and ε ∈ [0, 1/2]. We introduce a new functional

(1.17) Jε(u) =
1

2

∫

RN

|∇u|2 +

∫

RN

ϕε(u)G−(u) dx−

∫

RN

G+(u) dx,

and now observe that ϕε(u)G−(s) ≤ cε|s|
2∗ for any s ∈ R and some constant cε > 0 depending

on ε > 0. Hence, for ε ∈ (0, 1), Jε is well-defined on D1,2(RN) and we easy check that Jε is of

class C1. We show that any minimizing sequence of Jε on the following Pohozaev manifold

(1.18) Mε =
{
u ∈ D1,2(RN) \ {0} :

∫

RN

|∇u|2 = 2∗
∫

RN

G+(u)− ϕε(u)G−(u) dx
}

converges to a nontrivial critical point uε of Jε up to a subsequence and up to a translation

– see Lemma 3.3. The last argument requires the following variant of the classical Lions’

lemma [22], [34][Lemma 1.21] applied to Ψ = G+ satisfying (1.20).

Lemma 1.5. Suppose that (un) ⊂ D1,2(RN) is bounded and for some r > 0

(1.19) lim
n→∞

sup
y∈RN

∫

B(y,r)

|un|
2 dx = 0.

Then ∫

RN

Ψ(un) dx→ 0 as n→ ∞
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for any continuous Ψ : R → [0,∞) satisfying

(1.20) lim
s→0

Ψ(s)

|s|2∗
= lim

|s|→∞

Ψ(s)

|s|2∗
= 0.

Note that concentration-compactness arguments in the zero mass case have been conside-

red so far in more restrictive settings e.g. in [11][Lemma 3.5] or [3][Lemma 2], where one has

to require that Ψ(s) ≤ cmin{|s|p, |s|q} for some 2 < p < 2∗ < q and constant c > 0. Condition

(1.20) seems to be optimal and we prove Lemma 1.5 in Section 2, see also Lemma 2.1.

Having found a critical point uε ∈ Mε of the approximated functional Jε we let ε → 0

and passing to a subsequence we obtain a solution of (1.2) in Theorem 1.1. Next, repeating

the similar arguments, we prove Theorem 1.3 as well as Theorem 1.4 (a) in the nonradial

setting. Note that this is a simpler approach in comparison to [18, 24] and it seems that we

cannot argue directly as in these papers, since we do not require (1.6) and (1.7), which are

crucial for decompositions of Palais-Smale sequences in [18] and for the variant of Palais-Smale

condition [24][(M)β (i)]. We expect that our approach based on minimization on a Pohozaev

manifold with Lemma 3.3 as well as Lions’ type results in the spirit of Lemma 1.5 allows to

study other nonlinear elliptic problems involving general nonlinearities.

In order to prove the multiplicity result in Theorem 1.4 (b), we employ the critical point

theory from [24][Section 2]. Namely we observe that there is a homeomorphism m : U → Mε

such that

U :=
{
u ∈ D1,2(RN) :

∫

RN

|∇u|2 dx = 1 and

∫

RN

G+(u)− ϕε(u)G−(u) dx > 0
}
.

We show that Jε ◦m : U → R is still of class C1. The advantage of working with Jε ◦m is that

U is an open subset of a manifold of class C1,1 and we can use a critical point theory based

on the deformation lemma involving a Cauchy problem on U . This is not feasible on Mε,

since Mε need not be of class C1,1. We show that Jε ◦m satisfies the Palais-Smale condition

in U ∩ D1,2
O2
(RN) and we find an unbounded sequence of critical points. This requires a next

approximation of Jε described in Section 4. Similarly as above, letting ε→ 0 we prove Theorem

1.4 (b). Based on this work, under assumptions (g0)–(g3) one can obtain an unbounded

sequence of radial solutions in M ∩D1,2
O(N)(R

N), which was considered in [7, 30], however by

means of different techniques, in particular without the radial lemma of Strauss [5, 29] – we

leave details for the reader.

2. Concentration-compactness in subspaces of D1,2(RN)

Lemma 2.1. Suppose that (un) ⊂ D1,2(RN) is bounded. Then un(·+ yn)⇀ 0 in D1,2(RN) for

any (yn) ⊂ Z
N if and only if

(2.1)

∫

RN

Ψ(un) dx→ 0 as n→ ∞

for any continuous Ψ : R → [0,∞) satisfying (1.20).
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Proof. Let (un) ⊂ D1,2(RN) be such that un(·+ yn)⇀ 0 in D1,2(RN) for any (yn) ⊂ Z
N . Take

any ε > 0 and 2 < p < 2∗ and suppose that Ψ satisfies (1.20). Then we find 0 < δ < M and

cε > 0 such that

Ψ(s) ≤ ε|s|2
∗

for |s| ≤ δ,

Ψ(s) ≤ ε|s|2
∗

for |s| > M,

Ψ(s) ≤ cε|s|
p for |s| ∈ (δ,M ].

Let us define wn(x) := |un(x)| for |un(x)| > δ and wn(x) := |un(x)|
2∗/2δ1−2∗/2 for |un(x)| ≤ δ.

Then (wn) is bounded in H1(RN) and by the Sobolev inequality one has
∫

Ω+y

Ψ(un) dx =

∫

(Ω+y)∩{δ<|un|≤M}

Ψ(un) dx+

∫

(Ω+y)∩({|un|>M}∪{|un|≤δ})

Ψ(un) dx

≤ cε

∫

(Ω+y)∩{δ<|un|≤M}

|wn|
p dx+ ε

∫

(Ω+y)∩({|un|>M}∪{|un|≤δ})

|un|
2∗ dx

≤ cεC
(∫

Ω+y

|∇wn|
2 + |wn|

2 dx
)(∫

Ω+y

|wn|
p dx

)1−2/p

+ ε

∫

Ω+y

|un|
2∗ dx,

for every y ∈ R
N , where Ω = (0, 1)N and C > 0 is a constant. Then we sum the inequalities

over y ∈ Z
N and we get

∫

RN

Ψ(un) dx ≤ cεC
(∫

RN

|∇wn|
2 + |wn|

2 dx
)(

sup
y∈ZN

∫

Ω

|wn(·+ y)|p dx
)1−2/p

+ ε

∫

RN

|un|
2∗ dx.

Let us take (yn) ⊂ Z
N such that

sup
y∈ZN

∫

Ω

|wn(·+ y)|p dx ≤ 2

∫

Ω

|wn(·+ yn)|
p dx

for any n ≥ 1. Note that un(·+ yn)⇀ 0 in D1,2(RN) and passing to a subsequence we obtain

un(· + yn) → 0 in Lp(Ω). Since |wn(x)| ≤ |un(x)|, we infer that wn(· + yn) → 0 in Lp(Ω).

Therefore

lim sup
n→∞

∫

RN

Ψ(un) dx ≤ ε lim sup
n→∞

∫

RN

|un|
2∗ dx,

and since ε > 0 is arbitrary, we conclude (2.1). On the other hand, suppose that un(· + yn)

does not converges to 0 for some (yn) ⊂ Z
N and (2.1) holds. We may assume that un(·+yn) →

u0 6= 0 in Lp(Ω) for some bounded domain Ω ⊂ R
N and 2 < p < 2∗. Take any ε > 0, q > 2∗

and Ψ(s) := min{|s|p, εp−q|s|q} for s ∈ R. Then
∫

RN

Ψ(un) dx ≥

∫

Ω∩{|un|≥ε}

|un|
p dx+

∫

Ω∩{|un|≤ε}

εq−p|un|
q dx

=

∫

Ω

|un|
p dx+

∫

Ω∩{|un|≤ε}

εp−q|un|
q − |un|

p dx

≥

∫

Ω

|un|
p dx− 2εp|Ω|.

Thus we get un → 0 in Lp(Ω) and this contradicts u0 6= 0. �
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Proof of Lemma 1.5. Suppose that there is (yn) ⊂ Z
N such that un(·+ yn) does not converge

weakly to 0 in D1,2(RN). Since un(·+ yn) is bounded, then there is u0 6= 0 such that, up to a

subsequence,

un(·+ yn)⇀ u0

as n → ∞. We find y ∈ R
N such that u0χB(y,r) 6= 0 in L2(B(y, r)). Note that passing to a

subsequence un(·+ yn) → u0 in L2(B(y, r)). Then, in view of (1.19)
∫

B(y,r)

|un(·+ yn)|
2 dx =

∫

B(yn+y,r)

|un|
2 dx→ 0

as n → ∞, which contradicts the fact un(· + yn) → u0 6= 0 in L2(B(y, r)). Therefore un(· +

yn)⇀ 0 in D1,2(RN) for any (yn) ⊂ Z
N and by Lemma 2.1 we conclude. ✷

Let us consider x = (x1, x2, x3) ∈ R
N = R

m × R
m × R

N−2m with 2 ≤ m ≤ N/2 such that

x1, x2 ∈ R
m and x3 ∈ R

N−2m. Let O1 = O(m) × O(m) × id ⊂ O(N). Then for O1 invariant

functions we get the following corollary, which proof is postponed to Appendix and follows

from Proposition A.2.

Corollary 2.2. Suppose that (un) ⊂ D1,2
O1
(RN) is bounded, r0 > 0 is such that for all r ≥ r0

(2.2) lim
n→∞

sup
z∈RN−2m

∫

B((0,0,z),r)

|un|
2 dx = 0.

Then ∫

RN

Ψ(un) dx→ 0 as n→ ∞

for any continuous function Ψ : R → [0,∞) such that (1.20) holds.

3. Proofs of Theorem 1.1 and Theorem 1.2

We prove the following Pohozaev type result using a truncation argument due to Kavain,

cf. [31][Lemma 3.5] and [34][Theorem B.3].

Proposition 3.1. Let u ∈ D1,2(RN) be a weak solution of (1.2). Then u ∈ W 2,q
loc (R

N) for any

q < +∞, and

(3.1)

∫

RN

|∇u|2 dx = 2∗
∫

RN

G(u) dx

provided that G−(u) ∈ L1(RN).

Proof. Since

|g(u)| ≤ c(1 + |u|2
∗−1)

for u ∈ R and for some constant c > 0, by Brezis and Kato theorem [9] we infer that

u ∈ W 2,q
loc (R

N ) for any q < +∞. Let ϕ ∈ C∞
0 (R) be such that 0 ≤ ϕ ≤ 1, ϕ(r) = 1 for r ≤ 1
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and ϕ(r) = 0 for r ≥ 2. Similarly as in [34][Theorem B.3] we define ϕn ∈ C∞
0 (RN) by the

following formula

ϕn(x) = ϕ
( |x|2
n2

)
.

Then there exists C > 0 such that

ϕn(x) ≤ C, and |x||∇ϕn(x)| ≤ C

for every n and x ∈ R
N . Recall that

∆uϕn〈x,∇u〉 = div
(
ϕn(∇u〈x,∇u〉 − x

|∇u|2

2
)
)
+
N − 2

2
ϕn|∇u|

2

−〈∇ϕn,∇u〉〈x,∇u〉+ 〈∇ϕn, x〉
|∇u|2

2
.

Then by the divergence theorem it is standard to show that

N − 2

2

∫

RN

ϕn|∇u|
2 dx =

∫

RN

−〈∇ϕn,∇u〉〈x,∇u〉+ 〈∇ϕn, x〉
|∇u|2

2
dx

+N

∫

RN

ϕnG(u) dx+

∫

RN

〈∇ϕn, x〉G(u) dx.

Since 〈∇ϕn, x〉 is bounded, 〈∇ϕn, x〉 → 0 as n→ ∞ and G(u) ∈ L1(RN), then by the Lebesgue

dominated convergence theorem we get
∫

RN

−〈∇ϕn,∇u〉〈x,∇u〉+ 〈∇ϕn, x〉
|∇u|2

2
dx+

∫

RN

〈∇ϕn, x〉G(u) dx→ 0

as n→ ∞. Since ϕn(x) → 1 and we get the required equality. �

Let X := D1,2(RN) and we set Gε(s) := G+(s) − ϕε(u)G−(s), gε(s) := G′
ε(s) for s ∈ R.

Note that there is c > 0 such that |gε(s)| ≤ c|s|2
∗−1 for s ∈ R, which implies that Jε is of class

C1. Moreover let

Mε :=
{
u ∈ X :

∫

RN

|∇u|2 − 2∗
∫

RN

Gε(u) dx = 0
}
,

S :=
{
u ∈ X : ‖u‖ = 1

}
,

P :=
{
u ∈ X :

∫

RN

Gε(u) dx > 0
}
,

U := S ∩ P.

Proposition 3.2. The following holds for ε > 0.

(i) P is open and nonempty. Moreover there is a map mP : P → Mε such that mP(u) =

u(r·) ∈ Mε with

(3.2) r = r(u) =

(
2∗

∫
RN Gε(u) dx

)1/2

‖u‖
> 0.
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(ii) m := mP |U : U → Mε is a homeomorphism with the inverse m−1(u) = u(‖u‖
2

N−2 ·),

Jε ◦mP : P → R is of class C1 and

(Jε ◦mP)
′(u)(v) = J ′

ε(mP(u))(v(r(u)·)

= r(u)2−N

∫

RN

〈∇u,∇v〉 dx− r(u)−N

∫

RN

gε(u)v dx

for u ∈ P and v ∈ X.

(iii) Jε is coercive on Mε, i.e. for (un) ⊂ Mε, Jε(un) → ∞ as ‖un‖ → ∞, and

(3.3) cε := inf
Mε

Jε = inf
U
Jε ◦m > 0.

(iv) If un → u, un ∈ U and u ∈ ∂U , where the boundary of U is taken in S, then (Jε◦m)(u) →
∞ as n→ ∞.

Proof. Similarly as in [5][page 325] or in [24][Remark 4.2] we check that P 6= ∅. Next, we easy

verify (i)–(iv), e.g. arguing as in the positive mass case in [24][Proposition 4.1]. �

The following lemma is crucial and allows to avoid the analysis of decompositions of

Palais-Smale sequences required in [18, 24].

Lemma 3.3. Suppose that (un) ⊂ Mε, Jε(un) → cε and

un ⇀ ũ 6= 0 in D1,2(RN), un(x) → ũ(x) for a.e. x ∈ R
N

for some ũ ∈ X. Then un → ũ, ũ is a critical point of Jε and Jε(ũ) = cε.

Proof. Take any v ∈ X and observe that by the Vitaly convergence theorem

lim inf
n→∞

lim
t→0

1

t

((
2∗

∫

RN

Gε(un + tv) dx
)N−2

N
−

(
2∗

∫

RN

Gε(un) dx
)N−2

N
)

(3.4)

= lim inf
n→∞

N − 2

N

(
2∗

∫

RN

Gε(un) dx
)− 2

N
(
2∗

∫

RN

gε(un)(v) dx
)

≥ lim inf
n→∞

N − 2

N

(∫

RN

|∇un|
2 dx

)− 2
N
(
2∗

∫

RN

gε(ũ)(v) dx
)

=
N − 2

N

(1
2
−

1

2∗

) 2
N

c
− 2

N
ε

(
2∗

∫

RN

gε(ũ)v dx
)
,

where the last equality holds, since un ∈ Mε and

Jε(un) =
(1
2
−

1

2∗

)∫

RN

|∇un|
2 dx→ cε.

Moreover

(3.5) c
2
N
ε

(
2∗

∫

RN

G(un) dx
)N−2

N
= c

2
N
ε

(∫

RN

|∇un|
2 dx

)N−2
N

=
(1
2
−

1

2∗

) 2
N

∫

RN

|∇un|
2 dx+o(1).
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Then we find tn → 0 such that un + tnv ∈ P, and observe that Jε(mP(un + tnv)) ≥ cε, that is

r(un + tnv)
2−N

(1
2
−

1

2∗

)∫

RN

|∇(un + tnv)|
2 dx ≥ cε.

Hence
(1
2
−

1

2∗

) 2
N

∫

RN

|∇(un + tnv)|
2 dx ≥ c

2
N
ε

(
2∗

∫

RN

Gε(un + tnv) dx
)N−2

N

and by (3.4), (3.5) we obtain

lim inf
n→∞

(1
2
−

1

2∗

) 2
N
(
2

∫

RN

〈∇un,∇v〉 dx+ tn

∫

RN

|∇v|2 dx
)

≥ lim inf
n→∞

1

tn
c

2
N
ε

((
2∗

∫

RN

G(un + tnv) dx
)N−2

N

−
(
2∗

∫

RN

G(un) dx
)N−2

N
)

≥ lim inf
n→∞

N − 2

N

(1
2
−

1

2∗

) 2
N
(
2∗

∫

RN

gε(ũ)v dx
)
.

Thus ∫

RN

〈∇ũ,∇v〉 dx ≥

∫

RN

gε(ũ)v dx

for any v ∈ X and we infer that ũ is a critical point of Jε. In view of the Pohozaev identity

(cf. Proposition 3.1), ũ ∈ Mε, mP(ũ) = ũ and

cε ≤ J(ũ) =
(1
2
−

1

2∗

)∫

RN

|∇ũ|2 dx ≤ lim inf
n→∞

(1
2
−

1

2∗

)∫

RN

|∇un|
2 dx = cε.

Therefore ‖un‖ → ‖ũ‖ and un → ũ. �

Proof of Theorem 1.1. (a) Let (un) ⊂ Mε be a minimizing sequence of Jε. i.e. Jε(un) → cε.

Since Jε is coercive on Mε, (un) is bounded. Observe that

(3.6) 2∗
∫

RN

G+(un) dx ≥

∫

RN

|∇un|
2 dx =

(1
2
−

1

2∗

)−1

cε + o(1),

lim
s→0

G+(s)/s
2∗ = lim

|s|→∞
G+(s)/s

2∗ = 0,

and in view of Lemma 1.5, (1.19) is not satisfied. Therefore, passing to a subsequence, we find

uε ∈ D1,2(RN) and (yn) ⊂ R
N such that

un(·+ yn)⇀ uε 6= 0 and un(x+ yn)⇀ uε(x)

for a.e. x ∈ R
N as n → ∞. By Lemma 3.3 we infer that uε ∈ Mε is a critical point of Jε

at level cε. Now we let ε → 0 and in order to avoid confusion with notation, we denote the

dependence of P and mP on ε by Pε and mPε respectively. Take any u ∈ M and observe that

Jε(uε) ≤ Jε(mPε(u)) =
(1
2
−

1

2∗

)(∫

RN

|∇u|2 dx
)N

2
(
2∗

∫

RN

G+(u)− ϕε(u)G−(u) dx
)−N−2

2

≤
(1
2
−

1

2∗

)(∫

RN

|∇u|2 dx
)N

2
(
2∗

∫

RN

G(u) dx
)−N−2

2

= J(u)(3.7)
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Hence

Jε(uε) ≤ inf
M
J

and

(3.8)

∫

RN

|∇uε|
2 dx ≤

(1
2
−

1

2∗

)−1

inf
M
J.

Moreover,

Jε(uε) = Jε(mPε(uε)) ≥ J1/2(mP1/2
(uε)) ≥ J1/2(u1/2)

and we obtain

2∗
∫

RN

G+(uε) dx ≥

∫

RN

|∇uε|
2 dx ≥

(1
2
−

1

2∗

)−1

J1/2(u1/2)

for ε ∈ (0, 1/2]. Since uε is bounded in D1,2(RN) and
∫
RN G+(uε) dx is bounded away from 0,

in view of Lemma 1.5 we infer that (1.19) does not hold. Therefore, passing to a subsequence

and up to a translation, we may assume that uε ⇀ u0 6= 0 and uε(x) → u0(x) for a.e. x ∈ R
N

as ε → 0. Observe that for any ψ ∈ C∞
0 (RN) one has

J ′
ε(uε)(ψ) =

∫

RN

〈uε, ψ〉 dx−

∫

RN

g+(uε)ψ dx+

∫

RN

ϕε(uε)g−(uε)ψ + ϕ′
ε(uε)G−(uε)ψ dx

→ J ′(u0)(ψ),

hence u0 is a nontrivial weak solution of (1.2). Since

2∗
∫

RN

G−(uε) dx = 2∗
∫

RN

G+(uε) dx−

∫

RN

|∇uε|
2 dx

is bounded, we infer that G−(u0) ∈ L1(RN) and by the Pohozaev identity in Proposition 3.1,

u0 ∈ M. Taking into account (3.8),

J(u0) =
(1
2
−

1

2∗

)∫

RN

|∇u0|
2 ≤

(1
2
−

1

2∗

)
lim inf
ε→0

∫

RN

|∇uε|
2 dx

≤ inf
M
J,

hence J(u0) = infM J . Now suppose that g is odd. Then G+ and G− are even. Observe that

for the minimizing sequence (un) ⊂ Mε we can consider (|un|(·rn)) ⊂ Mε with suitable rn ≥ 1

and then

Jε(|un|(·rn)) = r2−N
n

(1
2
−

1

2∗

)∫

RN

|∇|un||
2 dx ≤ Jε(un).

Hence (|un|(·rn))) is a minimizing sequence of Jε and therefore we can assume that uε ≥ 0.

Hence u0 ≥ 0 and in view of the strong maximum principle u0 > 0.

(b) Suppose that J(u) = c := infM J . Note that G(u + v) ∈ L1(RN ) for any v ∈ C∞
0 (RN).

Let us fix v ∈ C∞
0 (RN) and similarly as in proof of Lemma 3.3 we show that by the Vitaly

convergence theorem

lim
t→0

1

t

((
2∗

∫

RN

G(u+ tv) dx
)N−2

N

−
(
2∗

∫

RN

G(u) dx
)N−2

N
)

=
N − 2

N

(1
2
−

1

2∗

) 2
N
c−

2
N

(
2∗

∫

RN

g(u)v dx
)
.
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Note that ∫

RN

G(u+ tv) dx > 0

if |t| is sufficiently small. Hence (u + tv)(r·) ∈ M for r =
(
2∗

∫
RN G(u + tv) dx

)1/2

/‖u‖,

J
(
(u+ tv)(r·)

)
≥ c, i.e.

(1
2
−

1

2∗

) 2
N

∫

RN

|∇(u+ tv)|2 dx ≥ c
2
N

(
2∗

∫

RN

G(u+ tv) dx
)N−2

N

.

Similarly as in proof of Lemma 3.3 we show that J ′(u)(v) = 0. Therefore u is a weak solution

of (1.2). Take λ :=
∫
RN G(u) dx = 1

2∗
‖u‖2 > 0. Then, for any v ∈ D1,2(RN) such that

(3.9)

∫

RN

G(v) dx = λ

we get v(r·) ∈ M for r := (2∗λ)1/2/‖v‖. Hence J(v(r·)) ≥ J(u),
(1
2
−

1

2∗

)
r2−N‖v‖2 ≥

(1
2
−

1

2∗

)
‖u‖2,

and we get

‖v‖2 ≥ ‖u‖2.

Therefore u is a minimizer of the functional D1,2(RN) ∋ v 7→ ‖v‖2 ∈ R under the constraint

(3.9). In view of Mariş [23][Theorem 2], u is radial up to a translation.

(c) Take any u ∈ D1,2(RN) such that
∫
RN G(u) dx > 0. Then u(r·) ∈ M for some r > 0 and the

inequality J(u(r·)) ≥ infN J is equivalent to (1.1) with CN,G = 2∗
(

1
2
− 1

2∗

)− 2
N−2

(infM J)
2

N−2 .

Clearly, if u ∈ M and J(u) = infM J , then u is a minimizer of (1.1).

Now let u be a minimizer of (1.1). Then
∫
RN G(u) dx > 0 and u(λ·) ∈ M for a unique

λ > 0 and J(u(λ·)) = infM J . ✷

Proof of Theorem 1.2. (a) follows from Theorem 1.1 (a).

(b) Observe that G(s) has nonpositive values for m ≥ m0 and in view of (1.5), (1.2) does not

have any nontrivial solutions. Similarly combining (1.5) with J ′(u)(u) = 0 we infer that there

are nontrivial solutions also for m ≤ 0. ✷

4. Proofs of Theorem 1.3 and Theorem 1.4

Now, let us consider O1-invariant functions.

Proof of Theorem 1.3. Assume thatX := D1,2
O1
(RN)∩Xτ and 2 ≤ m < N/2. Let (un) ⊂ Mε∩X

be a sequence such that Jε(un) → β with

β := inf
Mε∩X

Jε.
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Since Jε is coercive on Mε, (un) is bounded. Observe that

2∗
∫

RN

G+(un) dx ≥

∫

RN

|∇un|
2 dx =

(1
2
−

1

2∗

)−1

β + o(1)

and in view of Corollary 2.2, passing to a subsequence, we find (yn) ⊂ {0} × {0} × R
N−2m

such that

un(·+ yn)⇀ uε 6= 0 and un(x+ yn) → uε(x)

for a.e. x ∈ R
N as n → ∞. Similarly as in proof of Lemma 3.3 we show that uε is a critical

point of Jε|X and by the Palais principle of symmetric criticality [26], J ′
ε(uε) = 0. By the

Pohozaev identity (cf. Proposition 3.1), uε ∈ Mε ∩X, mP(uε) = uε and

β ≤ Jε(uε) =
(1
2
−

1

2∗

)∫

RN

|∇uε|
2 dx ≤ lim inf

n→∞

(1
2
−

1

2∗

)∫

RN

|∇un(·+ yn)|
2 dx = β.

Letting ε → 0 as in proof of Theorem 1.1, we find a critical point u ∈ M∩X of J such that

J(u) = inf
M∩X

J.

In view of the Palais principle of symmetric criticality [26], u solves (1.2). Let

Ω1 := {x ∈ R
N : |x1| > |x2|},

Ω2 := {x ∈ R
N : |x1| < |x2|}.

Since u ∈ Xτ ∩D1,2
O1
(RN), we get χΩ1u ∈ D1,2(RN) and χΩ2u ∈ D1,2(RN). Moreover χΩ1u ∈ M

and

J(u) = J(χΩ1u) + J(χΩ2u) = 2J(χΩ1u) ≥ 2 inf
M
J.

Suppose that J(u) = 2 infM J . Then

J(χΩ1u) = inf
M
J

and in view of Theorem 1.1 (b), χΩ1u is radial (up to a translation), which is a contradiction.

This completes proof of (1.15). The remaining case 2 ≤ m = N/2 is contained in Theorem

1.4. ✷

Now let us consider O2-invariant functions. In order to the get the multiplicity of critical

points, we need to modify Jε in order to ensure that (4.1) and (4.5) below are satisfied. Take

any even function ψλ : R → [0, 1] of class C1 such that ψλ(s) = 1 for λ ≤ |s| ≤ 1/λ and

supp(ψλ) is compact and does not contain 0 for λ ∈ (0, 1]. We set ψ0 ≡ 1. Let G+,λ(s) :=

ψλ(s)G+(s) and instead of Gε we consider now

G(ε,λ)(s) := G+,λ(s)− λ|s|2
∗

− ϕε(s)G−(s).

Take g+,λ(s) := (ψλ(s)G+(s))
′ and we check that

(4.1) lim
s→0

g+,λ(s)/|s|
2∗−1 = lim

|s|→∞
g+,λ(s)/|s|

2∗−1 = 0.
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Let us introduce the following functional

J(ε,λ)(u) :=
1

2
‖u‖2 −

∫

RN

G(ε,λ)(u) dx

for ε ∈ (0, 1/2] and λ ∈ [0, 1]. Clearly, Proposition 3.2 holds if we replace Jε, gε and Gε

by J(ε,λ), g(ε,λ) := G′
(ε,λ) and G(ε,λ) respectively and λ > 0 is sufficiently small, i.e. there is

λ0 ∈ (0, 1] such that G(0,λ)(ξ0) > 0 for λ ∈ [0, λ0]. We may also assume that ψλ(s) ≥ ψλ0(s),

hence G(0,λ)(s) ≥ G(0,λ0)(s) for any s ∈ R and λ ∈ [0, λ0]. Here and what follows P, U , m

depend on ε and λ, and are given in Proposition 3.2, where Jε, gε and Gε are replaced by

J(ε,λ), g(ε,λ) and G(ε,λ) respectively. M(ε,λ) stands for the Pohozaev manifold for J(ε,λ).

Lemma 4.1. Suppose that X := D1,2
O2
(RN) ∩ Xτ and (un) ⊂ U ∩ X is a (PS)β-sequence of

(J(ε,λ)|X ◦m|U∩X) at level β ∈ R, i.e.

(J(ε,λ)|X ◦m|U∩X)
′(un) → 0 and (J(ε,λ)|X ◦m|U∩X)(un) → β.

(i) Then, passing to a subsequence, un → u0 for some u0 ∈ U ∩X.

(ii) J ′
(ε,λ)(m(u0)) = 0 provided that λ ∈ (0, λ0].

Proof. Note that, if β = infMε∩X J(ε,λ), then we can argue as in Lemma 3.3. Let (un) ⊂ U ∩X

be a sequence such that (J(ε,λ)|X ◦m|U∩X)
′(un) → 0 and (J(ε,λ)|X ◦m|U∩X)(un) → β. Observe

that β ≥ infMε∩X J(ε,λ) > 0. Since J(ε,λ) is coercive on M(ε,λ), (m(un)) is bounded and, passing

to subsequence, we may assume that m(un) ⇀ ũ and m(un)(x) ⇀ ũ(x) for a.e. x ∈ R
N . In

view of Lemma A.1 (b) we infer that

(4.2)

∫

RN

G+,λ(m(un)) dx→

∫

RN

G+,λ(ũ) dx

as n→ ∞. If ũ = 0, then we get a contradiction with the following inequality

2∗
∫

RN

G+,λ(m(un)) dx ≥

∫

RN

|∇m(un)|
2 dx =

(1
2
−

1

2∗

)−1

β + o(1).

Therefore ũ 6= 0 and we easy check that r(un) given by (3.2) is bounded and bounded away

from 0. For any v ∈ X we set vn := v(r(un)
−1·) and we find the following decomposition

vn =
(∫

RN

〈∇un,∇vn〉 dx
)
un + ṽn

with

ṽn ∈ TunS :=
{
u ∈ D1,2(RN) :

∫

RN

〈∇un,∇u〉 dx = 0
}
.

Clearly (ṽn) ⊂ X is bounded and (J(ε,λ)|X ◦m|U∩X)
′(un)(ṽn) → 0 as n→ ∞. Since

∫

RN

〈∇un,∇vn〉 dx = r(un)
N−2

∫

RN

〈∇m(un),∇v〉 dx→ 0
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for any v ∈ X such that
∫
RN 〈∇ũ,∇v〉 dx = 0, we get

(
J(ε,λ)|X ◦m|U∩X

)′
(un)(v(r(un)

−1·)) =
(∫

RN

〈∇un,∇vn〉 dx
)(
J(ε,λ)|X ◦m|U∩X

)′
(un)(un)

+
(
J(ε,λ)|X ◦m|U∩X

)′
(un)(ṽn)

→ 0.

By Proposition (3.2) (ii) we obtain

(4.3) J ′
(ε,λ)(ũ)(v) = lim

n→∞
J ′
(ε,λ)(m(un))(v) = lim

n→∞

(
J(ε,λ)|X ◦m|U∩X

)′
(un)(v(r(un)

−1·)) = 0

for v ∈ X such that
∫
RN 〈∇ũ,∇v〉 dx = 0. Now we define a linear map ξ : X → R by the

following formula

ξ(v) =

∫

RN

〈∇ũ,∇v〉 dx−

∫

RN

g(ε,λ)(ũ)v dx

−
(∫

RN

|∇ũ|2 dx−

∫

RN

g(ε,λ)(ũ)ũ dx
)
‖ũ‖−2

∫

RN

〈∇ũ,∇v〉 dx

and observe that ξ(ũ) = 0. Since any v ∈ X has the following decomposition

v =
(∫

RN

〈∇ũ,∇v〉 dx
)
‖ũ‖−2ũ+ ṽ, where

∫

RN

〈∇ũ,∇ṽ〉 dx = 0,

in view of (4.3) we infer that ξ ≡ 0. Hence by the Palais principle of symmetric criticality [26],

ũ is a weak solution of the problem

(4.4) − θ∆ũ = g(ε,λ)(ũ)

with

θ = 1−
(∫

RN

|∇ũ|2 dx−

∫

RN

g(ε,λ)(ũ)ũ dx
)
‖ũ‖−2 = ‖ũ‖−2

∫

RN

g(ε,λ)(ũ)ũ dx.

Moreover, similarly as above we define linear maps ξn : X → R by the following formula

ξn(v) =

∫

RN

〈∇m(un),∇v〉 dx−

∫

RN

g(ε,λ)(m(un))v dx

−
(∫

RN

|∇m(un)|
2 dx−

∫

RN

g(ε,λ)(m(un))m(un) dx
)
‖m(un)‖

−2

∫

RN

〈∇m(un),∇v〉 dx,

and we show that ξn → 0 in X∗. Hence, passing to a subsequence

θn := 1−
(∫

RN

|∇m(un)|
2 dx−

∫

RN

g(ε,λ)(m(un))m(un) dx
)
‖m(un)‖

−2

= ‖m(un)‖
−2

∫

RN

g(ε,λ)(m(un))m(un) dx

converges to θ. Since (4.1) holds, in view of Lemma A.1 and (A.3) we infer that
∫

RN

g+,λ(m(un))m(un) dx→

∫

RN

g+,λ(ũ)ũ dx
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and by the Fatou’s lemma

lim sup
n→∞

∫

RN

g(ε,λ)(m(un))m(un) dx ≤

∫

RN

g(ε,λ)(ũ)ũ dx.

Since θn → θ, we conclude that ‖m(un)‖ → ‖ũ‖ and therefore m(un) → ũ and ũ ∈ M(ε,λ).

By Proposition 3.2 (ii), un → u0 := m−1(ũ). We show that θ 6= 0 provided that λ > 0. By

a contradiction, suppose that θ = 0, then g(ε,λ)(ũ(x)) = 0 for a.e. x ∈ R
N . Take Σ := {x ∈

R
N : g(ε,λ)(ũ(x)) = 0} and clearly R

N \ Σ has measure zero and let Ω := {x ∈ Σ : ũ(x) 6= 0}.

Suppose that δ := infx∈Ω |ũ(x)| > 0. Since ũ ∈ L6(RN)\{0}, we infer that Ω has finite positive

measure, ũ ∈ H1(RN) and note that
∫

RN

|ũ(x+ h)− ũ(x)|2 dx ≥ δ

∫

RN

|χΩ(x+ h)− χΩ(x)|
2 dx for any h ∈ R

N ,

where χΩ is the characteristic function of Ω. In view of [35][Theorem 2.1.6] we infer that

χΩ ∈ H1(RN), hence we get a contradiction. Therefore we find a sequence (xn) ⊂ R
N such

that ũ(xn) → 0, ũ(xn) 6= 0 and g(ε,λ)(ũ(xn)) = 0. Again we get a contradiction, since

(4.5) lim sup
s→0+

g(ε,λ)(s)/s
2∗−1 ≤ −λ < 0.

Therefore θ 6= 0 and in view of the Pohozaev identity (cf. Proposition 3.1) we obtain that

θ = 1, since ũ ∈ M(ε,λ). Hence (ii) holds. �

Proof of Theorem 1.4.

(a) Assume that X := D1,2
O2
(RN) ∩Xτ . Similarly as in proof of Theorem 1.1 we find a critical

point u ∈ M∩X of J |X such that

J(u) = inf
M∩X

J

and by the Palais principle of symmetric criticality [26], u solves (1.2).

(b) Step 1. For any ε ∈ (0, 1/2] and λ ∈ (0, λ0], we show the existence of a sequence (uk(ε,λ))

of critical points of J(ε,λ) such that J(ε,λ)(u
k
(ε,λ)) as k → ∞. Let us fix λ ∈ [0, λ0]. In view

of [6][Theorem 10], for any k ≥ 1 we find an odd continuous map

τ : Sk−1 → H1
0 (B(0, R)) ∩ L∞(B(0, R))

such that τ(σ) is a radial function and τ(σ) 6= 0 for all σ ∈ Sk−1, where Sk−1 is the unit sphere

in R
k. Moreover, since G(0,λ)(ξ0) > 0, we may find some constants c2, c3 > 0 independent on

R such that ∫

B(0,R)

G(0,λ)(τ(σ)) dx ≥ c2R
N − c3R

N−1

for any σ ∈ Sk−1. As in [24][Remark 4.2] we define a map

τ̃ : Sk−1 → H1
0 (B(0, R)) ∩ L∞(B(0, R))

such that τ̃(σ)(x1, x2, x3) = τ(σ)(x1, x2, x3)ϕ(|x1| − |x2|) and ϕ : R → [0, 1] is an odd and

smooth function such that ϕ(x) = 1 for x ≥ 1, ϕ(x) = −1 for x ≤ −1. If λ = λ0, then we
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denote this map by ˜τλ0 . Observe that τ̃(σ) ∈ X and, again as in [24][Remark 4.2], we show

that ∫

B(0,R)

G(0,λ)(τ̃(σ)) dx ≥

∫

B(0,R)

G(0,λ)(τ(σ)) dx− c1R
N−1

for σ ∈ Sk−1 and some constant c1 > 0. Therefore, for sufficiently large R = R(λ)

(4.6)

∫

B(0,R)

G(ε,λ)(τ̃(σ)) dx ≥

∫

B(0,R)

G(0,λ)(τ̃ (σ)) dx > 0

for any ε ∈ [0, 1/2] and λ ∈ [0, λ0]. Hence τ̃ (σ) ∈ P ∩ X if ε > 0. Taking p(u) := u/‖u‖ we

obtain that

(4.7) γ
(
p
(
τ̃ (Sk−1)

))
≥ k,

where γ stands for the Krasnoselskii genus for closed and symmetric subsets of X. Therefore

the Lusternik-Schnirelman values

(4.8) βk
(ε,λ) := inf

{
β ∈ R : γ

(
Φβ

(ε,λ)

)
≥ k

}

are finite, where Φ(ε,λ) := J(ε,λ) ◦m|X : U ∩X → R and Φβ
(ε,λ) :=

{
u ∈ U ∩X : Φ(ε,λ)(u) ≤ β

}

for any ε ∈ (0, 1/2] and λ ∈ [0, λ0]. Recall that P, U , m depend on ε and λ. Moreover, observe

that

Φ(ε,λ)(u) = J(ε,λ)(m(u)) =
(1
2
−

1

2∗

)(
2∗

∫

RN

ψλ(u)G+(u)− ϕε(u)G−(u)−
λ

2∗
|u|2

∗

dx
)−N−2

2
,

and in view of (4.6) we obtain the following estimates

βk
(1/2,0) ≤ βk

(ε,0) ≤ βk
(ε,λ) ≤ βk

(ε,λ0)
(4.9)

≤ Mk := sup
u∈p(τ̃λ0(S

k−1))

(1
2
−
λ

2∗

)(
2∗

∫

B(0,R(λ0))

G(0,λ0)(u) dx
)−N−2

2
,

for any ε ∈ (0, 1/2] and λ ∈ [0, λ0]. Since Lemma 4.1 holds, in view of [24][Theorem 2.2 (c)] we

get an infinite sequence of critical points, namely (βk
(ε,λ))k≥1 are critical values provided that

ε ∈ (0, 1/2] and λ ∈ (0, λ0]. It is standard to show that the sequence is unbounded. Indeed,

as in [24,27] we show that β1
(ε,λ) < β2

(ε,λ) < ... < βk
(ε,λ) < ... is an increasing sequence of critical

values, due to Lemma 4.1 and Φ(ε,λ)(u) → ∞ as u → u0 for some u0 ∈ ∂(U ∩ X). Suppose

that β̄ := limk→∞ βk
(ε,λ) <∞. Note that

Kβ̄ :=
{
u ∈ U ∩X : Φ′

(ε,λ)(u) = 0 and Φ(ε,λ)(u) = β̄
}

is compact and γ
(
clB(Kβ̄, δ)

)
= γ

(
Kβ̄

)
< ∞ for some small δ > 0. Similarly as in proof

of [24][Theorem 2.2] we construct a continuous and odd map h : Φβ̄+η
(ε,λ) \B(Kβ̄ , δ) → Φβ̄−η

(ε,λ) for

sufficiently small η > 0 such that

Φβ̄+η
(ε,λ) \

(
B(Kβ̄, δ) ∪ Φβ̄−η

(ε,λ)

)
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does not contain any critical point. Hence

γ
(
Φβ̄+η

(ε,λ)

)
≤ γ

(
(clB(Kβ̄ , δ)

)
+ γ

(
Φβ̄+η

(ε,λ) \B(Kβ̄, δ)
)

≤ γ
(
clB(Kβ̄ , δ)

)
+ γ

(
Φβ̄−η

(ε,λ)

)
=: l <∞.

We obtain a contradiction with γ
(
Φβ̄+η

(ε,λ)

)
≥ γ

(
Φ

βl+2
(ε,λ)

(ε,λ)

)
≥ l+1. Therefore Φ(ε,λ) has a sequence

of critical points (uk(ε,λ)) ⊂ S with

Φ(ε,λ)

(
(uk(ε,λ))

)
= βk

(ε,λ) → ∞

as k → ∞, for ε ∈ (0, 1/2] and λ ∈ (0, λ0]. Hence, by Lemma 4.1 (ii), J(ε,λ) has an unbounded

sequence of critical points (m(uk(ε,λ))) for ε ∈ (0, 1/2] and λ ∈ (0, λ0].

Step 2. We show the existence a sequence (ukε) of critical points of Jε for any ε ∈ (0, 1/2] such

that Jε(u
k
ε) → ∞ as k → ∞. Indeed, take λn ∈ (0, λ0] such that λn → 0 as n→ ∞ and in view

of (4.9), vn := m(uk(ε,λn)
) is bounded. Passing to a subsequence, vn ⇀ v0 and vn(x) → v0(x)

for a.e. x ∈ R
N . Since J ′

(ε,λn)
(vn) = 0, we obtain that J ′

ε(v0) = 0 and by Lemma A.1 (b)
∫

RN

G+(vn) dx→

∫

RN

G+(v0) dx

as n→ ∞. If v0 = 0, then we get a contradiction since

0 < lim inf
n→∞

Φ(ε,λn)(u
k
(ε,λn)) ≤ lim inf

n→∞

(1
2
−

1

2∗

)∫

RN

G+(vn)− ϕε(vn)G−(vn) dx ≤ 0.

Therefore v0 ∈ Mε and ukε := m−1(v0) is a critical point of Φ(ε,0). Moreover by Fatou’s lemma

‖v0‖
2 + 2∗

∫

RN

ϕε(v0)G−(v0) dx ≤ 2∗ lim inf
n→∞

(
‖vn‖

2 + 2∗
∫

RN

ϕε(vn)G−(vn) dx
)

≤ 2∗ lim inf
n→∞

∫

RN

G+(vn) dx = 2∗
∫

RN

G+(v0) dx

= ‖v0‖
2 + 2∗

∫

RN

ϕε(v0)G−(v0) dx,

hence vn → v0. Therefore uk(ε,λn)
→ ukε and βk

(ε,λn)
→ Φε(u

k
ε) as n→ ∞. Moreover Jε(m(ukε)) =

Φε(u
k
ε) ≥ βk

(ε,0) → ∞ as k → ∞.

Step 3. We show the existence of an unbounded sequence of critical point of J with finite

energy. Take εn ∈ (0, 1/2] such that εn → 0 as n→ ∞. Again, in view of (4.9) and passing to

a subsequence, we may assume that vn := m(ukεn) ⇀ vk and vn(x) → vk(x) for a.e. x ∈ R
N .

Since J ′
εn(vn) = 0, we obtain that J ′(vk)(ψ) = 0 for any ψ ∈ C∞

0 (RN ), and by Lemma A.1
∫

RN

G+(vn) dx→

∫

RN

G+(v
k) dx

as n→ ∞. If vk = 0, then

βk
(1/2,0) ≤ lim inf

n→∞
Φ(εn,0)(u

k
εn) = lim inf

n→∞

(1
2
−

1

2∗

)∫

RN

G+(vn)− ϕεn(vn)G−(vn) dx ≤ 0
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and we get a contradiction since βk
(1/2,0) is a critical value and by (3.3),

βk
(1/2,0) ≥ inf

M1/2

J1/2 > 0.

By the Fatou’s lemma

‖vk‖2 + 2∗
∫

RN

G−(v
k) dx ≤ lim inf

n→∞

(
‖vn‖

2 + 2∗
∫

RN

ϕεn(vn)G−(vn) dx
)
= G+(v

k) dx

and G−(v
k) ∈ L1(RN). In view of Proposition 3.1, we obtain that vk ∈ M, i.e. the equality

holds above, hence ‖vn‖ → ‖vk‖. Therefore vn → vk and

J(vk) ≥ βk
(1/2,0) → ∞

as k → ∞. ✷

Appendix A. Convergence results and profile decompositions

In our variational approach, the following lemma replaces compactness results of Strauss

for radial functions [5][Lemma A.I, Lemma A.III] and allows to consider a wider class of

symmetric functions. Recall that O ⊂ O(N) is a subgroup such that RN is compatible with O

(in the sense of [34][Definition 1.23], cf. [21]), if for some r > 0

lim
|y|→∞

m(y, r) = ∞,

where

m(y, r) := sup
{
n ∈ N : there exist g1, ..., gn ∈ O such that B(giy, r)∩B(gjy, r) = ∅ for i 6= j

}

and y ∈ R
N . For instance R

N is compatible with O(N) and with O2.

Lemma A.1. Suppose that (un) ⊂ D1,2(RN) is bounded and un(x) → u0(x) for a.e. x ∈ R
N .

(a) Then

(A.1) lim
n→∞

(∫

RN

Ψ(un) dx−

∫

RN

Ψ(un − u0) dx
)
=

∫

RN

Ψ(u0) dx

for any function Ψ : R → R of class C1 such that |Ψ′(un)| ≤ C|s|2
∗−1 for any s ∈ R and some

constant C > 0.

(b) Suppose that RN is compatible with O ⊂ O(N) and assume that each un is O-invariant.

If, in addition, s 7→ |Ψ(s)| satisfies (1.20), then

(A.2) lim
n→∞

∫

RN

Ψ(un) dx =

∫

RN

Ψ(u0) dx,

and if s 7→ |Ψ′(s)s| satisfies (1.20), then

(A.3) lim
n→∞

∫

RN

Ψ′(un)un dx =

∫

RN

Ψ′(u0)u0 dx.
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Proof. (a) Observe that by Vitali’s convergence theorem
∫

RN

Ψ(un)−Ψ(un − u0) dx =

∫

RN

∫ 1

0

−
d

ds
Ψ(un − su0) ds dx =

∫

RN

∫ 1

0

Ψ′(un − su0)u0 ds dx

→

∫ 1

0

∫

RN

Ψ′(ũ0 − su0)u0 dx ds =

∫

RN

∫ 1

0

−
d

ds
Ψ(ũ0 − su0) ds dx

=

∫

RN

Ψ(u0) dx

as n→ ∞.

(b) Suppose that RN is compatible with O and then

m(y, r)

∫

B(y,r)

|un − u0|
2∗ dx ≤

∫

RN

|un − u0|
2∗ dx

is bounded. Observe that
∫

B(y,r)

|un − u0|
2 dx ≤ C

(∫

B(0,r)

|(un − u0)(·+ y)|2
∗

dx
)2/2∗

≤ C|un − u0|
2
2∗m(y, r)−2/2∗

for some constant C > 0. Take any ε > 0 and note that we find R > 0 such that

C|un − u0|
2
2∗m(y, r)−2/2∗ < ε

for |y| ≥ R and ∫

B(y,r)

|un − u0|
2 dx ≤

∫

B(0,r+R)

|un − u0|
2 dx < ε

for |y| < R and sufficiently large n. Therefore (1.19) holds for un − u0 and in view of Lemma

1.5 we get

lim
n→∞

∫

RN

Ψ(un − u0) dx = 0

and (A.2) holds. Now observe that for any ε > 0, 2 < p < 2∗ < q we find 0 < δ < M and

cε > 0 such that

|Ψ′(s)| ≤ ε|s|2
∗−1 for |s| < δ and |s| > M,

and

|Ψ′(s)| ≤ cεmin
{
|s|2

∗(1− 1
p
), |s|2

∗(1− 1
q
)
}

for δ ≤ |s| ≤M.

Then, by the Vitali convergence theorem and by (A.2) applied to Ψ̃(s) = min{|s|p, |s|q} and

(un − u0) we obtain
∣∣∣
∫

RN

Ψ′(un)un −Ψ(u0)u0 dx
∣∣∣ ≤

∫

RN

|Ψ′(un)−Ψ′(u0)||u0| dx

+

∫

RN

|Ψ′(un)||un − u0| dx = o(1) +

∫

RN

|Ψ′(un)||un − u0| dx

≤ o(1) + ε|un|
2∗−1
2∗ |un − u0|2∗ +

∫

|un−u0|>1

|un|
2∗(1− 1

p
)|un − u0| dx



Nonlinear scalar field equations 23

+

∫

|un−u0|≤1

|un|
2∗(1− 1

q
)|un − u0| dx

≤ o(1) + ε|un|
2∗−1
2∗ |un − u0|2∗ + |un|

2∗(1− 1
p
)

2∗

(∫

RN

Ψ̃(un − u0) dx
) 1

p

+|un|
2∗(1− 1

q
)

2∗

(∫

RN

Ψ̃(un − u0) dx
) 1

q

≤ o(1) + ε|un|
2∗−1
2∗ |un − u0|2∗ .

Since ε > 0 is arbitrary we infer that
∫

RN

Ψ′(un)un dx→

∫

RN

Ψ′(u0)u0 dx.

�

Proposition A.2. Let O = O′ × id ⊂ O(N) such that O′ ⊂ O(M) and R
M is compatible

with O′ for some 0 ≤ M ≤ N . Suppose that (un) ⊂ D1,2
O (RN) is bounded, r0 > 0 is such that

for all r ≥ r0

(A.4) lim
n→∞

sup
z∈RN−M

∫

B((0,z),r)

|un|
2 dx = 0.

Then ∫

RN

Ψ(un) dx→ 0 as n→ ∞

for any continuous function Ψ : R → [0,∞) such that (1.20) holds.

Proof. Suppose that

(A.5)

∫

B((yn,zn),r1)

|un|
2 dx ≥ c > 0

for some sequence (yn, zn) ⊂ R
M × R

N−M and a constant c, where r1 is such that

lim
|y|→∞, y∈RM

m(y, r1) = ∞.

Then
∫
B((yn,zn),r1)

|un|
2∗ dx is bounded away from 0. Since (un) is bounded in L2∗(RN) and in

the family {B(gyn, r1)}g∈O′ we find an increasing number of disjoint balls as |yn| → ∞, we

infer that |yn| must be bounded. Then for sufficiently large r one obtains
∫

B((0,zn),r)

|un|
2 dx ≥

∫

B((yn,zn),r1)

|un|
2 dx ≥ c > 0

and we get a contradiction with (A.4). Therefore (1.19) is satisfied with r = r1 and by Lemma

1.5 we conclude. �

At the end of this section we would like to mention that the above variant of Brezis-Lieb

lemma (A.1) and Lemma 1.5 allow to obtain the following profile decomposition theorem in

D1,2(RN) in the spirit of Gérard [14], cf. [25].
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Theorem A.3. Suppose that (un) ⊂ D1,2(RN) is bounded. Then there are sequences (ũi)
∞
i=0 ⊂

D1,2(RN), (yin)
∞
i=0 ⊂ R

N for any n ≥ 1, such that y0n = 0, |yin − yjn| → ∞ as n→ ∞ for i 6= j,

and passing to a subsequence, the following conditions hold for any i ≥ 0:

un(·+ yin)⇀ ũi in D1,2(RN) as n→ ∞,

lim
n→∞

∫

RN

|∇un|
2 dx =

i∑

j=0

∫

RN

|∇ũj|
2 dx+ lim

n→∞

∫

RN

|∇vin|
2 dx,(A.6)

where vin := un −
∑i

j=0 ũj(· − yjn) and

lim sup
n→∞

∫

RN

Ψ(un) dx =

i∑

j=0

∫

RN

Ψ(ũj) dx+ lim sup
n→∞

∫

RN

Ψ(vin) dx(A.7)

for any function Ψ : R → R of class C1 such that |Ψ′(s)| ≤ C|s|2
∗−1 for any s ∈ R and some

constant C > 0. Moreover, if in addition Ψ satisfies (1.20), then

(A.8) lim
i→∞

(
lim sup
n→∞

∫

RN

Ψ(vin) dx
)
= 0.

Proof. In order to prove (A.6)–(A.8), we follow arguments of proof of [24][Theorem 1.4] with

some modifications. Namely, let (un) ⊂ D1,2(RN) be a bounded sequence and Ψ as above.

Applying Lemma 1.5 we find K ∈ N ∪ {∞} and there is a sequence (ũi)
K
i=0 ⊂ D1,2(RN), for

0 ≤ i < K + 1 (K = ∞ then K + 1 = ∞ as well), there are sequences (vin) ⊂ D1,2(RN),

(yin) ⊂ R
N and positive numbers (ci)

K
i=0, (ri)

K
i=0 such that y0n = 0, r0 = 0 and, up to a

subsequence, for any n and 0 ≤ i < K + 1 one has

un(·+ yin)⇀ ũi in D1,2(RN) and

∫

B(0,n)

|un(·+ yin)− ũi|
2 dx→ 0 as n→ ∞,

ũi 6= 0 for 1 ≤ i < K + 1,

|yin − yjn| ≥ n− ri − rj for j 6= i, 0 ≤ j < K + 1,

vin := vi−1
n − ũi(· − yin),∫

B(yin,ri)

|vi−1
n |2 dx ≥ ci ≥

1

2
sup
y∈RN

∫

B(y,ri)

|vi−1
n |2 dx

≥
1

4
sup

r>0,y∈RN

∫

B(y,r)

|vi−1
n |2 dx > 0, ri ≥ max{i, ri−1} for i ≥ 1,

and (A.6) is satisfied. Next, we prove that (A.7) holds for every i ≥ 0 by applying (A.1). If

there is i ≥ 0 such that

lim
n→∞

sup
y∈RN

∫

B(y,r)

|vin|
2 dx = 0

for every r ≥ max{i, ri}, then K = i. If, in addition, (1.20) holds, then in view of Lemma 1.5

we obtain that

lim
n→∞

∫

RN

Ψ(vin) dx = 0
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and we finish the proof by setting ũj = 0 for j > i. Otherwise we have K = ∞ and we prove

(A.8) similarly as in [24][Theorem 1.4]. �

Acknowledgements. The author would like to thank the members of the CRC 1173

as well as the members of the Institute of Analysis at Karlsruhe Institute of Technology

(KIT), where part of this work has been done, for their invitation, support and warm hospi-

tality. The author was partially supported by the National Science Centre, Poland (Grant No.

2017/26/E/ST1/00817) and by the Deutsche Forschungsgemeinschaft (DFG) through CRC

1173.

References

[1] R.A. Adams: General logarithmic Sobolev inequalities and Orlicz imbeddings, J. Funct. Anal. 34 (1979),
no. 2, 292–303.

[2] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J.
Funct. Anal. 14 (1973), 349–381.

[3] A. Azzollini, V. Benci, T. D’Aprile, D. Fortunato: Existence of Static Solutions of the Semilinear Maxwell
Equations, Ric. Mat. 55 (2006), no. 2, 283–297.

[4] T. Bartsch, M. Willem: Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Funct.
Anal. 117 (1993), 447–460.

[5] H. Berestycki, P.L. Lions: Nonlinear scalar field equations. I - existence of a ground state, Arch. Ration.
Mech. Anal. 82 (1983), 313–345.

[6] H. Berestycki, P.L. Lions: Nonlinear scalar field equations. II. Existence of infinitely many solutions,
Arch. Ration. Mech. Anal. 82 (1983), 347–375.

[7] H. Berestycki, P.L. Lions: Existence d’états multiples dans des équations de champs scalaires non linéaires
dans le cas de masse nulle, C. R. Acad. Sci. Paris Sér. I Math. 297, (1983), 267–270.

[8] I. Białynicki-Birula, J. Mycielski: Nonlinear wave mechanics, Ann. Phys. 100 (1976), 62–93.
[9] H. Brezis, T. Kato: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures

Appl. 58 (1979) 137–151.
[10] E.A. Carlen: Superadditivity of Fisher’s information and logarithmic Sobolev inequalities, J. Funct. Anal.

101 (1991), no. 1, 194–211.
[11] M. Clapp, L. A. Maia: Existence of a Positive Solution to a Nonlinear Scalar Field Equation with Zero

Mass at Infinity, Adv. Nonlinear Stud. (2018), DOI: doi.org/10.1515/ans-2017-6044.
[12] P. d’Avenia, E. Montefusco, M. Squassina: On the logarithmic Schrödinger equation, Commun. Contemp.

Math. 16 (2014), no. 2, 1350032, 15 pp.
[13] M. del Pino, J. Dolbeault: The optimal Euclidean Lp-Sobolev logarithmic inequality, J. Funct. Anal. 197

(2003), no. 1, 151–161.
[14] Gérard: Description du défaut de compacité de l’injection de Sobolev, ESAIM: Control, Optimisation and

Calculus of Variations 3 (1998), 213–233.
[15] L. Gross: Logarithmic Sobolev inequalities, Am. J. Math. 97 (4), (1975), 1061–1083.
[16] L. Jeanjean: Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal.

28 (1997), 1633–1659.
[17] L. Jeanjean, K. Tanaka: A remark on least energy solutions in R

N , Proc. Amer. Math. Soc. 131 (2003),
2399–2408.

[18] L. Jeanjean, S.-S. Lu: Nonlinear scalar field equations with general nonlinearity, arXiv:1807.07350.
[19] R. Killip, T. Oh, O. Pocovnicu, M. Vişan: Solitons and Scattering for the Cubic–Quintic Nonlinear

Schrödinger Equation on R
3, Arch. Rational Mech. Anal. 225 (1), (2017) 469–548.

[20] E.H. Lieb, M. Loss: Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathe-
matical Society, Providence (2001)

[21] P.-L. Lions: Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), no. 3, 315–334.
[22] P.-L. Lions: The concentration-compactness principle in the calculus of variations. The locally compact

case. Part I and II, Ann. Inst. H. Poincaré, Anal. Non Linéare., 1, (1984), 109–145; and 223–283.
[23] M. Mariş: On the symmetry of minimizers, Arch. Ration. Mech. Anal. 192 (2009), no. 2, 311–330.
[24] J. Mederski: Nonradial solutions of nonlinear scalar field equations, submitted arXiv:1711.05711.



26 J. Mederski

[25] H. Nawa: "Mass concentration” phenomenon for the nonlinear Schrödinger equation with the critical power
nonlinearity. II Kodai Math. J. 13 (1990), no. 3, 333–348.

[26] R.S. Palais: The principle of symmetric criticality, Commun. Math. Phys. 69 (1979), 19–30.
[27] P. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations,

CBMS Regional Conference Series in Mathematics, Vol. 65, Amer. Math. Soc., Providence, Rhode Island
1986.

[28] J. Serrin, M. Tang: Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J.
49 (2000), 897–923.

[29] W.A. Strauss: Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55, (1977), 149–
162.

[30] M. Struwe: Multiple Solutions of Differential Equations Without the Palais-Smale Condition, Math. Ann.
261 (1982), 399–412.

[31] M. Struwe: Variational Methods, Springer 2008.
[32] Z.-Q. Wang, C. Zhang: Convergence From Power-Law to Logarithm-Law in Nonlinear Scalar Field Equa-

tions, Arch. Ration. Mech. Anal. (2018). DOI: doi.org/10.1007/s00205-018-1270-0
[33] F.B. Weissler: Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Am. Math. Soc.

237, (1978), 255–269.
[34] M. Willem: Minimax Theorems, Birkhäuser Verlag (1996).
[35] W. P. Ziemer: Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Grad-

uate Texts in Mathematics, 120. Springer-Verlag, New York (1989).

(J. Mederski)

Institute of Mathematics, Polish Academy of Sciences,
ul. Śniadeckich 8, 00-656 Warsaw, Poland,
and
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University,
ul. Chopina 12/18, 87-100 Toruń, Poland

E-mail address : jmederski@impan.pl

mailto:jmederski@impan.pl

	Introduction
	2. Concentration-compactness in subspaces of D1,2(RN)
	3. Proofs of Theorem 1.1 and Theorem 1.2
	4. Proofs of Theorem 1.3 and Theorem 1.4
	Appendix A. Convergence results and profile decompositions
	References

