

Investigation of the Additive Distribution in Electrodes for Lithium-Ion Batteries

Werner Bauer

INSTITUTE FOR APPLIED MATERIALS - ENERGY STORAGE SYSTEMS (IAM-ESS)

With Contributions by

- Wilhelm Pfleging Yijing Zheng
- Frieder Scheiba Lukas Pfaffmann Marcus Müller
- Thomas Gietzelt Uta Gerhards
- Jana Kumberg
 Philip Scharfer
 Ralf Diehm
 Stefan Jaiser

IAM-AWP

IAM-ESS

IMVT

TVT-TFT

Structure – The Missing Link

Processing – Structure – Property – Relationship

Homogeneity

- A material or image that is homogeneous is uniform in composition or character (Wikipedia).
- Homogeneity is the target of slurry mixing

Macroscopic Level

Homogeneity: No visible agglomerates, pores, cracks, stripes ...

Mesoscopic Level

Which microstructure is better?

Mesoscopic Level

Which microstructure is better?

Microscopic Level

Agglomeration is a must

How much Homogeneity is Required?

Macroscopic level

Microscopic level

Mesoscopic level

9

Investigation of Electrode Structure

Distribution of

- Active materials
- Inactive components
 - Binder
 - Conductive additives
- Porosity

Evaluation of Additive Distributions

Investigation of the Electrode Drying Process

Migration of binder

Graphite anode with PVDF binder \rightarrow

Using the fluorine concentration as a marker for energy-dispersive x-ray spectroscopy (EDS)

Quantitative Analysis with EDS

- Ideal sample
 - smooth surface
 - stable materials
 - homogeneous composition

- Electrode sample
 - rough surface
 - instable in the electron beam
 - inhomogeneous binder distribution

Other Characterization Methods

Raman-Spectroscopy

Insensitive to PVDF layers thinner than 1-2 μ m \rightarrow only large accumulations of PVDF are detected

X-ray Photoelectron Spectroscopy (XPS)

Surface sensitive method \rightarrow higher concentrations are measured

Investigation of Cross Sections by EDS

Graphite/PVDF anode with 400 µm thickness

M. Müller et al., J. Power Sources 340 (2017) 1-5

Investigation of Cathodes

Most prominent cathode materials
 Li(Ni_xMn_yCo_z)O₂ (NMC)
 LiFePO₄ (LFP)

NMC or LFP Cathode with PVDF

- Overlap of regions of interest for F with Mn or Fe
- Feasibility depends on sensitivity of EDS

Wavelength Dispersive X-ray Spectroscopy (WDS)

- WDS has a higher energy resolution
- Separation of F and Mn possible
- Interference by a Cobalt side peak → Substraction of F and Co spectrum allows qualitative analysis

NMC/PVDF cathode F Co

Modified F

Investigation of Carbon Black Distribution

- Energy Selective Backscattered Electron Detector (ESB)
- Optimization of ESB grid voltage and the primary electron energy
- Contrast enhancement between C and F regions

L. Pfaffmann et al., J. Power Sources 363 (2017) 460-469

Graphite/PVDF anode

Imaging of PVDF – carbon black domain by silicone rubber filling of pores and grayscale analysis

Binders for Aqueous Slurries

Standard binders for aqueous slurries do not contain flourine

(Sodium salt of) Carboxy Methyl Cellulose (Na-CMC)

Styrene Butadiene Rubber (SBR)

- Osmium staining technique
 - Decoration of SBR binder with OsO₄
 - Sublimates at room temperature
 - Strong oxidant → reacts with double bonds in the SBR

EDS mapping of Os decorated graphite with CMC/SBR binder

Structure of SBR Binder Films

Binder films have low, but different porosity

- Blending with carbon black increases porosity of the film
 - \rightarrow with carbon black the binder layer becomes transparent for electrolyte and lithium

SBR binder film

20 h OsO₄ exposure

SBR 2

SBR + CMC + CB

SBR 1

Electrochemically Active Surface Area (EASA)

- OsO₄ intensively reacts with Lithium
- Visualization of the EASA by Osmium Staining

L. Pfaffmann et al., J. Power Sources 307 (2016) 762-771

Binder Investigation by LIBS

- High sensitivity to alkaline elements
- Detection of Na residues in CMC binder possible

23

29.11.2018

NMC with CMC/SBR binder

Investigation of Multilayer Electrodes

- Multilayer coating allows individual adjustment of binder amount
- Binder excess at current collector interface is beneficial
- Control of interdiffusion of CMC binder by LIBS

NMC with CMC/SBR binder

Thank you for your attention

