
Assistance in Daily Password
Generation Tasks

Karola Marky
Telecooperation / TU Darmstadt
Hochschulstr. 10, 64289
Darmstadt, Germany
marky@tk.tu-darmstadt.de

Verena Zimmermann
Institute of Psychology / TU
Darmstadt
Alexanderstr. 10, 64283
Darmstadt, Germany
zimmermann@psychologie.tu-
darmstadt.de

Peter Mayer
SECUSO / Karlsruhe Institute of
Technology
Kaiserstrasse 89, 76133
Karlsruhe, Germany
peter.mayer@kit.edu

Nina Gerber
SECUSO / Karlsruhe Institute of
Technology
Kaiserstrasse 89, 76133
Karlsruhe, Germany
nina.gerber@kit.edu

Abstract
Passwords and PINs are used to protect all kinds of ser-
vices in our everyday lives. To serve their purpose of pro-
tecting services against adversaries, passwords should
have a certain degree of complexity which is often enforced
through password policies that encompass various. This
results in complicated passwords, which might not only be
hard for users to create, but also hard to remember. Fur-
thermore, users might reuse passwords which they feel are
secure. We present a scheme for deterministic password
generation that solves these problems by assisting the user
in generating and remembering passwords. The passwords
are generated based on previously stored meta data (e.g.,
policies) and a master password. Since the password gen-
eration is deterministic and only the master password is
required to recreate the passwords. As proof of concept
we implemented a mobile app and pre-evaluated it. The
pre-evaluation indicates that our scheme offers a good us-
ability.

Author Keywords
Password Generation; Password Assistance; Password
Management.

Introduction
Passwords and PINs for different (web) services have be-
come part of everyday life and represent the predominant
authentication mechanism of the Internet. They are the
barrier defending our accounts, e.g., for social networks
and online shopping portals, from data thieves. To ensure a
strong barrier, users have to choose and remember unique
passwords for each service. Services use password poli-
cies enforcing certain properties for a password. Password
policies might lead to three problems:

(1) users have problems in generating passwords [6, 11, 8],
(2) users struggle remembering their passwords [5, 8], and
(3) users often reuse passwords [5, 4].

A naive solution might be storing passwords in a password
protected file. Such a file, however, constitutes a security
problem, since the password protection might be circum-
vented trivially, if no encryption is used and files are often
not tailored to address the security needs, that the pro-
tection of passwords demands. Password generators can
assist users in the password generation process, but most
password generators can only be used once, because the
generated password is a random one. Therefore, they can-
not assist the users in remembering the password. Pass-
word managers store passwords, such that users do not
have to remember them. Despite this benefit, a widespread
adoption has not occurred. This might be related to a miss-
ing trustworthiness towards the developer of a password
manager or a poor user experience [1].

In this paper we present a deterministic password genera-
tion scheme that located between a random password gen-
erator and a password manager. It contains an algorithm
that can deterministically generate random-looking pass-
words based on stored meta data describing the account
(e.g. the username of the account), password properties

required by the targeted service (e.g. the password length)
and a secret master password. Thus, it assists the user
in generating different passwords for each service, while
the user only has to remember one master password. The
passwords are not stored, but generated on demand when-
ever the user requires them. The generation algorithm is
based on a combination of the hash algorithm BCrypt [15]
and the key derivation function PBKDF2 [10]. The salt for
these algorithms must not be random, thus it is derived
from static meta data: the account name and the user-
name. Other meta data used in the algorithm is: a char-
acter set (set of all possible symbols) and the length of the
password. This meta data can be exchanged between dif-
ferent user devices, such that the users can generate their
passwords on all of their devices.

The user only has to remember the master password, in-
stead of the passwords for all different accounts. So, if an
adversary takes possession of the meta data stored for
generation, the adversary still has to perform a brute force
attack. The only additional knowledge the adversary gains,
is the length of the password. To evaluate our scheme, we
have implemented an Android app and the results show
that our scheme has a good usability.

Password Generation Scheme
In this section we explain the deterministic password gener-
ation scheme. We first describe the meta data from which
the password is derived. Then we explain the determinis-
tic password generation and show how the scheme can be
used device independently.

Meta Data
For the deterministic generation the algorithm requires meta
data. This meta data can either be user input or the meta
data can be pulled automatically from the targeted web ser-

vice, e.g., by crawling the password policy. In both cases
the meta data is stored in a protected database. We denote
the a set of meta data as account which consists of:

Account name: This can be the URL of a website, but it
could also be the name of a (web) service.

Username: In case the user has more than one account on
the same website. The username is optional.

Character set: Represents the character types a password
consists of. Users can choose at least one of uppercase
characters, lowercase characters, special characters, num-
bers.

Length: Length of the password.

Date: Date of the last meta data change to indicate the us-
age duration for a specific meta data set.

Version: Is used to create different passwords, if a pass-
word update without changes of the above-mentioned meta
data and no change of the master password is intended
(e.g., for changing the password after a breach at a web
service). If no value is entered, the default value is "1" and
is increased automatically during each password update.

Deterministic Password Generation
The password generation algorithm (see Figure 1) is based
on the combination of two algorithms: The Public-Key Cryp-
tography Standard PBKDF2 [10] for key deviation and the
hash algorithm BCrypt [15]. PBKDF2 can be executed with
three different hash algorithms (SHA256, SHA384 and
SHA512) and different numbers of iterations.

The master password from the user serves as the secret for
the PBKDF2 algorithm. The password version, the account

Figure 1: Simplified schematic overview of the generation
algorithm. User input is depicted as squares, generated results
are depicted as ovals.

name, the username and an optional device-binding string 1

are concatenated to a string and form the salt for PBKDF2.
The result of PBKDF2 hashing is encoded into a special
version of Base64 which is compatible with BCrypt and not

1Users might want to bind the passwords to their individual devices.

longer than 22 characters, because BCrypt demands this
properties. The master password serves as secret for the
BCrypt algorithm. The result of the PBKDF2 hashing com-
bined with the string $2a$10$2 at the beginning forms the
salt for BCrypt. As the prefix and the salt are also part of
BCrypt’s result those are removed from the resulting byte-
array3. The byte-array is used to deterministically choose
characters out of the defined character set.

Figure 2: Account list.

Figure 3: Generation dialog.

To ensure that at least one of each chosen character groups
is included in the password, password templates are used.
The template is a string generated for every password
based on the character set. For instance a password with
at least one number, one lowercase character and a length
of 10 would be "naxxxxxxxx". Whereas "n" denotes a num-
ber, "a" denotes a lowercase letter and x denotes any sym-
bol from the character set. To not deteriorate the password
room of the resulting password the template string is shuf-
fled based on the reverse of the resulting byte array.

Device Independent Generation
There are several possibilities to collect the required meta
data. First, the user could enter the data manually, which
is not very practical, but a good back-up option in case an
automatic collection is not possible. Second, the user could
indicate the targeted (web) service by, for instance, opening
a website. Then the meta data could be crawled from the
website’s password policy if available. The meta data is
stored in a protected database that can be synced among
different user devices, e.g., by a syncing server. Software
on these devices that implements the generation algorithm
can generate the passwords on demand.

2The string $2a$10$ indicates the salt type and the 10 is the round
value for BCrypt.

3Byte-arrays are used to exacerbate stealing the generated password
from a device’s RAM.

Pre-Evaluation
We implemented a mobile app in order to evaluate the
password generation algorithm. In this section we present
our implementation, describe the evaluation method and
results.

Implementation
We implemented our generation algorithm as an Android
app in order to evaluate the password generation. The
app is called "Privacy Friendly Password Generator" and
its source code and the app are available on Github4. The
app offers a password length between 4 and 25 characters.
The number of PBKDF2 iterations can be set from 1000 up
to 10000. We choose the range because it is recommended
by the United States National Institute for Standards and
Technology to use at least 1000 [17]. The number of itera-
tions can be chosen in the expert section of the app’s set-
tings. To test the generation duration based on the given
settings a benchmark can be executed in the settings.

To generate a password, a user has to add an account with
the meta data explained above. This task has to be per-
formed once, because the account is stored in a database.
All accounts are displayed as a searchable list in the app
(see Figure 2). To generate a password, the user chooses
an account from this list by a click which opens a dialog
(see Figure 3). There, the user enters his or her master
password and presses a button with the label "generate".
The app generates and displays the password which has to
be copied by the user either manually or by a copy button
next to the displayed password.

In case the user wishes to update the password, he or she
chooses the account from the list and starts the update
process by a long press (see Figure 4). After the data has

4https://github.com/SECUSO/privacy-friendly-passwordgenerator

been stored in the database, the user has the possibility
to generate and display both: old and new password (see
Figure 5). This feature has been integrated to simplify the
update process as the user sees both passwords at the
same time and can copy one after another.

Figure 4: Account update.

Figure 5: Account update: Old
and new password.

"Privacy Friendly Password Generator" is part of the Privacy
Friendly Apps group [13] and uses the following mecha-
nisms to enhance the privacy and the security of the pass-
word:

• Blocking of screenshots. By blocking screen shots
users cannot save a screenshot of the password
on the device. Furthermore, a malicious app cannot
steal the password by taking a screenshot.

• Usage of a stateless algorithm. The generated pass-
word and the entered master password only "exist"
during the execution of the algorithm.

• Handling of the password in byte or char arrays as of-
ten as possible. Avoidance of handling the password
as a string should aggravate reading the password
from a device’s RAM.

• No storage of passwords. Passwords are not stored
on the device to prevent leakage if the device gets
lost or stolen.

• No storage of the master password. The master
password is the only secret, it is not stored, such that
passwords can not be generated if the device gets
lost or stolen.

• No usage of Android permissions. "Privacy Friendly
Password Generator" does not require permissions
for its functionality. The usage of permissions would
result in a over-privileged app.

Since our goal was to pre-evaluate the password genera-
tion, the app does not offer a possibility for syncing meta
data.

Evaluation Method
In order to pre-evaluate the usability of the password gen-
eration, a user study with ten participants was conducted.
The study was limited to the users of mobile devices. Nine
participants were students of various subjects. One par-
ticipant was a lecturer. Half of the participants were male
and half of them were female. The mean age of partici-
pants was 22.3 years. The participants were recruited via
word-of-mouth and e-mail invitation. Before starting the
study, we explained the study to each participant who had
to sign a consent form. Throughout the study, participants
did not use their own smartphones, but were provided one
with "Privacy Friendly Password Generator" pre-installed
instead. The installation of "Privacy Friendly Password Gen-
erator" was reset after each participant.

The participants were asked to perform the following tasks5:
(1) generating a password and therefore adding a new ac-
count, (2) updating a password and therefore updating an
account and (3) deleting an account. Besides these tasks
the participants had the opportunity to freely explore the
app. The participants’ interaction with the app was recorded
by a screen capturing app. After exploring the app the par-
ticipants were asked to fill out the System Usability Scale
questionnaire (SUS) [3] and answer two further open-ended
questions. Those questions were: (1) Do you have any im-
provement suggestions for "Privacy Friendly Password Gen-
erator"?, and (2) Do you have any additional feedback?

5If the app is started for the first time, it starts with a tutorial screen
informing the user about these tasks. The tutorial can be re-accessed
through the app’s menu.

Results
"Privacy Friendly Password Generator" received an average
SUS score of 83 (Min = 77.5, Max = 92.5) which cor-
responds to an adjective scale of "excellent" according to
Bangor et al. [2] and indicates a "good" usability.

The first question (Do you have any improvement sug-
gestions for "Privacy Friendly Password Generator"?) has
mostly been answered with the need for a better explana-
tion of the purpose of the master password. Therefore, an
additional tutorial page explaining the master password in
a tutorial which is displayed before the first generation of
a password, was added to the app. Furthermore, partici-
pants struggled with copying the passwords from the gen-
erator to the web service, therefore we added a button that
copies the generated password to the clipboard. The par-
ticipants, furthermore, mentioned the need to generate the
passwords on different devices and consider this property
very useful. The screen captures were also analyzed but
no mentionable conclusions could be made. All participants
were able to perform the tasks that we asked from them.

Related Work
There are various password generation schemes available
on the market and in the literature. Web-based schemes
generate passwords on a website. Mobile schemes run
on a smartphone or other mobile device in form of an app.
Finally, browser-based schemes are included into a web
browser.

Random Password Generator6 is a web-based genera-
tor that creates random passwords. Users can choose be-
tween different password types. The length of the password
can be chosen indirectly by picking one out of six secu-
rity levels with poor being the lowest and overkill being the

6http://passwordcreator.org/ [accessed Jan. 30th 2018]

highest. If the password is lost it cannot be re-covered or
re-generated.

xkpasswd7 is web-based implementation of the fastwords
concept [9]. The user chooses a quantity of English words
in a defined length range and word transformations, e.g.,
alternating the case. Because the words are separated the
user has the option to pick a separator, otherwise it is ran-
domized. The user can choose padding digits and symbols
for the beginning and end of the password. After password
generation, the generator displays a strength estimation
from "poor" to "strong". Although the configuration can be
stored, the algorithm cannot re-generate passwords be-
cause the words are chosen randomly.

PwdHash [16] is a deterministic browser-based generator,
which is also available as web-based generator8. PwdHash
uses a HMAC-MD5 hash with the website’s top-level do-
main9 as salt and a master password as secret. The gen-
erated password is two characters longer than the master
password and fulfills policies like the inclusion of specific
character types. The implementation protects against some
browser attacks [16], but it has several weaknesses and is
susceptible to a brute force attack [12].

Master Password10 is a mobile generator with implemen-
tations for different mobile operating systems. It generates
passwords based on parameters and a master password.
The user name serves as a seed for a Scrypt hash [14].
This hash, the website’s name and a password counter
are combined to a template seed by performing an HMAC-
SHA256 with the key as secret and the website’s name and
password counter as salt. Based on the template seed the

7https://xkpasswd.net/s/ [accessed Jan. 30th 2018]
8https://pwdhash.com/ [accessed Jan. 30th 2018]
9But this results in problems with umbrella domains like .co.uk.

10http://masterpasswordapp.com/ [accessed Jan. 30th 2018]

user can choose one of 30 templates with different lengths,
character sets and characters sequences. But the limited
number of templates reduces the number of possible pass-
words and eases a brute force attack.

The Password Assistance System (PAS) by Horsch [7] as-
sists the user by minimizing the user’s interaction with the
password. PAS automatically generates passwords match-
ing the password policies of a given website and stores it
for the user in way that users can access the password from
all devices. Thus, it is a password manager that can gener-
ate passwords. PAS has not been evaluated in a user study
and therefore, metrics regarding its usability and trust are
not available.

Discussion and Limitations
The pre-evaluation of the app implementation of the pre-
sented algorithm shows that the processes of adding, up-
dating accounts, deleting accounts and generating pass-
words offer a good usability. However, only ten people in
a specific age group participated in the study making the
results not representative. But they serve as an input for
improving the scheme before a deeper usability and trust
evaluation. The mentioned need for password generation
assistance on different user devices in the study indicates
that users would welcome the assistance by our proposed
scheme. As up to this point in time the generation is lim-
ited to mobile devices, we plan to extend the scheme from
a standalone app to a device-independent password gener-
ation and management scheme and to implement a sync-
ing service. This enables a deep evaluation of the entire
scheme with a representative number of participants. We
furthermore plan to investigate the automatic collection
of meta data. Furthermore, password managers are only
scarcely adopted due to trust issues [1], therefore deter-
mining the user trust in deterministic password generation

based on a master password forms an important task of
future work.

Conclusion
The presented scheme offers a possibility to assist the user
in generating passwords based on a master password and
meta data. Instead of remembering all the passwords for all
services, the user only has to remember only one master
password. The passwords generated by our scheme are
random looking and thus hard to remember. But compared
to random generators the password can be re-generated
deterministically on demand. The pre-evaluation of the mo-
bile app shows, that the password generation offers a good
usability and that users would welcome the generation on
different user devices. Therefore, we plan the extend the
standalone app to a device-independent password genera-
tion and management scheme to further evaluate usability,
user experience and trust.

REFERENCES
1. Nora Alkaldi and Karen Renaud. 2016. Why Do People

Adopt, or Reject, Smartphone Password Managers?. In
Proceedings of the 1st European Workshop on Usable
Security (EuroUSEC). Internet Society, Reston, VA,
USA, 1–14.

2. Aaron Bangor, Philip Kortum, and James Miller. 2009.
Determining What Individual SUS Scores Mean:
Adding an Adjective Rating Scale. Journal of Usability
Studies 4, 3 (2009), 114–123.

3. John Brooke. 1996. SUS - A Quick and Dirty Usability
Scale. Usability Evaluation in Industry 189, 194 (1996),
4–7.

4. Anupam Das, Joseph Bonneau, Matthew Caesar,
Nikita Borisov, and Xiao Feng Wang. 2014. The
Tangled Web of Password Reuse.. In Proceedings of

Network and Distributed System Security Symposium
(NDSS). Internet Society, Reston, VA, USA, 23–26.

5. Dinei Florencio and Cormac Herley. 2007. A
Large-Scale Study of Web Password Habits. In
Proceedings of the 16th international Conference on
World Wide Web (WWW). ACM, New York, NY, USA,
657–666.

6. Cormac Herley. 2009. So Long, and No Thanks for the
Externalities: the Rational Rejection of Security Advice
by Users. In Proceedings of the New Security
Paradigms Workshop (NSPW). ACM, New York, NY,
USA, 133–144.

7. Moritz Horsch. 2018. Generating and Managing Secure
Passwords for Online Accounts. Ph.D. Dissertation.
Technische Universität Darmstadt.

8. Philip G. Inglesant and M. Angela Sasse. 2010. The
True Cost of Unusable Password Policies: Password
Use in the Wild. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI). ACM, New York, NY, USA, 383–392.

9. Markus Jakobsson and Ruj Akavipat. 2012. Rethinking
Passwords to Adapt to Constrained Keyboards. In
Proceedings of the Workshop on Mobile Security
Technologies (MoST). IEEE, Piscataway, NJ, USA,
1–11.

10. Burt Kaliski. 2000. RFC 2898: PKCS# 5:
Password-Based Cryptography Specification Version
2.0. (2000).

11. Saranga Komanduri, Richard Shay, Patrick Gage
Kelley, Michelle L Mazurek, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Serge Egelman.
2011. Of Passwords and People: Measuring the Effect
of Password-Composition Policies. In Proceedings of

the SIGCHI Conference on Human Factors in
Computing Systems (CHI). ACM, New York, NY, USA,
2595–2604.

12. David Llewellyn-Jones and Graham Rymer. 2017.
Cracking Pwdhash: A Bruteforce Attack on Client-Side
Password Hashing. In Proceedings of the 11th
International Conference on Passwords (Passwords).
Springer-Verlag, Cham, Switzerland.

13. Karola Marky, Andreas Gutmann, Philipp Rack, and
Melanie Volkamer. 2016. Privacy Friendly Apps -
Making Developers Aware of Privacy Violations. In
Proceedings of the 1st International Workshop on
Innovations in Mobile Privacy and Security (IMPS).
CEUR Workshop Proceedings, 46–48.

14. Colin Percival. 2009. Stronger Key Derivation via
Sequential Memory-Hard Functions.
https://www.bsdcan.org/2009/schedule/
attachments/87_scrypt.pdf. (2009). Self-published,
Online; accessed: 12-June-2018].

15. Niels Provos and David Mazieres. 1999. A
Future-Adaptable Password Scheme. In Proceedings of
the USENIX Annual Technical Conference (ATC).
Usenix Association, Berkeley, CA, USA, 81–91.

16. Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh,
and John C Mitchell. 2005. Stronger Password
Authentication Using Browser Extensions. In
Proceedings of the USENIX Security Symposium.
USENIX Association, Berkeley, CA, USA, 17–32.

17. Meltem Sönmez Turan, Elaine Barker, William Burr,
and Lily Chen. 2010. Recommendation for
Password-Based Key Derivation. NIST special
publication 800 (2010), 132.

https://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf

	Introduction
	Password Generation Scheme
	Meta Data
	Deterministic Password Generation
	Device Independent Generation

	Pre-Evaluation
	Implementation
	Evaluation Method
	Results

	Related Work
	Discussion and Limitations
	Conclusion
	REFERENCES

