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Abstract

In recent years, blockchain and distributed ledger
technology (DLT) and its disruptive potential has
been one of the most discussed topics in the field
of information systems. Driven by the prospect of
cost savings and efficiency gains, financial markets
are at the core of these discussions. However, in the
increasingly convoluted and constantly evolving market
of technology providers and platforms, organizations
struggle to find a solution that fulfills the specific
requirements of their application scenario. To
evaluate the suitability of different blockchain-based
platforms for securities post-trading, we develop a new
methodology to create a technology classification that
takes the demands of a specific application context into
account. The resulting requirement-based taxonomy
sheds light on factors that impede the adoption of
blockchain- and DLT-based post-trading, highlights
future research challenges, and offers a valuable tool to
induce communication between involved stakeholders.

1. Introduction

In recent years, the disruptive potential of distributed
ledger (DLT) and blockchain technology [1, 2, 3] and its
adoption to practical application contexts [4, 5] were one
of the most discussed topics in the field of information
systems (IS) [6]. To leverage the disruptive potential,
many organizations intensify their blockchain and DLT
activities by increasing their investments in external
knowledge acquisition [7] as well as internal R&D
efforts [8]. However, many organizations fail to find an
appropriate technology for their use cases in the rapidly
growing and increasingly complex blockchain and DLT
market [2].

In the field of post trading, the multitude and
diversity of requirements, the involvement of multiple
stakeholders (e.g., exchanges, infrastructure providers,
banks, professional and retail traders, governments and
regulators), and the businesses’ global scale complicate

this task even further. As a result of this complexity,
financial markets struggle to adopt DLT and blockchain
technologies despite their immense potential for costs
savings and efficiency gains [9].

RQ 1: To which extent can existing blockchain
and DLT-solutions fulfill the requirements of securities
post-trading?

However, finding the right technology for
post-trading constitutes a challenging task that needs
to incorporate the constantly evolving blockchain
landscape and the functional requirements of a use case
alike. While IS research offers a variety of taxonomies
and frameworks, such as [10] or [6] that help to
structure knowledge about blockchain and DLT, many
organizations still fail to connect these abstract concepts
to the specific requirements of their use case at hand.
In addition, taxonomy development in IS has largely
been ad hoc [11] and lacks a structured process to take
requirements into account.

RQ 2: How can we create a taxonomy that
incorporate the specific requirements of a use case in
a structured way?

To resolve these research questions, we propose
a new method that combines requirements and
technological aspects to create a comparative
technology assessment tool (RQ 2). We then
apply this method to the use case of securities
post-trading to assess and compare different enabling
technologies (i.e. DLT platforms) and to identify
critical requirements and technology dimensions
(RQ 1). The resulting requirement-based taxonomy
classifies Ethereum, Hyperledger Fabric, and Corda
according to system access, the consensus mechanism,
and the characteristics of the underlying database.
Based on these dimensions, it evaluates each
technology’s features with respect to the legal,
regulatory, technological, functional requirements of
securities’ post-trading. While we find that Corda and
Hyperledger may be promising solutions, our taxonomy
also highlights that no technology is able to meet
all requirements yet. More specifically, we identify
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compatibility issues, the transparency-confidentiality
trade-off, and scalability as critical factors for future
adoption, and thus starting points for future research.

Consistent with these results, our contribution
is twofold: First, we analyze the use case of
blockchain-based post-trading in financial markets and
thereby shed light on the suitability of three popular
DLT platforms (RQ 1). To do so, we create a
new method for taxonomy development that takes the
technological, socio-economic, and legal environment
[6] of our use case into account (RQ 2). We furthermore
hope that this method provides a valuable tool for
researchers and practitioners to explore technology use
cases beyond blockchain and DLT.

The remainder of this paper is structured as
follows: Section 2 introduces the taxonomy concept and
highlights a research gap. Section 3 establishes our new
method. In section 4, we apply our new approach to
the use case of blockchain- and DLT-based post-trading.
Finally, section 5 discusses and concludes our results.

2. Foundations: Taxonomies

To provide a foundation for the methodology
development in section 3, we aim to establish a general
understanding of taxonomies and ontologies in this
section.

A common feature of both concepts - taxonomies
and ontologies - is their hierarchical structure. However,
a taxonomy can be seen as a subset of ontologies [12]
as it only shows an ”is a” relationship, whereas an
ontology covers various kinds of relationships from
multiple perspectives. Moreover, an ontology can be
a combination of multiple taxonomies. As a result,
ontologies cover a wider range of knowledge, and thus
facilitate the representation of different interconnected
fields of knowledge in a systematic manner that allows
the derivation of inferences between and within those
fields. A taxonomy on the other hand, allows going into
detail, moving from a high level of abstraction to more
granular specializations. In consequence, taxonomies
are used to classify objects among various dimensions
within potentially complex domains. In both fields
- management science and IS - taxonomies gained
popularity in recent years and experience a higher
priority among researchers [13]. This increased interest
builds on their capability to reduce complexity and
to identify similarities and differences among objects
[14]. In the context of this study, we follow [13]
and define a taxonomy T as a set of dimensions
Di(i = 1, . . . , n) where any dimension contains ki |
ki ≥ 2 mutually exclusive and collectively exhaustive
characteristics Cij(j = 1, . . . , ki).

To identify related literature that deals with
requirement-driven taxonomy development, we queried
the most important scientific databases including
Crossref, Elsevier (including Scopus), IEEE, Arxiv,
and Springer. Within these queries, we searched
for the occurrence of the keywords requirement,
development, and taxonomy, sorted the query output
by popularity in descending order, and limited the
results to 10, 000 hits. In addition, we excluded all
hits without an abstract available and a publication
date before 1980. Based on the resulting output,
we conduct a lemmatization and compute k-means
clusters based on the relative importance of a word
(requirement, development, taxonomy) in the abstract.
Figure 1 shows the resulting keyword-based clusters
in a 3-dimensional plot and highlights the scarcity of
taxonomy development approaches that take the specific
requirements of a use case explicitly into account. In
addition, it highlights that the classification of objects in
a domain of interest is a challenging task and guidance
in taxonomy development process is rarely addressed in
IS research. We aim to fill this research gap between
requirement-driven and classification approaches with
the method proposed in section 3.

Figure 1. Common appearance of the keywords
”requirement”, ”development” and ”taxonomy”

within the identified literature

3. Methodology: Taxonomy Development

3.1. Methodological Approach

To guide the creation of our requirement-driven
taxonomy development approach, we follow the design
science paradigms of [15] and [16]. The resulting
artifact is a method that intends to support researchers
and practitioners in their endeavor to structure and
organize domain-specific knowledge, while taking the
socio-economic, legal, and technological environment
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and the functional requirements of a specific application
scenario into account. This way, we ensure that our
artifact provides a ”means to reach desired ends while
[taking] the problem environment” into account [16].
This section describes our method as a ”set of steps [...]
used to perform a task” (i.e. the development of the
taxonomy) [15].

3.2. Requirement-driven Taxonomy
Development

To develop a classification approach that considers
the technological characteristics as well as the
requirements of a specific use case, we build on the
literature identified in section 2. The resulting method
is mainly based on [11] and [13]. In their paper, [11]
conduct a comprehensive literature review and propose a
structured approach that concentrates on the taxonomy’s
users’ needs. However, their taxonomy development
process also includes characteristics irrelevant for the
use case at hand.

In contrast to [11] and [13], our method utilizes
requirement documents to span an additional
perspective and allows the user to alternate between
technology and requirement iterations during the
creation of the taxonomy. With this requirement-driven
approach, we aim to streamline the usability of
taxonomies as an analytic tool as dimensions that do
not correspond to any requirement or vice versa are
excluded.

Eventually, our method yields a taxonomy that
consists of a set of requirements and a set of technology
dimensions. Each dimension comprises a set of
characteristics, while a meta-characteristic specifies the
technology and its field of application. Note that we
focus on the taxonomy development procedure, and
thus do not provide a method to create the requirement
documents. Instead, we assume that these requirement
documents may originate for instance from experiences
from previous projects, interviews with potential users,
technology specifications, institutional publications, or
requirement analyses. It is also important to keep
in mind that the output of our approach depends on
its input. Therefore, low quality input results in low
quality output. This makes it highly advisable to
apply this method in conjunction with requirements
engineering approaches such as [17]. Furthermore, the
resulting taxonomy is stakeholder-agnostic, and thus
any constraint regarding stakeholders must either be
incorporated before supplying the input to the method or
as part of the ending conditions (detailed in the course
of this section).

To initiate the development process, one needs to

choose a meta-characteristic. The meta-characteristic is
the most comprehensive characteristic that comprises all
facets of the use case at hand and forms the basis for the
more detailed iterative taxonomy development process.
As a result, choosing an appropriate meta-characteristic
is crucial in order to create a meaning- and purposeful
taxonomy. To ensure an appropriate choice, we follow
[11] and recommend to choose the meta-characteristic
based on the taxonomy’s purpose, its user group,
and their expected use. In practice, this includes
the technology (domain knowledge) as well as the
functional requirements given by the specific application
[6]. This bisection of the meta-characteristics ensures
the applicability of our method beyond the specific use
case of blockchain and DLT-based (domain knowledge)
post-trading (requirements).

Similar to the meta-characteristic, the definition of
ending conditions is crucial to ensure the return of a
useful and valid taxonomy, as the iterative creation of
requirements and dimensions is repeated until the return
of algorithm 1 meets the specified quality criteria. The
ending conditions depend on the meta-characteristic (i.e.
the taxonomy’s purpose, use, and users) and constitute
a crucial driver of the final artifact’s conciseness and
comprehensiveness. A fundamental objective ending
condition to ensure the outputs inherent quality is the
mutually exclusive and collectively exhaustive nature
of characteristics within all dimensions [11]. In
addition, there are other objective and subjective ending
conditions that reflect use case- and user-specific factors.
[11] provide a list of important objective and an initial
set of subjective ending conditions to consider in the
taxonomy development process. Ending conditions may
also incorporate aspects regarding individual or multiple
stakeholders. To ensure a stakeholder-agnostic output,
an ending condition may demand to cover requirements
of all stakeholders for example.

In combination with the requirement documents and
the domain knowledge (i.e. the meta-characteristic),
the ending conditions form the core input for our
method: The iterative taxonomy development process
described in algorithm 1. The first part of each iteration
focuses on the requirement documents and creates a
list of new requirements based on one requirement
document drawn from the stack of requirement
documents. Based on this list, our method applies the
empirical-to-conceptual approach in order to choose
a relevant requirement from this list and add it to the
requirements of the taxonomy. Second, the technology
phase converts the domain knowledge into technology
dimensions with either the empirical-to-conceptual or
the conceptual-to-empirical approach. The inductive
empirical-to-conceptual approach generates new
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dimensions by using statistical techniques to classify
a sample of objects based on common characteristics
derived from the meta-characteristic [11, 14]. The
deductive conceptual-to-empirical approach on the
other hand, aims to conceptualize the dimensions based
on the users’ notion about the similarities between
objects. The success of this approach depends heavily
on the expertise, experience, and judgment of the user
and may yield inappropriate dimensions. However, the
characteristics of a dimension must logically follow
from the meta-characteristic. If this is not the case, a
dimension can be seen as inappropriate and should be
discarded [11, 14]. It is important that the requirements
or characteristics considered within a dimension are
mutually exclusive and collectively exhaustive, as they
would not add any information to the classifying nature
of the taxonomy otherwise.

In each iteration, the requirement phase gets
a new requirement document to create a list of
new requirements and removes the corresponding
requirement document from the stack of requirement
documents. If there is a significant overlap between a
new requirement and the requirements from previous
iterations, their consolidation creates a hierarchical
order that aggregates overarching concepts. If a new
requirement affects the technology dimensions of our
mapping, the dimensions in question will be revised
and mapped to the new requirement if applicable. If
not, the requirements are kept for future iterations,
where a new dimension may affect them or they may
be consolidated with a new requirement. Eventually,
they will be discarded if none of the other cases applies.
When the list is empty, no further requirement iterations
are required.

An iteration’s technology phase starts with
identifying new dimensions based on the domain
knowledge. Again, we establish a hierarchical order of
dimensions by consolidating overlapping dimensions.
Similar to the requirement phase, a new dimension must
be relevant to be added to the list of dimensions for
further considerations: If a new dimension is affected
by any previously identified requirements, it is added
to the mapping or kept for future iterations otherwise.
Eventually, dimensions unaffected by requirements will
be discarded.

At the end of each iteration, the user has to
check whether the return of algorithm 1 fulfills the
initially defined ending conditions. If all ending
conditions are met, the development process terminates
and yields a valid mapping that spans the taxonomy.
Otherwise, another iteration is required. Within each
new iteration, the current the requirements, dimensions,
and mapping will be updated according to newly

identified requirement documents and extensions of the
domain knowledge [14]. Note that after adding new
requirements, already existing technology dimensions
and their characteristics have to be revisited and vice
versa.

The resulting taxonomy is constructed as a mapping
from the set of technology dimensions to the set
of requirements that satisfies the validity demands
outlined by [11]. Across all iterations, it is important
to remember that the taxonomy should not have a
descriptive but rather an explanatory nature [11]. Note
that algorithm 1 returns not all technology dimensions
considered but only those that are relevant with respect
to at least one requirement. To ensure the overall
relevance of included dimensions and requirements,
each of them has to comply with the meta-characteristic.

In total, our method reduces the possibility to include
arbitrary technology dimensions and characteristics, can
be conducted in reasonable time, is straightforward
to apply, and leads to a useful result. The resulting
taxonomy complies with the formal demands outlined
by [11, 13], is concise, robust, comprehensive,
extendible, and explanatory [14]. In addition, it consists
of one or more dimension and one or more requirement,
which comprise mutually exclusive and collectively
exhaustive characteristics. In contrast to previous
approaches, such as [14] or [11], our method offers
a multi-perspective (requirements/technology) approach
that utilizes a ”generate/test cycle” [16] to search for a
meaningful two-sided classification system.

3.3. Interpretation of the Results

A requirement-driven taxonomy is intended to
support its user in the assessment of a new technology
by structuring information about its characteristics
hierarchically and relating them to the specific
requirements of a use case. This way, we aim to provide
an intuition, which technological design decisions to
consider to meet a given requirement and whether the
resulting characteristics facilitate or impede compliance.
Empty cells indicate the irrelevance of a technology
dimension for a requirement. Positive compliance
occurs when a specific technology (feature) fulfills
a requirement, while negative compliance highlights
discrepancies. However, the taxonomy needs to be
interpreted carefully, as algorithm 1 does not exclude
infeasible system configurations and the quality of the
result depends on the quality of the inputs. Especially in
young technology fields, such as blockchain technology
and DLT, advances in the domain knowledge may
render a taxonomy outdated after a short period
of time. More generally speaking, whenever we
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Algorithm 1: Requirement-driven taxonomy development
Data: sets of {requirement documents, domain knowledge, ending conditions}
Result: taxonomy, map from dimension to set of requirements

1 dimensions← ∅
2 requirements← ∅
3 mapping ← ∅
4 begin
5 while ending conditions met do
6 if requirement documents 6= ∅ then
7 requirement document← get and remove requirement document from requirement documents
8 new requirements← analyse requirement document
9 while new requirements 6= ∅ do

10 new requirement← get and remove new requirement from new requirements
11 if new requirement matches meta-characteristic then
12 add new requirement to requirements
13 consolidate requirements
14 foreach dimension in dimensions do
15 if dimension affects new requirement then
16 add (dimension, new requirement) to mapping
17 end
18 end
19 end
20 end
21 else
22 new dimension← identify technological dimension using domain knowledge
23 add new dimension to dimensions
24 consolidate dimensions
25 foreach requirement in requirements do
26 if new dimension affects requirement then
27 add (new dimension, requirement) to mapping
28 end
29 end
30 end
31 end
32 return {d ∈ dimensions | ∃(d, ) ∈ mapping},mapping
33 end

use an incorrect, outdated, or incomplete data as
input, the resulting taxonomy might fail to fulfill its
purpose. The same issues arise, when new requirements
emerge. However, algorithm 1 also allows to update a
taxonomy via additional iterations, if new information
on either side becomes available. In addition, the
result is restricted to the specific requirements and
technology domain of the use case under question.
As a result, for each application scenario (i.e.
the combination of requirements and a technology
domain), a new taxonomy needs to be developed.
Lastly, while creating a foundation to initiate action
and facilitate communication among stakeholders, a
requirement-based taxonomy only provides a structured

overview over technology characteristics that neither
guides nor recommends any direct action. To derive
direct implications however, one must consider the
priorities and perspectives of individual stakeholders,
which goes beyond the scope of our approach.

4. The Case of Post-Trading Services in
Financial Markets

To evaluate the capability of different blockchain
and DLT platforms to enable post-trading services,
identify critical requirements, and highlight impeding
factors for adoption, we apply the method proposed
in section 3 to the use case of post-trading services
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in financial markets. More specifically, we create a
requirement-driven taxonomy of three popular smart
contract platforms with a publicly available knowledge
base: Ethereum [18], Corda [19], and Hyperledger
Fabric [20, 21]. We consider the possibility to use smart
contracts as an important prerequisite to implement the
functional scope and complexity of modern post-trading
infrastructures. In addition, we focus on more general
and popular platforms to ensure the quality of our inputs
and to create a broad domain knowledge that enables us
to differentiate between the technologies appropriately.

4.1. Post-Trade Requirements

Post-trading services ensure that a trade is completed
according to the agreement concluded between buyer
and seller. This includes the assessment of a trade’s
details, the approval of the transaction, changing the
ownership records, and eventually the exchange of
securities for cash [22]. In total, the core functions of
post-trading services are the clearing and settlement of
transactions, the custody and safekeeping of securities,
and the provision of notary services [23]. Globally,
this generates costs of more than $ 10 BN per year
[24]. Driven by the promise of efficiency gains, market
participants strive to leverage the blockchain’s potential
to replace current centralized infrastructures that create
these costs [9]. However, the post-trading industry faces
a variety of legal, regulatory, technological, functional
requirements, and thus comparing different solutions
with respect to their suitability for post-trading is a
challenging task.

To elicit these requirements, we gather multiple
requirement documents from institutions [25, 9, 26,
27, 28, 29, 30, 31], academics [32, 24, 33, 34, 35],
and market participants [23]. Especially, the access
to technological documents from Boerse Stuttgart - the
second largest stock exchange in Germany - helped
us to take the specific infrastructure requirements into
account. Table 1 summarizes the extracted post-trading
requirements and provides a simplified overview. Note
that the requirement documents and not this list form
the initial input for the requirement-driven taxonomy
development procedure introduced in section 3.

4.2. Domain Knowledge

4.2.1. Blockchain & DLT Basics The blockchain
was first introduced as the underlying technology of
Bitcoin and provides a means to manage and update
a shared transactional database within a network of
interacting parties that utilize a consensus algorithm
and cryptographic security measures to replace a

Table 1. Summary of post-trading requirements

Requirement Description
Governance Ability to exert control over the

system (e.g. in crisis).
Mutability Retrospective changes of database

updates to correct mistakes.
Scalability Capability to process a specific

number of transactions per time
interval.

Data controls Confidentiality on the individual
and transparency on the regulatory
level.

Reliability Proper functioning and continuous
availability.

Security Correctness of the stored data and
robustness towards corruption.

Finality Delay after which transactions can
be considered as final.

Identification Provision of unique and certified
identifiers for each entity.

Compatibility Standardized interaction with
legacy systems, ancillary services,
and other infrastructures.

Effectiveness Implementation of all relevant
process steps and features.

central authority [6]. In consequence, the fundamental
innovation that comes with blockchain technology is
the decentralization of the consensus authority and the
resulting revolution of the role of trust between peers
and between peers and blockchain-based platforms [36].

To achieve such a trust-free environment the
consensus algorithm moderates database updates,
thereby allowing potentially conflicting parties to
achieve an agreement on the validity of new information
[37]. More specifically, these changes constitute
atomic updates (i.e. they are either fully applied
or not applied at all) that result from transactions
between peers [38]. The resulting append-only database
is an ordered list of all updates, which enables
all network participants to determine the system’s
current state and fully reproduce historic transactions
[38]. The log itself is immutable, and thus removing
or tampering with agreed and stored data becomes
infeasible [39]. From a network perspective the
ledger is stored and replicated across every participant
in the network providing transparency over historical
transactions, while individual participants can leave and
join the network arbitrarily [1, 37]. From a formal
perspective, the term blockchain is usually associated
with the underlying data structure - a chain of data
blocks linked by cryptographic hashes - and often
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refers to a public and pseudonymous setup. The term
DLT in contrast comprises a broader, more general
spectrum. DLT includes any technology that allows
the trust-free management of data in a decentralized
way. Within either system - DLT and blockchain -
smart contracts offer a way to implement software logic,
which allows complex interactions to happen without a
central governing authority [1].

4.2.2. Design Decisions On the global DLT and
blockchain market, many different blockchain systems
are available [5]. While each of them share the same
building blocks, their the individual designs reflect the
requirements imposed by a specific application context
[6]. This section builds on [40, 41, 38, 42] and
summarizes fundamental DLT and blockchain design
decisions, thereby spanning the domain knowledge for
the upcoming taxonomy development.

The system’s Access Scope determines whether
access to the system is permissionless or permissioned.
The degree of access depends on an individual’s rights
to initiate and view updates, the ability to verify newly
proposed updates, as well as the possibility to freely
join a network. In a public setup, new participants can
join without permission, while private networks may lay
down specific requirements or restrict access to a limited
set of entities.

The consensus algorithm defines the way
participants exert control over data and agree on updates.
As a result, its robustness towards the malicious
behavior of individuals determines safety, security, and
performance [43]. In permissionless setups, algorithms
such as Proof-of-Work or Proof-of-Stake randomize
the costly privilege to append new data. At the same
time transaction fees and rewards for appending data
facilitate the competitiveness of the consensus process.
This concept, aims to prevent the corruption of data and
to minimize the risk of compromising attacks [44]. In
permissioned systems on the other hand, byzantine fault
tolerant (BFT) algorithms, such as Proof-of-Authority
or Practical and Federate BFT, offer cheaper alternatives
to vote on the correctness of new data [45].

Within the consensus process, the verification of
new transactions comprises two steps, validation and
ordering [30]. The first step verifies each transaction’s
formal correctness and checks the signature and
ownership of the sender. If the new transactions are
formally correct, the second step establishes a sequence
of transactions for the database update. Depending
on the Consensus Type, the validation of transactions
can be performed either separately by each node or
in conjunction with their ordering on a network level.

Separating these two steps can increase performance, as
each participant only validates the transactions he or she
is involved in, while centralized notaries are in charge of
ordering and certify past transactions’ correctness [19].

After consensus on the validity and order of
transactions is achieved, the actual database update
is conducted. This update can follow two design
paradigms that affect performance and practical
usability of the system. The first and more common
Update Type relies on the UTXO model [42]. In
this model, an update incorporates a set of unspent
transaction outputs (UTXO) of the sender that generates
a set of new UTXOs for the recipient of a transaction.
The UTXO model is stateless in the sense that there is
no need to keep anything except UTXOs to reproduce
the current ledger state. The second type is based on the
account model [42]. In the account model, any update
is either a transaction between participants’ accounts or
a request to a smart contract, which changes its state.
In contrast to the UTXO model, the account model is
stateful and data stored in a smart contract must be
kept by all participants until it is overwritten. Note,
that neither model is technically more powerful and -
although impractical - a conversion between them is
easy to achieve [18].

Independent of their type, database updates are
stored in one of three Data Structures. The first and most
common structure is a single chain, where updates are
grouped into blocks and then linked to secure their order.
Alternatively, a blockchain or DLT system can also
comprise multiple chains that are verified and updated
independently. However, an update that concerns more
than one chain can lead to problems. The third and
fundamentally different structure is a directed acyclic
graph (DAG) [46]. In contrast to a single or multi-chain
structure, a DAG block can be linked to more than one
preceding block. This way, non-conflicting updates can
be verified at the same time. However, while improving
scalability, this structure may impose security threats.

The confidentiality of the stored data is a critical
point for many applications and is in sharp contrast to
the transparency paradigm inherent in most blockchain
and DLT systems. One way to achieve full
confidentiality is to refrain from storing sensitive data
on-chain. In addition, Partial confidentiality can be
reached by encrypting or hashing data or limiting access
to a specific set or type of nodes. However, increasing
confidentiality comes at the cost of transparency, the
robustness of consensus, and performance (e.g. in the
context of zero knowledge proofs [47]).
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4.3. A Taxonomy of Blockchain-based
Post-Trade Solutions

With the rise of blockchain technology and DLT,
several related taxonomies have been proposed. [41]
for instance categorize DLTs based on technological
features. However, their resulting taxonomy does
neither fulfill the conditions outlined by [11] nor focus
on the specific use case of post-trading. Similarly,
[10] centers his taxonomy on decentralized consensus
mechanisms while lacking a specific application focus.
In consequence, we propose a taxonomy of blockchain
and DLT with respect to post-trading in financial
markets.

4.3.1. Taxonomy Development The
meta-characteristic guiding the development process is
the feasibility of blockchain technology and DLT for
securities post-trading. This comprises the requirements
represented by the requirement documents elicited in
section 4.1 as well as the blockchain features introduced
in section 4.2 (i.e. the domain knowledge). With the
resulting taxonomy, we aim to make the considered
technologies comparable with respect to their use in
the field of securities post-trading (purpose). This
helps all users involved in the post-trading process
(e.g., exchanges, brokers, and other service providers)
to identify the best suited basis for a blockchain- or
DLT-based post-trading (use).

To define the ending conditions for the development
procedure, we follow [11]. The resulting objective
ending conditions require that all dimensions and
requirements have to be examined, while every
requirement, dimension, and characteristic is unique,
mutually exclusive, collectively exhaustive, and
possible. In addition, to ensure the explanatory power
beyond a pure requirements and technology perspective,
we demand that every technology dimension is
associated with at least one requirement. Subjectively,
we require the number of requirements, dimensions,
and characteristics to allow for a understandable but
precise distinction, thereby providing a sufficient level
of differentiation. This ensures that the resulting
taxonomy is concise and robust. Furthermore, all
relevant requirements and dimensions should be covered
in order to enable a comprehensive classification of all
considered solutions.

Within each iteration phase, we follow algorithm 1 to
gradually extract all requirements from the requirement
documents highlighted in section 4.1 and consolidate
them in each iteration, if necessary. Similarly, we
extract a new dimension from the domain knowledge

summarized in section 4.2 in each iteration. This
way, we refine, consolidate, and discard possible
blockchain design decisions with respect to their
relevance in the context of securities post-trading.
Within the reciprocal creation of the taxonomy’s
mapping, we integrate mutability in governance as
well as finality in security on the requirement side,
while we discard compatibility. We do so, because
to this date none of the considered technologies
explicitly implements compatibility features to establish
a standardized connection to other (legacy) systems. In
consequence, dropping the compatibility requirement
does not harm comprehensiveness, as it does not
provide any explanatory power yet. With an
analogous reasoning, we furthermore drop the parallel
characteristic within data structure, and full within
confidentiality. To account for the blockchain’s trade-off
between confidentiality and transparency, the data
controls requirement is furthermore split into these
two requirements. Note that when the considered
technologies implement new features an update of the
taxonomy may be required.

4.3.2. The Taxonomy After 15 iterations, algorithm
1 yields a valid taxonomy that classifies Ethereum,
Corda, and Hyperledger Fabric according to their
access scope, the consensus algorithm (Cons Algo)
and type (Cons Type), data structure, update type,
and confidentiality. The taxonomy is depicted in
table 2 and complies with all objective and subjective
ending conditions. Note that while the considered
technologies also allow for other specifications, we
focused on the baseline configuration introduced in
the related technical documents. Due to the iterative
design of the method, the taxonomy can be enhanced
by adding new requirement documents, extending the
domain knowledge, or updating the meta-characteristic
if more data, new requirements, new technologies, or
new features become available.

Table 2 depicts the resulting requirement-based
taxonomy of blockchain- and DLT-based post-trading
solutions. While the permissionless Ethereum protocol
struggles with scalability, privacy, and identity issues,
the permission-based specification of the Hyperledger
Fabric or Corda offers a more promising foundation
for potential implementations. However, the absent
compatibility with legacy systems, the trade-off between
transparency and confidentiality, as well as the finality
of transactions still constitute limitations that impede
adoption. In total, our taxonomy shows that none of
the considered technologies is already able to fulfill
all requirements demanded by post-trading in modern
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Table 2. Taxonomy of Blockchain-based Post-trading Solutions: E stands for Ethereum, H for Hyperledger
Fabric, and C for Corda. Empty cells indicate the irrelevance of a technology dimension and X (×) indicates

positive (negative) compliance with a requirement.

Technology
Dimension Access Scope Cons Algo Cons Type Data Structure Update Type Confidentiality
Characteristic Pmls Pmd PoX BFT Uni Iso Single Multi UTXO Acc Hyb None Part

R
eq

ui
re

m
en

t

Governance E× HXCX E× HX, CX

Scalability E× HXCX E× HXCX E×H× CX E× HXCX CX E× H× EX HXCX

Confidentiality E× HXCX E×H× CX E× HXCX CX E× HX E× HXCX

Transparency EX H×C× EXHX C× EX H×C× C× EX H× EX H×C×
Reliability EX H×C×
Security E× HXCX E HXCX

Identity E× HXCX

Effectiveness EXHX C× C× EX HX

Total E HC E HC EH C E HC C E H E HC

financial markets. Nonetheless, it allows us to direct
the focus towards Corda and Hyperledger as promising
solutions and highlights compatibility, confidentiality,
and scalability as starting points for future R&D
activities.

5. Conclusion

In total, we investigate the suitability of existing
blockchain and DLT platforms to conduct post-trading
services in modern financial markets. To do so, we
develop a new methodology that allows its user to
integrate the technology characteristics and demands
of a specific application scenario to create a use
case-specific classification of potential solutions (RQ
2). We then apply this approach to the use case of
blockchain and DLT-based post-trading in securities
markets. The resulting taxonomy highlights that
the considered blockchain technologies and DLTs
still struggle to meet all requirements demanded
for post-trading services. Namely, the issues that
impede adoption are the absent compatibility with
existing systems, the trade-off between transparency and
confidentiality, and scalability concerns (RQ 1). By the
means of our taxonomy, we hope to offer a tool to create
a baseline to prioritize R&D efforts and to facilitate
communication among post-trading stakeholders.

However, it also is important to note that the
our approach does not exclude infeasible technology
configurations and the quality of the output depends
on the quality of the input. In addition, we do not
provide any direct recommendations but rather aim to
facilitate the transparency over the connection between
requirements and technological features to create a
foundation for further analyses. In consequence, future
methodical research may include the development of
measures to control for input quality and a way to
exclude infeasible configurations. Eventually, applying
our approach to other cases would strengthen its validity,

usefulness, and efficiency [16] beyond the formal
quality criteria of [11, 13] and highlight possibilities for
further improvements.
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