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1 Introduction

Wave-type problems, such as Maxwell’s equations or the acoustic wave equation, play an
important role in the description of physical processes. For instance, Maxwell’s equations
lay the foundation of the field of classical electromagnetism, as they describe the interaction
of time-dependent electromagnetic fields with each other and their behavior in different
materials. Further examples for such problems are the elastic wave equation or advection-
reaction equation.

Because of their widespread applications and importance, such problems have been inten-
sively studied in the past. Despite that, solving them is still a challenging task, especially
since analytical solutions can only be found in very few cases. Hence, one usually tack-
les such problems with the help of numerical simulations. This has led to a wide variety
of algorithms, which can be used to approximately solve the wave-type problem under
consideration.

In practice, temporal discretization is often achieved via explicit time stepping methods like
the leapfrog scheme. Such explicit methods are very popular, see, e.g., [Fahs, 2009,Burman
et al., 2010,Diehl et al., 2010] for Maxwell’s equations. Their advantage is that they are easy
to implement and that one step can be performed at very low cost. However, they might
be inefficient if applied to stiff problems, which usually arise from the spatial discretization
of partial differential equations. This inefficiency is due to the CFL condition [Courant
et al., 1928], which gives a limit on the timestep size under which the scheme is stable.
This can cause explicit methods to become impractical as a huge number of timesteps can
be necessary to ensure stability, often times many more steps than needed to achieve the
desired accuracy.

Implicit schemes like the Crank–Nicolson scheme or implicit Runge-Kutta methods pose
alternatives to explicit time integration. Their main advantage is that they can be uncon-
ditionally stable, yielding a timestep restriction that is only governed by accuracy, not by
stability. However, such schemes usually require the solution of huge linear systems, which
can severely limit their efficiency.

Different approaches have been worked out in the last decades to relieve or completely
get rid of the CFL condition, while still ending up with an efficient scheme. For instance,
the CFL condition can become problematic if the computational domain involves small
scale features. In this case, one has to use small elements in the spatial discretization to
resolve the geometry, which worsens the CFL condition. However, if only a few elements
have to be small to resolve the geometry, local time stepping [Diaz and Grote, 2009,Grote
and Mitkova, 2010] or locally implicit [Piperno, 2006,Verwer, 2011,Descombes et al., 2013,
Hochbruck and Sturm, 2016,Hochbruck and Sturm, 2018] methods are suitable to relieve
the stability issues.

1



2 1 | Introduction

If the computational domain is comprised of rectangular or cuboidal domains and the con-
sidered problem admits a certain structure, an alternating direction implicit (ADI)
scheme can be the method of choice. This is because under these conditions, ADI schemes
are unconditionally stable, despite being of roughly the cost of an explicit scheme. The
original ADI scheme was introduced by Donald W. Peaceman and Henry H. Rachford, Jr.
in [Peaceman and Rachford, 1955]. Their idea was to split the spatial differential operator
of a partial differential equation w.r.t. the direction of the occurring partial derivatives,
resulting in a dimension splitting. If this splitting is applied to problems of the aforemen-
tioned structure, the resulting split operators lead to subproblems that can be tackled more
easily by time integration schemes. More precisely, the idea of ADI methods is to approx-
imate these subproblems in an alternating fashion, whereby in each step one subproblem
is treated in an implicit and the other in an explicit way.

The original ADI method was proposed for a finite differences discretization of the two-
dimensional heat equation. However, the concept is quite general and can be applied
to other problems as well, most notably to the full three-dimensional linear Maxwell’s
equations. This method, known as the finite differences time domain alternating direction
implicit (FDTD-ADI), was independently proposed by Takefumi Namiki in [Namiki, 1999]
and Fenghua Zheng, Zhizhang Chen and Jiazong Zhang in [Zhen et al., 2000]. However, a
rigorous error analysis of this scheme is still an open problem.

The numerical scheme that is applied to the split problem in [Peaceman and Rachford,
1955] to propagate in time is nowadays known as the Peaceman–Rachford scheme.
However, it is possible to combine the ADI splitting with other time stepping schemes
for split problems like the Douglas ADI method [Hundsdorfer and Verwer, 2003,Douglas,
1962,Douglas and Gunn, 1964,Brian, 1961] or variants of the Peaceman–Rachford scheme
[Chen et al., 2008,Chen et al., 2010,Gao et al., 2007,Gao et al., 2013,Lee and Fornberg,
2003,Lee and Fornberg, 2004]. In this thesis, we focus on the original Peaceman–Rachford
scheme.

Recently, the Peaceman–Rachford ADI scheme applied to Maxwell’s equations has been
analyzed in the context of abstract Cauchy problems in a series of papers. The first of these
papers [Hochbruck et al., 2015a] considered Maxwell’s equations in the absence of external
currents and damping, while [Eilinghoff and Schnaubelt, 2018,Eilinghoff and Schnaubelt,
2017] included both. In [Eilinghoff et al., 2018], an energy preserving variant of the scheme
was analyzed. These results provide a first step towards a rigorous analysis of a fully
discrete method achieved by using the Peaceman–Rachford scheme in time.

Independent from these contributions, in [Hansen and Henningsson, 2016], a fully discrete
scheme obtained by the Peaceman–Rachford scheme (and the Douglas–Rachford scheme)
combined with a generic spatial discretization was analyzed. However, the results therein
were derived under assumptions on the spatially discrete operators, which can be tedious
to verify in applications if they are fulfilled at all. In contrast, in this thesis, we only pose
assumptions on the regularity of the exact solution.
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Aims and results

This thesis has three main goals.

1. The construction of a discontinuous Galerkin (dG) discretization, which enables
an efficient implementation of the Peaceman–Rachford ADI scheme for Maxwell’s
equations.

2. The derivation of rigorous error bounds for the resulting full discretization.

3. The generalization of the results achieved in the first two goals to a general class of
wave-type problems.

The first two goals were the original starting point of the work presented in this thesis.
However, it turned out that it is possible to generalize the ADI method to a broader class
of problems, which led to the third goal and thereby to the results presented in this thesis.

To achieve the first goal, we have discretized the split operators occurring in the FDTD-
ADI method by a dG discretization. Consequently, we have studied the structure of these
discrete operators to work out the conditions under which an efficient implementation
of the dG-Peaceman–Rachford ADI scheme is possible. We have further identified how
such an implementation can be achieved by using two different orderings of the degrees
of freedom. In fact, the crucial ingredient for an efficient scheme is to exploit the special
structure of Maxwell’s equations and the tensorial structure of the computational domain
and the chosen grid. This ensures that the flows of the split operators completely decouple
as they travel along different directions in the grid.

For the second goal we have exploited that the Peaceman–Rachford scheme can be in-
terpreted as a perturbation of the Crank–Nicolson method. In [Sturm, 2017] techniques
to analyze the Crank–Nicolson, leapfrog and a locally implicit scheme applied to dG dis-
cretizations of Maxwell’s equations were developed. As the leapfrog and the locally implicit
schemes are treated as perturbations of the Crank–Nicolson scheme, we have transferred
these ideas to the Peaceman–Rachford scheme. However, it turned out that the pertur-
bation caused by the latter can not be treated with the same arguments used in [Sturm,
2017]. We have therefore worked out new techniques that can be used to analyze perturbed
Crank–Nicolson schemes including the Peaceman–Rachford method.

The third goal was motivated by the observation that the ADI scheme is efficient for
Maxwell’s equations because of their special structure. By identifying this structure, we
were able to pose precise conditions on more general wave-type problems for which the
Peaceman–Rachford scheme can be applied at roughly the cost of an explicit scheme.
These problems are such that we can split the corresponding spatial operators into two
operators, whose associated flows completely decouple. This enables us to directly transfer
the efficient implementation of the dG-Peaceman–Rachford scheme for Maxwell’s equations
to such problems.

To generalize our error analysis we have developed a Hilbert space framework applicable to
a broad class of wave-type problems. This framework is based on the theory of Friedrichs’
systems, which is originally due to Kurt Otto Friedrichs [Friedrichs, 1958] and was recently
refined by Daniele A. Di Pietro, Alexandre Ern and Jean-Luc Guermond in [Ern and
Guermond, 2006a, Ern and Guermond, 2006b, Ern and Guermond, 2008, Di Pietro and
Ern, 2012]. However, the results in these publications are mostly given for stationary
problems or in a space-time framework, which is why we can not directly apply them to our
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setting. We have overcome this problem by using the aforementioned theory to work out the
conditions under which the spatial operator is maximal dissipative and therefore generates
a contraction semigroup by the Lumer–Phillips theorem. To do so, special treatment has
to be given to the material parameters belonging to the temporal derivative, which we
incorporate in the inner product of the Hilbert space in which we analyze the abstract
problem. Similar ideas for a unified theory for wave-type equations can be found, e.g.,
in [Benzoni-Gavage and Serre, 2007] and [Burazin and Erceg, 2016]. In fact, the latter is
also based on the framework found in the publications of Di Pietro, Ern and Guermond.

Outline

The thesis is organized as follows. In Chapter 2 we specify the class of wave-type problems
considered in this thesis. To this end, we study spatial operators called Friedrichs’ opera-
tors, which govern the temporal evolution of the solution of these problems. After having
shown some crucial properties of Friedrichs’ operators, we proceed by applying semigroup
theory to show the wellposedness of the corresponding wave-type problems. As we are
mainly interested in the analysis of the Peaceman–Rachford method, which is a splitting
method, we then briefly discuss suitable splittings of a Friedrichs’ operator. In Chapter 3
we derive the central flux dG discretization of a general Friedrichs’ operator. Then, using
these discrete operators, we are able to state the spatially semidiscrete problem and show
its wellposedness. We conclude the chapter by showing bounds on the error of the spa-
tial semidiscretization. In Chapter 4 we consider the temporal discretization of abstract
wave-type problems. Our analysis of the Peaceman–Rachford method is based upon the
fact that it can be considered as a perturbation of the Crank–Nicolson scheme. Hence,
as a first step, we study the Crank–Nicolson method, in particular its wellposedness and
stability. We then proceed accordingly for the Peaceman–Rachford scheme. Consequently,
we perform the temporally semidiscrete analysis of both schemes. Having introduced both
spatial as well as temporal semidiscretizations we then use a method of lines approach
to obtain fully discrete schemes in Chapter 5. This chapter is structured similarly to
Chapter 4, meaning that we start by showing wellposedness and stability of both the dG-
Crank–Nicolson as well as the dG-Peaceman–Rachford method. Subsequently, we state
the first main result of this thesis, namely we give rigorous bounds on the full error of the
dG-Peaceman–Rachford scheme. Chapter 6 is devoted to the second main result, i.e., the
construction and implementation of the dG-Peaceman–Rachford method in the context of
an ADI splitting. In particular, we identify a class of Friedrichs’ operators for which the
corresponding wave-type problems can be tackled extremely efficiently. Namely, despite
the fact that the dG-Peaceman–Rachford method is an implicit method, we show that we
can perform one step of the scheme at roughly the cost of an explicit scheme if applied
to the aforementioned problems. We conclude the thesis by showing the results of some
numerical experiments in Chapter 7 to back up the theoretical results.
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Notation

In this section, we introduce the notation used throughout the thesis. To this end, let
n, k ∈ N and K ⊂ Rd be open.

Miscellaneous

By R+ we denote the non-negative real numbers, i.e., the interval [0,∞). We write N0 for
the natural numbers including 0.

Throughout, d ∈ N denotes the spatial dimension, and m ∈ N is a generic positive integer,
usually being the number of components of vector-valued functions.

The support of a function f is denoted by supp f . We denote the Kronecker delta by δij ,
and we denote the indicator function of a set S ⊂ Rn as 1S .

Given a countable set S with finitely many elements, we denote the cardinality of this set
by |S|. Further, we call a set S ⊂ Rn tensorial if we have S =×n

i=1[a−i , a
+
i ], for a−i , a

+
i ∈ R,

i = 1, . . . , n.

Vector algebra

Given a vector a ∈ Rn, we denote the components of a by a1, . . . , an, its Euclidean norm
by ‖a‖ and the transpose of a by aT . The canonical unit vectors in Rn are denoted by
e1, . . . , en. We denote the Euclidian scalar product of two vectors a, b ∈ Rn by

a · b =
n∑
i=1

aibi.

For a, b ∈ R3, we denote the cross product of a and b by

a× b =

a1

a2

a3

×
b1

b2

b3

 =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 .

Spatial and temporal derivatives

We often consider multivariate functions u : R+ × Rd → R, where the first variable is the
time variable t ∈ R+, and the vector-valued variable is the space variable x ∈ Rd. The
partial derivatives of u are denoted by

∂tu =
∂

∂t
u, ∂1u =

∂

∂x1
u, . . . , ∂du =

∂

∂xd
u.

We collect the spatial derivatives in the gradient of u given by

∇u =

∂1u
...
∂du

 .

For vector fields u : R+ × Rd → Rm the divergence of u is denoted by

∇·u =

d∑
i=1

∂iui,
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and for three-dimensional fields u : R+ × R3 → R3 we denote the curl of u by

∇×u =

∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1

 .

We frequently interpret u : R+×Rd → Rm as a function u : R+ → X, where X is a function
space containing functions mapping from Rd to Rm. Hence, in that case we omit the spatial
dependence and consequently write u(t) instead of u(t, x). Further, we then denote the
temporal derivative of u by

dtu =
d
dt
u.

Hilbert spaces and operators

Let (X,
(
·
∣∣ · )

X
) and (Y,

(
·
∣∣ · )

Y
) be Hilbert spaces over K = {R,C}.

We denote the dual space of a Hilbert space X by X ′ and the canonical dual pairing
between a Hilbert space and its dual space by

〈
·
∣∣ · 〉 : X ′ ×X → K.

By B(X, Y ) we denote the set of all bounded operators from X to Y .

We usually denote the domain of an operator A byD(A). The domain of the concatenation
of two linear operators A and B is then defined by

D(AB) = {v ∈ D(B) | Bv ∈ D(A)}

and recursively for more factors, e.g., An.

Let D(A) ⊂ X. Given an operator A : D(A) → Y , we denote the range of A by ran(A)
and the kernel or null space of A by ker(A).

We usually denote the identity operator on a Hilbert space X by I.

Function spaces

For p ∈ N ∪ {∞} we denote by Lp(K) the standard Lebesgue spaces of real valued
Lp-functions on K and by W k,p(K) the Lp-Sobolev spaces of functions in Lp(K) whose
weak derivatives up to order k lie in Lp(K).

For vector-valued L2-functions u, v ∈ L2(K)m we denote the L2(K)-inner product by(
u
∣∣ v)

K
=

∫
K

u · v dx,

and for F ⊂ ∂K we write (
u
∣∣ v)

F
=

∫
F

u · v dσ.

We denote the norms induced by these inner products by ‖ · ‖K and ‖ · ‖F .

Further, we abbreviate Hk(K) = W k,2(K) and denote the corresponding norms and semi-
norms on Hk(K) by ‖ · ‖k,K and | · |k,K , respectively. The vector-valued case is treated
analogously to the L2(K)-norm, i.e., by utilizing the Euclidean scalar product.

Lastly, we denote by C∞c (K) the space of infinitely differentiable functions, which have
compact support on K.
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Matrices and matrix fields

Let A ∈ Rn×n be a square matrix. We denote the spectral norm of A by ‖A‖, the matrix
resulting from taking the absolute value of the components of A by |A| and the transpose
of A by AT .

Inequalities between matrices are understood on the associated quadratic forms. More
precisely, for A1, A2 ∈ Rn×n, the inequality A1 ≤ A2 means that for all a ∈ Rn we have
aTA1a ≤ aTA2a and accordingly for <, ≥ and >.

We denote the identity matrix by I.

Let M ∈ L∞(K)n×n be a square matrix-valued field on K. We denote by

‖M‖∞,K = ess sup
x∈K

‖M(x)‖

the essential supremum of the spectral norm of M .

We say that M is uniformly positive a.e. on K if there exists µ > 0 such that M ≥ µI a.e.
on K.

Further, slightly abusing notation, we identify a matrix-valued field M ∈ L∞(K)n×n with
the associated bounded linear operator

(u 7→Mu) ∈ B(L2(K)n, L2(K)n).

Hence, the adjoint of this operator and the transpose of the matrix-valued fieldM coincide,
and we denote it by M∗.

Discretized objects

Discrete objects, i.e., functions in the approximation spaces introduced in Chapter 3 or
discrete operators defined on these spaces are denoted by bold letters. In contrast, objects
related to infinite-dimensional spaces (like L2(K) or H1(K)) are denoted by the stan-
dard fonts. Combinations of both such objects (like projection errors) are also written in
standard fonts.
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2 Linear wave-type equations

In the following, let Ω ⊂ Rd be a bounded, open and connected Lipschitz domain with
boundary Γ = ∂Ω. Throughout this thesis, we are interested in solving linear wave-type
problems of the following form. Seek u : R+ × Ω→ Rm, such that

M(x)∂tu(t, x) = L̃u(t, x) + g(t, x) in R+ × Ω. (2.1)

Here, M : Ω → Rm×m is a symmetric material tensor, and g : R+ × Ω → Rm is a source
term. Moreover, L̃ is a first order spatial differential operator of the form

L̃u(t, x) =
d∑
i=1

Li(x)∂iu(t, x) + L0(x)u(t, x),

where L0, . . . , Ld : Ω → Rm×m are matrix-valued coefficients with L1, . . . , Ld being sym-
metric. Since problem (2.1) is an initial value problem on a bounded domain, the equation
has to be supplied with suitable boundary and initial conditions to be wellposed. We will
specify these conditions in the course of this chapter.

Well-known examples for this equation prototype are the wave equation in first order
formulation, Maxwell’s equations and the advection equation. These problems will also be
the three examples accompanying us throughout this thesis to illustrate our results.

The spatial differential operator L̃ belongs to a class of operators introduced in [Friedrichs,
1958]. We will review and use results known for such operators, throughout referred
to as Friedrichs’ operators. These results mostly stem from the series of papers [Ern
and Guermond, 2006a, Ern and Guermond, 2006b, Ern and Guermond, 2008] and from
Chapter 7 of the book [Di Pietro and Ern, 2012]. However, in there, either the stationary
case or a space-time framework, where the temporal derivative is incorporated in the
Friedrichs’ operator, is considered. Thus, we transfer them to the transient case studied in
this thesis. Similar ideas were already pursued in [Burazin and Erceg, 2016].

The overall aim of this chapter is to investigate wellposedness of problems of the form
(2.1) supplied with suitable boundary and initial conditions. As such problems can be cast
into the form of an abstract Cauchy problem on a Hilbert space, we apply the theory of
semigroups, which is concerned with the wellposedness of such problems. Hence, in Sec-
tion 2.1 we review some results from this theory. Subsequently, we investigate Friedrichs’
operators and their properties in Section 2.2. Having introduced the criteria necessary to
show wellposedness of the wave-type problem (2.1), we consequently apply them to this
class of problems in Section 2.3. We are ultimately interested in the analysis of the Peace-
man–Rachford scheme, which is a splitting scheme. Hence, in Section 2.4 we will briefly
discuss suitable splittings of the spatial differential operator. Lastly, in Section 2.5, we
present the aforementioned examples for wave-type equations.

9
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2.1 Wellposedness of abstract Cauchy problems

Throughout this section, let
(
X,
(
·
∣∣ ·)

X

)
be a Hilbert space and ‖·‖X be the norm induced

by its inner product. The goal of this section is to review some theory concerned with the
wellposedness of an abstract Cauchy problem of the form{

dtu(t) = Au(t) + f(t), t ∈ R+,

u(0) = u0,

(2.2a)
(2.2b)

where u : R+ → X is the solution, u0 ∈ X the initial value, f : R+ → X is an inho-
mogeneity or source term, and A : X ⊃ D(A)→ X is a linear operator on the Hilbert
space X. The differential equation (2.2a) is called an abstract evolution equation.

The material in this section is mostly taken from [Engel and Nagel, 2000], [Jacob and Zwart,
2012, Chapters 5 and 6] and [Pazy, 1983]. Additionally, the lecture notes [Schnaubelt,
2011], [Schnaubelt, 2013] and [Schnaubelt, 2015] were considered, and we closely follow
the presentation of this topic in [Sturm, 2017].

Before discussing wellposedness of the abstract Cauchy problem (2.2), we give an intro-
ductory example to illustrate some ideas behind the theory we are going to employ.

Example 2.1. In the following, let u0 ∈ Cm and A ∈ Cm×m. We consider the system of
linear homogeneous ordinary differential equations with initial value u0 given by{

dtu(t) = Au(t), t ∈ R+,

u(0) = u0,

where A determines the temporal evolution of the solution u : R+ → Cd. It is well known
that this solution exists, is unique and is given by

u(t) = etA u0,

where etA ∈ Cd×d is the matrix exponential of tA. Further, we can recover the matrix A
from the exponential by (

dt etA
)
|t=0 =

(
A etA

)
|t=0 = A. (2.3)

Let I ∈ Cm×m be the identity matrix. Then we further have

lim
t→0+

etA = I and e(t+s)A = etA esA

for all t, s ∈ R+.

Hence, in the case of homogeneous ordinary differential equations we have at hand an
operator—namely the matrix exponential—that returns the solution of a given initial value
problem as a function of the initial value u0.

Further, for f : R+ → Cm smooth enough, the unique solution of the inhomogeneous initial
value problem {

dtu(t) = Au(t) + f(t), t ∈ R+,

u(0) = u0

is given by the variation-of-constants formula

u(t) = etA u0 +

∫ t

0

e(t−s)A f(s) ds. (2.4)

We will see that this formula is still valid in the case of an abstract Cauchy problem. �
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In the next section, the concepts introduced in this example will be generalized to the
case of the abstract Cauchy problem (2.2). In particular, the matrix exponential will be
generalized by a strongly continuous semigroup and the matrix A by the infinitesimal
generator of that semigroup.

2.1.1 Abstract evolution equations and semigroups

We begin this section by introducing the notion of a semigroup on the Hilbert space X.

Definition 2.2. A one-parameter family of bounded linear operators (T (t))t≥0 from X to
X is called a semigroup of bounded linear operators on X if

(i) T (0) = I.

(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0.

A semigroup is called a strongly continuous semigroup or C0-semigroup if

lim
t→0+

‖T (t)x− x‖X = 0

for all x ∈ X.

We will see later that strongly continuous semigroups can be understood as a generalization
of the matrix exponential in Example 2.1 in the sense that they yield the solutions of an
abstract Cauchy problem for a given initial value. In fact, the matrix exponential fulfills
the properties in Definition 2.2 and is consequently a strongly continuous semigroup on
the finite dimensional Hilbert space Cm.

The next lemma gives an explicit bound on the operator norm of a strongly continuous
semigroup, yielding the stability of the system. Further, it elaborates on the strong conti-
nuity.

Lemma 2.3. Let (T (t))t≥0 be a strongly continuous semigroup. Then the following holds.

(i) There exist constants C ≥ 1 and ω ≥ 0 such that for all x ∈ X we have

‖T (t)x‖X ≤ C eωt ‖x‖X for all t ≥ 0. (2.5)

(ii) The mapping t 7→ T (t) is strongly continuous on R+, i.e.,

lim
s→0
‖T (t+ s)x− T (t)x‖X = 0 for all t > 0.

Next, we define the infinitesimal generator of a strongly continuous semigroup. Note
that this definition corresponds to (2.3), and the infinitesimal generator can be seen as a
generalization of the matrix A in Example 2.1.

Definition 2.4. Let (T (t))t≥0 be a strongly continuous semigroup and

D(A) =
{
x ∈ X | lim

t→0+

(
1
t (T (t)x− x)

)
∈ X

}
.

The infinitesimal generator of (T (t))t≥0 is defined as the linear operator A : D(A)→ X
given by

Ax = lim
t→0+

T (t)x− x
t

for all x ∈ D(A).

The set D(A) is called the domain of A.
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The next lemma states some important properties of semigroups and their generators.

Lemma 2.5. Let (T (t))t≥0 be a strongly continuous semigroup with infinitesimal generator
A. Then the following holds.

(i) For x ∈ D(A) and t ≥ 0 we have T (t)x ∈ D(A).

(ii) For x ∈ D(A) and t ≥ 0 we have

dt(T (t)x) = AT (t)x = T (t)Ax. (2.6)

(iii) The domain of A is dense in X and A is a closed operator.

By Definition 2.4 every strongly continuous semigroup has a unique generator. The fol-
lowing corollary of Lemma 2.5 states that the converse also holds true.

Corollary 2.6. Let (T1(t))t≥0 and (T2(t))t≥0 be strongly continuous semigroups with in-
finitesimal generators A1 and A2, respectively. If A1 = A2, then T1(t) = T2(t) for all
t ∈ R+.

Lemma 2.5 further enables us to establish a connection between a strongly continuous
semigroup (T (t))t≥0 generated by an operator A and the solution u : R+ → X of the
corresponding homogeneous abstract Cauchy problem given by{

dtu(t) = Au(t), t ∈ R+,

u(0) = u0.
(2.7)

Namely, the solution of this problem is u(t) = T (t)u0. This can be seen by replacing x in
(2.6) by the initial value u0.

Thus, the connection between a strongly continuous semigroup and an abstract evolution
equation reflects the relation between a matrix exponential and the corresponding system
of ordinary differential equations, and from now on we adopt the notation in Example 2.1.
Namely, if A generates a strongly continuous semigroup, we denote this semigroup by(
etA
)
t≥0

instead of (T (t))t≥0. The next theorem states that (2.7) is wellposed if A is the
generator of a strongly continuous semigroup.

Theorem 2.7. Let A be the infinitesimal generator of the strongly continuous semigroup(
etA
)
t≥0

and u0 ∈ D(A). Then there exists a unique solution u ∈ C1(R+;X)∩C(R+;D(A))

of the homogeneous abstract Cauchy problem (2.7) given by

u(t) = etA u0.

Now, consider the inhomogeneous abstract Cauchy problem given by{
dtu(t) = Au(t) + f(t), t ∈ R+,

u(0) = u0.
(2.8)

Then the variation-of-constants formula (2.4) is still valid as shown in the following well-
posedness result.
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Theorem 2.8. Let A be the infinitesimal generator of the strongly continuous semigroup(
etA
)
t≥0

and u0 ∈ D(A). Moreover, let either f ∈ C1(R+;X) or f ∈ C(R+;D(A)). Then
there exists a unique solution u ∈ C1(R+;X)∩C(R+;D(A)) of the inhomogeneous abstract
Cauchy problem (2.8) given by

u(t) = etA u0 +

∫ t

0

e(t−s)A f(s) ds.

To summarize, abstract Cauchy problems of the form (2.7) and (2.8) are wellposed if the
corresponding operator A generates a strongly continuous semigroup, and the initial value
u0 and the inhomogeneity f are smooth enough.

2.1.2 Dissipative operators and the Lumer–Phillips Theorem

We now identify sufficient conditions for an operator A to generate a strongly continuous
semigroup. Before doing so, we introduce the notion of a dissipative operator.

Definition 2.9. A linear operator A : D(A) → X is called dissipative if for every x ∈
D(A) we have

Re
(
Ax
∣∣x)

X
≤ 0.

We gather two well-known properties of dissipative operators in the next lemma, namely
the contractivity of the resolvent (I − λA)−1 and of the transform (I + λA)(I − λA)−1.
The proofs can be found in [Engel and Nagel, 2000, Theorem II.3.14] and [Phillips, 1959,
Section 1.1], respectively.

Lemma 2.10. Let A : D(A)→ X be dissipative. Then the following holds for all λ > 0.

(i) The resolvent I − λA is injective, and for x ∈ ran(I − λA) we have

‖(I − λA)−1x‖X ≤ ‖x‖X .

(ii) For x ∈ ran(I − λA) we have

‖(I + λA)(I − λA)−1x‖X ≤ ‖x‖X .

As we will see in the next result, dissipative operators are connected to the following class
of strongly continuous semigroups.

Definition 2.11. A strongly continuous semigroup is called contractive or a contraction
semigroup if (2.5) holds with C = 1 and ω = 0.

Now, we state the famous Lumer–Phillips Theorem, which yields the aforementioned
sufficient conditions for an operator A to generate a strongly continuous semigroup and
links dissipative operators to contraction semigroups. This result can, e.g., be found in
[Jacob and Zwart, 2012, Theorem 6.1.7] or [Engel and Nagel, 2000, Theorem II.3.15 &
Corollary II.3.20].
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Theorem 2.12. Let A : D(A) → X be a linear operator. Then the following statements
are equivalent.

(i) A is dissipative and ran(I − λA) = X for some λ > 0.

(ii) A is dissipative and ran(I − λA) = X for all λ > 0.

(iii) A generates a contraction semigroup.

This motivates the next definition of maximal dissipative operators.

Definition 2.13. A linear operator A : D(A)→ X is called maximal dissipative if it is
dissipative and ran(I − λA) = X for some λ > 0.

2.2 Friedrichs’ operators

Before applying the semigroup theory to the class of wave-type problems introduced earlier,
in this section we introduce the class of Hilbert space operators we call Friedrichs’ operators.
As stated before, we closely follow ideas from [Ern and Guermond, 2006a] and [Di Pietro
and Ern, 2012, Section 7], where a variant of the theory of Friedrichs’ systems [Friedrichs,
1958] is introduced. Again, we start with an example to motivate the concepts we are
going to employ.

Example 2.14. Let d = 2. We consider the two-dimensional linear homogeneous
advection equation {

∂tu = α · ∇u, in R+ × Ω,

u(0) = u0, in Ω
(2.9)

with solution u : R+ × Ω → R and α : Ω → R2 being the advection velocity. This
equation can be seen as a prototype for the more general wave-type problem (2.1) as we
have

α · ∇u = α1∂1u1 + α2∂2u2.

In this example we investigate some properties of this equation, or rather the spatial
operator α · ∇. Throughout the example, let v, w : Ω→ R and α be smooth enough, such
that the following expressions make sense.

Then the usual integration by parts formula and subsequently the product rule of differ-
entiation yields (

α · ∇v
∣∣w)

Ω
= −

(
v
∣∣ ∇·(αw)

)
Ω

+
(
(α · n)v

∣∣w)
Γ

= −
(
v
∣∣α · ∇w + (∇·α)w

)
Ω

+
(
(α · n)v

∣∣w)
Γ
,

(2.10)

where n is the outer unit normal vector to Γ. We abbreviate the spatial operator by

L̃ = α · ∇, (2.11)

define the formal adjoint L̃~ of L̃ by

L̃~v = −α · ∇v − (∇·α)v (2.12)

and the boundary field corresponding to L̃ by

L̃∂ = α · n.
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Using this, we can write the integration by parts formula (2.10) more compactly as(
L̃v
∣∣w)

Ω
=
(
v
∣∣ L̃~w

)
Ω

+
(
L̃∂v

∣∣w)
Γ
. (2.13)

To obtain a wellposed problem, one has to impose boundary conditions on (2.9). We
consider homogeneous inflow boundary conditions given by

u = 0 on R+ × Γ+, (2.14)

where the inflow boundary Γ+ is given by Γ+ = {x ∈ Γ | L̃∂(x) > 0}. This can be
rewritten as an equation on the whole boundary Γ by defining the boundary field

L̃Γ = −|α · n|. (2.15)

With this, (2.14) is equivalent to

(L̃∂ − L̃Γ)u = 0 on R+ × Γ+. (2.16)

This will be the way we model boundary conditions in the general setting. �

2.2.1 Definition of a Friedrichs’ operator

Throughout, we consider the (real) Hilbert space (L2(Ω)m,
(
·
∣∣ · )

Ω
). We start by defining

the general version of the operator in (2.11).

Definition 2.15. Let F0, . . . , Fd : Ω→ Rm×m and

H(F) = {v ∈ L2(Ω)m |
d∑
i=1

Fi∂iv ∈ L2(Ω)m}. (2.17)

We call the operator F : H(F)→ L2(Ω)m defined by

Fv =
d∑
i=1

Fi∂iv + F0v for all v ∈ H(F)

a Friedrichs’ operator with coefficients (Fi)
d
i=0 if the following holds.

(F1) F0, . . . , Fd ∈ L∞(Ω)m×m.

(F2) F1, . . . , Fd are symmetric a.e. on Ω.

(F3) ∇·F :=
∑d

i=1 ∂iFi ∈ L∞(Ω)m×m.

Throughout the rest of this section, let F be a Friedrichs’ operator with coefficients (Fi)
d
i=0.

We endow the graph space H(F) of F with the graph norm

‖v‖H(F) = ‖v‖Ω + ‖Fv‖Ω.

Then, by [Di Pietro and Ern, 2012, Lemma 7.2], the graph space H(F) is a Hilbert space,
and by definition we have F ∈ B(H(F), L2(Ω)m).

Friedrichs’ operators are first order differential operators. Hence, if the coefficients are
smooth enough, we have the following bound.
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Lemma 2.16. Let K ⊂ Ω be open and v ∈ H(F) with v|K ∈ H2(K). Further, let
Fi ∈W 1,∞(K)m×m for all i = 0, . . . , d. Then we have

C̃1,K,F blablabla
|Fv|1,K ≤ C1,K,F‖v‖2,K ,

where C1,K,F =
√

2 (d+ 1)C̃1,K,F with C̃1,K,F = max
i=0,...,d

{ max
j=1,...,d

‖∂jFi‖∞,K , ‖Fi‖∞,K}.

Proof. The definition of F and the H1(K)-seminorm and using the product rule yields

|Fv|21,K =

d∑
j=1

‖∂j(Fv)‖2K

=
d∑
j=1

‖
d∑
i=1

∂j(Fi∂iv) + ∂j(F0v)‖2K

=
d∑
j=1

‖
d∑
i=1

∂jFi ∂iv +
d∑
i=1

Fi ∂j∂iv + ∂jF0 v + F0∂jv‖2K

≤
d∑
j=1

( d∑
i=1

‖∂jFi ∂iv‖K +

d∑
i=1

‖Fi ∂j∂iv‖K + ‖∂jF0 v‖K + ‖F0∂jv‖K
)2

≤ C̃2
1,K,F

d∑
j=1

( d∑
i=1

‖∂iv‖K +
d∑
i=1

‖∂j∂iv‖K + ‖v‖K + ‖∂jv‖K
)2
.

We now use the equivalence of the 1- and 2-norm on R2(d+1) to obtain

|Fv|21,K ≤ 2(d+ 1) C̃2
1,K,F

d∑
j=1

( d∑
i=1

‖∂iv‖2K +
d∑
i=1

‖∂j∂iv‖2K + ‖v‖2K + ‖∂jv‖2K
)

= 2(d+ 1) C̃2
1,K,F

(
(d+ 1)

d∑
i=1

‖∂iv‖2K +

d∑
j=1

d∑
i=1

‖∂j∂iv‖2K + d‖v‖2K
)

≤ 2(d+ 1)2 C̃2
1,K,F

( d∑
i=1

‖∂iv‖2K +
d∑
j=1

d∑
i=1

‖∂j∂iv‖2K + ‖v‖2K
)

= 2(d+ 1)2 C̃2
1,K,F‖v‖22,K ,

concluding the proof.

We further show a version of Lemma 2.16 for higher derivatives. For the sake of presenta-
tion, we assume the coefficients of F to be constant. However, the statement is still valid
for sufficiently smooth coefficients, which can be verified by using repeatedly the argument
in the proof of Lemma 2.16.

Lemma 2.17. Let K ⊂ Ω be open and q > 0. Further, let v ∈ H(F) with v|K ∈ Hq+1(K)
and let the coefficients of F be constant on K. Then we have

|Fv|q,K ≤
√
d+ 1CF ,K‖v‖q+1,K

with CF ,K = max
i=0,...,d

‖Fi‖∞,K .
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Proof. By the definition of F and since the coefficients Fi are constant on K for all i =
0, . . . , d, we have

|Fv|q,K = |
d∑
i=1

Fi∂iv + F0v|q,K ≤ CF ,K
( d∑
i=1

|∂iv|q,K + |v|q,K
)
.

Using the equivalence of the 1- and 2-norm on Rd+1, we thus obtain

|Fv|q,K ≤
√
d+ 1CF ,K

( d∑
i=1

|∂iv|2q,K + |v|2q,K
)1/2

,

which concludes the proof.

2.2.2 The formal adjoint of a Friedrichs’ operator

Next, we define the general version of (2.12), i.e., the formal adjoint of the Friedrichs’
operator F . As the adjoint operators of the partial derivatives are given by the integration
by parts formula, this can be done explicitly.

Definition 2.18. We call F~ : H(F)→ L2(Ω)m defined by

F~v = −
d∑
i=1

∂i(Fiv) + F ∗0 v for all v ∈ H(F)

the formal adjoint of F .

By the standard product rule of differentiation we have

F~v = −
d∑
i=1

Fi∂iv + F ∗0 v − (∇·F)v for all v ∈ H(F).

Hence, taking Definition 2.15 (F3) into account yields F~ ∈ B(H(F), L2(Ω)m). Further,
we have

Fv + F~v = (F0 + F ∗0 −∇·F)v for all v ∈ H(F). (2.18)

2.2.3 Boundary operators

Having defined the formal adjoint of F , we can now define the boundary operator associated
with F .

Definition 2.19. We call F∂ : H(F)→ H(F)′ defined by〈
F∂v

∣∣w〉 =
(
Fv
∣∣w)

Ω
−
(
v
∣∣F~w

)
Ω

for all v, w ∈ H(F) (2.19)

the boundary operator associated with F .

In fact, (2.19) can be seen as a generalization of the integration by parts formula (2.13).
Next, we state two properties of this boundary operator, namely self-adjointness and
boundedness.
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Lemma 2.20. The boundary operator F∂ fulfills the following.

(i) F∂ ∈ B(H(F), H(F)′).

(ii)
〈
F∂v

∣∣w〉 =
〈
F∂w

∣∣ v〉 for all v, w ∈ H(F).

Proof. (i) This is a straightforward consequence of the definition of F∂ and the boundedness
of F and F~ on the graph space H(F).

(ii) Let v, w ∈ H(F) and set B = F0 + F ∗0 −∇·F . By the definition of F∂ and (2.18) we
have 〈

F∂v
∣∣w〉− 〈F∂w ∣∣ v〉 =

(
Fv
∣∣w)

Ω
−
(
v
∣∣F~w

)
Ω
−
((
Fw

∣∣ v)
Ω
−
(
w
∣∣F~v

)
Ω

)
=
(
(F + F~)v

∣∣w)
Ω
−
(
v
∣∣ (F~ + F)w

)
Ω

=
(
Bv
∣∣w)

Ω
−
(
v
∣∣Bw)

Ω

= 0,

where the last equality follows since B is self-adjoint.

In this chapter, we are ultimately interested in the wellposedness of the wave-type prob-
lem (2.1). Since this problem is posed on a bounded domain, we need to pose boundary
conditions to obtain uniqueness. We follow the approach in [Ern and Guermond, 2006a],
allowing us to use the results obtained therein.

Definition 2.21. Let K ∈ B(H(F), H(F)′) be such that

(B1)
〈
Kv
∣∣ v〉 ≤ 0 for all v ∈ H(F).

(B2) H(F) = ker(F∂ −K) + ker(F∂ +K).

Then we call K a dissipative boundary condition for F .

In the following, let FΓ be a dissipative boundary condition for F . As ker(F∂ −FΓ) is the
kernel of a bounded operator on H(F), it is a Hilbert space if endowed with the graph
norm. Further, FΓ can be seen as the generalization of (2.15). Hence, ker(F∂ −FΓ) is the
(closed) subspace of H(F) incorporating the boundary condition as it implies a general
version of (2.16).

For more insight into this approach of modeling boundary conditions, we again refer to [Ern
and Guermond, 2006a] and [Di Pietro and Ern, 2012, Chapter 7]. Further details can also
be found in [Ern et al., 2007].

2.2.4 Dissipativity and invertibility of a Friedrichs’ operator

Having introduced the necessary concepts associated with Friedrichs’ operators, we can
now directly determine the conditions under which such an operator is maximal dissipative.
By the Lumer–Phillips Theorem 2.12 this implies that the operator is the generator of a
contractive semigroup, which will be used to show wellposedness of the wave-type equation.

Theorem 2.22. Let F be a Friedrichs’ operator with coefficients (Fi)
d
i=0 and dissipative

boundary condition FΓ. Further, let

F0 + F ∗0 −∇·F ≤ 0 a.e. on Ω. (2.20)

Then the following holds.
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(i) The restriction of F to ker(F∂ −FΓ) is dissipative w.r.t.
(
·
∣∣ · )

Ω
.

(ii) (I − λF) : ker(F∂ −FΓ)→ L2(Ω)m is an isomorphism for all λ > 0.

Hence, the restriction of F to ker(F∂ −FΓ) is maximal dissipative.

Proof. (i) Let v ∈ ker(F∂ −FΓ). By (2.18) and (2.19) we have

2
(
Fv
∣∣ v)

Ω
=
(
Fv
∣∣ v)

Ω
+
(
F~v

∣∣ v)
Ω

+
(
Fv
∣∣ v)

Ω
−
(
F~v

∣∣ v)
Ω

=
(
(F0 + F ∗0 −∇·F)v

∣∣ v)
Ω

+
〈
F∂v

∣∣ v〉
≤
〈
(F∂ −FΓ)v

∣∣ v〉+
〈
FΓv

∣∣ v〉
≤ 0,

where the first inequality follows because of (2.20) and the second because of v ∈ ker(F∂ −
FΓ) and Definition 2.21.

(ii) This is a direct consequence of [Ern and Guermond, 2006a, Theorem 2.5].

The maximal dissipativity of F on ker(F∂ −FΓ) motivates the following definition.

Definition 2.23. Let F be a Friedrichs’ operator with coefficients (Fi)
d
i=0 fulfilling

F0 + F ∗0 −∇·F ≤ 0 a.e. on Ω. (2.21)

Further, let FΓ be a dissipative boundary condition for F and

D(F) = ker(F∂ −FΓ).

Then we call the restriction of F to D(F) a dissipative Friedrichs’ operator with
coefficients (Fi)

d
i=0 and boundary condition FΓ.

Remark 2.24. Using the exact same strategy of proof, we can show that Theorem 2.22
also holds for the restriction of the formal adjoint F~ to the space ker(F∂ +F∗Γ), cf., [Ern
and Guermond, 2006a]. In fact, this is the adjoint operator of the restriction of F to
ker(F∂ −FΓ). �

2.3 Wellposedness of wave-type equations

We are now able to discuss wellposedness of the wave-type problem stated as follows. Given
u0 : Ω→ Rm and g : R+ × Ω→ Rm, seek u : R+ × Ω→ Rm, such that{

M∂tu(t, x) = L̃u(t, x) + g(t, x), t ∈ R+, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω.

(2.22a)

(2.22b)

We begin by stating the assumptions on the operators M and L̃ under which we show
wellposedness of (2.22). Subsequently, we reformulate (2.22) in the form of the inhomo-
geneous abstract Cauchy problem (2.8) so that we can make use of the semigroup theory
in Section 2.1. Using the results on Friedrichs’ operators from Section 2.2 we show that
the resulting spatial operator generates a contraction semigroup. Theorem 2.8 then yields
wellposedness of the wave-type problem (2.22) in a subspace of the graph space of L̃ for
suitable initial values and inhomogeneities.
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2.3.1 Reformulation as an abstract Cauchy problem

We start by stating the assumptions on M and L̃.

Assumption 2.25. We assume that the following holds.

(i) M ∈ L∞(Ω)m×m is symmetric and uniformly positive a.e. on Ω.

(ii) L̃ : D(L̃) → L2(Ω)m is a dissipative Friedrichs’ operator with boundary condition
L̃Γ.

Here, the first assumption is needed to reformulate the problem into the form of an abstract
Cauchy problem. The second assumption will then be used to apply the results from
Section 2.2. Recall that by Definition 2.23 we have D(L̃) = ker(L̃∂ − L̃Γ).

Let the weighted L2-inner product
(
·
∣∣ · )

M
be defined by(

v
∣∣w)

M
=
(
Mv

∣∣w)
Ω

for all v, w ∈ L2(Ω)m.

By Assumption 2.25 (i), M is invertible withM−1 ∈ L∞(Ω)m×m also being symmetric and
uniformly positive a.e. on Ω. Hence, the norm ‖ · ‖M induced by

(
·
∣∣ · )

M
is equivalent to

the standard L2-norm, namely we have

‖M−1‖−1/2
∞,Ω ‖v‖Ω ≤ ‖v‖M ≤ ‖M‖

1/2
∞,Ω ‖v‖Ω (2.23)

for all v ∈ L2(Ω)m. Therefore,
(
L2(Ω)m,

(
·
∣∣ · )

M

)
is a Hilbert space. This is the space in

which we consider the abstract Cauchy problem.

Let D(L) = D(L̃). To reformulate the wave-type problem (2.22), we define the operator
L : D(L)→ L2(Ω)m such that we have

L = M−1L̃.

Multiplying (2.22a) by M−1, we obtain the equivalent problem stated as follows. Seek
u : R+ → L2(Ω)m, such that{

dtu(t) = Lu(t) + f(t), t ∈ R+,

u(0) = u0,

(2.24a)
(2.24b)

where we abbreviated f(t) = M−1g(t).

2.3.2 The wellposedness result

In this section we show that problem (2.24) is wellposed if supplied with suitable initial
conditions and if f is smooth enough. This is due to the fact that L is maximal dissipative,
enabling us to apply the Lumer–Phillips Theorem 2.12. We show this in the next theorem,
which is a straightforward consequence of Theorem 2.22, owing to the assumptions on M
and L̃.

Theorem 2.26. The following statements hold true.

(i) The operator L is dissipative w.r.t.
(
·
∣∣ · )

M
.

(ii) (I − λL) : D(L)→ L2(Ω)m is an isomorphism for all λ > 0.

Hence, L is maximal dissipative.
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Proof. (i) By the definition of
(
·
∣∣ · )

M
and L, we have(

Lv
∣∣ v)

M
=
(
MLv

∣∣ v)
Ω

=
(
L̃v
∣∣ v)

Ω
≤ 0

for all v ∈ D(L), where the inequality follows by Theorem 2.22 (i).

(ii) Note that by the assumptions on M , the claim is equivalent to (M − λL̃) : D(L̃) →
L2(Ω)m being an isomorphism for all λ > 0. This is again a direct consequence of [Ern
and Guermond, 2006a, Theorem 2.5], since M is uniformly positive a.e. on Ω.

By Theorem 2.26 and the Lumer–Phillips Theorem 2.12 it is apparent that L is the gen-
erator of a contraction semigroup. We denote this semigroup by

(
etL
)
t≥0

. Theorem 2.8
now directly yields the following wellposedness result.

Corollary 2.27. Let u0 ∈ D(L) and either f ∈ C1(R+;L2(Ω)m) or f ∈ C(R+;D(L)).
Then there exists a unique solution u ∈ C1(R+;L2(Ω)m) ∩ C(R+;D(L)) of (2.24) and
hence of (2.22) given by the variation-of-constants formula

u(t) = etL u0 +

∫ t

0

e(t−s)L f(s) ds. (2.25)

Remark 2.28. We want to point out that L̃ fulfilling (2.21) is not necessary to obtain a
wellposedness result. If the condition is not fulfilled, the Friedrichs’ operator is no longer
dissipative but shift-dissipative, leading to new technicalities. However, the results in this
thesis can also be generalized to this case. For the sake of presentation, we restrict ourselves
to the dissipative case. �

2.4 Splitting

The Peaceman–Rachford method we analyze in this thesis is a splitting method. Thus,
we assume that there are two dissipative Friedrichs’ operators Ã and B̃ with coefficients
(Ai)

d
i=0 and (Bi)

d
i=0 and boundary condition ÃΓ and B̃Γ, respectively such that we have

L̃v = Ãv + B̃v for all v ∈ H(Ã) ∩H(B̃) ⊂ H(L̃). (2.26)

By equating coefficients, this readily implies Li = Ai + Bi for i = 0, . . . , d. We further
assume that the boundary conditions are consistent in the sense that we have

L̃Γv = ÃΓv + B̃Γv for all v ∈ H(Ã) ∩H(B̃) ⊂ H(L̃). (2.27)

We define the operators A and B analogously to L. Note that the splitting property (2.26)
also holds for these operators, i.e., we have

Lv = Av + Bv for all v ∈ D(A) ∩D(B) ⊂ D(L).

Further, using the same arguments as in Section 2.3 we immediately see that these operators
are maximal dissipative and thus fulfill the Lumer–Phillips Theorem 2.12.

Theorem 2.29. The following statements hold.

(i) The operators A and B are dissipative w.r.t.
(
·
∣∣ · )

M
on their respective domains.

(ii) (I − λA) : D(A) → L2(Ω)m and (I − λB) : D(B) → L2(Ω)m are isomorphisms for
all λ > 0.

Hence, A and B are maximal dissipative.
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2.5 Examples

In this section, we have a look at three examples fitting into the framework above. As
mentioned before, these examples are the advection equation already encountered in Ex-
ample 2.14, the wave equation and Maxwell’s equations.

In the following we work out under which conditions these equations fit into the frame-
work. To do so, we loosely follow [Di Pietro and Ern, 2012, Section 7.2.5] and [Ern and
Guermond, 2006a, Section 3], where additional examples of Friedrichs’ operators can be
found. Suitable splittings for our examples (or rather special instances thereof) will be
discussed in Chapter 6.

Throughout, let n be the outward unit normal vector of Ω to Γ.

2.5.1 The advection equation

In Example 2.14 we have already seen that the homogeneous two-dimensional advection
equation is a candidate to fit the above framework of Friedrichs’ operators. As a matter
of fact, this is still the case in higher dimensions and including an inhomogeneity.

Problem formulation

For the d-dimensional advection equation, let m = 1 and g ∈ L2(Ω). We consider{
∂tu = α · ∇u+ g in R+ × Ω,

u(0) = u0 in Ω,
(2.28)

where α ∈ L∞(Ω)d is the advection velocity. We further assume ∇·α ∈ L∞(Ω) and
∇·α ≥ 0 a.e. on Ω.

Formulation as a wave-type equation

We see that (2.28) fits the form of the general wave-type problem (2.22) by setting

L̃ = α · ∇ and M = 1.

Further, by the assumptions on the advection velocity, L̃ fulfills the conditions of Defini-
tion 2.15 and is consequently a Friedrichs’ operator with coefficients

L0 = 0, Li = αi, i = 1, . . . , d

and graph space
H(L̃) = {v ∈ L2(Ω) | α · ∇v ∈ L2(Ω)}.

Associated boundary operator

To discuss boundary operators, we assume more regularity on the advection velocity,
namely that α is Lipschitz-continuous on Ω. This enables us to define the inflow bound-
ary Γ+ and the outflow boundary Γ− by

Γ± = {x ∈ Γ | ±α(x) · n(x) > 0}.
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We assume that Γ+ and Γ− are well-separated, i.e.,

min
x∈Γ−, y∈Γ+

‖x− y‖ > 0.

In [Di Pietro and Ern, 2012, Section 2.1.3] it is shown that, under these conditions, the
boundary operator L̃∂ associated with L̃ can be represented for all v, w ∈ H(L̃) by〈

L̃∂v
∣∣w〉 =

(
(α · n)v

∣∣w)
Γ
.

Homogeneous inflow boundary conditions

It remains to identify a suitable boundary operator L̃Γ. As in Example 2.14 we consider
homogeneous inflow boundary conditions. Hence, following (2.15), we set〈

L̃Γv
∣∣w〉 = −

(
|α · n|v

∣∣w)
Γ

for all v, w ∈ H(L̃). (2.29)

Obviously, L̃Γ fulfills the dissipativity condition Definition 2.21 (B1). We refer to [Di Pietro
and Ern, 2012, Section 7.2.5.1] for the confirmation of condition (B2).

Conclusion

In conclusion—as we have assumed ∇·α ≥ 0 a.e. on Ω, corresponding to (2.20)—the
operator L̃ restricted to ker(L̃∂ − L̃Γ) is a dissipative Friedrichs’ operator. Hence, the
advection equation considered in this example fits the above framework.

2.5.2 The acoustic wave equation

The acoustic wave equation considered in this example describes the propagation of acous-
tic waves in an isotropic medium. It is usually considered in a second order formulation.
However, it can be transformed into a first order system, which is the one we consider
herein. We refer to [Hochbruck et al., 2015b, Section 2.2] for the derivation of the first
order formulation.

Problem formulation

For the d-dimensional acoustic wave equation, let m = d + 1 and g̃ ∈ L2(Ω). We
consider the d-dimensional acoustic wave equation in div-grad formulation given by

ρ∂tp = ∇· q + g̃ in R+ × Ω,

∂tq = ∇p in R+ × Ω,

p(0) = p0 q(0) = q0 in Ω,

(2.30)

where we seek the pressure p : Ω→ R and the flux q : Ω→ Rd. The density ρ ∈ L∞(Ω)
is a given scalar field, which we assume to be uniformly positive a.e. on Ω.

Formulation as a wave-type equation

By writing

u =

(
p
q

)
, u0 =

(
p0

q0

)
, g =

(
g̃
0

)
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and

L̃ =

(
0 ∇·
∇ 0

)
, M =

(
ρ 0
0 I

)
,

equation (2.30) can be written in the form of (2.22), i.e.,{
M∂tu = L̃u+ g in R+ × Ω,

u(0) = u0 in Ω.

Further, the div-grad operator L̃ is brought into the form of a Friedrichs’ operator by
defining the coefficients

L0 = 0, Li =

(
0 eTi
ei 0

)
, i = 1, . . . , d.

Since we have ∇· L̃ = 0 ∈ L∞(Ω)m×m, the conditions of Definition 2.15 are fulfilled, and
the operator is indeed a Friedrichs’ operator. The graph space of L̃ is given by

H(L̃) = {(p, q) ∈ L2(Ω)× L2(Ω)d | ∇p ∈ L2(Ω)d, ∇· q ∈ L2(Ω)}
= H1(Ω)×H (div; Ω),

where H (div; Ω) is the graph space of the divergence operator, cf., [Monk, 2003, Sec-
tion 3.5.2], [Di Pietro and Ern, 2012, Section 1.2.6] or [Dautray and Lions, 1988, Sec-
tion IX.1.2].

Associated boundary operator

Throughout the rest of this section, let

v =

(
p
q

)
and w =

(
p̃
q̃

)
.

Let H1/2(Γ) be the vector space spanned by the traces of functions in H1(Ω) on Γ. By
[Di Pietro and Ern, 2012, Remark 1.26], functions in H (div; Ω) then have normal traces in
H−1/2(Γ), the dual space of H1/2(Γ). The boundary operator associated with the div-grad
operator L̃ can thus be represented by〈

L̃∂v
∣∣w〉 =

〈
n · q

∣∣ p̃〉+
〈
n · q̃

∣∣ p〉 for all v, w ∈ H(L̃).

Homogeneous Dirichlet boundary conditions

We consider homogeneous Dirichlet boundary conditions, which can be implemented
by defining the boundary operator〈

L̃Γv
∣∣w〉 =

〈
n · q

∣∣ p̃〉− 〈n · q̃ ∣∣ p〉 for all v, w ∈ H(L̃). (2.31)

It is apparent that this operator fulfills Definition 2.21 (B1), since for all v, w ∈ H(L̃) we
have 〈

L̃Γw
∣∣ v〉 =

〈
n · q̃

∣∣ p〉− 〈n · q ∣∣ p̃〉 = −
〈
L̃Γv

∣∣w〉,
i.e., L̃Γ is skew-symmetric. To confirm condition (B2) let v, w ∈ H(L̃). We have〈

(L̃∂ − L̃Γ)w
∣∣ v〉 = 2

〈
n · q̃

∣∣ p〉
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and 〈
(L̃∂ + L̃Γ)w

∣∣ v〉 = 2
〈
n · q

∣∣ p̃〉.
Therefore, we can decompose arbitrary v ∈ H(L̃) into

v =

(
p
0

)
+

(
0
q

)
with

(
p
0

)
∈ ker(L̃∂ + L̃Γ) and

(
0
q

)
∈ ker(L̃∂ − L̃Γ),

showing Definition 2.21 (B2).

Remark 2.30. Let v, w ∈ H(L̃) be sufficiently smooth. Then the boundary operators
can be represented by 〈

L̃∂v
∣∣w〉 =

(
n · q

∣∣ p̃)
Γ

+
(
p
∣∣n · q̃)

Γ

and 〈
L̃Γv

∣∣w〉 =
(
n · q

∣∣ p̃)
Γ
−
(
p
∣∣n · q̃)

Γ
.

This amounts to〈
(L̃∂ − L̃Γ)v

∣∣w〉 = 2
(
p
∣∣n · q̃)

Γ
= 0 for all w ∈ C∞(Ω)× C∞(Ω)d,

since C∞(Ω)× C∞(Ω)d ⊂ H(L̃) = H1(Ω)×H (div; Ω), implying

p = 0 a.e. on Γ.

Hence, we recover the usual representation for homogeneous Dirichlet boundary conditions.

We want to point out that other boundary conditions like Neumann or Robin conditions can
be easily incorporated in this setting. We refer to [Di Pietro and Ern, 2012, Section 7.1.2.2
& 7.1.5.2] for details. �

Conclusion

As we have ∇· L̃ = 0 and L0 = 0, condition (2.20) is fulfilled. Hence, all in all, the
div-grad operator L̃ restricted to ker(L̃∂ − L̃Γ) is a dissipative Friedrichs’ operator by
Definition 2.23. As a consequence, the considered wave equation fits the setting from
above.

2.5.3 Maxwell’s equations

The last example we consider are Maxwell’s equations, which are fundamental for describ-
ing the propagation of electromagnetic waves.

Problem formulation

Let d = 3 and m = 6. We consider linear Maxwell’s equations including external
currents and damping given by

ε∂tE = ∇×H − σE − J in R+ × Ω,

µ∂tH = −∇×E in R+ × Ω,

E(0) = E0, H(0) = H0 in Ω.

(2.32)

The solutions to this equation are the electric field E : Ω→ R3 and the magnetic field
H : Ω → R3. Further, J ∈ L2(Ω)3 is the current density, σ ∈ L∞(Ω)3 is the conduc-
tivity, and ε, µ ∈ L∞(Ω)3 are the permittivity and the permeability, respectively. We
assume that ε and µ are uniformly positive and σ ≥ 0 a.e. on Ω.
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Formulation as a wave-type equation

We set

u =

(
E
H

)
, u0 =

(
E0

H0

)
, g =

(
J
0

)
and

L̃ =

(
0 ∇×
−∇× 0

)
−
(
σ 0
0 0

)
, M =

(
ε 0
0 µ

)
to rewrite (2.32) in the form of (2.22), i.e.,{

M∂tu = L̃u+ g in R+ × Ω,

u(0) = u0 in Ω.

The Maxwell operator L̃ can be cast into the form of a Friedrichs’ operator by defining
the coefficients

L0 =

(
−σ 0
0 0

)
, Li =

(
0 `Ti
`i 0

)
, i = 1, 2, 3,

where `1, `2, `3 ∈ R3×3 `1 = e2e
T
3 − e3e

T
2 , `2 = e3e

T
1 − e1e

T
3 and `3 = e1e

T
2 − e2e

T
1 .

As we have ∇· L̃ = 0 ∈ L∞(Ω)6×6, the conditions of Definition 2.15 are fulfilled, showing
that the operator is indeed a Friedrichs’ operator. The graph space of L̃ is given by

H(L̃) = {(E,H) ∈ L2(Ω)3 × L2(Ω)3 | ∇×E ∈ L2(Ω)3, ∇×H ∈ L2(Ω)3}
= H (curl; Ω)×H (curl; Ω),

where H (curl; Ω) is the graph space of the curl operator, cf., [Monk, 2003, Section 3.5.3]
or [Dautray and Lions, 1988, Section IX.1.2].

Associated boundary operator

Throughout the rest of this section, let

v =

(
E
H

)
and w =

(
Ẽ

H̃

)
.

By [Monk, 2003, Theorem 3.29] functions in H (curl; Ω) in general posses tangential traces
in H−1/2(Γ). Thus, we are not able to represent the boundary operator in the fashion of
the corresponding operator for the wave or advection equation. Because of this we use
Definition 2.19 to obtain the representation〈

L̃∂v
∣∣w〉 =

(
∇×H

∣∣ Ẽ)
Ω
−
(
∇×E

∣∣ H̃)
Ω

+
(
E
∣∣ ∇×H̃)

Ω
−
(
H
∣∣ ∇×Ẽ)

Ω

for all v, w ∈ H(L̃).

Perfectly conducting boundary conditions

We consider perfectly conducting boundary conditions, which amount to vanishing
tangential traces of the electric field. They can be modeled by defining the boundary
operator〈

L̃Γv
∣∣w〉 =

(
∇×H

∣∣ Ẽ)
Ω

+
(
∇×E

∣∣ H̃)
Ω
−
(
E
∣∣ ∇×H̃)

Ω
−
(
H
∣∣ ∇×Ẽ)

Ω
(2.33)
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for all v, w ∈ H(L̃). This operator is skew-symmetric as we have〈
L̃Γw

∣∣ v〉 =
(
∇×H̃

∣∣E)
Ω

+
(
∇×Ẽ

∣∣H)
Ω
−
(
Ẽ
∣∣ ∇×H)

Ω
−
(
H̃
∣∣ ∇×E)

Ω

= −
〈
L̃Γv

∣∣w〉
for all v, w ∈ H(L̃). Hence, L̃Γ fulfills condition (B1) of Definition 2.21. To confirm
condition (B2), let v, w ∈ H(L̃). We have〈

(L̃∂ − L̃Γ)w
∣∣ v〉 = 2

(
E
∣∣ ∇×H̃)

Ω
− 2

(
∇×E

∣∣ H̃)
Ω

and 〈
(L̃∂ + L̃Γ)w

∣∣ v〉 = 2
(
∇×H

∣∣ Ẽ)
Ω
− 2

(
H
∣∣ ∇×Ẽ)

Ω
.

This yields

v =

(
E
0

)
+

(
0
H

)
with

(
E
0

)
∈ ker(L̃∂ + L̃Γ) and

(
0
H

)
∈ ker(L̃∂ − L̃Γ)

for arbitrary v ∈ H(L̃), showing Definition 2.21 (B2).

Remark 2.31. Let v, w ∈ H(L̃) be sufficiently smooth. Then, by the usual integration
by parts formula for the curl operator, the boundary operators can be represented by〈

L̃∂v
∣∣w〉 =

(
n×H

∣∣ Ẽ)
Γ
−
(
n× E

∣∣ H̃)
Γ

and 〈
L̃Γv

∣∣w〉 =
(
n×H

∣∣ Ẽ)
Γ

+
(
n× E

∣∣ H̃)
Γ
.

Hence, for v ∈ ker(L̃∂ − L̃Γ) smooth enough this amounts to〈
(L̃∂ − L̃Γ)v

∣∣w〉 = −2
(
n× E

∣∣ H̃)
Γ

= 0 for all w ∈ C∞(Ω)3 × C∞(Ω)3,

since C∞(Ω)3 × C∞(Ω)3 ⊂ H(L̃) = H (curl; Ω)×H (curl; Ω). This implies

n× E = 0 a.e. on Γ,

recovering the usual representation for perfectly conducting boundary conditions.

In fact, it can be shown (cf., [Di Pietro and Ern, 2012, Lemma 3.5 (ii)]) that we have

ker(L̃∂ − L̃Γ) = {(E,H) ∈ H(L̃) | (n× E)|Γ = 0}.

This is the domain usually associated with the Maxwell operator under perfectly conducting
boundary conditions, see e.g., [Hochbruck et al., 2015a, Section 3.2]. �

Conclusion

Condition (2.20) is fulfilled, since we have ∇· L̃ = 0 and L0 ≤ 0 since σ ≥ 0. Thus, by
Definition 2.23, the restriction of the Maxwell operator L̃ to ker(L̃∂ − L̃Γ) is a dissipative
Friedrichs’ operator. Consequently, (2.32) fits our framework.
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3 Spatial discretization

In this section, we discuss the spatial discretization of the wave-type problem (2.24). In
particular, we employ the discontinuous Galerkin (dG) method to discretize the spatial
differential operators, cf., [Di Pietro and Ern, 2012,Hesthaven andWarburton, 2008]. Using
these discrete operators, we then state and analyze the spatially semidiscrete version of
(2.24) in a suitable subspace of L2(Ω)m.

The chapter is organized as follows. Sections 3.1–3.3 are devoted to establish the discrete
setting needed for the formulation and analysis of the spatially semidiscrete problem. In
Section 3.4 we briefly discuss some concepts related to Friedrichs’ operators in this discrete
setting. Having done this, we introduce the central fluxes dG discretization of a general
Friedrichs’ operator in Section 3.5. Consequently, in the same section, we investigate some
properties of such discrete operators crucial for the analysis of the spatial discretization.
We then use the discrete Friedrichs’ operators in Section 3.6 to formulate the spatially
discrete version of the wave-type problem (2.24). Finally, we investigate the error made
by approximating the exact solution of (2.24) by the spatially semidiscrete solution in
Section 3.7.

3.1 Meshes

We begin by posing the following assumption to avoid unnecessary technicalities.

Assumption 3.1. We assume that the domain Ω is a polyhedron in Rd.

In particular, this means that we can discretize Ω exactly by using a polyhedral mesh. We
are mostly interested in tensorial meshes. However, the simpler case of a simplicial mesh
is needed to derive important properties of such meshes.

Definition 3.2. Let {x0, . . . , xd} be a set of d + 1 points in Rd such that the vectors
x1 − x0, . . . , xd − x0 are linearly independent. We call the interior of the convex hull of
{x0, . . . , xd} a non-degenerate simplex in Rd.

Definition 3.3. A finite set T = {K} is called a simplicial mesh of the domain Ω if it
satisfies the following.

(i) Every K ∈ T is a non-degenerate simplex.

(ii) The set T forms a partition of Ω, i.e., Ω =
⋃
K∈TK and K ∩ K̂ = ∅ for all K, K̂ ∈ T

with K 6= K̂.

Each K ∈ T is called a mesh element.

29
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As stated before, we are interested in tensorial meshes, which need a more general notion
of a mesh.

Definition 3.4. A finite set T = {K} of polyhedra K is called a general mesh of the
domain Ω if it satisfies Definition 3.3 (ii). Each K ∈ T is called a mesh element.

Since everything in the following can be done on general meshes without additional effort,
we will only restrict ourselves to the tensorial case, when we need it. That will be in
Chapter 6, when we discuss the efficiency of the ADI method.

In the next definition we introduce some notation concerning the geometrical properties of
a mesh and its elements.

Definition 3.5. Let T be a mesh of Ω. For all K ∈ T we denote the diameter of K by
hK and define the piecewise constant function h ∈ L∞(Ω) by h|K ≡ hK for all K ∈ Th.
Furthermore, we define the radius of the largest ball inscribed in K by rK and the
meshsize h as the maximal diameter of all mesh elements of T, i.e.,

h = max
K∈T

hK .

We use the notation Th for a mesh with meshsize h.

Remark 3.6. The definition of the piecewise function h enables us to write mesh-dependent
norms used in [Sturm, 2017, Section 3.5] more concisely, since for v ∈ L2(Ω)m and p ∈ Z
we have

‖hpv‖2Ω =
∑
K∈Th

‖hpv‖2K =
∑
K∈Th

h2p
K ‖v‖

2
K .

Note that the mapping ‖hp · ‖Ω indeed defines a norm. Hence, we will refer to this as
mesh-dependent norms throughout the thesis. Further, we will use a similar notation for
the broken Sobolev norms introduced later.

For the rest of this thesis, keep in mind that on K ∈ Th we have

‖hv‖K = hK‖v‖K .

We will use the notation on the left hand side throughout the thesis, since it better reflects
the notation for the mesh-dependent norms. �

Next, we define the faces of a mesh.

Definition 3.7. Let Th be a general mesh of Ω. We say that a closed subset F of Ω is a
mesh face if F has positive (d − 1)-dimensional Hausdorff measure and if either one of
the following conditions is satisfied.

(i) There are distinct mesh elements K1,K2 ∈ Th such that F = ∂K1 ∩ ∂K2. In this
case, we call F an interface.

(ii) There is a mesh element K ∈ Th such that F = ∂K ∩ ∂Ω. In this case, we call F a
boundary face.

We denote the set of all interfaces by Fint
h and the set of all boundary faces by Fbnd

h . The
set of all faces is denoted by

Fh = Fint
h ∪ Fbnd

h .
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Figure 3.1: Convention for the element neighbors and normal vectors corresponding to Defini-
tions 3.7 and 3.8.

For given K ∈ Th, we denote the set of all interfaces and the set of all boundary faces
composing the boundary of K by

F
K,int
h = {F ∈ Fint

h | F ⊂ ∂K} and F
K,bnd
h = {F ∈ Fbnd

h | F ⊂ ∂K},

respectively. Consequently, the set of all faces composing the boundary of K is denoted by

FKh = F
K,int
h ∪ F

K,bnd
h ,

and we denote the maximum number of faces per element in Th by

N∂ = max
K∈Th

|FKh |.

Lastly, given an interface F ∈ F
K,int
h of the element K we denote by KF the element with

F = ∂K ∩ ∂KF . We call KF the neighbor of K w.r.t. the interface F .

Definition 3.8. Let Th be a general mesh of Ω. For all K ∈ Th we define the element
normal vector nK a.e. on ∂K as the outward unit normal vector to K.

For all interfaces F ∈ Fint
h we arbitrarily denote the two neighboring elements, whose

boundaries contain F , as KF
1 and KF

2 . We fix this choice and define the face normal
vector nF a.e. on F as the outward unit normal vector to KF

1 . For all boundary faces
F ∈ Fbnd

h , we define nF a.e. on F as the outward unit normal vector to ∂Ω.

Function spaces considered in the dG method consist of functions that are only piecewise
smooth, i.e., smooth on each mesh element K but not necessarily on the whole domain
Ω. Such functions are smooth enough to admit traces on the faces of the mesh, but can
be discontinuous across these faces. Hence, it is possible that such functions possess two-
valued traces on each face F ∈ Fint

h . This motivates the following definition of the jump
and the average of a function across an interface.

Definition 3.9. Let v : Ω → R be a function such that for all mesh elements K ∈ Th the
restriction v|K admits a trace a.e. on ∂K. Then, for all K ∈ Th, we denote with vK the
extension of v|K to K. We omit this superscript if there is no ambiguity (e.g., on boundary
faces F ∈ Fbnd

h , where the trace is one-valued).

With this, we define the average of v across an interior face F ∈ Fint
h as

{{v}}F =
vK

F
1 |F + vK

F
2 |F

2



32 3 | Spatial discretization

and the jump of v across F as

JvKF = vK
F
1 |F − vK

F
2 |F .

For vector or matrix valued fields, these operations act componentwise.

To investigate the error made by discretization through the dG method, we consider a
sequence of meshes

TH = (Th)h∈H

discretizing the spatial domain Ω. Here and in the following, H denotes a countable
collection of positive numbers with 0 as only accumulation point. As we are only interested
in the behavior for h → 0, we assume h < 1 for all h ∈ H.

To derive error bounds involving constants that are independent of the meshsize h, we
assume the mesh sequence TH to possess certain qualities. One of them is shape- and
contact-regularity. Before we can define this property, we need some auxiliary definitions.

Definition 3.10. We call Th a matching simplicial mesh if it is a simplicial mesh, and
if for every K ∈ Th with vertices {x0, . . . , xd}, the set ∂K ∪ ∂K̂, K̂ ∈ Th, is the convex
hull of a (possibly empty) subset of {x0, . . . , xd}.

Definition 3.11. Let Th be a general mesh. We call T′h a matching simplicial submesh
if the following holds.

(i) The mesh T′h is a matching simplicial mesh with set of all faces denoted by F′h.

(ii) For all K ′ ∈ T′h there is exactly one K ∈ Th such that K ′ ⊂ K.

(iii) For all F ′ ∈ F′h there is at most one F ∈ Fh such that F ′ ⊂ F .

With this we can define shape- and contact-regular mesh sequences.

Definition 3.12. Let TH = (Th)h∈H be a mesh sequence, which admits a matching simpli-
cial submesh T′h for all h ∈ H.

(i) TH is shape-regular if there is ρ1 > 0 independent of h, such that for all K ′ ∈ T′h
we have

hK′ ≤ ρ1rK′ .

(ii) TH is contact-regular if there is ρ2 > 0 independent of h, such that for all K ∈ Th

and all K ′ ∈ T′h with K ′ ∈ K we have

hK ≤ ρ2hK′ .

We denote the product of the mesh parameters ρ1 and ρ2 by

ρ = ρ1ρ2.

One important property of shape- and contact-regular mesh sequences is that the maxi-
mum number of faces per element N∂ is bounded independently of h ∈ H, cf., [Di Pietro
and Ern, 2012, Lemma 1.41]. The next lemma further shows that the diameters of neigh-
boring elements of meshes belonging to shape- and contact-regular mesh sequences can be
compared using a constant independent of the discretization parameter h. The proof can
be found in [Di Pietro and Ern, 2012, Lemma 1.43].
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Lemma 3.13. Let TH be a shape- and contact-regular mesh sequence. Then, for all h ∈ H
and each interface F ∈ Fint

h we have

max{hKF
1
, hKF

2
} ≤ ρmin{hKF

1
, hKF

2
}.

3.2 Broken polynomial spaces

To approximate functions in space, we use piecewise polynomials of degree at most k in
each variable. These functions are gathered in the broken polynomial space

Qk
d(Th) = {v ∈ L2(Ω) | v|K ∈ Qk

d(K) for all K ∈ Th }, (3.1)

where Qk
d(K) denotes the set of polynomials on Rd of degree at most k in each variable

on K. The space Qk
d(Th) consists of functions that are such polynomials on each mesh

element K but need not to be continuous across mesh faces.

Since we need to approximate Rm-vector fields, we further introduce the approximation
space (or dG space)

Vh = (Qk
d(Th))m. (3.2)

Remark 3.14. 1. Note that the dG method is flexible enough to admit varying polynomial
degrees on each element K ∈ Th without much effort. But for the sake of readability,
we only present the case, where we have the same maximal polynomial degree on all
elements. However, since all derived error bounds are given in an elementwise manner, the
generalization to varying polynomial degrees is straightforward.

2. Other broken polynomial spaces can be considered. Most prominently the space of
broken polynomials of total degree at most k given by

Pkd(Th) = {v ∈ L2(Ω) | v|K ∈ Pkd(K) for all K ∈ Th },

which is usually associated with simplicial elements. Here, Pkd(K) denotes the set of poly-
nomials on Rd of total degree at most k on K. We refer to [Di Pietro and Ern, 2012, Sec-
tion 1.2.4.3] for more details. �

Throughout, we will frequently make use of the projection of an L2-function onto the
broken polynomial space Qk

d(Th). We introduce it in the next definition.

Definition 3.15. We define the L2-orthogonal projection πh : L2(Ω) → Qk
d(Th) onto

Qk
d(Th), such that (

v − πhv
∣∣ϕ)

Ω
= 0 for all ϕ ∈ Qk

d(Th).

Using this, we define the projection error of v a function v ∈ L2(Ω) as

evπ = v − πhv.

For vector fields the projection πh and the projection error are defined componentwise.

We often need the boundedness of the L2-projection. We give the result for the scalar case
as the vector field case follows by the componentwise definition of the projection.
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Lemma 3.16. For v ∈ L2(Ω) we have

‖πhv‖Ω ≤ ‖v‖Ω.

Proof. The bound follows by

‖πhv‖Ω = sup
ϕ∈Qk

d(Th)

‖ϕ‖Ω=1

(
πhv

∣∣ϕ)
Ω

= sup
ϕ∈Qk

d(Th)

‖ϕ‖Ω=1

(
v
∣∣ϕ)

Ω
≤ sup

ϕ∈Qk
d(Th)

‖ϕ‖Ω=1

‖v‖Ω‖ϕ‖Ω = ‖v‖Ω,

where we have used the definition of the L2-projection in the second and the Cauchy–
Schwarz inequality in the third step.

By the elementwise nature of the broken polynomial spaces we obtain that the L2-projection
can also be carried out elementwise. Again, we state the scalar case, whereby the vector
field case readily follows.

Lemma 3.17. Let v ∈ L2(Ω). Then, for all K ∈ Th, we have(
v − πhv

∣∣ϕ)
K

= 0 for all ϕ ∈ Qk
d(K).

Proof. We have(
v − πhv

∣∣ϕ)
K

=
(
v − πhv

∣∣1Kϕ)Ω
for all ϕ ∈ Qk

d(K).

The assertion now follows by 1Kϕ ∈ Qk
d(Th).

3.2.1 Inverse and trace inequality

Next, we investigate properties of the piecewise polynomial spaces that are important for
the derivation of error bounds.

Lemma 3.18. Let TH be a shape- and contact-regular mesh sequence. Then, for all h ∈ H,
all v ∈ Qk

d(Th) and for all K ∈ Th we have

‖∇v‖K ≤ C ′inv‖h−1v‖K ,

where C ′inv only depends on the dimension d, the polynomial degree k and the mesh regularity
parameters ρ1 and ρ2.

Proof. The proof is analogous to the proof of [Di Pietro and Ern, 2012, Lemma 1.44], where
the space Pkd(Th) is considered. The only part, where this plays a role is the application
of [Ern and Guermond, 2004, Lemma 1.138], which can also be applied in the case of
Qk
d(Th).

As this gives a bound on the individual partial derivatives, we can easily derive a similar
bound for Friedrichs’ operators.

Lemma 3.19. Let TH be a shape- and contact-regular mesh sequence and let F be a
Friedrichs’ operator with coefficients

(
Fi
)d
i=0

. Then, for all h ∈ H, all v ∈ Vh and for all
K ∈ Th we have

Cinv blablabla‖Fv‖K ≤ CFCinv‖h−1v‖K

with CF = max
i=0,...,d

‖Fi‖∞,Ω and Cinv =
√
dC ′inv + 1.
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Proof. The boundedness of the coefficients of F yields

‖Fv‖K ≤ CF
( d∑
i=1

‖∂iv‖K + ‖v‖K
)
.

Using the equivalence of the 1- and 2-norm on Rd we obtain

d∑
i=1

‖∂iv‖K ≤
√
d ‖∇v‖K .

The proof is concluded by using Lemma 3.18 and ‖v‖K ≤ ‖h−1v‖K , since hK ≤ h < 1 for
all K ∈ Th.

We also need the discrete trace inequality.

Lemma 3.20. Let TH be a shape- and contact-regular mesh sequence. Then, for all h ∈ H,
all v ∈ Qk

d(Th) and for all K ∈ Th and F ∈ FKh we have

‖v‖F ≤ Ctr‖h−1/2v‖K ,

where Ctr only depends on the dimension d, the polynomial degree k and the mesh regularity
parameters ρ1 and ρ2.

Proof. This is proven analogously to [Di Pietro and Ern, 2012, Lemma 1.46], where the
space Pkd(Th) is considered. The only difference is that we use the compactness of the unit
sphere in Qk

d(K̂) w.r.t. the L2-norm instead of the respective property of Pkd(K̂) with K̂
being the unit simplex.

3.2.2 Optimal polynomial approximation

In the dG method we approximate functions by discrete functions contained in the space
Qk
d(Th). Consequently, we are interested in investigating the error made by this approxi-

mation. It turns out that this depends on the mesh sequence under consideration. In this
thesis we focus on mesh sequences that allow polynomial approximation properties in the
following sense (cf., [Di Pietro and Ern, 2012, Definition 1.55]).

Definition 3.21. We say that the mesh sequence TH has optimal polynomial approx-
imation properties if for all h ∈ H, all K ∈ Th and all k, there is a linear interpolation
operator IkK : L2(K) → Qk

d(K) such that for all s ∈ {0, . . . , k} and all v ∈ Hs(K), there
holds

|v − IkK |q,K ≤ C ′apph
s−q
K |v|s,K for all q ∈ {0, . . . , s},

where C ′app is independent of both K and h.

Mesh sequences that fulfill both shape- and contact regularity as well as having optimal
polynomial approximation properties are called admissible mesh sequences.

Definition 3.22. A shape- and contact-regular mesh sequence TH with optimal polynomial
approximation properties is called an admissible mesh sequence.

As we need this property to derive error bounds, we assume that TH possesses it.

Assumption 3.23. We assume that TH is an admissible mesh sequence.
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With this, we obtain that the L2-projection yields an optimal approximation in Qk
d(Th) to a

given function if this function is smooth enough. As the proofs to [Di Pietro and Ern, 2012,
Lemmas 1.58, 1.59] only need the inverse and discrete trace inequalities from Lemmas 3.18
and 3.20, respectively, they can be adjusted to the space Qk

d(Th) in a straightforward
manner. This yields the following lemma.

Lemma 3.24. Let v ∈ Hq+1(K) for 0 ≤ q ≤ k. Then, for all h ∈ H and for all K ∈ Th

we have

‖evπ‖K ≤ Capp|hq+1v|q+1,K ,

and for all F ∈ FKh we have

‖evπ‖F ≤ Capp,∂ |hq+1/2v|q+1,K ,

where Capp and Capp,∂ are independent of both K and h.

3.3 Broken Sobolev spaces

For the analysis of the discrete operators we need broken Sobolev spaces, which we intro-
duce in the next definition.

Definition 3.25. For q ∈ N0 we define the broken Sobolev space of order q as

Hq(Th) = { v ∈ L2(Ω) | v|K ∈ Hq(K) for all K ∈ Th }.

On Hq(Th) we define the broken Sobolev seminorm and norm for v ∈ Hq(Th) by

|v|2q,Th =
∑
K∈Th

|v|2q,K and ‖v‖2q,Th =

q∑
j=0

|v|2j,Th ,

respectively.

One important property of functions in these spaces is that they can be approximated
optimally in Qk

d(Th) by Lemma 3.24. Further, for v ∈ H1(Th) and K ∈ Th we have
v|K ∈ H1(K), and thus v|K has a well-defined trace in L2(∂K).

By Definition 3.25 the usual Sobolev spaces are subspaces of their broken counterparts, i.e.,
for all q ∈ N0 we have Hq(Ω) ⊂ Hq(Th). However, the converse is not true in general, as
functions in Hq(Th) might have non-zero jumps across interfaces of the mesh. In contrast,
jumps of functions in Hq(Ω) across interfaces vanish. In fact, together with being a subset
of Hq(Th) this is a defining property of the usual Sobolev spaces, as the next lemma shows.
The proof can be found in [Di Pietro and Ern, 2012, Lemma 1.23].

Lemma 3.26. Let v ∈ H1(Th). Then we have v ∈ H1(Ω) if and only if

JvKF = 0 a.e. on F for all F ∈ Fint
h .

3.4 Friedrichs’ operators in the discrete setting

The aim of this section is to introduce the dG discretization of a dissipative Friedrichs’
operator. Hence, let F : D(F)→ L2(Ω)m be a dissipative Friedrichs’ operator with coeffi-
cients (Fi)

d
i=0 and dissipative boundary condition FΓ.
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Before introducing the discrete operator, we make additional assumptions on the coeffi-
cients of F and the boundary condition FΓ. We further investigate the intersection of the
spaces H(F) and D(F) with the broken Sobolev spaces introduced in the last section. As
we will see later, these results are needed for the analysis of the discrete operator.

3.4.1 Trace operators

For the definition of the discrete operators we assume more regularity of the coefficients
F1, . . . , Fd.

Assumption 3.27. We assume that the coefficients fulfill F1, . . . , Fd ∈W 1,∞(Ω)m×m.

This implies the following integration by parts formula.

Lemma 3.28. Let K ⊂ Ω. Then for v, w ∈ H1(K)m we have

(
Fv
∣∣w)

K
−
(
v
∣∣F~w

)
K

=
( d∑
i=1

nKi Fiv
∣∣w)

∂K
, (3.3)

where nK denotes the outward unit normal vector to K.

Proof. Using Definition 2.15, we obtain

(
Fv
∣∣w)

K
=
( d∑
i=1

Fi∂iv + F0v
∣∣w)

K

=

d∑
i=1

(
∂iv
∣∣Fiw)K +

(
v
∣∣F ∗0w)K .

Because of Assumption 3.27, for i = 1, . . . , d, we have

∂i
(
Fiw

)
= ∂iFiw + Fi∂iw ∈ L2(Ω)m,

and we can therefore use the usual integration by parts formula, yielding

(
Fv
∣∣w)

K
=

d∑
i=1

((
v
∣∣ − ∂i(Fiw)

)
K

+
(
nKi v

∣∣Fiw)∂K)+
(
v
∣∣F ∗0w)K

=
(
v
∣∣ − d∑

i=1

∂i(Fiw) + F ∗0w
)
K

+
( d∑
i=1

nKi Fiv
∣∣w)

∂K
.

Using Definition 2.18 of the formal adjoint F~ of F concludes the proof.

In particular, choosing K = Ω, this means that for v, w ∈ H1(Ω)m, the operator F∂ from
Definition 2.19 can be represented as

〈
F∂v

∣∣w〉 =
( d∑
i=1

niFiv
∣∣w)

Γ
, (3.4)

where n denotes the outward unit normal vector to Γ.
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Interfaces

We now introduce for each K ∈ Th the boundary field FK∂ : ∂K → Rm associated with the
elements of the mesh defined by

FK∂ =

d∑
i=1

nKi Fi

and, for all F ∈ Fh, the boundary field FF∂ : F → Rm associated with the faces of the mesh
defined by

FF∂ =
d∑
i=1

nFi Fi.

Because of Assumption 3.27, the coefficients of F are continuous over the faces of the mesh,
and hence, FF∂ is well-defined on each face F ∈ Fh.

Boundary faces

To obtain a representation of the boundary operator FΓ similar to (3.4), we further assume
the following.

Assumption 3.29. We assume that the boundary operator FΓ is associated with a matrix-
valued boundary field F̃Γ : Γ→ Rm×m such that for v, w ∈ H1(Th) we have〈

FΓv
∣∣w〉 =

(
F̃Γv

∣∣w)
Γ
.

For the sake of presentation, in the rest of the thesis we slightly abuse notation and identify
the operator FΓ with its associated matrix-valued field F̃Γ and use the symbol FΓ instead
of F̃Γ for this field.

3.4.2 The spaces H(F) ∩H1(Th)
m and D(F) ∩H1(Th)

m

The goal of this section is to derive a defining property similar to Lemma 3.26 for the
spaces H(F) and D(F). However, in general, functions in these spaces do not admit
traces in L2. Thus, we assume slightly more regularity and investigate H(F) ∩H1(Th)m

and D(F) ∩ H1(Th)m. In particular, functions in these spaces do have a well-defined
L2-trace on each face F ∈ Fh. Note that this is not really an additional restriction as we
will need it later to show convergence. We start with the following auxiliary result.

Lemma 3.30. Let v, w ∈ H1(Th)m. Then we have∑
K∈Th

(
FK∂ v

∣∣w)
∂K

=
∑

F∈Fint
h

((
FF∂ {{v}}F

∣∣ JwKF
)
F

+
(
FF∂ JvKF

∣∣ {{w}}F )F)
+
∑

F∈Fbnd
h

(
FF∂ v

∣∣w)
F
.
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Proof. By the definition of FK∂ , FF∂ and the jump J·KF , we have∑
K∈Th

(
FK∂ v

∣∣w)
∂K

=
∑

F∈Fint
h

((
FF∂ vK

F
1
∣∣wKF

1
)
F
−
(
FF∂ vK

F
2
∣∣wKF

2
)
F

)
+
∑

F∈Fbnd
h

(
FF∂ v

∣∣w)
F

=
∑

F∈Fint
h

(
J(FF∂ v) · wKF

∣∣ 1)
F

+
∑

F∈Fbnd
h

(
FF∂ v

∣∣w)
F
.

A straightforward calculation yields Jv ·wKF = {{v}}F ·JwKF +JvKF ·{{w}}F for all v, w : Ω→
Rm, concluding the proof.

Now, we are able to characterize functions in H(F) ∩H1(Th)m and D(F) ∩H1(Th)m.

Lemma 3.31. Let v ∈ H1(Th)m. Then we have v ∈ H(F) if and only if

FF∂ JvKF = 0 a.e. on F for all F ∈ Fint
h . (3.5)

Additionally, for v ∈ D(F) ∩H1(Th)m, we have

(FF∂ −FΓ)v = 0 a.e. on F for all F ∈ Fbnd
h . (3.6)

Proof. Let v ∈ H1(Th)m. We first show that (3.5) implies v ∈ H(F). By definition (2.17)
of the graph space, we have v ∈ H(F) if

d∑
i=1

Fi∂iv ∈ L2(Ω)m.

This is equivalent to the mapping

C∞c (Ω)m → R, ϕ 7→
(
v
∣∣F~ϕ

)
Ω

(3.7)

being bounded in L2(Ω)m, since F ∗0 ∈ L∞(Ω)m×m. Hence, let ϕ ∈ C∞c (Ω)m. Then, using
the integration by parts formula (3.3) on each element and the symmetry of FK∂ , we have(

v
∣∣F~ϕ

)
Ω

=
∑
K∈Th

(
v
∣∣F~ϕ

)
K

=
∑
K∈Th

(
Fv
∣∣ϕ)

K
+
∑
K∈Th

(
FK∂ v

∣∣ϕ)
∂K
.

Since JϕKF = 0 and {{ϕ}}F = ϕ|F for all F ∈ Fint
h and ϕ|F = 0 for all F ∈ Fbnd

h , Lemma 3.30
yields (

v
∣∣F~ϕ

)
Ω

=
∑
K∈Th

(
Fv
∣∣ϕ)

K
+
∑

F∈Fint
h

(
FK∂ JvKF

∣∣ϕ)
F

=
∑
K∈Th

(
Fv
∣∣ϕ)

K
, (3.8)

where we have used that (3.5) holds true in the last step. Using the Cauchy–Schwarz
inequality and v ∈ H1(Th)m, this yields the boundedness of (3.7) and thus the assertion.

Now assume we have v ∈ H(F) ∩ H1(Th)m. Because of Assumption 3.27, [Jensen, 2004,
Theorem 1.2] implies that H(F) ∩ C∞(Ω)m is dense in H(F). Hence, we can choose a
sequence (vn)n∈N in H(F) ∩ C∞(Ω)m with

vn → v, Fvn → Fv in L2(Ω)m.
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Let ϕ ∈ C∞c (Ω)m and denote by n the outward unit normal vector to Γ. Then, by
Lemma 3.28, we have(

Fv
∣∣ϕ)

Ω
= lim

n→∞

(
Fvn

∣∣ϕ)
Ω

= lim
n→∞

((
vn
∣∣F~ϕ

)
Ω

+
( d∑
i=1

niFivn
∣∣ϕ)

Γ

)
=
(
v
∣∣F~ϕ

)
Ω
,

where we have used ϕ|Γ = 0 in the last step. Using the first equality in (3.8), this implies(
Fv
∣∣ϕ)

Ω
=
∑
K∈Th

(
Fv
∣∣ϕ)

K
+
∑

F∈Fint
h

(
FK∂ JvKF

∣∣ϕ)
F

=
(
Fv
∣∣ϕ)

Ω
+
∑

F∈Fint
h

(
FK∂ JvKF

∣∣ϕ)
F

and thus ∑
F∈Fint

h

(
FF∂ JvKF

∣∣ϕ)
F

= 0.

In particular, this holds for arbitrary ϕ ∈ C∞c (Ω)m with suppϕ intersecting only a single
interface, implying (3.5).

Lastly, assume v ∈ D(F) ∩H1(Th)m and let F ∈ Fbnd
h . Then we have(

(FF∂ −FΓ)v
∣∣ϕ)

F
= 0 for all ϕ ∈ C∞(Ω)m,

since v is smooth enough for the left hand side to make sense. This shows (3.6).

3.5 Discretization of a Friedrichs’ operator

We are now ready to define the dG discretization of the dissipative Friedrichs’ operator
F . As we seek an approximation to the solution of the wave-type problem (2.24) in the
discrete space Vh, we would naturally define the discrete operator on this space. However,
for our error analysis we extend this definition to the space D(F) ∩H1(Th)m. Hence, we
combine both spaces and denote the discrete operator domain associated with F by

V Fh = Vh + (D(F) ∩H1(Th)m).

3.5.1 Definition of a discrete Friedrichs’ operator

Having introduced the domain of the discrete operator, we define the operator itself.

Definition 3.32. Let F : D(F) → L2(Ω)m be a dissipative Friedrichs’ operator with co-
efficients (Fi)

d
i=0 and dissipative boundary condition FΓ. We define the central flux dG

discretization of F as the operator F : V Fh → Vh such that(
Fv

∣∣ϕ)
Ω

=
∑
K∈Th

(
Fv
∣∣ϕ)

K
−
∑

F∈Fint
h

(
FF∂ JvKF

∣∣ {{ϕ}}F )F
− 1

2

∑
F∈Fbnd

h

(
(FF∂ −FΓ)v

∣∣ϕ)
F

(3.9)

for all ϕ ∈ Vh.
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Remark 3.33. 1. We assume in this thesis that the inner products used in Definition 3.32
are evaluated exactly. If the coefficients of the Friedrichs’ operator are piecewise polyno-
mials, this can be done by using quadrature formulas of sufficiently high order.

However, if this is not the case, additional quadrature errors have to be taken into account.
As a consequence, the coefficients need to be smooth enough to still obtain the convergence
rates proven in this thesis. One way to analyze this additional error is to use the unified
error analysis in [Hipp et al., 2018].

2. It is possible to define the discrete operator in a more general way by using a weighted
average instead of the standard average in (3.9). This weighted average can be defined as

{{v}}ΛF = {{Λ}}−1
F {{Λv}}F ,

where Λ ∈ L∞(Ω)m×m is symmetric and uniformly positive a.e. on Ω. The following results
can then be proven analogously, however using different constants involving the weights.

If chosen in a suitable way, the weight Λ can lessen some constants ocurring in the analysis.
This is, e.g., used in [Sturm, 2017] for isotropic Maxwell’s equations. �

3.5.2 Properties of discrete Friedrichs’ operators

Throughout the rest of this section, let F be the central flux dG discretization of F . We
now prove some important properties of F that will be used for the spatial, as well as the
fully discrete error analysis.

Consistency

The first property is a consistency property. Namely, if we apply the discrete operator F
to a function belonging to D(F) ∩ H1(Th)m, we obtain the L2-projection onto Vh of the
continuous operator F applied to this function. This is stated in the next lemma.

Proposition 3.34. The discrete operator F is consistent in the following sense. For all
v ∈ D(F) ∩H1(Th)m we have

Fv = πhFv.

Proof. First, note that by v ∈ D(F) and Lemma 3.31 we have FF∂ JvKF = 0 for all F ∈ Fint
h

and (F∂ − FΓ)v = 0 a.e. on Γ. Therefore, the interface as well as the boundary terms in
(3.9) vanish.

Hence, for v ∈ D(F) ∩H1(Th)m we have(
Fv

∣∣ϕ)
Ω

=
∑
K∈Th

(
Fv
∣∣ϕ)

K
=
(
Fv
∣∣ϕ)

Ω
for all ϕ ∈ Vh

or, equivalently, (
Fv −Fv

∣∣ϕ)
Ω

= 0 for all ϕ ∈ Vh,

proving Fv = πhFv.
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Dissipativity

Next, we show that the discrete operator F inherits the dissipativity of the continuous
operator on the approximation space Vh. To do so, we employ a similar approach as in the
continuous case in Section 2.2. Hence, we first derive the adjoint operator of F .

Lemma 3.35. Let F~ : Vh → Vh be defined such that(
F~v

∣∣ϕ)
Ω

=
∑
K∈Th

(
F~v

∣∣ϕ)
K

+
∑

F∈Fint
h

(
FF∂ JvKF

∣∣ {{ϕ}}F )F
+ 1

2

∑
F∈Fbnd

h

(
(FF∂ + F∗Γ)v

∣∣ϕ)
F

for all ϕ ∈ Vh. Then F~ is the adjoint operator of F on Vh, i.e., F~ = (F |Vh)∗.

Proof. Let v,w ∈ Vh. We use integration by parts (3.3) on each element and subsequently
Lemma 3.30 to obtain(

Fv
∣∣w)

Ω
=
∑
K∈Th

(
v
∣∣F~w

)
K

+
∑
K∈Th

(
FK∂ v

∣∣w)
∂K
−
∑

F∈Fint
h

(
FF∂ JvKF

∣∣ {{w}}F )F
− 1

2

∑
F∈Fbnd

h

(
(FF∂ −FΓ)v

∣∣w)
F

=
∑
K∈Th

(
v
∣∣Fw)

K
+
∑

F∈Fint
h

(
FF∂ {{v}}F

∣∣ JwKF
)
F

+ 1
2

∑
F∈Fbnd

h

(
(FF∂ + FΓ)v

∣∣w)
F
.

Hence, by the symmetry of FF∂ , we have
(
Fv

∣∣w)
Ω

=
(
v
∣∣F~w

)
Ω
, proving the claim.

Remark 3.36. In fact, the discrete adjoint operator F~ can be extended to functions in
D(F~)∩H1(Th)m with D(F~) = ker(F∂ +F∗Γ). This yields the central flux dG discretiza-
tion of the adjoint operator of F introduced in Remark 2.24. �

We now show that F and F~ fulfill an analogous relation to their continuous counterparts.
Namely, the discrete version of (2.18).

Lemma 3.37. Let v ∈ Vh. Then we have(
Fv

∣∣ϕ)
Ω

+
(
F~v

∣∣ϕ)
Ω

=
(
(F0 + F ∗0 −∇·F)v

∣∣ϕ)
Ω

+ 1
2

(
(FΓ + F∗Γ)v

∣∣ϕ)
Γ

for all ϕ ∈ Vh.

Proof. Since the interface terms in F and F~ are identical but occur with opposite signs,
we have (

Fv
∣∣ϕ)

Ω
+
(
F~v

∣∣ϕ)
Ω

=
(
(F + F~)v

∣∣ϕ)
Ω

+ 1
2

(
(FΓ + F∗Γ)v

∣∣ϕ)
Γ
.

Using (2.18) concludes the proof.

The dissipativity of the discrete operator can now be proven similar to the continuous case,
i.e., Theorem 2.22.

Proposition 3.38. Let F0 + F ∗0 −∇·F ≤ 0. Then the restriction of the discrete operator
F to Vh is dissipative w.r.t.

(
·
∣∣ · )

Ω
.
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Proof. Let v ∈ Vh. By the adjointness of F and F~ on Vh and Lemma 3.37 we have

2
(
Fv

∣∣v)
Ω

=
(
Fv

∣∣v)
Ω

+
(
F~v

∣∣v)
Ω

=
(
(F0 + F ∗0 −∇·F)v

∣∣v)
Ω

+ 1
2

(
(FΓ + F∗Γ)v

∣∣v)
Γ

≤
(
FΓv

∣∣v)
Γ

≤ 0,

where we have used the dissipativity of F and FΓ in the sense of Definitions 2.23 and 2.21,
respectively.

Inverse inequality

We now show that the discrete operator F fulfills an inverse inequality on the approxima-
tion space Vh. In fact, the inverse inequality from Section 3.2.1 fulfilled by F (along with
the trace inequality) is crucial to obtain this result.

As we apply this result to concatenations of discrete operators, we need to show a slightly
more general result. Namely, we show that the inequality can also be applied in the
mesh-dependent norms addressed in Remark 3.6. This is necessary to treat locally refined
meshes which are not quasi-uniform (cf., e.g., [Ern and Guermond, 2004, Definition 1.140
& Corollary 1.141]).

To derive the aforementioned inverse inequality, we will use an element-based approach.
Thus, the first thing we show is a representation of the discrete operator F on a single
element.

Lemma 3.39. Let K ∈ Th and v ∈ Vh. Then we have

(
Fv

∣∣ϕ)
K

=
(
Fv

∣∣ϕ)
K
− 1

2

∑
F∈FK,int

h

(
FF∂ JvKF

∣∣ϕK)
F

− 1
2

∑
F∈FK,bnd

h

(
(FF∂ −FΓ)v

∣∣ϕ)
F

for all ϕ ∈ Vh.

Proof. Using the definition of the L2-inner product yields

(
Fv

∣∣ϕ)
K

=
(
Fv

∣∣1Kϕ)Ω
for all ϕ ∈ Vh. (3.10)

Note that for F ∈ Fint
h we have

{{1Kϕ}}F ≡

{
1
2ϕ

K |F for F ∈ F
K,int
h ,

0 else.
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Hence, by using the definition of F , we obtain(
Fv

∣∣1Kϕ)Ω
=
∑
K̂∈Th

(
Fv

∣∣1Kϕ)K̂ − ∑
F∈Fint

h

(
FF∂ JvKF

∣∣ {{1Kϕ}}F )F
− 1

2

∑
F∈Fbnd

h

(
(FF∂ −FΓ)v

∣∣1Kϕ)F
=
(
Fv

∣∣ϕ)
K
− 1

2

∑
F∈FK,int

h

(
FF∂ JvKF

∣∣ϕK)
F

− 1
2

∑
F∈FK,bnd

h

(
(FF∂ −FΓ)v

∣∣ϕ)
F
.

Using (3.10) concludes the proof.

Having derived the elementwise representation of F , we can now derive elementwise
bounds.

Lemma 3.40. Let K ∈ Th and v ∈ Vh. Then we have
CΓ,F blablabla(

Fv
∣∣ϕ)

K
≤
(
CF ,el,1‖h−1v‖K + CF ,el,2

∑
F∈FK,int

h

‖h−1v‖KF

)
‖ϕ‖K

for all ϕ ∈ Vh, where

CF ,el,1 = CFCinv + 1
2C

2
tr(CΓ,F +N∂CF) and CF ,el,2 = 1

2ρ
1/2CFC

2
tr

with CΓ,F = maxF∈Fbnd
h
‖FF∂ −FΓ‖∞,F .

Proof. Lemma 3.39 yields for all ϕ ∈ Vh that(
Fv

∣∣ϕ)
K

=
(
Fv

∣∣ϕ)
K
− 1

2

∑
F∈FK,int

h

εK,F

((
FF∂ vK

∣∣ϕK)
F
−
(
FF∂ vKF

∣∣ϕK)
F

)
− 1

2

∑
F∈FK,bnd

h

(
(FF∂ −FΓ)v

∣∣ϕ)
F
,

where εK,F = nK ·nF . We bound the three terms individually. Note that εK,F = ±1, so it
does not affect the norm of the terms.

To bound the element term we use the Cauchy–Schwarz inequality and the inverse inequal-
ity from Lemma 3.19 to obtain(

Fv
∣∣ϕ)

K
≤ ‖Fv‖K‖ϕ‖K ≤ CFCinv‖h−1v‖K‖ϕ‖K .

Next, for the boundary term, we again use the Cauchy–Schwarz inequality and then the
boundedness of FF∂ and FΓ and the trace inequality, yielding(

(FF∂ −FΓ)v
∣∣ϕ)

F
≤ CΓ,F‖v‖F‖ϕ‖F
≤ CΓ,FCtr‖h−1/2v‖KCtr‖h−1/2ϕ‖K
= CΓ,FC

2
trh
−1/2
K ‖h−1/2v‖K‖ϕ‖K

= CΓ,FC
2
tr‖h−1v‖K‖ϕ‖K .
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The first interface term can be bounded analogously to the boundary term by(
FF∂ vK

∣∣ϕK)
F
≤ CFC2

tr‖h−1v‖K‖ϕ‖K .

For the second interface term we additionally use Lemma 3.13 in the third inequality to
obtain (

FF∂ vKF
∣∣ϕK)

F
≤ ‖FF∂ vKF ‖F‖ϕ‖F
≤ CFCtr‖h−1/2v‖KF

Ctr‖h−1/2ϕ‖K
= CFC

2
trh
−1/2
K ‖h−1/2v‖KF

‖ϕ‖K
≤ ρ1/2CFC

2
trh
−1/2
KF
‖h−1/2v‖KF

‖ϕ‖K
= ρ1/2CFC

2
tr‖h−1v‖KF

‖ϕ‖K .

Combining these bounds and using the fact that each element has at most N∂ interfaces
and at most one boundary face concludes the proof.

Now, we only need to put the elementwise bounds together to obtain global bounds on the
whole of Ω.

Proposition 3.41. Let v ∈ Vh. Then, for all p ∈ Z, the discrete operator F fulfills the
following inverse inequality

‖hpFv‖Ω ≤ Cinv,F ,p‖hp−1v‖Ω

and in particular

‖Fv‖Ω ≤ Cinv,F‖h−1v‖Ω

with Cinv,F ,p = CF ,el,1 + ρpN∂CF ,el,2 and Cinv,F = Cinv,F ,0.

Proof. We show (
hpFv

∣∣ϕ)
Ω
≤ Cinv,F ,p‖hp−1v‖Ω‖ϕ‖Ω.

The claim then follows because of

‖hpFv‖Ω = sup
‖ϕ‖Ω=1
ϕ∈Vh

(
hpFv

∣∣ϕ)
Ω
.

First, note that (
hpFv

∣∣ϕ)
Ω

=
∑
K∈Th

(
hpFv

∣∣ϕ)
K

=
∑
K∈Th

hpK
(
Fv

∣∣ϕ)
K
.

Hence, by Lemmas 3.40 and 3.13 we have(
hpFv

∣∣ϕ)
Ω
≤
∑
K∈Th

hpK

(
CF ,el,1‖h−1v‖K + CF ,el,2

∑
F∈FK,int

h

‖h−1v‖KF

)
‖ϕ‖K

=
∑
K∈Th

CF ,el,1‖hp−1v‖K‖ϕ‖K + CF ,el,2
∑
K∈Th

∑
F∈FK,int

h

hpK‖h
−1v‖KF

‖ϕ‖K

≤ CF ,el,1
∑
K∈Th

‖hp−1v‖K‖ϕ‖K + CF ,el,2 ρ
p
∑
K∈Th

∑
F∈FK,int

h

‖hp−1v‖KF
‖ϕ‖K .
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To bound the first term we use the Cauchy–Schwarz inequality in R|Th | to obtain

∑
K∈Th

‖hp−1v‖K‖ϕ‖K ≤
( ∑
K∈Th

‖hp−1v‖2K
)1/2 ( ∑

K∈Th

‖ϕ‖2K
)1/2

= ‖hp−1v‖Ω‖ϕ‖Ω.

The same argument for the second term yields

∑
K∈Th

∑
F∈FK,int

h

‖hp−1v‖KF
‖ϕ‖K ≤

( ∑
K∈Th

( ∑
F∈FK,int

h

‖hp−1v‖KF

)2
)1/2 ( ∑

K∈Th

‖ϕ‖2K
)1/2

.

By the equivalence of the 1- and 2-norm on R|FK
h
| and |FKh | ≤ N∂ we have∑

K∈Th

( ∑
F∈FK,int

h

‖hp−1v‖KF

)2 ≤ N∂

∑
K∈Th

∑
F∈FK,int

h

‖hp−1v‖2KF
≤ N2

∂

∑
K∈Th

‖hp−1v‖2K

and thus ∑
K∈Th

∑
F∈FK,int

h

‖hp−1v‖KF
‖ϕ‖K ≤ N∂‖hp−1v‖Ω‖ϕ‖Ω,

concluding the proof.

Approximation properties

It remains to study the approximation properties of the discrete operator. The next result
gives a bound on the application of F to the projection error of functions in D(F) ∩
Hq+1(Th)m. This can be seen as a measure of how well the discrete operator approximates
its continuous counterpart, as for v ∈ D(F) ∩H1(Th)m we have

Fevπ = Fv −Fπhv = (πhF −Fπh)v

by the consistency of F . We prove the next result using the same strategy we used to
obtain Proposition 3.41.

Lemma 3.42. Let v ∈ D(F) ∩Hq+1(Th)m for 0 ≤ q ≤ k. Then, for all p ∈ Z, we have

‖hpFevπ‖Ω ≤ Cπ,F ,p|hp+qv|q+1,Th

and in particular

‖Fevπ‖Ω ≤ Cπ,F |hqv|q+1,Th ,

where Cπ,F ,p = CFCappCinv + 1
2N∂CtrCapp,∂(CΓ,F + CF + ρp+1/2CF) and Cπ,F = Cπ,F ,0.

Proof. As in the proof of Lemma 3.40 we first derive a bound on one element K ∈ Th.
To do so, we use the elementwise representation of F in Lemma 3.39 and consequently
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integration by parts (3.3) on the element K to obtain(
Fevπ

∣∣ϕ)
K

=
(
Fevπ

∣∣ϕ)
K
− 1

2

∑
F∈FK,int

h

(
FF∂ JevπKF

∣∣ϕK)
F

− 1
2

∑
F∈FK,bnd

h

(
(FF∂ −FΓ)evπ

∣∣ϕ)
F

=
(
evπ
∣∣F~ϕ

)
K

+ 1
2

∑
F∈FK,int

h

(
FF∂ {{evπ}}F

∣∣ϕK)
F

+ 1
2

∑
F∈FK,bnd

h

(
(FF∂ + FΓ)evπ

∣∣ϕ)
F

for all ϕ ∈ Vh.

For the first term we use the Cauchy–Schwarz inequality, the approximation properties
from Lemma 3.24 and the inverse inequality from Lemma 3.19 to obtain(

evπ
∣∣F~ϕ

)
K
≤ ‖evπ‖K‖F~ϕ‖K
≤ CFCappCinv|hq+1v|q+1,K‖h−1ϕ‖K
= CFCappCinv|hqv|q+1,K‖ϕ‖K .

Hence, by similar arguments as in the proof of Lemma 3.40, albeit replacing the trace
inequality by the bounds in Lemma 3.24, we have(

Fevπ
∣∣ϕ)

K
≤
(
C̃F ,el,1|hqv|q+1,K + C̃F ,el,2

∑
F∈FK,int

h

|hqv|q+1,KF

)
‖ϕ‖K

with C̃F ,el,1 = CFCappCinv + 1
2N∂CtrCapp,∂(CΓ,F + CF) and C̃F ,el,2 = 1

2ρ
1/2CFCtrCapp,∂ .

Proceeding completely analogously to the proof of Proposition 3.41 concludes the proof.

For the analysis of the Peaceman–Rachford scheme (or other perturbations of the Crank–
Nicolson scheme), we need a similar approximation result for concatenations of more than
one discrete operator. We show this in the next lemma, which can be seen as a generaliza-
tion of [Pažur, 2013, Theorem 6.3]. There, a similar result was proven for arbitrary powers
of one discrete operator under the assumption of quasi-uniform mesh sequences.

As mentioned before, we circumvent the quasi-uniformity assumption by using the more
general versions of the inverse inequality from Proposition 3.41 and the approximation
property from the last lemma. Without these more general results, we would need to take
the inverse of the maximal diameter h out of the norm. This needs a uniform bound on
h−1
K for all K ∈ Th, requiring the assumption of quasi-uniformity.

We will use this result only for q = 2 in Lemmas 5.12 and 5.13 below and will have to
adjust it a bit, as we have to take material parameters into account. Thus, we do not state
the explicit constants as in the results before, but rather their dependencies. Further, we
assume the coefficients of the Friedrichs’ operators to be constant to avoid technicalities.

Lemma 3.43. Let F1, . . . ,Fr be dissipative Friedrichs’ operators with constant coeffi-
cients and F1, . . . ,F r their respective central flux dG discretizations. Further, let v ∈
D(Fr . . .F1)∩Hq+1(Th)m for 0 ≤ q ≤ k. Then, for all p ∈ Z and all r ∈ {1, . . . , q+ 1} we
have

‖hp(F r . . .F2F1πh − πhFr . . .F1)v‖Ω ≤ C‖hp+(q+1)−rv‖q+1,Th
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and in particular

‖(F r . . .F2F1πh − πhFr . . .F1)v‖Ω ≤ C‖h(q+1)−rv‖q+1,Th ,

where the constants only depend on r and the dependencies of Cinv,Fi,p and Cπ,Fi,p for
i = 1, . . . , r.

Proof. We prove the assertion by induction over r. Lemma 3.42 provides the initial step,
since for r = 1 the left hand side equals

‖hp(F1πh − πhF1)v‖Ω = ‖hp(F1πh −F1)v‖Ω = ‖hpF1e
v
π‖Ω.

Assume the assertion holds for r < q+1. By the consistency of F r+1, i.e., Proposition 3.34,
we have

‖hp(F r+1 . . .F1πh − πhFr+1 . . .F1)v‖Ω
= ‖hp(F r+1 . . .F1πh −F r+1Fr . . .F1)v‖Ω
= ‖hpF r+1(F r . . .F1πh −Fr . . .F1)v‖Ω.

We use Proposition 3.41 and Lemma 3.42 to obtain

‖hpF r+1(F r . . .F1πh −Fr . . .F1)v‖Ω
= ‖hp

(
F r+1(F r . . .F1πh − πhFr . . .F1)v −F r+1(Fr . . .F1 − πhFr . . .F1)v

)
‖Ω

≤ ‖hpF r+1(F r . . .F1πh − πhFr . . .F1)v‖Ω + ‖hpF r+1e
Fr ...F1v
π ‖Ω

≤ Cinv,Fr+1,p‖hp−1(F r . . .F1πh − πhFr . . .F1)v‖Ω
+ Cπ,Fr+1,p|hp+q−rFr . . .F1v|(q+1)−r,Th ,

since by Lemma 2.17, for v ∈ Hq+1(Th)m∩D(Fr . . .F1), we have Fr . . .F1v ∈ H(q+1)−r(Th)m.
To bound the first term, we use the induction hypothesis with p− 1 instead of p. For the
second term we use r times Lemma 2.17, yielding

|hp+q−rFr . . .F1v|(q+1)−r,Th ≤ (d+ 1)r/2CFr . . . CF1‖hp+(q+1)−(r+1)v‖q+1,Th .

Combining these bounds concludes the proof.

3.6 Spatial discretization of the wave-type problem

We can now formulate the spatially semidiscrete version of the wave-type problem (2.24).
To do so, we replace the spatial differential operatorL in (2.24a) by its discrete counterpart
and seek an approximation to the solution in the approximation space Vh. Similar to the
continuous case, we equip Vh with the weighted inner product

(
·
∣∣ · )

M
.

In light of Section 3.4, we have to make some more assumptions on the Friedrichs’ operator
L̃ and the corresponding split operators Ã and B̃ to ensure that we can apply the results
established in the last section. Namely, we assume that L̃,Ã and B̃ fulfill Assumptions 3.27
and 3.29.
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3.6.1 Formulation of the semidiscrete wave-type problem

First, we construct the discrete counterpart of the spatial operator L. In what follows, let
L̃ : V L̃

h → Vh be the central flux dG discretization of the dissipative Friedrichs’ operator
L̃ and let V L

h = V L̃
h . Analogously to the continuous case, we define the discrete operator

L : V L
h → Vh such that we have

L = M−1L̃.

Before we state the semidiscrete problem using this operator, we will pose another assump-
tion on the material tensor M to avoid technicalities.

Assumption 3.44. We assume that the material tensor M is piecewise constant. We
further assume that for all h ∈ H the mesh Th is matched to the material, i.e., for all
K ∈ Th we have M |K ≡MK with constant MK ∈ Rm×m.

Due to Assumption 3.44, the L2-projection can also be calculated by using
(
·
∣∣ · )

M
, and

we obtain an analogous result to Lemma 3.16.

Lemma 3.45. For v ∈ L2(Ω)m we have(
v − πhv

∣∣ϕ)
M

= 0 for all ϕ ∈ Vh (3.11)

and

‖πhv‖M ≤ ‖v‖M . (3.12)

Proof. By Lemma 3.17, for all K ∈ Th, we have(
v − πhv

∣∣ϕ)
K

= 0 for all ϕ ∈ Qk
d(K)m.

This implies (
v − πhv

∣∣ϕ)
M

=
(
M(v − πhv)

∣∣ϕ)
Ω

=
∑
K∈Th

(
MK(v − πhv)

∣∣ϕ)
K

=
∑
K∈Th

(
v − πhv

∣∣MKϕ
)
K

= 0

for all ϕ ∈ Vh, since MKϕ|K ∈ Qk
d(K)m.

The second assertion now follows with the same strategy of proof as for Lemma 3.16. This
yields

‖πhv‖M = sup
ϕ∈Vh
‖ϕ‖M=1

(
πhv

∣∣ϕ)
M

= sup
ϕ∈Vh
‖ϕ‖M=1

(
v
∣∣ϕ)

M
≤ sup

ϕ∈Vh
‖ϕ‖M=1

‖v‖M‖ϕ‖M = ‖v‖M ,

where we used (3.11) in the second step.

This leads to the operator L exhibiting the same consistency property as L̃. Namely, for
all v ∈ D(L) ∩H1(Th)m we have

Lv = πhLv.
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We are now able to pose the central flux dG discretization of the wave-type prob-
lem (2.24) as follows. Seek u : R+ → Vh such that{

dtu(t) = Lu(t) + fπ(t), t ∈ R+,

u(0) = u0
π,

(3.13a)
(3.13b)

where u0
π = πhu

0 and fπ(t) = πhf(t).

3.6.2 Wellposedness of the semidiscrete wave-type problem

Owing to the results from Section 3.5.2 we can immediately show wellposedness of (3.13).
This is due to the fact that as a consequence of Proposition 3.38 the discrete operator L
is dissipative on Vh. Since Vh is a finite-dimensional space, this implies that L is maximal
dissipative, and hence, L generates a contraction semigroup on Vh. We slightly abuse
notation by denoting this semigroup as

(
etL
)
t≥0

instead of introducing a new symbol for
the restriction of L to Vh. This yields the following result.

Corollary 3.46. The restriction of L to Vh generates the contraction semigroup
(

etL
)
t≥0

on Vh, and hence, there exists a unique solution u ∈ C1(R+;Vh) of (3.13) given by

u(t) = etL u0
π +

∫ t

0

e(t−s)L fπ(s) ds.

Proof. The discrete operator L is dissipative on Vh as we have(
Lv
∣∣v)

M
=
(
MLv

∣∣v)
Ω

=
(
L̃v
∣∣v)

Ω
≤ 0 for all v ∈ Vh

by Proposition 3.38. Since Vh is finite-dimensional, this implies the maximal dissipativity
of L. The claim now follows by the Lumer–Phillips Theorem 2.12.

3.7 Error analysis of the spatially semidiscrete problem

Using the results obtained in this chapter, we are able to analyze the error of the semidis-
crete approximation given by (3.13). Throughout this section, let u be the solution of the
continuous problem (2.24) and let u be the approximation given by the spatially semidis-
crete problem (3.13).

For all t ∈ R+, we denote the spatially semidiscrete error by

e(t) = u(t)− u(t).

We further introduce the projection error eπ(t) = u(t) − πhu(t) and the space dis-
cretization error e(t) = πhu(t)− u(t) to obtain the error splitting

e(t) = eπ(t) + e(t).

As a direct consequence of Lemma 3.24 and the equivalence of the standard and the
weighted L2-norm (2.23) we can bound the ‖ · ‖M -norm of the projection error by

‖eπ(t)‖M ≤ Capp,M |hk+1u(t)|k+1,Th (3.14)

with Capp,M = ‖M‖1/2∞,ΩCapp if the exact solution is smooth enough. Hence, it remains to
bound the space discretization error.
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3.7.1 Error recursion

We proceed in the usual way and show that the space discretization error e satisfies a
perturbed version of the semidiscrete problem (3.13). We already know that the discrete
solution satisfies the semidiscrete problem. Hence, we start by investigating the defect
caused by inserting the projected exact solution into the semidiscrete problem (3.13).

Lemma 3.47. Assume u ∈ C1(R+;L2(Ω)m)∩C(R+;D(L)∩H1(Th)m). Then the projected
exact solution πhu satisfies

dtπhu(t) = Lπhu(t) + fπ(t) + dπ(t), t ∈ R+, (3.15)

where the defect dπ : R+ → Rm is called the space truncation error and is given by

dπ(t) = Leπ(t). (3.16)

Proof. Using the fact that that dt and the L2-projection commute, and that u satisfies the
continuous problem (2.24), we obtain

dtπhu = πhdtu = πh(Lu+ f) = Lu+ fπ,

where we have used the consistency of L in the sense of Proposition 3.34 in the last
equation. Using

Lu = Lπhu+ L(u− πhu) = Lπhu+ Leπ

concludes the proof.

This readily yields the aforementioned error recursion.

Corollary 3.48. Assume u ∈ C1(R+;L2(Ω)m)∩C(R+;D(L)∩H1(Th)m). Then the space
discretization error e(t) = πhu(t)− u(t) satisfies{

dte(t) = Le(t) + dπ(t), t ∈ R+,

e(0) = 0.
(3.17)

Proof. We have e(0) = πhu
0 − u0

π = 0, since we use u0
π = πhu

0 as initial value of the
semidiscrete problem. The remaining assertion follows by subtracting the semidiscrete
recursion (3.13a) from (3.15).

3.7.2 Spatial convergence result

We can now state the convergence result for the central fluxes dG discretization
of the wave-type problem (2.24).

Theorem 3.49. Assume that the exact solution u of the wave-type problem (2.24) satis-
fies u ∈ C1(R+;L2(Ω)m) ∩ C(R+;D(L) ∩ Hk+1(Th)m). Then, for t ∈ R+, the spatially
semidiscrete error satisfies

‖u(t)− u(t)‖M ≤ Capp,M |hk+1u(t)|k+1,Th + C
π,L̃,M

∫ t

0

|hku(s)|k+1,Th ds

≤ Chk,

where C
π,L̃,M

= ‖M−1‖1/2∞,ΩCπ,L̃ and C only depends on Capp,M , C
π,L̃,M

and |u(s)|k+1,Th ,
s ∈ [0, t].
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Proof. As mentioned before, the projection error satisfies the bound (3.14). This yields
the first term.

To bound the space discretization error we use Corollary 3.46 to solve (3.17), yielding

e(t) =

∫ t

0

e(t−s)L dπ(s) ds,

since e(0) = 0. By the contractivity of e(t−s)L and (3.16), i.e., the definition of the space
truncation error dπ, this yields

‖e(t)‖M ≤
∫ t

0

‖Leπ(s)‖M ds.

Hence, it remains to bound ‖Leπ(s)‖M . We now use Lemma 3.42 to obtain

‖Leπ(s)‖M ≤ ‖M−1/2L̃eπ(s)‖Ω
≤ ‖M−1‖1/2∞,Ω ‖L̃eπ(s)‖Ω
≤ ‖M−1‖1/2∞,ΩCπ,L̃ |h

ku(s)|k+1,Th ,

(3.18)

which proves the claim.

Remark 3.50. Note that we can derive a similar result if we replace Hk+1(Th)m by
Hq+1(Th)m with q < k. However, in that case, we would also obtain convergence rates
determined by q instead of k. �



4 Temporal discretization

In this chapter, we present and analyze the two temporal discretization schemes we consider
in this thesis. Namely, the Crank–Nicolson and the Peaceman–Rachford scheme. As stated
before, our main focus lies on the Peaceman–Rachford scheme, however, as our analysis of
the scheme is based upon interpreting this scheme as a perturbation of the Crank–Nicolson
scheme, we as well consider the latter.

Throughout, let τ > 0 be the timestep size, tq = qτ , q ∈ Q and fn+1 = f(tn+1), n ∈ N.
Further, assume that we have f ∈ C(R+;L2(Ω)m). Note that this is not really a restric-
tion as this assumption is a necessary condition for the wellposedness of the continuous
problem (2.24).

The chapter is structured as follows. We begin with a short derivation of the Crank–Nicol-
son scheme in Section 4.1. Subsequently, wellposedness and the stability of the method
applied to the wave-type problem (2.24) are discussed in the same section. We proceed
accordingly in Section 4.2 for the Peaceman–Rachford scheme. Finally, in Section 4.3 we
investigate the approximation errors of both schemes. In particular, we show that both
schemes converge with order 2 to the exact solution, given this solution fulfills appropriate
regularity assumptions.

4.1 The Crank–Nicolson scheme

The Crank–Nicolson scheme or implicit trapezoidal rule is a well-known implicit time
integration scheme of classical order two, cf., e.g., [Hairer et al., 2006, Section II.1.1]
and [Hairer and Wanner, 1996, Section IV.3]. The analysis presented in this section is based
upon the work in [Sturm, 2017, Chapter 4], where the Crank–Nicolson scheme applied to
a dG discretization of Maxwell’s equations is analyzed. We transfer this analysis to the
abstract wave-type equation (2.24).

Before stating the scheme itself, we motivate it by giving a short derivation. We will see
in Section 4.2 that the Peaceman–Rachford scheme can be derived similarly, underlining
the connection between both schemes.

Example 4.1. Consider again the inhomogeneous initial value problem from Example 2.1,
i.e., {

dtu(t) = Au(t) + f(t), t ∈ R+,

u(0) = u0.
(4.1)

Given an approximation unτ to the solution u at time tn, we are interested in computing
an approximation un+1

τ to u at time tn+1. Starting with the given initial value u0 at time
t0, we are then able to approximate the solution at all times tn, n ∈ N.

53



54 4 | Temporal discretization

To derive this approximation, we apply the fundamental theorem of calculus to the exact
solution and use (4.1), yielding

u(tn+1) = u(tn) +

∫ tn+1

tn

dtu(s) ds

= u(tn) +

∫ tn+1

tn

Au(s) + f(s) ds.

To obtain the iteration for the Crank–Nicolson scheme we approximate the integral on the
right hand side by the trapezoidal rule. Doing so, we end up with

u(tn+1) ≈ u(tn) + τ
2

((
Au(tn) + fn

)
+
(
Au(tn+1) + fn+1

))
.

Replacing u(tn+1) and u(tn) by the approximations un+1
τ and unτ and rearranging yields

the Crank–Nicolson scheme{
(I − τ

2A)un+1
τ = (I + τ

2A)unτ + τ
2

(
fn+1 + fn

)
, n ∈ N0,

u0
τ = u0.

Note that the scheme is implicit, i.e., we have to solve a linear system with coefficient
matrix I − τ

2A in each step. �

Though the solution of a linear system in each step may be feasible for ordinary differential
equations with a moderate number of unknowns, it can strongly affect the performance
of the scheme if applied to spatially discretized partial differential equations, in particular
in higher dimensions. This is due to the fact that the number of degrees of freedom, and
hence, the dimension of the linear system grows under mesh refinement. On the other
hand, the implicitness comes with an advantage, namely the unconditional stability of the
scheme.

The Crank–Nicolson method applied to the wave-type problem (2.24) is given by{(
I − τ

2L
)
un+1
τ =

(
I + τ

2L
)
unτ + τ

2 (fn+1 + fn), n ∈ N0,

u0
τ = u0.

(4.2a)
(4.2b)

We start by investigating the conditions on the initial value u0 and the inhomogeneity f
under which this scheme is wellposed.

4.1.1 Wellposedness

To investigate the wellposedness of the Crank–Nicolson scheme (4.2), we rewrite the scheme
in a compact form. This is done by introducing the operators Rcn : L2(Ω)m → D(L) and
Scn : D(L)→ D(L) defined as

Rcn =
(
I − τ

2L
)−1

and
Scn =

(
I − τ

2L
)−1(I + τ

2L
)
.

Since
(
I − τ

2L
)−1 is the resolvent of a maximal dissipative operator, these operators are

well-defined by Lemma 2.10 (i).
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Given unτ ∈ D(L) for all n ∈ N0, the Crank–Nicolson scheme (4.2) is equivalent to{
un+1
τ = Scnu

n
τ + τ

2Rcn(fn+1 + fn), n ∈ N0,

u0
τ = u0.

(4.3)

From this, we can already see that un+1
τ ∈ D(L) if unτ ∈ D(L) for all n ∈ N0. Hence,

if u0 ∈ D(L), the scheme is wellposed. We state this and the discrete version of the
variation-of-constants formula in the next theorem.

Theorem 4.2. Let u0 ∈ D(L). Then, for all n ∈ N0 and all τ > 0, there exists a unique
un+1
τ ∈ D(L) fulfilling the Crank–Nicolson scheme (4.2) given by the discrete variation-of-

constants formula

un+1
τ = S n+1

cn u0 + τ
2

n∑
j=0

S n−j
cn Rcn(f j+1 + f j). (4.4)

Proof. Existence and uniqueness of un+1
τ ∈ D(L) for all n ∈ N0 can be directly seen

in (4.3). The discrete variation-of-constants formula can be verified by a straightforward
induction argument.

Remark 4.3. The operator Scn corresponds to the stability function of the Crank–Nicol-
son scheme given by

S(z) =
1 + z

2

1− z
2

, z ∈ C.

Thus, at least formally, we have Scn = S(τL). Further, Scn can be seen as an approxima-
tion of the semigroup

(
etL
)
t≥0

evaluated at t = τ . Heuristically, this can be recognized
by noting that the stability function S is the (1,1)-Padé-approximation to the exponential
function (cf., [Hairer and Wanner, 1996, Section IV.3] for more details on the stability
function). Having this in mind, the discrete variation-of-constants formula (4.4) can be
seen as a discrete version of the usual variation-of-constants formula (2.25), justifying the
name. �

4.1.2 Stability

We now show that the operator Scn is contractive. This reflects the corresponding property
of the semigroup

(
etL
)
t≥0

.

Lemma 4.4. Let v ∈ D(L). Then, for all τ > 0, we have

‖Scnv‖M ≤ ‖v‖M ,

i.e., the operator Scn is a contraction.

Proof. Note that L and its resolvent commute on D(L), cf., e.g., [Schnaubelt, 2015, The-
orem 1.13]. Consequently, Scnv is the transform encountered in Lemma 2.10 (ii) for λ = τ

2

applied to v ∈ D(L). Further, recall that by Theorem 2.26, L is maximal dissipative w.r.t.(
·
∣∣ · )

M
and

(
I − τ

2L
)

: D(L)→ L2(Ω)m is an isomorphism.

Thus, Lemma 2.10 (ii) yields

‖Scnv‖M = ‖
(
I − τ

2L
)−1(I + τ

2L
)
v‖M = ‖

(
I + τ

2L
)(
I − τ

2L
)−1

v‖M ≤ ‖v‖M ,

showing the contractivity of Scn.
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As a consequence, arbitrary powers of Scn applied to elements in D(L) are bounded by
the weighted L2-norm of that element.

Corollary 4.5. Let q ∈ N and τ > 0. Then, for all v ∈ D(L) we have

‖S q
cnv‖M ≤ ‖v‖M ,

and for all v ∈ L2(Ω)m we have

‖S q
cnRcnv‖M ≤ ‖v‖M .

Proof. Let v ∈ D(L). Since we have S
q
cnv ∈ D(L) for q ∈ N, we can apply Lemma 4.4 to

obtain

‖S q
cnv‖M = ‖ScnS

q−1
cn v‖M ≤ ‖S q−1

cn v‖M .

Repeating this argument q − 1 times yields the asserted inequality.

For the second assertion, recall that for v ∈ L2(Ω)m we have Rcnv ∈ D(L). Hence, this is
a direct consequence of the first assertion and Lemma 2.10 (i).

Using this, we can state the stability result for the Crank–Nicolson scheme.

Corollary 4.6. Let u0 ∈ D(L). Then, for all n ∈ N0 and all τ > 0, the approximation
un+1
τ given by the Crank–Nicolson scheme (4.2) satisfies

‖un+1
τ ‖M ≤ ‖u0‖M + τ

2

n∑
j=0

‖f j+1 + f j‖M .

Proof. We use the discrete variation-of-constants formula (4.4) and the triangle inequality
to obtain

‖un+1
τ ‖M = ‖S n+1

cn u0‖M + τ
2

n∑
j=0

‖S n−j
cn Rcn(f j+1 + f j)‖M .

The claim now follows by Corollary 4.5, since we have u0 ∈ D(L) and f(t) ∈ L2(Ω)m for
all t ∈ R+.

Remark 4.7. 1. As we have already pointed out in Remark 4.3, the operator Scn approx-
imates the semigroup

(
etL
)
t≥0

at t = τ . Thinking along the same lines, the contractivity
of Scn shown in this section reflects the corresponding property of the semigroup.

In particular, given a skew-adjoint operator, the corresponding semigroup is norm-con-
serving. This behavior is preserved by Scn, cf., e.g., [Sturm, 2017, Section 4.2.1] for the
discretized undamped Maxwell’s equations.

2. In light of Remark 2.28 on the necessity of dissipativity we want to point out that in the
shift-dissipative case, the operator Scn is not contractive. However, in that case it reflects
the corresponding property of the semigroup generated by the shift-dissipative operator.
Namely, we have exponential growth over time, respectively number of steps. �
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4.2 The Peaceman–Rachford scheme

The Peaceman–Rachford scheme proposed in [Peaceman and Rachford, 1955] is a time
integration method designed for problems that can be split into two distinct subproblems.
It was originally used in the context of dimension splitting. However, other splittings have
been considered, e.g., into a linear and a nonlinear part, cf., [Hansen and Henningsson,
2013].

Combining the Peaceman–Rachford method with the approach of dimensional splitting
leads to an alternating direction implicit (ADI) method. The main feat of this approach
is the fact that it is unconditionally stable and formally of order two in time but can be
performed much more efficiently than the Crank–Nicolson scheme if applied to problems
possessing a certain structure. Namely, it can be performed roughly at the cost of an
explicit scheme. In fact, we determine a class of wave-type problems for which this is the
case in Chapter 6.

It is well-known that the Peaceman–Rachford scheme can be interpreted as a perturbation
of the Crank–Nicolson scheme. The analysis performed in this section relies on this fact,
as it adapts the fully discrete analysis of the Crank–Nicolson scheme introduced in [Sturm,
2017] to the Peaceman–Rachford scheme.

Similar results have been shown in [Hochbruck et al., 2015a], where an ADI scheme ap-
plied to the homogeneous Maxwell’s equations was analyzed in the setting of abstract
evolution equations. These results were recently generalized to the inhomogeneous case
including a damping term in the two papers [Eilinghoff and Schnaubelt, 2018, Eilinghoff
and Schnaubelt, 2017] and the dissertation [Eilinghoff, 2017].

The analyses in these publications differ in two main points from the analysis in this thesis.
First, techniques from [Hansen and Ostermann, 2008] are used to obtain the convergence
results as opposed to the approach in this thesis to interpret the scheme as a perturbed
Crank–Nicolson scheme. We chose the latter as it enables us to obtain full discretization
results by transferring the results in [Sturm, 2017].

Second, the regularity assumptions in these publications are formulated in terms of regu-
larity of the data, i.e., the initial value and the inhomogeneity. As this heavily relies on
the particular structure of Maxwell’s equations and we study a broader class of equations,
the regularity assumptions in this thesis are given in terms of the regularity of the exact
solution.

As for the Crank–Nicolson scheme we give a short derivation of the scheme itself.

Example 4.8. To derive the Peaceman–Rachford scheme we proceed similar to the Crank–
Nicolson scheme in Example 4.1. This time, consider the homogeneous initial value problem
from Example 2.1 given by {

dtu(t) = Au(t), t ∈ R+,

u(0) = u0.

Assume that we can split the matrix A into

A = A1 +A2,

such that we can solve linear systems with coefficient matrix I − τ
2A1 or I − τ

2A2 more
efficiently than systems with coefficient matrix I − τ

2A.
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We proceed as in Example 4.1 to get

u(tn+1) = u(tn) +

∫ tn+1

tn

A1u(s) ds+

∫ tn+1

tn

A2u(s) ds.

However, instead of using the trapezoidal rule to approximate the integrals, we now apply
the midpoint rule to the first and the trapezoidal rule to the second integral. This yields

u(tn+1) ≈ u(tn) + τA1u(tn+1/2) + τ
2A2

(
u(tn) + u(tn+1)

)
.

If we want to use this to compute an approximation to u(tn+1) from u(tn) we additionally
need an approximation to u(tn+1/2). To establish this approximation we proceed analo-
gously to obtain

u(tn+1/2) = u(tn) +

∫ tn+1/2

tn

A1u(s) ds+

∫ tn+1/2

tn

A2u(s) ds.

This time, we use the right rectangular rule for the first and the left rectangular rule for
the second integral, yielding

u(tn+1/2) ≈ u(tn) + τ
2A1u(tn+1/2) + τ

2A2u(tn).

Again, we replace the exact values u(tn), u(tn+1/2) and u(tn+1) by the approximations unτ ,
u
n+1/2
τ and un+1

τ to obtain

un+1/2
τ = unτ + τ

2A1u
n+1/2
τ + τ

2A2u
n
τ ,

un+1
τ = unτ + τA1u

n+1/2
τ + τ

2A2

(
unτ + un+1

τ

)
.

Subtracting the first equation from the second to eliminate the terms involving unτ and
rearranging the terms yields the Peaceman–Rachford scheme

(I − τ
2A1)un+1/2

τ = (I + τ
2A2)unτ ,

(I − τ
2A2)un+1

τ = (I + τ
2A1)un+1/2

τ , n ∈ N0,

u0
τ = u0.

Note that, like the Crank–Nicolson scheme, the Peaceman–Rachford scheme is implicit.
Namely, in each step we have to solve two linear systems with coefficient matrices given
by either I − τ

2A1 or I − τ
2A2. However, if these are easier to solve than systems with

coefficient matrix I − τ
2A, as we assumed in the beginning of the example, this can be

favorable over the Crank–Nicolson scheme.

In this thesis we consider inhomogeneous problems. Hence, take again the linear system
of inhomogeneous ordinary differential equations{

dtu(t) = Au(t) + f(t), t ∈ R+,

u(0) = u0.

The Peaceman–Rachford scheme applied to the inhomogeneous equation we consider in
this thesis is given by

(I − τ
2A1)un+1/2

τ = (I + τ
2A2)unτ ,

(I − τ
2A2)un+1

τ = (I + τ
2A1)

(
un+1/2
τ + τ

2

(
fn+1 + fn

))
, n ∈ N0,

u0
τ = u0.
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This treatment of the right-hand side is taken from [Eilinghoff and Schnaubelt, 2018]. It
is chosen such that only two linear systems have to be solved in each full step. However,
other treatments are possible, cf., Section 4.4. �

Recall that we have split L = A + B in (2.26). Hence, together with this splitting, the
Peaceman–Rachford method applied to the wave-type problem (2.24) is given by

(
I − τ

2A
)
un+1/2
τ =

(
I + τ

2B
)
unτ ,(

I − τ
2B
)
un+1
τ =

(
I + τ

2A
)(
un+1/2
τ + τ

2 (fn+1 + fn)
)
, n ∈ N0,

u0
τ = u0.

(4.5a)

(4.5b)
(4.5c)

Again, we start by investigating the conditions on the initial value u0 and the inhomogene-
ity f under which this scheme is wellposed.

4.2.1 Wellposedness

We rewrite (4.5a) and (4.5b) equivalently as

un+1/2
τ =

(
I − τ

2A
)−1(I + τ

2B
)
unτ , (4.6a)

un+1
τ =

(
I − τ

2B
)−1(I + τ

2A
)(
un+1/2
τ + τ

2 (fn+1 + fn)
)
. (4.6b)

From this, we can already see that un+1/2
τ ∈ D(A) and thus also un+1

τ ∈ D(B) if unτ ∈ D(B)
and f ∈ C(R+;D(A)).

To obtain a discrete variation-of-constants formula for the Peaceman–Rachford scheme, we
rewrite the scheme similar to the compact form of the Crank–Nicolson scheme (4.3). To
this end we define the operator Spr : D(B)→ D(B) as

Spr =
(
I − τ

2B
)−1(I + τ

2A
)(
I − τ

2A
)−1(I + τ

2B
)
.

As we will need it for the analysis of the scheme, we also define the operatorRpr : L2(Ω)m →
D(B) as

Rpr =
(
I − τ

2B
)−1(I − τ

2A
)−1

.

Note that as for the Crank–Nicolson scheme both operators are well-defined, since
(
I −

τ
2B
)−1 and

(
I − τ

2A
)−1 are the resolvents of maximal dissipative operators.

By inserting (4.6a) into (4.6b) we can rewrite the Peaceman–Rachford scheme (4.5) equiv-
alently as{

un+1
τ = Spru

n
τ + τ

2

(
I − τ

2B
)−1(I + τ

2A
)(
fn+1 + fn

)
, n ∈ N0,

u0
τ = u0.

(4.7a)
(4.7b)

We can now state the wellposedness result and give the aforementioned discrete variation-
of-constants formula for un+1

τ in the next theorem.

Theorem 4.9. Let u0 ∈ D(B) and f ∈ C(R+;D(A)). Then, for all n ∈ N0 and all τ > 0,
there exist unique un+1

τ ∈ D(B) and u
n+1/2
τ ∈ D(A) fulfilling the Peaceman–Rachford

scheme (4.5). Further, un+1
τ is given for all n ∈ N0 by the discrete variation-of-constants

formula

un+1
τ = S n+1

pr u0 + τ
2

n∑
j=0

S n−j
pr

(
I − τ

2B
)−1(I + τ

2A
)(
f j+1 + f j

)
. (4.8)
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Proof. Existence and uniqueness of un+1
τ ∈ D(B) and u

n+1/2
τ ∈ D(A) for all n ∈ N0

can be seen in (4.7) by acknowledging
(
I + τ

2A
)
f(t) ∈ L2(Ω)m for all t ∈ R+. The

discrete variation-of-constants formula can again be verified by a straightforward induction
argument.

Remark 4.10. 1. The approach used in this section (including the following part on
stability) is based on [Hochbruck et al., 2015a, Section 2.2], where the unconditional sta-
bility of the scheme was shown in a similar way. Further, a similar proof for matrices can
be found in [Faragó et al., 2005] and alternative strategies of proof can be found in the
literature, e.g., in [Lee and Fornberg, 2004].

2. The discrete variation-of-constants formula (4.8) yields an explicit formula for un+1
τ

for all n ∈ N0. Using this and (4.5a), we can explicitly express the intermediate solution
u
n+1/2
τ for all n ∈ N0. �

4.2.2 Stability

We now show that the operator Spr fulfills a bound similar to (2.5). However, unlike the
corresponding bound for the semigroup and the Crank–Nicolson operator, we can only
bound its application in the graph norm of B. For the analysis we further need two
additional bounds.

Lemma 4.11. Let q ∈ N and τ > 0. Then, for v ∈ D(B) we have

‖S q
prv‖M ≤ ‖(I + τ

2B)v‖M ,

and for v ∈ L2(Ω)m we have

‖S q
pr
(
I − τ

2B
)−1

v‖M ≤ ‖v‖M

and

‖S q
prRprv‖M ≤ ‖v‖M .

Proof. The first inequality can easily be seen by noting that concatenating Spr multiple
times creates concatenations of the transforms encountered in Lemma 2.10 (ii) correspond-
ing to the operators A and B. Abbreviating

C =
(
I + τ

2A
)(
I − τ

2A
)−1(I + τ

2B
)(
I − τ

2B
)−1

yields
S q

prv =
((
I − τ

2B
)−1(I + τ

2A
)(
I − τ

2A
)−1(I + τ

2B
))q

v

=
(
I − τ

2B
)−1Cq−1

(
I + τ

2A
)(
I − τ

2A
)−1(I + τ

2B
)
v.

(4.9)

Since A and B are maximal dissipative, we have ‖
(
I − τ

2B
)−1

w‖M ≤ ‖w‖M , ‖Cw‖M ≤
‖w‖M and ‖

(
I + τ

2A
)(
I − τ

2A
)−1

w‖M ≤ ‖w‖M for all w ∈ L2(Ω)m by Lemma 2.10. This
yields the first assertion.

Using (4.9), we further have

S q
pr
(
I − τ

2B
)−1

v =
(
I − τ

2B
)−1Cqv
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and

S q
prRprv =

(
I − τ

2B
)−1Cq

(
I − τ

2A
)−1

v

for v ∈ L2(Ω)m. Again using the contractivity of
(
I − τ

2A
)−1,

(
I − τ

2B
)−1 and C proves

the remaining assertions.

Note that the statements in the second paragraph of Remark 4.7 also hold for these bounds,
as they rely on the contractivity of the resolvents and the transforms from Lemma 2.10 (ii).
In the case of shift dissipative operators A and B, we again obtain bounds growing expo-
nentially in time.

We conclude this section by the stability result for the Peaceman–Rachford scheme.

Corollary 4.12. Let u0 ∈ D(B) and f ∈ C(R+;D(A)). Then, for all n ∈ N0 and all
τ > 0, the approximation un+1

τ given by the Peaceman–Rachford scheme (4.5) satisfies

‖un+1
τ ‖M ≤ ‖

(
I + τ

2B
)
u0‖M + τ

2

n∑
j=0

‖
(
I + τ

2A
)(
f j+1 + f j

)
‖M . (4.10)

Proof. The proof can be performed completely analogously to the one for the Crank–Nicol-
son scheme, i.e., the proof of Corollary 4.6. The only difference is that we use Lemma 4.11
instead of Corollary 4.5.

4.3 Error analysis of the temporal semidiscretization

Having established wellposedness and stability of both time integration schemes, we are
now able to perform the error analysis of these schemes. For this, let u be the solution of
the continuous problem (2.24) and unτ be the approximation given by either the Crank–
Nicolson scheme (4.2) or the Peaceman–Rachford scheme (4.5) after n steps. We denote
the temporally semidiscrete error after n steps by

en = u(tn)− unτ .

We follow a strategy similar to the spatial error analysis in Section 3.7. In other words,
we show that the error satisfies a perturbed version of the scheme under consideration.
However, we use the temporally semidiscrete schemes (4.2) and (4.5) instead of the spatially
semidiscrete scheme (3.13).

4.3.1 Error recursions

As in Section 3.7 we show that the errors satisfy perturbed versions of the respective
scheme.

Crank–Nicolson method

We start by inserting the solution of the continuous problem (2.24) into the Crank–Nicol-
son scheme (4.2). The defect caused by this is investigated in the next lemma. Note that
the regularity assumptions on the solution coincide with those of the wellposedness result
Corollary 2.27. However, we will need more regularity to prove convergence of the scheme.
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Lemma 4.13. Assume u ∈ C1(R+;L2(Ω)m)∩C(R+;D(L)). Then, for all n ∈ N0 and all
τ > 0, the exact solution u satisfies(

I − τ
2L
)
u(tn+1) =

(
I + τ

2L
)
u(tn) + τ

2 (fn+1 + fn) + δncn, (4.11)

where the Crank–Nicolson defect δncn is given by

δncn =

∫ tn+1

tn

dtu(s) ds− τ
2

(
dtu(tn) + dtu(tn+1)

)
.

Proof. Equation (4.11) is obtained by replacing un+1
τ and unτ in (4.2a) with the exact

solution at times tn+1 and tn. Since the exact solution does not satisfy the scheme, we
obtain a defect, which we define as δncn. Rearranging the terms in (4.11) yields

δncn = u(tn+1)− u(tn)− τ
2

((
Lu(tn) + fn

)
+
(
Lu(tn+1) + fn+1

))
= u(tn+1)− u(tn)− τ

2

(
dtu(tn) + dtu(tn+1)

)
,

where we have used that u fulfills the continuous problem (2.24) in the second step. Using
the fundamental theorem of calculus concludes the proof.

We can now derive the desired error recursion.

Corollary 4.14. Assume u ∈ C1(R+;L2(Ω)m) ∩ C(R+;D(L)). Then, for all τ > 0, the
error en = u(tn)− unτ of the Crank–Nicolson scheme satisfies{(

I − τ
2L
)
en+1 =

(
I + τ

2L
)
en + δncn, n ∈ N0,

e0 = 0.

Proof. We have e0 = 0 since we chose the exact initial value for the Crank–Nicolson scheme.
The remaining assertion follows by subtracting (4.2a) from (4.11).

Peaceman–Rachford method

Similar to the Crank–Nicolson scheme we start by investigating the defect caused by in-
serting the exact solution into the Peaceman–Rachford scheme (4.7). However, to derive
this defect, we require a bit more regularity of the exact solution and the inhomogeneity.

Lemma 4.15. Assume u ∈ C1(R+;L2(Ω)m) ∩ C(R+;D(A) ∩D(AB)) and that we have
f ∈ C(R+;D(A2)). Then, for all n ∈ N0 and all τ > 0, the exact solution u satisfies

u(tn+1) = Spru(tn) + τ
2

(
I − τ

2B
)−1(I + τ

2A
)(
fn+1 + fn) + Rpr(δncn + δnpr

)
, (4.12)

where δncn is the Crank–Nicolson defect from Lemma 4.13, and the (Peaceman–Rachford)
perturbation defect δnpr is given by

δnpr = δnpr,u + δnpr,f

with

δnpr,u =
τ 2

4
AB

(
u(tn+1)− u(tn)

)
and δnpr,f =

τ 3

8
A2(fn+1 + fn). (4.13)



4.3 | Error analysis of the temporal semidiscretization 63

Proof. Equation (4.12) is obtained by inserting the exact solution into (4.7a) and defining
the defect made by this as Rpr(δncn + δnpr

)
. Since u(t) ∈ D(AB) for all t ≥ 0, we can apply

R−1
pr to (4.12). Because of

R−1
prSpru(tn) =

(
I − τ

2A
)(
I + τ

2A
)(
I − τ

2A
)−1(I + τ

2B
)
u(tn)

=
(
I + τ

2A
)(
I + τ

2B
)
u(tn)

and

R−1
pr
(
I − τ

2B
)−1(I + τ

2A
)(
fn+1 + fn) =

(
I − τ

2A
)(
I + τ

2A
)(
fn+1 + fn),

this yields(
I − τ

2A
)(
I − τ

2B
)
u(tn+1) =

(
I + τ

2A
)(
I + τ

2B
)
u(tn)

+ τ
2

(
I − τ

2A
)(
I + τ

2A
)(
fn+1 + fn

)
+ δncn + δnpr.

Expanding the first three terms and using L = A + B we obtain(
I − τ

2L + τ2

4 AB
)
u(tn+1) =

(
I + τ

2L + τ2

4 AB
)
u(tn)

+ τ
2

(
I − τ2

8 A2
)(
fn+1 + fn

)
+ δncn + δnpr.

Rearranging the terms yields

δncn + δnpr = u(tn+1)− u(tn)− τ
2

((
Lu(tn) + fn) + (Lu(tn+1) + fn+1

))
+ τ2

4 AB
(
u(tn+1)− u(tn)

)
+ τ3

8 A2(fn+1 + fn).
(4.14)

By the proof of Lemma 4.13, the first few terms coincide with the Crank–Nicolson defect
δncn. This concludes the proof.

From this we can derive the error recursion.

Corollary 4.16. Assume u ∈ C1(R+;L2(Ω)m)∩C(R+;D(A)∩D(AB)) and that we have
f ∈ C(R+;D(A2)). Then, for all τ > 0, the error en = u(tn)−unτ of the Peaceman–Rach-
ford scheme satisfies {

en+1 = Spre
n + Rpr(δncn + δnpr), n ∈ N0,

e0 = 0.
(4.15)

Proof. We have e0 = 0 since we chose the exact initial value for the Peaceman–Rachford
scheme. The remaining assertion follows by subtracting (4.7a) from (4.12).

4.3.2 Bounds on the defects

In the last section we have seen that the errors of the Crank–Nicolson and the Peaceman–
Rachford scheme satisfy a perturbed version of the respective scheme if the exact solution
is smooth enough. Hence, by Theorems 4.2 and 4.9, we can adapt the respective discrete
variation-of-constants to solve them. Note that we have e0 = 0, as we use the exact initial
values for both schemes. This yields

en+1 =

n∑
j=0

S n−j
cn Rcnδ

j
cn (4.16)



64 4 | Temporal discretization

for the Crank–Nicolson scheme and

en+1 =
n∑
j=0

S n−j
pr Rpr(δjcn + δjpr) (4.17)

for the Peaceman–Rachford scheme. Owing to the stability of the schemes—or more pre-
cisely Corollary 4.5 and Lemma 4.11—we already have suitable bounds on the operators
S
n−j
cn Rcn and S

n−j
pr Rpr. Hence, it remains to bound the defects δjcn and δjpr.

Crank–Nicolson defect

We start with the Crank–Nicolson defect δncn. In fact, δncn is the quadrature error of the
trapezoidal rule applied to dtu. This enables us to derive a different representation if the
exact solution is sufficiently smooth, yielding a suitable bound on the defect.

Corollary 4.17. Assume u ∈ C3(R+;L2(Ω)m) ∩ C(R+;D(L)). Then, for all τ > 0, we
have

δncn = τ 2

∫ tn+1

tn

(s− tn)(s− tn+1)

2τ 2
d3
tu(s) ds (4.18)

and thus

‖δncn‖M ≤
τ 2

8

∫ tn+1

tn

‖d3
tu(s)‖M ds. (4.19)

Proof. As mentioned before, δncn is the quadrature error of the trapezoidal rule applied to
dtu. It is a well-known fact that this quadrature error can be expressed via the Peano
kernel s(s− 1)/2 if u is three times continuously differentiable, cf., e.g., [Hochbruck, 2015,
Theorem 1.10]. This yields (4.18). The bound (4.19) is a straightforward consequence of
this representation.

Perturbation defect

It remains to bound the perturbation defect δnpr of the Peaceman–Rachford scheme. The
defect δnpr,f can be bounded in a straightforward manner as we will see later. Hence, we
only derive a bound on δnpr,u in this section. Again, we require slightly more regularity of
the exact solution to acquire a suitable bound. We state this in the next lemma.

Corollary 4.18. Assume u ∈ C1(R+;D(AB)). Then, for all τ > 0, we have

δnpr,u =
τ 2

4

∫ tn+1

tn

ABdtu(s) ds (4.20)

and thus

‖δnpr,u‖M ≤
τ 2

4

∫ tn+1

tn

‖ABdtu(s)‖M ds. (4.21)

Proof. Since u ∈ C1(R+;D(AB)), we can use the fundamental theorem of calculus to
obtain

δnpr,u =
τ 2

4
AB

∫ tn+1

tn

dtu(s) ds =
τ 2

4

∫ tn+1

tn

ABdtu(s) ds.

This shows (4.20). The bound (4.21) follows by the triangle inequality for integrals.
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4.3.3 Temporal convergence results

Since we have established bounds on the defects of both the Crank–Nicolson and the Peace-
man–Rachford scheme, we are now able to give the convergence results. We show that both
schemes are of order two in time, provided the exact solution is smooth enough.

Crank–Nicolson method

The next theorem shows the convergence result for the Crank–Nicolson discretiza-
tion of the wave-type problem (2.24).

Theorem 4.19. Assume that the exact solution of the wave-type problem (2.24) satisfies
u ∈ C3(R+;L2(Ω)m) ∩ C(R+;D(L)). Then, for all n ∈ N0 and all τ > 0, the error of the
Crank–Nicolson scheme satisfies

‖u(tn+1)− un+1
τ ‖M ≤

τ 2

8

∫ tn+1

0

‖d3
tu(s)‖M ds

≤ Cτ 2,

where C only depends on tn+1, ‖d3
tu(s)‖M , s ∈ [0, tn+1].

Proof. First, by Corollary 4.14, the error en satisfies the Crank–Nicolson scheme (4.2) with
initial value 0 and τ

2 (fn+1 + fn) replaced by the Crank–Nicolson defect δncn. Further, for
all n ∈ N0, we have en ∈ D(L), since u(tn) ∈ D(L) and unτ ∈ D(L).

Hence, we can apply Theorem 4.2 and the discrete variation-of-constants formula (4.4) to
obtain (4.16). By using the triangle inequality and subsequently Corollary 4.5, we obtain

‖en+1‖M ≤
n∑
j=0

‖S n−j
cn Rcnδ

j
cn‖M

≤
n∑
j=0

‖δjcn‖M .

Using (4.19) to bound the defect concludes the proof.

Peaceman–Rachford method

Now, we state the convergence result for the Peaceman–Rachford discretization
of the wave-type problem (2.24). Note that we have to assume additional regularity of the
exact solution and the inhomogeneity, as we also need to bound the perturbation defect
δnpr.

Theorem 4.20. Assume that the exact solution of the wave-type problem (2.24) satisfies
u ∈ C3(R+;L2(Ω)m)∩C1(R+;D(AB))∩C(R+;D(A)) and that f ∈ C(R+;D(A2)). Then,
for all n ∈ N0 and all τ > 0, the error of the Peaceman–Rachford scheme satisfies

‖u(tn+1)− un+1
τ ‖M ≤

τ 2

4

(∫ tn+1

0

1
2‖d

3
tu(s)‖M + ‖ABdtu(s)‖M ds

+ τ
2

n∑
j=0

‖A2
(
f j + f j+1

)
‖M
)

≤ Cτ 2,

where C only depends on tn+1, ‖d3
tu(s)‖M , ‖ABdtu(s)‖M and ‖A2f(s)‖M , s ∈ [0, tn+1].
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Proof. By Corollary 4.16, the error en satisfies the perturbed Peaceman–Rachford scheme
(4.15). Since u(tn) ∈ D(B) and unτ ∈ D(B), we further have en ∈ D(B) for all n ∈ N0.

Hence, we can apply the discrete variation-of-constants formula (4.8) to obtain (4.17).
Taking the ‖ · ‖M -norm and using the triangle inequality and subsequently Lemma 4.11
yields

‖en+1‖M ≤
n∑
j=0

‖S n−j
pr Rpr(δjcn + δjpr)‖M

≤
n∑
j=0

‖δjcn‖M +

n∑
j=0

‖δjpr,u‖M +

n∑
j=0

‖δjpr,f‖M .

The first two terms can be treated by using the bounds (4.19) and (4.21). The bound on
the third term is a straightforward consequence of the definition of δnpr,f , see (4.13).

4.4 Concluding remarks

We conclude this chapter by some remarks.

4.4.1 Regularity assumptions

If we demand less regularity of the solution, we can still show convergence. However, the
convergence order decreases accordingly.

In particular, by only demanding the exact solution to lie in C2(R+;L2(Ω)m) instead of
C3(R+;L2(Ω)m), we can still bound the Crank–Nicolson defect with order one in τ . This
can be achieved by using Peano kernels of order one.

Similarly, if we only demand the regularity of the exact solution from Lemma 4.15, we can
still bound the Peaceman–Rachford defect. Again, we lose one order in τ , as we can not
apply the fundamental theorem of calculus.

4.4.2 Variants of the schemes

Different treatments of the inhomogeneity in both schemes are possible using the same
strategy of proof. We shortly remark upon two of them.

The implicit midpoint scheme

We can replace τ
2 (fn+1 + fn) in the Crank–Nicolson scheme (4.2a) by τf(tn+1/2) to obtain

the implicit midpoint scheme. We refer to [Sturm, 2017, Section 4.4] for the fully discrete
analysis of this method for Maxwell’s equations.

Variant of the Peaceman–Rachford scheme

Similarly, we can replace (
I + τ

2A
)
(fn+1 + fn)

by (
I − τ

2A
)−1

(fn+1 + fn)
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in the Peaceman–Rachford scheme (4.5b). Using this, we don’t need the additional reg-
ularity assumption f ∈ C(R+;D(A2)) on the inhomogeneity. Further, the corresponding
error term in Theorem 4.20 vanishes.

This is due to the fact that the different treatment of the inhomogeneity gives rise to the
term

Rpr(fn+1 + fn)

instead of (
I − τ

2B
)−1(I + τ

2A
)
(fn+1 + fn)

in (4.7a). Because of this, the last term in (4.14), and hence, the defect δnpr,f does not
occur. Further, the stability bound (4.10) would change accordingly.

However, this comes at the cost of having to solve an additional linear system in each step
to compute

(
I − τ

2A
)−1

(fn+1 + fn). We refer to Chapter 6 for more details.
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5 Full discretization

This chapter is devoted to the fully discrete numerical scheme obtained by combining the
dG method in space with the Crank–Nicolson and Peaceman–Rachford scheme in time,
respectively. These schemes are derived via a method of lines approach, meaning we first
discretize in space and subsequently in time. To analyze the schemes, we proceed in a
similar way as for the temporal discretization, however, we have to deal with additional
defects stemming from the spatial discretization.

Full discretization results for the Peaceman–Rachford scheme in literature are usually per-
formed for non-stiff ordinary differential equations, see e.g., [Hundsdorfer and Verwer,
1989,Pearcy, 1962]. This leads to error bounds in which the constants depend on the norm
of the matrices resulting from the discretization of the spatial operators. As these matrices
approximate unbounded operators, their norm tends to infinity under refinement of the
spatial mesh. Consequently, such techniques can only provide reliable results if a fixed
spatial mesh is considered.

The only rigorous convergence result for a full discretization obtained by using the Peace-
man–Rachford scheme in time known to the author is given in [Hansen and Henningsson,
2016] based on the techniques from [Hansen and Ostermann, 2008]. Therein, a general
class of space discretization techniques fulfilling certain conditions is considered for the
discretization of the spatial differential operators. However, to obtain these results, as-
sumptions are posed on the norm of certain concatenations of the discrete spatial operators,
which are, to the author’s understanding, far from being trivial to verify in applications.

We circumvent such assumptions by using and extending techniques from [Sturm, 2017]
used to analyze a dG discretization combined with the Crank–Nicolson scheme applied
to Maxwell’s equations. In particular, the key step for the analysis of the dG-Peaceman–
Rachford scheme is to use a result similar to Lemma 3.43. This allows us to use the
regularity of the exact solution and approximation properties of the discrete operators to
bound additional defects emerging from the spatial discretization.

The chapter is organized similarly to Chapter 4. That is, in Section 5.1 we begin by
applying the Crank–Nicolson scheme to the spatially semidiscrete problem (3.13) and sub-
sequently investigate wellposedness and stability of the resulting scheme. We proceed in
the same way in Section 5.2 for the Peaceman–Rachford scheme. In Section 5.3 we then
investigate the error made by approximating the exact solution of the wave-type problem
(2.24) using these schemes. In particular, we show that both schemes converge to the exact
solution with order k in space and 2 in time, given the exact solution fulfills appropriate
regularity assumptions.

69
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5.1 The dG-Crank–Nicolson scheme

Applying the Crank–Nicolson scheme (4.2) to the semidiscrete problem (3.13) yields the
fully discrete dG-Crank–Nicolson (dG-CN) scheme{(

I − τ
2L
)
un+1
τ =

(
I + τ

2L
)
unτ + τ

2 (fn+1
π + fnπ ), n ∈ N0,

u0
τ = u0

π.

(5.1a)
(5.1b)

As in the semidiscrete case, we start by investigating wellposedness.

5.1.1 Wellposedness

We have already seen in Section 3.6.2 that L is maximal dissipative on Vh. Consequently,(
I − τ

2L
)

: Vh → Vh is an isomorphism. Similar to the semidiscrete case, we can therefore
define the operators Rcn : Vh → Vh and Scn : Vh → Vh as

Rcn =
(
I − τ

2L
)−1

and

Scn =
(
I − τ

2L
)−1(I + τ

2L
)
.

The dG-CN scheme (5.1) is thus equivalent to{
un+1
τ = Scnu

n
τ + τ

2Rcn(fn+1
π + fnπ ), n ∈ N0,

u0
τ = u0

π.
(5.2)

Using this, we can state the wellposedness of the scheme and the fully discrete version of
the variation-of-constants formula.

Theorem 5.1. For all n ∈ N0, all h ∈ H and all τ > 0 there exists a unique un+1
τ ∈ Vh

fulfilling the dG-CN scheme (5.1) given by the discrete variation-of-constants formula

un+1
τ = S n+1

cn u0
π + τ

2

n∑
j=0

S n−j
cn Rcn(f j+1

π + f jπ). (5.3)

Proof. Existence and uniqueness of un+1
τ for all n ∈ N0 can be seen by (5.2) and the

definition of the operators occurring therein. The variation-of-constants can again be
shown by a straightforward induction argument.

5.1.2 Stability

To show stability of the dG-CN scheme, we proceed as in the semidiscrete case. We start
by showing contractivity of Scn.

Lemma 5.2. Let h ∈ H and τ > 0. Then, for all v ∈ Vh we have

‖Scnv‖M ≤ ‖v‖M ,

i.e., the operator Scn is a contraction.
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Proof. This is a direct consequence of the fact that Scn is the transform encountered in
Lemma 2.10 (ii) corresponding to the maximal dissipative operator L|Vh .

Similar to the semidiscrete case, the contractivity of Scn yields that arbitrary powers of
Scn applied to elements of Vh can be bounded. We state this in the next corollary.

Corollary 5.3. Let h ∈ H and τ > 0. Then, for all q ∈ N and all v ∈ Vh we have

‖S q
cnv‖M ≤ ‖v‖M

and

‖S q
cnRcnv‖M ≤ ‖v‖M .

Proof. The first inequality is a direct consequence of applying Lemma 5.2 q times. The
second one additionally uses Lemma 2.10 (i) together with the fact thatRcn is the resolvent
of the maximal dissipative operator L|Vh .

Using this, we obtain the stability result for the dG-Crank–Nicolson scheme.

Corollary 5.4. Let h ∈ H, τ > 0 and u0 ∈ D(L). Then, for all n ∈ N0, the approximation
un+1
τ given by the dG-Crank–Nicolson scheme (5.1) satisfies

‖un+1
τ ‖M ≤ ‖u0‖M + τ

2

n∑
j=1

‖f j+1 + f j‖M .

Proof. The claim can be proven analogously to the semidiscrete case, i.e., Corollary 4.6.
The only difference is that we use the discrete variation-of-constants given in (5.3) instead of
(4.4), Corollary 5.3 instead of Corollary 4.5, and that we additionally use the boundedness
of the L2-projection (3.12).

5.2 The dG-Peaceman–Rachford scheme

Before we can apply the Peaceman–Rachford scheme to the semidiscrete problem (3.13),
we need to define the discrete versions of the split operators from Section 2.4. Thus,
let Ã : V Ã

h → Vh and B̃ : V B̃
h → Vh be the central flux discretization of the dissipative

Friedrichs’ operators Ã and B̃, respectively. Further, let V A
h = V Ã

h and V B
h = V B̃

h and
define the discrete operators A : V A

h → Vh and B : V B
h → Vh as

A = M−1Ã and B = M−1B̃.

Note that by the same argumentation as in Section 3.6.1 for L, the operators A and B

are consistent in the sense of Proposition 3.34.

Applying the Peaceman–Rachford scheme (4.5) to the semidiscrete problem (3.13) yields
the fully discrete dG-Peaceman–Rachford (dG-PR) scheme

(
I − τ

2A
)
un+1/2
τ =

(
I + τ

2B
)
unτ ,(

I − τ
2B
)
un+1
τ =

(
I + τ

2A
)(
un+1/2
τ + τ

2 (fn+1
π + fnπ )

)
, n ∈ N0,

u0
τ = u0

π.

(5.4a)

(5.4b)
(5.4c)

Again, we begin by showing wellposedness of the scheme.
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5.2.1 Wellposedness

By transferring the argumentation from Section 3.6.2 to the split operatorsA andB, we see
that both operators are maximal dissipative on Vh. Again, this yields that

(
I− τ

2A
)

: Vh →
Vh and

(
I − τ

2B
)

: Vh → Vh are isomorphisms. We can thus rewrite (5.4a) and (5.4b) for
all n ∈ N0 equivalently as

un+1/2
τ =

(
I − τ

2A
)−1(I + τ

2B
)
unτ , (5.5a)

un+1
τ =

(
I − τ

2B
)−1(I + τ

2A
)(
un+1/2
τ + τ

2 (fn+1
π + fnπ )

)
. (5.5b)

We proceed analogously to the semidiscrete case in Section 4.2.1. Namely, we rewrite the
scheme in the same form as the dG-CN scheme (5.2). For this, we define the operators
Rpr : Vh → Vh and Spr : Vh → Vh as

Rpr =
(
I − τ

2B
)−1(I − τ

2A
)−1

and

Spr =
(
I − τ

2B
)−1(I + τ

2A
)(
I − τ

2A
)−1(I + τ

2B
)
.

Inserting (5.5a) into (5.5b) and making use of Spr, we can rewrite the scheme (5.4) equiv-
alently as{

un+1
τ = Spru

n
τ + τ

2

(
I − τ

2B
)−1(I + τ

2A
)(
fn+1
π + fnπ

)
, n ∈ N0,

u0
τ = u0

π.

(5.6a)
(5.6b)

From this, we can derive the wellposedness of the dG-PR scheme.

Theorem 5.5. For all n ∈ N0, all h ∈ H and all τ > 0, there exists a unique un+1
τ ∈ Vh

fulfilling the dG-PR scheme (5.4) given by the discrete variation-of-constants formula

un+1
τ = S n+1

pr u0
π + τ

2

n∑
j=0

S n−j
pr
(
I − τ

2B
)−1(I + τ

2A
)(
f j+1
π + f jπ

)
. (5.7)

Proof. Uniqueness and existence follow by (5.6) and the definition of the operators occur-
ring therein. The variation-of-constants formula can again be verified by a straightforward
induction argument.

5.2.2 Stability

Stability is handled as in the semidiscrete case. We begin by showing analogous bounds to
the ones in Lemma 4.11.

Lemma 5.6. Let h ∈ H and τ > 0. Then, for all q ∈ N and all v ∈ Vh we have

‖S q
prv‖M ≤ ‖

(
I + τ

2B
)
v‖M .

Further, we have

‖S q
pr
(
I − τ

2B
)−1
v‖M ≤ ‖v‖M

and

‖S q
prRprv‖M ≤ ‖v‖M .
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Proof. The proof of these results is completely analogous to their semidiscrete counterparts
in Lemma 4.11. This can be seen as the proofs only rely on the fact that the operators A
and B are maximally dissipative. As stated in the beginning of Section 5.2.1, the discrete
versions A and B inherit this property on Vh.

Using this, we obtain the stability result for the dG-Peaceman–Rachford scheme.
Recall that the semidiscrete version of this result, i.e., Corollary 4.12, involves the norms
of
(
I+ τ

2B
)
v and

(
I+ τ

2A
)(
f j+1 +f j

)
. As a consequence, we have to deal with additional

terms stemming from the discretization of A and B.

Corollary 5.7. Let h ∈ H, τ > 0, u0 ∈ D(B) ∩H1(Th) and f ∈ C(R+;D(A) ∩H1(Th)).
Then, for all n ∈ N0, the approximation un+1

τ given by the dG-PR scheme (5.4) satisfies

‖un+1
τ ‖M ≤ ‖

(
I + τ

2B
)
u0‖M + τ

2Cπ,B̃,M |u
0|1,Th

+ τ
2

n∑
j=1

(
‖
(
I + τ

2A
)(
f j+1 + f j

)
‖M + τ

2Cπ,Ã,M
|f j+1 + f j |1,Th

)

with C
π,Ã,M

= ‖M−1‖1/2∞,ΩCπ,Ã and C
π,B̃,M

= ‖M−1‖1/2∞,ΩCπ,B̃.

Proof. We proceed as in the semidiscrete case and use the discrete variation-of-constants
formula (5.7) and Lemma 5.6 to obtain

‖un+1
τ ‖M ≤ ‖

(
I + τ

2B
)
u0
π‖M + τ

2

n∑
j=1

‖
(
I + τ

2A
)
f j+1
π + f jπ‖M .

To bound the first term, we use the consistency of B in the sense of Proposition 3.34 to
obtain

‖
(
I + τ

2B
)
πhu

0‖M = ‖πhu0 + τ
2Bu

0 + τ
2B(πhu

0 − u0)‖M
≤ ‖πhu0 + τ

2πhBu
0‖M + τ

2‖Be
u0

π ‖M
≤ ‖πh

(
I + τ

2B
)
u0‖M + τ

2Cπ,B̃,M |u
0|1,Th ,

where we used an analogous argument to the one in (3.18) to bound ‖Beu0

π ‖M . Treating
the second term in the same way concludes the proof.

5.3 Error analysis of the full discretization

As we have established wellposedness and stability of both fully discrete schemes, we now
conduct the error analysis. This is done by combining the ideas used in both the spatially
as well as the temporally semidiscrete analysis. In principle, we follow the approach used
in Section 4.3. However, additional difficulties stemming from the spatial discretization
have to be dealt with.

Let u be the solution of the continuous problem (2.24) and unτ be the solution of either
the dG-CN scheme (5.1) or the dG-PR scheme (5.4) after n steps. To conduct the error
analysis, for all n ∈ N, we denote the fully discrete error after n steps by

en = u(tn)− unτ .
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As in the analysis of the spatially semidiscrete problem, we perform an error splitting.
We use the projection error enπ = u(tn) − πhu(tn) at time tn and introduce the full
discretization error en = πhu(tn)− unτ to obtain

en = enπ + en.

Note that the full discretization error en includes the error made by both the space and the
time discretization. Further, recall that the projection error enπ satisfies the bound (3.14).
Hence, it only remains to bound en.

5.3.1 Error recursion

Similar to the semidiscrete cases, we begin by deriving an error recursion. As the full
discretization error en is obtained by measuring the fully discrete approximation against
the projected exact solution, we proceed as in Section 3.7.1. That is to say, we insert the
projected exact solution into the fully discrete schemes.

Crank–Nicolson method

We start by investigating the defect caused by inserting the projected exact solution into
the dG-CN scheme (5.1).

Lemma 5.8. Let h ∈ H and τ > 0. Further, assume that we have u ∈ C1(R+;L2(Ω)m) ∩
C(R+;D(L) ∩H1(Th)m). Then, for all n ∈ N0, the projected exact solution πhu satisfies(

I − τ
2L
)
πhu(tn+1) =

(
I + τ

2L
)
πhu(tn) + τ

2 (fn+1
π + fnπ ) + dncn, (5.8)

where the fully discrete Crank–Nicolson defect dncn is given by

dncn = πhδ
n
cn + τ

2

(
dπ(tn+1) + dπ(tn)

)
. (5.9)

Proof. Equation (5.8) is obtained by inserting the projected exact solution into the dG-
CN iteration (5.1a) and defining the defect caused by this as dncn. We solve (5.8) for dncn,
yielding

dncn = πhu(tn+1)− πhu(tn)− τ
2L
(
πhu(tn+1) + πhu(tn)

)
− τ

2 (fn+1
π + fnπ )

= πh
(
u(tn+1)− u(tn)

)
− τ

2Lπh
(
u(tn+1) + u(tn)

)
− τ

2πh(fn+1 + fn).
(5.10)

To obtain the projected Crank–Nicolson defect πhδncn, we rewrite the second term. By the
definition of the projection error and Proposition 3.34, i.e., the consistency of L, we have

Lπh
(
u(tn+1) + u(tn)

)
= L

(
u(tn+1) + u(tn)

)
−L

(
en+1
π + enπ

)
= πhL

(
u(tn+1) + u(tn)

)
−L

(
en+1
π + enπ

)
.

Inserting this into (5.10) and rearranging the terms, we get

dncn = πh

(
u(tn+1)− u(tn)− τ

2

((
Lu(tn) + fn

)
+
(
Lu(tn+1) + fn+1

)))
+ τ

2L
(
en+1
π + enπ

)
.

Taking into account the definition of dπ in Lemma 3.47 and the proof of Lemma 4.13
proves the claim.

We state the error recursion in the next corollary.
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Corollary 5.9. Let h ∈ H and τ > 0. Further, assume that we have u ∈ C1(R+;L2(Ω)m)∩
C(R+;D(L) ∩ H1(Th)m). Then, for all n ∈ N0, the full discretization error en+1 =
πhu(tn+1)− un+1

τ of the dG-CN scheme satisfies{(
I − τ

2L
)
en+1 =

(
I + τ

2L
)
en + dncn, n ∈ N0,

e0 = 0.
(5.11)

Proof. We have e0 = 0, since we use the projected initial value for the dG-CN scheme.
The remaining assertion follows by subtracting (5.1a) from (5.8).

Peaceman–Rachford method

We proceed in the same way for the dG-PR scheme. However, we have to deal with a new
defect stemming from the perturbation defect δnpr.

In the next lemma we derive the full defect, comprising the fully discrete Crank–Nicolson
defect and the semidiscrete as well as a discrete perturbation defect. As before, we combine
the regularity assumptions of the semidiscrete cases.

Lemma 5.10. Let h ∈ H and τ > 0. Further, assume that we have u ∈ C1(R+;L2(Ω)m)∩
C(R+;D(A) ∩ D(AB) ∩ H1(Th)m) and f ∈ C(R+;D(A2) ∩ H1(Th)m). Then, for all
n ∈ N0, the projected exact solution πhu satisfies

πhu(tn+1) = Sprπhu(tn) + τ
2

(
I − τ

2B
)−1(I + τ

2A
)
(fn+1
π + fnπ )

+ Rpr(dncn + dnpr),
(5.12)

where the fully discrete (Peaceman–Rachford) perturbation defect dnpr is given by

dnpr = πhδ
n
pr + dnpr,u + dnpr,f

with

dnpr,u =
τ 2

4

(
ABπh − πhAB

)(
u(tn+1)− u(tn)

)
and

dnpr,f =
τ 3

8

(
A2πh − πhA2

)(
fn+1 + fn

)
.

Proof. Equation (5.12) is obtained by inserting the projected solution into (5.6a) and
defining the resulting defect as Rpr(dncn + dnpr). We apply R−1

pr =
(
I − τ

2A
)(
I − τ

2B
)
to

(5.12) and solve for dncn + dnpr to obtain

dnpr + dncn =
(
I − τ

2A
)(
I − τ

2B
)
πhu(tn+1)−

(
I + τ

2A
)(
I + τ

2B
)
πhu(tn)

− τ
2

(
I − τ

2A
)(
I + τ

2A
)(
fn+1
π + fnπ

)
,

where we have used R−1
prSpr =

(
I + τ

2A
)(
I + τ

2B
)
. Expanding all three terms on the

right hand side and using L = A + B yields

dnpr + dncn =
(
I − τ

2L + τ2

4 AB
)
πhu(tn+1)−

(
I + τ

2L + τ2

4 AB
)
πhu(tn)

− τ
2

(
I − τ2

4 A2
)(
fn+1
π + fnπ

)
= dncn + τ2

4 ABπh
(
u(tn+1)− u(tn)

)
+ τ3

8 A2πh(fn+1 + fn)
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with dncn defined in (5.9). For the remaining two terms, we have

ABπh
(
u(tn+1)− u(tn)

)
=
(
ABπh − πhAB

)(
u(tn+1)− u(tn)

)
+ πhAB

(
u(tn+1)− u(tn)

)
and

A2πh
(
fn+1 + fn

)
=
(
A2πh − πhA2

)(
fn+1 + fn

)
+ πhA

2
(
fn+1 + fn

)
.

The sum of the respective last terms is the projected Peaceman–Rachford defect δnpr by its
definition (4.13). This concludes the proof.

This readily implies the error recursion for the dG-PR scheme.

Corollary 5.11. Let h ∈ H and τ > 0. Further, assume that we have u ∈ C1(R+;L2(Ω)m)∩
C(R+;D(A) ∩ D(AB) ∩ H1(Th)m) and f ∈ C(R+;D(A2) ∩ H1(Th)m). Then, for all
n ∈ N0, the full discretization error en+1 = πhu(tn+1)− un+1

τ of the dG-PR scheme satis-
fies {

en+1 = Spre
n + Rpr(dncn + dnpr), n ∈ N0,

e0 = 0.

Proof. We have e0 = 0, since we use the projected initial value for the dG-PR scheme.
The remaining assertion follows by subtracting (5.6a) from (5.12).

5.3.2 Bounds on the defects

We follow the same strategy of proof as in the temporally semidiscrete case, cf., Sec-
tion 4.3.2. Hence, we need bounds on all occurring defects.

We have already dealt with the defects dnπ, δncn and δnpr, as these occurred in the analysis
of the semidiscrete schemes. However, we still need to bound the projection errors dnpr,u
and dnpr,f . We begin with the former.

Lemma 5.12. Let h ∈ H, τ > 0 and k ≥ 1. Further, assume that we have u ∈
C1(R+;D(AB) ∩H2(Th)) and B0 ∈W 1,∞(K)m×m for all K ∈ Th. Then we have

C
1,Ã

blablabla
‖dnpr,u‖M ≤ Cpr,u

τ 2

4

∫ tn+1

tn

‖dtu(s)‖2,Th ds,

where Cpr,u = ‖M−1‖3/2∞,Ω(Cinv,ÃCπ,B̃,−1
+ C

π,Ã
C

1,B̃
) with C

1,B̃
= max

K∈Th
C

1,K,B̃
.

Proof. By the fundamental theorem of calculus and since the spatial operators commute
with the temporal integration we have

dnpr,u =
τ 2

4

∫ tn+1

tn

(
ABπh − πhAB

)
dtu(s) ds

and thus

‖dnpr,u‖M ≤
τ 2

4

∫ tn+1

tn

‖
(
ABπh − πhAB

)
dtu(s)‖M ds.

We follow the proof of Lemma 3.43 to bound the integrand. However, we have to make
some adaptations owing to the material parameters.



5.3 | Error analysis of the full discretization 77

For what follows, recall that we have A = M−1Ã, B = M−1B̃, A = M−1Ã and B =
M−1B̃, and that ‖M−1‖∞,Ω is the supremum of the spectral norm ofM−1 on Ω. Further, by
Lemma 3.45, the discrete operatorsA andB are consistent in the sense of Proposition 3.34.
We will make use of this several times in what follows.

In particular, this yields

‖
(
ABπh − πhAB

)
dtu(s)‖M = ‖A

(
Bπh − B

)
dtu(s)‖M

= ‖M1/2A
(
Bπh − B

)
dtu(s)‖Ω

= ‖M−1/2Ã
(
Bπh − B

)
dtu(s)‖Ω

≤ ‖M−1‖1/2∞,Ω‖Ã
(
Bπh − B

)
dtu(s)‖Ω.

By adding and subtracting ÃπhBdtu(s) we get

‖Ã
(
Bπh − B

)
dtu(s)‖Ω ≤ ‖Ã

(
Bπh − πhB

)
dtu(s)‖Ω + ‖Ã

(
πhB − B

)
dtu(s)‖Ω. (5.13)

For the first term in (5.13) we use Proposition 3.41 to obtain

‖Ã
(
Bπh − πhB

)
dtu(s)‖Ω ≤ Cinv,Ã‖h

−1
(
Bπh −B

)
dtu(s)‖Ω

= Cinv,Ã‖h
−1M−1

(
B̃πh − B̃

)
dtu(s)‖Ω

≤ Cinv,Ã‖M
−1‖∞,Ω‖h−1B̃

(
πh − I

)
dtu(s)‖Ω

= Cinv,Ã‖M
−1‖∞,Ω‖h−1B̃edtu(s)

π ‖Ω
≤ Cinv,Ã‖M

−1‖∞,ΩCπ,B̃,−1
|dtu(s)|2,Th ,

where we have used Lemma 3.42 with p = −1 and q = 1 in the last step.

For the second term in (5.13) observe that

‖Ã
(
πhB − B

)
dtu(s)‖Ω = ‖Ã

(
πh − I

)
Bdtu(s)‖Ω = ‖ÃeBdtu(s)

π ‖Ω.

Hence, we can use Lemma 3.42 with p = 0 and q = 0 to obtain

‖Ã
(
πhB − B

)
dtu(s)‖Ω ≤ Cπ,Ã |Bdtu(s)|1,Th .

By the definition of the H1(Th)-seminorm in Definition 3.25 and since M is elementwise
constant by Assumption 3.44, we have

|Bdtu(s)|21,Th =
∑
K∈Th

|Bdtu(s)|21,K

=
∑
K∈Th

|M−1
K B̃dtu(s)|21,K

≤
∑
K∈Th

‖M−1
K ‖

2|B̃dtu(s)|21,K

≤ ‖M−1‖2∞,Ω
∑
K∈Th

|B̃dtu(s)|21,K .

Thus, using Lemma 2.16 yields

|Bdtu(s)|21,Th ≤ ‖M
−1‖2∞,Ω

∑
K∈Th

C2

1,K,B̃
‖dtu(s)‖22,K
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≤ ‖M−1‖2∞,ΩC2

1,B̃

∑
K∈Th

‖dtu(s)‖22,K

= ‖M−1‖2∞,ΩC2

1,B̃
‖dtu(s)‖22,Th ,

concluding the proof.

The bound on the second defect dnpr,f can be proven in the same way.

Lemma 5.13. Let h ∈ H, τ > 0 and k ≥ 1. Further, assume that we have f ∈
C(R+;D(A2) ∩H2(Th)) and A0 ∈W 1,∞(K)m×m for all K ∈ Th. Then we have

‖dnpr,f‖M ≤ Cpr,f
τ 3

8
‖fn+1 + fn‖2,Th ,

where Cpr,f = ‖M−1‖3/2∞,Ω(Cinv,ÃCπ,Ã,−1
+ C

π,Ã
C

1,Ã
) with C

1,Ã
= max

K∈Th
C

1,Ã
.

Proof. This can be proven analogously to the second part of the proof of Lemma 5.12.

5.3.3 Fully discrete convergence results

We are now able to give the fully discrete convergence results. The proofs follow the same
strategy as the proofs of the temporally semidiscrete counterparts Theorems 4.19 and 4.20.
However, we also have to deal with the defects introduced by the spatial discretization.

Crank–Nicolson method

We state the convergence result for the fully discrete dG-Crank–Nicolson dis-
cretization of the wave-type problem (2.24) in the next theorem.

Theorem 5.14. Let h ∈ H and τ > 0. Further, assume that the exact solution of the wave-
type problem (2.24) satisfies u ∈ C3(R+;L2(Ω)m) ∩C(R+;D(L) ∩Hk+1(Th)m). Then, for
all n ∈ N0, the dG-Crank–Nicolson error satisfies

‖u(tn+1)− un+1
τ ‖M ≤ Capp,M |hk+1u(tn+1)|k+1,Th

+ C
π,L̃,M

τ
2

n∑
j=0

|hk
(
u(tj+1) + u(tj)

)
|k+1,Th

+
τ 2

8

∫ tn+1

0

‖d3
tu(s)‖M ds

≤ C
(
hk + τ 2

)
,

(5.14)

where C only depends on tn+1, Capp,M , C
π,L̃,M

, |u(s)|k+1,Th and ‖d3
tu(s)‖M , s ∈ [0, tn+1].

Proof. The projection error en+1
π = u(tn+1) − πhu(tn+1) can be bounded by (3.14). This

yields the first term in (5.14).

It remains to bound the discretization error en+1 = πhu(tn+1)−un+1
τ . To do so, we proceed

analogously to the proof of the semidiscrete case, i.e., Theorem 4.19. More precisely, we
use Theorem 5.1 to solve the error recursion (5.11). Because of e0 = 0 and Corollary 5.3,
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this leads to

‖en+1‖M ≤
n∑
j=0

‖S n−j
cn Rcnd

j
cn‖M

≤
n∑
j=0

‖djcn‖M

≤
n∑
j=0

‖πhδjcn‖M +
n∑
j=0

τ
2‖dπ(tj+1) + dπ(tj)‖M .

(5.15)

The first term is bounded by using (4.19) and the boundedness of the L2-projection (3.12).
This yields the third term in (5.14).

For the second term recall that

‖dπ(tj+1) + dπ(tj)‖M = ‖L
(
ej+1
π + ejπ

)
‖M

= ‖M−1/2L̃
(
ej+1
π + ejπ

)
‖Ω

≤ ‖M−1‖1/2∞,Ω‖L̃
(
ej+1
π + ejπ

)
‖Ω.

Now, note that we have

ej+1
π + ejπ =

(
u(tj+1) + u(tj)

)
− πh

(
u(tj+1) + u(tj)

)
.

This is the projection error of u(tj+1) + u(tj). Hence, we can use Lemma 3.42 to conclude
the proof.

Peaceman–Rachford method

As we can bound the projection error dnpr by Lemmas 5.12 and 5.13, we also get the
convergence result for the fully discrete dG-Peaceman–Rachford discretization
of the wave-type problem (2.24). We state it in the next theorem.

Theorem 5.15. Let h ∈ H, τ > 0 and k ≥ 1. Further, assume that the exact solution of
the wave-type problem (2.24) satisfies

u ∈ C3(R+;L2(Ω)m) ∩ C1(R+;D(AB) ∩H2(Th)) ∩ C(R+;D(A) ∩Hk+1(Th)),

that we have A0, B0 ∈ W 1,∞(K)m×m for all K ∈ Th and that the inhomogeneity fulfills
f ∈ C(R+;D(A2) ∩ H2(Th)). Then, for all n ∈ N0, the dG-Peaceman–Rachford error
satisfies

‖u(tn+1)− un+1
τ ‖M ≤ Capp,M |hk+1u(tn+1)|k+1,Th

+ C
π,L̃,M

τ
2

n∑
j=0

|hk
(
u(tj+1) + u(tj)

)
|k+1,Th

+
τ 2

4

(∫ tn+1

0

1
2‖d

3
tu(s)‖M ds

+

∫ tn+1

0

‖ABdtu(s)‖M + Cpr,u‖dtu(s)‖2,Th ds

+ τ
2

n∑
j=0

(
‖A2

(
f j+1 + f j

)
‖M + Cpr,f‖f j+1 + f j‖2,Th

))
≤ C

(
hk + τ 2

)
,

where C only depends on tn+1, Capp,M , C
π,L̃,M

, Cpr,u, Cpr,f , ‖d3
tu(s)‖M , ‖ABdtu(s)‖M ,

|u(s)|k+1,Th , ‖dtu(s)‖2,Th , ‖A2f(s)‖M and ‖f(s)‖2,Th , s ∈ [0, tn+1].
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Proof. The proof is analogous to the one of Theorem 5.14. The only difference being
the additional defects πhδnpr and dnpr emerging in (5.15). The first can be treated by the
boundedness of the L2-projection (3.12) and Corollary 4.18, the latter by Lemmas 5.12
and 5.13.



6 Efficient implementation of a
dG-Peaceman–Rachford ADI
method

This chapter is devoted to the implementation of the dG-Peaceman–Rachford method. It
is an extension of [Hochbruck and Köhler, 2019]. In particular, we identify a class of wave-
type problems, for which the dG-PR scheme is of linear complexity in each step w.r.t. the
number of elements in the utilized mesh (and thus of the same complexity as an explicit
scheme).

This class of problems is characterized by a special structure of the operator L. This
structure ensures that we can split the operator, resulting in two distinct subproblems,
for which the flows of the spatial derivatives completely decouple. We call the operators
resulting from such a splitting Friedrichs’ operators having decoupled partial derivatives,
cf., Definition 6.4 below.

In fact, the combination of such a splitting with the Peaceman–Rachford method can
be seen as a generalization of the classical ADI methods. This will become apparent in
Section 6.5, where we revisit the examples given in Section 2.5. We will see that the
splitting for the acoustic wave equation turns out to be similar to the splitting in the
original ADI method proposed in [Peaceman and Rachford, 1955]. Further, the splitting
for Maxwell’s equations we consider is the one proposed in [Namiki, 1999,Zhen et al., 2000]
(or rather the extension of this scheme proposed in [Eilinghoff and Schnaubelt, 2018], as
we include damping and currents).

We begin this chapter by briefly looking at the implementation of the general dG-PR
scheme (5.4) in Section 6.1. In Section 6.2 we introduce the aforementioned class of
Friedrichs’ operators and consequently investigate their structure in 6.3. These results
lead to a class of wave-type problems for which one step of the dG-PR scheme can be
performed in linear complexity w.r.t. the total number of elements in the chosen mesh. We
show this in Section 6.4 and give instructions on the specific implementation. Lastly, as
stated before, we revisit the examples from Section 2.5 in Section 6.5.

The aforementioned favorable runtime behavior of the method for suitable problems comes
with one main drawback. Namely, it can only be achieved if Ω is a union of tensorial
domains, e.g., rectangles or cuboids. Whence the following assumption.

Assumption 6.1. We assume that the domain Ω is a union of a finite number of tensorial
sets. Further, we assume that Th consists of tensorial elements without hanging nodes.

81
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6.1 Implementation of the dG-Peaceman–Rachford scheme

Recall that the dG-Peaceman–Rachford scheme (5.4) reads
(
I − τ

2A
)
un+1/2
τ =

(
I + τ

2B
)
unτ ,(

I − τ
2B
)
un+1
τ =

(
I + τ

2A
)(
un+1/2
τ + τ

2 (fn+1
π + fnπ )

)
, n ∈ N0,

u0
τ = u0

π

(6.1a)

(6.1b)
(6.1c)

and is posed on the finite-dimensional Hilbert space
(
Vh,
(
·
∣∣ · )

M

)
. Hence, to implement

the scheme, we begin by constructing a basis of the approximation space Vh.

6.1.1 Construction of a basis of Vh

Recall that, by (3.2), the approximation space Vh is the space of Rm-valued functions,
whose components lie in the broken polynomial space Qk

d(Th) defined in (3.1). Functions
in the latter space are polynomials that are defined on each element K ∈ Th independently
without any coupling between the elements. This allows us to choose a basis Qh of Qk

d(Th)
of the form

Qh =
⋃
K∈Th

{φK1 , . . . ,φKNk
}, Nk = (k + 1)d,

where, for all K ∈ Th, the set {φK1 |K , . . . ,φKNk
|K} is a basis of Qk

d(K) and

supp(φKi ) ⊂ K for all i = 1, . . . , Nk. (6.2)

The exact nature of the basis of Qk
d(K) is not important for what follows, but this can,

e.g., be a standard nodal or modal basis.

This leads to a basis Vh of Vh in a straightforward manner. Namely, we consider the m-fold
Cartesian product of Qh, i.e.,

Vh = Qmh

as the basis of Vh. This implies that the number of elements in Vh, and thus the dimension
of Vh, is given by

Nh = mNk |Th|.

Hence, we can enumerate the basis functions in Vh to obtain

Vh = {ψ1, . . . ,ψNh
}.

6.1.2 Representation of the scheme in Vh

Using the basis Vh, for all n ∈ N0, equations (6.1a) and (6.1b) are equivalent to((
I − τ

2A
)
un+1/2
τ

∣∣ψ`)M =
((
I + τ

2B
)
unτ
∣∣ψ`)M ,((

I − τ
2B
)
un+1
τ

∣∣ψ`)M =
((
I + τ

2A
)(
un+1/2
τ + τ

2 (fn+1
π + fnπ )

) ∣∣ψ`)M (6.3)
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for all ` ∈ {1, . . . , Nh}. As (6.3) is an equation on an Nh-dimensional space, we are able to
rewrite it as as a linear system on RNh . This is done by representing unτ ,u

n+1/2
τ ,fnπ ∈ Vh

in the basis Vh as

unτ =

Nh∑
i=1

uni ψi, un+1/2
τ =

Nh∑
i=1

un+1/2
i ψi, fnπ =

Nh∑
i=1

fni ψi,

and defining the corresponding coefficient vectors un, un+1/2, fn ∈ RNh by

un =

 un1
...

unNh

 , un+1/2 =

un+1/2
1
...

un+1/2
Nh

 , fn =

 fn1
...

fnNh

 .

Further, we define the mass matrix M ∈ RNh×Nh by

M =
((
ψj
∣∣ψi)M)Nh

i,j=1
(6.4)

and the stiffness matrices A,B ∈ RNh×Nh corresponding to A and B, respectively, by

A =
((

Aψj
∣∣ψi)M)Nh

i,j=1
and B =

((
Bψj

∣∣ψi)M)Nh

i,j=1
. (6.5)

Consequently, we can rewrite (6.3) equivalently as the linear system(
M− τ

2A
)
un+1/2 =

(
M+ τ

2B
)
un,(

M− τ
2B
)
un+1 =

(
M+ τ

2A
)(
un+1/2 + (fn+1 + fn)

) (6.6a)

(6.6b)

on RNh .

In this chapter we are interested in the computational complexity of the scheme. In order
to solve (6.6) for un+1, we have to perform matrix-vector multiplications, vector-vector
and matrix-matrix additions and solve two linear systems, one in each half-step. As it
is well-known for the dG method, the mass and stiffness matrices are sparse. Thus, we
can perform the matrix-vector multiplications and the matrix-matrix additions in linear
time w.r.t. the total number of degrees of freedom Nh. The same holds for vector-vector
additions. However, solving the linear systems in (6.6) is in general more costly if we have
d > 1.

6.2 Friedrichs’ operators with decoupled partial derivatives

In this section we introduce Friedrichs’ operators having decoupled partial derivatives.
Such operators lead to stiffness matrices for which the linear systems occurring in (6.6)
can be solved in linear complexity w.r.t. the total number of elements in Th, since the flows
associated with such operators effectively decouple into one-dimensional flows. We start
by introducing the following concept of decoupled block diagonal matrices.

Definition 6.2. Let M1, . . . ,Md ∈ Rm×m be symmetric matrices and denote by

Ii = {j ∈ {1, . . . ,m} |Miej 6= 0}

the set of indices of non-zero columns (or rows) in Mi, i = 1, . . . , d. Then we call
M1, . . . ,Md ∈ Rm×m decoupled block-diagonal if

Ii ∩ Ij = ∅ for all i 6= j.
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By Definition 6.2, symmetric and decoupled block-diagonal matrices have pairwise disjoint
non-zero rows and columns. The name is motivated by the following property.

Theorem 6.3. Let M1, . . . ,Md ∈ Rm×m be symmetric and decoupled block-diagonal. Then
there is a permutation matrix P ∈ Rm×m such that for all i = 1, . . . , d, the matrix P TMiP
is block-diagonal with at most one non-zero diagonal block, which vanishes in all other
matrices P TMjP , j 6= i.

Proof. The assertion follows from the symmetry of the matrices Mi if we reorder the rows
and columns by the indices in I1, then I2, . . . , Id, and last the indices of those columns
which vanish in all matrices.

Using the notion of decoupled block-diagonal matrices, we are able to characterize Friedrichs’
operators whose partial derivatives completely decouple. As we will see later, the structure
of the coefficient F0 and the boundary condition FΓ also play a role in the representation of
the discrete operator. Hence, they have to be admissible as well, leading to the additional
conditions on these objects.

Definition 6.4. Let F be a dissipative Friedrichs’ operator with coefficients (Fi)
d
i=0 and

boundary condition FΓ. We say that F has decoupled partial derivatives if the following
holds.

(i) The matrices supx∈Ω |F1(x)|, . . . , supx∈Ω |Fd(x)| are decoupled block-diagonal. We de-
note by PF the permutation matrix from Theorem 6.3 corresponding to these matrices.

(ii) The matrix P T
FF0PF is block-diagonal a.e. on Ω with diagonal blocks of the same size

as P T
F
(

supx∈Ω |Fi(x)|
)
PF for i = 1, . . . , d.

(iii) The matrix P T
FFΓPF is block-diagonal a.e. on Γ with the only non-zero blocks being

those occurring in P T
F
(

supx∈Ω |Fi(x)|
)
PF for i = 1, . . . , d.

In the following, given a Friedrichs’ operator F having decoupled partial derivatives, we
denote the sets of indices from Definition 6.2 corresponding to F by IF1 , . . . , I

F
d and the set

of remaining indices in {1, . . . ,m} by IF0 . Further, as in Definition 6.4, we denote by PF
the corresponding permutation matrix from Theorem 6.3.

As a consequence of Definition 6.4, the coefficients F1, . . . , Fd are decoupled block-diagonal
on Ω. Moreover, the sets of indices from Definition 6.2 corresponding to these coefficients
are subsets of the IF1 , . . . , I

F
d . We show this in the next lemma.

Lemma 6.5. Let F be a dissipative Friedrichs’ operator with coefficients (Fi)
d
i=0 and bound-

ary condition FΓ having decoupled partial derivatives. Then the fields F1, . . . , Fd are de-
coupled block-diagonal on Ω. Further, for all x ∈ Ω and all i = 1, . . . , d, the set of indices
from Definition 6.2 corresponding to Fi(x) is a subset of IFi .

Proof. For all i = 1, . . . , d, each entry of supx∈Ω |Fi(x)| is the L∞-norm of the corresponding
entry of Fi. Hence, if an entry of supx∈Ω |Fi(x)| equals 0, the corresponding element of Fi
is 0 on Ω, since by Assumption 3.27, Fi is continuous. This proves the claim.

Clearly, since the coefficients F1, . . . , Fd are continuous by Assumption 3.27, this especially
holds on the faces of Th.
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6.3 Structure of a discrete Friedrichs’ operator with decou-
pled partial derivatives

Having defined Friedrichs’ operators with decoupled partial derivatives, we investigate the
structure of their central flux dG discretization in this section. Hence, let F be a dissipative
Friedrichs’ operator with coefficients (Fi)

d
i=0 and boundary condition FΓ having decoupled

partial derivatives. Further, let F be its central flux dG discretization, cf., Definition 3.32.

Analogously to Section 6.1.2, the dG discretization F can be represented by the stiffness
matrix F ∈ RNh×Nh given by

F =
((

Fψj
∣∣ψi)M)Nh

i,j=1
. (6.7)

In the rest of this section we investigate the structure of F. In fact, we show that we
can bring F into a block-tridiagonal form with block sizes independent of the number of
elements in Th. This can be achieved by reordering the basis functions in Vh in a suitable
way.

One crucial ingredient for this to work is the tensorial structure of the mesh Th, cf.,
Assumption 6.1. More precisely, this is due to the fact that the normal vectors of the
interfaces are parallel to the canonical unit vectors. This leads to the fact that coupling
between elements of the mesh can only occur in one direction for each spatial derivative.

6.3.1 Decomposition of Vh and Fint
h

To exploit the fact that F has decoupled partial derivatives, we decompose the basis Vh

into subsets corresponding to the index sets IF0 , I
F
1 , . . . , I

F
d . More precisely, we define the

sets
VFh,i =

⋃
j∈IFi

{φ ej ∈ Vh | φ ∈ Qh }, i = 0, . . . , d (6.8)

with ej ∈ Rm, yielding

Vh =

d⋃
i=0

VFh,i.

We proceed similar for the interfaces Fint
h of the mesh Th. Due to the tensorial structure

of Th, normal vectors to the faces in Fh are ±ej ∈ Rd for some j ∈ {1, . . . , d}. In the
following, for F ∈ Fint

h , we fix the face normal vectors nF defined in Definition 3.8 to be
the vector pointing in positive coordinate direction. This enables us to define the sets

Fh,i = {F ∈ Fint
h | nF = ei } (6.9)

and decompose the set of interfaces into

Fint
h =

d⋃
i=1

Fh,i.
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6.3.2 Ordering of the basis functions

By (6.7) the entries of F are determined by inserting the basis functions into the definition
of F , i.e., (3.9). In this section we investigate the non-zero pattern of F and determine an
ordering of the basis functions in Vh for which F is block-tridiagonal.

For the rest of this section, let ϑ1 ∈ VFh,i and ϑ2 ∈ VFh,j for i, j ∈ {0, . . . , d}. Inserting ϑ1

and ϑ2 into (3.9) yields(
Fϑ1

∣∣ϑ2

)
Ω

=
∑
K∈Th

(
Fϑ1

∣∣ϑ2

)
K
−
∑

F∈Fint
h

(
FF∂ Jϑ1KF

∣∣ {{ϑ2}}F
)
F

− 1
2

∑
F∈Fbnd

h

(
(FF∂ −FΓ)ϑ1

∣∣ϑ2

)
F

=
∑
K∈Th

d∑
r=1

(
Fr∂rϑ1

∣∣ϑ2

)
K

+
∑
K∈Th

(
F0ϑ1

∣∣ϑ2

)
K

−
∑

F∈Fint
h

d∑
r=1

(
Frn

F
r Jϑ1KF

∣∣ {{ϑ2}}F
)
F

− 1
2

∑
F∈Fbnd

h

d∑
r=1

(
Frn

F
r ϑ1

∣∣ϑ2

)
F

+ 1
2

∑
F∈Fbnd

h

(
FΓϑ1

∣∣ϑ2

)
F
.

By (6.8) there exist `1 ∈ IFi , `2 ∈ IFj and φ1,φ2 ∈ Qh such that we have ϑ1 = φ1e`1 and
ϑ2 = φ2e`2 . This yields

(
Fϑ1

∣∣ϑ2

)
Ω

=
∑
K∈Th

d∑
r=1

(
eT`2Fre`1∂rφ1

∣∣φ2

)
K

+
∑
K∈Th

(
eT`2F0e`1φ1

∣∣φ2

)
K

−
∑

F∈Fint
h

d∑
r=1

(
eT`2Fre`1n

F
r Jφ1KF

∣∣ {{φ2}}F
)
F

− 1
2

∑
F∈Fbnd

h

d∑
r=1

(
eT`2Fre`1n

F
r φ1

∣∣φ2

)
F

+ 1
2

∑
F∈Fbnd

h

(
eT`2FΓe`1φ1

∣∣φ2

)
F
.

We now use the fact that F has decoupled partial derivatives. In particular, by Defini-
tion 6.4 and with δij denoting the Kronecker delta, this means that for i, j 6= 0 we have

eT`2F0e`1 = δije
T
`2
F0e`1 a.e. on Ω

and

eT`2FΓe`1 = δije
T
`2
FΓe`1 a.e. on Γ.

Further, as a consequence of Lemma 6.5 we have

d∑
r=1

eT`2Fre`1 = δije
T
`2
Fie`1 on Ω.
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Using this, the sums over r vanish and we obtain(
Fϑ1

∣∣ϑ2

)
Ω

= δij

( ∑
K∈Th

(
eT`2Fie`1∂iφ1

∣∣φ2

)
K

+
∑
K∈Th

(
eT`2F0e`1φ1

∣∣φ2

)
K

−
∑

F∈Fint
h

(
eT`2Fie`1n

F
i Jφ1KF

∣∣ {{φ2}}F
)
F

− 1
2

∑
F∈Fbnd

h

(
eT`2Fie`1n

F
i φ1

∣∣φ2

)
F

+ 1
2

∑
F∈Fbnd

h

(
eT`2FΓe`1φ1

∣∣φ2

)
F

)
(6.10)

if i, j 6= 0.

Further, if i = 0 or j = 0, by the same reasoning we have(
Fϑ1

∣∣ϑ2

)
Ω

= δij

( ∑
K∈Th

(
eT`2F0e`1φ1

∣∣φ2

)
K

)
, (6.11)

as basis functions in VFh,0 correspond to the set of indices whose columns vanish in all Fr,
r = 1, . . . , d and FΓ by Definition 6.4.

Hence, two basis functions can only generate a non-zero entry if they belong to the same set
VFh,i, i = 0, . . . , d. This means that if we order the basis functions according to these sets,
the resulting matrix is block-diagonal. However, the block sizes still depend on the number
of elements in Th, since each set VFh,i, i = 0, . . . , d, contains basis functions belonging to all
elements of the mesh.

To see that these blocks, and therefore the stiffness matrix F, can be brought into a block-
tridiagonal structure, we next investigate the terms occurring in (6.10) and (6.11). In the
following, assume i = j, i.e., ϑ1,ϑ2 ∈ VFh,i and thus `1, `2 ∈ IFi .

Volume terms

We start by investigating the first two terms in (6.10) and the term in (6.11). Since
φ1,φ2 ∈ Qh, by (6.2) we have supp(φ1) ⊂ K1 and supp(φ2) ⊂ K2 for some K1,K2 ∈ Th.
Hence, if K1 6= K2, we have∑

K∈Th

(
eT`2Fie`1∂iφ1

∣∣φ2

)
K

=
∑
K∈Th

(
eT`2F0e`1φ1

∣∣φ2

)
K

= 0.

Therefore, the only non-zero entries generated by these terms are due to basis functions
that are associated with the same mesh element. By ordering the functions in the sets VFh,i,
i = 0, . . . , d elementwise, these terms only contribute to diagonal blocks. These blocks
have block size |IFi |Nk, since per element we have Nk basis functions for each index in IFi ,
i = 0, . . . , d.

Boundary terms

Next, we investigate the terms in (6.10) involving boundary faces. These can be treated
analogously to the volume terms, since each boundary face belongs to only one element.
Hence, for K1 6= K2 we have∑

F∈Fbnd
h

(
eT`2Fie`1n

F
i φ1

∣∣φ2

)
F

=
∑

F∈Fbnd
h

(
eT`2FΓe`1φ1

∣∣φ2

)
F

= 0.
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
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Figure 6.1: Suitable ordering of the elements for a given Friedrichs’ operator F with decoupled
partial derivatives.

With the elementwise ordering proposed in the last paragraph, these terms therefore con-
tribute to the same blockdiagonal as the volume terms. In particular, the only non-zero
entries stem from basis functions belonging to boundary elements.

Interface terms

Lastly, we investigate the third term in (6.10), which corresponds to the interfaces of the
mesh. As this term involves averages and jumps across interfaces, we obtain contributions
outside of the blockdiagonal.

However, by the definition of Fh,i in (6.9) we have nFi = 1 and nF` = 0 for ` 6= i and thus∑
F∈Fint

h

(
eT`2Fie`1n

F
i Jφ1KF

∣∣ {{φ2}}F
)
F

=
∑
F∈Fh,i

(
eT`2Fie`1Jφ1KF

∣∣ {{φ2}}F
)
F
.

Further, if F 6⊂ ∂K`, we have

{{φ`}}F = Jφ`KF = 0 for ` = 1, 2.

Hence, if ∂K1 ∩ ∂K2 6∈ Fh,i, i.e., K1 and K2 do not share a common face with normal in
the ith coordinate direction, this yields∑

F∈Fint
h

(
eT`2Fie`1n

F
i Jφ1KF

∣∣ {{φ2}}F
)
F

= 0.

Thus, this term only contributes to off-blockdiagonal entries if φ1 and φ2 have their support
on elements sharing a face in Fh,i. As we do not admit the mesh to have hanging nodes by
Assumption 6.1, each element has at most two neighbors w.r.t. faces in Fh,i, one in positive
and one in negative ith direction. Consequently, if we additionally order the elements of
the mesh along the normal vectors in the ith direction, the only additional entries appear
in the first sub- and super-blockdiagonals.

Summary

Let us summarize the discussion of the last sections. We have seen that we can represent
the central flux dG discretization of a Friedrichs’ operator F having decoupled partial
derivatives by a block-tridiagonal stiffness matrix. This is achieved by choosing a suitably
ordered basis Vh of the approximation space Vh.
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This basis is constructed as explained in Section 6.1.1. We can then achieve the aforemen-
tioned block-tridiagonal structure by ordering the basis functions as follows.

1. Order the basis functions in Vh according to the index sets IF0 , . . . , IFd corresponding
to the coefficients of F . This yields d+ 1 subbases VFh,0, . . . ,VFh,d.

2. For each subbasis VFh,1, . . . ,VFh,d, order the elements such that elements sharing a face
in Fh,i are consecutive. Consequently, order the basis functions in each VFh,i elemen-
twise according to this ordering of the elements. Lastly, order the basis functions in
VFh,0 elementwise for some arbitrary ordering of the elements.

In particular, this leads to a block-tridiagonal structure with block sizes that only depend
on the polynomial degree k, the spatial dimension d and the number of indices belonging
to each IFi , i = 1, . . . , d. Hence, the bandwidth is independent of the total number of
elements.

Further, off-diagonal blocks can only appear if the corresponding basis functions belong
to elements sharing a face in Fh,i, i = 1, . . . , d. Thus, the resulting matrix has diagonal
blocks corresponding to rows of elements along the ith direction. These diagonal blocks
completely decouple.

Given a Friedrichs’ operator F having decoupled partial derivatives, we denote the basis
functions ordered according to this procedure as

ψF1 , . . . ,ψ
F
Nh
.

As it does not matter in which order we enumerate the subbases VFh,i or the rows of elements
in the ith direction, i = 1, . . . , d, the ordering gained by this procedure is in general not
unique. Hence, we arbitrarily fix one suitable ordering.

Remark 6.6. It is possible to admit the mesh Th to have hanging nodes and still obtain
a banded structure of F with bandwidth independent of the total number of elements in
Th. To do so, one possibility is to start with a uniform mesh and refine the individual
elements (preferably preserving the tensorial structure within the element) as needed. In
that case F does not end up being block-tridiagonal, but having a higher number of sub-
and super-blockdiagonals. This is due to the fact that elements may have more than two
neighbors w.r.t. faces in Fh,i. The number of additional diagonals depends on the grade of
refinement along one row of unrefined elements sharing faces in the ith direction.

The strategy given in this section is still applicable, albeit with some modifications.
Namely, cluster the elements created by refinement of one element together and proceed
as in Section 6.3.2 for the unrefined elements. Lastly, order the clustered fine elements
corresponding to the ith coordinate of their center of mass. �

6.4 Efficiency of Peaceman–Rachford ADI schemes

In this section we apply the results from Section 6.3 to the dG-PR discretization of the
wave-type problem (2.24). To this end, we start with assumptions on the type of problem
we are considering.

Assumption 6.7. We assume that the following holds.

(i) The split operators Ã and B̃ defined in Section 2.4 have decoupled partial derivatives
with permutation matrices P

Ã
and P

B̃
, respectively.
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(ii) The field P T

Ã
MP

Ã
is block-diagonal a.e. on Ω with diagonal blocks of the same size

as P T

Ã

(
supx∈Ω |Ai(x)|

)
P
Ã

for i = 1, . . . , d.

(iii) The field P T

B̃
MP

B̃
is block-diagonal a.e. on Ω with diagonal blocks of the same size

as P T

B̃

(
supx∈Ω |Bi(x)|

)
P

B̃
for i = 1, . . . , d.

Assumption 6.7 poses conditions on the wave-type problem (2.24). Hence, it depends on
the original problem if such a splitting is even possible.

We call the combination of splitting a problem fulfilling Assumption 6.7 with using the
Peaceman–Rachford scheme for temporal discretization an alternating direction im-
plicit (ADI) scheme. The reason is that this splitting corresponds to a dimension splitting
of the operator L of the wave-type problem (2.24). We will see in Section 6.5 that applying
this scheme to the wave equation in R2 or to the isotropic Maxwell’s equations in R3 indeed
results in (variants of) the classical ADI schemes proposed in [Peaceman and Rachford,
1955] and [Namiki, 1999,Zhen et al., 2000], respectively.

In the course of this chapter we show that under Assumption 6.7 one step of the dG-PR
scheme can be performed in linear complexity w.r.t. the total number of elements in Th. To
this end, we make use of the special structure of Ã, B̃ and M and two different orderings
of Vh given by

Vh = {ψÃ
1 , . . . ,ψ

Ã
Nh
} = {ψB̃

1 , . . . ,ψ
B̃
Nh
}. (6.12)

In fact, we show that (6.6a), i.e.,(
M− τ

2A
)
un+1/2 =

(
M+ τ

2B
)
un

can be solved efficiently by using the ordering w.r.t. Ã. Analogously, we show that (6.6b),
i.e., (

M− τ
2B
)
un+1 =

(
M+ τ

2A
)(
un+1/2 + (fn+1 + fn)

)
can be solved in an efficient manner by using the ordering w.r.t. B̃.

6.4.1 Structure of the matrices

We start by investigating the structure of the stiffness matricesA andB. By their definition
in (6.5), we have

A =
((

Aψj
∣∣ψi)M)Nh

i,j=1
=
((
MAψj

∣∣ψi)Ω

)Nh

i,j=1
=
((

Ãψj
∣∣ψi)Ω

)Nh

i,j=1

and
B =

((
Bψj

∣∣ψi)M)Nh

i,j=1
=
((
MBψj

∣∣ψi)Ω

)Nh

i,j=1
=
((

B̃ψj
∣∣ψi)Ω

)Nh

i,j=1
.

Thus, by Assumption 6.7 both matrices are the stiffness matrices corresponding to Friedrichs’
operators having decoupled partial derivatives. By the discussion in Section 6.3 this means
that A and B can be reordered such that they are block-tridiagonal by using the orderings
ψÃ

1 , . . . ,ψ
Ã
Nh

and ψB̃
1 , . . . ,ψ

B̃
Nh

, respectively.

It remains to investigate the structure of the mass matrix M under the two orderings of
Vh given in (6.12). By the definition of the mass matrix (6.4), we have

M =
((
ψj
∣∣ψi)M)Nh

i,j=1
=
((
Mψj

∣∣ψi)Ω

)Nh

i,j=1
.
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Comparing Assumption 6.7 (ii) and (iii) to Definition 6.4 (ii) implies that M has the same
block-diagonal structure as A0 and B0. Hence, by the same reasoning as in Section 6.3.2
the mass matrix can only take non-zero values on the diagonal blocks of the tridiagonal
structure of A and B.

6.4.2 Implementation

The discussion in Section 6.4.1 yields that both
(
M− τ

2A
)
and

(
M− τ

2B
)
can be reordered

to have block-tridiagonal structure. Hence, we apply the following strategy to perform one
step of the dG Peaceman–Rachford scheme.

• Determine the ordering of basis functions given by

ψÃ
1 , . . . ,ψ

Ã
Nh

and ψB̃
1 , . . . ,ψ

B̃
Nh
.

• Solve the linear system (
M− τ

2A
)
un+1/2 =

(
M+ τ

2B
)
un

using the ordering w.r.t. Ã.

• Solve the linear system(
M− τ

2B
)
un+1 =

(
M+ τ

2A
)(
un+1/2 + (fn+1 + fn)

)
using the ordering w.r.t. B̃.

Using the suggested ordering, the matrices
(
M − τ

2A
)
and

(
M − τ

2B
)
are banded with

bandwidth independent of the total number of elements in Th. Therefore, this yields an
algorithm that can be performed in linear complexity w.r.t. this number.

Further, as already stated in Section 6.3.2, off-diagonal blocks in A and B can only appear
if the corresponding basis functions belong to elements sharing a face in Fh,i, i = 1, . . . , d.
This means that the linear systems one has to solve decouple into smaller linear systems
corresponding to rows of elements along one direction. Hence, we can easily parallelize one
half-step of the scheme by solving these linear systems simultaneously.

Remark 6.8. We can further speed up the method if the coefficients of Ã and B̃ and the
material tensor have a product structure. In that case, by choosing a tensorial basis for
Qk+1
d (K) on each K ∈ Th, the inner products comprising the stiffness and mass matrices

reduce to a product of one-dimensional integrals. This leads to a Kronecker product
structure of the resulting stiffness and mass matrices, which can be exploited to solve the
occurring linear systems more efficiently. �

Remark 6.9. As stated in Section 4.4.2 we can vary the Peaceman–Rachford scheme
(4.5) by treating the inhomogeneity differently and still obtain a second order scheme.
The associated linear system on RNh then reads(

M− τ
2A
)
un+1/2 =

(
M+ τ

2B
)
un,(

M− τ
2B
)
un+1 =

(
M+ τ

2A
)
un+1/2 +

(
M− τ

2A
)−1(fn+1 + fn

)
.

As this requires us to compute
(
M− τ

2A
)−1(fn+1+fn

)
, we need to solve an additional linear

system in each step. Hence, this variant is slightly more costly, but can still be evaluated
with the same linear complexity. However, this additional cost comes at the advantage of
less error terms occurring in the discretization error. �
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6.5 Examples

Lastly, let us revisit the examples given in Section 2.5. As we need Assumption 6.7 to be
fulfilled, this restricts the generality of the examples considered in this section. Namely,
to fulfill this assumption, we restrict ourselves to the two-dimensional advection and wave
equation. Further, for Maxwell’s equations we restrict ourselves to the isotropic case.

In the course of this section we show that under the aforementioned circumstances, our
examples admit a splitting such that the assumptions in Section 2.4 on the split operators
and Assumption 6.7 are fulfilled. To be more precise, we show that the split operators
are dissipative Friedrichs’ operators fulfilling the splitting properties (2.26) and (2.27).
Further, we show that these operators have decoupled partial derivatives, and that M
fulfills Assumption 6.7 (ii) and (iii).

6.5.1 The two-dimensional advection equation

Consider the advection equation (2.28) in Ω ⊂ R2, i.e.,{
∂tu = α · ∇u+ g in R+ × Ω,

u(0) = u0 in Ω.

Split operators

First, note that since we consider d = 2, we have

L̃ = α · ∇= α1∂1 + α2∂2.

We define the split operators by

Ã = α1∂1 and B̃ = α2∂2.

Both Ã and B̃ fulfill the conditions of Definition 2.15, and are therefore Friedrichs’ oper-
ators with coefficients

A0 = 0, A1 = α1, A2 = 0,

B0 = 0, B1 = 0, B2 = α2

(6.13)

and graph spaces
H(Ã) = {v ∈ L2(Ω) | α1∂1v ∈ L2(Ω)},

H(B̃) = {v ∈ L2(Ω) | α2∂2v ∈ L2(Ω)}.
Hence, we have

L̃v = Ãv + B̃v for all v ∈ H(Ã) ∩H(B̃),

confirming (2.26). Further, by (6.13), both the coefficients of Ã and B̃ fulfill Defini-
tion 6.4 (i) and (ii), meaning they have decoupled partial derivatives if the boundary
conditions are of a certain structure.

We additionally assume ∂1α1 > 0 and ∂2α2 > 0 in order to fulfill condition (2.20) assuring
that the split operators are dissipative. However, we want to point out that this is only a
restriction of our analytical framework as we excluded shift-dissipative operators. We do
not need this for the efficient implementation.
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Splitting of the boundary conditions

Next, we split the boundary operator L̃Γ defined in (2.29). Recall that, for v, w ∈ H(L̃),
we have 〈

L̃Γv
∣∣w〉 = −

(
|α · n|v

∣∣w)
Γ

= −
(
|α1n1 + α2n2|v

∣∣w)
Γ
.

By Assumption 6.1 the domain Ω is a finite union of bounded paraxial tensorial sets.
Hence, we can decompose the boundary Γ into two separate sets

Γ = Γ1 ∪ Γ2

with
Γi = {x ∈ Γ | n(x) = ±ei }, i = 1, 2.

This yields 〈
L̃Γv

∣∣w〉 = −
(
|α1|v

∣∣w)
Γ1
−
(
|α2|v

∣∣w)
Γ2
.

We now define the boundary operators ÃΓ : H(Ã)→ H(Ã)′ and B̃Γ : H(B̃)→ H(B̃)′ by〈
ÃΓv

∣∣w〉 = −
(
|α1|v

∣∣w)
Γ1

for all w ∈ H(Ã)

and 〈
B̃Γv

∣∣w〉 = −
(
|α2|v

∣∣w)
Γ2

for all w ∈ H(B̃).

Hence, we have
L̃Γv = ÃΓv + B̃Γv for all v ∈ H(Ã) ∩H(B̃),

confirming (2.27). Further, since we have m = 1, Definition 6.4 (iii) is trivially fulfilled.

It remains to show that ÃΓ and B̃Γ are dissipative boundary conditions for Ã and B̃,
respectively. However, note that we can retrieve the split operators Ã and ÃΓ from L̃

and L̃Γ, respectively, by setting α2 = 0. The same holds for B̃ and B̃Γ if we set α1 = 0.
Since we have shown that L̃Γ is a dissipative boundary condition for L̃ for more general
α, the claim readily follows.

Structure of the material tensor

Recall that the material tensor M for the advection equation is given by M = 1. This
trivially yields Assumptions 6.7 (ii) and (iii).

6.5.2 The two-dimensional acoustic wave equation

Next, we revisit the acoustic wave equation (2.30), i.e.,
ρ∂tp = ∇· q + g̃ in R+ × Ω,

∂tq = ∇p in R+ × Ω,

p(0) = p0, q(0) = q0 in Ω.

Again, we restrict ourselves to two spatial dimensions, i.e., Ω ⊂ R2 and thus m = 3.

Throughout this section, let

v =

(
p
q

)
with q =

(
q1

q2

)
and w =

(
p̃
q̃

)
with q̃ =

(
q̃1

q̃2

)
.
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Split operators

Because of d = 2, we have

L̃ =

(
0 ∇·
∇ 0

)
=

 0 ∂1 ∂2

∂1 0 0
∂2 0 0

 .

We define the split operators by

Ã =

 0 ∂1 0
∂1 0 0
0 0 0

 and B̃ =

 0 0 ∂2

0 0 0
∂2 0 0

 .

Hence, Ã and B̃ are Friedrichs’ operators with coefficients

A0 = 0, A1 =

(
0 eT1
e1 0

)
, A2 = 0,

B0 = 0, B1 = 0, B2 =

(
0 eT2
e2 0

) (6.14)

and graph spaces
H(Ã) = {(p, q) ∈ L2(Ω)× L2(Ω)2 | ∂1p ∈ L2(Ω), ∂1q1 ∈ L2(Ω)},

H(B̃) = {(p, q) ∈ L2(Ω)× L2(Ω)2 | ∂2p ∈ L2(Ω), ∂2q2 ∈ L2(Ω)}.
This yields

L̃v = Ãv + B̃v for all v ∈ H(Ã) ∩H(B̃),

confirming (2.26). Further, by (6.14) the coefficients of Ã and B̃ fulfill Definition 6.4 (i) and
(ii), meaning they have decoupled partial derivatives if equipped with dissipative boundary
conditions that possess a certain structure.

Splitting of the boundary conditions

We now split the boundary operator L̃Γ given in (2.31). First, recognize that, for v, w ∈
H(L̃), integration by parts yields〈

L̃Γv
∣∣w〉 =

〈
n · q

∣∣ p̃〉− 〈n · q̃ ∣∣ p〉
=
(
∇· q

∣∣ p̃)
Ω

+
(
q
∣∣ ∇p̃)

Ω
−
(
∇p
∣∣ q̃)

Ω
−
(
p
∣∣ ∇· q̃)

Ω

=
(
∂1q1

∣∣ p̃)
Ω

+
(
q1

∣∣ ∂1p̃
)

Ω
−
(
∂1p

∣∣ q̃1

)
Ω
−
(
p
∣∣ ∂1q̃1

)
Ω

+
(
∂2q2

∣∣ p̃)
Ω

+
(
q2

∣∣ ∂2p̃
)

Ω
−
(
∂2p

∣∣ q̃2

)
Ω
−
(
p
∣∣ ∂2q̃2

)
Ω
.

Now, we define ÃΓ : H(Ã)→ H(Ã)′ and B̃Γ : H(B̃)→ H(B̃)′ by〈
ÃΓv

∣∣w〉 =
(
∂1q1

∣∣ p̃)
Ω
−
(
∂1p

∣∣ q̃1

)
Ω

+
(
q1

∣∣ ∂1p̃
)

Ω
−
(
p
∣∣ ∂1q̃1

)
Ω

(6.15)

for all w ∈ H(Ã) and〈
B̃Γv

∣∣w〉 =
(
∂2q2

∣∣ p̃)
Ω
−
(
∂2p

∣∣ q̃2

)
Ω

+
(
q2

∣∣ ∂2p̃
)

Ω
−
(
p
∣∣ ∂2q̃2

)
Ω

for all w ∈ H(B̃). This yields

L̃Γv = ÃΓv + B̃Γv for all v ∈ H(Ã) ∩H(B̃),

confirming (2.27).
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We next show that Definition 6.4 (iii) is fulfilled. Thus, we need to determine the matrix
fields associated with ÃΓ and B̃Γ. For v, w sufficiently smooth, integration by parts yields〈

ÃΓv
∣∣w〉 =

(
n1q1

∣∣ p̃)
Γ
−
(
n1p

∣∣ q̃1

)
Γ

and 〈
B̃Γv

∣∣w〉 =
(
n2q2

∣∣ p̃)
Γ
−
(
n2p

∣∣ q̃2

)
Γ
.

Hence, the matrix fields associated with ÃΓ and B̃Γ are given by

N
Ã

=

 0 n1 0
−n1 0 0

0 0 0

 and N
B̃

=

 0 0 n2

0 0 0
−n2 0 0

 ,

showing Definition 6.4 (iii).

It remains to show that ÃΓ and B̃Γ are dissipative boundary conditions for Ã and B̃,
respectively. Both operators fulfill Definition 2.21 (B1) as they are skew-symmetric. To
show Definition 2.21 (B2), let v, w ∈ H(Ã). By Definition 2.19 the boundary operator Ã∂

is given by 〈
Ã∂v

∣∣w〉 =
(
∂1q1

∣∣ p̃)
Ω

+
(
∂1p

∣∣ q̃1

)
Ω

+
(
q1

∣∣ ∂1p̃
)

Ω
+
(
p
∣∣ ∂1q̃1

)
Ω
.

Hence, with (6.15) we have〈
(Ã∂ − ÃΓ)v

∣∣w〉 = 2
(
∂1p

∣∣ q̃1

)
Ω

+ 2
(
p
∣∣ ∂1q̃1

)
Ω

and 〈
(Ã∂ + ÃΓ)v

∣∣w〉 = 2
(
∂1q1

∣∣ p̃)
Ω

+ 2
(
q1

∣∣ ∂1p̃
)

Ω
.

Therefore, we can decompose v into

v =

(
p
0

)
+

(
0
q

)
with

(
p
0

)
∈ ker(Ã∂ + ÃΓ) and

(
0
q

)
∈ ker(Ã∂ − ÃΓ),

confirming Definition 2.21 (B2) for ÃΓ. Proceeding analogously shows the claim for B̃Γ.

Structure of the material tensor

Recall that the material tensor M is given a.e. on Ω by

M =

(
ρ 0
0 I

)
with ρ being scalar. Hence, M is diagonal a.e. on Ω, showing Assumptions 6.7 (ii) and
(iii).

Remark 6.10. We want to point out that the splitting in this section is similar to the split-
ting in [Peaceman and Rachford, 1955], where the ADI method was originally proposed.
The difference being that in this paper, the Laplace operator instead of the div-grad op-
erator was split. However, the acoustic wave equation can be associated with the Laplace
operator by changing into the second order formulation. Splitting the Laplace operator as
in [Peaceman and Rachford, 1955] should lead to similar split problems as the ones in this
section. �
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6.5.3 Maxwell’s equations

Lastly, we once again consider Maxwell’s equations (2.32), i.e.,
ε∂tE = ∇×H − σE − J in R+ × Ω,

µ∂tH = −∇×E in R+ × Ω,

E(0) = E0, H(0) = H0 in Ω.

To fulfill Assumption 6.7 we have to restrict ourselves to isotropic materials. Hence, assume
that ε, µ, σ are diagonal.

Throughout this section, let

v =

(
E
H

)
with E =

E1

E2

E3

 and H =

H1

H2

H3


and

w =

(
Ẽ

H̃

)
with Ẽ =

Ẽ1

Ẽ2

Ẽ3

 and H̃ =

H̃1

H̃2

H̃3

 .

Split operators

Recall that the Maxwell operator is given by

L̃ =

(
0 ∇×
−∇× 0

)
−
(
σ 0
0 0

)
with

∇×=

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 .

The idea to obtain suitable split operators is to first split the curl-operator into a positive
and a negative part, namely

∇×= C1 − C2 with C1 =

 0 0 ∂2

∂3 0 0
0 ∂1 0

 and C2 =

 0 ∂3 0
0 0 ∂1

∂2 0 0

 .

With this, we define the split operators

Ã =

(
0 C1

C2 0

)
−
(
σ
2 0
0 0

)
and B̃ =

(
0 −C2

−C1 0

)
−
(
σ
2 0
0 0

)
.

This yields that Ã and B̃ are Friedrichs’ operators with coefficients

A0 =

(
σ
2 0
0 0

)
, Ai =

(
0 aTi
ai 0

)
, i = 1, 2, 3,

B0 =

(
σ
2 0
0 0

)
, Bi =

(
0 −bTi
−bi 0

)
, i = 1, 2, 3,



6.5 | Examples 97

where a1, a2, a3, b1, b2, b3 ∈ R3×3 with a1 = bT1 = e2e
T
3 , a2 = bT2 = e3e

T
1 and a3 = bT3 = e1e

T
2 .

Hence, Definition 6.4 (i) and (ii) are fulfilled. Therefore, if combined with a boundary con-
dition that has a suitable structure, Ã and B̃ have decoupled partial derivatives. Further,
the graph spaces of Ã and B̃ are given by

H(Ã) = {(E,H) ∈ L2(Ω)3 × L2(Ω)3 | C2E ∈ L2(Ω)3, C1H ∈ L2(Ω)3},

H(B̃) = {(E,H) ∈ L2(Ω)3 × L2(Ω)3 | C1E ∈ L2(Ω)3, C2H ∈ L2(Ω)3}.
Altogether, this yields

L̃v = Ãv + B̃v for all v ∈ H(Ã) ∩H(B̃),

i.e., (2.26) is fulfilled.

Splitting of the boundary conditions

Next, we split the boundary operator L̃Γ defined in (2.33). For v, w ∈ H(L̃) we have〈
L̃Γv

∣∣w〉 =
(
∇×H

∣∣ Ẽ)
Ω

+
(
∇×E

∣∣ H̃)
Ω
−
(
E
∣∣ ∇×H̃)

Ω
−
(
H
∣∣ ∇×Ẽ)

Ω

=
(
C1H

∣∣ Ẽ)
Ω
−
(
C2E

∣∣ H̃)
Ω
−
(
E
∣∣ C1H̃

)
Ω

+
(
H
∣∣ C2Ẽ

)
Ω

−
(
C2H

∣∣ Ẽ)
Ω

+
(
C1E

∣∣ H̃)
Ω

+
(
E
∣∣ C2H̃

)
Ω
−
(
H
∣∣ C1Ẽ

)
Ω
.

Hence, define the split operators ÃΓ : H(Ã)→ H(Ã)′ and B̃Γ : H(B̃)→ H(B̃)′ by〈
ÃΓv

∣∣w〉 =
(
C1H

∣∣ Ẽ)
Ω
−
(
C2E

∣∣ H̃)
Ω
−
(
E
∣∣ C1H̃

)
Ω

+
(
H
∣∣ C2Ẽ

)
Ω

for all w ∈ H(Ã) and〈
B̃Γv

∣∣w〉 = −
(
C2H

∣∣ Ẽ)
Ω

+
(
C1E

∣∣ H̃)
Ω

+
(
E
∣∣ C2H̃

)
Ω
−
(
H
∣∣ C1Ẽ

)
Ω

for all w ∈ H(B̃). By construction, we have

L̃Γv = ÃΓv + B̃Γv for all v ∈ H(Ã) ∩H(B̃),

yielding (2.27).

Next, we determine the matrix fields associated with ÃΓ and B̃Γ to confirm Defini-
tion 6.4 (iii). Hence, let v, w be sufficiently smooth. Then, using integration by parts
in each component we obtain〈

ÃΓv
∣∣w〉 =

(
N1H

∣∣ Ẽ)
Γ
−
(
N2E

∣∣ H̃)
Γ

and 〈
B̃Γv

∣∣w〉 = −
(
N2H

∣∣ Ẽ)
Γ

+
(
N1E

∣∣ H̃)
Γ

with

N1 =

 0 0 n2

n3 0 0
0 n1 0

 and N2 =

 0 n3 0
0 0 n1

n2 0 0

 .
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Thus, the matrix fields associated with ÃΓ and B̃Γ are given by

N
Ã

=

(
0 N1

−N2 0

)
and N

B̃
=

(
0 −N2

N1 0

)
,

which shows that Definition 6.4 (iii) is fulfilled.

Lastly, we show that ÃΓ and B̃Γ are dissipative boundary conditions for Ã and B̃, re-
spectively. Definition 2.21 (B1) is apparent, since both ÃΓ and B̃Γ are skew-symmetric.
For Definition 2.21 (B2), let v, w ∈ H(Ã). By Definition 2.19 the boundary operator Ã∂

associated with Ã is given by〈
Ã∂v

∣∣w〉 =
(
C1H

∣∣ Ẽ)
Ω

+
(
C2E

∣∣ H̃)
Ω

+
(
E
∣∣ C1H̃

)
Ω

+
(
H
∣∣ C2Ẽ

)
Ω
.

Hence, we have 〈
(Ã∂ − ÃΓ)v

∣∣w〉 = 2
(
C2E

∣∣ H̃)
Ω

+ 2
(
E
∣∣ C1H̃

)
Ω

and 〈
(Ã∂ + ÃΓ)v

∣∣w〉 = 2
(
C1H

∣∣ Ẽ)
Ω

+ 2
(
H
∣∣ C2Ẽ

)
Ω
.

This yields

v =

(
E
0

)
+

(
0
H

)
with

(
E
0

)
∈ ker(Ã∂ + ÃΓ) and

(
0
H

)
∈ ker(Ã∂ − ÃΓ),

which shows Definition 2.21 (B2) for ÃΓ. The claim is proven analogously for B̃Γ.

Structure of the material tensor

The material tensor M is given a.e. on Ω by

M =

(
ε 0
0 µ

)
and is therefore diagonal a.e. on Ω. This yields Assumptions 6.7 (ii) and (iii).

Remark 6.11. This splitting for Maxwell’s equations was originally proposed in [Namiki,
1999,Zhen et al., 2000] for a finite difference discretization of undamped Maxwell’s equa-
tions on the Yee grid. In this context it is known as the ADI-FDTD method. The
way to split the damping term involving the conductivity σ is taken from [Eilinghoff and
Schnaubelt, 2018], and the operator splitting framework used in this example is inspired
by [Hochbruck et al., 2015a]. �

Conclusion

As we have seen, all three examples in this section admit a splitting for which Assump-
tion 6.7 is fulfilled. In particular, this means that the error analysis of the dG-PR scheme
given in Chapter 5 is valid for these problems. Further, the special structure of these
problems allows us to implement the scheme by following the procedure described in Sec-
tion 6.4.2. This yields an unconditionally stable method of temporal order two and spatial
order k, of which one step in time can be performed with linear complexity w.r.t. the
number of total elements in the spatial mesh.



7 Numerical experiments

In this chapter we present some numerical experiments to illustrate the theoretical results
we obtained over the course of the thesis. As a proof of concept we have implemented the
dG-PR method for Maxwell’s equations with splitting performed as in Section 6.5.3. In
particular, this was done for isotropic Maxwell’s equations without damping or external
currents, i.e., ρ = J = 0.

7.1 Implementation

We have implemented the scheme with the help of the C++ finite element library deal.ii
[Bangerth et al., 2007], which was used to assemble the mass and the stiffness matrices
stemming from the dG discretization. The implementation of the dG-PR scheme itself was
done as described in Section 6.4.2.

In particular, we implemented a matrix class adapted to the dG-PR scheme. Solving
is performed by calculating a block LU-decomposition of the block-tridiagonal matrices
before starting the time stepping process. Then, in each step, the occurring linear systems
are solved by forward and backward substitutions. This amounts to only matrix-vector
multiplications in each step with matrices of the size of the tridiagonal blocks. Since the
block banded structure of the matrix is preserved by the LU-decomposition, each step can
therefore even be performed in linear complexity w.r.t. the full number of basis functions
Nh (as opposed to only the number of elements of the mesh).

We further parallelized the code by exploiting that the linear systems corresponding to
lines of elements along one direction completely decouple, as described at the end of Sec-
tion 6.4.2. This parallelization was achieved by using the C++11-class std::thread.

7.2 Problem setup

All experiments were performed on the cuboidal domain Ω = [0, 2]× [0, 1]2 equipped with
a uniform tensorial mesh of various mesh widths. As a reference example, we used the
exact solution given by

E(t, x) = ε−1

Ê1 cos(κ1x1) sin(κ2x2) sin(κ3x3)

Ê2 sin(κ1x1) cos(κ2x2) sin(κ3x3)

Ê3 sin(κ1x1) sin(κ2x2) cos(κ3x3)

 cos(Θt),

99



100 7 | Numerical experiments

10−1 10−0.5

10−1.5

10−1

10−0.5

element diameter h

‖e
N

τ

‖ M

10−0.8 10−0.6 10−0.4

10−3

10−2

element diameter h

10−0.5 100

10−3

10−2

10−1

100

element diameter h

Figure 7.1: Convergence of the dG-PR method w.r.t. the mesh width h. From left to right the
polynomial degree is k = 1, k = 2 and k = 3. The dashed reference lines have slope k and k + 1.
We have used Nτ = 20000 steps for the time integration.

H(t, x) = c2Θ−1

(Ê2κ3 − Ê3κ2) sin(κ1x1) cos(κ2x2) cos(κ3x3)

(Ê3κ1 − Ê1κ3) cos(κ1x1) sin(κ2x2) cos(κ3x3)

(Ê1κ2 − Ê2κ1) cos(κ1x1) cos(κ2x2) sin(κ3x3)

 sin(Θt)

for (t, x) ∈ R+ ×Ω. Here, c = (εµ)−1/2 is the speed of light, κ = (κ1, κ2, κ3) ∈ R3
+ is the

wave vector and Θ = c ‖κ‖ is the angular frequency. Further, Ê1, Ê2, Ê3 are preset
amplitudes of the waves. For our experiments we chose

ε ≡ µ ≡ 1, κ1 = κ2 = κ3 = 2π and Ê1 = −1, Ê2 = 0, Ê3 = 1.

This initial data also fulfills the perfectly conducting boundary conditions.

7.3 Convergence behavior

We start by confirming the bounds on the full discretization error obtained in Chapter 5.
In other words, we investigate the spatial and temporal convergence rates of the dG-PR
method applied to the aforementioned reference example.

Spatial convergence

Spatial convergence, i.e., the behavior of the full discretization error under mesh refinement
can be seen in Figure 7.1. The simulation interval for the experiments was [0, 2], and all
errors were measured at the end time Tend = 2. These simulations were carried out using
the timestep τ = 10−4 to ensure that the time integration error is negligible. We see
that the convergence rates are between about one and half an order better than the ones
predicted by Theorem 5.15. This is possibly due to the smooth exact solution and the
regular structure of the meshes in use.

Temporal convergence

Next, we have a look at the temporal convergence order of the dG-PR method. Results
of our numerical experiments are given in Figure 7.2. The simulation interval for these
experiments was [0, 8], and all errors were measured at the end time Tend = 8. The temporal
convergence order of two predicted by Theorem 5.15 is clearly validated by these results.
Further, there is no sign of any stability constraints, again matching the theory.
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(a) Error of the dG-PR scheme for polynomial
degree k = 2 for mesh sizes given in the legend.
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10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

timestep τ

‖e
N

τ

‖ M

k = 1
k = 2
k = 3

(c) Error of the dG-PR scheme for fixed mesh
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in the legend.

Figure 7.2: Convergence of the dG-PR method w.r.t. the timestep τ . We have used Nτ = Tend
τ

steps for the time integration. The dashed reference line in all three graphs have slope 2.

7.4 Runtime behavior

Lastly, we confirm the runtime behavior predicted in Chapter 6. All simulations in this
section were carried out on the simulation interval [0, 2] with timestep τ = 0.01.

In Figure 7.3 we have plotted the total runtime tall of the dG-PR method against the
number of elements in the considered mesh Th. The resulting slopes confirm that the
algorithm is indeed of linear complexity w.r.t. the number of mesh elements |Th|.

For comparison, we have also plotted the runtime of the fully explicit leapfrog or Verlet
method from [Sturm, 2017, Section 4.2]. This scheme was combined with the same dG
discretization of the spatial operators, leading to the dG-leapfrog scheme. The similarity
in runtime behavior underlines the claim that the dG-PR method can be evaluated roughly
at the cost of an explicit scheme. Further, we can see that the leapfrog scheme becomes
unstable at some point, whereas the dG-PR scheme stays stable throughout all calculations.
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(a) Polynomial degree k = 1. At the last
data point the dG-PR scheme took ∼ 2.1 times
longer than the dG-leapfrog scheme.
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(b) Polynomial degree k = 2. At the last
data point the dG-PR scheme took ∼ 1.6 times
longer than the dG-leapfrog scheme.

102 103

100

101

102

103

|Th|

t a
ll

[s
ec

]

(c) Polynomial degree k = 3. At the last
data point the dG-PR scheme took ∼ 2.5 times
longer than the dG-leapfrog scheme.

Figure 7.3: Total runtime tall of the dG-PR and dG-leapfrog scheme for polynomial degrees
k = 1, k = 2 and k = 3. The dashed reference lines in all three graphs have slope 1. The grayed
out points indicate meshes for which the dG-leapfrog scheme was unstable.

In Figure 7.4 we have further illustrated the benefit of the parallelization described at the
end of Section 7.1. The first column shows the effect on the overall runtime tall (includ-
ing assembling, etc.). In the second column, the time tsolv needed to solve all occurring
linear systems during runtime is plotted. This demonstrates that the straightforward par-
allelization described in Section 6.4.2 is almost optimal, at least if performed with shared
memory.
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(a) Speed-up at the last data point: ∼ 2.26.
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(b) Speed-up at the last data point: ∼ 3.92.
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(c) Speed-up at the last data point: ∼ 1.66.
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(d) Speed-up at the last data point: ∼ 3.93.
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(e) Speed-up at the last data point: ∼ 2.03.
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(f) Speed-up at the last data point: ∼ 3.91.

Figure 7.4: Total runtime tall and time needed to solve all linear systems tsolv of the parallelized
and serial dG-PR scheme for polynomial degrees k = 1, k = 2 and k = 3. The dashed reference
lines in all six graphs have slope 1, and the grayed out, dashed lines correspond to the serial version.
Parallelized results were generated by using four threads on a 4-core CPU with shared memory.
The speed-up factors are given in the subcaptions.
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List of Constants

Let

• Ω ⊂ Rd be a bounded, open and connected Lipschitz domain with boundary Γ = ∂Ω,

• K ⊂ Ω be an open subset of Ω,

• p ∈ Z,

• F be a Friedrichs’ operator with coefficients (Fi)
d
i=0 and dissipative boundary condi-

tion FΓ,

• TH be a shape- and contact-regular sequence of meshes discretizing Ω,

• Th ∈ TH be a general mesh of Ω,

• Ã and B̃ be the split operators used in Theorem 5.15.

Then the constants used throughout this thesis are given as follows.

Constant Definition Page
C̃1,K,F max

i=0,...,d
{ max
j=1,...,d

‖∂jFi‖∞,K , ‖Fi‖∞,K} 16
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2 (d+ 1)C̃1,K,F 16, 76,
77

CF ,K max
i=0,...,d

‖Fi‖∞,K 16, 17

N∂ maxK̂∈Th |F
K̂
h | 31, 32,

44, 45,
46, 47,
114

ρ1 Shape-regularity parameter of TH 32, 34,
35

ρ2 Contact-regularity parameter of TH 32, 34,
35

ρ ρ1ρ2 32, 33,
44, 45,
46, 47,
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C ′inv Inverse inequality constant of ∇ 34
Cinv

√
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i=0,...,d
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C ′app Optimal polynomial approximation constant (Interpola-
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35

Capp Optimal polynomial approximation constant (Projection) 36, 46,
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(Projection)

36, 46,
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