
Anomaly Detection and Exploratory
Causal Analysis for SAP HANA

Master’s Thesis
by

Jianqiao Jin

Chair of Pervasive Computing Systems/TECO
Institute of Telematics

Department of Informatics

&

SAP SE
SAP DBS SST Innovation & Algorithmic Analytics

Professor: Prof. Dr. Michael Beigl
Advisor (TECO): Dr. Nhung Ngo
Advisor (SAP): Michael Laux

Project Period: 01/08/2018 – 31/01/2019





Abstract

Nowadays, the good functioning of the equipment, networks and systems will be
the key for the business of a company to continue operating because it is never
avoidable for the companies to use information technology to support their business
in the era of big data. However, the technology is never infallible, faults that give
rise to sometimes critical situations may appear at any time. To detect and prevent
failures, it is very essential to have a good monitoring system which is responsible
for controlling the technology used by a company (hardware, networks and commu-
nications, operating systems or applications, among others) in order to analyze their
operation and performance, and to detect and alert about possible errors.

The aim of this thesis is thus to further advance the field of anomaly detection and
exploratory causal inference which are two major research areas in a monitoring
system, to provide efficient algorithms with regards to the usability, maintainability
and scalability. The analyzed results can be viewed as a starting point for the root
cause analysis of the system performance issues and to avoid falls in the system or
minimize the time of resolution of the issues in the future.

The algorithms were performed on the historical data of SAP HANA database at
last and the results gained in this thesis indicate that the tools have succeeded
in providing some useful information for diagnosing the performance issues of the
system.
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1. Introduction

The chapter gives a brief introduction about SAP, a market leader in

providing ERP solutions and services and emphasizes the importance

and necessity of system monitoring in business applications. Based on

this, the scope and the aims of the thesis are identified.

In our everyday lives nowadays, software systems play an important role in a wide
area of business and the good functioning of the systems will be the key for the busi-
ness to continue operating. Thus reliability of system is one of the major concerns
for software engineers. The increasing size of software systems and their inherent
complexity - which is essentially related to the intricate interdependencies among
many heterogeneous components - pose serious difficulties to its assessment and as-
surance [PRT10]. In order to guarantee high reliability, system behavior needs to
be monitored via tens of millions of metrics in the essential administrative areas
of a system and therefore system monitoring has gained much research attention
in application domains in recent years. Broadly speaking, monitoring1 consists of
collecting, processing, aggregating, and displaying real-time quantitative data about
a system.

SAP SE is one of the largest vendors of enterprise resource planning (ERP) soft-
ware and related enterprise applications. The company’s ERP system enables its
customers to run their business processes, including accounting, sales, production,
human resources and finance, in an integrated environment. The integration ensures
that information flows from one SAP component to another without the need for
redundant data entry and helps enforce financial, process and legal controls. To
this end, SAP has developed a database system called HANA(High performance

1There is no uniformly shared vocabulary for discussing all topics related to monitoring.
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Analytical Appliance) that will replace the traditional relational database systems,
overcome the limiting technological and conceptual factors of current enterprise ap-
plication landscapes and eliminate the performance bottlenecks of operative systems
to allow running transactional systems and executing complex queries and analysis
in a single real-time environment. In a word, SAP HANA is a (super-fast) database
system, which application and analytical systems can access in order to read and
write data (super-fast). Proactive monitoring of the SAP HANA database will help
the engineers to understand issues in advance and to take corrective actions and thus
will lead to lesser downtime of the database, improving profitability of the business
organization.

The metrics of a system are always collected as sequences of values over time, more
precisely as time series. Time series are finite or unbounded sequences of data points
in increasing order by time. As time series can be used to represent the behavior of
metrics in general, the development of methods and systems for efficient transfer,
storage, and analysis of time series is a necessity to enable and strengthen the system
monitoring services.

1.1 Goals

Imagine that a domain expert is monitoring CPU utilization in a data center2. CPU
utilization is the value between 0-100, which refers to percentage of CPU usage by
process. At some time points, he observes that the value is relatively high compared
to the normal case and then he is afraid that soon after it may not be available
for new process, resulting in that new request is placed in a queue and it produces
bottleneck in the system.

In such a case, the expert thinks that CPU utilization becomes critical and he
wants to know what has caused the growth of CPU utilization and how the growth
of CPU utilization actually affects the system at that moment, which may help
him to have a good overview for handling resource management in the data center.
However, the amount of data resulting from the data center is huge and analyzing
the metrics in the data center manually is always time consuming and exhausting.
As a consequence, it would be very beneficial to have some automatic methods
supporting the expert by detecting unexpected behavior of a metric and giving the
expert a dependency structure of the system when some unexpected behavior have
been detected. Therefore, this thesis researches ways of automatically optimizing
the described process of analyzing metrics of a system, e.g. SAP HANA database
with the following two aims:

• Aim 1: detecting unexpected behavior of a metric in the system,

• Aim 2: investigating the inter-dependence structure of the underlying system
of various metrics when some unexpected behavior in a certain metric are
detected.

On-line Unsupervised Anomaly Detection Unexpected behavior of a metric
are always called anomalies. A challenge, for both machines and humans, is identi-

2CPU utilization is displayed by some visualization tools.
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fying an anomaly because the problem is often ill-posed3 which makes it hard to tell
what an anomaly is. Fortunately, metrics of a system are collected and expressed
in the form of time series and anomaly detection in time series has been recently
an active research area in the fields of statistics and machine learning because it
is important across many industries. In time series, the assumption of temporal
continuity plays an important role in identifying anomalies. Temporal continuity
means that the pattern in the data are not expected to change abruptly, unless
there are abnormal processes at work [Agg17]. One issue concerning anomaly detec-
tion is that it is difficult, even impossible to obtain a very well-sampled abnormal
data [HG09], which unfortunately makes conventional classification schemes unsuit-
able for solving problems. Without non-representative abnormal instances available
as training data, anomaly detection is largely an unsupervised problem where the
negative class is either not present or not properly sampled in the train set. This
aspect of anomaly detection tends to make it more challenging than classification
problems solved always by supervised learning. Additionally, metrics always behave
like streaming data in real applications, resulting in that the nature of data source
may change over time, e.g. software upgrades and configuration changes can occur
at any time and may alter the behavior of the data. Therefore, a model trained
off-line is highly likely not suitable for a continuous sequence of data occurring in
real time. Under the circumstance, the first goal of this thesis is to detect anomaly
in univariate time series data with an algorithm which should be constantly adapt
to a new definition of “normal” in an unsupervised, automated fashion.

Exploratory Causal Analysis We always think that the various metrics of a sys-
tem are not independent but affect each other over time. Therefore, when anomalies
in a certain metric are detected, an engineer often needs to inspect the system closely.
Naturally, there are two issues he is mostly concerned with: what has caused the
anomalies and how they affect the system, in other words, he wants to investigate
the inter-dependence structure of the underlying system of multiple metrics. When
it comes to dependency between time series data, the Pearson correlation coefficient
will be the first to jump into our minds. However, it has some limitations for solving
the above mentioned two issues. First, it focuses on pairwise correlation which is not
applicable to a multivariate case. Second, it can only discover linear relationship but
non-linear interaction between metrics is highly possible in real system. The last,
but most importantly, “correlation does not imply causation” because it is a sym-
metric measurement and cannot imply that one causes the others or one is affected
by the others [A+95], which needs some directional measurements to realize.

In such cases, time series causality tools are more suitable than the Pearson correla-
tion coefficient. The definition of causality is always based on two major principles:
(1) the cause happens prior to the effect and (2) the cause makes unique changes in
the effect [Wie56]. Even though there have been extensive debates on the validity
and generality of these principles, most of time series causality tools are designed
by assuming their correctness, therefore, a lot of philosophers and physicists in-
sist that such tools should not be considered casual at all but only statistical and
associational tools [J.P09, aJP13, BP13]. In fact, making a general causal state-

3An ill-posed problem is one which doesn’t meet the three Hadamard criteria for being well-
posed. (see: https://en.wikipedia.org/wiki/Well-posed problem)

https://en.wikipedia.org/wiki/Well-posed_problem
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ment always requires a huge amount of experiments and analysis to confirm some
findings, however, time series causality tools only make analysis with the available
data and find some potential causal information among data, which is more like
exploratory data analysis, a concept proposed by Tukey [Tuk77]. Under such cir-
cumstance, McCracken [McC16] labels the causal inference with time series causality
tools as exploratory causal analysis, emphasizing that it is intended to determine if
and what causal structure may be present in a given set of time series data but is
not intended to confirm such structure. Anyway, the dependency structure as the
primary information can give the engineers or domain-experts a deep insight of the
system when anomalies are detected, which would support them to find the root
causes for anomalies or make some intervention to keep the system stable. To this
end, the second goal of this thesis is to construct a temporal-causal structure of the
underlying system with some scalable time series causality tools.

1.2 Thesis Contributions

This work in this thesis involves several contributions; in this section, the main con-
tributions are presented. The thesis contribution as a whole is on the application
of machine learning and statistical analysis. The first major contribution is liter-
ature review on existing anomaly detection and causal inference studies for time
series data. The review illustrates the types of anomaly in univariate time series
data, presents several well-known anomaly detection techniques and discusses their
limitations on streaming applications. In addition, the review distinguishes the ex-
ploratory causal analysis from confirmatory causal analysis in detail and introduces
some widely-used time series causal inference tools.

The second contribution is the online prototypes updating anomaly detection (OP-
UAD) algorithm for streaming applications. One of the main advantages of this
algorithm is computationally efficient, which is essential for streaming data.

The third contribution is using several variants of Granger causality to quantify
the temporal-causal effect among time series data. A synthetic linear standardized
VAR system and a synthetic nonlinear Henon system are generated to test the
performance of these comparative methods. The MLP Lasso-GC method, which
combines the multilayer perceptron neural network and lasso penalty, cannot only
learn the structure of the linear system, but also adapt to the nonlinear interactions.

The OPUAD algorithm and MLP Lasso-GC method advance the filed of anomaly
detection and causal inference respectively, which are two promising research areas
in time series data mining. From a business perspective, they can be integrated
in a monitoring service for diagnosing the performance issues of the system and to
increase productivity.

1.3 Outline

This thesis is organized in 6 chapters. Each chapter starts with a brief summary,
allowing the reader to rapidly understand the chapter’s content. The plan of each
chapter is as follows:

• Chapter 2 presents a literature overview on time series data mining, anomaly
detection techniques and causal inference tools for time series.
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• Chapter 3 introduces how to detect anomalies in an on-line, automated fash-
ion, especially for streaming data in real-time. After implementation, the
algorithm is evaluated by Numenta Anomaly Benchmark (NAB) which pro-
vides a controlled and repeatable environment of tools to test and measure
different anomaly detection algorithms on streaming data4.

• Chapter 4 describes various time series causality measures with their scalability
and performs simulations to show the performance of the competing methods.

• In Chapter 5, the developed algorithm of anomaly detection and designed
framework of exploratory causal analysis are applied to analyze the historical
data of SAP HANA database.

• Finally, Chapter 6 summarizes the thesis, discusses benefits and limitations of
the proposed approaches and identifies the further research directions.

4NAB will be introduced in Chapter 3.
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2. Background & Related Work

This chapter presents the related tasks in time series data mining at

first, then it is dedicated to anomaly detection for univariate time series,

categorizes anomalies and surveys corresponding techniques. After that,

it turns into casual inference for time series data and introduces a new

concept called exploratory causal analysis.

2.1 Time Series Data Mining

In almost every scientific field, such as economic forecasting, intrusion detecting,
gene expression analysis, medical surveillance etc., measurements are always per-
formed over time. These observations lead to a collection of organized data called
time series.

Definition 2.1. A time series X is a sequence of observations of data points
measured over a time interval

X = (x1, x2, ..., xN) xt ∈ R

A time series is often the result of the observation of an underlying process in the
course of which values are collected from measurements made at uniformly spaced
time instants and according to a given sampling rate. A time series can thus be
defined as a set of contiguous time instants. The series can be univariate as in the
above definition or multivariate when several series simultaneously span multiple
dimensions within the same time range.
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Time series can cover the full set of data provided by the observation of a process
or may be of considerable length. In the case of streaming, they are semi-infinite as
time instants continuously feed the series. It thus becomes interesting to consider
only the subsequences of a series.

Definition 2.2. Given a time series X = {xt}t∈Z of length N , a subsequence S
of X is a series of length M ≤ N consisting of contiguous time instants from X

S = (xk, xk+1, ..., xk+M−1)

with 1 ≤ k ≤ N −M + 1.

Therefore, we can easily conclude that the nature of time series data encompasses:
large in data size, high dimensionality and continuous update. With the enormous
amount of time series data present in everyday’s life, it is increasingly important to
develop powerful means for time series analysis and extract interesting knowledge
that could help in decision-making. The analysis process is referred to as time series
data mining.

In the context of time series data mining, there are various kinds of time series data
related tasks. Attempting to catalog them all would be burdensome, if it could be
done at all, and would yield the result out-of-date because of the ever-growing range
of real-life problems. Major time series related tasks, however, appear to fall into
the following eight broad categories:

• Indexing: Given a query time series Q and a similarity measure D(Q,X),
find the most similar time series in database DB [CKMP02, FRM94].

• Prediction: Given a time series X = (x1, x2, ..., xn), predict the k next values
(xn+1, ..., xn+k) that are most likely to occur [CW94].

• Clustering: Given a time series database DB and a similarity measure
D(Q,X), find natural groupings of time series in DB [AC01, KP98].

• Classification: Given an unlabeled time series X, assign it to one of two
predefined classes [Geu01, KP98].

• Segmentation: Given a time series X containing n data points, construct a
model X̄ of reduced dimensionality d̄ (d̄ << n) so that X̄ closely approximates
X [KP98].

• Motif Discovery: Given a time series X, find all subsequences that occur
repeatedly in the original time series [LKL+04].

• Anomaly Detection: Given a time series X, find all “surprising/interest-
ing/unexpected”occurrences, not fitting the normal pattern [Wei04].

• Causal Inference: Given a time series databaseDB and identify the temporal-
causal relationship between time series [ALA07].
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This work is mainly dedicated to the last two categories: anomaly detection and
causal inference, which are promising research directions recently due to the impor-
tance and necessity of system monitoring in business applications.

2.2 Anomaly Detection

In time series data mining, anomaly detection refers to the problem of finding oc-
currences in data that deviate from normal model or expected behavior as to arouse
suspicions that it was generated by a different mechanism [Haw80]. Depending on
context and domain these deviations can be referred to as anomalies, outliers, nov-
elties, aberrations, surprises, peculiarities etc. Among them, anomalies and outliers
are two terms most commonly used in the context of anomaly detection; sometimes
interchangeably [CBK09]. In this thesis, the term used is anomalies1. Anomaly
detection is an actual problem in various areas, such as intrusion detection, fraud
detection, financial transactions, medical and public health etc. Particularly, one
of the most important use cases for anomaly detection today is the application in
system monitoring services which is designed to increase uptime and reduce any
downtime through quick identification of any issues the minute they arise. Addi-
tionally, in time series data mining, vertical analysis is more important where each
individual series (or dimension) is treated as a unit [Agg17], and thus anomaly
detection in this thesis is primarily performed on univariate time series.

2.2.1 Anomaly Types

Time series consists of a set of values typically generated by continuous measure-
ment overtime, therefore, the data values are related to each other temporally and
influenced by the adjacent values of the data points, which means, temporally con-
textual dependency is important. Therefore, an anomaly in a time series is always
a contextual anomaly because the data values are never be treated as independent
of one another for anomaly detection of time series data.

Much of the work on time-series anomaly detection is to determine unusual changes
or very large deviations from the underlying series. There are mainly two types
of deviations, the one is based on the individual deviations of the data points, the
other on the shapes of specific portions of the time series with respect to the other
extracted portions [Agg17]. Therefore, a contextual anomaly in time series can be
classified in the following two categories:

• Type 1: point anomaly in univariate time series: A single point can be consid-
ered as abnormal with respect to the rest of data. Sometimes, some thresholds
are set to define the border between normal and abnormal. In such a case, a
point violating the valid range is also referred to as spatial anomaly because it
can be declared abnormal without contemplating other observations [ALPA17].
A point anomaly, considered as an anomaly only in a specific temporal context,
but not otherwise, is not a spatial anomaly.

1Solutions for outliers detection, novelties detection are often used for anomaly detection and
vice versa, even though there are some subtle differences in the definition of each term.
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• Type 2: collective anomaly in univariate time series: If a group of points is
declared anomalous with respect to the entire data set, it is termed a col-
lective anomaly. The individual data points in a collective anomaly may not
be abnormal by themselves, but their occurrence together as a collection is
anomalous.

Examples

To give examples for each of the two types of anomalies, a synthetic time series with
200 data points is generated as Figure 2.1 shows. The generator performs like a sine
wave describing a smooth periodic oscillation and the valid range is [−1, 1], however
at some time stamps the pattern of the data is not expected to change abruptly.

0 50 100 150 200

−2

−1.5

−1

−0.5

0

0.5

1

lines+markers trace 1 trace 2 trace 3

Time Stamp

V
al
ue

Figure 2.1: A Synthetic Time Series with Anomalies.

It is evident that there is a sudden change in the process at time stamp 115(marked
in orange) and at time stamp 151(marked in red) respectively. The value of the point
at time stamp 151 drops to -2 and exceeds the valid range far away, since no further
observations need to be contemplated in order to make the decision, the point is
easily declared a spatial anomaly, while the value of the point at time stamp 115
is abnormal considering the consecutive data values in its neighborhood, but it is
valid in the range [−1, 1] and it appears several times before and later, therefore the
point is not a spatial anomaly, but a point anomaly. The subsequence(highlighted
in green) from time stamp 56 to 72 denotes a collective anomaly because the same
low value exists for an abnormally long time. It is difficult to tell that a single point
in the subsequence is an anomaly because it seems normal in its neighborhood and
its value is in the valid range. However, considering the whole time series, the points
in this subsequence together as a group are anomalous.

To summarize, a point anomaly in time series is defined at a specific time stamp,
while a collective anomaly shows very unusual behavior over multiple time stamps.
Some techniques determining large deviations from previous time stamps are efficient
in detecting point anomaly, but cannot differentially discover collective anomalies,
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because the entire series (or subsequence) needs to be viewed from the perspective
of other normal series [Agg17]. Under such circumstance, the discussion of anomaly
detection techniques in the later sections is divided into two parts with respect to the
different types of anomaly in time series: detection of point anomaly and detection
of collective anomaly.

2.2.2 Anomaly Detection Techniques

As a human, one is capable to point out which part of given time series is abnormal,
which points seem weird because a human has a neural capacity to recognize the
shape of a time series. However, it is time consuming and exhausting to perform
the task manually when there exist a huge amount of metrics in a system. There-
fore, machine learning and data mining techniques have been proposed for solving
anomaly detection of time series automatically.

Anomaly detection techniques always consist of two parts, a training phase and
detection phase. During the training phase, the techniques use a set of training
data to define a model which specifies what is considered normal and/or abnormal
with respect to the training set. In the detection phase, new or incoming data is
classified using the model from the training phase. Depending on the technique
and implementation, the result is either binary or returned as a level of anomaly.
A binary result implies that the tested data instance is either reported normal or
abnormal, while a result as a level of anomaly is an anomaly score produced from the
detection technique. Data instances with anomaly scores above some threshold level
could then be classified as anomalies. Usually, there are two types of data available
in the training phase, labeled or unlabeled data instances. For labeled data there
are labels associated with each data instances which give information whether the
instance is normal or abnormal, while for unlabeled data instances there is no such
information. In the time series setting, the data instances in the training set may
be a point, a subsequence or entire series, thus the labels may be associated with
time-instants, with time intervals or they may be associated with the entire series
[Agg17]. The training phase can be performed mainly in three ways relying on
whether or not labels are available:

• Supervised Learning: When applying supervised learning, the data for the
training phase must be labeled by some experts or algorithms before to show
what is normal or not. The challenge of supervised learning is that it is usually
very time consuming to label data and hard to collect all types of anomalies
in a training set. Even though the challenge can be overcome, an imbalanced
training set is inevitable, which means, the existence of the abnormal instances
is always far less than that of the normal instances because of the fact that
anomalies are rare [JAK01, JAK02, PAL04]. Learning on an imbalanced train-
ing set would produce a useless classifier.

• Semi-supervised Learning: Semi-supervised learning requires the training set
only with normal instances. However, it is difficult to find a training set that
covers all normal instances.

• Unsupervised Learning: Unsupervised learning does not use labeled data. In-
stead, this method assumes that the normal behavior is the most frequently
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occurring. Normal instances are then defined as the most frequently occurring
patterns, and instances deviating from these patterns are reported as anoma-
lies.

2.2.2.1 Point Anomaly Detection

Regression models based on prediction are the most common unsupervised learning
techniques of detecting anomalies at specific time stamps. The predictive model
is always learned on a training set in an unsupervised manner, which uses p ob-
servations (history) to predict the (p + 1)th observation following them. For a
test time series, the predictive model built in training phase is used to forecast
the observation at each time stamp with the observations seen so far (previous p
observations). The prediction error is thus selected as anomaly scores. Moving Av-
erage(MA) [Cha03], AutoRegression(AR) [FYM05, Cha03], Autoregressive Moving
Average(ARMA) [Pin05] are the commonly used models.

In some cases, the time series may have some persistent trends, as a result of which
it may drift away from the mean. This is referred to as the non-stationarity of
the time series. For example, we cannot expect to predict prices today based on
the prices from a hundred years back because the statistics of the price-based time
series today may be very different from that a hundred years back. In such cases, the
series can be de-trended by first differencing the time series before modeling. Such
a modeling approach is referred to as Autoregressive Integrated Moving Average
Model (ARIMA) [BGBMY01].

Probabilistic approaches have also been intensively investigated for point anomaly
detection. A training time series is always assumed to be generated from some
underlying probability distribution D, which represents “normality”. The test data
is evaluated by an estimated probability density function based on the training data.
The less the probability density is, the more likely the data point is an anomaly.
For the purpose of providing an estimated probability density function, Gaussian
mixture models (GMMs) and kernel density estimators have proven popular. GMMs
are typically classified as a parametric technique, because of the assumption that
the data are generated from a weighted mixture of Gaussian distributions [CBK09,
MS03]. Kernel density estimators are a non-parametric way to estimate the pdf of
data as they are closely related to histogram methods [DHS00, CBK09, MS03].

2.2.2.2 Collective Anomaly Detection

Unlike the cases discussed before where anomalies are defined by a single position,
a set of time stamps is always needed to be viewed collectively in order to learn
whether or not they should be considered an anomaly. In other words, collective
anomaly is always determined by the shape of time series. Under such circumstance,
there are two possibilities described in [Agg17]:

• Full-series anomaly: the shape of the entire series is treated as an anomaly. It
is always realized by comparing the given time series against a set of normal
series. However, the noise variations within the series will mask the anomalous
shape if the time series are collected over long periods of time.
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• Subsequence-based anomaly: A single time series has typical patterns over
shorter time periods as Figure 2.1 shows. Therefore, the anomalous shape is
detected over small windows of the time series as deviations from these typical
patterns.

In subsequence-based anomaly detection, the entire series is always divided into sev-
eral subsequences and then the extracted subsequences are treated as whole series,
which enables that most techniques for subsequence-based anomaly detection can
always be applied to full-series anomaly detection with some subtle changes. There-
fore, this section is only concerned with techniques for subsequence-based anomaly.

How to construct subsequences is important for subsequences-based anomaly detec-
tion. Mostly, the techniques divide the given time series into fixed size windows
(subsequences). If the subsequences are obtained by sliding one step at a time, con-
sidering all possible overlaps, it gets computationally inefficient since the number
of subsequences is nearly equal to the length of the time series. Alternatively, it
can be avoided by sliding a window of fixed length of m across the time series and
skipping h observations from the initial position of the current window to start the
next window. However, with a large h there can be some loss of information. Thus
the value of h has to be carefully chosen. Subsequently, various types of distance
based, neural network based, or information theoretic methods can be applied to
the extracted windows.

Distance based methods or Nearest neighbor-based techniques assume that normal
data instances occur in dense neighborhoods, while anomalies occur far from their
closest neighbors [CBK09]. The given time series are divided into subsequences
in some manner at first. The anomaly score of each subsequence is calculated by
the k-nearest neighbor distance of the subsequences. Distance measures could be
Euclidean distance, Manhattan distance etc.

Probabilistic approaches can also be applied to detecting collective anomaly. The
training time series is split into several sequences, each sequence would be viewed as
a data point in a high dimension. Then, estimating the probability density function
is the same to that in detecting point anomaly.

Neural network based approaches can autonomously model the underlying data, e.g.
an autoencoder neural network is an unsupervised learning algorithm setting the
target values to be equal to the inputs. Given a training time series and extract
subsequences in some ways, an autoencoder is trained for the purpose of sequence-
sequence learning, so that output is similar to input. The reconstruction error of the
sequences of test data, defined to be the distance between the input and output of the
learned neural network, can be related to the anomaly score. The replicator neural
network (RNN) is a variant of a feed-forward deep neural network (DNN) where the
input and output layers have the same size but the hidden layers have smaller sizes.
Setting the target values as the input forms an auto-encoder [HHWB02]. Unlike
a feed-forward DNN, a recurrent neural network (RNN2) contains recurrent loops
where the cells’ output state is fed back into the input state. Such recurrent connec-
tions give recurrent neural network the ability to have information persistence or a
temporal state, therefore forming short term memory [MKB+10]. A long short-term

2Recurrent neural network and replicator neural network share the same abbreviation.
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memory network (LSTM) is simply another form of recurrent neural network where
rather than a simple recurrent loop at each recurrent cell, the LSTM introduces a
more complex cell architecture for more accurately maintaining memory of impor-
tant correlations [SSB14]. Malhotra et al. [MRA+16] propose a Long Short Term
Memory Networks based Encoder-Decoder scheme for Anomaly Detection (EncDec-
AD) that learns to reconstruct “normal” time-series behavior, and thereafter uses
reconstruction error to detect anomalies.

Information theoretic methods compute the information content of a dataset using
measures such as entropy, relative entropy, etc. These methods assume that anomaly
significantly alters the information content of the otherwise“normal”dataset. Keogh
et al. [KLR04] propose parameter-free methods based on compression theory. In
such a case, the time series is divided into several subsequences using a sliding
window. Each subsequence is then compared with the entire sequence using a
compression-based dissimilarity method, the Kolmogorov complexity. Wang et al.
[WVL+11] present a method based on the relative entropy and multinomial goodness-
of-fit test. For the purpose of anomaly detection, the time series is first quantized
and discretized into k values, e.g. the percentage of CPU utilization which takes
value between 0 and 100 can be quantized into 10 buckets. For a subsequence, pi
denotes how possible values of this subsequence falls into ith bucket. Thus, each sub-
sequence corresponds to a distribution P = (p1, ..., pk). A subsequence is declared
anomaly when it largely deviates from the rest of subsequences by performing the
multinomial goodness-of-fit test with a threshold based on an acceptable false neg-
ative probability.

2.2.3 Streaming Applications

Most techniques discussed before separate the training phase from detection, a train-
ing time series is always viewed as a reference data to represent the normality by a
learned model. Some of them e.g. distance based and information theoretic tech-
niques are performed in an offline setting where anomalies can be detected only
after seeing the entire time series. In such cases, the advantage of hindsight may be
leveraged to identify abnormal time-series values or shapes [Agg17]. However, when
it comes to streaming application where a continuous sequence of data occurring
in real-time, the full data set is not available and a model trained offline is highly
likely not suitable for detection because the data source is always not stationary.
Therefore, the online setting is more realistic when dealing with the tremendous
amount of data in monitoring. The detector observes each data record in sequential
order as they arrive and process data and output a decision in real-time. Since data
source is often non-stationary, detectors must continuously learn and adapt to the
definition of an anomaly while simultaneously making decisions.

Let xt denote the value of a real-time metric in a system at time t, e.g. CPU
utilization in a data center. The detector receives a continuous stream of inputs
(..., xt−2, xt−1, xt, xt+1, xt+2, ...). At each point in time t the detector needs to deter-
mine whether the behavior of the monitored metric is unusual, therefore, it is more
suitable to treat the problem as point anomaly detection. The decision must be made
in real-time, before time t + 1, in other words, before the next input xt+1 arrives,
the detector has already considered the current and previous values to determine
whether or not the behavior of the monitored metric is abnormal. Unlike the offline
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setting, the detector can never look ahead and data is not split into train and test
set.

Moreover, software upgrades and configuration changes can occur at any time and
may alter the behavior of the monitored metrics, resulting in that the data source is
non-stationary, in such cases, the detector must adapt to a new definition of“normal”
in an unsupervised, automated fashion [ALPA17].

Early detection of anomalies is always necessary in streaming applications because
sometimes an anomaly could be a precursor to failure of system. Detecting such an
anomaly minutes in advance is far better than detecting it a few seconds ahead, or
detecting it after the fact [ALPA17], so that it can give an alert early enough which
enables the domain-experts to take some efficient actions to prevent system failure.
But if a detector makes frequent inaccurate detections, the domain experts would
be often asked to check the data and every time they need to inspect the data more
closely, finally they will not trust the detector any more.

Take the above requirements together, we can see that anomaly detection for stream-
ing applications is particularly challenging but very meaningful for system monitor-
ing in business applications. Therefore, one of the goals of this thesis is to introduce
an anomaly detection algorithm designed for such real-time applications in detail;
see Chapter 3.

2.2.4 Anomaly Detection versus Change Detection

As mentioned in Chapter 1, the assumption of temporal continuity is critical in
identifying anomalies because the values in consecutive time stamps are not expected
to change very abruptly, or change in a smooth way. Therefore, the anomaly is
always caused by sudden changes and exhibits a lack of continuity with its immediate
or long-term history [Agg17]. Thus, the problem of anomaly detection in time series
is highly related to the problem of change detection but they are not necessarily
identical [Agg16]. The changes in a time series could happen in one of two possible
ways:

• The values and trends in a time series change slowly over time, e.g. memory
leak. Sometimes the phenomenon is referred to as concept drift3. Under such
circumstance, the concept drift can only be detected by analysis over a long
time period and it is not immediately obvious in many cases [Agg16].

• The values and trends in a time series change abruptly, so that it immediately
raises doubts that something unexpected is going on and the underlying data
generation mechanism has somehow changed fundamentally [Agg16].

Many scenarios of change analysis and anomaly detection in temporal data are too
tightly integrated to be treated separately. Sometimes, solutions for one can be
used for the other and vice versa. However, the modeling formulations of anomaly
detection in temporal data are very diverse, not all of which are directly related to

3In predictive analytics and machine learning, the concept drift means that the statistical prop-
erties of the target variable, which the model is trying to predict, change over time in unforeseen
ways.
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change detection [Agg16]. Even though the detection in streaming applications is
performed over time, it still makes decision just at each point in time whether the
behavior of the monitored metric is abnormal or not. For change detection, it is
always necessary to analyze the trend but how to determine the boundary of the
trend is difficult in this case, which cannot be realized by the detection in streaming
applications mentioned before. Therefore, detection in streaming application in this
thesis is related to anomaly detection.

2.2.5 Conclusions

Time series data always require the analysis of each series as a unit, anomaly detec-
tion is one of the prominent research direction recently. In such a case, different types
of anomalies can be defined in time-series data, depending on whether it is desirable
to identify deviating points in the series (point anomaly), or whether it is desirable
to identify unusual shape subsequences (collective anomaly). Since temporally con-
textual dependencies is important in anomaly detection with time series data, either
point anomaly or collective anomaly is interpreted as contextual anomaly. Most ex-
isting techniques in anomaly detection are suitable in the offline setting where the
entire time series are available and the training phase is always separated from de-
tection. However, the majority of them are not applicable to streaming applications
in real time. Thus, an efficient algorithm designed for real-time applications will be
introduced in Chapter 3.

2.3 Exploratory Causal Analysis

When some anomalies in a certain metric are detected, it may reflect that something
wrong is going on in the system, so it is necessary to learn a temporal-causal structure
of the underlying system which can prevent the expert from contemplating irrelevant
metrics and find some root causes for the problems, or give the expert an overall
situation of the underlying system to support him to make some interventions to
keep the system stable.

Let S = {Z1, Z2..., ZD} represent the D available metrics4 in a system. Assume that
at time t, an anomaly in metric Zi is detected, i.e. zi,t is anomalous, which makes
Zi critical. Next the expert wants to know what has caused the anomaly and how
it affects other metrics in the system. To this end, a relatively short time series is
extracted from each metric in S from time stamp t− b to t+ a, in other words, each
time series is a small collection of points around time stamp t because we are only
concerned with what has happened around the anomaly point. The value of a and b
depends on the settings of different applications. Now the problem turns out to be
constructing a temporal-causal structure of S with some time series causality tools,
implying the interactions among the metrics of a system from t− b to t+ a.

2.3.1 Causality Studies

The study of causality dates from Ancient Greece and has a long history in the
philosophy. Since then there have been a number of philosophers and scientists
continuously devoting themselves to the foundation and connotation of causality.

4Each metric forms a streaming data.
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McCraken [McC16] gives two categories of causality: foundational causality and
data causality with respect to the four primary focuses for people studying causality
proposed by Holland [Hol86]: the ultimate meaningfulness of the notion of causality,
the details of causal mechanisms, the causes of a given effect, and the effects of a
given cause. Data causality studies are characterized by the use of experimental or
observational data in discussion of causality, while foundational causality is broadly
inter-disciplinary and three of the most prominent subfields are philosophical studies,
natural science studies, and psychological studies. However, the two categories are
not considered disjoint, e.g. a single study may include the introduction a completely
new definition of “causality” and present several examples using empirical data to
motivate the veracity of the definition [McC16]. Therefore, time series causality
discussed in this thesis is considered a subset of data causality because there is no
new definition of “causality” and causal inference is only drawn from synthetic data
or available metrics of SAP HANA database.

Most modern explanations of causality may be traced back to Hume’s regularities of
observation, where event Y causes event X if whenever Y happens, X follows, and
the relationship can be detected through observation of Y and X [KM09]. However,
when it comes to inference, main concepts are rooted in probabilistic theories because
few relationships are actually deterministic and causal utterances are often used in
situations that are plagued with uncertainty [J.P09]. Consider a causal expression
that “you fail the examination because of your laziness”, it just indicates that the
antecedents only tend to make the consequences more likely, but not absolutely
certain. Therefore, probability theory is currently the official language of most
disciplines that use causal modeling [J.P09].

2.3.2 Exploratory versus Confirmatory Causal Inference

A mathematically and statistically general definition of causality given by Wiener
involves two facts [YY16]: (1) the statistical condition: event Y causes event X,
indicating that there exist the corresponding probabilistic dependencies between Y
and X, that is P (Yt′) > 0 and P (Xt|Yt′) 6= P (Xt), and (2) the temporal priority :
only the past and present may cause the future but the future cannot cause the
past, which means t′ < t. The majority of causal inference tools for time series data
assume the correctness of these principles, even though there have been extensive
debates on their validity and generality among philosophers and physicists over a
long time [McC16]. For example, from the perspective of Pearl [J.P09], temporal
precedence among variables may furnish some information about causal relation-
ships, however, the great majority of policy-related questions cannot be discerned
from such temporally indexed distributions, given the commitment to making no
assumption regarding the presence or absence of unmeasured variables. Therefore,
Pearl has distinguished statistical parameter from causal parameter as follows:

• A statistical parameter is any quantity that is defined in terms of a joint prob-
ability distribution of observed variables, making no assumption whatsoever
regarding the existence or nonexistence of unobserved variables [J.P09].

• A causal parameter is any quantify that is defined in terms of a causal model
and is not a statistical parameter [J.P09].
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Following Pearl’s definition, the time series causality tools discussed in this thesis
will be classified as statistical tools rather than causal tools because we are in a
situation where we have nothing but only a set of time series. In such a case, no
special causal structures are already known or assumed. Moreover, the given data
may not be complete or there are some outside hidden “knowledge” or “theories”
that we are not very clear in the analysis phase, e.g. race or gender in social studies,
therefore there is usually no effort made to determine if one time series fits any
specific definition of “cause” with respect to the other time series being analyzed
[McC16]. This problem is also discussed by Holland and in his opinion, such tools
are associational tools, not causal tools [Hol86].

McCracke [McC16] proposes a new concept called exploratory causal analysis, em-
phasizing that the time series causality tools are only statistical and associational
tools, the relationships found with such tools can only be deemed“causal”associated
with the application of outside theories or assumptions, which requires an analyst
to make general causal statements to be well-versed in any such theories involving
the analyzed data. The term exploratory applied to these causal inferences is in-
spired by the way used by Tukey [Tuk77] to describe exploratory data analysis as
McCracke said. Exploratory data analysis refers to looking at the data to see what
it seems to say and drawing conclusions only from the given data, in other words, it
leaves most interpretations of results to those who are experts in the subject-matter
filed involved [Tuk77], which is a part of confirmatory data analysis. In the context
of causal inference, confirmatory data analysis means examining the precision with
which the data reflect some assumed causal structures or some general notions of
causality, e.g. in physics and philosophy. Therefore, the word “potential” is very
important to the exploratory causal analysis because any time series causality tool
may incorrectly assign causal structure or may incorrectly not assign causal struc-
ture between time series, e.g. the temporal causal effect from time series Y to X
(Y → X) is obtained by a common time series causality tool, however, in fact,
there is some unknown time series Z, not included in the given data, having causal
impact on X and Y respectively (Z → X and Z → Y ) with different delays, as a
consequence, the causal effect Y → X is actually spurious.

Under such circumstances, it is important to distinguish the statistical tests used in
exploratory causal analysis from that in confirmatory causal analysis because some
time series causality tools, such as Granger causality are concerned with developing
a “testable” definition of causality, e.g. a null hypothesis H0 is defined as “the
coefficients of lagged variable of Y are jointly zero” in a VAR model5. Let H0

represent that Y does not Granger cause X. If H0 is rejected, there exists linear
Granger-causality running from Y to X. But the result of the test does not mean
that it confirms the causal structure between Y and X, i.e. it does not imply a
given causal inference is confirmatory rather than exploratory. Statistical tests are
also used in confirmatory causal analysis, for example, by defining a null hypothesis
of some model parameter equal to a theoretically justified value. The point of such
tests in confirmatory causal analysis is to confirm those theoretically justified models
or parameter values [McC16].

5See Section 4.2.1.
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To summarize, proof of causal relationship is often considered impossible with data
alone [J.P09], so one of the main purposes of the exploratory analysis is to guide
confirmatory analysis for further investigation [McC16].

2.3.3 Time Series Causal Inference Tools

Graphical models, such as Bayesian networks (BNs) first introduced in [J.P09, SGS93]
model the causal structure of the system as a Graph, where variables are represented
by nodes and the edges between them represent conditional dependence. The result
is a directed acyclic graph (DAG) where a directed edge between two nodes means
the first causes the second. Dynamic Bayesian networks (DBNs) [FMR98] extend
BNs to show how the system evolves over time. For this purpose, they generally
begin with a prior distribution (described by a DAG structure) as well as two more
DAGs: one representing the system at time t and another at t+ 1, where these hold
for any values of t. The connections between these two time stamps then describe
the change over time. As before, there is usually one node per variable, with edges
representing conditional independence. Note that this implies that while the system
can start in any state, after that the structure and dependencies repeat themselves.

Information-theory can also be linked to Wiener’s causality theorem through the
development of a novel concept called transfer entropy (TE) [Sch00]. Intuitively,
transfer entropy can be conceptualized as a model-free measure of directed infor-
mation flow from one variable to another. Schreiber originally motivated transfer
entropy as an alternative to lagged mutual information that takes shared information
into account due to common history and input signals. Transfer entropy for the di-
rection Y− > X is an information-theoretic distance measure between the transition
probability that includes information from Y and the one that excludes it. Addition-
ally, Schreiber showed that transfer entropy is able to distinguish direct from indirect
causality. However, transfer entropy and some other similar approaches have mostly
been applied to a bivariate setting as it is hard to estimate these measures reliably
in high dimensions.

Granger causality [Gra69] applied primarily to economics, was developed by Granger
(1969) to take two time series and determine whether one predicts, or causes, the
other with some lag time between them. Based on this, recent work by Eichler
and Didelez [ED09] focuses on time series and explicitly capturing the time elapsed
between cause and effect. They define that one time series causes another if an
intervention on the first alters the second at some later time. That is, there may be
lags of arbitrary length between the series, and they find these lags as part of the
inference process. Transfer entropy has a close connection with Granger causality,
but Granger causality can be applied to measure not only linear but also non-linear
temporal-causal dependencies between multivariate time series, which is the second
goal of this thesis. Therefore, a number of variants which fall under the category of
Granger causality are introduced in detail in Chapter 4.

2.3.4 Conclusions

Learning temporal-causal structures among multiple time series is one of the major
tasks in mining time series data. In this work, it will be applied to support the engi-
neers to understand the overall situation of the underlying system when anomalies
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are detected in a certain metric. Since no special causal structures are already known
or assumed and analysis is not intended to draw causal information from sources
outside of the time series being analyzed, tools used for causal inference in this work
are deemed as statistical and associational tools but not causal tools. Thus, causal
inference is modified by a term called“exploratory causal analysis”, emphasizing that
there are no attempts are made to relate the interpretations of the results to more
general notions of causality, e.g., in physics and philosophy. The results just imply
some potential temporal-causal structure between time series. Granger causality, as
a widely used concept to identify causal relationships between time series data, is
chosen to solve the problem in this work; see Chapter 4.



3. Online Prototypes Updating
Anomaly Detection

This chapter introduces the OPUAD (On-line Prototypes Updating

Anomaly Detection) algorithm for streaming data based on the kernel

density estimators and maximum-entropy principle. OPUAD detects

anomalies in an unsupervised, automated fashion without supervision,

which makes it self-adaptive and computationally efficient.

Real-time anomaly detection for streaming data is distinct from batch anomaly
detection. Streaming analytics calls for models and algorithms that can learn con-
tinuously in real-time without storing the entire stream, and are fully automated and
not manually supervised. Even though both supervised and unsupervised anomaly
detection approaches have existed, the majority of anomaly detection methods are
for batch data processing, that does not fit real-time streaming scenarios and appli-
cations.

Moreover, detecting anomalies accurately in streaming data can be difficult; the
definition of an anomaly is continuously changing as systems evolve and behaviors
change. For example in Figure 3.1, there is a sudden change in the data value
at time stamp 9. This corresponds to an anomaly compared to the previous data
points, however, subsequently, the data stabilizes at this value, and this becomes
the new normal. Thus, the data points after time stamp 9 should not be consid-
ered as anomalies and the algorithm must adapt to the new normal automatically.
From this example we can see that anomalies in time series data are always con-
textual anomalies because it can never be treated independent of other points and
temporally contextual dependency is always important.
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Figure 3.1: Example of System Behaviors Change.

Another critical aspect is early detection of anomalies in streaming data, as the
focus lies in identifying anomalies before incurring some fatal events, e.g. the whole
system has crashed and cannot work any more, it is unlike batch processing where
the model is trained to look back.

Given the above requirements, Ahmad et al. [ALPA17] define the ideal characteris-
tics of a real-world anomaly detection algorithm as follows:

• Detection must be made online; i.e., the detector receives a continuous stream
of inputs (..., xt−2, xt−1, xt, xt+1, xt+2, ...), the algorithm1 must identify state xt
as normal or anomalous before receiving the subsequent xt+1.

• The algorithm must learn continuously without a requirement to store the
entire stream.

• The algorithm must run in an unsupervised, automated fashion, i.e., without
data labels.

• Algorithms must adapt to dynamic environments and system behaviors change
automatically.

• Algorithms should make anomaly detections as early as possible.

• Algorithms should minimize false positives and false negatives.

This chapter intends to introduce the OPUAD (On-line Prototypes Updating Anomaly
Detection) algorithm for streaming data based on the kernel density estimators and
maximum-entropy principle, first proposed in [Gra90]. Kernel density estimators, as
a non-parametric method have proven popular to estimate the probability density
function (pdf) of a given data set, while the maximum-entropy principle is based on
the premise that when estimating the probability distribution, we should select that
distribution which leaves us the largest remaining uncertainty (i.e., the maximum
entropy) consistent with the constraints of our prior knowledge. First, let’s take a
look on the kernel density estimators.

1The problem is treated as point anomaly detection; see Section 2.2.1.
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3.1 Probability Density Function Estimation

Consider a data set of N data points X = (x1, ..., xN) drawn from some unknown
distribution in one dimension. The probability density function of the unknown
distribution can be estimated by a Gaussian mixture model

f(x|θ) =
M∑
i=1

wig(x|µi, σ2
i ) (3.1)

where wi, i = 1, ...,M , are the mixture weights, the individual Gaussian components
are always normalized, thus we obtain

∑M
i=1wi = 1, and g(x|µi, σ2

i ), i = 1, ...,M ,
are the component Gaussian densities

g(x|µi, σ2
i ) =

1

(2πσ2
i )

1/2
exp

{
− 1

2σ2
i

(x− µi)2

}
(3.2)

This method always assumes that the data points are drawn independently from
the same distribution, in other words, the data points are said to be independent
and identically distributed. However, this assumption is not applicable to the time
series data because data points in a time series are always related to each other
temporally and influenced by the adjacent values of the data points. Besides, some
data generation mechanisms could have local nonlinearity, which will lead to non-
Gaussianity of the distribution. Therefore, GMM might be a poor model of the
distribution that generates the data, which can result in poor predictive performance.
Under such circumstances, kernel density estimators, as nonparametric approaches
that make few assumptions about the form of the distribution are preferable to
density estimation [Bis06]. Since they are closely related to histogram methods,
thus, let’s first return to histogram methods.

3.1.1 Histogram Method

Given a data set X = (x1, ..., xN) in one-dimension, a histogram method simply
partitions X into different bins of equal width ∆. The set of data points falling into
the i-th bin is denoted as S(i). Thus the probability of data points falling into i-th
bins then is calculated as follows

pi =
|S(i)|
N

The probability density function of X is denoted as f(x), and it is evident that f(x)
is constant over the width of each bin, so we can obtain

f(x)×∆ =
ni
N

∀x ∈ S(i)

thus

f(x) =
ni

N ×∆
∀x ∈ S(i) (3.3)

for which it is easy to see that
∫
f(x)dx = 1. Figure 3.2 shows a random sample

actually drawn from a mixture of three Gaussians. Now we use histogram methods
with different bin widths to model the distribution of the sample. From the two
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Figure 3.2: An illustration of the Histogram Approach to Density Estimation.

subplots we can see that the histogram methods are sensitive to the bin width, e.g.
when ∆ is too large (Figure 3.2a), the model is too smooth and it cannot capture
the trimodal property of the dark blue curve.

Note that the histogram method has the property that, once the histogram has
been computed, the data set itself can be discarded, which can be advantageous if
the data set is large. Besides, it can be useful for obtaining a quick visualization.
However, it is not scalable with high dimensionality. Image that now you have a D-
dimensional variable, you divide each dimension into M bins, then the total number
of bins will be MD. This exponential scaling with D is an example of the curse of
dimensionality. Another problem is that the estimated density has discontinuities
that are due to the bin edges rather than any property of the underlying distribution
that generates the data [Bis06].

From histogram methods, we have known that, to estimate the probability density
at a particular location, we should consider the data points that lie within some
local neighborhood of that point. With this insight, now we turn to a discussion of
kernel density estimators.

3.1.2 Kernel Density Estimators

Consider a D-dimensional continuous variable X with its probability density func-
tion f(x). Inspired by the histogram methods, now we consider some small region
R and the probability mass associated with this region is given by

P =

∫
R
f(x)dx (3.4)

If R is sufficiently small such that f(x) is roughly constant in R, thus we can obtain

P =

∫
R
f(x)dx ≈ f(x) · V (3.5)

where V denotes the volume of R.

Now we have randomly collected a data set X = (x1, ...,xN) comprising N data
points drawn from f(x). Since each point has a probability P of falling within R,
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the probability of the total number K of points that lie inside R with respect to the
binomial distribution2 is given by

f(K,N, P ) =
N !

K!(N −K)!
PK(1− P )K (3.6)

Due to the properties of the binomial distribution, we can obtain

E(K) = NP (3.7)

V ar(K) = NP (1− P ) (3.8)

and for large N , we can get

K ≈ NP (3.9)

Combining (3.5) and (3.9), the density estimate can be formed as

f(x) =
K

NV
(3.10)

Kernel density estimators exploit the result (3.10) by fixing V and determining the
number K of data points inside the small hypercube R. Assume that R is centered
on the point x. For the purpose of counting number K of points falling within the
hypercube R, we define a variable

u =
x− xn
h

(3.11)

where u is a D-dimensional vector. Let h be the length of the edge of the hypercube
R, then V = hD. Since the cube is centered on x, we can easily obtain that if xn
lies inside the cube, then |ui| ≤ 1/2, ∀i = 1, 2, ..., D. For convenience, we define a
kernel function

k(u) =

{
1 |ui| ≤ 1/2 ∀i = 1, 2, ..., D

0 otherwise
(3.12)

which means if the point xn lies inside the cube, then k(u) is one and otherwise,
k(u) is zero. Now it is easy to get the total number K of data points lying in this
cube

K =
N∑
n=1

k(
x− xn
h

) (3.13)

Substituting (3.13) into (3.10), we obtain

f(x) =
1

N

N∑
n=1

1

hD
k(

x− xn
h

) (3.14)

2Binomial distribution, see https://en.wikipedia.org/wiki/Binomial distribution.

https://en.wikipedia.org/wiki/Binomial_distribution
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The kernel function (3.12) is also called a Parzen window. The estimated probability
density function is sometimes called empirical density function because it is only
estimated by the given sample data. In addition, it is not necessary to hold the
assumption that data points are independent and identically distributed. Generally,
h is considered as a smoothing parameter called the bandwidth and a kernel function
must satisfy the following properties

• Non-negative: k(u) ≥ 0;

• Normalization:
∫
k(u)du = 1;

• Symmetry : k(−u) = k(u).

However, the kernel function (3.12) will suffer from one of the same problems that
the histogram method suffered from, namely the presence of artificial discontinuities,
in this case at the boundaries of the cubes [Bis06]. In order to solve the problem of
discontinuities, the Gaussian kernel is commonly used as a smoother kernel function.
It is defined as follows:

k(u) =
1

(2πσ2)1/2
exp

{
−||x− xn||2

2σ2

}
(3.15)

where σ determines the bandwidth of the Gaussian kernel. For a one-dimensional
continuous variable X, (3.15) is easily changed to

k(u) =
1

(2πσ2)1/2
exp

{
−(x− xn)2

2σ2

}
(3.16)

As mentioned before, for a streaming data (x1..., xt−2, xt−1, xt, xt+1, xt+2, ...), at each
time stamp t, the algorithm should only consider the current and previous states
to decide whether or not xt is an anomaly, as well as perform any model updates
and retraining. However, if we use a kernel density estimator to solve the problem,
it does not need to update any parameters because it is a non-parametric method.
When xt is coming, it just needs to estimate the empirical density of xt using the
sequence X(t) = (x1, ..., xt) by

f (t)
e (x) =

1

t

t∑
τ=1

k(x− xτ ) (3.17)

It is evident that when xt is far away from the previous value, its empirical density
would be very low indicating that xt is an anomaly. However, in this case, we
have to store the streaming data over time which inevitably leads to saturation of
discrete memory devices finally. Besides, with larger t, the computation is always not
efficient. Therefore, we want to use a few statistics to compress the information of
the sequence (x1, ...xt) and simultaneously the information loss is minimal, then the
probability density could be estimated using these statistics. In this way, no matter
how many data value occur in real-time, they can always be compressed in these
statistics and we do not need to store the entire stream but just these statistics, and
memory is no longer a problem. The compression is based on the maximum-entropy
principle, which will be discussed in the next section.
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3.2 Maximum Entropy Principle

Assume that in the sequence X(t) = (x1, ...xt) all the data value are different,
therefore, the frequency of each value is equal, which means, p(xτ ) = 1/t and∑t

τ=1 p(xτ ) = 1. With these frequencies, we define the entropy of empirical in-
formation of this sequence by

SX(t) = −
t∑

τ=1

p(xτ ) log p(xτ ) = log t (3.18)

So when data continuously occurs in real-time (t → ∞), the entropy grows to
infinity. Now we want to map the sequence X(t) = (x1, ...xt) into a few statistics

Q(t) = (q
(t)
1 , ..., q

(t)
K ), which will be termed prototypes, so that the information in the

original sequence is minimally reduced. We also use the entropy to quantify the
information of Q(t)

SQ(t) = −
K∑
k=1

p(q
(t)
k ) log p(q

(t)
k ) (3.19)

Since K is fixed and much less than t (t→∞), the information entropy is generally
reduced by the mapping of the sequence X(t) to Q(t). In order to maximize the
entropy of Q(t), all the prototypes in Q(t) should be equally probable.

Definition 3.1. The principle of maximum entropy dedicates that the mapping
of X(t) into Q(t) minimally reduces the empirical information at time point t if
a uniform probability distribution

p(q
(t)
i ) =

1

K
i = 1, ..., K

corresponding to the absolute maximum SQ(t) = logK of information entropy,
is assigned to Q.

Therefore, the above definition gives an optimal solution for the mapping of X(t)

into Q(t). By the prototypes Q(t), the probability density at time t then can be
approximately estimated by

f (t)
r (x) =

1

K

K∑
k=1

k(x− q(t)
k ) (3.20)

which can be adapted to the empirical density (3.17) when the proper prototypes are
selected. In order to distinguish (3.17) and (3.20), we call (3.20) as representative
density. Now we can define the mean square error between (3.17) and (3.20) to
measure their overall discrepancy

ε2t =

∫ +∞

−∞

(
f (t)
r (x)− f (t)

e (x)
)2

dx (3.21)

Hereby we give a definition of the optimal prototypes at time t
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Definition 3.2. The set (q
(t)
1 , ..., q

(t)
K ) which minimizes ε2t is the optimal repre-

sentation of X(t) by Q(t) at time t with respect to the applied kernel function.

Now the problem is to minimize the mean square error in (3.21). For convenience,
we define

εt(x) = f (t)
r (x)− f (t)

e (x) (3.22)

and then (3.21) can be rewritten into

ε2t =

∫ +∞

−∞
εt(x)2dx (3.23)

Taking the derivative with respect to q
(t)
l and setting this derivate to zero is straight-

forward,

∂ε2t

∂q
(t)
l

= 2

∫ +∞

−∞
εt(x)

∂εt(x)

∂q
(t)
l

dx = 0 l = 1, ..., K (3.24)

in this way, we can obtain the solution for minimizing the mean square error. For a
given K, a trivial solution of (3.24) can be found by inspection of expression (3.22),
for two time points:

for t = 1, then q
(t)
1 = q

(t)
2 = · · · = q

(t)
K = x1 (3.25)

for t = K, then q
(t)
1 = x1, q

(t)
2 = x2, ..., q

(t)
K = xt (3.26)

The first case means that the first data point x1 is coming, while the second means a
certain moment when the number of data points is equal to the number of prototypes.
However, when data continuously occurs in real-time, t could be much greater than
K, in such a case, an explicit solution cannot be found, thus we proceed with an
approximative treatment.

Assume that the solution of (3.21) is known, in other words, the optimal prototypes
Q(t) at time t is determined and the number of data points is much greater than K,
i.e. t >> K. Now a new data xt+1 is coming, then we want to map the new sequence
X(t+1) = (x1, ..., xt, xt+1) into a set of prototypesQ(t+1) and find the optimal solution.
At time t+ 1, the empirical density function is given by

f (t+1)
e (x) =

1

t+ 1

t+1∑
τ=1

k(x− xτ )

=
1

t+ 1

(
tf (t)
e (x) + k(x− xt+1)

) (3.27)

So the difference between (3.27) and (3.17) is given as

∆fe(x) = f (t+1)
e (x)− f (t)

e (x)

=
1

t+ 1

(
k(x− xt+1)− f (t)

e (x)
) (3.28)
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A new data point xt+1 will lead to some minor changes ∆Q(t) to Q(t)

Q(t+1) = Q(t) + ∆Q(t) (3.29)

Then, the representative density will be calculated as

f (t+1)
r (x) =

1

K

K∑
k=1

k(x− q(t+1)
k )

=
1

K

K∑
k=1

k(x− q(t)
k −∆q

(t)
k )

(3.30)

and the difference between (3.30) and (3.20) is given by

∆fr(x) = f (t+1)
r (x)− f (t)

r (x)

=
1

K

K∑
k=1

k(x− q(t)
k −∆q

(t)
k )− k(x− q(t)

k )
(3.31)

When ∆q
(t)
k → 0, we can get

∂

∂q
(t)
k

k(x− q(t)
k ) = lim

∆q
(t)
k →0

k(x− q(t)
k −∆q

(t)
k )− k(x− q(t)

k )

∆q
(t)
k

(3.32)

therefore, (3.31) is rewritten as

∆fr(x) = lim
∆q

(t)
k →0

1

K

K∑
k=1

∂

∂q
(t)
k

k(x− q(t)
k )∆q

(t)
k (3.33)

The error between f
(t+1)
r (x) and f

(t+1)
e (x) can then be calculated as

ε(t+1)(x) = f (t+1)
r (x)− f (t+1)

e (x)

= fr(xt) + ∆fr(x)− (fe(xt) + ∆fe(x))

= εt(x) + ∆fr(x)−∆fr(x)

= εt(x) +
1

K

K∑
k=1

∂

∂q
(t)
k

k(x− q(t)
k )∆q

(t)
k −

1

t+ 1

(
k(x− xt+1)− f (t)

e (x)
)

︸ ︷︷ ︸
∆εt+1(x)

(3.34)

The difference between the empirical density and representative density at time t+1
comprises two parts, the one is εt(x) and the other is ∆εt+1(x). For the purpose of
minimizing the overall discrepancy between the empirical density and representative
density at time t+ 1, we just need to minimize ∆εt+1(x) because we assume εt(x) is
known and minimal. Therefore, we can obtain

∆ε2t+1 =

∫ +∞

−∞
(∆εt+1(x))2dx (3.35)
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Simply, we take its derivative with respect to ∆q
(t)
l and setting it to zero

∂∆ε2t+1

∂∆q
(t)
l

= 2

∫ +∞

−∞
∆εt+1(x)

∂∆ε(t+1)(x)

∂∆q
(t)
l

dx = 0 l = 1, ..., K (3.36)

Now we make some derivations of (3.36) as follows:

0 =

∫ +∞

−∞
∆εt+1(x)

(
∂

∂q
(t)
l

k(x− q(t)
l )

)
dx

=

∫ +∞

−∞

(
1

K

K∑
k=1

∂

∂q
(t)
k

k(x− q(t)
k )∆q

(t)
k

− 1

t+ 1

(
k(x− xt+1)− f (t)

e (x)
))( ∂

∂q
(t)
l

k(x− q(t)
l )

)
dx

(3.37)

We write (3.37) in a compact form as solving linear equations

K∑
k=1

C
(t)
lk ∆q

(t)
k −B

(t)
l = 0; l = 1, ..., K (3.38)

with the coefficients:

C
(t)
lk =

∫ +∞

−∞

∂k(x− q(t)
k )

∂q
(t)
k

∂k(x− q(t)
l )

∂q
(t)
l

dx (3.39)

B
(t)
l =

K

t+ 1

∫ +∞

−∞

(
k(x− xt+1)− f (t)

e (x)
) ∂k(x− q(t)

l )

∂q
(t)
l

dx (3.40)

Using this method, we do not need to store the entire stream any more because
the information of the data will always be compressed in a small fixed number of
prototypes with minimal information loss. When the detector receives the first data
point x1, it will initialize K prototypes Q(1) = q

(1)
1 , ..., q

(1)
K and set q

(1)
1 = q

(1)
2 = · · · =

q
(1)
K = x1. Next, every time there is a new data point xt coming, it will update the

prototypes by two steps: first it solves the following linear equations

K∑
k=1

C
(t−1)
lk ∆q

(t−1)
k = B

(t−1)
l ; l = 1, ..., K (3.41)

and then estimates the new prototypes q
(t)
k

q
(t)
k = q

(t−1)
k + ∆q

(t−1)
k ; k = 1, ..., K (3.42)

The update keeps computationally efficient. In addition, the detector makes no
explicit assumption of the underlying distribution of the data, which makes it have
strong applicability. The only thing the detector needs to be “equipped” with is an
appropriate kernel function.

Mostly, we use the Gaussian kernels (3.16) which has been introduced in the last

section. With the Gaussian kernel, the coefficients B
(t−1)
l and C

(t−1)
lk are given by

the following explicit expressions [Gra90]
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C
(t−1)
lk = (1− (q

(t−1)
l − q(t−1)

k )2

2σ2
) exp

(
−(q

(t−1)
l − q(t−1)

k )2

4σ2

)
(3.43)

B
(t−1)
l =

K

t

[
(xt − q(t−1)

l ) exp

(
−(xt − q(t−1)

l )2

4σ2

)

− 1

K

K∑
k=1

(q
(t−1)
k − q(t−1)

l ) exp

(
−(q

(t−1)
k − q(t−1)

l )2

4σ2

)]
(3.44)

3.3 Anomaly Likelihood

Now we consider how to determine whether or not xt (t > 1) is anomalous when
it is arriving. We estimate its probability density by the prototypes Q(t−1) because
Q(t−1) represents the current information of the stream without the effect of xt:

f(xt) =
1

K

K∑
k=1

1

(2πσ2)1/2
exp

{
−(xt − q(t−1)

k )2

2σ2

}
(3.45)

If xt is an anomaly, its estimated probability density could be very small, indicating
that it is less likely to be “similar” to the previous states. However, due to the fact
that the estimated probability density of a “normal” data point could also be very
small, it is difficult to distinguish the anomalies from “normal” data if we rely only
on the estimated probability density. In such a case, we calculate the anomaly score
as follows:

S
(t)
anomaly = − log f(xt) (3.46)

Then the anomaly score is Logarithmic loss which is commonly used to measure
the performance of a classification model where the prediction input is a probability
value between 0 and 1 in the machine learning. However, for probability density,
its value could be larger than 1 (see Figure 3.3). With the help of Logarithmic loss,
the difference of the estimated probability density between a normal point and an
anomaly point could be big enough to be distinguished.

Figure 3.4 shows an example stream and its anomaly score over time. The stream is
CPU utilization of one virtual computing environment (instance) provided by Ama-
zon Elastic Compute Cloud (Amazon EC2) in the Amazon Web Services (AWS)
cloud. It is collected from 2014-02-23 12:00:00 to 2014-02-26 12:00:00. Note that
each instance has its own types, in other words, there are various configurations of
CPU, memory, storage, and networking capacity for the instances. So it is unreason-
able to set a common threshold to determine the situations of all the instances. In
Figure 3.4, it is obvious that CPU usage of the instance is non-stationary and there
are two anomalies in the stream. Even though the anomaly score can somehow dis-
tinguish the anomaly points from normal points, it still has some limitations. First,
Logarithmic loss has no boundaries so that it lacks of interpretation, which results
in that the score of the second anomaly in Figure 3.4b is too high. Additionally,
the anomaly score gives us an instantaneous measure of how the data points do not
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Figure 3.3: Logarithmic Loss as Anomaly Score.
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Figure 3.4: CPU Utilization of One Instance in the AWS.
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match the current distribution. However, it is often incorrect when the behavior of
the underlying stream is very noisy and unpredictable [ALPA17]. As an example,
consider Figure 3.5. This data shows the disk write bytes of one instance in the Ama-
zon Web Service from 2014-03-05 04:00:00 to 2014-03-15 14:00:00. The occasional
jumps in this case are actually normal, however, it leads to corresponding spikes in
anomaly score as shown in Figure 3.5b. From the perspective of the domain expert,
the true anomaly corresponds to a sustained increase in the frequency of large disk
write bytes.

In order to handle these problems, a method is proposed by Ahmad et al. [ALPA17],
which takes the anomaly score as an indirect metric, to smooth it over time and
normalize it into the range [0, 1]. Let W be a fixed size rolling window which
includes the last W anomaly scores at time t. They assume that the anomaly scores
in the rolling window follows a Gaussian distribution3, where the sample mean µ
and variance σ2 can be calculated as follows:

µt =
1

W

i=W−1∑
i=0

S
(t−i)
anomaly (3.47)

σ2
t =

1

W − 1

i=W−1∑
i=0

(
S

(t−i)
anomaly − µt

)2

(3.48)

Then they use another rolling window W ′ which includes the last W ′ anomaly scores
at time t and W ′ << W . By this way, W represents the distribution of the anomaly
scores at time t, while W ′ shows the recent short term average of anomaly score
near t which is defined as

µ̃t =
1

W ′

i=W ′−1∑
i=0

S
(t−i)
anomaly (3.49)

Assume that near t the behavior of the stream is very noisy and unpredictable, thus,
µ̃t is very large. If the noisy behavior only occurs nearby the time t but the stream
keeps “clean” for a long time, µt could be very small, thus µ̃t is far away from µt and
xt is an anomaly, however, if the noisy behavior does not only occurs nearby the time
t, but the stream is also inherently very noisy and unpredictable, then µt is similar
to µ̃t, both of them are relatively large, xt should not be declared as an anomaly.
In such cases, an anomaly is not only determined by its own anomaly score, but
also determined by the deviation between µ̃t and µt. If µ̃t and the deviation
between µ̃t and µt are both large at the same time, then xt is declared as
an anomaly. To this end, Ahmad et al. define a so-called anomaly likelihood to
measure the deviation between µ̃t and µt based on the Q function.

In statistics, the Q-function is the tail distribution function of the standard normal
distribution (see Figure 3.6a). In other words, Q(x) is the probability that a standard
normal random variable takes a value larger than x. Obviously, larger x has smaller
Q-value. Therefore, µ̃t is transformed by z-score as follows:

zt =
µ̃t − µt
σ

(3.50)

3As Ahmad et al. said, they have attempted to model the anomaly scores using a number
of distributions and find that modeling anomaly scores as a simple normal distribution worked
significantly better than others. This work just takes advantage of their ideas and does not make
any other attempts.
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Figure 3.5: Disk Write Bytes of One Instance in the AWS.
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Figure 3.6: Q Function and Anomaly Likelihood.

Then the anomaly likelihood is calculated as

L
(t)
anomaly = 1−Q(zt) = 1−Q(

µ̃t − µt
σt

) (3.51)

However, the anomaly likelihood can not help to determine a spatial anomaly4 if
the behavior of the underlying stream is very noisy. Imagine that in W ′ there are a
lot of spikes but xt is a spatial anomaly. In this case, despite the fact that S

(t)
anomaly

is very large, the small deviation between µ̃t and µt could make the detector ignore
the bad effect of xt and make an incorrect decision. Since a spatial anomaly can be
declared abnormal without contemplating other data points and just based on the
invalid range, we use a “näıve ” method to deal with it. At each time t, we calculate
the valid range with respect to the maximum and minimum value of the stream so
far, if xt falls out of the valid range, its anomaly likelihood L

(t)
anomaly will be directly

set to 1 regardless of any other calculations.

Figure 3.5c shows an example of the anomaly likelihood on noisy disk write bytes
data. The figure demonstrates that the anomaly likelihood provides clearer peaks
around a noisy scenario after the disk write bytes continue to be very low for a
period of time. Besides, there is a spike whose value has reached 1 indicating a
spatial anomaly.

Finally, a user-defined threshold T ∈ [0, 1] can be set to report an anomaly:

An anomaly detected if L
(t)
anomaly ≥ T (3.52)

3.4 Implementation

The abstract design of OPUAD (On-line Prototypes Updating Anomaly Detection)
is shown in Figure 3.7.

For the purpose of implementation, R and Python are often good choices because
both of them are open-source programming languages with a large community. R
has been used primarily in academics and research, while Python provides a more

4Spatial anomaly has been introduced in Section 2.2.1.
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general approach to data science. This work intends to use object oriented program-
ming techniques which encapsulate the OPUAD algorithm as an object to bundle
its parameters and methods within one unit. To this end, Python is chosen for
implementation because it emphasizes productivity and code readability. Besides,
coding and debugging is easier to do in Python with the “nice” syntax.

Calculate 
L(anomaly)

Spatial 
Anomaly

Actual 
Value x(t) L(anomaly) = 1.0 Update 

Prototypes

L ≥ T

Alert Anomaly

Yes

No

Yes

No

Figure 3.7: OPUAD Algorithm Abstract Design.

Thus the following dependencies are required to implement the OPUAD algorithm:

Program Language Library

Python 2.7

numpy
scikit-learn
pandas
nupic

The implementation code is shown in Appendix A.

All computations were carried out on a Dual-Core Intel Core i5 Processor running
at 2.7 GHz with 3MB shared L3 cache under OS X 10.14.

3.5 Evaluation

Ahmad et al. [ALPA17] provide a benchmark called NAB5 (Numenta Anomaly
Benchmark) to test and measure different anomaly detection algorithms on stream-
ing data. They are working in a company called Numenta6 and tackling one of the
most important scientific challenges of all time: reverse engineering the neocortex.
Based on the principles of the cortex, they have designed a neural network called
Hierarchical Temporal Memory (HTM) for sequence learning which is implemented
in a machine learning platform called NUPIC7 (Numenta Platform for Intelligent
Computing). According to them, HTM is commonly used for prediction tasks and
has been shown work well. Therefore, they have applied it to anomaly detection for
streaming data. In order to test their approach, they have created NAB and provide
it as a controlled open repository for researchers to evaluate and compare anomaly
detection algorithms for streaming applications. So first, NAB will be briefly intro-
duced in this section and the performance of the OPUAD algorithm will be shown
later.

5NAB: https://github.com/numenta/NAB.
6Numenta: https://numenta.com.
7NUPIC: https://github.com/numenta/nupic.

https://github.com/numenta/NAB
https://numenta.com
https://github.com/numenta/nupic
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3.5.1 Numenta Anomaly Benchmark

3.5.1.1 Bechmark Dataset

The anomaly detection algorithms for streaming applications must be operated in
an unsupervised fashion, however, evaluation still needs the ground truth labels.
Imagine that when a detector reports an anomaly and triggers an alert, an engineer
or a domain-expert always requires to inspect the data and determine whether the
reported anomaly is a true anomaly. Only when the system has totally crashed, the
further inspection is no longer necessary. Therefore, ground truth labels here refer
to the true anomalies, either labeled by domain-experts or labeled based on the fact.
NAB saves our time on finding an appropriate data set labeled with true anomalies
because it contains 58 data files8 with ground truth labels, each with 1000–22,000
records extracted from different streams, for a total of 365,551 data points. For
example, CPU utilization in Figure 3.4a and disk write bytes in Figure 3.5a are two
of the 58 files, meanwhile, the red points refer to the ground truth anomaly.

3.5.1.2 NAB Scoring

According to Ahmad et al., the best anomaly detection algorithm for streaming
applications must satisfy the following requirements:

• detects all anomalies present in the streaming data;

• detects anomalies as soon as possible, ideally before the anomaly becomes
visible to a human;

• triggers no false alarms (no false positives).

In such a case, the traditional scoring methods, such as precision and recall which are
based on the standard classification metrics: true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) may not be very realistic for real-time
use, because they can only determine whether the algorithm behaves correct or not
at an exact time point t. Imagine that there is a ground truth anomaly at time point
t, but the detector reports that an anomaly occurs at time point t+1. If we evaluate
the algorithm as usual, we will think that the algorithm gives us a false negative
(FN) at time point t and a false positive (FP) at time point t+1. Anyway, we think
that the algorithm gives us incorrect answers. However, in real applications, it is
not reasonable to think that a failure occurs just at a certain exact time point. A
ground truth label at time t actually means something strange is going on around t.
Under such circumstance, Ahmad et al. define anomaly windows9 to test algorithms
[LA15]. Each window represents a range of data points that are centered around
a ground truth anomaly label, see Figure 3.8. The temperature data in Figure 3.8
comes from an internal component of a large, industrial machine. There are four
ground truth anomaly labels, each of them has an anomaly window highlighted by
a yellow region.

8Some of the data files are artificially generated but most of them are real-word data from
different real-applications.

9The window size is pre-defined by Ahmad et al. with respect to their techniques [LA15], in
this work, it will not be introduced in detail.
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Figure 3.8: Machine Temperature.

A scoring function uses these windows to identify and weight true positives, false
positives, and false negatives10. In such a case, true positive no longer means detect-
ing anomalies correctly at an exact time point but in an anomaly window. If there
are multiple detections within a window, only the earliest detection is given credit,
additional positive detections within the window are ignored. The more earlier the
detection in the window, the higher positive score it obtains. To this end, Ahmad
et al. define a scaled sigmoidal scoring function as follows:

Sig(x) = 2 ∗ (
1

1 + e5x
)− 1 (3.53)

where x is the relative position of the earliest detection within the anomaly window,
the plot of this function is shown in Figure 3.9.

Figure 3.9: Sigmoidal Scoring Function.

10Since true anomalies are rare, it makes no sense to consider true negatives.
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Figure 3.10: Detection Results nearby the First Anomaly Window in Figure 3.8.

As an example, we zoom in the first anomaly window in Figure 3.8 and show the
detection results nearby this window, see Figure 3.10. There are two true positives
within the window but we only take the first into account. The relative position
of the right end of the window is set to 0 such that Sig(x = 0) = 0. The farther
the true positive (in the window) is from the right end, the higher score it is given,
which enables to reward the earlier detection. The sum score of the true positives
in a file is denoted as Score(TP). If there is no any detection within the window,
it is a false negative and assigned a score −1, the score of all the false negatives
is denoted as Score(FN). Every detection outside the window is counted as a false
positive and given a scaled negative score relative to its preceding window. The
sigmoidal scoring function is designed so that detections slightly after the window
contribute less negative scores than detections well after the window. The shaded
green region is the first 15% of the data file, representing the probationary period.
Ahmad et al. think that an online algorithm always behaves unstable at the very
beginning, therefore, during this period the detector is allowed to learn the data
patterns without being scored. Since a false positive after the probationary period
has no preceding anomaly window, it will be easily assigned a score −1. The sum
score of the false positives is denoted as Score(FP). Therefore, the score of an online
algorithm after it has been operated on a data file d is given by

Score(d) = Score(TP) + Score(FN) + Score(FP) (3.54)

Table 3.1: Weights for Measuring Anomaly Detection Performance

profile AFP AFN

Standard 0.11 1.0
Reward low FP rate 0.22 1.0
Reward low FN rate 0.11 2.0

In addition, Ahmad et al. put forward that different applications may place different
emphases as to the relative importance of true positives vs. false negatives and false
positives [LA15]. For example, Figure 3.8 represents an expensive industrial machine
that one may find in a manufacturing plant. Even though the false positives might
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always require a technician to inspect the data more closely, the false negatives will
lead to machine failure in a factory, resulting in production outages and expensive
costs at last. Therefore, in such a case, the cost of a false negative is far higher than
the cost of a false positive. However, in some other cases, the monitored applications
might be fine with the occasional missed anomaly and relatively fault tolerant. As
a consequence, Ahmad et al. introduce the notion of application profiles. There are
three different profiles in the NAB: standard profiles, reward low FP rate profiles
and reward low FN rate profiles. Each profile A assigns different weights for false
negatives AFN and false positives AFP (see Table 3.1) and the score for a file d with
respect to a profile A is

ScoreA(d) = Score(TP) + AFNScore(FN) + AFPScore(FP) (3.55)

Then the benchmark score for a given algorithm is simply the sum of the scores over
all the data files d in the corpus D:

ScoreA(Algo) =
∑
d∈D

ScoreA(d) (3.56)

As the score is somehow dependent on the threshold T which is set to report an
anomaly, Ahmad et al. use a hill climbing algorithm11 to find the optimal threshold
TAoptimal(Algo) which can maximize ScoreA(Algo):

TAoptimal(Algo) = arg max
T

ScoreA(Algo) (3.57)

Then ScoreA(Algo) is calculated with respect to TAoptimal(Algo). The final reported
score is a normalized NAB score computed as follows:

ScoreANAB(Algo) = 100 · ScoreA(Algo)− ScoreA(null)

ScoreA(perferct)− ScoreA(null)
(3.58)

where “perfect” detector means outputting all true positives, no false positives and
false negatives, while “null” detector records a constant value 0.5 as anomaly likeli-
hood for all the data points, which will have the worst performance. It follows from
(3.58) that the maximum (normalized) score a detector can achieve on NAB is 100,
and an algorithm with the worst performance will score 0.

The test process of an algorithm by NAB is summarized in Figure 3.11. With the
intent of fostering innovation in the field of anomaly detection, NAB is designed to
be an accessible and reliable framework for all to use. The NAB repository now
contains source code for commonly used algorithms for online anomaly detection,
as well as some algorithms submitted by the community. The algorithms evaluated
now include HTM [ALPA17], Contextual Anomaly Detector (CAD OSE), Confor-
malized Distance-based Anomaly Detection (KNNCAD) [BI16], Multinomial Rela-
tive Entropy [WVC+11], Random Cut Forest, Twitter’s Anomaly Detection, Etsy’s
Skyline, Bayesian Online Changepoint detection [Ada06] and EXPoSE [SER16].

11Hill climbing is an iterative algorithm that starts with an arbitrary solution to a problem,
then attempts to find a better solution by making an incremental change to the solution, see
https://en.wikipedia.org/wiki/Hill climbing.

https://en.wikipedia.org/wiki/Hill_climbing
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Figure 3.11: Test Process of an Algorithm by NAB.

3.5.2 Comparison of results

This work tests the OPUAD algorithm on NAB corpus using Numenta Anomaly
Benchmark. Table 3.2 summarizes the NAB scores for each algorithm across all
application profiles12. Overall we see that the HTM algorithm gets the best score

Table 3.2: NAB Scoreboard showing Results of Each Algorithm on NAB.

Detector Standard Profile Reward Low FP Reward Low FN

Perfect 100 100 100
HTM 70.1 63.1 74.3
CAD OSE 69.9 67.0 73.2
OPUAD 64.5 59.5 68.0
KNN-CAD 58.0 43.4 64.8
Relative Entropy 54.6 47.6 58.8
Twitter ADVec 47.1 33.6 53.5
Etsy Skyline 35.7 27.1 44.5
Bayes Changepoint 17.7 3.2 32.2
EXPoSE 16.4 3.2 26.9
Null 0 0 0

and CAD OSE is the winner in the competition which was held in collaboration with
IEEE WCCI13 during the summer of 2016 by Numenta. The OPUAD algorithm
described in this chapter just follows these two algorithms and takes the third place.

3.6 Conclusions

For a company which applies SAP systems or services e.g. SAP HANA database,
it is essential to have a stable and healthy SAP landscape, because the company
can only be as healthy as its SAP landscape. If its SAP landscape degrades, so
does its productivity. For example, if the production environment goes down for
an hour, it may cost the company tens of thousands. Therefore, anomaly detection
is one of the most significant functions in the monitoring service, which can help
to reduce the downtime of the system. To this end, this chapter proposes the
OPUAD algorithm for streaming data based on the kernel density estimator and
maximum entropy principle. Unlike batch processing, OPUAD detects anomalies

12The Scoreboard without the OPUAD algorithm is shown in https://github.com/numenta/
NAB.

13http://www.wcci2016.org.

https://github.com/numenta/NAB
https://github.com/numenta/NAB
http://www.wcci2016.org.
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in an unsupervised, automated fashion without supervision, which makes it self-
adaptive and computationally efficient. Its performance has been tested by Numenta
Anomaly Benchmark (NAB) and the comparative result shows that OPUAD is
better than the most of other algorithms included in NAB.



4. Granger Causality Analysis for
Time Series Data

Temporal-casual effect between time series data is commonly quanti-

fied by Granger causality. However, its basic form is not applicable to

large scale data with non-linear interactions. Therefore, this chapter

introduces several variants of the Granger causality and performs simu-

lations to discuss their scalability. Since Granger causality is a statistic

tool to measure the association between time series data, the analysis in

this chapter belongs to exploratory causal analysis.

4.1 Definition of Granger Causality

Granger causality, a statistical method developed by Granger(1969), is one of the
causality theories widely used in recent decades to quantify the temporal-causal
effect among time series due to its simplicity, robustness and extendability [BDL+04,
Pan04]. It is based on the common conception that the cause usually appears prior
to its effect. Formally, a variable Y (the driving variable) Granger causes X
(the response variable) if its past value can help to predict the future value of X
beyond what could have been done with the past value of X only [ALA07]. Thus
Granger causality uses the prediction to infer the causality, the prediction accuracy
of a joint model that includes “cause” and “effect” is better than a model of “effect”
alone. Generally, the definition of Granger causality is rooted in the conditional
distribution [BL13] as follows:
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Definition 4.1. Given two stationary time series X = {xt}t∈Z and Y = {yt}t∈Z
and considering two information sets: (i) I∗(t), the set of all information in the
universe up to time t, and (ii) I∗−Y (t), the set of all information in the universe
excluding Y up to time t. On the basis of Granger causality, the conditional
distribution of future values of X given I∗(t) and I∗−Y (t) should be different.
Therefore Y is defined to Granger cause X if

P [xt+1 ∈ A|I∗(t)] 6= P [xt+1 ∈ A|I∗−Y (t)] (4.1)

for some measurable set A ⊆ R and all t ∈ Z.

4.2 Linear Granger Causality

Due to the difficult modeling of the conditional distribution, linear regressions and
significance tests are often employed to discover the Granger-causal relation between
time series because of its simplicity, robustness with strong empirical performance
in practical applications. Consequently, vector autoregression (VAR) models have
evolved to be one of the dominant approaches of Granger causality [BL13].

4.2.1 Bivariate-GC Test

For simplicity of exploration, we consider Granger causality in a bivariate system at
first where I∗(t) only consists of the information of X and Y . Let Xt and Yt be the
observations of X and Y at time t, the bivariate VAR process for the two stationary
time series X and Y of length N can be described by the following equation:[

xt
yt

]
=

[
c1

c2

]
+

L∑
i=1

[
αi βi
γi δi

] [
xt−i
yt−i

]
+

[
ε1
ε2

]
, (4.2)

where L is the maximal time lag, ε1 and ε2 refer to two white noise error terms.
In that sense, time series Y is said not to Granger causes X if βi = 0 for any
i = 1, ..., L. In other words, the past values of Y do not provide any additional
information on the performance of X. Similarly, X dose not Granger causes Y if
γi = 0 for any i = 1, ..., L.

The Granger-causal relation between X and Y can be determined by statistical
significant tests with the following null hypotheses: (1) H1

0 : β1 = · · · = βL = 0,
and (2) H2

0 : γ1 = · · · = γL = 0. After testing, we have four possible testing results:
(1) if none of H1

0 and H2
0 is rejected, there is no linear Granger-causal relationship

between X and Y ; (2) if only H1
0 is rejected, there exists linear Granger-causality

running unidirectionally from Y to X; (3) if only H2
0 is rejected, there exists linear

Granger-causality running unidirectionally from X to Y ; (4) if H1
0 and H2

0 are both
rejected, there exists reciprocally Granger-causal relationship between X and Y .

It is evident that Granger causality is a directional measurement, while the Pear-
son correlation coefficient, the most popular tool to measure the relation between
two variables, is a symmetrical measurement. Therefore, it is more suitable to use
Granger-causal relation to support the further root cause analysis for anomalies in a
critical metric and know some effects of the anomalies. Since Granger causality is a
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directional measurement, how to measure Granger-causal relation will be illustrated
based on one direction. In such a case, the following two models are compared to
test if Y Granger causes X:

xt = c1 +

L∑
i=1

αixt−i +

L∑
i=1

βiyt−i + ε1 (4.3)

xt = c3 +

L∑
i=1

ηixt−i + ε3 (4.4)

The Eq. (4.3) is referred to as the unrestricted model (U-model) and the Eq. (4.4)
as the restricted model (R-model) [BL13], because the former comprises information
of X and Y but the latter only information of X. After fitting the U-model and R-
model with ordinary least squares (OLS) regression, we could compare the predictive
performance of two models by F -test in terms of the residual sum of squares RSS
which is given by

RSS =
∑
i

(yi − ŷi)2 (4.5)

where yi is the i-th observed value and ŷi is the i-th predicted value.

The statistical significance of the difference between RSSR and RSSU is commonly
assessed by the Fisher statistic:

F =
(RSSR −RSSU)/L

RSS2
U/(N − 3L− 1)

(4.6)

where RSSR and RSSU are the residual sum of squares from R-model and U-model
respectively, N is the length of given time series data, L is the number of time lags
which are included in the estimation.

The F statistic approximately follows an F distribution with degrees of freedom
L and (N − 3L − 1). If the F statistic is significant(i.e., greater than the critical
value at p < 0.05 in the standard FL,N−3L−1 distribution), then the U-model yields
a better explanation of X than does the R-model, and Y is said to Granger cause
X.

Causal Influence

Once we have concluded that a “causal relation” in the sense of Granger is present,
it is usually required to assess the strength of this relationship. In [GSK+08], the
causal influence is quantified with the help of the variance of the prediction errors
σ2 because if the variance of prediction error for the R-model is reduced by the
inclusion of past histories of the driving variables in the U-model, then a causal
relation exists. Hence, the causal influence from Y to X is quantified by

GCY−>X = ln
σ2(ε3)

σ2(ε1)
(4.7)

Since σ2 is typically unknown, it can be estimated by

σ̂2 =

∑
i

(yi − ŷi)2

n− k − 1
(4.8)
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where n is the number of observations and k is the number of the independent
variables in the regression model.

Stationarity

It is important to note that Granger causality approach assumes week stationarity
of underlying data.

Definition 4.2. (Stationarity or week stationarity) The time series X = {xt}t∈Z
is said to be stationary if

i) V ar(xt) <∞ for all t ∈ Z,

ii) E(xt) = µ for all t ∈ Z,

iii) γX(s, t) = γX(s+ h, t+ h) for all s, h, t ∈ Z.

Loosely speaking, a stochastic process is stationary if its statistical properties, i.e.
means and covariances, are constant over time. In other words, a stationary time
series {xt}t∈Z must have three features: finite variation, constant first moment, and
the second moment γX(s, t) depending only on (t− s) but not on s or t.

On the basis of the last point in the definition, the auto-covariance function(ACVF)
of a stationary process can be rewritten as

γX(h) = Cov(xt, xt+h) for t, h ∈ Z (4.9)

Also, when {xt} is stationary, we must have

γX(h) = γX(−h) (4.10)

When h = 0, γX(0) = Cov(xt, xt) is the variance of {xt}t∈Z, so the autocorrela-
tion(ACF) function of {xt}t∈Z is defined to be

ρX(h) =
γX(h)

γX(0)
(4.11)

The Augmented Dickey-Fuller(ADF) test is used to test stationarity with the
null hypothesis H0 : the time series is non-stationary and the alternative hypothesis
H1 : the series is stationary. To implement the test, the following model is considered

yt = c+ δt+ φyt−1 +

L∑
i=1

βi∆yt−i + εt (4.12)

where ∆ is the differencing operator, c is the constant, δ is the deterministic trend
coefficient, L is the number of lagged difference terms used in the model and εt is a
white noise error. The number of lags can be determined using the Schwarz Bayesian
information criterion [Sch78] or the Akaike information criterion [Aka74].



4.2. Linear Granger Causality 47

To infer about H0, the t-statistic is used on the φ coefficient. The test statistic is
given by the expression

tDF =
φ̂− 1

SE(φ̂)
(4.13)

where φ̂ is the estimated φ from the fitting model and SE is the standard error. The
H0 is rejected if the test statistic is smaller than the corresponding critical value. If
H0 is not rejected, the series needs transformation to achieve stationarity. Differenc-
ing can help stabilize the mean of a time series by removing changes in the level of
a time series, and therefore eliminating (or reducing) trend and seasonality [AA13].

However, in this work, the stationarity will always hold in the analysis because causal
inference is only made with relatively short time series of each available metric in
a system around anomalies; see Section 2.3. A short time series is often considered
stationary. How to make causal inference with non-stationary time series is beyond
the scope of this work.

Time Lag Selection

Selection of an appropriate lag is critical to inference in VAR. Lütkepohl [Lü05]
indicated that using too few lags can result in autocorrelated errors while using too
many lags leads to over-fitting, causing an increase in mean-square-forecast errors
of the VAR model.

The most common approach to determine the lag length is to fit VAR models with
L = 0, 1, ..., Lmax and choose the value of L which minimizes some model selection
criteria. The three most commonly used criteria are the Akaike Information Cri-
terion(AIC), Schwarz Bayesian Information Criterion(BIC) and the Hannan-Quinn
criterion(HQ) [Lü05, Vri12]. The lag associated with the minimum value of a crite-
rion is selected [Lü05].

4.2.2 Conditional-GC Analysis

As in many applications, such as climate science, social media, IT system, ecom-
merce, medical, energy etc, the data available for analysis often involve a collection
of multiple univariate time series referred to as multivariate time series. Identifying
temporal dependencies between multivariate time series for better understanding
of causal structure among the relevant variables is thus a topic of significant inter-
est [ALA07, LALR09].

A nature way of applying the notion of Granger causality with multivariate time
series is to simply apply the bivariate-GC test to each pair of time series sequentially
to determine the presence of causal relation between them and the corresponding
orientation [ALA07]. However, the bivariate-GC test has some inherent limitations
and might lead to incorrect conclusions, as broadly discussed in [DCB06]. For ex-
ample, let us assume that there are three time series X, Y and Z. The problem
arises, for example, if Y ‘drives’ X, while X ‘drives’ Z without there being a ‘drive’
from Y to Z(see Figure 4.1a). In this case, the Granger causality from Y to Z
maybe spuriously identified as being significant. As another example, the problem
also occurs if Y ‘drives’ both X and Z with different delays, without there being a
‘drive’ from X to Z(see Figure 4.1b). In this case, the Granger causality from X to
Z may be spuriously as being significant.
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Figure 4.1: Spurious identification of significant GC by bivariate-GC test.

Conditional Granger Causality analysis [Gew84, CBD06, SE07] can mitigate the
problem of spurious Granger Causality significance. This method is capable to
figure out whether the interaction between two time series is direct or is mediated
by another time series and whether the causal influence is simply due to different time
delays in their respective driving input. The analysis now requires the estimation of
multivariate vector autoregressions(MVAR), for example, if we consider Y and X as
the “cause” and “effect” variable, respectively, and conditioning on variable Z, the
Eq. (4.3) and Eq. (4.4) are extended by the following:

xt = c5 +

L∑
i=1

αixt−i +

L∑
i=1

βiyt−i +

L∑
i=1

ζizt−i + ε5 (4.14)

xt = c6 +

L∑
i=1

ηixt−i +

L∑
i=1

ρizt−i + ε6 (4.15)

The causal influence from Y to X conditioning on Z is now defined as

GCY−>X|Z = ln
σ2(ε6)

σ2(ε5)
. (4.16)

When the causal influence from Y to X is entirely mediated by Z, the coefficient βi
in Eq. (4.14) is uniformly zero and σ2(ε6) = σ2(ε5). Thus we have GCY−>X|Z = 0,
meaning that no further improvement in the prediction of X can be expected by
including past measurements of Y conditioning on Z. In contrary, when there is still
a direct influence from Y to X, the inclusion of past measurements of Y in addition
to that of X and Z leads to better prediction of X, resulting in σ2(ε5) < σ2(ε6),
and GCY−>X|Z > 0. The statistical significance of GCY−>X|Z can also be assessed
by the F -test. An extension of this definition for more than three time series is
straightforward.

Now let S = {Z1, Z2..., ZD} be a D-dimensional stationary time series of length N
and Zi is considered as the target (“effect”). Whether or not another time series Zj
Granger causes Zi is tested using the following two models:
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zi,t = a0 +

D∑
d=1

L∑
l=1

ad,lzd,t−l + ei,t (U-model) (4.17)

zi,t = b0 +

D∑
d=1,d6=j

L∑
l=1

bd,lzd,t−l + ui,t (R-model) (4.18)

The Eq. (4.18) excludes the historical information of Zj and the null hypothesis H0

that “Zj does not Granger causes for Zi” is rejected if the coefficients aj,l, l =
1, ..., L, are jointly different from 0. The formula of the F -test now has a bit change
compared with (4.6):

F =
(RSSR −RSSU)/L

RSSU/(N − L−KL− 1)
(4.19)

where RSSU and RSSR are the residual sum of squares from U-model (4.17) and
R-model (4.18) respectively, N is the length of the given time series data, L is the
model order, KL means the number of explanatory variables in the U-model (4.17).

The causal influence in this case is also called conditional Granger causality index
(CGCI) [SK16]. Then CGCI from Zj to Zi is defined as

CGCIZj−>Zi
= ln

σ2(ui,t)

σ2(ei,t)
(4.20)

4.2.3 Lasso-GC Analysis

It is well known that over-fitting will occur more prominently when the number of
considered time series increases. Therefore, variable selection to reduce the num-
ber of explanatory variables in the regression model is necessary. The Lasso(Least
Absolute Shrinkage and Selection Operator) algorithm [Tib96], first formulated by
Robert Tibshirani in 1996, has proven popular in variable selection. It is an in-
cremental algorithm that includes the L1-regularization term in the fitting process
of over-parameterized linear models to avoid over-fitting. In linear regression, the
Lasso generally minimize the sum of squared errors with a upper bound on the sum
of the absolute values of the model coefficients, namely

min
(
||y −Xβ||22

)
subject to ||β||1 ≤ t (4.21)

where y is the dependent variable, X is the independent variables and t is the upper
bound for the sum of the coefficients. This optimization problem is equivalent to
the parameter estimation that follows

β̂(λ) = arg min
β

(
||y −Xβ||22︸ ︷︷ ︸

Loss

+λ ||β||1︸ ︷︷ ︸
Penalty

)
(4.22)

where λ ≥ 0 is the parameter that controls the strength of the penalty, the larger
the value of λ, the greater the amount of shrinkage.
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The relation between λ and the upper bound t is a reverse relationship. As t be-
comes infinity, the problem turns into an ordinary least squares and λ becomes 0.
Contrarily, when t becomes 0, all coefficients shrink to 0 and λ goes to infinity.
Hence, choosing a good value of the tuning parameter λ is crucial. Because each
tuning parameter value corresponds to a fitted model, we also refer to this task as
model selection and use the generalized cross validation score to achieve the variable
selection [ALA07].

If we minimize the optimization problem, some coefficients are shrunk to zero, i.e.
β̂j(λ) = 0 for some features j depending on the parameter λ. As a result, the features
with coefficient equal to zero are excluded from the model which makes Lasso a
powerful method for feature selection. So unlike the conditional GC-analysis, if we
apply the Lasso GC analysis, there is only one model to be considered:

zi,t = a0 +

D∑
d=1

L∑
l=1

ad,lzd,t−l + ei,t (4.23)

and the regression task could be thus achieved by solving the following optimization
problem:

min
{ad,l}

N∑
t=L+1

zi,t − D∑
d=1

L∑
l=1

ad,lzd,t−l

2

+ λ‖ad,l‖1 (4.24)

Since only one model is considered in this case, F -test is not applicable to test the
significance of Granger causality any more. But it will not hold back discovering
temporal-causal relationship. Some analysts [LTTT14] propose the so-called covari-
ance test statistic to test the significance of the predictor variable that enters the
current lasso model, however, as mentioned in Section 2.3.2, even though statistical
tests are useful for causal inference, the results of such tests should not be interpreted
beyond exploratory causal analysis, which means, the use of a hypothesis test does
not imply a given causal inference is confirmatory rather than exploratory [McC16].
Note that the objective of causal inference in this work is not to confirm some exist-
ing causal theory or structure, it just explores potential causal relationships between
time series data, any finding still requires further analysis.

So under such circumstance, it makes sense to say that

Zj Granger causes Zi, if ∃ l = 1, ..., L, âj,l 6= 0 ,

which means, for a given lag L, at least one individual lagged variable of Zj is
included in the fitted model and provides additional information for predicting Zi.

Sometimes we can fix a threshold parameter T > 0 and say that

Zj Granger causes Zi, if
L∑
l=1

|âj,l| > T

and
∑L

l=1 |âj,l| can also be used to quantify the casual influence from Zj to Zi.
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4.2.3.1 Adaptive Lasso-GC Analysis

Some studies state that there exist certain scenarios where the Lasso is inconsistent
for variable selection, e.g. includes noise variables and shows biased estimates for
large coefficients, leading to suboptimal prediction rates. To address this issue,
Zou(2006) [Zou06] proposed the Adaptive Lasso, as a regularization method to avoid
overfitting penalizing large coefficients. In linear regression, the adaptive Lasso thus
seeks to minimize:

β̂adapt(λ) = arg min
β

(
||y −Xβ||22 + λ

∑
j

ŵj|βj|
)

(4.25)

where λ is the tuning parameter, βj are the estimated coefficients and ŵj are the
adaptive weights. With ŵj we could perform a different regularization for each
coefficient, i.e., assigning the penalty differently for each coefficient. The adaptive
weights are defined as

ŵj =
1

|β̂initj |
(4.26)

where β̂initj is an initial estimate of the coefficients, usually obtained through OLS
and Ridge Regression.

Notice that if β̂initj = 0 then ∀λ > 0, β̂j(λ) = 0. In addition, those coefficients with
lower initial estimates are given a relative greater penalty in Adaptive Lasso. Fur-
thermore, if the penalization parameter λ is chosen appropriately, Adaptive Lasso is
consistent for variable selection and enjoys the so-called “Oracle Property” proposed
by Fan and Li(2001) [FL01], which means broadly that the procedure performs as
well as if the true subset of relevant variables were known.

The optimization problem (4.24) in the Adaptive Lasso turns into

min
{ad,l}

N∑
t=L+1

zi,t − D∑
d=1

L∑
l=1

ad,lzd,t−l

2

+ λ

D∑
d=1

L∑
l=1

|ad,l|
|âinitd,l |

(4.27)

4.2.3.2 Group Lasso-GC Analysis

Either the general Lasso-GC analysis or the adaptive Lasso-GC analysis only takes
the effect of the individual lagged variable into account. But when modeling the
temporal-causal dependencies into a graph we do not consider whether an individual
lagged variable is to be included in regression, but whether the lagged variables for
a given time series as a group are to be included. This is the motivation for us to
turn to the group Lasso, which performs variable selection with respect to model
fitting criteria that penalize intra- and inter-group variable inclusion differently.
In this case, variables belonging to the same group should be either selected or
eliminated as a whole [LALR09]. The group Lasso proposed by Yuan and Lin [YL06]
overcomes these problems by introducing a suitable extension of the lasso penalty.
The estimator is defined as

β̂group(λ) = arg min
β

(
||y −Xβ||22 + λ

G∑
g=1

||βIg ||2
)

(4.28)
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where Ig is the index set belonging to the gth group of variables, g = 1, ..., G and
βIg = {βj; j ∈ Ig}. This penalty can be viewed as an intermediate between the l1-
and l2-type penalty. It has the attractive property that it does variable selection at
the group level and is invariant under (group-wise) orthogonal transformations like
ridge regression [YL06].

If we apply group Lasso to the granger causality analysis, the optimization problem
(4.24) can be rewritten as

min
{ad,l}

N∑
t=L+1

zi,t − D∑
d=1

L∑
l=1

ad,lzd,t−l

2

+ λ

D∑
d=1

||{ad,l}||2 (4.29)

where {ad,l} = (ad,1, ..., ad,L).

In this case, we can see that each time series is viewed as a separate group and in
every group there are L individuals (the lagged variables). So the D groups are of
equal size. The L individual lagged variables of a time series as a whole are included
or excluded in the regression. Therefore, it makes sense to say that

Zj Granger causes Zi, if ∀ l = 1, ..., L, âj,l 6= 0 ,

which means, all of the individual lagged variables of Zj are included in the fitted
model, or we can also fix a threshold parameter T > 0 and say that

Zj Granger causes Zi, if
L∑
l=1

|âj,l| > T.

4.3 Non-linear Granger Causality

It is common that many real world systems exhibit nonlinear dependence between
time series so that using linear models may lead to inconsistent estimation of Granger
causal interactions. Therefore, using tools to detect nonlinear Granger causality
is always a challenge. Several approaches have been proposed for identification
of Granger Causality in non-linear systems; among the notable ones, kernelized
regression [MPS08], non-parametric techniques such as [HJ94, Pan04], non-Gaussian
structural VAR [HSKP08] and generalized linear autoregressive models [YHPW09].
However these methods either perform poorly in high dimensions or do not scale to
large datasets [BL13]. To tackle these challenges, an interpretable and sparse neural
network model for nonlinear Granger Causality is proposed [TCF+18].

4.3.1 Neural Lasso-GC Analysis

A nonlinear autoregressive model allows Zi to evolve according to more general
nonlinear dynamics [TCF+18]

zi,t = gi(z
(t−L):(t−1)
1 , ..., z

(t−L):(t−1)
D ) + ei,t (4.30)

where z
(t−L):(t−1)
d = (zd,t−L, ..., zd,t−1), d = 1, ..., D denotes the past values of time

series Zd and gi is a function that specifies how the past L lags influence time series
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Zi. In this context, time series Zj does not Granger causes Zi means that the

function gi does not depend on z
(t−L):(t−1)
j , the past lags of series Zj.

The nonlinear dynamics can be modeled with a multilayer perceptron (MLP) neural
network. Assume that for each time series Zi, gi takes the form of an MLP with M
hidden layers and let the vector Hm denotes the values of the m-th hidden layer.
The input layer has D ∗ L units and the first hidden layer has Q units. The value
of the q-th unit in the first hidden layer can be written as

h1,q = σ

 D∑
d=1

L∑
l=1

w1,q
d,l zd,t−l + b1,q

 (4.31)

where σ is an activation function and b1,q is the bias.

Therefore, the first layer weights W 1 can be written as follows

W 1 =



w1,1
1,1 . . . w1,1

1,L . . . w1,1
D,1 . . . w1,1

D,L

w1,2
1,1 . . . w1,2

1,L . . . w1,2
D,1 . . . w1,2

D,L

...
. . .

...
. . .

...
. . .

...

w1,Q
1,1 . . . w1,Q

1,L . . . w1,Q
D,1 . . . w1,Q

D,L


The outgoing weights shown in blue in Figure 4.2a represent one row of W 1.

Reform W 1 as each column d includes the weights for all the lag individuals of time
series Zd:

W 1
reform =



w1,1
1,1 w1,1

2,1 . . . w1,1
D,1

...
...

. . .
...

w1,Q
1,1 w1,Q

2,1 . . . w1,Q
D,1

...
...

. . .
...

w1,1
1,L w1,1

2,L . . . w1,1
D,L

...
...

. . .
...

w1,Q
1,L w1,Q

2,L . . . w1,Q
D,L


The outgoing weights shown in blue in Figure 4.2b represent one column of W 1

reform.

Inspired by the group Lasso-GC methods, we can apply a group lasso penalty to the
columns of the matrix W 1

reform for gi as in Eq. (4.30),

min
w1,q

d,l

N∑
t=L+1

(
zi,t − gi(z(t−L):(t−1)

1 , ..., z
(t−L):(t−1)
D )

)2

+ λ

D∑
d=1

||{w1,q
d,l }||2 (4.32)

where {w1,q
d,l } = (w1,1

d,1, ..., w
1,Q
d,1 , ..., w

1,1
d,L, ..., w

1,Q
d,L ).
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In this case, we fix a threshold parameter T > 0 to determine if time series Zj
Granger causes Zi,

Zj Granger causes Zi, if
L∑
l=1

Q∑
q=1

||w1,q
j,l ||2 > T.

... ... ...

…

…

…

…

…

…

…

... ... ...
…

…

…

…

…

…

…

(a) One row of W 1.

... ... ...

…

…

…

…

…

…

…

... ... ...

…

…

…

…

…

…

…

(b) One column of W 1
reform.

Figure 4.2: Schematic for modeling Granger causality using MLP.

As discussed in Lasso algorithm, for large enough λ, the solutions to the objective
function (4.32) will lead to many zero columns in W 1

reform. To this end, we apply
proximal gradient descent with line search to update w1,q

d,l
1.

4.3.1.1 Gradient Descent

First, let consider unconstrained, smooth convex optimization problems in the form
of

min f(x) (4.33)

where f : Rn → R is convex, twice differentiable, with dom(f) = R(no constraints).
Assume that the problem is solvable, we denote the optimal value, f ∗ = minx f(x)
and optimal solution as x∗ = arg minx f(x).

Due to the fact that it is always not easy to solve a system of equation ∇f(x∗) = 0,
Gradient Descent is more preferred to compute a minimizing sequence of point
x(0),x(1),x(2), ... such that f(x(k))→ f(x∗) as k →∞. At each iteration k, we want
to move from our current point x(k−1) to point x(k) such that f(x(k)) is optimal.
Since f is twice differentiable, we apply the quadratic approximation on f(x(k)) to
have

f(x(k)) ≈f(x(k−1)) +∇f(x(k−1))T (x(k) − x(k−1))

+
1

2
(x(k) − x(k−1))T∇2f(θ(x(k−1) − x(k)) + x(k))(x(k) − x(k−1)) (4.34)

1Note that only the first layer weights will be updated when we train the neural network in this
case.
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where θ ∈ [0, 1]. By replacing ∇2f(θ(x(k−1) − x(k)) + x(k)) by 1
tk
I, we can represent

f(x(k)) as follows:

f(x(k)) ≈ f(x(k−1)) +∇f(x(k−1))T (x(k) − x(k−1))︸ ︷︷ ︸
Linear Approximation

+
1

2tk
||x(k) − x(k−1)||22︸ ︷︷ ︸
Proximal Term

(4.35)

the first additive term is called linear approximation, and the second one is proximity
term. Basically, the proximity term tell us that we should not go to far from x(k−1),
otherwise results in large f(x(k)). To find optimal value of x(k), we take the derivative
of (4.35) with respect to x(k) and set to zero

∇f(x(k−1)) +
1

tk
(x(k) − x(k−1)) = 0

thus, we can get gradient update

x(k) = x(k−1) − tk∇f(x(k−1)) (4.36)

where k = 1, 2, ... is iteration number, tk is step size at iteration k, initial x0 ∈ Rn

is usually given. The Eq. (4.36) can also be rewritten as

x(k) = arg min
x

f(x(k−1)) +∇f(x(k−1))T (x− x(k−1)) +
1

2tk
||x− x(k−1)||22 (4.37)

After some simple algebraic manipulation and cancellation of constant terms, the
Eq. (4.37) can be rewritten as

x(k) = arg min
x

1

2tk
||x− (x(k−1) − tk∇f(x(k−1)))||22 (4.38)

4.3.1.2 Proximal Gradient Descent

Now consider a function f that can be decomposed into two functions as follows:

f(x) = g(x) + h(x) (4.39)

where, g is convex, differentiable and dom g = Rn, while h is convex and not neces-
sarily differentiable, but is simple. Let us use (4.38) for the differentiable function
g. Then we can obtain

x(k) = arg min
x

1

2tk
||x− (x(k−1) − tk∇g(x(k−1)))||22 + h(x) (4.40)

where the first term signifies staying close to the gradient update for g while at the
same time, making the value of h small using the second term.

Next we define proximal operator as a function of h and tk as follows:

proxh,tk(z) = arg min
x

1

2tk
||x− z||22 + h(x) (4.41)

Thus, Eq. (4.40) can be written as

x(k) = proxh,tk(x(k−1) − tk∇g(x(k−1))) (4.42)
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From Eq. (4.41) we can see that the proximal operator does not rely on g at all,
only on h. It can be computed analytically for a lot of important h functions, such
as the regularization penalty in the objective function (4.32), g can be a complicated
function, all we need to do is to compute its gradient.

Now return back to the objective function (4.32), for a better understanding, it can
be rewritten in a compacted form:

min
w1,q

d,l

f(W 1) = F (W 1) +R(W 1) (4.43)

The proximal operator for R(W 1) is computed as follows

proxλ,tk(w1,q
d,l ) =

w
1,q
d,l − λtk

w1,q
d,l

||{w1,q
d,l }||2

||{w1,q
d,l }||2 > λtk

0 ||{w1,q
d,l }||2 ≤ λtk

for d = 1, ..., D

(4.44)

The above proximal operator is also known as the soft thresholding operator S̃λ,tk(w1,q
d,l ).

Therefore, using Eq. (4.42), the update of w1,q
d,l can be set as

w1,q
d,l

(k)
= proxλ,tk(w1,q

d,l

(k−1) − tk∇F (w1,q
d,l

(k−1)
)) (4.45)

4.3.1.3 Backtracking Line Search

From (4.44) we can see that the update of w1,q
d,l depends on the step size tk. A naive

strategy is to set a constant tk = t for all iterations, however, this strategy poses
two problems. A too big t can lead to divergence, meaning the learning function
oscillates away from the optimal point. A too small t takes longer time for the
function to converge. A good selection of the step size can make the algorithm
faster to converge. In this thesis, the backtracking line search is considered, which
is described as follows.

• First fix two parameters 0 < β < 1 and 0 < α ≤ 0.5.

• At each iteration k, start with tk = 1, and while

f(W 1(k)
) > f(W 1(k−1)

)− αtk||W 1(k−1) −W 1(k)||22 (4.46)

shrink tk = βtk. Else perform proximal gradient descent update, see (4.45).

4.4 Causal Graph Modeling

In order to represent the dependence structure of multivariate time series, a graph
G = (V,E) is used in which the vertex set V stores the time series and E is a set
of directed edges between vertices. A directed edge from node vj to vi is equivalent
to “Zj Granger causes Zi conditioned on other time series”. When there exists
reciprocally Granger-causal relationship between Zj and Zi, a bi-directed edge lies
between vj and vi.
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Let A be an K ×K adjacency matrix associated to G. For any pair of time series,
vi and vj, there are two entries in A, A[i, j] and A[j, i], each representing an edge
going in one direction. For a bi-directed edge, both entries take value 1, while for a
directed edge, only one entry would take 1 and the other entry would take 0.

Now we could evaluate the performance of different approaches for Granger causality
analysis by quantifying the similarity between the output causal graph G′ with A′

and the target causal graph G? with A?. The accuracy of the approach is calculated
based on a widely used metric in the classification problem, AUC (Area Under the
ROC Curve).

4.5 Simulations

A series of simulation experiments have been conducted to compare bivariate-GC
analysis, conditional-GC analysis, group Lasso-GC analysis and MLP Lasso-GC
analysis. Since the first three analysis methods rely on statistical models, the rich
variety of library makes R the first choice for performing them, while the MLP
Lasso-GC analysis is realized by python with the help of Pytorch library.

Thus the following dependencies are required to perform the simulations:

Program Language Library

R 3.3
zoo
vars
glasso

Python 2.7

numpy
scikit-learn
pandas
pytorch

The implementation code is shown in Appendix B.

All computations were carried out on a Dual-Core Intel Core i5 Processor running
at 2.7 GHz with 3MB shared L3 cache under OS X 10.14.

4.5.1 Linear Standardized VAR System

First, the approaches are performed on the simulated linear standardized VAR sys-
tem. The data generator (written in python) is shown in Appendix B.1. The length
N of time series is set to 1000 and two dimensions are considered: D = 5 and
D = 30.

Figure 4.3 shows the true connectivity structure and the estimated structures of each
approach2 in a VAR system with low dimension (D = 5), while Figure 4.4 shows
that in a VAR system with high dimension (D = 30). The comparison result (AUC
value) is displayed in Figure 4.5.

The results clearly show that conditional-GC analysis, group Lasso-GC analysis and
MLP Lasso-GC analysis all perform well on the linear system, even when the number

2The estimated connectivity plots show not only the estimated connectivity, but also the causal
influence.
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Figure 4.3: Connectivity Structure of Standardized VAR System (D=5).
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Figure 4.4: Connectivity Structure of Standardized VAR System (D=30).
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Figure 4.5: Comparison Result for Standardized VAR System.

of time series is small (D = 5), they can completely discover the true temporal-causal
dependencies. For a relatively high dimension system (D = 30), group Lasso-GC
analysis yields the best performance. By contrast, the bivariate-GC analysis in both
case has a very poor performance. From the estimated structures, it is obvious that
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the bivariate-GC analysis discovers too many false positive dependencies, which has
confirmed its limitations discussed in the previous section.

4.5.2 Nonlinear Driver-response Henon System

Next, the nonlinear Henon system [VK10] is simulated to test the performance of
the GC-analysis methods. The driver-response Henon system maps of D variables,
where the first and last variable in the chain of D variables drive their adjacent
variable and the other variables drive the adjacent variable to their left and right,

zi,t = 1.4− z2
i,t−1 + 0.3zi,t−2 for i = 1, D

zi,t = 1.4− (0.5C (zi−1,t−1 + zi+1,t−1) + (1− C)zi,t−1)2 + 0.3zi,t−2 for i = 2, ..., D − 1

(4.47)

where C is coupling strength (this work takes C = 1.0). The length of time series
is set to 1000 and two dimensions are considered: D = 5 and D = 30. The data
generator is shown in Appendix B.2.
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Figure 4.6: Connectivity Structure of Henon System (D=5).
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Figure 4.7: Connectivity Structure of Henon System (D=30).

Figure 4.6 shows the true connectivity structure and the estimated structures of
each approach in a Henon system with low dimension (D = 5), while Figure 4.7
shows that in a Henon system with high dimension (D = 30). The comparison
result (AUC value) is displayed in Figure 4.8.
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Figure 4.8: Comparison Result for Nonlinear Henon System.

In this case, all the methods have lower performance when the number of time series
increases, however, MLP-GC analysis still yields the best performance compared to
other methods.

4.6 Conclusions

In this chapter, the question of discovering temporal relationships between multi-
variate time series data has been addressed based on Granger causality analysis
and graph-theoretical approaches. Four main methods are discussed: bivariate-GC
analysis, conditional-GC analysis, group Lasso-GC analysis and MLP Lasso-GC
analysis, among them, the first three are commonly used to deal with the linear
system, while MLP Lasso-GC is applicable not only to linear time series dynamics,
but also to nonlinear dependence between series.

When a system e.g. SAP HANA database is monitored, discovering temporal struc-
tures enable us to have a deep insight of the underlying system in some way. Since
it is always assumed that the metrics in a system are not independent but affect
each other over time, the temporal structures can help the engineer to find the most
relevant metrics when anomalies are detected in a certain metric and make some
interventions to keep the system stable.



5. Analysis of Historical
Performance of SAP HANA

This chapter analyzes the historical performance data of the SAP HANA

database across a range of key performance indicators using OPUAD

algorithm and MLP Lasso-GC analysis method.

SAP HANA is an in-memory platform that combines an ACID-compliant1 database
with advanced data processing, application services, and flexible data integration
services. The SAP HANA database can act as a standard SQL-based relational
database. In this role, it can serve as either the data provider for classical trans-
actional applications (OLTP) and/or as the data source for analytical requests
(OLAP). Database functionality is accessed through an SQL interface.

Monitoring past and current information about the performance of the SAP HANA
database is important to prevent performance issues and for root-cause analysis of
problems before users are affected.

5.1 Data Collection

The dataset used in this chapter has been recorded from 01.07.2018 at 00:00 to
31.07.2018 at 23:59 of every minute in the system. The KPIs (Key Performance
Indicators) to analyze historical performance data of the SAP HANA database are
listed in Table 5.1.

1In computer science, ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties
of database transactions intended to guarantee validity even in the event of errors, power failures,
etc.
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Table 5.1: KPIs for Analyzing Historical Performance of SAP HANA Database

Index KPI Description

1 CPU CPU used by the database process (%)

2 MEMORY USED Memory used by the database process (%)

3 DISK USED
Disk space used by data, log, and trace files
belonging to the SAP HANA database (%)

4 NETWORK IN Bytes read from the network by all processes

5 NETWORK OUT Bytes written to the network by all processes

6 SWAP IN Bytes read from swap memory by all processes

7 SWAP OUT Bytes written to swap memory by all processes

8 HANDLE COUNT Number of open handles in the index server process

9 PING TIME
Indexserver ping time including nsWatchdog
request and collection of service-specific KPIs

10 CONNECTION COUNT Number of open SQL connections

11 TRANSACTION COUNT Number of open SQL transactions

12 BLOCKED TRANSACTION COUNT Number of blocked SQL transactions

13 STATEMENT COUNT Number of finished SQL statements

14 PENDING SESSION COUNT Number of pending requests

15 MVCC VERSION COUNT Number of active MVCC versions

16 RECORD LOCK COUNT Number of acquire record locks

17 CS READ COUNT Number of read requests (selects)

18 CS WRITE COUNT Number of write requests (insert, update, and delete)

19 CS MERGE COUNT Number of merge requests

20 CS UNLOAD COUNT Number of table and column unloads

21 ACTIVE THREAD COUNT Number of active threads

22 WAITING THREAD COUNT Number of waiting threads

23 TOTAL THREAD COUNT Total number of threads

24 ACTIVE SQL EXECUTOR COUNT Total number of active SqlExecutor threads

25 WAITING SQL EXECUTOR COUNT Total number of waiting SqlExecutor threads

26 TOTAL SQL EXECUTOR COUNT Total number of SqlExecutor threads

27 THREADS WAITING FOR SYSTEM LOCK Number of threads waiting for system lock

28 THREADS WAITING FOR APPLICATION LOCK Number of threads waiting for application lock

29 THREAD STATE IS IO WAIT Number of threads whose state is I/O wait

30 THREAD STATE IS JOB EXEC WAITING Number of threads whose state is job exec waiting

31 THREAD STATE IS JOINING Number of threads waiting for the other to end

32 THREADS WAITING FOR NETWORK Number of threads waiting for network

33 THREAD STATE IS RESOURCE LOAD WAIT Number of threads waiting for resource to be loaded

34 THREAD STATE IS RUNNING Number of running threads

5.2 Track CPU, Memory, Disk Consumption

Issues with overall system performance can be always directly reflected in CPU us-
age, memory consumption and disk utilization. Therefore, monitoring these metrics
can help us to observe the availability status of the SAP HANA database and detect
the general symptoms shown by the system, such as poor performance, high memory
usage, shortage of disk I/O etc.

Figure 5.1 shows the anomaly detection result of these three main KPIs of SAP
HANA Database by OPUAD algorithm (see Chapter 3).
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Figure 5.1: Anomaly Detection Results of Main KPIs of SAP HANA Database.
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From the detection result we can see that the OPUAD algorithm has succeeded in
detecting the abnormal points, such as a sudden increase or decrease, invalid values
or a continuous increase. As discussed in Chapter 3, the detected anomalies act
always as alerts to report that something strange is going on in the system, then a
domain expert or an engineer is always required to check the corresponding alerts
and determine if the detected anomalies are true positives. In other words, the
monitor functions mentioned in this work can never be fully automated without
humans.

5.3 Temporal Dependency Structure

According to the feedback of the SAP expert, from 01.07.2018 to 31.07.2018, the
overall system has issues only in one period: from 2018-07-13 15:50:00 to 2018-07-13
16:16:00. Therefore, the data on 13.07.2018 (highlighted by a yellow region in Figure
5.1) is chosen from each KPI to analyze the overall structure of the system on that
day using MLP Lasso-GC method.

However, in this period, there are three KPIs whose value keeps invariant as 0: bytes
read from swap memory (Nr.6), bytes written to swap memory(Nr.7) and number of
threads waiting for the other to end(Nr.31), thus they are removed from the analysis.
The estimated temporal dependency structure is shown in Figure 5.2 (the KPIs are
represented by their index in the Figure).

Figure 5.2: Estimated Temporal Dependency Structure of SAP HANA on
13.07.2018.
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5.3.1 CPU related Cause

From Figure 5.2, we find out that the number of running threads(Nr.34) has very
strong Granger causal influence on CPU utilization(Nr.1). Therefore, the interaction
between them is further investigated.
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Figure 5.3: Number of Running Threads −→ CPU Utilization.

The interaction Figure 5.3 reflects that CPU utilization is actually highly effected by
the number of running threads, and on 13.07.2018 at 15:50, the number of running
threads suddenly decreased to 0 and then the state of no running threads lasted for
a while, CPU utilization decreased to 0 afterwards at 16:09.

5.3.2 Memory and Disk related Cause

Total number of threads(Nr.23) Granger causes memory consumption(Nr.2) and disk
utilization(Nr.3) according to Figure 5.2 and the interactions are shown in Figure
5.4 and Figure 5.5.
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Figure 5.4: Total Number of Threads −→ Memory Consumption.

Even though the causal influence in both case is relatively weak, we still can find out
some critical phenomenon that the memory consumption and disk usage abnormally
decreased to 0 after the number of total threads has jumped to 0 at 16:03. And both
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Figure 5.5: Total Number of Threads −→ Disk Utilization.

of them returned back to the normal state due to the fact that the number of total
threads seemed to be normal again.

5.3.3 Blocked Transaction Monitoring

Blocked transactions are transactions that are unable to be processed further because
they need to acquire transactional locks (record or table locks) that are currently
held by another transaction. Transactions can also be blocked waiting for other
resources such as network or disk.

From Figure 5.2, we see that the number of block transactions(Nr.12) strongly
Granger causes the number of waiting SqlExecutor threads(Nr.25). The interac-
tion is shown in Figure 5.6, indicating clearly that the latter depends highly on the
former, more blocked transactions leads to more threads waiting to be executed.
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Figure 5.6: Blocked Transactions −→ Waiting SqlExecutor Threads.

5.3.4 Threads Monitoring

Due to the query processing mechanisms of the SAP HANA database, the threads
have different state values in order to keep the consistency of the database. Figure
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5.2 tells us that the number of threads waiting for system lock(Nr.27) has strong
causal influence on the number of active threads(Nr.21) and waiting threads(Nr.22).
System lock means that it is not possible to run any transactions by connecting
to the database. To renew license keys/unlock the system, only HANA user with
License Admin system privilege can connect to HANA database. When system is
locked, the threads have to wait until the lock is released, resulting in that the
number of waiting threads has a increase but there is a decline in the number of
active threads. When the system lock is released, the threads continue to run or start
to run, therefore, the number of active threads goes up. The dynamic interactions
are shown in Figure 5.7 and Figure 5.8.
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Figure 5.7: Threads Waiting for System Lock −→ Waiting Threads.
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Figure 5.8: Threads Waiting for System Lock −→ Active Threads.

Figure 5.3 - Figure 5.8 show that the MLP Lasso-GC method is able to discover
the temporal-causal dependencies of KPIs in SAP HANA database on 13.07.2018.
From the estimated structure, we can really get some important information which
is helpful to diagnose the performance issues.

However, as discussed in Section 2.3 of Chapter 2, analyzing the root causes of the
issues still needs more data or some experiences and knowledge of the experts, e.g.
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according to the analysis it is clear that the decrease of the CPU utilization was
caused by the decrease of the number of the running threads, but, it is impossible to
know what has happened resulting in that the number of running threads suddenly
jumped to 0 only based on the available data set.

Therefore, it is more reasonable to consider anomaly detection and Granger causality
analysis as a good starting point for the further root cause analysis of the system
performance issues.



6. Conclusion and Future Work

This chapter summarizes the Thesis, discusses benefits and limitations

of the proposed approaches and proposes some useful extensions in the

future.

This thesis is mainly concentrated on two topics: anomaly detection for streaming
data and Granger causality analysis among multivariate time series data, which are
essential in the monitoring service1.

For anomaly detection, an unsupervised, automated algorithm called OPUAD (On-
line Prototypes Updating Anomaly Detection) algorithm has been proposed based
on kernel density estimators and maximum-entropy principle. It is different with
the most off-line learning algorithms because it can process the input piece-by-
piece in a serial fashion, i.e., in the order that the input is fed to the algorithm,
without having the entire input available from the beginning, which satisfies the
requirements of dealing with real-time streaming data. The performance of the
OPUAD algorithm was evaluated by the Numetna anomaly benchmark and the
result shows that OPUAD takes the third place in the scoreboard, better than the
most of other anomaly detection algorithms included in NAB.

Granger causality analysis is commonly used to quantify the temporal-causal effect
among time series data, however, its basic form bivariate GC test is not applicable to
large scale data with non-linear interactions. Therefore, a comparison between four
variants of the Granger causality: bivariate-GC analysis, conditional-GC analysis,
group Lasso-GC analysis and MLP Lasso-GC analysis has been made to discuss their

1All code for reproducing experiments and further research may be found: https://github.com/
JianqiaoJIN/master thesis. [Jin18]

https://github.com/JianqiaoJIN/master_thesis
https://github.com/JianqiaoJIN/master_thesis
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scalability. A synthetic linear standardized VAR system and a synthetic nonlinear
Henon system were generated to test the performance of these four methods, which
was evaluated by AUC (Area Under the ROC Curve), a widely used metric in the
classification problem. The comparison results show that MLP Lasso-GC can not
only perform well on the linear system, but also capture the nonlinear interactions.
Even though all of the methods have a weaker performance when the number of
time series increases in the nonlinear system, the result of MLP Lasso-GC is still
acceptable.

The OPUAD algorithm and the MLP Lasso-GC analysis method at last were applied
to the historical data of the SAP HANA database from 01.07.2018 to 31.07.2018
across a range of key performance indicators. The results showed that the two tools
succeeded in providing some useful information for diagnosing performance issues of
system.

6.1 Discussion

Since the OPUAD algorithm is based on kernel density estimators and maximum-
entropy principle, its performance relies on the bandwidth σ and the number of
prototypes. If the OPUAD algorithm is applied in a real application, these two
parameters must be set appropriately to the setting of the application.

The core idea of MLP Lasso-GC analysis is using a MLP neural network for inter-
pretation of Granger causality, therefore the structure of the network and the lag
length determine the accuracy of the estimated dependency structure. In this thesis,
the network only had one hidden layer with 10 units and the lag length was selected
by trials. So it requires more experiments to specify the network and the lag length
to pursue the high accuracy of the estimated dependency structure.

In addition, neither OPUAD nor MLP Lasso-GC can always provide 100% accuracy
in all situations when monitoring the system, in other words, there is still a long way
to go to develop a fully automated tool with perfect performance in the monitoring
service at last. At the current time, machine learning methods just free up some
work of human, but the final decisions still need to be made by the experts in the
subject-matter filed involved.

6.2 Future Work

A lot of work has already been done in this thesis, but, of course, more work can
always be done. Some useful extensions will be proposed here, but this list is by no
means complete.

In this thesis, anomaly detection is used for univariate time series to monitor the
state of each metric in a system, but in some cases, experts may just want to know
the overall state of a system which requires a scalable anomaly detection algorithm
for multivariate time series data. Therefore, developing a scalable algorithm for
multivariate time series could also be an interesting research area.

Another obvious but useful extension to this work would be to extend the MLP
Lasso-GC analysis to more algorithms with different artificial neural networks to see
if there are other types of neural networks, e.g. RNN, LSTM etc. that work even
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better. In addition, looking for other statistic approaches to discover the nonlinear
Granger causality among large scale time series data could also be meaningful.

Furthermore, Granger causality has solved the limitations of the Pearson correlation
coefficient which is not applicable to multivariate time series data. However, as the
number of time series increases, it is an undeniable fact that the performance of the
Granger causality would be poor. Therefore, multivariate correlation analysis could
be a good choice to reduce the dimensionality of the original space and improve the
quality of the results.

Finally there is also some work that can still be done from a business perspective.
As discussed above there are still a few things that need to be done to get the
algorithms running in a production environment. It would definitely be interesting
to see how well the algorithms improve the stability of the system in a real business
application.
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A. OPUAD Algorithm
Implementation

The following Listing shows the implementation of the OPUAD algorithm described
in Chapter 3 with Python

import math , copy

import numpy as np

import pandas as pd

from scipy.stats import norm

from nupic.algorithms import anomaly_likelihood

class OPUAD():

def __init__(self ,T,probationaryPeriod ,SPATIAL_TOLERANCE):

# number of prototypes

self.K = 5

# number of data points that has been seen so far

self.record = 0

# threshold

self.T = T

# probationaryPeriod

self.probationaryPeriod = probationaryPeriod

# initialize the anomaly likelihood object

numentaLearningPeriod = int(math.floor(self.

probationaryPeriod / 2.0))

self.anomalyLikelihood = anomaly_likelihood.

AnomalyLikelihood(

learningPeriod=numentaLearningPeriod ,

estimationSamples=self.probationaryPeriod -

numentaLearningPeriod ,

reestimationPeriod =100

)

# keep track of valid range for spatial anomaly detection

self.SPATIAL_TOLERANCE = SPATIAL_TOLERANCE
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self.minVal = None

self.maxVal = None

def handleRecord(self , inputData):

self.record += 1

value = inputData[’value’]

timestamp = inputData[’timestamp ’]

if (self.record == 1):

"""set prototypes """

self.q = np.repeat(value , self.K)

if (value == 0):

self.sigma = 1

else:

self.sigma = abs(value * 0.1)

""" compute anomaly score """

rawScore = self.calculateAnomalyScore(value)

""" compute anomaly likelihood """

anomalyScore = self.anomalyLikelihood.anomalyProbability(

value , rawScore , timestamp)

logScore = self.anomalyLikelihood.computeLogLikelihood(

anomalyScore)

finalScore = logScore

""" check spatial anomaly for univariate time series """

# check if there is a spatial anomaly

# update max and min

spatialAnomaly = False

if self.minVal != self.maxVal:

tolerance = (self.maxVal - self.minVal) * self.

SPATIAL_TOLERANCE

maxExpected = self.maxVal + tolerance

minExpected = self.minVal - tolerance

if value > maxExpected or value < minExpected:

spatialAnomaly = True

if self.maxVal is None or value > self.maxVal:

self.maxVal = value

if self.minVal is None or value < self.minVal:

self.minVal = value

if spatialAnomaly:

finalScore = 1.0

""" report anomaly """

alertAnomaly = False

if self.record > probationaryPeriod and finalScore >= T:

alertAnomaly = True

""" update prototypes """

if (self.record > 1):

self.updateParameter(value)

return alertAnomaly

def calculateAnomalyScore(self , value):
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density_sum = 0

for i in range(self.K):

density_sum = density_sum + norm.pdf(value , self.q[i],

self.sigma) / self.K

if density_sum == 0:

anomalyScore = 100

else:

anomalyScore = - math.log(density_sum)

return anomalyScore

def updateParameter(self , value):

C = []

B = []

# l -> l-th prototype

for l in range(self.K):

tmp_C = []

tmp_B = 0

# k -> k-th prototype

for k in range(self.K):

tmp = (self.q[k] - self.q[l])*(self.q[k]-self.q[l])

C_lk = (1-tmp /(2* self.sigma*self.sigma))*np.exp(-

tmp /(4* self.sigma*self.sigma))

tmp_C.append(C_lk)

tmp_B = tmp_B + tmp*np.exp(-tmp /(4* self.sigma*self.

sigma))

C.append(tmp_C)

B_l = (value -self.q[l])*np.exp(-(value -self.q[l])*(

value -self.q[l])/(4* self.sigma*self.sigma))-tmp_B/

self.K

B_l = B_l * self.K / (self.record)

B.append(B_l)

# solve the linear equation

try:

delta_q = np.linalg.lstsq(C, B, rcond=None)[0]

except np.linalg.linalg.LinAlgError:

print "Singular Matrix"

self.q = self.q + delta_q

Listing A.1: OPUAD Algorithm for Streaming Data
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B. Granger Causality Analysis
Implementation

B.1 Standardized VAR System Generator

The following Listing shows the standardized VAR system generator in Chapter 4
with python

"""

Generate a linear standardized VAR system

input:

N: time series length

D: dimension of system

lag: lag for VAR system

output:

S: simulated VAR system (N * D)

A: adjacent matrix indicating the true connection

column: candidate (j)

row: target (i)

A[i,j] = 1: j Granger causes i

A[i,j] = 0: j does not Granger causes i

"""

def standardized_var_system(N, D, lag=1):

def stationary_var(beta , D, lag , radius):

bottom = np.hstack ((np.eye(D * (lag -1)), np.zeros((D * (lag

- 1), D))))

beta_tilde = np.vstack ((beta ,bottom))

eig = np.linalg.eigvals(beta_tilde)

maxeig = max(np.absolute(eig))

not_stationary = maxeig >= radius

return beta * 0.95, not_stationary

if D == 5:

sparsity = 0.5
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if D == 30:

sparsity = 0.2

beta_value = 5

sd_e = 2.0

radius = 0.97

beta = np.eye(D) * beta_value

A = np.zeros((D,D))

# Set dependencies for each component

num_nonzero = int(D * sparsity) - 1

for i in range(D):

choice = np.random.choice(D - 1, size = num_nonzero ,

replace = False)

choice[choice >= i] += 1

beta[i, choice] = beta_value

A[i, choice] = 1

# Create full beta matrix

beta_full = beta

for i in range(1, lag):

beta_full = np.hstack ((beta_full , beta))

not_stationary = True

while not_stationary:

beta_full , not_stationary = stationary_var(beta_full , D,

lag , radius)

# create VAR model

errors = np.random.normal(loc = 0, scale = sd_e , size = (D, N))

S = np.zeros((D, N))

S[:, range(lag)] = errors[:, range(lag)]

for i in range(lag , N):

S[:, i] = np.dot(beta_full , S[:, range(i - lag , i)]. flatten

(order = ’F’)) + errors[:, i]

return S.T, A

Listing B.1: Standardized VAR System Generator

B.2 Nonlinear Henon System Generator

The following Listing shows the nonlinear Henon system generator in Chapter 4
with python

"""

Generate a nonlinear driver -response Henon system

input:

N: time series length

D: dimension of system

output:

S: simulated Henon system (N * D)

A: adjacent matrix indicating the true connection

column: candidate (j)

row: target (i)

A[i,j] = 1: j Granger causes i
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A[i,j] = 0: j does not Granger causes i

"""

def henon_system(N, D):

sd_e = 1.0

# create Henon syste

S = np.random.uniform (0,1,(D,N))

# head and end

for d in [0,D-1]:

for t in range(2, N):

S[d, t] = 1.4 - np.square(S[d, t-1]) + 0.3*S[d, t-2]

C = 1.0 # coupling strength

for d in range(1,D-1):

for t in range(2,N):

S[d, t] = 1.4 - np.square (0.5*C*(S[d-1,t-1] + S[d+1, t

-1]) + (1-C)*S[d, t-1]) + 0.3*S[d, t-2]

A = np.zeros((D,D))

for d in range(1, D-1):

A[d, d-1] = 1

A[d, d+1] = 1

return S.T, A

Listing B.2: Nonlinear Henon System Generator

B.3 Bivariate GC-Analysis

The following Listing shows the implementation of bivariate-GC analysis in Chapter
4 with R

require("zoo")

require("vars")

# --- Biavariate Granger causality analyzer -------#

# input:

# S: system (type: data frame)

# d: directory name

#

# result:

# A_: estimated adjacent matrix

# W: strength of causal influence

bivariateGC_analyzer <- function(S, d){

N <- dim(S)[1]

D <- dim(S)[2]

A_ <- matrix(0,D,D) # estimated connection

W <- matrix(0,D,D) #causal influence

# normalize

S <- as.data.frame(scale(S, center = TRUE , scale = TRUE))
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# dataframe -> matrix

S <- do.call("merge", lapply (1:D, function(k) as.zoo(S[k])))

for ( i in 1:D){

target <- S[,i]

for (j in 1:D){

if (j == i){

next

}

candidate <- S[,j]

# optimal lag selection

bi_system <- merge(target , candidate)

L <- VARselect(bi_system , lag.max = 5)$selection [1] #AIC

criteria

# prepare train data

candidate_X <- do.call("merge", lapply (1:L, function(k) lag(

candidate , -k)))

target_X <- do.call("merge", lapply (1:L, function(k) lag(

target , -k)))

all <- merge(target , candidate_X, target_X)

colnames(all) <- c("target", paste("candiate", 1:L, sep = "_"

), paste("target", 1:L, sep = "_"))

all <- na.omit(all)

target_Y <- as.vector(all[,1])

candidate_X <- as.matrix(all[,(1:L+1)])

target_X <- as.matrix(all[,(1:L + 1 + L)])

# train data -> OLS regression

U_model <- lm(formula = target_Y ~ target_X + candidate_X) #

unstricted model

R_model <- lm(formula = target_Y ~ target_X) # restricted

model

# F-test

p <- anova(R_model ,U_model)$‘Pr(>F) ‘[2] #F-test and Pr(>F)

if(p < 0.05){

A_[i,j] <- 1

sigma_U <- summary(U_model)$sigma

sigma_R <- summary(R_model)$sigma

W[i,j] <- log((sigma_R/sigma_U)^2)

}

}

}

return (list(A_,W))

}

Listing B.3: Bivariate Granger Causality Analysis
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B.4 Conditional GC-Analysis

The following Listing shows the implementation of conditional-GC analysis in Chap-
ter 4 with R

require("zoo")

require("vars")

# --- Conditional Granger causality analyzer -------#

# input:

# S: system (type: data frame)

# d: directory name

#

# result:

# A_: estimated adjacent matrix

# W: strength of causal influence

conditionalGC_analyzer <- function(S, d){

N <- dim(S)[1]

D <- dim(S)[2]

A_ <- matrix(0,D,D) # estimated connection

W <- matrix(0,D,D) #causal influence

# normalize

S <- as.data.frame(scale(S, center = TRUE , scale = TRUE))

# dataframe -> matrix

S <- do.call("merge", lapply (1:D, function(k) as.zoo(S[k])))

# optimal lag selection

L <- VARselect(S,lag.max = 5)$selection [1] #AIC criteria

# prepare X_train data

name_ <- paste(names(S)[1],1:L,sep=’_’)

X_train <- do.call("merge", lapply (1:L, function(k) lag(S[,1], -k

)))

for (i in 2:D){

name_ <- c(name_, paste(names(S)[i],1:L,sep=’_’))

Z_i_lag <- do.call("merge", lapply (1:L, function(k) lag(S[,i],

-k)))

X_train <- merge(X_train , Z_i_lag)

}

X_train <- na.omit(X_train)

colnames(X_train) <- name_

for ( i in 1:D){

target_Y <- S[(L+1):N, i]

for (j in 1:D){

if (j == i){

next

}

candidate_X <- X_train[,((j-1)*L+1):(j*L)]
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condition_X <- X_train[,-(((j-1)*L+1):(j*L))]

# OLS regression

U_model <- lm(formula = target_Y ~ condition_X + candidate_X)

# unstricted model

R_model <- lm(formula = target_Y ~ condition_X) # restricted

model

# F-test

p <- anova(R_model ,U_model)$‘Pr(>F) ‘[2] #F-test and Pr(>F)

if(p < 0.05){

A_[i,j] <- 1

sigma_U <- summary(U_model)$sigma

sigma_R <- summary(R_model)$sigma

W[i,j] <- log((sigma_R/sigma_U)^2)

}

}

}

return (list(A_,W))

}

Listing B.4: conditional Granger Causality Analysis

B.5 Group Lasso-GC Analysis

The following Listing shows the implementation of group Lasso-GC analysis in Chap-
ter 4 with R

require("gglasso","zoo","vars")

# --- Group Lasso Granger causality analyzer -------#

# input:

# S: system (type: data frame)

# d: directory name

#

# result:

# A_: estimated adjacent matrix

# W: strength of causal influence

groupLassoGC_analyzer <- function(S, d){

N <- dim(S)[1]

D <- dim(S)[2]

A_ <- matrix(0,D,D) # estimated connection

W <- matrix(0,D,D) #causal influence

# normalize

S <- as.data.frame(scale(S, center = TRUE , scale = TRUE))

# dataframe -> matrix

S <- do.call("merge", lapply (1:D, function(k) as.zoo(S[k])))

# optimal lag selection

L <- VARselect(S,lag.max = 5)$selection [1] #AIC criteria
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# prepare X_train data

name_ <- paste(names(S)[1],1:L,sep=’_’)

X_train <- do.call("merge", lapply (1:L, function(k) lag(S[,1], -k

)))

for (i in 2:D){

name_ <- c(name_, paste(names(S)[i],1:L,sep=’_’))

Z_i_lag <- do.call("merge", lapply (1:L, function(k) lag(S[,i],

-k)))

X_train <- merge(X_train , Z_i_lag)

}

X_train <- na.omit(X_train)

colnames(X_train) <- name_

X_train <- as.matrix(X_train)

for (i in 1:D){

target_Y <- as.matrix(S[(L+1):N, i])

# OLS regression with group Lasso penalty

group <- rep (1:( dim(X_train)[2]/L), each = L)

cv <- cv.gglasso(x=X_train , y=target_Y, group = group , loss = "

ls", pred.loss = "L1",lambda.factor =0.05, nfolds =5)

pre <- coef(cv$gglasso.fit , s = cv$lambda .1se)

# select coefficients whose value is not equal to 0

pre <- pre[-1] # remove the intercept

names(pre) <- name_

pre <- pre[pre != 0]

if (length(pre) == 0){

next

}

# get the group index

pre_index <- do.call("c",lapply (1: length(pre), function(k)

strsplit(names(pre)[k], split = ’_’)) )

pre_index <- do.call("c", lapply (1: length(pre_index), function(

k) as.integer(pre_index[[k]][2])))

names(pre) <- pre_index

causes <- pre[names(pre) != i]

if (length(causes) == 0){

next

}

causes_name <- unique(names(causes))

# record the connectivity and causal influence

for (j in 1: length(causes_name)){

A_[i, as.integer(causes_name[j])] <- 1

W[i, as.integer(causes_name[j])] <- sum(abs(causes[names(

causes) == causes_name[j]]))

}

}

return (list(A_,W))

}

Listing B.5: Group Lasso Granger Causality Analysis
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B.6 MLP Group Lasso-GC Analysis

The following Listing shows the implementation of MLP group Lasso-GC analysis
in Chapter 4 with python

import pandas as pd

import numpy as np

import copy

import torch

import torch.nn as nn

from sklearn import metrics

from torch.autograd import Variable

class MLPGCAnalyzer(NeuralGCAnalyzer):

""" ---- initial MLPGCAnalyzer ---- """

" # normalize time series (z-score)"

" # prepare train data "

" # set up network for each time series "

def __init__(self , S, d):

self.S = S # analyzed time series

self.d = d # directory name

# normalize time series

self.S = self.normalize ()

# prepare train data

self.N, self.D = self.S.shape # N: length , D: dimension

self.lag = 5 # network considered lag

X_train , Y_train = self.format_ts_data ()

self.X_var = Variable(torch.from_numpy(X_train).float())

self.Y_var = [Variable(torch.from_numpy(Y_train[:, target

][:, np.newaxis ]).float()) for target in range(self.D)]

# set up network for each time series

self.hidden_units = 10

self.nonlinearity = ’sigmoid ’

self.sequentials = [self.setNetwork(self.hidden_units , self

.nonlinearity) for _ in range(self.D)]

self.sequential_copy = copy.deepcopy(self.sequentials [0])

# initialize parameters for calculating loss function

self.loss_fn = nn.MSELoss () # loss function

self.weight_decay = 0.01 # weight_decay for ridge penalty

self.lam = 0.1 # weight decay for lasso penalty

def normalize(self):

S_centered = self.S - np.mean(self.S, axis = 0)

sigma = np.sqrt(np.var(self.S, axis = 0))

return np.divide(S_centered , sigma)

def format_ts_data(self):

N_train = self.N - self.lag
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X_train = np.zeros((N_train , self.D * self.lag))

Y_train = np.zeros((N_train , self.D))

for t in range(self.lag , self.N):

X_train[t - self.lag , :] = self.S[range(t - self.lag , t

), :]. flatten(order = ’F’)

Y_train[t - self.lag , :] = self.S[t, :]

return X_train , Y_train

def analyze(self):

verbose = True

nepoch = 1000 # number of training epochs

loss_check = 50 # interval for checking loss

nchecks = max(int(nepoch / loss_check), 1)

# Prepare for training

train_loss = np.zeros((nchecks , self.D))

train_objective = np.zeros((nchecks , self.D))

counter = 0

improvement = True

epoch = 0

# Begin training

while epoch < nepoch and improvement:

improvement = self.train()

# Check progress

if (epoch + 1) % loss_check == 0:

# save results

train_loss[counter , :] = self._loss()

train_objective[counter ,:] = self._objective ()

# Print results

if verbose:

print(’----------’)

print(’epoch %d’ % epoch)

print(’train loss = %e’ % np.mean(

train_objective[counter , :]))

print(’----------’)

counter += 1

epoch += 1

if verbose:

print(’Done training ’)

weights = self.get_weights ()

weights_est = [np.linalg.norm(np.reshape(w, newshape = (

self.hidden_units * self.lag , self.D), order = ’F’),

axis = 0) for w in weights]

return weights_est

def train(self):
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"calculate loss"

loss = self._loss()

ridge = self._ridge ()

total_loss = sum(loss) + sum(ridge)

" calculate lasso penalty "

penalty = self._lasso ()

[net.zero_grad () for net in self.sequentials]

total_loss.backward ()

" line search"

t = 0.9

s = 0.8

min_lr = 1e-18

# Return value , to indicate whether improvements have been

made

return_value = False

# a new network

new_net = self.sequential_copy

new_net_params = list(new_net.parameters ())

# Set up initial learning rate (step size t(k)), objective

function value to beat

self.lr = 0.001

for target , net in enumerate(self.sequentials):

original_objective = loss[target] + ridge[target] +

penalty[target]

original_net_params = list(net.parameters ())

while self.lr > min_lr:

# Take gradient step in new params

for params , o_params in zip(new_net_params ,

original_net_params):

params.data = o_params.data - o_params.grad.

data * self.lr

# group lasso -> Apply proximal operator to new

params (update params)

self.prox_operator(new_net_params [0])

# Compute objective function using new params

Y_pred = new_net(self.X_var)

new_objective = self.loss_fn(Y_pred , self.Y_var[

target ]) # lasso

new_objective += self.weight_decay * torch.sum(

new_net_params [2]**2) #ridge

new_objective += self.lam * self.apply_penalty(

new_net_params [0]) # lasso

diff_squared = sum([torch.sum(( o_params.data -

params.data)**2) for (params , o_params) in zip(

new_net_params , original_net_params)])
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diff_squared = diff_squared.float()

if new_objective.data.numpy() < original_objective.

data.numpy() - t * self.lr * diff_squared.data.

numpy():

# Replace parameter values

for params , o_params in zip(new_net_params ,

original_net_params):

o_params.data = params.data

return_value = True

break

else:

# Try a lower learning rate

self.lr *= s

# Update initial learning rate for next training

iteration

self.lr = np.sqrt(self.lr * self.lr)

return return_value

def get_weights(self , p = None):

if p is None:

return [list(net.parameters ())[0]. data.numpy().copy()

for net in self.sequentials]

else:

return list(self.sequentials[p]. parameters ())[0]. data.

numpy().copy()

def _loss(self):

" calculate loss (MSE)"

Y_pred = [net(self.X_var) for net in self.sequentials]

return [self.loss_fn(Y_pred[target], self.Y_var[target ])

for target in range(self.D)]

def _ridge(self):

" calculate ridge penalty "

return [self.weight_decay * torch.sum(list(net.parameters ()

)[2]**2) for net in self.sequentials]

def _lasso(self):

"calculate lasso penalty"

return [self.lam * self.apply_penalty(list(net.parameters ()

)[0]) for net in self.sequentials]

def _objective(self):

loss = self._loss()

ridge = self._ridge ()

penalty = self._lasso ()

return [l + p + r for (l, p, r) in zip(loss , penalty , ridge

)]

def setNetwork(self , hidden_units = 10, nonlinearity = ’sigmoid

’):

net = nn.Sequential ()
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"input layer -> hidden layer: hidden_units *[D*lag] + 

hidden_units"

net.add_module(’fc’, nn.Linear(self.D*self.lag ,

hidden_units , bias = True))

"activation function"

if nonlinearity == ’relu’:

net.add_module(’relu’, nn.ReLU())

elif nonlinearity == ’sigmoid ’:

net.add_module(’sigmoid ’, nn.Sigmoid ())

elif nonlinearity is not None:

raise ValueError(’nonlinearity must be "relu" or "

sigmoid"’)

"hidden layer -> output layer: 1* hidden_units + 1"

net.add_module(’out’, nn.Linear(hidden_units , 1, bias =

True))

return net

def apply_penalty(self , W):

group_loss = [torch.norm(W[:, (i * self.lag):((i + 1) *

self.lag)], p = 2) for i in range(self.D)]

total = sum(group_loss)

def prox_operator(self , W):

’’’

Apply prox operator

’’’

C = W.data.numpy()

h, l = C.shape

C = np.reshape(C, newshape = (self.lag * h, self.D), order

= ’F’)

C = self._prox_update(C)

C = np.reshape(C, newshape = (h, l), order = ’F’)

W.data = torch.from_numpy(C)

def _prox_update(self , W):

’’’

Apply prox operator to a matrix , where columns each

have group lasso penalty

’’’

norm_value = np.linalg.norm(W, axis = 0, ord = 2)

norm_value_gt = norm_value >= (self.lam * self.lr)

W[:, np.logical_not(norm_value_gt)] = 0.0

W[:, norm_value_gt] = W[:, norm_value_gt] * (1 - np.divide(

self.lam * self.lr, norm_value[norm_value_gt ][np.newaxis

, :]))

return W

Listing B.6: MLP Group Lasso Granger Causality Analysis
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