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BIHARMONIC WAVE MAPS: LOCAL WELLPOSEDNESS IN HIGH
REGULARITY

SEBASTIAN HERR, TOBIAS LAMM, TOBIAS SCHMID AND ROLAND SCHNAUBELT

ABSTRACT. We show a local wellposedness result for biharmonic wave maps with initial
data of sufficiently high Sobolev regularity. Moreover, we obtain a blow-up criterion
for these solutions. In contrast to the wave maps equation we use a vanishing viscosity
argument and an appropriate parabolic regularization in order to obtain the existence
result. The geometric nature of the equation is exploited to prove convergence of the
approximate solutions and uniqueness of the limit.

1. INTRODUCTION

Let (N, g) be a smooth and compact Riemannian manifold which we assume to be isomet-
rically embedded into some Euclidean space RZ. Biharmonic wave maps are critical points
u:R"x[0,T) — N of the (extrinsic) action functional

T
(1.1) D(u) = 1/ / |0su|? — |Aul? dx ds.
2 )y Jan

The Euler-Lagrange equation has been calculated in [HLS18] (in the case N = S ¢ R"?)
and in [Sch18] (for arbitrary N) and it is given by

(1.2) O*u+ A?u L T,N, on R"x[0,T).

In order to obtain a more explicit form of this equation we use the fact that there exists
some g > 0 and a smooth family of linear maps P, : RY — R for dist(p, N) < dp, such
that

P,:RY S T,N, pe N

is an orthogonal projection onto the tangent space T, IN. Thus, the Euler-Lagrange equation

can be written as
Ofu+ A*u = (I — P,)(97u+ A%u).

Using the fact that u takes values in N we calculate
(1.3)  0%u+ A%u =dP,(us, us) + dPy(Au, Au) + 4dP,(Vu, VAu) + 2dP,(V3u, Vu)

+ 2d* P, (Vu, Vu, Au) + 4d? P, (Vu, Vu, V2u)

+ d®*P,(Vu, Vu, Vu, Vu)

=:N(u).

The the main goal of this paper is to show the following local wellposedness result for the

Cauchy problem for ([1.2)) in Sobolev spaces with sufficiently high regularity.

Theorem 1.1. Let ug,u; : R™ — R, ug(x) € N, ui(z) € Tuy(@)N, for a.e. z € R" and
such that

(Vug,u1) € HF1(R") x H*2(R™)
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for some k € N with k > | §] + 2. Then there exists T = T(||Vuol| gr-1, [u1||gr) > 0 and a
unique solution u : R"™ x[0,T) — N of (1.2)) with

u—ug € L¥([0,T), H*(R™)) N Wh([0,T), H*"*(R")),

which is weakly continuous, i.e., (u,0su) is weakly continuous in H* x H*=2(R™). Further,
the solution u extends beyond T if

T
(1.4) | IV + ol ds <o

It is worthwhile to remark that both ug and u(t) do not necessarily belong to L?(R™) and
it is only the difference of these two functions which belongs to this space.

The first, second and fourth author have recently shown in [HLS18] that there exists
a global weak solution of for initial data in the energy space H? x L? in the case
N = 8t ¢ R™!. In [HLS18| a crucial ingredient is a conservation law which allows to
obtain the desired solution as a weak limit of a sequence of solutions of suitably regularized
problems. The derivation of this conservation law relies on the fact that the action functional
® is invariant under rotations in the highly symmetric setting N = S' and this argument
does not apply to arbitrary target manifolds V.

Moreover, the third author has shown energy estimates for biharmonic wave maps in
low dimensions n = 1,2 in [Sch18]. When combining this result with Theorem , more
precisely the blow-up criterion , he then obtained the existence of a unique global
smooth solution of (1.2) for smooth and compactly supported initial data. This results
extends earlier work of Fan and Ozawa [FO10| in which they only considered spherical
target manifolds.

A local well-posedness result as in Theorem is standard for second-order wave equa-
tions such as wave maps and it can be found for example in the books of Shatah and
Struwe [SS98| and Sogge [Sog08]. Here the difference is that the nonlinearity A (u) depends
on the third spatial derivative of u whereas the energy only contains second spatial deriva-
tives and in our proof we use the geometric nature of the equation in several crucial steps
in order to be able to rewrite this expression in terms of derivatives of lower order. This
makes the argument fairly delicate.

In the following we briefly outline the structure of the paper. Since the nonlinearity
N (u) in equation contains derivatives of up to third order we cannot directly apply
the energy estimates for the operator 92 + A? and construct the desired solution by means
of a fixed-point argument. Instead, in Section |3] we use a vanishing viscosity approximation
and solve the corresponding Cauchy problem for the damped plate operator

OPu+ A?u — eAdwu L T,N, ¢€(0,1].

In order to obtain a limiting solution for as € \, 0, we prove a priori energy estimates
which are uniform in ¢ in Section [d] As a byproduct we obtain the blow up criterion in
Theorem [T.1] The existence part of Theorem [I.1]is then shown in Section 5 and in Section
[6] we prove that the solutions are unique.

2. NOTATION AND PRELIMINARIES

We note that the projector maps P, defined in the introduction are derivatives of the
metric distance (with respect to N) in RE ie.,

1 . .
(2.1) p=m(p) + §Vp(dlst2(p, N)), P,=d,m(p), dist(p,N) < do.

Moreover, if p € R is sufficiently close to N, then 7w has the nearest point property, i.e.,
|7(p) — p| = infyen |¢ — p|, and thus

dm|, = dr(p) = d(*(p)) = dm ., dm,-
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Thus P, : R — T =V is well-defined. Using cut-off functions we extend the identity (2.1)),

and thus also the equation P, = d,m(p), to all of R%. This shows that when one tries to
solve one does not have to restrict the coefficients a priori.

In the following we use the shorthand V¥1u x V¥24 for (linear combinations of) products
of partial derivatives of u of order k1 € N and ko € N. With this notation we can rewrite

equation as
O2u + A?u = dP, (upuy + Vu* V3u + V3ux Vu)
+ d? P, (Vu x Vu* V) 4+ d* P, (Vu x Vu * Vu* V).

Further, for [ € Ny we denote by d'P, the derivative of order [ of the map P,, which is a
(I + 1)-linear form on R”. The Leibniz formula implies the following Lemma

Lemma 2.1. For m € N, | € Ny we have

(2.2) vm(dlpu) — Z Z dj+lpu(vm1+1u ok vmj+1u)’

=1 mp=me—j

According to the remark above,
AP (VM gy ko x VMY

is a [+ 1 linear form and in order to include the case m = 0, we will use >>7° ., for
the sum in the formula above.

We include the calculation of derivatives V™ (N (u)) and V™(N (u) — N (v)) for sufficiently
regular u,v : R" x[0,7) — R* and m € Ny using the -convention in Appendix The
results from Appendix [A] will be used frequently throughout the paper.

In the following sections, we also need a version of the classical Moser estimate, see e.g.,
[Tay11, chapter 13].

Lemma 2.2. Let I,k € N and a1,...,0q0 € Njj, 22:1 |aj| = k. There exists C > 0 such
that for all fi,..., fi € Co(R™) N HF(R™)

l
[e%) (o7} 1_7
(2.3) D fy - D fill < CTJ il * Ty

i=1
In particular,

l
(2.4) D fr- o DY il < ZH 1fill o (LA e 4= W fall ) -
J=li#j

3. EXISTENCE FOR THE PARABOLIC APPROXIMATION

Since
N(u) = N (u, ug, Vu, Vi, V3u),
energy estimates for the operator 92 +A?2 are not sufficient to show the existence of a solution
of . Instead, we use the damped plate operator

2 + A% — eA9,,

with ¢ € (0, 1] fixed, as a regularization. More precisely, we prove the existence of a solution
u® : R" x[0,7T.) — N of the Cauchy problem

(3.1) Ofus (z,t) + A%uf(z,t) — eAdyus (,t) L Tye(n )N, (x,t) € R" x[0,T7),
' *(@,0) = uo (), u5 (0,2) = ua(x), TR,
where ug, u; : R* = RE, ug(r) € N and uy(x) € Tyy(o) N for a.e. x € R”, and such that
(Vug,up) € HF"HR™) x H*2(R™)
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for some k € N with & > | ] 4 2. In the following we drop the super-/subscript ¢ and write
(u,T) instead of (u®,T.). We note that the condition in reads as
(3.2) OPu+ A%u — eAdyu = N (u) — e(I — P,)(Adu).
Via the expansion
e(I — P,)(Adwu) = ed® P, (ut, Vu, Vu) + £2d P, (Vug, Vu) + ed Py, (us, Au)
we obtain
(3.3) O%u+ A*u — eAdyu = N (u) — ed® P, (us, Vu, V) — £2d P, (Vuy, Vu) — edP,, (ug, Au)
=: No(u).
We next solve and we recall that only u(t) — ug € L2(R"™).

Lemma 3.1. Let e € (0,1), ug,u; : R — RY with ug(z) € N and ui(z) € T,
a.e. x € R", and such that

(Vug,up) € HF 1 (R™) x H*2(R™)

for some k € N with k > | %] +2. Then (3.3) has a unique local solution u : R™ x[0,T) — R
with

(3.4) u—up € CO([0,T), H*(R™)) n C*([0,T), H*2(R™)) n H' ([0, T), H*"1(R™))

N for

o(x)

and initial data w(0) = ug and u;(0) = wy. In addition,
(3.5) Vu € L3([0,T), H*(R™))
and for0 <t <T

T T
(3.6) HVk_Qut(t)HiQ +Hvku(t)Hi2+E/O HV’“_lut(s)Hiz ds—i—a/o HV’“"‘lu(S)Hi2 ds

<c / / VF2(NL(w)) - VF 20, da ds + ||Vuo | ope—s + [Jua |5 )

Before we prove Lemma we set v(x,t) = u(z,t) — up(z,t) and rewrite (3.3) into

(3.7) QU + AU = ( ?U) ( )

where U = (;) and f.(U) is defined through
t

(3.8) f(U) - = N(v+up) — ed®Pyyuy (v, V(v 4 u0), V(v + up))
— €2dPy 1y (VVr, V(0 4 1g)) — €dPy sy (ve, Alv + ug)) — A%ug.

Further the operator Ay, : H*(R™) x H*"2(R") D D(A) — H*(R™) x H¥=2(R") is defined
through

(3.9) Ay = ( ¥ _€IA> | D(A) = HM2(R?) x H*(R™),

Since the operators Ay, k > 3, extend each other we drop the subscript k. It is well known
that A is the generator of a analytic C%-semigroup {7%(¢)}:>0. In fact, in [DS15, Prop. 2.3],
it is proven in the case k = 2 that A generates a (unbounded) analytic C’-semigroup. We
record the following known result, see e.g. [LT00, Prop. 0.1] and [Lunl8, Prop. 1.13].

Lemma 3.2. Letr € Ny, uy € H'™™YR"), and g € C°(0,T; H"(R"™)). Then there exists a
solution U of the linear equation

(3.10) OU + AU = (2) U(0) = (0>

Uy
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with
(3.11)
U e L*0,T; H ™ x H2(R™")) N C°0,T; H™™ x H™™Y(R™)) N H' (0, T; H™™ x H"(R™)).

We remark that in general the mild solution of (3.10)) is given by

(3.12) Ut) = To(t) <£1> +/0t Tt — s) (g?s)) ds.

We have to apply the following energy estimates.

Lemma 3.3. Let r € Ny, g € C°0,T; H (R")), uy € HtY(R") and ug : R" — RY with
Vug € H™3(R™). Then v from Lemma satisfies for 0 <t <T < o0

(3.13)

€
2

€

T T
loe (@)l 7r1 + o)1 7r+s + / IV oe(s) [0 ds + 3 / IV (v + o) (5)l[r+s ds
0 0

T
_ 2
<C(1+7) ( ! / la(s) + A%uo 3, ds+||u1||§m+|wo||im>,
0
and

T
(314) ||VT+1vt(t)Hig + ||VT+3U(t)||iz +EA HVT-&-Q'Ut(S)HiQ ds

t
gc(f/ / V" (g(s) + A%ug) - V" Av, dx ds + [Jur|| 5 +||vu0||§p+2).
0 n

Proof. We note that u = v + ug satisfies
(3.15) 02u 4 APu — eAdyu = g + A%ug

in L2(0,T; H"(R™)). We obtain (3.13) from Lemma by differentiating (3.15]) of order V'
and testing with —V'Au, € L7, where I € {0,...,r}, and

(3.16) IV )|, + % [V 3u(t)|[2, + ¢ ||V 2u (1))

1
dt
—1 ||l 2 2 € oi+2 2
<Ce'|[Vig+A UO)HH + 5 v ut(t)“w J
which makes sense pointwise a.e. Then we integrate this inequality from tg = 0 to t < T

and further differentiate (3.15) of order V! and test by V!A%u. Then we have to integrate
by parts (in x), integrate over ¢ as above from ¢ty = 0 to t < T and integrate the term

T
/ V'o2u - VA dx ds
0o Jre
again by parts (in t and ). It remains to estimate the L?-norm of v;(¢) and the H?-norm
of v(t). But this follows from testing the equation with u; and by using the fact that
llu— UOHL;XJL2 <T ||ut||L§°L2 ‘
O

Proof of Lemma[3.1, We aim at constructing a solution U € C°([0,T), H* x H*~2), but due
to A2?uy € H*=* we have f.(U) € C°([0,T), H*~*), which is insufficient for an application
of Lemma (and Lemma in a fixed point argument for v.

We thus approximate ug by uf € C>®(R",RY) for § > 0 such that supp(Vul) C R™ is
compact with

(3.17) uy = ug a.e., Vu)— Vug in H""H(R™) as § — 0F.
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Hence f.s(U) € C°(0,T; H*3(R™)) for 0 < T < oo and where f- 5 is defined as above
through ug. For the initial data ug, u1 we now prove the existence of a fixed point for the
operator v — S(v) defined through

(3.18) (gg;) —T.(t) <u01> + /0 Tt—s) ( fg,?(v)) ds,

where v € C°([0,T), H*) nC([0,T), H*?).

Thus, we define for R > 0, T € (0,1)

Br(T) := {v e C°([0,7), H*) nC*([0,T), H*2) |, v(0) =0, v:(0) = uy,

ol 2= ol e + ol 2 + 90 + 0D s < B,

and

lvr — v2||B(T) = ||v1 — V2|l poo i + |Osv1 — Opv2]| foo -2, V1,02 € Br(T).
Let € € (0,1] be fixed, T € (0,1) and R > 0. The map

S :Br(T) — Bgr(T)

is contractive (Lipschitz) with respect to ||-|| 5.7 if we choose R = Rs and T' = Tj with

RE = 3(||Vub|| s + lur]| gu—2)® =: 3RE 5 and

2
Ts = 1min \k/g_ ! c c
*7 2 V3 ) C2(1+3R};)? C2(1+6R}p ;)

For the proof of this statement, it suffices to prove the following estimates for v, © € Br(T)

C 1

(3.19) 1S()llz < 7 (L [[oll5) [olls + [[Vab]| gems + luall ez and
. C, 1 k| =1k .

(3.20) 1S(v) = S(@®)llgery < gTQ L+ 1ol + 19l5) [lv = Oll 7y -

By the use of the estimate (3.13) for r = k — 3, we need to estimate the norms

V(0 + u) || o s and [|N(v+ ud) — Neo(@+ul) || oo -

This is done by the use of Lemmal[A-I]and Corollary [A-4] combined with a careful application
of the Moser estimate in Lemma[2.2] In fact we give more details below in Section [] in the
proof of the a priori estimate and in Section [6] for the uniqueness since this requires more
thought.

We note that for T5 > 0 and Rs as above we obtain in the fixed point v° = S(v?)
(3.21)
T(s T5
€ 2 € 2
3 s st S [ IV ) e s 5 R

Hence v® € L2([0,Ts), H**') n H'([0,T5), H*~') and we define Ry, R, T > 0 as above in
the definition of Ry 5, Rs, 15 through ug, Ry and R respectively. Thus,

Ros — Ro, Rs = R, Ts — T, as § — 0.
For 4 > 0 small enough, e.g. such that Ts > %T =: T and |Ros — Ro| < Ry, we have
that v® : R" x[0,T) — R* is well defined and ||v5||B(T) < CR for a constant C' > 0.

We now argue that wlog v° — v, V(v® +ul) — V(v + ug), 9w® — O strongly in
C°([0,T), H*), L*([0,T), H*) and C°([0,T), H*~2) N L%([0,T), H*~1), respectively. Here
we note that for 6, & > 0 sufficiently small v* — v, 9,0 — 80 solve (3.10) with nonlin-
earity

(4 e [ R

Ne@? +ud) = Ne(0? +ud) + A2 — o) € CO([0,T), H*3).
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Thus, by Lemma we obtain (similar to the proof of the Lipschitz estimate (3.20])) the

bound
2 c [Ts
B(T) +5/o

H,Ué _o
T 2
< = (1+ R*™) Hv6 4 H
€ B(T)

! ! 2
V(' —v%) + V(u) — uf )HHk ds

s 5 |17 e [P

g = ), a5 [
A 5 &
+C.r HVUO — Vg ”ka1 .
Hence, if T is sufficiently small, then we deduce strong convergence and denote the J-limit
of v° by
v e C(0,T), H*) nCH([0,T), H*=*) N H'((0,T), H* ™)

with V(v + ug) € L2([0,T), H*) .Thus, in particular, v, v; solve (3.7) and v = v + g
solves (3.3). Further (3.6) holds for u® = v° + uf and we conclude the estimate for u
since in particular u) — w; strongly in C°([0,T), H*=2) and N.(u®) — N (u) strongly in
C°([0,T), H*=3) by the use of Corollary and Lemma as above.

For the uniqueness of v, we note that if v is a second solution, then w = v — 0, w; = vy — U4
solve ([3.10) with the nonlinearity Nz (v+ug) —N (7 +ug) € C°([0,T), H*~3). Hence, we use
Lemm (note that ug from the Lemma is different, namely uy = 0), in order to prove
the estimate

2 T <12
(3.22) lv =2l <€+ R*) v = 3llgr) -
Hence, if T is sufficiently small, then v = ¢ and thus u = v + ug is unique. O

Next we show that the solution we just constructed actually takues values in the target
manifold.

Proposition 3.4. Let € € (0,1), wug,u; : R" — RE with up(z) € N and uy(z) € Ty ()N
for a.e. z € R", and such that

(Vug,u1) € HF 1 (R"™) x H*2(R™)

for some k € N with & > [ 5] + 2. Then there exists a 7' > 0 such that the unique solution

u:R"x[0,T) — RY of (31]), which we constructed in Lemma takes values in N, i.e.,
u:R"x[0,T) = N.

Proof. Let u: R™ x[0,T) — R” be the solution constructed in Lemma In the following
we show that u(z,t) € N for x € R" and ¢ > 0 small enough. Since
C°([0,T), H*) — C°(R™ x[0,T)),
and ug € N a.e. on R" there exists T € (0, 7] such that for ¢ € [0,7)
[ dist(u(t), N)||~ < sup u(a,t) = uo(@)| S [lult) — uoll g
is sufficiently small for @ = 7(u) being well-defined. Next we let w = @ — u and we note that
w(0) = 0,w(0) = 0. Then we calculate
021 =dm, 0t u + d*my (ug, ug),
Aty =dm,Au + d27ru(Au, ug) + 2d27ru(Vut, Vu) + d37ru(Vu, Vu,u),
A% =dr, A%u + &P, (Au, Au) + 4d*7, (Vu, VA) + 2d%7, (Vu, V)
+ 2d% 7, (Vu, Vu, Au) + 4d* 7, (Vu, Vu, V1)
+ d*7y (Vu, Vu, Vu, Vu)
and hence we conclude that
(02 + A2 — eA)w =drm, ((a,? FA2 eAat)u) N (1) — N (u)
=dmy(N:(u)) € TaN.
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Next we note that
wy = ((7r - I)(u))t = (dmg — Dy L TN

and thus by testing the above equation for w by w; we obtain

1 1
6t7/ |w; |? dw—i—(?tf/ |Aw|? dm—i—s/ |Vw,|? dz = 0.
2 n 2 ]Rn R’V’L
This implies that w; = Aw = 0 and therefore
at/ Vw|? dz < 2[00 12| Aw| g2 = 0
Rn
which in turn shows that Vw = 0. Altogether this implies w = 0 and therefore u € N. O

Remark 3.5. We remark that up to now we fixed € € (0,1). Since the constants in the
upper bound in estimates such as (3.21]) are of order O (6_1) we have to prove ¢ independent
estimates in the next section.

4. A PRIORI ESTIMATE

We now prove an a priori estimate for the solution u : R"™ x[0,7.) — N of the equation
(4.1) 02u+ A*u —eAdwu L T, N, on R" x[0,T),
given by Proposition with ¢ € (0,1) and initial data uo,u; : R" — RY wy(z) €
N, uy(x) € Tyy(z)N, for a.e. x € R™ and such that
(Vug,uy) € H*"1(R™) x H*3(R")

for some k € N, k > | 5] + 2. We recall though v = v and T' = T, we write (u,T) instead
of (uf,T:) for the moment.

We recall that (3.6) holds for the solution u in Proposition i.e. fort € [0,T].

(42) 920 + [ V0032 + = [ I ) ds

t k=2 — — w)] - VF 2w, dx ds

V2, + [ VFuoll s -
In the following, we make use of the fact that A(u) L T,N since u(x,t) € N for a.e.
(z,t) € R" x[0,T).
We thus first write (Note (I — P,)? =1 — P,, ie. N'(u) = (I — P,)N (u))
VRN @) VE P = Y0 V(I = P)V™ (N (0) VFE P,

mi1+mo=k—2
m1>0

+ V2N (u))(I — P,)V* 2,
= > VI -P)V(N(u) VP

mi+mo=k—2
m1>0

- Y VW)V - PV

l1+1lo=k—2
11>0

= Il + IQ;
where for the last equality, we used the Leibniz formula

(4.3) 0=V [T -Phul= > VI —P)V2u+ (I - P)V" ?u.

li+Hlo=k—2
11>0
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For I;, we note that with m; € N from Lemma [2.]]

(4.4) VI -P)==Y Y d@P(VFTlusx- .k VL),

which implies the pointwise bound

mi1 - -
(4.5) VI =P S Y (VR VR,
I=1 5 k=my—j

Also, using Lemma |V™2(N (u))] is pointwise bounded (up to a constant) by terms of
the form

(4.6) [V ] (V| [V [ V2| 4 [T 20| [V 2] 4 [V RSy [V R ]
(4.7) |Vt y | V| [|[ VR || VR | [ VR T2y ] and
(08) [V [ [ [ [ L [

WhEI'GZ':].,...,’InQ7 m1++m1+k1+k2:m2—l, Th1++mz+k1+k2+k3:
me — i, My + -+ m; + k1 + ko + ks + kg = ma — i, respectively or (in the case i = 0)

(4.9) [V | |92y | 4 [V 2] [VE2F2u] 4 [VE ][R ),
(4_10) |Vk1+1u\|Vk2+1u|\Vk3+2u|, and
(4_11) |V:’€1+1u‘|v7€2+1u|‘sz.-‘rlu||vk4-i-1u|7

where k1 + ko = mao, k1 4+ ko + ks = ma, k1 + ko + k3 + k4 = mao, respectively. Note here
that since my > 0, we have mg < k — 3 and we use all bounds in the notation (4.6 - (4.8)
above, where for the latter three cases we set i = 0.

We split

VE2(N(u) — (I — P,)(Auwy)) - V20, da
R™

= VE2(N(w) - V¥ 2u, de —e | V2T — P)(Auy)) - VP20, da
Rn ]R’Vl

= / I, dz +/ I do — g/ VE=2((I = P,)(Awy)) - V¥ 2w, da,

and start by estimating

/ hdr< YL VM= POV @) [V
mi+mo=k—2

m1>0

Hence, we continue with Lemma [2.2] in order to estimate the norm
V™ (I = P)V™ (N (W)l 2 »
in the following cases.
Case 1: VFiu, x VF2u,
We use Lemma 2.2 with
fi=Vu, ..., f; =Vu, fir1=Vu, ..., firi=Vu, firiv1 =u, firive = u,

and derivatives of order

ki4-d kg4 mit kit ke=mi+mg—i—j=k—2—(i+7).
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Hence
(4.12)
[IvFstag TR |vmi+1u\|vklut\|v’%t! 1
S A uellro + VUl 53 el 2o + IVl 52 Nttt oo ) NVl gramimy + [t gnamies)

S U+ IVallz= + el <) IV all s + el gs),

with Young’s inequality in the latter estimate. For the other cases, we use Lemma in a
similar way.

Case 2: VFk112y % Vh2t2y
We use Lemma 2.2 with
fi=Vu, ..., f;=Vu, fix1=Vu, ..., fixi=Vu, firis1 = VU, firiss = Vu,
and derivatives of order
ki 4 Ak itk Ak =mi4me—i—j=k—2—(i+}).

Hence, we estimate

(4.13)

H|V’~“+1u|~--|V’~“7+1u|\vm1+1u|~-~|Vﬁ”+1u\|vkl+2u||v’“2+2

S U+ [ VPul + 1Vl ||V2 e + IVl V0] ) IqullHk 2o | VAUl gaic)
S (U [Vl + (1920l ) UVl s+ [ 920 ga),

Case 8: VFit3yx Vhtly
Here, the cancellation from is exploited. We use Lemma with

fi=Vu, ..., f; =Vu, fiz1=Vu, ..., firi=Vu, firiy1 = VU, fiyir2 = Vu,
and derivatives of order

kit kit mit kit Ltk =mi+ma+1—i—j=k—1—(i+j).

Hence, noting 5 > 1 since m; > 0,

(4.14)
Hlvfwm VR [T ] [T Ly [VR By e
S U+ [ V2l o+ IVl Hv%HLwnwn DIVl e m+HV2uHm 1-is)
< (L4 IVl + || V2l 2 1Vl g+ [[V20]| s

Case 4: VFiTlyx Vhtly « Vhst2y
We use Lemma 2.2 with
fi=Vu, ..., f; =Vu, fi41=Vu, ..., fixi = Vu, firiz1 = VU, firiy2 = Vu, fiyips = Vu
and derivatives of order
i+ kg btk kot hy=mybme—i—j=k—2—(i+7).
Hence, we have
(4.15)

H|Vl~cl+1u| . |Vl~cj+1u|‘vml+1u| . |Vmi+1u||Vk1+1u|\V’”“uHV’“B”

S U+ V2l o + IVl + IVl 720 (1920 o) IV 2oy + HV2u||Hk 2ini)
S U+ [Vull e + [ V2ull ) UVl s+ [ V2] ),

Case 5: VFkiTlyx Vhetly « Vhstly  Vhatly
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We use Lemma [2.2] with
fi=Vu, ..., f;=Vu, fjxz1 =Vu, ..., fj+i=Vu, fjtiy1 = Vu,
fivive = Vu, firivz =Vu, firita=Vu
and derivatives of order
i+ Ak 4k kot kst ki =my+my—i—j=k—2—(i+7).
Hence, we have
(4.16)

5 ] (VR [ [ L[R2 [ L [

L2
k+1
S A+ Vullpe) [Vull gre—z-i-s

k+1
S L+ [IVallpa) [Vl gy -
Now, for estimating I, we integrate by parts in order to conclude

u/zgm:: 3 / VEB(W (w)) - (VA (T = Py)V"us + Viy (I — Po)V2 "] da
n Rn

l1+1lo=k—2
11>0

VES3(N (w)) - VU T — P,) V2w, do

Litlo=k—2/R"

11>0

+ Z /Rn VES3(N(u)) - [V (I — P,) V2T, do

l1+1lo=k—2
11>0

= I3+ I3.
Both terms are estimated by

@ Bl Y W) 9 - PV,

l1+la=k—2
11>0

@) Bl Y W) 9 - PV,

l1+la=k—2
11>0

We estimate HV’“_?’(/\/'(u))HL2 by terms of the form (4.6) - (4.8) in the L? norm. Then,
estimating these norms using Lemma is very similar to the case by case analysis above
and we note the bound

(4.19) [V NV @) o S A4 IVl + el 2 IVl gy + el pice)-
Thus, it remains to estimate (again the cancellation is important here)
(420)  ||[VETHT = P)V2u|, = [[[V™  uf - [V ][ V2|

S A+ IVallz=! + el =) UV ull s + [l gz)
by Lemma [2.2] with

my+-4+my+la=k—1—i<k—2, (I3 >0, hence i > 0).

Similarly, we have
(421) ||V = P)VE |, = [[IV™ - [V [ VR |,

S U+ Vall 72+ el =) IV ull rer + lleel )
by Lemma [2:2] with

g+t l=k—1-i<k—2, (I >0).
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This implies

2(k—1 2(k—1 2 2
(4.22) 12l S QU+ IVl 787 4 a3 ) [Vl e + el 3e-z)-

Finally, for the regularization term, we observe

—5/ VE2(I — P,)(Awy)|VF %y da = s/ VAT — P,)(Auy) |V uy da

n

< CIVH0IT = P (@] [+ 5 195 el

Thus, in order to bound the norm ||V*=3[(I — Pu)(Aut)]HQLQ, by (3.3) it suffices to estimate

2

(4.23) |||Vﬁ“+1u\ A VAL [|Vk1+1ut||vk2+1u\ + |Vk1ut||V’“2+2u|} ||L2 ,

(4.24) H [+ | [y [ VR || R | [y HQLz 7

where mq + - 4+m; +k1+keo=k—-3—4, m +---+m; + k1 +ko+ks =k—3—1,
respectively.

By the Lemma [2.2] we have the estimates

(4.25) ([0 ] (O [V g | [WER |  [V R || R 2|2

2k—2 2(k—2) 2(k—2 2 2
S O IVl 4 V2l 5+ e 7S (el 3pee + | Vul3e2),  and
(426) [ uf - [ VR[5 L] [ ]

2(k—1 2(k—1 2 2
S @+ IVl 2E el 3E) (el 3z + Ve ).

Thus, putting together (4.12)) - (4.16), (4.19)- (4.21)), (4.25) and (4.26]), we estimate

VF2(N(u) —e(I — P,)(Awy)) - V¥ 2u, dx
.

< L+ Vulzh + [ V2l + el 2 UV ulfams + el Fe—z) + 5 [ V5 el -

Hence, subtracting

t
5 [ 19 ). s

on both sides of (4.2)), we have for ¢ € [0,T)

k2 2 k 2 e [ k-1 2
(4.27) IVE=2u, (1)} + | VFu)| +5/0 [V ()| ds

t
2k 2k 2k 2 2
§/0 [(HIIWIILm+||V2uHLoo+IIUtIILm)(IIVu||Hk71+||m||ka2) ds

V52 4 ([ o

Since, testing (4.1) by us € T, N for t € [0,T) also gives

t
2 2 2 2 2
l[ue ()72 + [|Au(®)]|72 +5/0 IVur(s)lz ds = [luallze + [|AuollLz ,

we thus use

di |Vul? dz S/ g | dx—l—/ |Aul? dz,
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and interpolation of lower order derivatives in the L? norm on the left-hand side, more
precisely

k—1—1)

2(
(4.28) Vi 0 S || VF 1ut||L |Vut||L2" Tl=2,...,k-2,
L2 k-2 || T3 =
(4.29) HV ut”L? hS HV “tHL? ||ut||L2 ,l=1,...,k—3, and
(4.30) VHl|2, S HV’“uHL |Au||L L l=3,.. k-1,

in order to conclude

3
(4.31) oo (D32 + [Vt G + 5

t
5 | I9m(e)5s ds

t
k
S / |+ IVl + ) UVl s+ ueles)] ds

+ w32 + [[Vuolgxr, t€[0,T).
We remark that this implies for solutions of (3.1)) by the Gronwall bound

(432 sup (Ju(OlFs + [ Vu(®) o)
t€[0,T

T
< € (Jlu s + IVuoll e ) exp ( / (14 ([ Vul[fne + fluel7) ds> :
0

We note that since the solutions to (3.1 are (locally) unique, the argument in the previous
section of the derivation of (4.31) holds for ¢y € [0,T), t € [tg,T) with

t
3
(4.33) e @2 + [Vu(®) e + 5 / IV ()2 ds

t
S [ [0+ 17l + Tl 0Pl + )] s
0
o e (t0) 2 + [ VerCto) e -
Thus, setting
alt) = Ifue ()| Fpu—z + [IVa(®) |7, ¢ €10,7),
we obtain (for some constant C' > 0)

(4.34) a(t) < C(1+a(®)F) a(t), te[0,T).

dt

We now proceed similar as in [KLPT 10|, where regularization by the (intrinsic) biharmonic
energy has been applied in order to obtain the existence of local Schrédinger maps.

Lemma 4.1. Let ¢ € (0,1), wg,u; : R" — RE, ug(r) € N, uy(x) € Tyyx)N, for a.e.
x € R" and such that

(Yo, ur) € HE1(R™) x HF-2(R")
for some k € N, k> |5] +2. Then then there exists T = T(||Vuol| gr-1, ||u1||gr) > 0 such
that the solutions (u®,T.) from Proposition are solutions u : R" x[0,T) — N.

Proof. We infer

d « o
4.35 2 - <c,
(435) a og((l_i_ak)i) s
which (by integration from 0 to t) gives for ag = «(0)
k k k
@ ctk___ %0 @ 1
— < ——— < (14+4Ctk)———, 0<t < —.
(14 ak) =° (14 ak) <+ )(1—|—oz’§) 8Ck
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Therefore

1
o < (1 +4Ctk) af +4Ctk af o® for 0 <t < et

and thus

1 1
aF §2(1+4Ctk)a§ §3a§, for 0 <t< min{l,}.

8Ck a’g

Hence, setting Tj := ﬁ min {1, a%,}}, we obtain
(4.36)
()52 + V(@) 51 < VB llualfes + V3| Vol 7, ¢ € [0,min{T, To}).

We recall that v = u® (where € € (0,1) is fixed) and we denote by 7 the maximal existence
time of u®.

We now assume by contradiction 7. < Ty, where Tj is taken from the previous section.
Thus, applying the contraction argument in Section |3| for ¢y € [0,7%) in the space B,.(T)
defined over u(tp) and with

k
= 3r(t0)" = 3(IVulto)l e + 3 llunlto)ll a2 )

we observe that there exists a constant ¢ > 0 such that the solution will be uniquely extended
to [0,t0 + T) as long as

—1 . \k/g_l ’ € <
(4.37) T'<c¢ min ( 3 ) C2(1 + 3r(to)*)?” C2(1 + 6r(to)*)?

However, by (4.36]) (note here ¢y € [0,7) by assumption), we succeed to solve (3.1]) by the
proof of Lemma [3.1| and Proposition [3.4] starting from u(tg), u¢(to) with the existence time

1 /3 -1 ’

— e g
4.38 T=—mi
(4.38) 20 M ( 3 ) C2(1+ 9rk)2 C2(1 + 187%)2

2
1 . V3-1 € €

< — min y ,
2c /3 C2(1 4 3r(tg)*)2” C2(1 + 6r(tg)*)2

Since T' > 0 does only depend on ug, u; and hence not on the choice of tg € [0,7:), we infer
a contradiction for T, — ¢ty < T'. Thus we set T'(ug,u1) = Tp. O

5. PROOF OF THE MAIN THEOREM

We now combine the existence result from Lemma [3.1] and Proposition [3.4] with Lemma
Thus there exists a family of solutions u® : R" x[0,7) — N of (3.1)) for ¢ € (0,1), where
T = T(up, u1) only depends on ug, ui. From (4.36) and the fact that

4" = woll poo 2 < T gl pos 2 5
we extract a limit u : R™ x[0,T) — R as ¢ — 0% of the solutions uio o in the sense
Vet 5 Ve, uf —uy > u—wug, and V272E 522y, in L°([0,T), L?),
where 1 <{; <k and 0 <y < k. Thus we have

u—up € L=([0,T), H*) n W ([0, T), H*2).
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Further, by differentiating (3.1)) up to order & — 4 and estimating the nonlinearity similar as
in section [4} we also obtain from (4.36]) that 0?u® € C°([0,T), H*~*) is uniformely bounded
as ¢ — 07. By compactness and Sobolev’s embedding, we further assume for u® = v¢ + ug,

V3us — Viu, in C°([0,7), L} .(R™))

loc

opuf — dpu, v — u, Vu — Vu, V>u® — V2u, locally uniformely on R" x[0,Tp).
More precisely for « € (0,1) we have uniform bounds (in ¢) in
(51) N c CaHk72oz’ \vis c CraHk:7172oz, v2v5 c C«osz7272o¢’ atvs c CraHk72f2oz,

where the last fact follows from |[Lun95, Prop. 1.1.4]. Thus there holds u € N on R" x[0,T)
and since (4.31]) combined with (4.36]) gives

T
62 [ IVeVul . ds

2k 2k 2 2
S (T [l + [Vuollgr-) + 1) (Jualgx-—2 + | Vuolge-s),

we have eAdyu® — 0 in L7 since k > 3. Also the coefficients in (1.3) converge (locally

t,x
uniformly) and from the limits above, we see (considering the definition of N;)

N(u®) = N(u) in L} (R™ x[0,T)).

Here we note in particular that (I — P,-)(Au$) converges in L? (R™ x[0,7T)) as e — 0F.

loc

The blow-up criterion (|1.4]) follows from an energy estimate similar to (4.32)) for biharmonic
wave maps.

The uniqueness statement, which is left to conclude the proof of Theorem is considered
in the next section.

6. UNIQUENESS

Lemma 6.1. Let u,v : R" x[0,T) — N be two solutions of with initial data ug :
R™ = N, u; : R" = R and uy € T,,N on R™ such that for some k € N with k > 5] +2
we have
(Vug,uy) € H* 1 (R™) x H*%(R™).
Also let
u—ug, v—uy € L=([0,T), H*(R™)) nW>([0,T), H*"*(R™)).

Then U,y = Y0,y -

Proof of Lemma[6.1, We obtain the uniqueness from a Gronwall argument by estimating
(with w = u —v)

d

dt Jgn
for I € {0,...,k — 3} and proving

(6.1) |Viwg|? + |[VTP2w]? do = / VHN (u) = N(v)) - Vi, de,

n

d
(62) —-&2(t) < COL+ [Vullfs + luellizes + Vol + lloele2)E3(2), € [0,7),
with
E@) = lw®ll gr-r + llwe (Ol gre-s, ¢ €[0,T).
We first prove an estimate for (6.1) in the case | = k — 3, the case | < k — 3 will be similar
and in fact easier. We note that since u,v map to N, we have N'(u) = (I — P,)(N(u)).
Thus, we write
N(u) =N(v) = (I = PN () = (I = P)N(v)
= (Py — PN (u) + (I = P,)(N (u) — N(v)).
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Thus
VESR (W (1) = N(v)) - V2w = VF2((P, = PON ()] - VP
+ VP = PN (u) = N(0)] - VP
This is needed, in order to avoid the case where all derivatives fall on V3w. Hence we write
VP, = PN (w)] - V* 2w, = (P, = PV PN ()] - VP

+ > VE[(B - P)IVEIN ()] - VR, = I+ I,

l1+lo=k—3
11>0

We note here
e S ol [ ) [

where ||Vk SN (u H is estimated by the use of Lemmaas above in the a priori estimate.
Further, Lemma combined with Lemma also implies that fR" Iy dz is bounded by
terms of the form

(6.3) w] oo ||V ] - [V T | |[VEN ()] o [V w]] . +
(6.4) V52w, IV ][V by | [V Ry || VRN ().

where my,...,m;, hi,...,h;_1 are as in Lemma For ([6.3)) we then estimate as above
in the a priori estimate and note for (6.4)), it suffices to estimate terms of the form

(6.5) [V ||V A | [T R [V ] T ] [ | [V T

where [|[VF1u,|[VF*24,] -] is as in the nonlinearity N (u) and my ..., mj, ma, ..., 74, k1, ko . ..
are as used before. Hence by Lemma for

fl =w, fQZth "'7ijth—17fj+1 :vua"'afi-i-j:vu,

and fiyji1, fitj+2, (fitjts, firjta), according to the different terms in N (u) as above, we
estimate (6.5)) in L? by (note l; >0, j > 1and i+ j < k —2)

l— = o o o
<|w||Loo = | 4wl L ||w||Hk:s,-)

L+ (IVullZr + luellzgs—e + 11 V0l 2 + vellz—2)
S lwll e U+ [1Vull5ir + luellzs—s + V0l 5 + (vl 7i—2)-
We now continue with

VEZI(T = P (w) = N()] - V" Py
= VBN () = N@)I = PY)V*Pw + > V(I = P)VE(N(u) = N(v)) - VF Py

li+lo=k—-3
11>0

= VI W () = N @)V P[Py = Pwl = Y V3N () = N () - V(T = PV,

li+lo=k—-3
11 >0

+ Y VR = P)VEW(u) = N () - VEBwy = Jy + Jo + Js.

l1+lo=k-3
11>0

where the last equality follows from
(I—Pv)wt:(I—Pv)ut: [(I—Pv)—(I—PH)]Ut:(PU—PU)'LLt

We use integration by parts to treat f J1 dx, f Jo dx. Therefore we assume k > 4, otherwise
(if k = 3) the estimate becomes easier and we only use integration by parts for d P, (V3w*Vu)
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in the difference N (u) — M (v). We have

(6.6)

/n Jy dr = — / VFAIN (u) = N(v)] - VE2[(P, — P,)uy] dz, and

(6.7)

/ Ty da = / VAN (1) — N()] - VA (L — P)VEw, + VI (I — PV wy] da.
T g

Thus we infer
/njl dz < |[V* AN () = N o [IV521(Pa — Poyud ||,

and from Corollary Lemma[A2 and Lemma[2.2]

_ 2%
[VF 4N (@) = N@)]]] 12 S (lwll s+ lwell ges) (1 + [ VullFe + el + 1Vl + vl Fiee),
IV*2[(Py = Po)udl || o Sl ges (U4 [ Vullzgns + el Fes + V015 + lvell Fes)-

Similarly

/7 Jodr < > [VFHN(u) = N )] 2 ([VETHT = P) V2| o + [V = PV |),

l1+la=k—3
11>0

for which we obtain similar upper bounds. For Js, we note that

/R gsde< Y |[VRI - PVEN ()~ N )]

li+la=k-3
11>0

e (195 el

and (note here I < k — 3) again by Corollary
|V (I = P)V2IN (u) = N)]||,
S (wll s + Nl o) 0+ IV allFes + el -z + 1V0l 5 + ol F-2)-
Summing up, we have

d _ _ k
& (L 975+ (9970 o) £ €200+ 190l + el + 1901 + el o)

Note that we also obtain the following estimate (by integrating dP, (V3w x Vu) by parts) in
a similar way

d
G (L 1o 10 d0) £ 500+ ITul i+ s+ IV + o)

Combining this, we use interpolation on the left-hand side in order to conclude

d k
%52(15)55 O+ [VullFes + el + Vol + ol Hes).

Since by assumption, for any ¢ € (0,7T), we have

p IVl 3s + el e + IV0l 35— + oel 3e—z) < o0,
se(0

and w(0) = 0, we conclude the Lemma. |



18 S.HERR, T.LAMM, T.SCHMID, R.SCHNAUBELT

APPENDIX A. DERIVATIVES OF THE NONLINEARITY

In this section we assume u,v : R" x[0,T) — R% are smooth maps. The calculations hold
if u and v are sufficiently regular to apply the Leibniz formula (e.g. with weak derivatives
in L?). Lemma and the Leibniz formula imply the following

Lemma A.1. Letl € N, then
VIN(w) = Ji + Jo + J,
where we Jy, Jo, Js are of the form (with k;, m; > 0)
Ji1 = Z (AP (V™ ok VT ) [V 0y % VE2uy 4+ VR 20 % WE2 2y 4 P13 5 TRy |
()

with (%) : 0 <m <1, Z?zlki:lfm, j=min{l,m},...,m, Zimk:mfj.

Jy = Z (dj+2Pu(Vm1+1u* R v7nj+1u)[vk1+1u*vk2+1u* vk3+2u]) 7
(*)

with (%) : 0 <m <1, Z?Zlki:l—m, j=min{l,m},...,m, Zimk:m—j.

Js = Z (dj+3Pu(Vm1+1u* e A T | AVARRES TR VA VR VA Rt T Vk4+1u]) ,
()
with (%) : 0 <m <1, Z?Zlk;i =1l—m, j =min{l,m},...,m, Zimk =m-—j.

The following Lemmata are used to prove the existence of a fixed point in Section |3 and
the uniqueness result in Section [6]

Lemma A.2. For m € N, k € Ny, we have form > 2 and w =u —v
(A1)

Vm(dkPu 7dkpv) = Z Z (dj+kpu 7dj+kpv)(vm1+1uw“,vijrlu)
j=1 ml“ru‘mj:mf‘j

m

+> > oo @R (VT e, vy VT ),

Jj=2mi+..mj=m—j hy,....h;_1€{u,v}
and form =1
(A.2) V(d*P, — d*P,) = (dP, — dP,)(Vu) + dP,(Vw).
Proof. This follows from subtracting the expansion in Lemma for d*P,
m
vrdip) =Y N dtEp (vt i ty),
Jj=1mi+..mj=m-—j

from the same expansion of V™(d¥P,). Then subsequent adding and subtracting the inter-
mediate terms in the formula above gives the result. 0

Corollary A.3. FormeN, m>2, w=u—v
V™ [(dP, — dPy)(ug - up + V2u* Vu + V3ux Vu)]
= Y (TP, — TP (VM L VT ) (VR V2 + VR R VT2 TRy Tk
()

+ Z dj+1pv(vm1+lw’ sz+1h1, s Vm_j+1hj_1)(vk1ut * VkQUt + vk1+2u * Vk2+2u + Vk1+3u * V]”u),
(+%)
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V™ [(d*P, — d*P,)(Vu* Vu x Vu)]
= Y (TP, — TP (V™ L VT ) (VR VR TR 2
()

+ Y AP (VT VT Ry VT R ) (VR e TR e VR R,
(++)

V™ [(d*P, — d*P,)(Vu* Vu* Vux Vu)]

= D (PP, = &P (VM i, L V) (VR Ry VR Ty« TR L)
()

+ Y TP (VT w, VT Ry, VT ) (VR e VR TR Ly W Ty,
(+%)

where

(*):j=1,....mandmi+---+mj+ki+ke=m—j, mi+---+mj+ ki +ka+ks=m—j,
my +---+mj + ki + kg + k3 + ks = m — j, respectively and,
(#x¢):j=2,...omand mq +---+mj+ki+ka=m—j, mi+---+mj+k+ka+ks=m—j,
mi+---+mj+ki+ky+ks+ki=m—j, hi,...,hj_1 € {u,v}.

Also, the case m = 1 is similar.
Proof. This follows again from the Leibniz rule and the application of Lemma (]
Corollary A.4. We have for m € N, m > 2 and w = u — v that
VTN (u) = N(v))
is a linear combination of the terms

(TP, — & P) (VT i, VT ) (VR V20, 4 VR0 TR 2y 4 OR300 Th2y)

AP (V™M VT o VT ) (VR V2 4 VR x VR P2y VRIS TRy,
(dTT2P, — d7T2P,) (VM T hy, . VMt ly) (VR Ty« Whe Ty o Ths 2y,

A2, (Vi ety Ve ) (VR Ly VR Ly TR T2y

(T3P, — &P P,) (VT u, . V) (VR g Ry s TRty 5 Ry

AP (V™M Vet o VT ) (VR Ty VR Ty RS Ty o RTLY) and

AP, (vt VL) (VR W, « VR Ry + VR 2 5 VR 2
+ VRS« V2l 4 V3L« VR2), o€ {u, v},

AR M AV VAL R T VA IS vAC Ry I ViR PR vAC Y I VACREY P ASRRZTOR

AR SR VAL VAR A ACR R TII vAC Ry I vA ) POV VAT FON

where j, k1, k2, k3, ks and hy, ho, h3, ha are as above in Corollary [A-3] Also, we have a similar
(but simpler) statement for m = 1.
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Proof. We write, according to the definition of () in (L.3)),
N(u) — N(v) = (dP, — dP,)(ug - us + Vux V2u + V3u x Vu)
+ (d*P, — d*P,)(Vu * Vu* V?u) + (d*P, — d*P,)(Vux Vux Vu* Vu)
+ dP, (wy - up + vy -wt+Vw*Vu+Vv*Vw+V3w*Vu+V3v*Vw)
+ d?P,(Vw * Vu x V2u + Vo x Vw « V2u + Vo x Vo« V2w)
+ d*P,(Vw * Vu x Vux Vu + Vv x Vw « Vu * Vu
+ Vo x Vu* Vwx Vu + Vo x Vo x Vo x Vw).

Then, we use Corollary for the first three terms in the sum above. For the latter three,
we use Lemma BTl and the Leibniz rule. O

We recall that in Section [3[for € € (0,1) by definition
N(u). = N(u) — ed? P, (ut, Vu, Vu) — £2d P, (Vuy, Vu) — ed Py (ug, Au).

Lemma A.5. For m € Ny the deriative V™ (N (u)) consists of the following additional
terms

AP, (V™ Ty s ok VL) (VR gy & VF2 20 4 VR Ly, « V2T, and
AP (V™ Ty e VL) (VR gy % WF2 Ly 1 VR Ly

with j,ma,...,mj, ki, kg, k3 similarly to Lemma .

Further V™(N:(u)) — V™(N:(v)) consists of additional terms of the form

(TP, — AT P) (V™ Ty, . VM) (VR gy 5 VR T2 - R Ly« WR2 L)
AP, (V™ T, VM2t hy o VT R ) (VR x VR T2y 4 VR Ly, x TRt Ly
(dTT2P, — d7T2P,) (V™ Ty, . V™) (VR gy 5 VR Ty 5 Whe Ty

AP, (VM T, Vet VT R ) (VR ey« VR Ly VR L) and

AP (V™M L VT ) (VR VR T2 4 R Ly, « VR
+ VA R % VR 2y 4 VR, 5« VR Ty b€ {u,v),

d TPV, V) (VR wy VR g« VRS T Ry 4+ TR (), % VR g % VR ),
where w = u —v and j,my,...,mj, ki, ka, k3, ha, ..., hj_1 similarly to Corollary[A.4)
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