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Editor’s Note 
 

The editors of this document express the views of the land surface temperature (LST) and emissivity 
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freely available on the LPV subgroup web site (http://lpvs.gsfc.nasa.gov/). Furthermore, a list of 

recommendations arising from the findings in this document is also provided at the LPV webpage. It is 

expected that this best practice protocol will be a living document and that recommendations within will 

undergo regular revisions based on community feedback and advancement in the science of LST. 

 

We welcome all interested experts to participate in improving this document and we invite the broader 
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site. 
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SUMMARY 
The Global Climate Observing System (GCOS) has specified the need to systematically generate and 

validate Land Surface Temperature (LST) products. This document provides recommendations on good 

practices for the validation of LST products. Internationally accepted definitions of LST, emissivity and 

associated quantities are provided to ensure the compatibility across products and reference data sets. A 

survey of current validation capabilities indicates that progress is being made in terms of  up-scaling and in 

situ measurement methods, but there is insufficient standardization with respect to performing and 

reporting statistically robust comparisons.  

Four LST validation approaches are identified: (1) Ground-based validation, which involves 

comparisons with LST obtained from ground-based radiance measurements; (2) Scene-based inter-

comparison of current satellite LST products with a heritage LST products; (3) Radiance-based validation, 

which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity; 

(4) Time series comparisons, which are particularly useful for detecting problems that can occur during an 

instrument’s life, e.g. calibration drift or unrealistic outliers due to undetected clouds. Finally, the need for 

an open access facility for performing LST product validation as well as accessing reference LST datasets is 

identified. 
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1   INTRODUCTION 
This section describes the international framework that has motivated this document, describes the 

associated Land Surface Temperature (LST) requirements and summarizes the goals of the presented 

validation protocol. 

1.1   Importance of Land Surface Temperature 

Energy and water exchanges at the land surface – atmosphere interface have a major influence on the 

Earth's weather and environment. LST is a fundamental variable in the physics of land surface processes 

from local to global scales and is closely linked to radiative, latent and sensible heat fluxes at the surface-

atmosphere interface. Thus, understanding and monitoring the dynamics of LST and its links to human 

induced changes is critical for modeling and predicting environmental changes due to climate variability as 

well as for many other applications such as geology, hydrology and vegetation monitoring. From a climate 

perspective, LST is important for evaluating land surface and land-atmosphere exchange processes, 

constraining surface energy budgets and model parameters, and providing observations of surface 

temperature change both globally and in key regions. LST has been used for monitoring climate warming 

trends over Greenland (Hall et al., 2012), inland water bodies (Schneider and Hook, 2010), and more 

recently in urban areas (Malakar and Hulley, 2016). Numerical models ranging from local to global scales 

represent and predict effects of surface fluxes. LST versatility has been previously demonstrated in a wide 

variety of Earth science research over the past two decades, including reducing and understanding systematic 

biases in land surface models (Zhou et al., 2003; Zheng et al., 2012; Trigo et al., 2015; Orth et al., 2017), 

filling gaps where few in situ measurements of surface air temperatures exist (e.g. over Africa). Human 

health studies include estimating urban heat island effects (Dousset and Gourmelon, 2003; Sobrino et al., 

2013; Luvall et al., 2015), spatial mapping of heat waves in urban and rural regions (Dousset et al., 2011; 

Krehbiel and Henebry, 2016), and epidemiological studies about the exposure risk to Lyme and tick-borne 

encephalitis (Randolph et al., 2000; Neteler, 2005). LST has also been used for predicting the most favorable 

areas for vector-borne diseases, e.g. from Asian tiger mosquito outbreaks in Europe (Neteler et al., 2011). In 

the agricultural sector, LST has been used to detect and characterize droughts, plant stress and water 

consumptive use (Kogan 1995, 1997; Singh et al., 2003; Fisher et al., 2008; Rojas et al., 2011; Anderson et 

al., 2011a; Hain et al., 2011; Gallego-Elvira et al., 2013; Mu et al., 2013; Anderson et al., 2016a, 2016b and 

Semmens et al., 2016), surface hydrology and evapotranspiration retrieval (Sandholt et al., 2002; Nishida et 

al., 2003; Cleugh et al., 2007; Kalma et al., 2008; Anderson et al., 1997, 2011b, 2012; Allen et al., 2007). 

From LST daily time series, indices for mapping heat requirements for grapevine varieties can be calculated 

to characterize potential growing regions for viticulture (Zorer et al., 2013), in addition to being able to 

predict crop ripening (Hall and Jones, 2010; Jones et al., 2010) and insect infestations (Pasotti et al., 2006; 

da Silva et al, 2015). Other direct practical applications of LST concern land-cover change analyses (Lambin 

and Ehrlich, 1997; Barbosa et al., 1998), the derivation of snow cover and wetness maps (Basist et al., 1998), 

the detection of fundamental changes in land-surface energy partioning (Mildrexler et al., 2007), land cover 

classification (Roy 1997), thermal inertia (Sobrino and El Kharraz, 1999) and cloud detection (Jedlovec et 
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al., 2008; Stöckli, 2013). More than 30 thermal infrared applications were identified in Sobrino et al. (2016). 

Furthermore, spectral emissivity, an important variable that is used to derive LST and is often retrieved 

together with the LST, can be used to monitor and assess melt zones on glaciers, and in detecting land cover 

change and degradation (Hulley et al., 2014). 

1.2   The UNFCCC and the Global Climate Observing System 

Worldwide systematic observation of the climate system is required for advancing scientific knowledge 

on changes to our climate. The United Nations Framework Convention on Climate Change (UNFCCC) 

calls on the Parties to promote and cooperate in this systematic observation of the climate system, including 

support of existing international programs and networks, as indicated in Articles 4.1(g) and 5 of the 

Convention. A key dimension for the implementation of those Articles has been the cooperation with the 

Global Climate Observing System (GCOS), a joint undertaking of the World Meteorological Organization 

(WMO), the Intergovernmental Oceanographic Commission (IOC) of the United Nations Educational 

Scientific and Cultural Organization (UNESCO), the United Nations Environment Programme (UNEP) 

and the International Council for Science (ICSU) with its secretariat hosted by the WMO, reinforced by 

decisions taken at various Conferences of the Parties. The signatories of the UNFCCC have thus adopted 

the GCOS as the organizing body for climate observations expressed through its Implementation Plans 

(GCOS-82, GCOS-200). These Implementation Plans establish the requirements for the systematic 

monitoring of a suite of Essential Climate Variables (ECV) globally. Land Surface Temperature (LST) is one 

of the terrestrial ECVs recognized by GCOS (GCOS-200). 

1.3   The Role of CEOS WGCV 

LST can be measured in situ and from remote observations. While it is routinely measured at a 

number of research sites, the measurement network is sparse in many regions of the world. Figure 1 presents 

different networks or individual sites currently used to validate LST standard products derived from US and 

European instruments (as of September 2017). This dataset should be maintained and ideally expanded to 

become much more representative of the diversity of ecosystem and climatic conditions.  
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Figure 1. Location of ground observational networks currently used to validate standard LST products derived from 

US and European spaceborne instruments. 

The process of improving both space-based observations and in situ networks is embodied in the 

GCOS Implementation Plans and the accompanying Satellite Supplements (GCOS-200). The Committee 

on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV), and in 

particular its subgroup on Land Product Validation (LPV), plays a key coordination role and lends the 

expertise required to address actions related to the validation of LST measurements as follows: 

-   In-situ LST is usually estimated from up- and downwelling thermal infrared (TIR) radiance 

measurements near the surface. The radiances are either obtained with a set of radiometers (directional 

measurements) or pyrgeometers (hemispherical measurements). A number of observational sites 

dedicated to surface climate, ecological, or agricultural research and applications provide in-situ LST on 

a routine basis. CEOS WGCV plays a coordinating role in this work. Benchmarking and consistency 

checking are required for the global archive of LST observations. 

-   The setting up and maintenance of reference sites to address the inadequate or missing reference 

network need to be undertaken. Building on existing networks - such as the National Oceanic and 

Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) and US Climate Reference 

Network (CRN) networks, the Land Surface Analysis – Satellite Application Facility (LSA–SAF) 

permanent validation sites for EUMETSAT satellite products, NASA’s Jet Propulsion Laboratory (JPL) 

validation sites - is the most promising way to improve this situation. 

-   Benchmarking and comparison of satellite-derived LST products is essential to resolve differences 

between products and to ensure their consistency in terms of accuracy and reliability. The CEOS 

WGCV is leading this activity in collaboration with GCOS and TOPC, exploiting in situ observations 

from designated reference sites and building on the validation activities currently being undertaken by 

the space agencies and associated research programs (GCOS-200, p. 203). 

CEOS considers these roles important to achieving validated global LST products, but at the same 
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time, recognizes current limitations in both resources and knowledge within both CEOS and the 

international expert community. This good practice document includes recommendations from CEOS that, 

if followed, should serve to remove many of the current limitations. 

1.4   LST Requirements 

The user-driven baseline requirements for satellite-derived LST climate data records (Table 1) used in 

climate studies have been determined by the CEOS WGCV Land Product Validation subgroup and the 

International Land Surface Temperature and Emissivity Working Group (http://ilste-wg.org). The values in 

Table 1 are the thresholds that represent the minimum requirements for LST data to be useful for climate 

applications (GCOS-200); target values are indicated where understood (i.e. length of record requirements 

are difficult to quantify). In this protocol, we will focus primarily on LST datasets generated from infrared 

instruments, which only allow LST retrievals under clear sky conditions. Although LST can also be 

estimated from passive micro-wave sensors under both clear and cloudy situations (e.g., Jimenez et al., 2017), 

micro-wave based LST are not only beyond the spatial resolution threshold (Table 1), as their maturity has 

not yet reached that of infrared based products (e.g., Ermida et al., 2017). 

Table 1. LST product requirements for climate related studies 

Requirement Threshold Target (breakthrough) 
Horizontal resolution 5 km (i.e. 0.05°) ≤ 1 km 
Temporal resolution ≤ day/night (12h)  3-hourly 
Uncertainty 1 K 0.1 K 
Precision 1 K  0.1 K 
Stability ≤ 0.3 K per decade ≤ 0.1 K per decade 
Length of record 20 years >30 years 

It should be noted that LST product requirements strongly depend on the target application. For 

example, agricultural applications such as crop condition monitoring or irrigation management, require 

higher spatial resolutions (~100 m or higher). 

1.5   Rationale for Requirements for Climate Applications 

LST is the intrinsic quantity required by the climate user community. However, it is recommended that 

emissivity values are reported as part of a climate quality LST product. Likewise, although sensor and 

channel specific, it is recommended that land surface brightness temperature is also reported as part of the 

LST climate quality product to allow producers and users to derive LST data sets with alternative retrieval 

methods. 

Although there are issues with respect to satellite radiometer stability and cloud masks reliability, the 

specifications of existing (and planned) space-based instruments meet or largely exceed the spatial and 

temporal sampling requirements of General Circulation Models (GCM). The higher frequency of 

observations today provide us with accurate and stable products that are able to support a host of other 

downstream applications. Even in the context of climate applications, high spatial resolution products 

support high-resolution regional models, as well as global models, and allows for examination of the 

sensitivity of land-surface parameterizations with respect to surface heterogeneity, and to capture rapid 
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changes in vegetation phenology, surface hydrology, and anthropogenic effects. 

1.6   Goal of this Document  

The goal of this document is to identify and promote good practices for the validation of global satellite 

LST products. The document specifically addresses uncertainty assessment against reference datasets. The 

latter should be traceable to in situ measurements of known accuracy, and the assessment augmented with 

metrics of precision derived from ensembles of products themselves. The development of validation 

protocols also addresses the GCOS Action Items. 

2   DEFINITIONS 
This section provides the necessary definitions relevant to global LST validation. 

2.1   Definition of Land Surface Temperature 

LST is a kinetic quantity, independent of wavelength, that represents the thermodynamic temperature 

of the skin layer of a given surface, i.e. a measure of how hot or cold the surface of the Earth would feel to 

the touch. For ground-based, airborne, and spaceborne remote sensing instruments LST is the aggregated 

radiometric surface temperature, i.e. based on a measure of radiance (Norman and Becker, 1995), of the 

ensemble of components within the sensor field of view. LST is sometimes referred to in the literature as 

(directional) radiometric temperature or skin temperature. The unit of LST is Kelvin [K]; Degree Celsius 

[°C] is also commonly used. When derived from radiometric measurements of ground-based, airborne, and 

space-borne remote sensing instruments, LST is the aggregated radiometric surface temperature of the 

ensemble of components within the sensor field of view. This definition was adopted across various 

international groups (CEOS WGCV, GCOS, ESA GlobTemperature, ILSTE-WG), and was pioneered by 

the work of John Norman and François Becker (see Norman and Becker, 1995, for example). 

2.2   Definitions of Associated Physical Parameters 

2.2.1   Black body 

A black body is an idealized physical body that absorbs all incident electromagnetic radiation in the 

thermal infrared and does not reflect any. The emissivity of a black body is equal to 1. 

2.2.2   Surface emissivity 

“Surface emissivity of an isothermal, homogeneous body is defined as the ratio of the actual emitted 

radiance to the radiance which would be emitted from a perfectly emitting surface (i.e. ‘blackbody’) at the 

same thermodynamic temperature” (Norman and Becker, 1995).  

2.2.3   Brightness temperature 

“Brightness temperature is a directional temperature obtained by equating the measured radiance with 

the integral over wavelength of the Planck's Black Body function times the sensor response. It is the 

temperature of a black body that would have the same radiance as the radiance actually observed with the 

radiometer. This requires specification of wavelength interval, direction and whether the observation is 
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above the atmosphere from a satellite or immediately above the surface.” (Norman and Becker, 1995) 

2.3   Definition of Spatial and Geometrical Aspects 

Validation of satellite LST products relies on terminology specific to satellite measurements. This 

section reviews the terminology used in this context. The following definitions were adapted from the 

Global Leaf Area Index validation best practice document (Fernandes et al., 2014). 

2.3.1   Elementary Sampling Unit (ESU) 

An Elementary Sampling Unit (ESU) is a contiguous spatial region over which the expected value of 

LST can be estimated through in situ measurements. The ESU corresponds to the finest spatial scale of LST 

estimates used for reference. ESU size is bounded by an instrument's sampling characteristics and may 

involve a number of measurements. Maximum ESU size is determined by the level of within-ESU variability 

that can be tolerated by the validation protocol. Within a reference region, the appropriate ESU size varies 

with surface conditions, the instrument used, illumination conditions and spatial sampling design. ESU size 

should be sufficient to allow repeat visits with negligible uncertainty contributions due to changes in 

illumination or geolocation.  

2.3.2   Local Horizontal Datum 

The local horizontal datum is the plane containing the tangent to the local geoid corresponding to the 

center of an ESU or mapping unit. Depending on the survey method over sloped terrain, corrections of LST 

estimates for the dependency of observed surface area on slope  may be required. 

2.3.3   Projected Instantaneous Field of View (PIFOV) of Measurement 

The ground projected instantaneous field of view (PIFOV) is the area on the ground corresponding to 

the region over which a measurement is performed. For radiometric measurements, this area is defined as 

the region where the instrument point spread function, including all processing aspects except for spatial 

resampling, exceeds a specified threshold. The majority of imaging scanners including satellite imagers have 

PIFOV on flat ground on the order of twice the inter pixel sampling distance. The PIFOV of an in situ 

instrument will vary with the height and angular sampling of the instrument. 

2.3.4   Effective Projected Instantaneous Field of View (EPIFOV) of Measurement 

The effective projected instantaneous field of view (EPIFOV) corresponds to the PIFOV extended by 

the impact of spatial resampling. Resampling with smoothing filters (e.g. cubic convolution) will result in an 

EPIFOV with a size approximating the PIFOV convolved with the size of the filter spatial support. Non-

linear resampling, such as nearest neighbor, can result in substantial spatial aliasing. Hence, comparisons of 

values recorded in different EPIFOVs should include spatial averaging using a filter with a spatial support of 

several PIFOVs.  

2.3.5   Satellite Measurement Geolocation Uncertainty 

Geolocation uncertainty corresponds to the planimetric uncertainty of a satellite measurement located 

on the same projection and datum as the ESU or study site reference LST estimates. Geolocation 
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uncertainty is often reported in nominal terms and based on a normal distribution of errors. Acquisition 

specific biases are surprisingly frequent and, therefore,  geolocation uncertainty should be visually compared 

to reference vector layers whenever possible. 

2.3.6   Mapping Unit 

A mapping unit is the spatial region on the Earth’s surface corresponding to a product value for a 

specified temporal extent. Satellite based LST products represent swaths or gridded digital layers in a 

specified map projection rather than per nominal EPIFOV location. As such, these products include a 

spatial generalization corresponding to the transformation of LST estimate over each EPIFOV to the LST 

estimate for the mapping unit. Considering that GCOS requires gridded LST products at a constant spatial 

resolution, the CEOS LST validation protocol assumes uncertainties due to this generalization or due to 

temporal aggregation, are included in total product uncertainty.  

2.4   Definition of Validation Metrics 

Validation is the process of assessing, by independent means, the quality of the data products derived 

from those system outputs. In general, the result of a measurement is only an approximation or estimate of 

the value of the measurand and thus is complete only when accompanied by a statement of the uncertainty 

of that estimate. Definitions of validation metrics (uncertainty, bias, precision and completeness) drawn 

from experimental statistics that are applicable to LST are from the Joint Committee for Guides in 

Metrology (JCGM) guide to the expression of uncertainty in measurement, referred to as GUM-2008 

hereafter. The definitions used in this document and reported below are mainly from GUM-2008: 

-   Error (of measurement) is “the result of a measurement minus a true value of the measurand”. The 

true value (of a quantity) is the “value consistent with the definition of a given particular quantity”. 

Since a true value cannot be usually determined, in practice a conventional true value is used. The 

conventional true value (of a quantity) is the “value attributed to a particular quantity and accepted, 

sometimes by convention, as having an uncertainty appropriate for a given purpose”. Traditionally, an 

error is viewed as having two components, namely, a random component and a systematic component. 

The random error is the “result of a measurement minus the mean that would result from an infinite 

number of measurements of the same measurand carried out under repeatability conditions” and the 

systematic error is the “mean that would result from an infinite number of measurements of the same 

measurand carried out under repeatability conditions minus a true value of the measurand”. 

-   Uncertainty is a “parameter, associated with the result of a measurement, that characterizes the 

dispersion of the values that could reasonably be attributed to the measurand”. Uncertainty includes 

bias and precision errors and can be estimated by the Root Mean Square Error (RMSE). 

-   Accuracy is the degree of “closeness of the agreement between the result of a measurement and a true 

value of the measurand”. Commonly, accuracy is represented as a description of systematic errors and a 

measure of statistical bias. Bias is the systematic error between LST products and their reference 

estimates, i.e. it describes the average deviation from the reference, which is given by the average 

difference between the LST product and its reference estimate. 

-   Precision or repeatability (of results of measurements) is the “closeness of the agreement between the 
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results of successive measurements of the same measurand carried out under the same conditions of 

measurement”. Commonly, precision represents the dispersion of product retrievals around their 

expected value and can be estimated by the standard deviation (STD) of the difference between 

retrieved LSTs and the corresponding reference estimates. 

-   Completeness is the proportion of valid retrievals over an observation domain. 

It should be noted that strong and/or multiple outliers affect the classical metrics described above (i.e. 

mean and STD): in such cases using the median in lieu of the mean to estimate systematic error and the 

median absolute deviation as a measure of precision is more suitable and should be included in the 

validation effort. 

3   GENERAL CONSIDERATIONS FOR SATELLITE LST PRODUCTS 

3.1   Radiance components and LST retrieval  

Under clear sky conditions, the top of atmosphere radiance measured by a spaceborne sensor (𝐿"#$,&) 

includes contributions from the surface emission, the atmospheric upwelling radiance (𝐿"'(,&
↑ ) and 

atmospheric downwelling radiance (𝐿"'(,&
↓ ) reflected by the Earth’s surface and attenuated by the 

atmosphere (Eq. 1). Retrieval algorithms rely on one or more top-of-atmosphere spectral measurements to 

account for atmospheric effects and estimate LST. 

L,-.,/ = 	
  	
   ε/	
  B/ LST +	
   1 −	
  ε/ 	
  L,9:,/↓ 	
  τ/ +	
  L,9:,/↑  (1) 

where 𝜀&	
  is the spectral emissivity at wavelength l or representative of a specific (relatively narrow) 

domain [l1, l2] centered on wavelength l, 𝐵& 𝑇 	
  is the Planck function describing the radiance of a black 

body at temperature T, and 𝜏& is the atmospheric transmittance. 

3.2   Current satellite-based LST products 

Operational LST products are currently available from a variety of instruments. In this document, we 

mainly focused on products that can be used for climate related studies (i.e. following product requirements 

described in Table 1). We have selected some of most commonly used operational and standard LST 

products to present the different retrieval algorithms that can be used at moderate resolution, and present 

the potential sources of uncertainty that have been already discussed in the literature. The selected products 

are based on radiometric measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor aboard the Terra and Aqua satellites, the Advanced Baseline Imager (ABI) aboard Geostationary 

Operational Environmental Satellite (GOES)-R, the Spinning Enhanced Visible & Infrared Imager 

(SEVIRI) aboard the Meteosat satellite series, the Sea and Land Surface Temperature Radiometer (SLSTR) 

on the Sentinel-3 platform and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the S-NPP 

satellite. 
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3.2.1   MODIS 

3.2.1.1   Split-window-based algorithm 

NASA’s operational MODIS LST product based on the split-window approach consists of Level-2 

(MOD11_L2) products at the spatial resolution of MODIS, i.e. 927 m at nadir, and gridded Level-3 

(MOD11A1, MOD11A2, MOD11B1, MOD11C1, MOD11C2, MOD11C3) products at 1km or 5km 

spatial resolution. Satellite overpass times at the equator are around 10:30am/pm (local solar time) for Terra 

and 1:30am/pm for Aqua. Along each scan, the MODIS off-nadir scan angle increases to values of up to 

65°, which causes the sensor’s spatial resolution to degrade to about 6 km in the along-scan direction. The 

generalized split-window algorithm (Wan and Dozier, 1996) is used to derive LST values from brightness 

temperature measurements in MODIS band 31 (T31) and band 32 (T32) centered on 11.03 µm and 

12.02 µm, respectively (Eq. 2). 

𝐿𝑆𝑇 = 𝑏B + 𝑏C + 𝑏D
1 − 𝜀
𝜀 + 𝑏E

∆𝜀
𝜀D

𝑇EC + 𝑇ED
2 + 𝑏H + 𝑏I

1 − 𝜀
𝜀 + 𝑏J

∆𝜀
𝜀D

𝑇EC − 𝑇ED
2  (2) 

where 𝜀 and ∆𝜀 are the mean and the difference of the emissivity values in bands 31 and 32. The 

algorithm coefficients bk (with k = 0 to 6) depend on viewing zenith angle, surface air temperature (Tair) and 

atmospheric water vapor content. The coefficients were derived for daytime and nighttime from regression 

analysis of radiative transfer simulation data for a comprehensive set of LST values varying from Tair – 16 K 

to Tair + 16 K (Wan and Dozier, 1996) accounting for the MODIS spectral response function - see Figure 2. 

In the standard LST product, information about surface air temperature and total column water vapor is 

taken from the MODIS atmospheric profile product (MOD07) (Wan, 2008). For each surface type, the 

spectral emissivity values in band 31 and 32 (Eq. 1) are defined as a combination of green and senescent 

components (Snyder et al., 1998). 

3.2.1.2   Temperature Emissivity Separation (TES) algorithm 

Initially developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) sensor on Terra, the Temperature-Emissivity Separation (TES) method (Gillespie et al. 1998) is an 

alternative physics-based approach that was adapted for MODIS (Hulley and Hook, 2010) in order to 

address emissivity related issues in the heritage MOD11 products resulting in underestimation of LST in 

arid regions (Gottsche and Hulley 2012; Hulley and Hook 2009; Malakar and Hulley 2016). The new TES-

based product, termed MOD21 includes both LST and physically retrieved emissivity for the 3 MODIS 

thermal bands (29, 31, 32) and is currently being produced as part of the MODIS Collection 6 suite of 

products. The TES algorithm uses a radiative transfer model to correct at-sensor radiances to surface 

radiances and a statistical emissivity model to separate contributions from surface temperature and 

emissivity. The approach requires atmospheric profiles from either satellite sounding or conventional 

radiosondes and an emissivity model which is typically based on laboratory and field measurements (Kealy 

and Hook, 1993; Matsunaga, 1994). In the TES approach, first the range of relative spectral emissivities (i.e. 

the minimum-maximum difference or MMD) is calculated. A calibration curve derived from laboratory data 

(Matsunaga, 1994) allows to estimate minimum absolute spectral emissivity from the observed MMD value. 

Equation 1 is then used to compute LST and emissivities for the other bands. For MODIS, the ASTER 
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spectral library (Baldridge et al., 2009) is used to derive the calibration curve for three TIR bands: 29 

(8.55 µm), 31 (11 µm) and 32 (12 µm): the regression between the minimum emissivities and MMDs 

obtained for MODIS is given by Equation 3. 

 𝜖LMN = 0.985 − 0.7503	
  𝑀𝑀𝐷B.XEDC (3) 

where,  emin is the minimum emissivity of the three MODIS TIR bands (29, 31 and 32), and MMD is 

the difference between the minimum and maximum emissivity values for the given bands. The TES 

algorithm is combined with an improved Water Vapor Scaling (WVS; Tonooka, 2005) atmospheric 

correction scheme to adjust the retrieval during very warm and humid conditions. Validation results have 

shown consistent accuracies at the 1 K level over all land surface types. 

3.2.2   SEVIRI 

EUMETSAT’s operational LST product for SEVIRI is produced by the Satellite Applications Facility 

on Land Surface Analysis (LSA SAF). It is computed every 15 minutes at a spatial resolution of 3 km 

(sampling distance at nadir) within the area covered by the Meteosat Second Generation (MSG), i.e. 

primarily over Europe, Africa and South America. The retrieval is based on the Generalized Split-Window 

algorithm (GSW; Wan and Dozier, 1996; Eq. 2) and uses brightness temperatures measured in channels 9 

and 10 centered on 10.8 µm and 12.0 µm, respectively. Emissivity is obtained with the so-called vegetation 

cover method (Caselles and Sobrino, 1989; Peres and DaCamara, 2005), where effective channel emissivity 

for any given pixel is estimated as a weighted average of channel emissivities of the dominant bare ground 

and vegetation types within a scene. The emissivity values for these types are available from look-up tables 

(Peres and DaCamara, 2005) determined for International Geosphere-Biosphere Program (IGBP) land cover 

classes (Belward, 1996). Actual channel emissivities are then estimated from the fraction of vegetation cover 

(FVC) also retrieved by LSA SAF (Garcia-Haro et al., 2005) as five-day composites updated on a daily basis. 

Furthermore, the GSW parameters are selected based on forecasts of total column water vapour provided by 

the European Centre for Medium-range Weather Forecasts (ECMWF). LSA SAF performed an in-depth 

analysis of the various error sources of its GSW algorithm and utilises these to maximize the LST product’s 

spatial coverage (Freitas et al., 2010). The LST values are distributed together with realistic estimations of the 

respective uncertainties on a pixel-by-pixel basis, allowing users to decide if specific LST data meet their 

application requirements. The target accuracy of the SEVIRI LST product is 2 K (Freitas et al., 2010), while 

validation against in-situ data showed a general uncertainty of about 1.5 K (Göttsche et al., 2016). The LSA 

SAF LST product is described in detail in the corresponding Algorithm Theoretical Basis Document (Trigo 

et al., 2009). 

3.2.3   VIIRS 

Since August 11, 2012, the NOAA VIIRS Environmental Data Record (EDR) has been operationally 

produced using a single split window algorithm (Yu et al., 2005). The algorithm uses brightness 

temperatures measured in channel M15 (T15) and channel M16 (T16) centered on 10.76 µm and 12.01 µm, 

respectively (Eq. 4). 

𝐿𝑆𝑇 = 𝑎B +	
  𝑎C	
  𝑇CI +	
  𝑎D	
   𝑇CI −	
  𝑇CJ +	
  𝑎E	
   𝑠𝑒𝑐𝜃^ − 1 +	
  𝑎H	
   𝑇CI −	
  𝑇CJ D (4) 
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where ak (with k = 0 to 4) are the algorithm coefficients and 𝜃^	
  is the sensor zenith angle. Daytime and 

nighttime sets of coefficients were derived for 17 different surface types from regression analysis of 

MODTRAN radiative transfer simulations for globally representative atmospheric and surface conditions 

(VIIRS LST Algorithm Theoretical Basis Document (ATBD), 2011). The International Geosphere-

Biosphere Programme (IGBP) global classification map is used to identify the surface type associated with 

each pixel. The algorithm regression coefficients were generated from an ensemble of MODTRAN radiative 

transfer simulations using a comprehensive set of geophysical parameters (VIIRS LST ATBD, NOAA 2011). 

Surface temperatures and coherent atmospheric temperature and water vapor profiles were derived from 

National Center for Environmental Prediction (NCEP) global simulations at 2.5° x 2.5° spatial resolution. 

LST values were sampled from 196 K to 327 K. Distribution of band-averaged spectral emissivity values for 

each surface type (Eq. 1) were derived from the MOSART database (VIIRS LST ATBD, NOAA, 2011). 

These were used to produce a total of 268,128 samples representing 12 days and nights (one day and night 

per month) over a global grid, and provided an ensemble of training data covering global, diurnal and 

seasonal features (VIIRS LST ATBD, 2011). The spatial resolution of VIIRS raw radiometric measurements 

at moderate resolution is around 750 m at nadir and around 1.5 km at the edge of the swath. VIIRS 

detectors are rectangular, with the smaller dimension projecting along the scan. At nadir, three detector 

footprints are aggregated to form a single VIIRS pixel. Moving along the scan away from nadir, the detector 

footprints become larger both along track and along scan, due to geometric effects and the curvature of the 

Earth (Wolfe et al., 2013). The pixel aggregation scheme is changed from 3 to 2 detectors at a scan angle of 

around 32°, and from 2 to 1 detector at around 48°, which provides a more uniform pixel size over the 

scan. The bias and precision requirements specified by NOAA’s Joint Polar Satellite System (JPSS) program 

for the VIIRS LST EDR are 1.5 K and 2.5 K, respectively, for clear conditions.  

In line with production of the new MOD21 LST&E product, NASA is currently in the processing of 

producing an equivalent TES-based product for VIIRS, termed VNP21. The VIIRS Land Surface 

Temperature and Emissivity (LST&E) algorithm and data products (VNP21) in Collection 1 (C1) are being 

developed synergistically with the MODIS Collection 6 (C6) LST&E algorithms and data products 

(MOD21) using the same algorithmic approach and input atmospheric products (Islam et al., 2016; Malakar 

and Hulley, 2016). 

3.2.4   NOAA Enterprise LST algorithm 

NOAA JPSS Land EDR team is developing an enterprise LST algorithm that will be used for both the 

JPSS and GOES-R satellite missions. The enterprise algorithm is based on the split-window approach, using 

spectral measurements at channels centered on 11 and 12 µm, and spectral emissivity data (Eq. 5). 

𝐿𝑆𝑇 = 𝐶B +	
  𝐶C	
  𝑇CC +	
  𝐶D	
   𝑇CC −	
  𝑇CD +	
  𝐶E	
  ε +	
  𝐶H	
  ε	
   𝑇CC −	
  𝑇CD + 𝐶I	
  ∆𝜀 (5) 

where Ci, i=0 to 5, are the algorithm coefficients; T11 and T12 are the brightness temperatures measured 

at the split-window channels (i.e. 11 µm and 12 µm), respectively; ε and ∆𝜀 are the mean emissivity and the 

spectral emissivity difference, respectively. Note that the different coefficients set {Ci} are estimated for 

daytime and nighttime, and for different atmospheric water vapor conditions. Coefficients are calculated for 

the JPSS satellite sensor (i.e. VIIRS) and for the GOES-R sensor (i.e. Advanced Baseline Imager, ABI) 
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accounting for differences in the sensor spectral response function. The split window channels are bands 

M31 and M32 for VIIRS, and bands M15 and M16 for ABI. 

3.2.5   SLSTR 

ESA’s Sentinel-3A SLSTR instrument, launched in February 2016, provides MODIS/VIIRS-like data 

(Fig. 2), with a 10am overpass. The SLSTR algorithm (Eq. 6) is an evolution of the LST algorithm developed 

for the Advanced Along Track Radiometer (AATSR), aboard ENVISAT, by Prata (2002). 

𝐿𝑆𝑇 = 𝑎`,M,a + 𝑏 ,M 𝑇CC − 𝑇CD N + 𝑏 ,M + 𝑐 ,M 𝑇CD 

with 𝑛 = 1/cos	
   gh
L

,   𝑎`,M,a = 𝑑 𝑠𝑒𝑐𝜃^ − 1 𝑝𝑤 + 𝑎^,M𝑓 + 𝑎",M 1 − 𝑓 , 

𝑏 ,M = 𝑏^,M𝑓 + 𝑏",M 1 − 𝑓    and   𝑐 ,M = 𝑐^,M𝑓 + 𝑐",M 1 − 𝑓  

(6) 

where 𝑇CC and 𝑇CD are the brightness temperatures from the SLSTR 11 µm and 12 µm bands 

respectively, 𝜃^ is the satellite view zenith angle, 𝑓 is the vegetation fraction, 𝑤 is the atmospheric water 

content (in cm) and 𝑖 corresponds to the surface type or biome from the Globcover classification. 𝑎^,M, 𝑎",M, 
𝑏^,M, 𝑏",M, 𝑐^,M	
   and 𝑐",M	
  represent the algorithm regression coefficients derived for each of the 22 biomes of 

Globcover (𝑖) calculated for a vegetation cover fraction of 100% (𝑣) and for a bare soil (𝑠). Two sets of 

coefficients are derived for daytime and nighttime observations accounting for the SLSTR spectral response 

functions (Figure 2). 𝑑 and 𝑚 are two empirical parameters. A full description of the retrieval algorithm can 

be found in the SLSTR Algorithm Theoretical Basis Document (ATBD) for Land Surface Temperature 

(Remedios, 2012). 

 

Figure 2: Relative spectral response of the SLSTR, MODIS and VIIRS thermal bands around 11 µm and 12 µm. Data 
are from the MODIS Characterization Support Team at NASA Goddard Space Flight Center for MODIS, from 
NOAA National Calibration Center for VIIRS and from ESA Sentinels Scientific Data Hub for SLSTR. 
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3.3   GENERAL CONSIDERATIONS FOR IN SITU REFERENCES 

From in situ narrow band measurements of surface-leaving radiance 𝐿pqrsNt,& and downwelling 

radiance from the sky 𝐿"'(,&
↓  ground-based LST (𝐿𝑆𝑇pqrsNt) is retrieved using Planck’s law (Guillevic et al., 

2014; Göttsche et al., 2016) (Eq. 7). 

𝐿𝑆𝑇pqrsNt = 	
  	
  𝐵&uC 	
  
1
𝜀&

𝐿pqrsNt,& − 1 − 𝜀& 𝐿"'(,&↓ 	
      (7) 

where 𝜀&	
  is the spectral emissivity at wavelength l or representative of a specific (relatively narrow) 

domain [l1, l2] centered on wavelength l, 𝐵& 𝑇 	
  is the Planck function describing the radiance of a black 

body at temperature T.  

In contrast, from broadband radiance measurements 𝐿pqrsNt and 𝐿"'(↓ , 𝐿𝑆𝑇pqrsNt is retrieved using 

Stefan-Boltzmann’s law (Eq. 8) (Wang and Liang, 2009):  

𝐿𝑆𝑇pqrsNt = 	
  	
  	
  
1
𝜀σ 𝐿pqrsNt − (1 − 𝜀)𝐿"'(↓

C/H

   (8) 

where 𝜀	
   is the broadband emissivity and 𝜎	
   the Stefan-Boltzmann constant (=5.67 10-8 Wm-2K-4). 

Broadband emissivity can be retrieved from ‘narrowband’ satellite emissivities (e.g. MODIS) via empirical 

relationships (Wang and Liang, 2009). Furthermore, empirical relationships can be obtained to map 

emissivities from one satellite sensor to another, e.g. from MODIS to SEVIRI (Peres et al., 2014). 

For information on determining in-situ LST and emissivity please refer to Appendix B, which provides 
relevant details and best practices from (Göttsche et al., 2017). 

3.3.1   Existing in situ networks of LST reference measurements 

Several networks and dedicated validation stations are commonly used to validate current standard and 

research LST products, e.g. NOAA’s Surface Radiation (SURFRAD) network, the US Climate Reference 

Network (CRN), KIT’s permanent validations stations operated within the framework of EUMETSAT’s 

Land Surface Analysis Satellite Application Facility (LSA SAF), the NASA JPL validation sites, the Fluxnet 

tower network, and the sites of the Global Change Unit (GCU) of the University of Valencia in Spain. 

These existing observational networks (Table 2) include appropriate tower sites with appropriate sensors and 

support (e.g. human maintenance, radiometer availability, site accessibility, and power needs) required for 

measuring radiation variables to derive LST. A challenge in deriving high quality in-situ LST is to estimate 

critical ancillary data, such as surface emissivity and atmospheric profiles if downwelling atmospheric 

radiance is not simultaneously measured. Usually, ancillary data are not routinely collected and have to be 

obtained from other sources. While surface measurements are too sparse to systematically validate remote 

sensing products in a global sense, they are the only means to validate LST products in a classical sense, i.e. 

with independent measurements, and they complement scientific efforts aimed at comparing and 

benchmarking the various existing LST products. Pursuing and expanding these measurements is essential 

to ensure the quality and reliability of current and future products, to provide a step towards more accurate 

and consistent LST information for the global landmass and to serve further development of associated 

standards. However, the largest networks (i.e. Fluxnet, SURFRAD and US CRN) were not specifically set up 
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for LST product validation and the stations are frequently located in heterogeneous areas, resulting in 

observations that are not representative of spatially coarser satellite observations. For such sites, validation 

with ground-based LST should be limited to night-time when land surfaces tend to be close to isothermal 

(Wang et al., 2008; Guillevic et al., 2014; Martin and Göttsche, 2016).  

Table 2. In-situ LST networks. 

Name Type Land Cover Citation 
FLUXNET Hemispherical pyrgeometers All surface types  

JPL network Radiometers 
Water bodies, agricultural 
field 

Hook et al., 2007 

SURFRAD Hemispherical pyrgeometers 
Short vegetation and 
barren soils in the USA 

Augustine et al., 2000, 2005 

US CRN Radiometers 
Short vegetation and 
barren soils in the USA 

Diamond et al., 2013 

GCU stations Radiometers 
Various surface types in 
Spain 

Sobrino and Skokovic, 2016 

KIT stations Radiometers 
Various surface types in 
Africa and Portugal 

Göttsche et al., 2016 

Links to all ground-based LST measurement protocols can be found at the LPV sub-group Surface LST&E Focus Area 
webpage (https://lpvs.gsfc.nasa.gov/LST_home.html). 

3.3.1.1   Fluxnet network 

The Fluxnet network (Baldocchi et al., 2001) provides continuous observations of ecosystem level 

exchanges of CO2, water and energy, and micrometeorological parameters at diurnal, seasonal, and 

interannual time scales. The FLUXNET stations operate in climatologically diverse regions and are 

representative of various land cover types (Table 3). Over the contiguous United States, the Fluxnet stations 

are part of the Ameriflux network and collect measurements of radiative forcing (shortwave and longwave 

downwelling and outgoing radiation), surface fluxes (soil heat and convective fluxes), and atmospheric 

parameters (air temperature and wind speed). AmeriFlux instruments are meticulously maintained and a 

detailed description of the network and a summary of the accuracy assessment of each instrument are 

provided by Baldocchi et al. (2001). Upwelling and downwelling thermal infrared radiances measured by two 

pyrgeometers (spectral range from around 3.5 to 50.0 µm) can be used to derive ground-based LST following 

Equation 7. However, despite the good quality of the collected data, the FLUXNET network has not been 

used for satellite-derived LST product validation in a routine manner yet. AmeriFlux data are archived and 

distributed by the Oak Ridge National Laboratory (http://ameriflux.ornl.gov/). For each selected site, the 

dataset represents 30-minute averages of each parameter. 

Table 3. Examples of FLUXNET/AmeriFlux stations including site geolocation, primary surface type and available 
period of time for each dataset 

Site Lat Lon Surface type Period Climate 
ARM Great Plains, OK 36.606 -97.489 Cropland 2003-2012 Temperate 
Audubon Ranch, AZ 31.591 -110.509 Grassland 2004-2008 Semi-arid 
Bondville, IL 40.006 -88.290 Cropland 1997-2007 Temperate 
Brookings, SD 44.345 -96.836 Grassland 2005-2009 Temperate 
Chestnut Ridge, TN 35.931 -84.332 Deciduous broadleaf 2006-2013 Temperate 
Fermi, IL - Agricultural 41.859 -88.223 Cropland 2006-2011 Temperate 
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Fermi, IL - Prairie 41.841 -88.241 Grassland 2005-2011 Temperate 
Fort Peck, MT 48.308 -105.102 Grassland 2000-2008 Temperate 
Freeman Ranch, TX - Mesquite 29.950 -97.996 Grassland 2005-2008 Semi-arid 
Freeman Ranch, TX - Woodland 29.940 -97.990 Woody savannah 2005-2012 Semi-arid 
Konza, KS 39.082 -96.560 Grassland 2007-2012 Temperate 
Loblolly Pine, NC 35.803 -76.668 Evergreen needleleaf 2005-2010 Sub-tropical 
Loblolly Pine Clearcut, NC 35.812 -76.712 Evergreen needleleaf 2005-2009 Sub-tropical 
Mead, NE - Irrigated maize 41.165 -96.477 Irrigated cropland 2002-2012 Temperate 
Mead, NE - Irrigated maize-soybean 41.165 -96.470 Irrigated cropland 2002-2012 Temperate 
Mead, NE - Rainfed maize-soybean 41.180 -96.440 Rainfed cropland 2002-2012 Temperate 
Missouri Ozark, MO 38.744 -92.200 Deciduous broadleaf 2005-2013 Temperate 
Santa Rita Mesquite, AZ 31.821 -110.866 Woody savannah 2004-2013 Semi-arid 
Tonzi Ranch, CA 38.432 -120.966 Woody savannah 2002-2012 Semi-arid  
Vaira Ranch, CA 38.413 -120.951 Grassland 2001-2012 Semi-arid  
Walker Branch, TN 35.959 -84.287 Deciduous broadleaf 1995-2006 Temperate 

3.3.1.2   NASA JPL sites 

NASA’s Jet Propulsion Laboratory (JPL) has been maintaining continuous LST monitoring stations on 

Lake Tahoe, CA/NV, a 35 km long and 15 km wide lake on the California – Nevada border since 1999 and 

on the Salton Sea, CA, an inland saline lake located in the Sonoran Desert, in south-eastern California 

since 2006 (Table 4). Each station has a JPL-built self-calibrating thermal infrared radiometer that measures 

surface brightness temperature in the 8-14 µm spectral domain from a height of 1 m and several bulk 

temperature sensors, placed around 2 cm beneath the surface (Figure 3). The radiometers are typically 

exchanged at 6-month intervals for maintenance. Validation at JPL’s NIST-traceable calibration facility 

indicates that changes during deployments are less than 0.05 K (Hook et al., 2003). A full meteorological 

station (wind speed, wind direction, air temperature, relative humidity and net radiation) is also deployed at 

each station. The temporal resolution of the in-situ measurements is 2 minutes. For product validation 

purposes (Guillevic et al., 2014 for example), channel-specific (8-14 µm) incoming atmospheric radiation 

required for atmospheric correction (Eq. 6) are derived from MODTRAN 5.2 simulations using 

atmospheric profiles obtained from local sounding balloon launches and model data generated by the 

National Centers for Environmental Prediction (NCEP). NCEP produces global model values on a 1º x 1º 

grid at 6 hour intervals. Lake Tahoe is on a grid point and the NCEP data are interpolated to the satellite 

overpass times. More information on the measurements can be found at at https://laketahoe.jpl.nasa.gov 

and https://saltonsea.jpl.nasa.gov/. 

Table 4. List of JPL inland water sites including geolocation, elevation, surface emissivity and basic description of the 
surface type at station location and around the station within moderate resolution satellite footprints. 

Site location Latitude Longitude Elevation 
Surface type at 
station 

Surface type 
around station 

Surface 
emissivity 

Lake Tahoe, CA/NV 39.153° N 120.000° W 1897 m Inland water Inland water 0.990 
Salton Sea, CA 33.225° N 115.824° W -226 m Inland water Inland water 0.990 

3.3.1.3   SURFRAD network 

The Surface Radiation Budget Network (SURFRAD) was established in 1993 with the primary 

objective of supporting climate research with accurate, continuous, long-term measurements of the surface 
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radiation budget over the United States in support of the global Baseline Surface Radiation Network 

(BSRN) (Augustine et al., 2000, 2005). Seven SURFRAD stations are operating in climatologically diverse 

regions and are representative of various land cover types (Table 5; Figure 3). Quality-controlled 

measurements of all relevant radiative components (upwelling and downwelling, solar and infrared, solar 

direct and diffuse, photosynthetically active, UVB), and meteorological parameters are provided by 

SURFRAD once per minute. SURFRAD instruments are meticulously maintained, and all instruments are 

replaced on an annual basis with freshly calibrated instruments. The primary measurements needed to 

derive ground-based LST are the upwelling and downwelling thermal infrared radiances, which are 

measured by two pyrgeometers (Eppley Precision Infrared Radiometer, spectral range 3.5 to 50.0 µm). The 

accuracy of the Eppley pyrgeometer is about 4.2 W m-2, and the precision of the instrument is less than 1 

W m-2 for nighttime measurements and around 2 W m-2 for daytime measurements (Philipona et al., 2001). 

The spatial representativeness of the pyrgeometer measurements is around 70 x 70 m2. The instrumental 

error on its own gives rise to an uncertainty in retrieved LST of less than 1 K (Guillevic et al., 2012). 

Measurements from SURFRAD have been used by Wang et al. (2008), Wang and Liang (2009) and 

Guillevic et al. (2012, 2014) for evaluating ASTER, MODIS and VIIRS LST products, for example. 

 

   

   

Figure 3. Pictures of four different field stations: instrumented JPL’s buoys over Lake Tahoe (upper left), stations from 
NOAA’s SURFRAD network - Bondville, IL (upper right), Desert Rock, NV (bottom left) and Fort Peck, MT 
(bottom right). 
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Table 5. List of validation sites including geolocation, elevation, broadband emissivity and basic description of the 
surface type at station location and around the station within moderate resolution satellite footprints. 

Site location Latitude Longitude Elevation 
Surface type at 
station 

Surface type 
around station 

Surface 
emissivity 

Table Mountain, CO 40.126° N 105.238° W 1692 m Sparse grassland Grassland/crop 0.973 
Bondville, IL 40.051° N 88.373° W 213 m Grassland Cropland 0.976 
Goodwin Creek, MS 34.255° N 89.873° W 96 m Grassland Grassland 0.975 
Fort Peck, MT 48.308° N 105.102° W 636 m Grassland Grassland 0.979 
Desert Rock, NV 36.623° N 116.020° W 1004 m Arid shrubland Arid shrubland 0.966 
Penn State U., PA 40.720° N 77.931° W 373 m Cropland Cropland/ forest 0.972 
Sioux Falls, SD 43.734° N 96.623° W 483 m Grassland Grassland/ urban 0.978 

3.3.1.4   NOAA USCRN network 

The U.S. Climate Reference Network (USCRN) provides weather and climate measurements from 120 

stations developed, deployed, managed, and maintained by NOAA in the continental United States (Fig. 4) 

for the express purpose of detecting the signal of climate change (Diamond et al., 2013). The USCRN 

provides stable surface air temperature and relative humidity, precipitation, soil temperature and moisture, 

solar radiation and surface radiometric temperature observations that are accurate and representative of 

local environmental conditions (Fig. 5). Station locations have been carefully selected to avoid areas subject 

to manmade influences (e.g. changing land use and land cover). Accurate climate representativeness and 

long-term maintenance at each USCRN station location are essential requirements for a climate monitoring 

network and a long-term validation process. 

 

Figure 4. (left) Locations of the U.S. CRN stations over the USA. (Right) Photography of the station located in Riley, 
OR. 

As 5-minute and hourly observations are collected at each USCRN station, three one-hour records of 

observations are transmitted via GOES satellite telemetry to NCDC every hour. The observations are 

quickly processed at NOAA’s National Centers for Environmental Information (NCEI) to ensure data 

quality and for computation of official 5-minute and hourly observations from the multi-sensor 

configuration. This allows the user community to perform near real time product validation. 
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Figure 5. Schematic description of a U.S. Climate reference Network station. Each station has the same design. 
Courtesy of the NCDC’s graphic team. 

An Apogee Instruments IRTS-P infrared radiometer measures the surface leaving radiance between 6 to 

14 µm, which is converted to brightness temperature. The uncertainty of the sensor is 0.2°C from 15°C to 

35°C and 0.3°C from 5°C to 45°C, and the precision is 0.05°C from 15°C to 35°C. The sensor is sampled 

every two seconds from which 5-minute averages are obtained. The sensor has a 3:1 field of view (FOV), i.e., 

from 3m height (1.3m), the sensor’s circular FOV has a diameter of 1m (0.4m). The IRTS-P is mounted 1.3 

meters above the ground near the end of a 3-meter cross-member arm and points vertically downward. 

3.3.1.5   GCU stations 

In the framework of the CEOS-Spain project, the Global Change Unit (GCU) of the University of 

Valencia, Spain has managed the setup and launch of experimental sites in Spain for the calibration of 

thermal infrared sensors and the validation of LST products derived from those data (Sobrino and 

Skokovic, 2016). Currently, three sites have been identified and equipped (Fig. 6): the agricultural area of 

Barrax (39.05 N, 2.1 W), the marshland area in the National Park of Doñana (36.99 N, 6.44 W), and the 

semi-arid area of the National Park of Cabo de Gata (36.83 N, 2.25 W). These stations have been involved 

in the validation of LST products derived from a number of Earth Observation sensors: SEVIRI, MODIS, 

and TIRS/Landsat-8. 
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Figure 6. Test sites locations (up) and plots (down) of the fixed stations. From left to right: Doñana (Cortes, Fuente 
Duque and Juncabalejo), Cabo de Gata (Balsa Blanca) and Barrax (El Cruce and Las Tiesas) test sites. From 
Sobrino and Skokovic (2016). 

Thermal radiances measurements are collected over the test sites using IR120 (Campbell Scientific) and 

Apogee broadband radiometers (8-14 µm). Calibration of the radiometers is performed every 6 months in 

the laboratory, ensuring the accuracy of the measurements. Because minimal differences of ±0.2 K between 

two consecutive calibrations were observed, a period of 6 months was considered adequate for calibration 

frequency. The measurements of the radiometers are performed every 10 seconds, storing the 5-minute 

average data. In order to obtain the LST from the measurements, surface leaving radiances are corrected for 

emissivity and reflected down-welling irradiance. At each station emissivity values are obtained on a 

bimonthly basis in order to account for annual changes. With the CIMEL CE 312-2 multiband radiometer, 

spectral emissivities are obtained by applying the Temperature and Emissivity Separation (TES) method to 

the thermal radiances (Jiménez-Muñoz and Sobrino, 2007). Because the CIMEL and the broadband 

radiometers present slight spectral differences, a comparison between  broadband emissivities and the 

ASTER spectral library is performed to adjust the estimated emissivity and assess the uncertainty range. In 

addition to emissivity, down-welling radiance is estimated from MODTRAN-5 radiative transfer calculations 

for the MODIS MOD07 atmospheric profiles and the radiometer’s spectral response function. 

Regarding the spatial representativeness of the measurements, Juncabalejo, Fuente Duque (in Doñana) 

and Balsa Blanca (in Cabo de Gata) have adequate homogeneity for moderate (~1km) and high (<100m) 

resolution sensors (average dispersion below 1 K) while El Cruce, Las Tiesas (in Barrax) and Cortes (in 

Doñana) are suitable for moderate resolution sensors, with average dispersion of 0.5 K. 

3.3.1.6   KIT stations 

Karlsruhe Institute of Technology (KIT) stations were designed to allow the continuous validation of 

LST products over several years (Table 6). In order to minimize complications from spatial scale mismatch 
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between ground-based and satellite sensors, the stations were set up in large, flat areas with homogenous 

surface cover. Furthermore, the stations are located in different climate zones, which allow analyses of LST 

products under different atmospheric conditions and over broad temperature ranges (Fig. 7). 

Table 6. List of KIT validation stations including geolocation, elevation, surface emissivity (MSG/SEVIRI channel 
10.8 µm) and basic description of the surface type at station location and around the station within moderate 
resolution satellite footprints. 

Site location Latitude Longitude Elevation 
Surface type at 
station 

Surface type around 
station 

Surface 
emissivity 

Evora, Portugal 38.540° N 8.003° W 230 m 
Savanna, 
woody savanna 

Savanna, woody 
savanna 

0.978 

Dahra, Senegal 15.402° N 15.433° W 90 m 
Bare ground, 
grassland 

Bare ground, 
grassland 

0.950 - 
0.980 

Gobabeb wind 
tower, Namibia 

23.551° S 15.051° E 406 m 
Bare ground, 
dry grass 

Bare ground, dry 
grass 

0.944 

Farm Heimat, 
Kalahari, Namibia 

22.933° S 17.992° E 1380 m Shrubland Shrubland 
0.973 - 
0.984 

 

The core instruments of KIT’s validation stations are Heitronics KT15.85 IIP (KT15) infrared 

radiometers that measure radiances between 9.6 and 11.5 µm. The temperature resolution of the KT15.85 

IIP is given as 0.03 K with an uncertainty of ±0.3 K over the relevant range, and high stability with a drift of 

less than 0.01 % per month (Goettsche et al., 2013). This is achieved by linking the radiance measurements 

to internal reference temperature measurements. Relevant endmembers are observed under a view angle of 

30°; using this view angle instead of the nadir view is justified by the fact that the angular emissivity 

variation of sand, grass, and gravel is negligible up to view angles of at least 30° (Sobrino and Cuenca, 1999). 

From 25 m height, the KT15’s field of view of 8.5° results in a footprint of about 14 m2. An additional 

KT15 faces the sky at 53° with respect to zenith and measures the channel-specific downwelling longwave 

radiance (𝐿"'(,&
↓  in Eq. 6), which is used to correct for the reflected component in the down-looking 

measurements. All measurements are provided at a sampling interval of 1 min. 

The KT15.85 IIP radiometers are checked annually in parallel runs with freshly calibrated reference 

instruments. All radiometers are initially calibrated to specifications by the manufacturer (Heitronics 

GmbH, Wiesbaden, Germany). Re-calibration against a blackbody is performed by KIT about every two 

years and after deployment, e.g. after an exchange of radiometers for new instruments. At Gobabeb, 

Namibia – a very homogeneous site in terms of land cover, the uncertainty of situ LST measurement is 

estimated at ±0.8 K and mainly due an emissivity uncertainty of ±0.015 (Goettsche et al., 2016). 
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Figure 7. (a) Locations of the KIT’s validation stations. African stations at (b) Dahra, Senegal, (c) Gobabeb, Namibia 
and (d) Farm Heimat, Namibia (Kalahari rainy season).  

The IR radiance measurements from KIT stations have been successfully used to validate several 

satellite LST products derived from MODIS (Freitas et al., 2010; Guillevic et al., 2013; Ermida et al., 2014) 

and SEVIRI (Freitas et al., 2010; Goettsche et al., 2013; Ermida et al., 2014). The monitoring capability of 

KIT’s validation stations was demonstrated by Göttsche et al. (2016) for LST derived from MSG/SEVIRI. 

For daytime and nighttime data (outside of the rainy seasons), the authors found that the LSA SAF 

operational LST product generally achieves a RMSE of about 1.5 K, which is better than its target accuracy 

of 2 K. For daytime MODIS LST obtained over Evora station, which is located in a sparse oak tree 

savannah, Guillevic et al. (2013) quantified the strong directional effects due to canopy structure resulting in 

a bias of about 4.5 K compared to in situ LST; however, accounting for MODIS viewing configurations with 

a radiative transfer model reduced it to 0.6 K. Xu et al. (2014) used SEVIRI data as proxy to develop the 

Geostationary Operational Environmental Satellite (GOES)-R Advanced Baseline Imager (ABI) LST 

algorithm and validated the derived LST with in situ LST from KIT’s stations and identified algorithmic 

weaknesses over arid areas due to a lack of in situ emissivity datasets. 

3.3.2   Uncertainties Related to Input Data  

The primary uncertainties of ground-based LST retrievals depend on the accuracy of the radiometric 

measurements and the emissivity estimates used in Eq. 6 and Eq. 7 (Hook et al., 2007; Guillevic et al., 2014; 

Sobrino and Skokovic, 2016; Göttsche et al., 2016). Depending on the characteristics of the field sensors, 

the spectral domain to consider can be relatively large, e.g. 9.6-11.5 µm for the Heitronics radiometer, 8-

14 µm for the Apogee sensor and 3.5-50.0 µm for standard pyrgeometers. The uncertainty associated with 

ground-based LST products should be assessed by propagating estimated errors in ancillary information. An 

example of error budget for the GCU sites (Sobrino and Skokovic, 2016) is provided in Table 7. 

Table 7. Example of uncertainty ranges of parameters for in ground-based LST uncertainty estimates (from Sobrino 
and Skokovic, 2016). Values may depend on specific experimental design. 

Quantity Uncertainty  Estimated impact on in situ LST 
Radiometric calibration ± 0.2 to 0.5 K 0.2 K 
Emissivity ± 1% 0.3 K 
down-welling atmospheric radiance ± 10% 0.1 K 

(a) (b) (c) (d) 
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3.3.2.1   Radiometric calibration 

Field radiometers should be calibrated (e.g. to better than ±0.3 K) and traceable to primary reference 

blackbodies, e.g. from the National Physical Laboratory (NPL), Physikalisch-Technische Bundesanstalt 

(PTB), or the National Institute of Standards and Technology (NIST). For long-term observations, field 

radiometers should be controlled and eventually calibrated on a regular basis (once or twice per year ideally, 

depending on instrument type). Calibration should be performed in a laboratory. Portable blackbody 

systems exist and may allow in situ radiometer calibration; however, such measurements are not trivial and 

are difficult to do in the field due to environmental conditions, such as atmospheric radiation and radiation 

from the target environment for instance (Göttsche et al., 2017). 

When multiple sensors are deployed at a site (aiming at the target, multiple surface end-members or the 

sky for example), a radiometric adjustment or cross calibration is needed. Although limited by their natural 

heterogeneity and spatial LST variability, surfaces that are approximately homogeneous on the spatial scale 

of the ground-based radiometer can be used for inter-calibration. The following practical field methods for 

inter-calibrating radiometers can be used (Theocharous et al., 2016): 

-   Inter-calibration of same-type radiometers: radiometers are aligned to a common target, which should 

be as homogeneous and isothermal as possible. Deviations between individual brightness temperature 

(BT) measurements (from mean BT) exceeding a certain threshold, i.e. twice the radiometer’s precision 

(standard deviation), indicate instrumental problems and require re-calibration. Suitable conditions 

and natural targets are water, sand, dense grass/crop under clear sky. 

-   Identical ‘sky’ radiometers can be inter-calibrated using a sequence of zenith angles, e.g. from 70° (and 

thus avoiding the horizon) to 0°, which typically provides a range of brightness temperature values (BT) 

from below surface air temperature to zenith sky BT. 

-   Inter-calibration of different radiometer types (e.g. different spectral response functions, directional 

versus hemispherical measurements) requires targets with spectrally constant emissivity and negligible 

surface anisotropy such as water bodies or dense grass/crop. 

Results of calibration, inter-calibration and re-calibration performed before, during or after a field 

campaign should be meticulously analyzed and reported in the validation summary. The following field 

(inter-)calibration protocol for TIR radiometers is proposed (Theocharous et al., 2016): 

-   Ideally, radiometers are re-calibrated against a blackbody (e.g. at the high and low end of the expected 

temperature range) before and after a field campaign. 

-   All observations should be performed at the same near-nadir view angle (<30°) and at the same azimuth 

angle to minimize differences due to directional viewing effects. 

-   Radiometers with different field of view should be inter-calibrated over surfaces with negligible 

anisotropy, e.g. dense rice fields. 

-   Radiometers with different spectral ranges should be inter-calibrated over surfaces with constant 

emissivity (e.g. water). 

-   Radiometer intercalibration over natural surfaces requires that sensor footprints represent similar 

homogeneous and isothermal surface areas. Spatial LST variability over homogeneous surfaces is 
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usually low for low wind speed conditions and under completely clear or cloud-covered skies; at 

nighttime land surfaces are often close to isothermal and provide the most favorable inter-calibration 

conditions. 

3.3.2.2   Surface emissivity 

Reliable information about the surface emissivity of the validation site (e.g. accurate measurement or 

best estimate and associated uncertainties) must be available in order to convert measurements of brightness 

temperature into in situ LST and estimate the impact of emissivity uncertainty on the retrievals (Göttsche et 

al., 2016). Only few validation teams are conducting in situ emissivity measurements/estimates. At the 

Gobabeb site in Namibia, Goettsche and Hulley (2013) used the ‘one-lid emissivity box’ method (Rubio et 

al., 2003) to estimate the surface emissivity. The one-lid method is well suited over open, relatively flat, and 

unobstructed field sites with frequent clear sky conditions. In contrast, the ‘two-lid emissivity box’ method is 

more complex and provides lower signal-to-noise, but nearly independent of environmental conditions 

(Sobrino and Caselles, 1993).  

A second approach for emissivity validation involves gathering samples of materials in the field and 

then measuring their emissivity in a controlled laboratory environment. This method assumes the samples 

collected are representative of the sensor’s field of view and has been used extensively for the validation of 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) emissivity retrievals (Hulley 

et al., 2009; Sabol et al., 2009; Schmugge and Ogawa, 2006). The emissivity of the field samples is 

determined using a Nicolet 520 FT-IR spectrometer equipped with a Labsphere integrating sphere 

(Baldridge et al. 2009). Each spectrum is then convolved with the appropriate satellite response function. 

The uncertainty associated with the Nicolet FT-IR emissivities is 0.002 (0.2 %) (Korb et al., 1999). 

Another approach is to apply the Temperature Emissivity Separation (TES) algorithm originally 

developed by Gillespie et al. (1998) to obtain satellite emissivity from ASTER data, e.g. Jiménez-Muñoz and 

Sobrino (2007) used TES to derive spectral emissivity estimates from thermal radiances measured by a 

multiband field radiometer. For wide band-instruments, the broadband surface emissivity used in Equation 

7 can be estimated from a spectral-to-broadband relation (Ogawa et al., 2008) using the ASTER Global 

Emissivity Dataset (GED v3; Hulley and Hook, 2009b) following Guillevic et al. (2012, 2014). The emissivity 

integrated between 8 and 13.5 µm is commonly assumed to be the best estimate of the broadband emissivity 

(Ogawa et al., 2008; Cheng et al., 2013). Whereas for spatially and temporally homogeneous validation sites, 

such as Lake Tahoe, it is sufficient to provide a single value for emissivity, heterogeneous sites require an 

estimation of multiple emissivity values for each of the site’s endmembers (Ermida et al., 2014). In addition, 

the emissivity of certain scene endmembers changes throughout the year in response to the phenology of the 

vegetation. In such cases, it is necessary to obtain representative seasonal emissivity estimates - at least 

representing the major changes in emissivity. If in situ emissivity measurements are not available then 

emissivity values from the ASTER spectral library (Baldridge et al., 2009) could instead be used for each 

endmember. 

3.3.2.3   Atmospheric downwelling radiance 

The atmospheric downwelling radiance represents the hemispherical incoming radiation emitted by the 
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atmosphere. Except for a few sites such as those within Fluxnet, SURFRAD, or KIT neither spectral nor 

directional measurements of downwelling thermal radiation from the atmosphere is routinely sampled in 

the field. The pyrgeometers installed on the Fluxnet or SURFRAD towers directly provide a hemisphere-

integrated radiance whereas KIT stations have dedicated radiometers which measure sky brightness 

temperature at the so-called ‘representative zenith angle’ of about 53° (Kondratyev, 1969; Unsworth, 1975; 

Goettsche, 2013). Whether derived from models (e.g. Brutsaert, 1975; Idso, 1981; MODTRAN; RTTOV) 

or in-situ radiance measurements, estimates of hemisphere-integrated downwelling radiance can have 

significant uncertainties, especially for warm and humid atmospheres. Ideally, radiosondes measuring the 

atmospheric profiles of air temperature and water vapor will be launched concurrently to the satellite 

overpass at or in close proximity to the validation site (Wan and Li, 2008; Schneider et al., 2012). 

Atmospheric profiles of air temperature and water vapor content can also be retrieved from reanalysis 

datasets provided, for example, by the European Center for Medium range Weather Forecasting (ECMWF; 

Uppala et al., 2005; Dee et al., 2011), NCEP (Kalnay et al., 1996) or the Global Modeling and Assimilation 

Office (GMAO) (Rienecker et al, 2011). Garcia-Santos et al. (2013) compared hemispherical downwelling 

irradiance obtained from in-situ measurements with that obtained from radiative transfer calculations for 

atmospheric profile data: for clear-sky conditions and an unobstructed upper hemisphere the methods 

produced comparable results. However, when based on reanalysis datasets, the performance of the 

validation effort can be significantly reduced due to spatial and temporal matching issues between the 

reanalysis data and the satellite footprint and overpass time, respectively. 

3.3.3   Geometric Considerations 

LST products are based on satellite measurements whose effective projected instantaneous field of view 

(EPIFOV), in general, will not exactly match the mapping unit due to two main reasons: 

-   The change in pixel size due to across track scan-angles further from nadir, i.e. the pixel size on the 

ground increases with distance from the sub-satellite point (up to five times the value at nadir for wide 

swath whisk broom systems). 

-   Terrain effects change the shape, nominal location and to a lesser extent size of the ground projected 

instantaneous field of view (PIFOV). Certain processing chains (such as the MODIS adaptive 

processing system [MODAPS]) apply orthorectification to provide a precise nominal location for all 

terrain. However, the majority of sensor processing chains do not include orthorectification by default. 

It should be noted that no current processing chain accounts for the variable shape of the PIFOV. 

Depending on canopy structure, sun illumination and viewing direction, satellites measure different 

surface radiometric temperatures, particularly over sparsely vegetated regions and open canopies, e.g. due to 

shadowing effects (Guillevic et al., 2013). The impact of directional effects on satellite LST products has 

been described by Guillevic et al. (2003, 2013), Rasmussen et al. (2011), Lagouarde et al. (2000), Pinheiro et 

al. (2006), Sobrino et al. (2005) and Trigo et al. (2008), for example. Previous multi-sensor comparison 

studies (Trigo et al., 2008; Guillevic et al., 2013; Ermida et al., 2014) found differences up to 12 K between 

MODIS and SEVIRI-derived LST over sparsely vegetated woodlands due to directional effects related to 

combinations of view angle, sun position and associated shadowing effects. Pinheiro et al. (2006) and Trigo 

et al. (2008) found similar differences in directional field radiometer measurements over woodlands in 
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Africa and Portugal, respectively. 

Appropriate matchups significantly reduce the discrepancies induced by directional effects such as 

shadows and variable footprint size. However, the impact of differences in spatial resolutions, spatial 

weighting and spectral responses on validation results remains difficult to assess and cannot be completely 

eliminated. 

3.4   Reference LST Estimates 

Reference LST estimates are required to evaluate the accuracy and to a lesser extent the spatial and 

temporal precision of satellite-based LST products. These estimates can be obtained from in situ 

measurements or heritage LST datasets. However, assuming that in situ LST are obtained from independent 

measurements, the direct comparison of satellite-derived LST against in situ LST is the only ‘true’ validation 

approach. Accurate in situ observations of LST from a suitable site that is representative of at least several 

pixels in the satellite field of view, and measured contemporaneously with the satellite overpass, arguably 

offer the highest-quality validation reference that can currently be achieved (Schneider et al., 2012). 

Unfortunately, due to the high cost and complexity of operating dedicated and highly reliable in situ LST 

validation stations, the number of available sites is relatively low on a global scale (<20). The following 

sections survey approaches that have been used to obtain in situ reference LST estimates and identify good 

practices related to their production.  

3.4.1   The Elementary Sampling Unit (ESU) Mapping Unit 

Most good practices for LST validation require an estimate of the spatial mapping unit corresponding 

to each sampled ESU. The ESU mapping unit should correspond to the area over which the LST together 

with its associated measurement error are representative. The ESU should also be large enough to be either 

directly co-located with LST product mapping units or with ancillary information than can be used to 

upscale one or multiple ESUs over a region. The ESU could also include a means of estimation of 

measurement precision such as replicate sampling. These considerations often drive the specification of the 

ESU mapping unit. 

Heterogeneous sites require the use of multiple radiometers, at least one for each endmember. For 

sparse woody area in semi-arid environment, this should also include sampling of shadow areas due to 

vegetation canopy structure (Ermida et al., 2014). In such cases, a geometric projection model can help to 

estimate the contribution of each surface endmember in the at-sensor radiometric measurement (e.g. 

Guillevic et al., 2013; Trigo et al., 2008). According to results obtained for MODIS and VIIRS (Wang et al., 

2008; Guillevic et al., 2012, 2014), we strongly recommend to perform ground-based LST validation over 

highly homogeneous sites only. High-resolution LST or normalized difference vegetation index (NDVI) 

datasets can be used to evaluate the spatial representativeness of in situ LST measurements and to select 

appropriate validation sites, but more sophisticated approaches exist, such as empirical variograms used by 

Román et al. (2009), to estimate the spatial variability of surface albedo around stations of interest. 

3.4.2   ESU LST Uncertainty  

The performance of a validation exercise strongly depends on the uncertainty of the reference LST 
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datasets. Reference LST uncertainties should be meticulously reported, including uncertainties associated 

with the upscaling or geometric models used, and to some extent, the uncertainty associated with the 

representativeness of the ESU. 

3.4.3   Upscaling of Reference LST Estimates 

LST in situ reference needs to represent the entire satellite footprint. While one well-calibrated 

radiometer (i.e. single LST ESU) can represent a good reference LST estimate for homogeneous sites, 

validation efforts over heterogeneous sites in terms of land cover or canopy architecture require robust 

scaling methods (Guillevic et al., 2014; Göttsche et al., 2016). On a practical basis, ESUs represent areas of 

around 1ha (100 m × 100 m) or smaller. Depending on the experimental design, the footprint diameter of 

ground-based TIR instruments typically range from 1 to 10 m for spectral radiometers and from 10 to 100 

m for pyrgeometers (Fig. 8). The spatial representativeness of ground-based LST derived from SURFRAD 

pyrgeometer measurements is around 70 m ´ 70 m for example. However, most vegetated landscapes 

contain various land cover types or soils and, therefore, the LST observed by a station at one specific 

location usually does not represent the surrounding area that is included in the lower resolution satellite 

sensor footprint (e.g. 1 km2). Spatial scaling of ESU measurements can reduce uncertainties and increase the 

spatial representativeness of in situ measurements. Spatial scaling methods are generally based on 

information describing (directly or indirectly) the LST spatial variability and a model to scale in situ 

measurements to satellite spatial resolution. LST spatial variability can be characterized with multiple in situ 

radiometers, high resolution LST imagery or using a predictor variable such as vegetation density or NDVI. 

For example, the scaling method developed by Guillevic et al. (2012, 2014) to validate LST products derived 

from MODIS and VIIRS was based on the use of a land surface model to quantify differences in subpixel 

temperature between classes of surface biophysical properties (i.e. different surface types or different 

vegetation densities) with respect to the LST measured by the station– see appendix for additional 

information about the method. 

 

Figure 8. Representation of scaling and directional effects. 

3.4.4   Temporal sampling 

Ideal in situ measurements of LST need to be continuous in time with a temporal sampling rate 
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ranging from 1 to 3 minutes. Less frequent observations can still be helpful but generally result in either 

significantly fewer matchups between satellite and in situ LST or in a higher validation uncertainty. For 

significant time differences (but < 30 minutes) in situ LST need to be temporally interpolated to satellite 

overpass time. Temporal differences exceeding 30 minutes between are unsuitable for validation purposes. 

4   GENERAL STRATEGY FOR VALIDATION OF LST PRODUCTS 
Through the efforts of space agencies, as well as a number of research groups, the global community 

now has open access to moderate resolution (750m – 1km) global LST datasets from MODIS, VIIRS and 

SLSTR, and high temporal resolution data (15 minutes – 1 hour) from geostationary satellites (GOES and 

SEVIRI). However, these datasets have limitations and may include variable levels of quality assessment. 

4.1   CEOS Validation Stages 

The CEOS WGCV Land Product Validation (LPV) subgroup has identified four validation levels 

corresponding to increasing spatial and temporal representativeness of samples used to perform direct 

validation (Table 8). The LST validation protocol includes these aspects and supplements them with 

requirements for assessing the spatial and temporal precision of individual products. 

Table 8. The CEOS WGCV Land Product Validation Stages. 

Stage 0 
Validation 

No validation results have been reported. 

Stage 1 
Validation 

Product accuracy is assessed from a small (typically < 30) set of locations and time periods by 
comparison with in situ or other suitable reference data. 

Stage 2 
Validation 

Product accuracy is estimated over a significant set of locations and time periods by comparison 
with reference in situ or other suitable reference data. 
Spatial and temporal consistency of the product with similar products has been evaluated over 
globally representative locations and time periods. 
Results are published in the peer-reviewed literature.  

Stage 3 
Validation 

Uncertainties in the product and its associated structure are well quantified from comparison 
with reference in situ or other suitable reference data. Uncertainties are characterized in a 
statistically robust way over multiple locations and time periods representing global conditions. 
Spatial and temporal consistency of the product and consistency with similar products has been 
evaluated over globally representative locations and periods. 
Results are published in the peer-reviewed literature.  

Stage 4 
Validation 

Validation results for stage 3 are systematically updated when new product versions are released 
and as the time-series expands.  

4.2   Status of Current Validation Capacity and methods 

The objective of validation efforts is to characterize product uncertainties and evaluate the performance 

of retrieval algorithms. Identified issues with a retrieval algorithm and/or ancillary datasets used by the 

algorithm should be immediately reported to the algorithm development team for algorithm refinement. 

4.2.1   Methods 

Multiple validation methods and activities are necessary to assess LST compliance with specifications. A 
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detailed presentation of previous satellite-based LST validation efforts is available in the review by Li et al. 

(2013). Four different methods have been widely used to validate and determine the uncertainties in LST 

products derived from satellite measurements (Schneider et al., 2012; Guillevic et al. 2014): ground-based 

validation, satellite products inter-comparison, radiance-based validation and time series inter-comparison 

methods.  

4.2.1.1   Ground-based validation 

This approach involves comparisons with ground-based measurements of LST, and has been frequently 

used to validate LST products retrieved from MODIS (Bosilovich, 2006; Coll et al., 2005, 2010; Guillevic et 

al., 2012, 2013; Hook et al., 2007; Trigo et al., 2008; Wan, 2008; Wang et al., 2008; Wang and Liang, 2009), 

SEVIRI (Göttsche et al., 2013, 2016; Martin and Göttsche, 2016; Guillevic et al., 2013; Kabsch et al., 2008; 

Trigo et al., 2008), the Advanced Very High Resoluion Radiometer (AVHRR) (Prata, 1994), ASTER 

(Sobrino et al., 2007), ATSR (Prata, 1994), VIIRS (Guillevic et al., 2014; Li et al., 2014) and AATSR 

(Ouyang et al., 2017; Martin and Göttsche, 2016). The two main limitations of this approach are the spatial 

representativeness of the in situ reference measurements and directional effects (Guillevic et al., 2013, 2014; 

Ermida et al., 2014; Göttsche et al., 2016). For most mixed vegetated landscapes composed of various land 

cover types or soils, the LST measured by a station does not represent the surrounding area that is part of 

the coarser satellite sensor footprint (Guillevic et al., 2012, 2014; Göttsche et al., 2016). Moreover, most 

field radiometers collect observations near nadir, whereas wide field-of-view satellite scanners like MODIS 

and VIIRS collect observations from nadir to around 60° view angle. The method is particularly suited for 

studies over inland water bodies which provide large spatially homogenous targets and can be used to both 

evaluate and improve the performance of retrieval algorithms (Coll et al., 2009a; Guillevic et al., 2014; Hook 

et al., 2007; Hulley et al., 2011). Therefore, in situ reference data are selected based on the following criteria: 

networks with high quality instrumentation and maintenance, and good spatial representativeness for the 

satellite sensor footprint. Comparisons with ground-based measurements represent the reference 

validation method and there are critical needs for the development of denser ground-based reference 

networks: two different satellite LST products can be in very good agreement since they use a similar 

algorithm, however they may differ considerably from the corresponding ground-based reference 

measurements (Fig. 9, Guillevic et al., 2014).    
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Figure 9. VIIRS (left) and MODIS (right) LST products versus ground-based LST measurements at the KIT stations in 

Gobabeb, Namibia. Due to an overestimation of surface emissivity values used in the algorithms, both VIIRS and 
MODIS products significantly underestimate the LST of the Namibian desert by more than 4 K on average (From 
Guillevic et al., 2014). The figure illustrates the critical needs for ground-based reference: two different satellite 
LST products can be in very good agreement since they use a similar algorithm, however they may differ 
considerably from the corresponding ground-based reference measurements. 

4.2.1.2   Satellite product Inter-Comparison 

This approach involves comparing a new satellite LST product with a heritage LST product (Martin et 

al., 2016; Guillevic et al., 2013, 2014; Hulley and Hook, 2009; Jacob et al., 2004; Trigo et al., 2008). The 

method is particularly valuable for finding spatial disagreements between LST products over large areas and 

for a wide range in cover types. However, the approach does not yield absolute validation results and 

satellite LST inter-comparisons alone are insufficient to validate a new product, i.e. different retrieval 

algorithms based on similar assumptions and formulations (e.g. split-window) can be highly consistent with 

each other but biased when compared to ground reference LST (Guillevic et al., 2014). The inter-

comparison approach requires accounting for differences in spatial resolution, view angle and overpass time 

between the satellite datasets. Different observations are never strictly simultaneous and the differences in 

sensor footprint increase with differences in viewing geometry. In order to reduce the effect of cloud 

contamination on validation results, only cloud free data should be used. Furthermore, different periods of 

the year associated with dry and wet atmospheres should be considered to detect possible seasonal effects on 

the observed LST differences. The spectral response of each instrument is accounted for by the retrieval 

algorithms. The impact of directional effects on satellite LST products has been described by Guillevic et al. 

(2003, 2013), Rasmussen et al. (2011), Pinheiro et al. (2006), Sobrino et al. (2005) and Ermida et al. (2017a). 

Matchups represent coincident pairs of granules with respect to satellite overpass times and view angles. 

These “near miss” time spans are usually referred to as Simultaneous Nadir Overpasses (SNOs) when nadir 

view angles are considered (Cao et al., 2004). For LST product intercomparisons, we recommend to select 

data with view angles lower than 45°, a satellite angular separation limit of ±10° and a satellite time 

separation limit of ±10 minutes. In their study, Guillevic et al. (2014) found large differences (up to 15 K) 
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between MODIS and VIIRS LST products over arid and semi-arid regions under temperatures exceeding 

320 K and high atmospheric water vapor content conditions (Fig. 10).  

 

Figure 10. Differences between VIIRS and MODIS (MYD11) LST products observed over the western USA on two 
different dates associated with different atmospheric conditions: hot and wet in August 11, 2012, cool and dry in 
October 14, 2012. The white areas over land are regions where good-quality retrievals were not available (e.g., 
clouds) (From Guillevic et al., 2014). 

These differences were caused by an insufficient sampling of environmental conditions, i.e. 

atmospheric conditions and surface temperatures, when determining the VIIRS algorithm coefficients. For 

very humid atmospheres, large differences between the VIIRS brightness temperatures strongly enhanced 

the contribution of the quadratic term in the algorithm formulation (Eq. 4). 

4.2.1.3   Radiance-based Validation 

The Radiance-based (R-based) method does not require in situ measurements, but instead requires 

accurate estimates of channel specific surface emissivity values, as well as atmospheric temperature and water 

vapor profiles coincident with the satellite overpass (Coll et al., 2009b; Hulley and Hook, 2012; Niclòs et al., 

2011; Wan and Li, 2008; Wan, 2014). The advantage of the R-based method is that it can be applied to a 

large number of global sites where the emissivity is known (e.g., from field measurements) and during night- 

and daytime observations to define the diurnal temperature range. The R-based method is based on a 

‘radiative closure simulation’ with input surface emissivity spectra from either lab or field measurements, 

atmospheric profiles from an external source (e.g., model or radiosonde), and the retrieved LST product as 

input. A radiative transfer model is used to forward model these parameters to simulate at-sensor BTs in a 
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clear window region of the atmosphere (11–12 µm). The input LST value is then adjusted in 2-Kelvin steps 

until two calculated at-sensor BTs bracket the observed BT value. An estimate of the ‘true’ temperature is 

then found by interpolation between the two calculated BTs, the observed BT, and the initial retrieved LST 

used in the simulation. The LST error, or uncertainty in the LST retrieval is simply found by taking the 

difference between the retrieved LST product and the R-based LST. This method has been successfully 

applied to MODIS LST products in previous studies (Coll et al. 2009; Wan and Li 2008; Wan 2008) as well 

as AIRS LST validation (Hulley and Hook 2012). For MODIS data, band 31 (10.78–11.28 µm) is typically 

used for the simulation since it is the least sensitive to atmospheric absorption in the longwave region.  

Wan and Li (2008) proposed a quality check to assess the suitability of the atmospheric profiles by 

looking at differences between observed and calculated BTs in two nearby window regions with different 

absorption features. For example, the quality check for MODIS bands 31 and 32 at 11 and 12 µm is given 

by Equation 9:  

𝛿 𝑇CC − 𝑇CD = 𝑇CCr{" − 𝑇CDr{" − 𝑇CC|#}| − 𝑇CD|#}|  (9) 

where: 𝑇CCr{" and 𝑇CDr{" are the observed brightness temperatures at 11 and 12 µm respectively, and 

𝑇CC|#}| and 𝑇CD|#}| are the calculated brightness temperatures from the R-based simulation at 11 and 12 µm 

respectively. If 𝛿 𝑇CC − 𝑇CD  is close to zero, then the assumption is that the atmospheric temperature and 

water vapor profiles are accurately representing the true atmospheric conditions at the time of the 

observation, granted the emissivity is already well known. Because water vapor absorption is higher in the 

12-µm region, negative residual values of 𝛿 𝑇CC − 𝑇CD  imply the R-based profiles are overestimating the 

atmospheric effect, while positives values imply an underestimation of atmospheric effects. A simple 

threshold can be applied to filter out any unsuitable candidate profiles for validation. Although Wan and Li 

(2008) proposed a threshold of ±0.3 K for MODIS data, Hulley and Hook (2012) performed a sensitivity 

analysis and found that a threshold of ±0.5 K resulted in a good balance between the numbers of profiles 

accepted and accuracy of the final R-based LST. An example of Radiance-based LST validation result is 

presented in Figure 11. 
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Figure 11. An example of the R-based validation method applied to the MODIS Aqua MOD11 and MOD21 LST 
products over six pseudo-invariant sand dune sites using all data during 2003-2005. Since very few in situ 
measurements of LST exist over arid regions, the R-based method is the only objective means to validate satellite 
LST products over these types of land surfaces over long time periods. In this case the R-based method exposed a 
3-5 K cold bias in the MYD11 LST product due to overestimation of desert emissivity values. 

4.2.1.4   Time series Inter-Comparisons 

This method is used to detect problems that can occur during an instrument’s life, e.g. calibration drift 

(Hook et al., 2007), or unrealistic outliers due to undetected clouds (Merchant et al., 2013). However, the 

approach requires relatively long time series of observations over temporally highly stable targets, e.g. inland 

water bodies (Hook et al., 2007). The NASA JPL’s instrumented buoys have been used to monitor level-1 
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radiances or LST products of multiple satellite instruments, such as ASTER (Hook et al., 2007), MODIS 

(Hook et al. 2010), Multispectral Thermal Imager (MTI) (Hook et al., 2005), Landsat (Hook et al., 2004; 

Barsi, Hook, et al., 2007), and VIIRS (Guillevic et al., 2014). Recently, these measurements have been used 

to quantify the radiometric problem observed on Landsat 8 (Barsi et al., 2014). 

The four different validation approaches are complementary and provide different levels of 

information about the quality of the retrieved LST. Due to the lack of global reference datasets, these four 

methods are required to achieve Stage-3 validation status (LPV validation stage are defined in table 7). In 

general, ground-based LST and state-of-the-art satellite-derived LST products are expected to agree to within 

1-2K over homogeneous sites for most conditions. Direct ground-based validation is currently considered as 

the reference validation method and should be used whenever possible. However, due to the relatively small 

number of high quality LST validation stations, several validation methods and activities are necessary to 

assess a LST product’s compliance with its specifications.  

4.3   Validation Strategy 

A general validation strategy should be capable of testing products for compliance with GCOS 

requirements. A distinction is made between the strategy, which corresponds to the sampling design, the 

definition of key reference datasets and inter-comparison methods, and the data required to use this strategy 

to test if products meet either threshold or science requirements. The validation strategy has major criteria 

detailed in the following sub-sections: 

-   Direct validation on a global basis representative of surface types and seasonal conditions; 

-   Quantify the representative LST accuracy estimate over areas or time periods without reference datasets 

-   Quantify the long term (inter-annual) stability in LST products 

4.3.1   Direct validation on a global basis representative of surface types and seasonal 

Direct validation (ground-based and radiance-based methods) relies on reference datasets traceable to in 

situ reference measurements accompanied by an associated assessment of their uncertainty. Reference in-situ 

LST should take into account the spatial variability and representativeness of the in situ measurements and 

scaling if necessary. Up-scaling methods should be based on higher resolution information of the surface 

spatial variability using not only LST but auxiliary variables such as vegetation density and/or albedo derived 

from high-resolution satellite imagery. Matchups of spatially and temporally coincident product and 

reference values should be compared using appropriate robust statistics and visualization of residuals. It is 

recommended to provide validation results for each season separately (e.g. to resolve leaf-on/leaf-off 

periods of deciduous forests). Results should be stratified by class for the ancillary data, e.g. according to 

land cover type or total atmospheric water vapor content. 

4.3.2   Quantify the representative LST accuracy estimate over areas or time periods without reference 
datasets 

Ideally, uncertainties should be rigorously estimated for a variety of different conditions on a pixel-by-

pixel basis before they can be merged and incorporated into a time series of measurements of sufficient 

length, consistency, and continuity to adequately meet science requirements. An evaluation of LST products 
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can be done at the global scales using scene-based intercomparisons, but as mentioned in section 4.2.1.2, 

this method does not represent a complete and independent validation. Current LST datasets are available 

with quality control information, but do not include a full set of uncertainties. To fill this gap, Hulley et al. 

(2012) have developed the capability to estimate uncertainties in LST and emissivity products for a variety of 

different retrieval algorithms using a Temperature Emissivity Uncertainty Simulator (TEUSim). The 

simulator uses radiative transfer simulations, global radiosonde and surface emissivity spectra to quantify 

and separate error contributions from the potential error sources: 1) algorithm/model error, 2) radiometric 

noise, or measurement error, 3) atmospheric corrections, 4) undetected clouds, and 5) calibration error. The 

uncertainties generated from TEUSim are parameterized according to view angle, total column water vapor 

column, and surface type dependence using a least squares method fit to a quadratic function as follows 

Equation (10. 
 

𝛿𝐿𝑆𝑇 = 𝑎r + 𝑎C𝑇𝐶𝑊 + 𝑎DSVA + 𝑎E𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎H𝑇𝐶𝑊D + 𝑎I𝑆𝑉𝐴D  (10) 

Where 𝛿𝐿𝑆𝑇 is the LST uncertainty (difference between the simulated and retrieved LST in K), 𝑎M are 

the regression coefficients that depend on the surface type being observed (vegetation, barren, or mixed 

pixel), TCW is the total column water vapor (cm), and SVA is the satellite viewing angle. The NDVI values 

of the pixel can be used to set thresholds to discriminate between the three surface coefficient types. Using 

this parameterization, LST uncertainties can be estimated on a pixel-by-pixel basis. Figure 9 shows LST 

uncertainty distributions derived from TEUsim plotted versus TCW and simulated LST for vegetated and 

barren surfaces. Results illustrate classical issues with the split-window retrieval algorithm due to poor 

representation of barren surface emissivity values in the algorithm. 

 
Figure 12. MODIS LST uncertainty distribution derived from TEUsim plotted versus Total Column Water (TCW) 

and simulated LST for graybody surfaces (left) and barren surface (right). 

4.3.3   Quantify the long term (inter-annual) stability in LST products 

Calibration of spaceborne instruments has three important aspects: prelaunch determination of 

instrument calibration, validation of on-orbit performance using on-board measurements, and in-flight 

vicarious calibration using ground truth. After launch, sensors are susceptible to significant temporal 

changes in their performance characteristics. The infrared channels of MODIS or VIIRS, for example, form 



 35 

a self-calibrating radiometer. By using measurements of cold space and of an on-board blackbody calibration 

target, the infrared measurements are calibrated by producing radiances in the spectral intervals defined by 

the system response functions of each channel. In-flight vicarious calibration can be performed using time-

series inter-comparisons. It requires very stable and homogeneous targets and is usually performed using in 

situ measurements over water bodies and well-characterized barren surfaces combined with radiative transfer 

modeling to simulate at-sensor radiances. For water surfaces, data from the JPL’s instrumented buoys at Lake 

Tahoe/Salton Sea (see Section 3.3.1.2) and/or from NOAA moored buoys archived by the National Data 

Buoy Center (NDBC) have already been used to monitor sensor temporal drift. The NASA JPL buoys were 

used to monitor level-1 radiances or LST products from multiple satellite instruments, such as MODIS 

(Hook et al. 2007), Landsat (Barsi et al., 2007, 2014) and VIIRS (Guillevic et al., 2014). Schott et al. (2012) 

successfully used NOAA’s buoys to verify the calibration of Landsat TM5 and found very consistent results 

when a large number of buoys were considered. Over land, only a few data sets are appropriate and available 

for calibration purposes. For example, KIT’s validation station in Namibia is used to monitor the 

performance of the MSG/SEVIRI sensor (Goettsche et al., 2016). 

4.4   Reporting Results of LST product Validation 

4.4.1   Validation metrics 

Definitions for uncertainty, accuracy, precision and completeness applicable to LST validation drawn 

from experimental statistics are provided in Section 2.4. As a good practice, validation exercises should 

explicitly define these terms and identify how they relate to the definitions provided in Section 2.4 to 

facilitate understanding of results across studies. It is recommended that LST product validation should be 

performed across a representative sampling of LST magnitudes within a spatial and temporal 

stratification. It is good practice to sample across a representative range of LST within a stratification for all 

performance statistics. It is also good practice to evaluate the precision and completeness of spatial and 

temporal patterns in addition to reporting statistics based on LST product estimates in a stratum without 

spatial or temporal considerations. Table 9 summarizes the common practice and recommended good 

practice. 

Table 9. Common practice and recommended good practice. 

Quantity Current practice  Good practice, add: 
Accuracy Mean difference Median error 

Median and percentiles of residuals 
Box-plots of residuals vs LST 

Precision Standard deviation Median absolute deviation 
Uncertainty Root mean square error Scatter plot of match-ups 

Median and percentiles of absolute 
residuals, RMSE  
Box plot of absolute residuals vs LST 

Completeness  Gap size distribution 

4.4.2   Reporting validation results 

Results of validation exercises should be reported publicly after being reviewed by the data producers 
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and after independent scientific peer review. Reporting in refereed journals is encouraged and supporting 

materials corresponding to spatial or temporal accuracy statistics should be made accessible. The following 

details related to reporting results are good practices: 

-   All participants in the exercise should be declared unless products were provided blindly.  

-   Links to accessible versions of the products and reference data used during the validation should be 

provided and maintained. 

-   Match-ups of product and reference LST values used to derive aggregation statistics together with 

ancillary information related to location (biome type, latitude and longitude of the site), temporal 

interval and uncertainty in reference data (at least a reference to the protocol used to produce each 

reference data point) should be made available publicly. 

-   Scatter plots and statistics results should be reported within the validation document or linked 

supplementary material in addition to any other statistics. 

-   Planned updates or revisions to the document (e.g. in anticipation of new reference datasets that may 

be available on a regular basis) should be identified. 

LST validation studies have used common approaches for reporting algorithm performance although 

the spatial and temporal extent of the sampling distribution used for comparisons has varied. Statistics are 

reported to describe the bivariate distribution of reference and product LST, and usually include the 

Pearson correlation coefficient, bias, standard deviation and root mean square error. However, most 

validation studies do not test for normal or homeoscedastic distributions of residuals. Such tests should be 

conducted, especially at the global scale, because it is likely residuals differ for different LST levels that are 

themselves correlated with biome type or seasonal sampling. Direct comparisons of temporal trends in LST 

are extremely limited and often assume a small (<1 hectare) site is representative of a larger pixel. This 

assumption may be appropriate for large fields and homogenous forests but requires care with the in situ 

protocol and upscaling of reference data to ensure the uncertainty due to this assumption is quantified. 

Inter-comparisons are commonly conducted at a lowest common resolution to minimize differences due to 

spatial mismatch. Time-series plots over selected sub-sampled regions, usually by land cover and biome type, 

should be presented together with maps of inter-product differences on a monthly or seasonal basis. 

5   CONCLUSIONS 
This document provides CEOS LPV recommendations on good practices for the validation of LST 

products derived from satellite observations. Validation efforts should include a full characterization and 

appropriate documentation of the validation datasets used including uncertainty estimates of reference LST 

measurements (associated with the accuracy of the radiometric measurements, emissivity estimates, ground 

based retrieval method for example). Because spatial representativeness and directional effects are quite 

difficult to compensate for, quantitative assessment of algorithm uncertainties requires dedicated and high 

quality in situ LST measurements over sites that are homogeneous at the spatial scale of the satellite 

observing system. It is recommended that only sites that are representative of the satellite field of view 

should be used for validation purposes. Four LST validation approaches have been identified: (1) Ground-

based validation, which involves comparisons with LST derived from ground-based radiometric 
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measurements; (2) Scene-based inter-comparison with heritage LST products; (3) Radiance-based validation, 

which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity; 

(4) Time series comparisons, which are particularly useful for detecting problems that can occur during an 

instrument’s life, e.g. calibration drift or unrealistic outliers due to undetected clouds. LST validation 

studies should include the four different methods (when applicable) to get a detailed characterization of 

product accuracies. The four different approaches are complementary and provide different levels of 

information about the quality of the retrieved LST. 

The availability of reference LST data is fundamental for LST validation: currently, LST validation 

verifies CEOS Level 1 validation stage (see Table 8 for definition) due to the limited number of available 

reference datasets. The provision of harmonized in-situ and satellite-retrieved LST data sets in a common 

format, e.g. as promoted and implemented by the ESA DUE GlobTemperature project 

(www.globtemperature.info), enables researchers to perform (global) LST validation studies more 

systematically and readily. The LPV subgroup anticipates that spatial representativeness of in situ LST 

measurements will grow with less expensive in situ survey methods and increasing use of LST products in 

environmental studies, and that CEOS Level 3 validation can be achieved when the number of sites become 

more plentiful, distributed and all biomes are represented. However, the limited number of global standard 

LST products is a fundamental challenge for inter-comparisons since any ensemble of LST products is likely 

to have biases due to both, the small sample size and the fact that many products are based on very similar 

algorithm.  
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6   APPENDIX A: Example of upscaling method using high resolution 
vegetation data to drive a land surface model 
The approach developed by Guillevic et al. (2012, 2014) used a physically based land surface model 

driven by in situ atmospheric forcing measurements and high-resolution imagery to describe satellite LST 

footprints over ground stations. To represent the spatial variability within a satellite pixel, the authors 

assumed that the sub-pixel temperature variability is mainly due to land cover heterogeneity and variability 

in surface biophysical parameters, such as vegetation density, emissivity or albedo (Fig. A-1). Because the 

vegetation transpiration is usually greater than the bare soil evaporation between successive precipitation 

events, the temperature of vegetated areas under low soil water stress conditions is typically lower than the 

temperature of barren surfaces. The method estimates the temperature of each land cover class inside a 

mixed pixel using a land surface model driven by the measured atmospheric forcing and observed surface 

biophysical properties from a nearby tower/site. The land surface model is used to quantify differences in 

subpixel temperature between classes of surface biophysical properties (i.e. different surface types or 

different vegetation densities) with respect to the LST measured by the station. This reduces the impact of 

model systematic errors and uncertainties in the atmospheric forcing on the assessment of the satellite pixel 

LST. Guillevic et al. (2012, 2014) used a two-source energy balance model that simulates the energy and 

water transfers between the surface and the atmosphere, and describes the evolution of surface state 

variables such as LST and soil moisture. In addition to LST estimates, the selected ground stations also 

provide accurate measurements of local environmental information, in particular the atmospheric forcing 

required by the model. These measurements include air temperature, relative humidity and wind speed at 

the surface, and incoming shortwave and longwave radiation. The atmospheric forcing is assumed to be 

uniform over the satellite footprint, which is approximately 1 km x 1 km for MODIS and VIIRS. 

 

Figure A-1. Spatial variability of land cover type and vegetation density before and after harvest around two NOAA’s 
stations part of the SURFRAD and US CRN network near Bondville, IL. 

 

The different steps of the scaling method are: 

-   Calibration of the land surface model using ground observations. This task determines the optimal set 
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of internal model parameters that allows the model to describe the observed in situ LST (see Guillevic et 

al. (2012) for a detailed description of the model calibration method). 

-   Characterization of the satellite footprint, which depends on pixel geolocation, viewing zenith angle, 

satellite altitude (824 km for S-NPP, and 705 km for Terra and Aqua satellites, for example) and the 

instantaneous field of view (911 µrad for VIIRS, and 1315 µrad for MODIS at moderate resolution, 

for example). 

-   Representation of the LST of each surface end-member using the land surface model forced by the 

observed biophysical properties at high-resolution. Guillevic et al. (2014) used the leaf area index (LAI) 

derived from MODIS Normalized Difference Vegetation Index (NDVI) standard products at 250m 

spatial resolution to describe the spatial variability of vegetation density around the station. 

-   Calculation of LST at satellite resolution from a weighted mean of n radiative contributions from each 

land cover class (Eq. A.1). 
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where fi is the cover fraction of land cover class i at temperature Ti and with broadband emissivity ei. e 
is the broadband surface r-emissivity as defined by Norman and Becker (1995). 

The scaling methodology requires high-resolution information about vegetation density. The NDVI is 

an indicator of green biomass, and an indicator of the photosynthetic efficiency of the plants. Greener areas 

are usually associated with higher evapotranspiration and, consequently, characterized by lower LST. The 

validation datasets accounting for scaling is significantly more representative of the satellite footprint (Fig. 

A.2). 
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Figure A.2. VIIRS LST product vs. ground-based LST measurements at 8 validation sites (7 SURFRAD stations and 

JPL buoys at lake Tahoe) representative of various land surface types over the contiguous United States. Results for 
vegetation sites are with and without scaling (From Guillevic et al., 2014). 
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7   APPENDIX B: Determination of land surface temperature with thermal 
infrared in-situ measurements 
The reference method for validating satellite-derived LST products is ground-based validation, i.e.  

comparisons against LST obtained from in-situ measurements with field deployed TIR radiometers (see 

section 4.2.1.1). In order to qualify for ‘category A’ validation (Schneider et al., 2012), in situ LST must be 

derived from completely independent measurements, which need to be fully anchored to SI units and have 

direct correlation with ‘true’ surface based quantities. For the convenience of researchers wanting to 

determine in in-situ LST, this appendix provides the relevant information and best practices from the 

‘Fiducial Reference Measurements for Validation of Surface Temperature from Satellites (FRM4STS) 

Technical Report TR-3: A framework to verify the field performance of TIR FRM’ (Göttsche et al. , 2017). 

Further information on TIR radiometer calibration and temperature determination over natural surfaces 

can be found on the ESA FRM4STS project website (www.frm4sts.org).  

7.1   LST and emissivity determination with field radiometers 
Depending on the particular site, diurnal LST amplitudes of 40 K and surface-overheating of 20 K or 

more have to be expected. Due to strong surface gradients and local perturbations the thermodynamic 

temperature at the surface of non-isothermal bodies, e.g. as obtained with thermometers in contact with 

natural bodies, may be very difficult to measure (Becker and Li, 1995). In contrast, surface-leaving TIR 

radiance is directly measurable by radiometers, whether they are space borne or ground based. However, the 

radiance leaving a heterogeneous non-isothermal body depends on its temperature and emissivity 

distribution, i.e. the fractions with different temperatures in the ground instantaneous field of view 

(GIFOV) of the radiometer and their respective emissivities. Therefore, an interpretation of the measured 

radiances over a heterogeneous non-isothermal body in terms of temperature requires additional 

information about the surface. Before addressing this more general case, we define spectral emissivity and 

radiometric temperature for a homogeneous isothermal body. 

7.1.1   Spectral emissivity 

Planck’s law relates the radiance emitted by a black body (emissivity e = 1) to its surface temperature T. 

However, most objects relevant to remote sensing applications are non-black bodies with 0 < e(l) < 1. 

Spectral emissivity e(l) is defined as the ratio between the spectral radiance R emitted by a surface at 

wavelength l and the spectral radiance emitted by a black body B(T, l) at the same wavelength and 

temperature. Spectral emissivity e(l) is then given (Dash et al., 2002): 

 

ε 	
  l =
R T, l
B T, l

 
B.1 

 

where e is assumed to be temperature independent, l is in meters, R is in W m-3 sr-1, and T is in Kelvin. 

For homogeneous isothermal surfaces T equals thermodynamic temperature. 
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7.1.2   Radiometric temperature of isothermal surfaces 

For a sensor located near the surface and measuring within an atmospheric TIR window the 

atmospheric influence on the surface-leaving radiance along its path can be neglected. With known 

emissivity, the simplified radiative transfer equation (Dash et al., 2002) can be used to account for reflected 

down-welling TIR radiance from the atmosphere and for the non-black body behavior of the surface. The 

blackbody equivalent spectral radiance B emitted by the surface at temperature T is given by:  

 

B T, l = 	
  
R T, l 	
  − 	
   1 − ε 	
  l · R,9: 	
  l

ε 	
  l
 

B.2 

 

where R is the measured surface-leaving spectral radiance and Rsky is the measured down-welling 

hemispherical sky radiance. In situ measurements of Rsky are usually performed by a dedicated radiometer 

aligned at the zenith angle of about 53° (Kondratyev, 1969; Sakai et al., 2009; Göttsche et al., 2016), which 

depends slightly on spectral band and atmospheric conditions, or via a known relationship between the 

radiance measured at zenith and hemispherical radiance (Rubio et al., 1997). Once the blackbody equivalent 

spectral radiance B is known, inverting Planck’s law gives the ‘radiometric temperature’ T of the surface. 

The spectral response functions of many radiometers are approximately symmetric, while Planck’s function 

and the spectral emissivity of natural surfaces generally vary slowly over a ‘narrow band’ radiometer’s spectral 

range. Therefore, LST is usually retrieved by evaluating Planck’s function at the radiometer’s centre 

wavelength (Goettsche and Hulley, 2012). 

7.1.3   Radiometric temperature of non-isothermal surfaces 

A single well-calibrated radiometer can be sufficient to obtain representative in situ LST for 

homogeneous sites (Göttsche et al., 2013). However, natural surfaces are rarely homogenous and isothermal 

at a given pixel size. Therefore, heterogeneous sites require at least one radiometer for each of the site’s 

endmembers, which have to be sufficiently homogeneous and their relative area fractions have to be known 

(Guillevic et al., 2013; Ermida et al., 2014). Furthermore, the definitions given in section 7.1.2 for 

homogeneous isothermal surfaces have to be re-expressed in terms of end-member fractions and their 

respective emissivities. Following (Becker and Li, 1995), for a flat surface consisting of N homogeneous and 

isothermal sub-elements having normalised fractional areas S9 we obtain 

 

ε l = εl9
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The definition of ‘radiometric temperature’ given by equation B.4 is scale-invariant and in the 10-12 

µm band leads to very similar values as the alternative definition of ‘radiative temperature’; for a more in-

depth treatment on temperature definitions for non-isothermal heterogeneous surface please refer to 

(Becker and Li, 1995).  

7.2   Emissivity 

It is obvious from section 7.1 that accurate information about surface emissivity must be available for 

converting brightness temperature (BT) measurements into accurate in situ LST. Emissivity can be obtained 

from in situ measurements (Rubio et al., 1997) or from spectral libraries (Baldridge et al., 2009). Whereas for 

spatially and temporally homogeneous field sites, e.g. lakes or dense rice fields, it can be sufficient to provide 

a single emissivity value, heterogeneous sites require an emissivity estimate for each endmember. In 

addition, some sites might exhibit phenology-dependent emissivity values or emissivity changes with surface 

moisture. For deriving accurate in situ LST it is essential that the estimated emissivity is representative of the 

observed endmembers at the time of the BT measurements. 

Comparing broadband emissivities in the 8-12 µm range obtained from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) and from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), Ogawa et al. (2008) found that LSE over arid regions varies over a wide range 

of 0.86 to 0.96. ASTER spectral library (Baldridge et al., 2009) data for rocks, soils, and sand, which are 

frequently encountered components of land covers in (semi-)arid regions, typically show emissivity variations 

of about ±0.04 about their mean over the 8 - 12 µm spectral range; in contrast, for completely vegetated 

surfaces the corresponding LSE variations are typically ±0.01. 

7.2.1   In situ emissivity 

While channel-effective in situ emissivities can be determined with the ‘emissivity box method’ in the 

field (Rubio et al., 1997), spectral emissivities are usually obtained for samples in the laboratory (Salisbury 

and D’Aria, 1992). For sites consisting of well-known static endmembers it may also be feasible to use 

representative values from spectral emissivity libraries, e.g. Baldridge et al. (2009), or from literature. 

However, in case in situ emissivity is not well known and/or suspected to change over time, e.g. due to 

vegetation cycles, it may be advisable to use a dynamic emissivity estimate derived from satellite observations 

instead, e.g. as provided by the monthly ‘ASTER Global Emissivity Dataset’ (GEDv4) at 5 km spatial 

resolution (Hulley et al., 2015) or the 1 km MOD21 daily product retrieved from MODIS (Hulley and 

Hook, 2010). 

7.2.2   Emissivity box method 

The 'one-lid emissivity box method' is well suited to determine LSE for sufficiently open, relatively flat, 

and unobstructed field sites with frequent clear sky conditions. Rubio et al. (1997) studied the one-lid and 

the two-lid method in detail and derived correction terms for the two methods. While the ‘two-lid emissivity 

box method’ is independent of sky conditions (Sobrino and Caselles, 1993), it is technically more 

demanding and requires an isothermally heated lid with near unit emissivity. Therefore, we recommend the 

one-lid emissivity box method, which consists of the sequence of radiance measurements shown in Figure 
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B.1 and an additional measurement of sky radiance. 

  

  
Figure B.1. Radiance measurements performed for the one-lid emissivity box method (KT15 radiometer). 

  
Using the same nomenclature as (Rubio et al., 1997), uncorrected LSE eB is obtained from a sequence 

of three radiance measurements (see Figure B.1): 

  

eB =
L�� − L-¯

LD − L-¯
   B.5  

where L�� is the sample radiance measured under clear sky conditions (i.e. without the box), L-¯  is the 

downwelling sky radiance, and LD is the radiance measured through the bottomless box when it is placed on 

the sample. Corrected LSE is then given by: 

  
e = eB + de   B.6  

with correction 

de = 1 − eB 1 −
LD − L-¯

LD − L-¯ − R LD − B�
   B.7  

where R is a box-specific factor, which depends on box geometry and the spectral response of the inner 

walls. For box dimensions of 30 cm x 30 cm x 80 cm and an emissivity of e� = 0.03 for highly polished 

aluminum Rubio et al. (1997) obtained R = 0.265. The term B� is the radiance measured through the box 

when its bottom is closed with a sheet of aluminum, i.e. it corresponds to the temperature of the 'cold' 

aluminum. In order to avoid the 'narcissus' effect, i.e. the radiometer observing its own reflection, the 

opening in the top of the emissivity box can be slightly off-centre so that the inserted radiometer is inclined 
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by 5° w.r.t. nadir (Goettsche and Hulley, 2012).  

Down-welling hemispherical sky radiance L-¯  is usually approximated with the radiance measured at the 

‘representative’ zenith angle of about 53° (Kondratyev, 1969; Coll et al., 2005) or estimated as  

  
L-¯ = 1.3×B T 0°    B.8  

where B is the Planck function evaluated at the radiometer's centre wavelength and T 0°  is brightness 

temperature measured at zenith (Rubio et al., 1997).  

The larger the difference between clear sky brightness temperature and surface temperature, the higher 

the signal to noise ratio of the box method and the smaller the emissivity correction de. The box method 

assumes that the temperature of the sample remains (approximately) constant between the measurements 

over the sample (Figure B.1, left and center), which requires quick handling of the box and fast readings. 

Goettsche and Hulley (2012) recorded brightness temperatures automatically once per second, which also 

allows choosing the optimum measurements in terms of thermal stability 'off-line'. 

7.3   Best practices for obtaining in situ LST 

In situ LST is not directly measured but derived from measurements of surface brightness temperature 

(BT), sky BT and land surface emissivity (LSE). However, in situ observations of LST taken under the right 

conditions over large and homogeneous sites currently allow the most accurate validation of LST products 

(‘Category A validation’; Schneider et al., 2012). For in situ LST to be representative over a large range of 

spatial scales, i.e. from the ground-based radiometer’s GIFOV to the satellite pixel scale, a field site needs to 

be either homogeneous over all relevant scales or it must be possible to obtain a representative LST by 

combining radiance measurements performed over a few ‘endmembers’, e.g. via equation B.4 or by 

modelling (Pinheiro et al., 2004; Guillevic et al., 2013; Ermida et al., 2014). The homogeneity of a site can be 

assessed by studying its spatial LST variability (standard deviation) with ground-based radiometers (Wan et 

al., 2002; Coll et al., 2009b) or by analyzing high-resolution TIR imagery (e.g. from ASTER; GIFOV » 100 

m). For the latter (Schneider et al., 2012) recommend a standard deviation of no more than 0.5 K.  In situ 

measurements over rice fields and uniform grasslands yielded a similar spatial variability (Coll et al., 2009b).  

7.3.1   Measurement protocol for in situ LST 

Measurements with FRM TIR radiometers are often performed to validate satellite-derived LST 

products; since all satellite data are subject to geolocation error, for validation purposes it is recommended 

that the sites should be homogenous over at least 3 × 3 pixels. Field campaigns for obtaining in situ LST 

typically last between a few days and a few weeks and are most often performed over naturally homogenous 

(and relatively isothermal) sites, e.g. rice fields (Coll et al., 2005; Coll et al., 2009a, Niclos et al., 2011), 

grasslands (Wan et al., 2002), arid regions (Wan et al., 2002; Goettsche et al., 2013), or agricultural sites 

(Sobrino et al., 2007): this ensures that the in situ measurements are representative of the immediate 

surroundings. Here, we propose a measurement protocol for obtaining in-situ LST with a single radiometer 

placed over a highly homogeneous natural target:  
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•   The radiometer shall be traceably calibrated to ±0.3 K or better against a primary reference 

blackbody (achievable accuracy depends on radiometer type, expected temperature range and 

environmental conditions). 

•   Observed surfaces have to be approximately homogeneous and isothermal on the spatial scale 

of the radiometer (e.g. about 1.6 m GIFOV Ø over dense rice fields). This can be verified with 

spatially distributed radiometers, by moving a single radiometer ‘quickly’ across the site, or by 

spatial analyses of high-resolution satellite data.  

•   Surface observations shall be performed at near-nadir view angles (<30°) to minimize 

differences due to LST anisotropy (Cuenca and Sobrino, 2004; Sobrino and Cuenca, 1999) 

•   Measurements should not be performed next to obstructions like trees or buildings.  

•   Down-welling hemispherical sky irradiance has to be measured ‘simultaneously’ with the 

surface measurements. This can be achieved with a second identical radiometer (i.e. same FOV 

and spectral range) or by measuring with the same radiometer at short intervals, e.g. every 3 

minutes. 

•   Favorable conditions for estimating down-welling hemispherical sky irradiance from a single 

directional radiance measurement are completely clear and skies covered completely by 

uniform stratus clouds (Rubio et al., 1997). 

•   Instrument-specific Land Surface Emissivity (LSE) should be determined under favorable 

environmental conditions, e.g. at night-time for clear sky and low wind speeds; the two-lid 

emissivity box method works under less favorable conditions. 

•   All clocks involved in the campaign shall be synchronized to time UTC 

•   The time of each measurement shall be recorded in UTC and the corresponding geolocation 

in decimal degrees latitude / longitude  

•   All data shall recorded in a common table format 

•   Relevant technical details of each instrument shall be documented, e.g. make & type, serial 

number, spectral range and calibration details 

•   Information about wind, cloud-cover, air temperature and humidity, land cover, etc. shall be 

documented  

7.3.2   Down-welling hemispherical sky radiance  

Down-welling hemispherical sky irradiance is usually estimated from one of the following 

measurements performed with the LST FRM field TIR radiometer: 

•   Sky BT at the ‘representative zenith angle’ of about 53° (Kondratyev, 1969; Sakai et al., 2009) 

•   Sky BT at 0° zenith angle and a known relationship (equation B.8; Rubio et al., 1997) 

•   BT measured over a diffuse gold plate or crinkled aluminum foil (Salisbury 1998)  
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The first approach directly yields an estimate of down-welling hemispherical sky irradiance for the 

spectral range of the radiometer, while the second approach is easier to implement in terms of directional 

alignment. The third approach requires that the reflector’s temperature and emissivity spectrum are known. 

However, since the gold plate and aluminum foil have very high reflectance in the TIR (about 97%), their 

emitted radiance is a relatively small part of the measured signal (Salisbury, 1998). Garcia-Santos et al. (2013) 

compared four different methods for retrieving hemispherical down-welling irradiance (the three above and 

radiative transfer calculations for atmospheric profile data): for clear-sky conditions and an unobstructed 

upper hemisphere the methods produced comparable results. Depending on the spectral range of the 

radiometer, measured sky BT can be very low, e.g. -100 °C for clear dry atmospheres over deserts when 

measuring at 0° zenith angle (Salisbury, 1998; Göttsche and Hulley, 2012). Besides potentially exceeding 

their operating range, radiometers are generally difficult to calibrate for temperatures well below 0 °C, which 

may result in larger measurement errors. Fortunately, the typically high emissivity of natural land surfaces 

around 11 µm (e.g. between 0.92 and 0.99) reduces the impact of such errors on derived LST; the effect of 

emissivity errors is usually considerably more severe (Schädlich et al., 2001).  

7.3.3   Land Surface Emissivity 

Before in situ LST can be obtained, directional spectral emissivity matching the radiometer has to be 

estimated; the spatial sampling has to be appropriate to provide representative LSE at all scales of interest, 

e.g. at the scale of the in situ radiometer and the satellite pixel. In situ emissivities can be estimated with the 

emissivity box method (section 7.2.2) or from spectroscopic measurements over samples in the laboratory. 

For some land surface covers, e.g. dense green vegetation, LSE values are well known and may also be 

obtained from spectral libraries or literature. When obtaining in situ LST, it has to be ensured that the 

corresponding LSE has remained approximately the same since it was determined (e.g. no change in land 

cover due to vegetation, fire, etc.).  

7.3.4   In situ LST for heterogeneous surfaces 

For heterogeneous surfaces consisting of several ‘flat’ endmembers (i.e. their cover fractions are 

independent of viewing and illumination geometry) the measurement protocol for homogenous surfaces 

(section 7.3.1) is applied to each endmember and LST can be obtained using equation B.4. However, this 

usually requires multiple radiometers since the BT and LSE of each endmember need to be simultaneously 

available. For non-flat endmembers, e.g. trees, cover fractions need to be projected to the ground for a 

specific viewing and illumination geometry, e.g. for a satellite at overpass time, so that a matching in situ 

LST can be obtained. A further complication arises from the associated variable shadow fraction. Therefore, 

obtaining accurate in situ LST over non-flat (‘vertically structured’) heterogeneous land surfaces usually 

requires some modelling (Pinheiro et al., 2004; Guillevic et al., 2013; Ermida et al., 2014) or is limited to 

night-time.  
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