
The Helmholtz Analytics Toolkit (HeAT)
- A Scientific Big Data Library for HPC -

Kai Krajsek
Forschungszentrum Jülich GmbH
Institute for Advanced Simulation

Jülich Supercomputing Centre (JSC)
52425 Jülich, Germany
k.krajsek@fz-juelich.de

Claudia Comito
Forschungszentrum Jülich GmbH
Institute for Advanced Simulation

Jülich Supercomputing Centre (JSC)
52425 Jülich, Germany
c.comito@fz-juelich.de

Markus Götz
Karlsruhe Institute of Technology

Steinbuch Centre for Computing (SCC)
Scientific Data Management
76128 Karlsruhe, Germany

markus.goetz@kit.edu

Björn Hagemeier
Forschungszentrum Jülich GmbH
Institute for Advanced Simulation

Jülich Supercomputing Centre (JSC)
52425 Jülich, Germany

b.hagemeier@fz-juelich.de

Philipp Knechtges
German Aerospace Center

Simulation and Software Technology
High-Performance Computing

51147 Cologne, Germany
Philipp.Knechtges@dlr.de

Martin Siggel
German Aerospace Center

Simulation and Software Technology
High-Performance Computing

51147 Cologne, Germany
Martin.Siggel@dlr.de

Abstract—We present HeAT, a scientific big data library
supporting transparent computation on HPC systems. HeAT
builds on top of PyTorch, which already provides many required
features like automatic differentiation, CPU and GPU support,
linear algebra operations and basic MPI functionality as well as
an imperative programming paradigm allowing fast prototyping
essential in scientific research. These features are generalized to
a distributed tensor with a NumPy-like interface allowing to port
existing NumPy algorithms to HPC systems nearly effortlessly.

Index Terms—Big Data Analytics, HPC, Machine Learning,
Deep Learning, Data Mining

I. INTRODUCTION

Scientific Big Data Analytics has become an important
instrument for tackling scientific problems characterized by
the greatest data and computational complexity. Scientific
data, e.g. MRI images, satellite data, detectors or numeri-
cal simulations on high-performance computers, are growing
exponentially in nearly all scientific fields [2], [3], [5], [8]
pushing storage, processing, and analysis of such data to its
limits. Traditional techniques for handling scientific data need
to be replaced by specific solutions taking structure, variability
and size of todays data sets into account. This paper presents
the Helmholtz Analytics Toolkit (HeAT), a scientific big data
analytics library for HPC systems enabling scientists to take
full advantage of parallel high-performance computing with
minimal programming effort on their side.

The large progress in big data analytics in general and
machine learning/deep learning (ML/DL) in particular, has
been considerably spurred by well-designed open source li-
braries like Hadoop, Spark, Storm, Disco, scikit-learn, H2O.ai,
Mahout, TensorFlow, PaddlePaddle, PyTorch, Caffe, Keras,

This work is supported by the Helmholtz Association Initiative and Net-
working Fund under project number ZT-I-0003.

MXNet, CNTK, BigDL, Theano, Neon, Chainer, DyNet, Dask
and Intel DAAL, to mention some of them. Despite the
large number of existing data analytics frameworks, a library
taking the specific needs in scientific big data analytics under
consideration is still missing. For instance, no pre-existing
library operates on heterogeneous hardware like GPU/CPU
systems while allowing transparent computation on distributed
systems. Typical big data analytics frameworks like Spark are
designed for distributed memory systems and consequently do
not fully exploit the shared memory architecture as well as
the network technology of HPC systems. ML/DL frameworks
like Theano or Chainer focus on single node computations or,
when providing mechanisms for distributed computation, as
done by TensorFlow or PyTorch, they impose the details of the
distributed computation to the programmer. Libraries designed
for HPC like Dask and Intel DAAL do not provide any GPU
support. In the following, we will describe the core concepts
of HeAT in order to fill the gap of existing big data libraries,
and demonstrate its usage on a k-means cluster algorithm.

II. CO-DESIGN DEVELOPMENT APPROACH

The library is designed and will be implemented in close co-
operation with domain scientists within a scientific project, the
Helmholtz Analytics Framework1. Eight scientific use cases
from five different scientific fields, i.e. earth system modeling,
structural biology, aeronautics and aerospace research, medical
imaging, and neuroscience, have been chosen to ensure consid-
eration of actual challenges of the specific scientific aspects of
big data analytics. The use cases are tackling current research
questions in their respective fields that come to their limits
with traditional data analytics methods.

1 http://www.helmholtz-analytics.de/helmholtz analytics/EN/Home/home
node.html

Fig. 1. Illustration of use cases from five scientific fields.

The techniques applied in the various use cases span over 20
different methods ranging from relatively light weight machine
learning methods like k-means, or mean shift clustering,
over frequent item set mining methods up to deep learning
methods like convolutional neural networks for regression and
classification tasks.

III. HEAT ARCHITECTURE

HeAT is based on a tensor data object on which basic scalar
functions, linear algebra algorithms, slicing or broadcasting
operations necessary for most data analytics algorithms can be
performed. The tensor data objects reside either on the CPU
or on the GPU and, if needed, are distributed over various
nodes. Operations on tensor objects are transparent to the
user, i.e. they remain the same irrespective of whether the
tensor object resides on a single node or it is distributed over
several nodes, allowing to conveniently port algorithms from
single nodes to multiple nodes or from CPUs to GPUs. HeAT
builds on top of PyTorch [10]. Development started in May
2018 and is, at the time of writing this paper, in an early pre-
alpha phase. It is developed in the open, hosted on GitHub:
https://github.com/helmholtz-analytics/heat and distributed un-
der the MIT license. The basic design has been worked out
and basic implementations have been carried out. A role model

Fig. 2. The basic structure of the NumPy library: a tensor data structure and
operations on top. The operations run transparently on multiple cores of one
CPU.

for HeAT is NumPy [7], a popular scientific Python library
widely used for data analytics. NumPy transparently makes
use of all available CPU cores on one processor such that

the user can focus on the algorithmic development without
struggling with parallel programming issues. But NumPy has
no further parallel programming features nor any GPU capa-
bilities. In order to account for GPU computing and automatic
differentiation we decided to rely on a modern tensor library.
Overall, we examined 16 deep learning and big data libraries
with respect to their properties and selected four of them for
a benchmark with respect to memory consumption, CPU as
well as GPU runtime: PyTorch, MXNet [4], TensorFlow [1]
and ArrayFire [11]. As a result of the benchmark, we chose
PyTorch as the backend for our HeAT library. Detailed results
of the benchmark will be published separately. PyTorch is a

Fig. 3. The basic structure of the PyTorch library: A tensor data structure
and operations as well as automatic differentation on top. The operations run
transparently on multiple cores of one CPU or on one GPU.

deep learning library originally developed for neural network
training and inference. Its core module can be considered
as an extension to NumPy with respect to automatic differ-
entiation and GPU computation. It supports a subset of the
NumPy operations and provides own operations required for
artificial neural networks. A PyTorch tensor can be labeled
to be differentiable and all subsequent operations are traced
within a dynamical computational graph. The derivative of any
transformed tensor with respect to the differentiable tensor can
then be obtained with just one command due to the involved
automatic differentiation mechanism. Computations on the
GPU are automated, too. The PyTorch tensor is transferred
onto the GPU by a single command or constructed directly
on the GPU. PyTorch operation commands remain the same
as for the CPU. When it comes to distributed computation,
PyTorch supports several frameworks, i.e. TCP, GLOO, MPI
and NCCL. However, details of the distribution of tensors on
different nodes as well as the communication between the
nodes need to be managed by the user.

HeAT builds upon PyTorch, providing an additional layer
for distributed computation on GPUs as well as CPUs based
on MPI. Operations on tensor objects are transparent to the
user, i.e. they remain the same irrespective of whether the
tensor object resides on a single node or it is distributed
over several nodes, allowing to conveniently port algorithms
from single nodes to multiple nodes or from CPUs to GPUs.
The basis of HeAT is a tensor object, an ND array structure
of homogeneous numerical values. The tensor object is,
if requested, split into several subsets along one selected
dimension, whereby each subset belongs to one MPI rank.

Fig. 4. The basic structure of the HeAT library: A tensor data structure
and operations as well as automatic differentation on top. The operations run
transparently on multiple cores of multiple CPUs or on mulptiple GPUs.

The tensor object is directly created on different MPI ranks
and filled with predefined values, e.g. equal values or random
numbers. Alternatively, values are loaded from disc by parallel
I/O via parallel HDF5 or parallel NetCDF. Operations on the
HeAT tensor object can then be applied transparently, i.e. the
user need not take care about data transfer between the MPI
ranks. The design of the HeAT operations follows the NumPy
convention as far as possible, i.e. in the ideal case a NumPy
algorithm can be ported to HeAT by simply exchanging
NumPy operations with their HeAT counterparts. To this
end, NumPy functions and methods are re-implemented
using PyTorch and MPI4Py [6]. As an example, consider the
creation of a one dimensional tensor filled with evenly spaced
float values within a given interval running on three MPI ranks:

import heat as ht
range_data = ht.arange(6, split = 0)

Fig. 5. Illustration of the splitting mechanism of the HeAT library on a two
dimensional tensor. The tensor is equally distributed among the three requested
MPI ranks. The HeAT tensor subset and each rank is realized by a PyTorch
tensor. Splitting is supported in one of the two dimensions.

After importing the HeAT module, a tensor containing the
numbers from 0. up to 5. is created. Internally, a subset
containing values 0. and 1. is attached to rank number zero, the
values 2. and 3. are attached to rank number one and the last

two numbers are attached to rank number three. Subsequent
operations can then be applied to the tensor object without
caring about its distributed nature. For instance, the maximum
of the tensor object can be obtained by the argmax method:

range_data.argmax()
>>>5

Also, computing the sum over all elements correspond to its
NumPy counterpart:

range_data.sum()
>>>15

In order to support deep learning approaches and other ML
methods requiring gradient based optimization, the automatic
differentiation mechanism is extended to distributed compu-
tation. In a first step, a corresponding distributed adjoint
operation is implemented for each HeAT tensor. Note that the
PyTorch automatic differentiation mechanism can be re-used
for all pointwise operations. If an operation is performed on a
HeAT tensor being marked as differentiable, references to the
operation, to its results as well as to the operation’s arguments
are stored in an object constituting a node in a dynamical com-
putational graph. The references to the operation arguments are
the edges to the parents of the dynamical graph. In order to
perform backpropagation, we need the topological order of the
graph. This order is obtained by storing a list tracking the order
of the transformations applied to each differentiable tensor, i.e.
we store a history of transformation for each differentiable
tensor. In order to obtain the derivative of any node with
respect to a differentiable tensor, the corresponding lists are
traversed in reverse order. At each position in the list, the
derivative of the output with respect to the input is computed
using the corresponding stored node object.

IV. EXAMPLE: K-MEANS

As a demonstration of the library we describe how to
port a k-means [9] NumPy implementation to its HeAT
counterpart. We sketch the important steps of the algo-
rithm by comparing NumPy and HeAT code snippets.
The full HeAT k-means implementation can be found
at https://github.com/helmholtzanalytics/heat/tree/master/heat/
ml/cluster. K-means is a clustering algorithm that groups a set
of data points with a predefined number of clusters according
to the minimization problem

argmin
C

k�

i=1

�

x∈Ci

�x− µi�2 (1)

where µi denotes centroid i, Ci denotes cluster i and k denotes
the number of clusters. A local minimum of the optimization
problem (1) can be obtained by the algorithm:

1) Choose k centroids
2) For each data point calculate the distance to all centroids
3) Assign each data point to the cluster with the closest

centroid

4) Estimate new centroids as the mean of their correspond-
ing cluster points

5) Go to 2 until convergence
Before one can apply the first step of the k-means algo-
rithm, the data points to be clustered need to be loaded in
the corresponding NumPy arrays as well as HeAT tensors.
Whereas in the NumPy implementation the data are loaded
into the NumPy arrays as a whole data block, in the HeAT
implementation, if HeAT is running in distributed mode, only
the data needed by the corresponding rank are loaded by the
parallel I/O mechanism. All consecutive operations on the
constructed arrays/tensors are equal or differ only with respect
to small details making porting NumPy code to distributed
HeAT code as simple as possible. After choosing k initial
centroids we need to compute the distance (step 2) of each
point to its centroid and determine the index of the smallest
distance to the centroid. With NumPy, the second step can be
realized by

distances = ((data - centroids) **
2).sum(axis=1, keepdims=True)

matching_centroids =
np.expand_dims(distances.argmin(axis=2),
axis=2)

where data is a NumPy array of size (n, m, 1) containing
n m-dimensional data points and centroids is a NumPy
array of size (1, m, k) containing the initially chosen centroids.
The corresponding HeAT implementation reads

distances = ((data - centroids) **
2).sum(axis=1)

matching_centroids = distances.argmin(axis=2)

where the only differences stem from the fact that HeAT keeps
dimensions after sum and argmin operations. Assigning the
data points to their closest centroids (step 3) is exactly the
same in NumPy and HeAT

selection = (matching_centroids ==
i).astype(ht.int64)

The estimate of the new centroids (step 4) in NumPy is

new_centroids[:, :, i:i + 1] = ((data *
selection).sum(axis=0. keepdims=True)

selection.sum(axis=0).clip(1.0, sys.maxsize))

and in HeAT

new_centroids[:, :, i:i + 1] = ((data *
selection).sum(axis=0)

selection.sum(axis=0).clip(1.0, sys.maxsize))

The only difference is again given by the way dimensions are
kept after the sum operation.

V. SUMMARY

We presented HeAT, a scientific big data library. After
motivating the need for an additional big data analytics li-

brary in the scientific context, we described its core design
principles, i.e. a distributed tensor object with transparent
operations on top, as well as the design of the automatic
differentiation mechanism. We finally illustrated the usage of
the HeAT library by porting the k-means cluster algorithm
from NumPy to HeAT demonstrating the close similarity of
their user interfaces.

REFERENCES

[1] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN, Z.,
CITRO, C., CORRADO, G. S., DAVIS, A., DEAN, J., DEVIN, M.,
GHEMAWAT, S., GOODFELLOW, I., HARP, A., IRVING, G., ISARD, M.,
JIA, Y., JOZEFOWICZ, R., KAISER, L., KUDLUR, M., LEVENBERG,
J., MANÉ, D., MONGA, R., MOORE, S., MURRAY, D., OLAH, C.,
SCHUSTER, M., SHLENS, J., STEINER, B., SUTSKEVER, I., TALWAR,
K., TUCKER, P., VANHOUCKE, V., VASUDEVAN, V., VIÉGAS, F.,
VINYALS, O., WARDEN, P., WATTENBERG, M., WICKE, M., YU,
Y., AND ZHENG, X. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] BAMBERG, F., KAUCZOR, H.-U., WECKBACH, S., SCHLETT, C. L.,
FORSTING, M., LADD, S. C., GREISER, K. H., WEBER, M.-A.,
SCHULZ-MENGER, J., NIENDORF, T., PISCHON, T., CASPERS, S.,
AMUNTS, K., BERGER, K., BLOW, R., HOSTEN, N., HEGENSCHEID,
K., KRNCKE, T., LINSEISEN, J., GNTHER, M., HIRSCH, J. G., KHN,
A., HENDEL, T., WICHMANN, H.-E., SCHMIDT, B., JCKEL, K.-H.,
HOFFMANN, W., KAAKS, R., REISER, M. F., AND VLZKE, H. A.
Whole-body MR imaging in the german national cohort: Rationale,
design, and technical background. Radiology 277, 1 (2015), 206–220.
PMID: 25989618.

[3] BOUBELA, R. N., KALCHER, K., HUF, W., NASEL, C., AND MOSER,
E. Big data approaches for the analysis of large-scale fMRI data
using Apache Spark and GPU processing: A demonstration on resting-
state fMRI data from the human connectome project. Frontiers in
neuroscience 9 (2015), 492.

[4] CHEN, T., LI, M., LI, Y., LIN, M., WANG, N., WANG, M., XIAO, T.,
XU, B., ZHANG, C., AND ZHANG, Z. MXNet: A flexible and efficient
machine learning library for heterogeneous distributed systems. CoRR
abs/1512.01274 (2015).

[5] CONSORTIUM, T. C. P.-G. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics 19, 1 (2018), 118–
135.

[6] DALCÍN, L., PAZ, R., AND STORTI, M. MPI for Python. J. Parallel
Distrib. Comput. 65, 9 (Sept. 2005), 1108–1115.

[7] JONES, E., OLIPHANT, T., PETERSON, P., ET AL. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed 15.11.2018].

[8] LEE, J.-G., AND KANG, M. Geospatial big data: Challenges and
opportunities. Big Data Research 2 (2015), 74–81.

[9] MACQUEEN, J. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics (Berkeley,
Calif., 1967), University of California Press, pp. 281–297.

[10] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E.,
DEVITO, Z., LIN, Z., DESMAISON, A., ANTIGA, L., AND LERER, A.
Automatic differentiation in PyTorch. In NIPS-W (2017).

[11] YALAMANCHILI, P., ARSHAD, U., MOHAMMED, Z., GARIGIPATI, P.,
ENTSCHEV, P., KLOPPENBORG, B., MALCOLM, J., AND MELONAKOS,
J. ArrayFire - A high performance software library for parallel
computing with an easy-to-use API, 2015.

View publication statsView publication stats

