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There are nowadays strong experimental constraints on supersymmetric theories from the Higgs 
measurements as well as from the null results in Sparticle searches. However, even the parameter 
spaces which are in agreement with experimental data can be further constrained by using theoretical 
considerations. Here, we discuss for the MSSM and NMSSM the impact of perturbative unitarity as well 
as of the stability of the one-loop effective potential. We find in the case of the MSSM, that vacuum 
stability is always the stronger constraint. On the other side, the situation is more diverse in the NMSSM 
and one should always check both kind of constraints.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The discovery of a standard model (SM)-like Higgs boson with 
a mass of about 125 GeV [1,2] seems to be a good argument that 
supersymmetry (SUSY), and in particular the minimal supersym-
metric standard model (MSSM), is the correct extension of the 
SM: in contrast to other ideas to extend the SM, the MSSM pre-
dicts that the Higgs boson shouldn’t be significantly heavier than 
the Z -boson if new physics comes into play at the TeV scale, see 
e.g. Ref. [3] and references therein. Such a mass scale for SUSY 
particles would also solve the hierarchy problem of the SM to a 
large extent. This is a big advantage compared to other ideas of 
beyond-the-SM (BSM) physics like technicolor. In technicolor the 
natural mass range for the Higgs lies at scales well above the 
measured mass. However, a closer look shows that the situation 
is more complicated in the MSSM. The Higgs mass requires large 
radiative corrections in order to be compatible with experimental 
data. The main source of these corrections are the superpartners 
of the top, the stops. In order to maximise their contributions to 
the Higgs mass, one needs to consider scenarios in which they 
are maximally mixed [4–7]. This can be dangerous because of two 
reasons. The first and better studied issue is that a large stop mix-
ing can cause the presence of charge- and colour-breaking (CCB) 
minima in the scalar potential [8–11]. Since the tunnelling rate to 
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these vacua is typically large, this results in tension between an ac-
ceptable Higgs mass and a sufficiently long-lived electroweak (ew) 
breaking vacuum. The second problem with highly mixed stops 
is that perturbative unitarity could be violated: the large trilinear 
stop couplings which are responsible for the mixing can induce 
scalar scattering processes which violate unitarity at leading order. 
While this is cured at higher loop-level, it indicates a breakdown 
of perturbation theory. The impact of these constraints on trilinear 
couplings in the MSSM was only discussed in a conference note up 
to now [12].

One can alleviate the need for large loop corrections from the 
stop sector by considering SUSY models in which the Higgs mass 
is already enhanced at tree-level. The simplest extension in this di-
rection is to add a gauge singlet, resulting in the next-to-minimal 
supersymmetric standard model (NMSSM). The additional F -term 
contributions in the NMSSM can raise significantly the tree-level 
Higgs mass [13,14]. Therefore, the vacuum stability problems of 
the MSSM due to CCB minima are cured. However, the extended 
Higgs sector in the NMSSM introduces new couplings which can 
potentially destabilise the ew vacuum. The global minimum of the 
scalar potential might still be charge conserving, but the mass of 
the Z -boson would be completely different. Large trilinear cou-
plings or light states in the extended Higgs sector can also cause 
scattering cross sections which violate perturbative unitarity at 
leading order. The vacuum stability in the NMSSM has been stud-
ied in the past at tree-level [15–19], and also with one-loop cor-
rections [20–22] in quite some detail. In contrast, the limits from 
perturbative unitarity are again less explored also in the NMSSM 
[23] and hardly included in phenomenological studies.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The aim of this letter is to discuss the importance of pertur-
bative unitarity and vacuum stability in the MSSM and NMSSM. 
It will be shown that a proper check of the vacuum stability in 
the MSSM might be sufficient to identify all dangerous parame-
ter regions. On the other side, it turns out that in the NMSSM one 
should always check both constraints. We start in Sec. 2 with a 
brief discussion of the two constraints in general. In Sec. 3 the 
main results for the MSSM and NMSSM are summarised. We con-
clude in Sec. 4.

2. Unitarity and vacuum stability

2.1. Calculation of the unitarity constraints

Perturbative unitarity gives constraints on the maximal size of 
2 → 2 scalar field scattering amplitudes. The 0th partial wave am-
plitude a0 is given by

aba
0 = 1

32π

√
4|�p b||�p a|
2δ12 2δ34 s

1∫
−1

d(cos θ)Mba(cos θ) , (1)

where �p a(b) is the center-of-mass three-momentum of the incom-
ing (outgoing) particle pair a = {1, 2} (b = {3, 4}), θ is the angle 
between these three-momenta and Mba(cos θ) is the scattering 
matrix element. a0 must satisfy

|a0| ≤ 1 or |Re[a0]| ≤ 1

2
(2)

The amplitudes are real at tree-level. This gives the more severe 
constraint |Re[a0]| ≤ 1

2 . This usually gets simplified in the limit 
s → ∞ to |M| < 8π . This condition must be satisfied by any 
eigenvalue x̃i of the scattering matrix M, where M is derived by 
including all possible combinations of scalars in the initial and fi-
nal state, i.e. the scattering matrix in BSM models is usually quite 
large. Therefore, often approximations applied to obtain analytical 
results. One widely used ansatz is to consider the limit s → ∞. 
However, it has recently been pointed out that this approxima-
tion is often not satisfied, see Refs. [24–26]. Instead, one should 
scan over s and check for the maximal amplitude a0 at given s. 
This is also the only possible to keep the impact of trilinear scalar 
couplings which are crucial for checking perturbative unitarity in 
the MSSM and NMSSM. In contrast to the large s approximation, 
this approach introduces the additional difficulty that poles can 
appear. In this work, the poles are handled carefully as discussed 
in Refs. [12,24] to obtain amplitudes which are not artificially en-
hanced.

2.2. Checking the vacuum stability

In order to check the stability of the electroweak vacuum, we 
consider the one-loop effective potential given by

V (1)
E P = V Tree + V (1)

CT + V (1)
CW (3)

For a stable ew vacuum, the deepest minimum in this potential 
must coincide with the ew one. Here, V Tree is the tree-level poten-
tial which for supersymmetric theories consists of

V Tree = V F + V D + V soft (4)

While the F -and D-term potentials are by construction positive, 
the soft-breaking potential V soft can destabilise the vacuum. For 
a long time, the vacuum stability in the MSSM was checked only 
taking V Tree into account and considering just D-flat directions, 
i.e. V D � 0. However, it has been pointed out in Ref. [8] that loop 
corrections can be important and that the global minimum of the 
potential must not be located in a D-flat direction. Therefore, we 
are going to include also the other two terms which are neces-
sary to encode the loop corrections and we are going to search 
numerically for the global minimum of the potential. V (1)

CT is the 
counter-term (CT) potential. Since the calculation of the SUSY and 
Higgs masses is performed in the DR

′
scheme, also the CTs must 

be calculated in this scheme. CTs appear only for the parameters 
which are obtained from the tadpole conditions. In our case, these 
are the soft-breaking terms m2

i in the Higgs sector. The renormali-
sation conditions at one-loop level are

δti + ti(m
2
i → m2

i + δm2
i ) ≡ 0 (5)

where ti are the tree-level tadpole conditions ti = ∂V
∂φi

and δti are 
the one-loop corrections. Finally, the Coleman–Weinberg potential 
V (1)

CW is given by [27]

V (1)
CW = 1

16π2

all fields∑
i

ri si Cim
4
i

(
log

m2
i

Q 2
− 3

2

)
(6)

with ri = 1 for real bosons, otherwise 2; Ci = 3 for quark, oth-
erwise 1; si = − 1

2 for fermions, 1
4 for scalars and 3

4 for vector 
bosons. More details about the calculation and the numerical ap-
proach to find the global minimum are given in Refs. [8].

Even if the global minimum is not the ew one, this doesn’t im-
mediately rule out a parameter point. It could still be, that the ew 
vacuum is long lived on cosmological time scales. Therefore, it’s 
necessary in these cases to calculate the tunnelling rate. We are 
going to use the approach discussed in Ref. [11], but we don’t in-
clude thermal effects. The reason is that one can avoid the faster 
tunnelling due to thermal effects by assuming a reheating temper-
ature after inflation which is sufficiently low. A parameter point is 
considered as ‘long-lived’ if its life-time is longer than the age of 
the universe.

3. Results

Our numerical analysis is based on the tool-chain SARAH–
SPheno–Vevacious–CosmoTransitions. We used SARAH
[28–32] to generate SPheno modules [33,34] for the MSSM and 
NMSSM. With this module we calculate the SUSY and Higgs 
masses including two-loop corrections [35–38]. SPheno is also 
the only available code which calculates the scattering amplitudes 
at finite s [24].1 The spectrum file generated by SPheno is passed 
as input for Vevacious [39]. Vevacious finds all solutions to 
the tree-level tadpole equations by using a homotopy continuation 
implemented in the code HOM4PS2. These minima are used as the 
starting points to find the minima of the one-loop effective poten-
tial using minuit [40]. If it finds deeper minima than the ew one,
Vevacious calls CosmoTransitions [41] to get the tunnelling 
rate.

3.1. MSSM

We start with the MSSM, see Refs. [3,42] and references therein 
for detailed discussions of this model. We just briefly summarise 

1 The public version of SARAH/SPheno include so far only the possibility of 
colour singlets in the initial and final state. This has been generalised for this project 
to be able to include all processes involving stops in the checks for perturbative uni-
tarity. The changes will be discussed and published elsewhere.
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our conventions. The most general renormalisable and SM gauge 
invariant superpotential which also respects R-parity reads

WMSSM =Yuûq̂Ĥu − Ydd̂q̂Ĥd − Yeêl̂Ĥd

+ μĤu Ĥd (7)

where we suppressed flavour and SU (2) indices. Ye, Yd, Yu are 
dimensionless 3 × 3 matrices of Yukawa couplings. The soft SUSY 
breaking potential reads

V soft = m2
Hu

|Hu|2 + m2
Hd

|Hd|2 + f̃ †m2
f̃

f̃

+1

2

(
M1 B̃ B̃ + M2 W̃ i W̃

i + M3 g̃α g̃α + h.c.
)

+
(

Tuũq̃Hu − Tdd̃q̃Hd − Teẽl̃Hd

+BμHu Hd + h.c.
)

(8)

with f̃ = {d̃, ̃u, ̃q, ̃l, ̃e}. Since flavour effects are negligible for the 
discussions in the following, we make the assumption that all 
Yukawa and soft-breaking matrices are diagonal. Moreover, only 
third generation couplings are important We can then introduce 
the common parametrisation of the trilinear soft-couplings:

Ti = Ai Yi for i = {t,b, τ } (9)

After EWSB, the neutral components of the Higgs doublets receive 
vacuum expectation values (VEVs) vd , vu with v =

√
v2

d + v2
u �

246 GeV and tan β = vu
vd

. Among many other things, this causes 
a mixing in the stop sector. The mass matrix of the two stops is 
given in the basis (t̃L, ̃tR) by

m2
t̃

=
⎛
⎝ D + m2

t + m2
t̃L

1√
2

Yt

(
vu At − vdμ

)
1√
2

Yt

(
vu At − vdμ

)
m2

t̃R
+ D ′ + m2

t

⎞
⎠ (10)

where the explicit form of D-term contributions is skipped for 
brevity because these terms are usually sub-dominant.

Diagonalisation results in two physical mass eigenstates t̃1 and 
t̃2 and one mixing angle 
. The value of the angle is given by

sin 2θ = −
√

2Yt

(
vu At − vdμ

)
m2

t2
− m2

t1

(11)

At tree-level the light SM-like Higgs mass is bounded in the MSSM 
by m2

h ≤ M2
Z and the additional heavy Higgs states have a mass 

of M A = 1+tan β2

tan β
Bμ . The main loop corrections to the light Higgs 

mass in the MSSM stem from the (s)top contributions. They can 
be written in the decoupling limit M A � M Z at one-loop-level as 
[3,43–47]

δm2
h = 3

2π2

m4
t

v2

[
log

M2
SUSY

m2
t

+ X2
t

M2
SUSY

(
1 − X2

t

12M2
SUSY

)]
(12)

with MSUSY ≡ √
mt̃1

mt̃2
, mt being the running DR

′
top mass and 

Xt ≡ At − μ cot β . One can see from eq. (12) that the one-loop 
corrections are maximised for |Xt | =

√
6MSUSY, while they quickly 

drop for |Xt | �
√

6MSUSY. For tan β � 1, the contribution from At

dominates, i.e. large trilinear stop couplings are needed to rise the 
Higgs mass.
Fig. 1. Diagram contributing to stop scattering via Higgs exchange.

3.1.1. Stop scattering
As we have just seen, large loop corrections to the SM-like 

Higgs mass need large values for |At |. These couplings will induce 
large scattering cross sections for processes like t̃1t̃∗

1 → t̃1t̃∗
1 via di-

agrams shown in Fig. 1. The amplitude of this process is given by 
at leading order by

a
t̃1 t̃∗1→t̃1 t̃∗1
0 = − sin2(2
t̃)Yt(μYt sinα + At cosα)2

×

((
m2

h − s
)

log

(
m2

h

m2
h−4m2

t̃1
+s

)
+ 12m2

t̃1
− 3s

)

32π
(
s − m2

h

)√
s
(

s − 4m2
t̃1

) (13)

with the mixing angle α for the CP even Higgs scalars. This can be 
further simplified to

a
t̃1 t̃∗1→t̃1 t̃∗1
0 �

v2 X4
t Y 4

t

(
s log

(
m2

h

m2
h−4m2

t̃1
+s

)
+ 12m2

t̃1
− 3s

)

16π s
(

m2
t̃1

− m2
t̃2

)2
√

s
(

s − 4m2
t̃1

) (14)

In order to get some feeling for the necessary size of Xt which 
would be in conflict with perturbative unitarity, we assume for 
the moment mt̃1

= 2mh and s close to the kinematic threshold. 
That leads to

Xt

MSUSY

∣∣∣
a0= 1

2

� 12
MSUSY

TeV
(15)

i.e. this ratio is much bigger than 
√

12 for reasonable values of 
MSUSY. For these values of Xt we are far away from the preferred 
window to explain the mass. In Fig. 2 we check this estimate 
against a full numerical calculation. Here, the two-loop corrections 
to mh as well as all possible scattering processes are included. We 
scanned over mt̃R

= [0.2, 2] TeV, and At = [−7, 7] TeV. 
√

s is al-
ways varied between 250 GeV and 5 TeV. The other parameters 
have been fixed to

tanβ = 10, M2
A = 2.5 TeV2, μ = 0.5 TeV

mt̃L
= 1.8 TeV

M1 = 0.2 TeV, M2 = 0.5 TeV, M3 = 2 TeV (16)

Here and in the following all other sfermion soft-breaking masses 
are set to 2 TeV and Ab = Aτ = 0 is always used if not noted oth-
erwise.

We see that perturbative unitarity is only violated in regions 
where the Higgs mass is much too small. In the regions with 
mh � 125 GeV the size of |a0| is at most 0.35. We can now com-
pare this result with the constraints stemming from the stability 
of the ew potential. This is also depicted in Fig. 2. Here, we find 
that the vacuum stability constraints cut into the interesting re-
gions: some parts of the parameter space with the desirable Higgs 
mass of 125 ± 3 GeV suffer from an unstable vacuum. The tun-
nelling rate at T = 0 is usually quite small in these regions, i.e. the 
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Fig. 2. The values of |amax
0 | in the (Xt , MSUSY) plane. The red line indicates |amax

0 | >
1
2 . The black shaded region shows the region with mh = 125 ± 3 GeV. The white 
(orange) dots refer to an unstable ew vacuum which is short-lived (long-lived) on 
cosmological time scales.

lifetime of the ew vacuum exceeds the age of the universe and the 
points could still be assumed to be viable. However, one has to 
keep in mind that this assumes a reheating temperature after in-
flation much lower than MSUSY. Otherwise, thermal corrections can 
cause a much larger tunnelling rate [11].

3.1.2. Stau scattering
Large trilinear couplings can also be present in the slepton 

sector of the MSSM. This results in light staus which can have 
interesting phenomenological consequences like forming a co-
annihilation region with the neutralino dark matter candidate [48]. 
The coupling Aτ responsible for the stau mixing can play a similar 
role as At in the stop sector and lead to large scattering rates via 
the exchange of the heavy Higgs states with mass M A . Since the 
impact of the stau sector on the SM-like Higgs mass is much less 
important than of the stop sector, Aτ is not severely constrained 
by the Higgs mass measurements. However, large |Aτ | destabilises 
also the ew potential as At does. We checked the MSSM parameter 
space within the following ranges

M1 ∈ [0.1,1] TeV, M2 ∈ [0.15,1] TeV, M3 ∈ [1.5,3] TeV

μ ∈ [−2,2] TeV, M A ∈ [0.2,2] TeV, tanβ ∈ [5,50]
mt̃L

∈ [1,3] TeV,mt̃R
∈ [0.2,3] TeV

mτ̃L ∈ [0.1,1] TeV,mτ̃R ∈ [0.1,1] TeV

At, Aτ ∈ [−10,10] TeV, Ab = 0 (17)

We always found that the other constraints are more severe than 
the ones from perturbative unitarity. As example we show in Fig. 3
the results for (Aτ , M A ) plane. The other parameters are chosen
as

M1 = 0.6 TeV, M2 = 0.33 TeV, M3 = 2 TeV

μ = 0.5 TeV, tan β = 50, At = 3 TeV

mτ̃L ,mτ̃R = 0.5 TeV, mt̃L
,mt̃R

= 2.0 TeV (18)

The entire parameter region with |amax
0 | > 0.1 is already in conflict 

with vacuum stability. For this finding, it is not even necessary to 
Fig. 3. Similar to Fig. 2 for the (M A , Aτ ) plane. We show here also the constraints 
from vacuum stability based on the approximation eq. (19) (orange dashed line). 
The Higgs mass fulfills in the entire plane mh = 125 ± 3 GeV.

use the numerical check of the one-loop effective potential with
Vevacious, but already the thumb rule [49]

A2
τ >3(m2

τ̃L
+ m2

τ̃R
+ m2

Hd
+ μ2) (19)

rules out the point with |amax
0 | close to 0.5.

All in all, the checks for perturbative unitarity seem not the 
necessary in the MSSM once other constraints are included.

3.2. NMSSM

We turn now to the NMSSM, i.e. the MSSM extended by a gauge 
singlet superfield. We consider the version with a Z3 to forbid all 
dimensionful parameters in the superpotential. The superpotential 
reads

WNMSSM = λĤd Ĥu Ŝ + 1

3
κ Ŝ3 + W Y , (20)

with the standard Yukawa interactions W Y as in the MSSM. The 
additional soft-terms in comparison to the MSSM are

−Lsoft ⊃
(

AλλHd Hu S + 1

3
Aκκ S3 + h.c.

)
+ m2

s |S|2 , (21)

where we have used the common parametrisation for the trilinear 
soft terms

Tλ = Aλλ , Tκ = Aκκ . (22)

After electroweak symmetry breaking, the scalar singlet S obtains 
a VEV v S which generates an effective Higgsino mass term μeff

μeff = 1√
2
λv S . (23)

In contrast to the MSSM,2 there are already limits from pertur-
bative unitarity in the NMSSM even in the large s limit in which 
only quartic couplings contribute. These limits are given by

2 All point interactions in the MSSM are fixed by gauge and Yukawa couplings 
which are too small to cause problems with perturbative unitarity for reasonable 
values of tanβ .
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Fig. 4. The value of |amax
0 | in the (λ,κ ) plane in the large s approximation.

Fig. 5. The values of |amax
0 | in the (λ, Aλ) plane. The red line indicates |amax

0 | > 1
2 . 

The grey shaded region shows the region with mh = 125 ± 3 GeV, while the white 
dashed line gives the mass of the CP even singlet. The entire plane has a stable ew 
vacuum.

8π > max
{

|λ|2 ,2|
√

κ2 + λ2
√

(κ∗)2 + (λ∗)2|,
1

2
|4|κ |2 + |λ|2 ±

√
16|κ |4 − 8|κ |2|λ|2 + 17|λ|4|,

|2Re(λκ∗) ±
√

2Re(λ2κ∗,2) − 2|κ |2|λ|2 + |λ|4|
}

(24)

and can be summarised in the plot shown in Fig. 4. Thus, only if 
|λ| and/or |κ | have values well above 2, these constraints come 
into play. Such extreme parameter regions are rarely considered in 
phenomenological studies, i.e. these constraints are of a very lim-
ited, practical relevance. However, once the large s limit is given 
up, one can find much stronger constraints because of new con-
tributions involving Aλ , Aκ as well as effective trilinear couplings 
proportional to μeff. We use the parameters as in eq. (16) as far as 
applicable in the NMSSM and set in addition

κ = −2, Aκ = −2162 GeV, μeff = 249 GeV

tanβ = 5.27, At = −1628 GeV (25)

When scanning over λ ∈ [−0.9, 0.6] as well Aλ ∈ [300, 900] GeV, 
we find the behaviour as shown in Fig. 5: the values of |a0| are 
Fig. 6. Similar to Fig. 5, but this time showing the mass of the CP odd singlet by 
the white dashed line. The ew vacuum is metastable in the entire plane, but the 
life-time is many orders of magnitude bigger than the age of the universe.

in general big and in particular the region with the desired Higgs 
mass is in conflict with the condition of perturbative unitarity. One 
can also observe that the value of amax

0 scales with the mass of the 
CP even singlet, i.e. the large amplitudes are caused by light singlet 
propagators. It is worth to stress that in the entire plane depicted 
in Fig. 5 the ew-vacuum is stable, i.e. without checking pertur-
bative unitarity one would assume that the full parameter region 
with correct Higgs mass is viable. A similar situation is depicted in 
Fig. 6 where again λ ∈ [0.75, 0.9] and Aλ ∈ [−2.0, −1.4] TeV has 
been varied while the other parameters were chosen as

κ = 0.65, Aκ = −106 GeV, μeff = 2823 GeV

tanβ = 1.13, At = 1448 GeV (26)

This time, the ew vacuum is not stable, but the life-time is many 
orders of magnitude longer than the age of the universe. Thus, one 
might again assume that the shown parameter region is fine with 
respect to theoretical, and also experimental, constraints. How-
ever, the presence of a very light pseudo-scalar A S causes large 
scattering rates hh → hh. Therefore, the interesting regions with 
mh � 125 GeV violates perturbative unitarity.

Even if no CCB minima are present, one can also find the 
opposite situation in the NMSSM: parameter points might be in 
agreement with perturbative unitarity but suffer from an unstable 
vacuum. An example for this is given in Fig. 7 where the following 
parameters are used:

κ = 0.97, Aλ = −1064 GeV, Aκ = −2454 GeV

tanβ = 1.26, At = 1329 GeV (27)

In this plane only a tiny region is affected by the unitarity con-
straints, while the vacuum stability checks rule out a large fraction 
of the points in agreement with the correct mass for the SM-like 
Higgs.

We have seen that depending on the parameter either the sta-
bility of the ew potential or the constraints from perturbative 
unitarity can be more important for a given parameter points. Of 
course, it would be interesting to know under which circumstances 
one of the two constraints is dominant. Unfortunately, a definite 
answer is not possible without a full numerical study. It has been 
shown that one cannot even rely on simplified, analytical condi-
tions to categorise the stability of the ew potential [20]. Estimating 
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Fig. 7. The life-time of the ew vacuum normalised to the age of the universe in 
the (λ, μeff)-plane. The white dashed lines show the values of constant |amax

0 |, and 
the red line indicates |amax

0 | > 1
2 . Again, the dark shaded region is preferred by the 

Higgs mass measurements.

the tunnelling rate would even be more difficult. Similarly, the 
calculation of amax

0 involves the diagonalisation of large scattering 
matrices which is not possible unless one assumes some approx-
imations. How well these approximations are working, depends 
crucial on the considered parameter point. Therefore, we advo-
cate not to rely on some estimates, which turned out to be very 
misleading already in the MSSM [8], but to perform always a nu-
merical check of both constraints.

We have discussed so far selected planes where either vac-
uum stability or perturbative unitarity are the dominant constraint. 
Since the constraints from perturbative unitarity in the NMSSM 
rarely discussed up to now in literature, we want to give a brief 
impression of the overall situation. For this purpose, we summarise 
in Fig. 8 the results of a parameter sample of 5 mio points in the 
following ranges

λ,κ ∈ [−3,3], Aλ, Aκ ∈ [−15,15] TeV

μeff ∈ [0.1,3] TeV, tanβ ∈ [1.05,10.]
M1 ∈ [0.1,1.5] TeV, M2 ∈ [0.15,1.5] TeV

M3 ∈ [1.5,3.0] TeV

mt̃L
,mt̃R

∈ [1,3] TeV, At ∈ [−2.5,2.5] TeV (28)

The plots show the maximal value of |amax
0 | which we found 

in each bin. One can see that there are parameter combinations 
which are safe, i.e. perturbative unitarity is never violated. This is 
for instance the case if |κ | is small. However, for the large major-
ity of points there is not such a clear condition and a proper check 
of perturbative unitarity is necessary.

4. Conclusion

We have summarised in this letter the situation concerning the 
impact of perturbative unitarity and vacuum stability on the MSSM 
and NMSSM parameter spaces. We showed that the constraints 
from vacuum stability are important in the MSSM because they 
can rule out phenomenological interesting parameter regions. In 
contrast, perturbative unitarity constraints in the MSSM just come 
into play once other constraints like vacuum stability or the Higgs 
mass are already at work. Thus, performing checks for perturbative 
unitarity in phenomenological studies seems not to be necessary 
as long as the other constraints are included.
Fig. 8. The maximal value of |amax
0 | per bin in for a scan in the parameter ranges 

given in eq. (28). The red hatching shows where parameter points with |amax
0 | > 1

2
were found, i.e. where perturbative unitarity could be violated.

The situation is completely different in the NMSSM. We have 
shown at a few examples that, depending on the considered pa-
rameter region, either checks for vacuum stability or perturbative 
unitarity are more important. While tests of the vacuum stabil-
ity are already taken into account in NMSSM studies at least to 
some extent, perturbative unitarity is usually ignored. Therefore, 
we hope that the results in this letter demonstrate also the need 
for careful checks of perturbative unitarity in the NMSSM – and 
most likely in many other, non-minimal SUSY models.
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