KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Verlagsausgabe
DOI: 10.5445/IR/1000089038
Veröffentlicht am 04.01.2019

Quantitative scenario design with Bayesian model averaging: constructing consistent scenarios for quantitative models exemplified for energy economics

Culka, Monika

Abstract:
Background

Scenario design is currently not a standardised process. The formulation of storylines representing different dimensions (for example economic or societal developments) demands an investigation of assumption compatibility, coherence, and consistency. Scenario techniques that use expert opinion as the sole information source are particularly appropriate for personal decisions. Contexts where scenarios serve as decision support on a societal level—for example in political decision-making—benefit from unbiased, fact-depicting, multi-dimensional information that is available in statistical data.


Methods

The presented approach uses the well-established method of Bayesian model averaging for the formulation of consistent, transparent, and intuitively understandable quantitative scenario assumptions. These assumptions are used in quantitative models to produce outlooks and forecasts. Illustrated by the example of quantitative energy models used to investigate developments of the energy system by scenario technique, the approach contrasts with other scenario methods. Bayesian model averaging (BMA) is a method that allo ... mehr


Zugehörige Institution(en) am KIT Institut für Technikzukünfte (ITZ)
Publikationstyp Zeitschriftenaufsatz
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2192-0567
URN: urn:nbn:de:swb:90-890383
KITopen-ID: 1000089038
Erschienen in Energy, Sustainability and Society
Band 8
Heft 1
Seiten Article: 22
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 09.07.2018
Schlagworte Scenario technique; Uncertainty modelling; Assumption consistency; Empirical adequacy
Nachgewiesen in Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page