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Preamble 

Parts of this thesis have been published as peer reviewed research articles. They describe the 

main findings of my work. At the end of any applicable paragraph a reference note states the 

publication in which the content has been previously published. The text of these paragraphs 

is partially identical to the content of the publications. Layout, citation style, figures and 

formatting have been modified and adjusted to the style of this dissertation. Chapters that 

contain contents of previously published work are as follows: 

Chapters with the heading “Elevated pressure for increased mass transfer” and the 

conclusions contain content of the publication  

Oswald, F., Stoll, I. K., Zwick, M., Herbig, S., Sauer, J., Boukis, N. and Neumann, A. Formic 

Acid Formation by Clostridium ljungdahlii at Elevated Pressures of Carbon Dioxide and 

Hydrogen. Frontiers in Bioengineering and Biotechnology. 2018. 6:6. doi: 

10.3389/fbioe.2018.00006. 

Chapters with the heading “Influence of Cyanide on growth and product formation of 

Clostridium ljungdahlii” and the conclusions contain content of the publication  

Oswald, F., Zwick, M., Omar, O., Hotz, E. N. and Neumann, N. Growth and Product 

Formation of Clostridium ljungdahlii in Presence of Cyanide. Frontiers in Microbiology. 

2018. 9:1213. doi: 10.3389/fmicb.2018.01213. 

Chapters with the heading “Process link-up: From syngas to malic acid” and the conclusions 

contain content of the publication  

Oswald, F., Dörsam, S., Veith, N., Zwick, M., Neumann, A., Ochsenreither, K. and Syldatk, 

C. Sequential Mixed Cultures: From Syngas to Malic Acid. Frontiers in Microbiology. 2016. 

7:891. doi: 10.3389/fmicb.2016.00891. 
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Abstract 

In recent years, synthesis gas, or syngas, industrial exhaust gases and other C1 molecules 

came into focus as interesting substrates for the biotechnological production of fuel and bulk 

chemicals. In this context, syngas is a mixture of hydrogen, carbon monoxide and carbon 

dioxide, derived from gasification of biomass and organic waste streams, like sewage sludge 

and municipal waste. Organisms that can be used for syngas fermentation belong to the class 

of acetogenic bacteria. They have access to a unique pathway of carbon fixation that 

combines two molecules of CO or CO2 via subsequent reactions into one molecule of acetyl-

CoA. This is called reductive acetyl-CoA pathway or Wood-Ljungdahl-Pathway (WLP). 

Acetic acid, ethanol, butyric acid, n-butanol or 2,3-butandiol are natural products of this 

metabolic route. One of the model organisms of acetogenic bacteria is 

Clostridium ljungdahlii. Efforts of synthetic biology, genetic engineering and process 

development focus mainly on enhancing the production of natural C4 products or introducing 

new pathways for the production of C4 and C6 chemical. However, bioenergetic constrains 

prevent higher yields of those products, since acetogenic bacteria gain the most energy from 

the formation of acetic acid or ethanol, which are the preferred products. 

One of the limiting steps in syngas fermentation, that is often mentioned, is mass transfer of 

hydrogen and carbon monoxide from the gaseous phase into the aqueous culture broth. 

Possible routes of enhancing mass transfer are the increase of gas-liquid interfacial area by 

increased stirrer speed and/or increased gas feed rate. For production of low value chemicals 

from syngas, such as ethanol, the increase of mass transfer by means of increased stirrer speed 

is uneconomic at larger scales. Another possibility would be, to raise the saturation solubility 

of hydrogen and carbon monoxide, by increasing the partial pressure of these components. 

However, higher liquid concentrations of hydrogen or carbon monoxide can lead to inhibitory 

effects and reduce the process efficiency. Though, crude syngas also contains minor 

constituents like nitric oxides, hydrogen sulfide or hydrogen cyanide, most research groups 

work with purified or synthetic mixtures of syngas. Working with crude or partially purified 

syngas could further increase the economics of syngas fermentation, since gas cleaning and 

conditioning is expensive. Unfortunately, most of the minor constituents of syngas are known 

catalyst poisons and even though, microorganisms are in general more robust than chemical 

catalysts, studies with crude cell extract or purified enzymes showed that some of the 
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impurities in crude syngas inhibit central enzymes of the WLP. Actual data on the effects of 

gas impurities on whole cells of acetogenic bacteria is scarce. 

This thesis investigates the following topics: 

 The influence of increasing mass transfer by increasing gas feed rate 

 Increased mass transfer by increased system and partial pressure of substrates  

 The influence of cyanide on growth and product formation of C. ljungdahlii 

 Process link-up via sequential mixed culture for production of malic acid 

Since mass transfer is considered a main limiting parameter in syngas fermentation, two 

stirrer set-ups, with one that allows partial recirculation of the headspace gas, have been tested 

for their mass transfer properties at different stirrer speeds and gas feed rates. It has been 

found that a stirrer speed of 800 min
-1

 provides the highest mass transfer coefficients (kla) for 

all three gas feed rates. Subsequent batch cultivations in 1.5 L-scale showed, that despite 

increasing kla-values with increasing gas feed rate, the substrate conversion efficiency is 

higher at lower gas feed rates. Increasing the gas feed rate does enhance the mass transfer 

coefficient, though, the effect is small compared to increasing the stirrer speed and does also 

reduce the bubble residence time. With less time to be completely absorbed from the gaseous 

phase, unused substrates leave the bioreactor and are wasted. Here, the stirrer set-up with 

partial recirculation of the headspace gas allows to reintroduce parts of otherwise wasted 

substrates. This resulted in better conversion efficiencies despite a lower kla-value and 

stresses the importance of gas recirculation for efficient substrate conversion. 

Due to the possible drawbacks of increased mass transfer by increased gas feed rate, 

experiments at elevated substrate pressure should show if this alternative to increasing mass 

transfer will enhance substrate conversion efficiency. In cooperation during the PhD thesis of 

Katharina Stoll from the group of Dr. Boukis at IKFT, KIT Campus North, the 1.5 L-scale has 

been scaled-up to 2.5 L-scale. Levels of absolute system pressures of 1 bar, 4 bar and 7 bar 

with a constant volumetric mass-flow rate of substrates and constant gas composition over all 

pressure levels have been investigated. To avoid inhibitory effects by high CO partial 

pressures, a gas mixture only consisting of CO2, H2 and N2 as a carrier was used. It was 

shown for the first time, that with increasing substrate pressure growth of C. ljungdahlii 

declined and product formation stagnated, although the gas mixture did not contain carbon 

monoxide. Furthermore, the product composition shifted from 2.4 % formic acid, 86.5 % 
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acetic acid and 11.1 % ethanol at atmospheric conditions towards 82.7 % formic acid, 15.6 % 

acetic acid and 1.7 % ethanol at a total gas pressure of 7 bar. However, since the amount of 

substance flow rate was kept constant over all pressure stages instead of the gas volume feed 

rate, the overall product yield and conversion efficiency of the experiments at 7 bar is 7.5 

times higher than previously reported. 

Cyanide is considered one of the most critical components of crude syngas that need to be 

removed from the gas stream prior to fermentation. The results in this thesis are the first to 

show, that C. ljungdahlii can be adapted to growth in presence of up to 1.0 mM cyanide under 

heterotrophic conditions and up to 0.1 mM cyanide under autotrophic conditions. After 

adaption, maximum growth rate and biomass concentration is unaffected by cyanide up to the 

indicated concentrations. Product yields from heterotrophic conditions indicate that at 1.0 mM 

cyanide CODH activity is completely inhibited and the WLP is inactive. This is confirmed by 

results under autotrophic conditions where no growth could be observed at 1.0 mM cyanide. 

While the difference in growth is an increasing lag- phase with increasing cyanide 

concentrations, the product spectrum shifts from 97 % acetic acid and 3 % ethanol at 0 mM 

cyanide to 20 % acetic acid and 80 % ethanol at 1.0 mM cyanide for cultures growing on 

fructose and 80 % acetic acid and 20 % ethanol at 0.1 mM cyanide (syngas). 

To circumvent the limitations of the production of desirable C4 or C6 products from syngas, a 

process has been developed together with Dr.-Ing. Stefan Dörsam, to produce malic acid from 

syngas as initial carbon source (see also chapter four of the PhD thesis Evaluation of 

Renewable Resources as Carbon Sources for Organic Acid Production with Filamentous 

Fungi). The production of malic acid by filamentous fungi like Aspergillus oryzae has high 

yields of product per gram substrate but is commonly limited to sugars as substrate. The 

process developed together with Dr.-Ing. Stefan Dörsam, shows for the first time, that it is 

possible to produce malic acid from syngas in a two stage process with acetic acid as linking 

metabolite. Due to the need of nitrogen limitation in the fungal fermentation stage of this 

sequential mixed culture, it was necessary to reduce the initial ammonia contend of the syngas 

fermentation medium. During the syngas fermentation stage, hydrogen and carbon monoxide 

from the gas stream have been converted to acetic acid (88.9 %) and ethanol (11.1 %) with a 

yield of 0.86 g g
-1

. In the fungal fermentation stage, the previously formed acetic acid has 

been converted to malic acid with a yield of 0.33 g g
-1

. This resulted in an overall yield of 

0.28 gram malic acid per gram hydrogen and carbon monoxide fed to the process. 



VIII 

 

Zusammenfassung 

Synthesegas (Syngas), Industrieabgase und andere C1-Moleküle haben sich in den letzten 

Jahren als interessante Substrate für die biotechnologische Produktion von Kraftstoffen und 

Plattformchemikalien herauskristallisiert. Syngas ist in diesem Zusammenhang eine Mischung 

aus Wasserstoff, Kohlenmonoxid und Kohlendioxid, welche über Vergasung von Biomasse 

und organischen Abfällen (z. B. Kommunalabfälle oder Klärschlamm) hergestellt wird. 

Organismen, die in der Syngas-Fermentation eingesetzt werden können, gehören zur Klasse 

der acetogenen Bakterien. Diese nutzen einen einzigartigen Stoffwechselweg zur 

Kohlenstofffixierung in dem zwei Moleküle CO oder CO2 über sequenzielle Reaktionen zu 

einem Molekül Acetyl-CoA kondensiert werden. Dieser wird reduktiver Acetyl-CoA Weg 

oder Wood-Ljungdahl-Stoffwechselweg (WLS) genannt. Natürliche Produkte die aus dem 

WLS abgeleitet werden können sind Essigsäure, Ethanol, Buttersäure, n-Butanol oder  

2,3‑Butanidol. Clostridium ljungdahlii ist einer der Modelorganismen für acetogene 

Bakterien. Bisher konzentrieren sich Forschungen der synthetischen Biologie, Gentechnik und 

Prozessentwicklung hauptsächlich darauf, die Produktion natürlicher C4-Moleküle eines 

Organismus zu erhöhen oder neue Stoffwechselwege für C4- und C6-Moleküle zu 

implementieren. Bioenergetische Limitierungen verhindern jedoch die Produktion dieser 

Zielprodukte mit hohen Ausbeuten. Dies liegt darin begründet, dass acetogene Bakterien 

bevorzugt Essigsäure oder Ethanol herstellen, da dies einen höheren Energiegewinn für die 

Zelle bedeutet, als die Produktion von C4- oder C6-Molekülen. 

Die Limitierung des Massentransfers von Kohlenmonoxid und Wasserstoff von der Gasphase 

in die Flüssigphase ist einer der Punkte, die häufig im Zusammenhang mit Limitierungen der 

Syngas-Fermentation in der Literatur genannt werden. Möglichkeiten den Massentransfer zu 

verbessern sind zum einen die Vergrößerung der Phasengrenzfläche Gas-Flüssig durch 

erhöhte Rührerdrehzahl und/oder Begasungsrate und zum andern, die Erhöhung der 

Sättigungskonzentration von Kohlenmonoxid und Wasserstoff durch das Anheben des 

Partialdruckes. Sollen allerdings Produkte mit geringer Wertschöpfung produziert werden, so 

hat sich gezeigt, dass die Verbesserung des Massentransfers über Erhöhung der 

Rührerdrehzahl nicht wirtschaftlich ist. Während die Verbesserung des Massentransfers über 

die Steigerung der Begasungsrate den Umsatz beeinträchtigen kann, führen höhere 

Gelöstkonzentrationen von Wasserstoff und Kohlenmonoxid zu Stoffwechselinhibierungen 

und dadurch zu einer Reduktion der Effizienz des Prozesses. 
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Da Roh-Syngas neben den genannten Hauptkomponenten auch Verunreinigungen wie 

Stickoxide, Schwefelwasserstoff oder Blausäure enthält, arbeiten viele Forschergruppen mit 

gereinigten oder synthetischen Syngas-Mischungen. Jedoch ist die Reinigung von Gas ein 

kostenintensiver Schritt. Die Möglichkeit ungereinigtes oder nur Teilgereinigtes Syngas 

einsetzten zu können, würde die Wirtschaftlichkeit jedes Syngas-Fermentationsprozesses 

verbessern. Leider sind die meisten, der in Roh-Syngas enthaltenen Stoffe, bekannte 

Katalysatorgifte. Bakterien sind zwar generell robuster gegenüber Katalysatorgiften als 

chemische Katalysatoren, aber Studien mit Extrakten aus aufgeschlossenen Zellen oder 

gereinigten Enzymen zeigen, dass manche der Verunreinigungen die zentralen Enzyme des 

WLS inhibieren. Daten, die den Effekt von Syngas-Verunreinigungen auf ganze Zellen 

acetogener Bakterien zeigen, sind dagegen nur wenige in der Literatur zu finden. 

Im Zuge dieser Doktorarbeit wurden die folgenden vier Themen untersucht: 

 Der Einfluss erhöhten Massentransfers durch gesteigerte Begasungsrate 

 Verbesserung des Massentransfers durch erhöhen des Systemdrucks und Partialdrucks 

der Substrate 

 Der Einfluss von Cyanid auf Wachstum und Produktbildung von C. ljungdahlii 

 Prozesskopplung über sequentielle Mischkultur zur Produktion von Äpfelsäure 

Hinsichtlich der Massentransfereigenschaften wurden zwei Rührerandordnungen mit drei 

unterschiedlichen Begasungsraten getestet. Eine ermöglichte die Teilweise Rückführung von 

Gas aus dem Kopfraum des Reaktors. Es zeigte sich für alle Begasungsraten, dass das 

Maximum des volumenbezogenen Stoffübergangskoeffizienten (kla-Wert) bei einer 

Rührerdrehzahl von 800 min
-1

 liegt. Über Batch-Kultivierungen im 1,5 L Maßstab konnte 

gezeigt werden, dass trotz steigender kla-Werte mit steigender Begasungsrate, die Konversion 

von Substraten zu Produkten bei höheren Begasungsraten ineffizienter wird. Der Einfluss der 

Begasungsrate auf den kla-Wert ist klein, verglichen mit dem Einfluss der Begasungsrate. 

Zudem Verringern steigenden Begasungsraten die Verweilzeit der Gasblasen in der 

Flüssigkeit. Dadurch wird mit steigender Begasungsrate zunehmend ungenutztes Substrat aus 

dem Reaktor ausgetragen. In diesem Punkt zeigt sich die Rühreranordnung, die eine 

Teilrückführung von Gas aus dem Kopfraum des Reaktors gestattet, überlegen und erreicht 

bessere Konversionseffizienten obwohl der kla-Wert im Vergleich zur anderen 

Rühreranordnung kleiner ist. 
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Aufgrund der möglichen Nachteile, die mit einer Steigerung des Massentransfers durch 

Erhöhung der Begasungsrate verbunden sind, sollen Experimente mit erhöhtem Druck zeigen, 

ob dies eine Alternative darstellt, um den Massentransfer zu verbessern. Zu diesem Zweck 

wurden Experimente aus dem 1,5 L Maßstab in den 2,5 L Maßstab hochskaliert und Versuche 

bei absoluten Systemdrücken von 1 bar, 4 bar und 7 bar, bei ansonsten konstantem 

volumenbezogenen Massenfluss der Gase und konstanter Gaszusammensetzung, 

durchgeführt. Um mögliche Inhibierungen durch erhöhte Gelöstkonzentrationen von 

Kohlenmonoxid zu vermeiden wurde hierfür ein Gasgemisch aus CO2, H2 und N2 verwendet. 

Für dieses Gasgemisch konnte erstmals gezeigt werden, dass eine direkte Steigerung der 

Substratpartialdrücke keine Verbesserungen bei Wachstum und Produktbildung zur Folge hat. 

Im Gegenteil, das Wachstum ging mit steigendem Druck zurück und die Produktbildung 

stagnierte. Darüber hinaus änderte sich die Produktzusammensetzung von 2,4 % 

Ameisensäure, 86,5 % Essigsäure und 11,1 % Ethanol bei atmosphärischem Druck zu 82,7 % 

Ameisensäure, 15,6 % Essigsäure und 1,7 % Ethanol bei einem Systemdruck von 7 bar. Da 

aber der Massenfluss an Substraten über alle Druckstufen konstant gehalten wurde, war die 

Produktausbeute und Konversionseffizienz bei 7 bar um den Faktor 7,5 höher, als bisher in 

der Literatur beschrieben. 

Die Literatur betrachtet Cyanid als die kritischste Komponente in Roh-Syngas, die erst aus 

dem Gasstrom entfernt werden muss, bevor das Gas für die Fermentation eingesetzt werden 

kann. Die Ergebnisse in dieser Doktorarbeit zeigen jedoch zum ersten mal, dass C. ljungdahlii 

unter heterotrophen Bedingungen an bis zu 1,0 mM Cyanid adaptiert werden kann. Unter 

autotrophen Bedingungen ist eine Adaptation bis zu 0,1 mM Cyanid möglich. Nachdem die 

Zellen an Cyanid adaptiert wurden, werden die maximale Wachstumsrate und Biomasse 

nichtmehr von Cyanid beeinflusst, bis die oben genannten Grenzwerte erreicht sind. Die 

Ausbeutekoeffizienten aus Versuchen unter heterotrophen Bedingungen zeigen, dass bei einer 

Cyanidkonzentration von 1,0 mM die Aktivität der Kohlenmonoxiddehydrogenase (CODH) 

vollständig inhibiert und der WLS inaktiv ist. Die Ergebnisse unter autotrophen Bedingungen 

bestätigen dies, hier konnte bei einer Cyanidkonzentration von 1,0 mM weder Wachstum noch 

Produktbildung beobachtet werden. Im Zusammenhang mit der Inhibierung der CODH 

konnte zudem erstmals beobachtet werden, dass die Produktzusammensetzung sich mit 

steigender Cyanidkonzentration ändert und mehr Ethanol gebildet wird. Bei 0 mM Cyanid 

bestehen die Produkte zu 97 % aus Essigsäure und 3 % aus Ethanol während bei 1,0 mM 

Cyanid die Produktzusammensetzung 20 % Essigsäure und 80 % Ethanol ist (heterotrophe 
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Kulturen). Unter autotrophen Bedingungen (Wachstum auf Syngas) setzen sich die Produkte 

in Gegenwart von 0,1 mM Cyanid zu 80 % aus Essigsäure und zu 20 % aus Ethanol 

zusammen. 

Um die Limitierungen bei der Produktion von gewünschten C4 oder C6 Molekülen zu 

umgehen, wurde zusammen mit Dr.-Ing. Stefan Dörsam ein Prozess zur Produktion von 

Äpfelsäure (2-Hydroxybernsteinsäure) mit syngas als initiale Kohlenstoffquelle entworfen 

(vgl. Kapitel vier der Doktorarbeit Evaluation of Renewable Resources as Carbon Sources for 

Organic Acid Production with Filamentous Fungi). Die Herstellung von Äpfelsäure mit 

filamentösen Pilzen, wie zum Beispiel Aspergillus oryzae, resultiert in hohen 

substratbezogenen Ausbeuten. Allerdings sind diese Verfahren bisher auf Zucker als 

Kohlenstoffquelle limitiert. In Kooperation mit Dr.-Ing. Stefan Dörsam wurde ein 

zweistufiger Prozess entworfen der es ermöglicht Äpfelsäure aus Syngas herzustellen. Bei 

dieser sequentiellen Mischkultur ist Essigsäure der Metabolit, der beide Prozessstufen 

miteinander verbindet. Da die A. oryzae-Stufe dieses Prozesses auf Stickstofflimitierung 

angewiesen ist, war es zunächst notwendig, die Konzentration an Ammoniumchlorid im 

Medium für die Syngasfermentation so weit zu reduzieren, dass am Ende der Syngas-Stufe 

kein Ammonium-Stickstoff mehr enthalten ist. Während der Syngasfermentation wurden 

Wasserstoff und Kohlenmonoxid zu Essigsäure (88,9 %) und Ethanol (11,1 %) umgewandelt. 

Die Ausbeute lag bei 0,86 g g-1
. Aus dieser Mischung wurde während der A. oryzae-Stufe des 

Prozesses die Essigsäure in Äpfelsäure umgewandelt. Hierbei lag die Ausbeute bei 0,33 g g-1
. 

Daraus ergab sich eine Gesamtausbeute von 0,28 Gramm Äpfelsäure pro Gramm 

eingesetztem Wasserstoff und Kohlenmonoxid. Damit konnte erstmalig gezeigt werden, dass 

über Verfahrenskopplung höhere Ausbeuten an hochwertigen C4-Molekülen erreicht werden 

können. 
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1. Introduction 

Nowadays most bulk chemicals are still based on fossil fuels like crude oil and natural gas. 

Due to dwindling resources and climate change, it is necessary to develop sustainable 

methods to produce industrially relevant chemicals. In recent years, industrial exhaust gases 

such as steel mill off-gas [Köpke et al. 2011] and synthesis gas (syngas), a mixture of H2, CO 

and CO2, deriving from gasification of biomass and waste streams like sewage sludge and 

municipal waste [Hammerschmidt et al., 2011; Rokni 2015] as well as other C1 molecules, 

came into focus as interesting substrates for biotechnological applications [Daniell et al. 2012, 

Bengelsdorf et al. 2013]. Syngas fermentation uses acetogenic bacteria, a class of bacteria 

using a unique pathway [Müller 2003] to combine two molecules of CO or CO2 via 

subsequent reactions into one molecule of acetyl-CoA [Diekert and Wohlfarth 1994]. Natural 

products of that metabolic pathway are acetic acid, ethanol, butyric acid, butanol or 2,3-

butandiol. However, the highest energy gain for acetogenic bacteria is achieved by the 

formation of C2 molecules (acetic acid and ethanol) which are therefore the preferred products 

with reported concentrations of up to 60.3 g L
-1

 acetic acid [Kantzow and Weuster-Botz 

2016]. Efforts of process development, synthetic biology and genetic engineering focus on an 

increase in yield of natural C4 [Fernández-Naveira, et al. 2016, Köpke et al. 2010, Lewis et al. 

2007] and C6 products [Fernández-Naveira et al. 2017, Doll et al. 2018] and introducing new 

metabolic routes to new products like acetone [Banerjee et al. 2014]. Today however, 

bioenergetic constrains hamper higher yields of desired products [Bertsch and Müller 2015] 

and production of C4 or C6 products is always accompanied by a 3 to 60-fold higher 

production of acetic acid or ethanol [Banerjee et al. 2014, Fernández-Naveira et al. 2017, Doll 

et al. 2018]. 

One of the limiting steps on the way to higher productivity with gaseous substrates is the mass 

transfer of sparingly soluble compounds from the gaseous to the liquid phase [Worden et al. 

1997]. The common approach to enhance gas-liquid mass transfer – the increase of gas-liquid 

interfacial area by increased stirrer speed or gas feed rate – may not be economically feasible 

when producing low value products like fuels [Bredwell et al., 1999]. Therefore, Vega et al. 

[1989a, 1989b] and Schmid and Cooney [1986] increased gas-liquid mass transfer of carbon 

monoxide by increasing the partial pressure. In doing so, they found that immediate increase 

of pressure results in reduced growth and product formation due to inhibitory effects of CO 

[Vega et al. 1989a, b]. This could be shown to be overcome by a stepwise increase in CO 
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partial pressure [University of Arkansas 1993]. Cultivation with only carbon dioxide and 

hydrogen in the gas stream would circumvent inhibition caused by carbon monoxide. For 

Acetobacterium woodii, studies with gas mixtures devoid of carbon monoxide have been 

conducted by Demler (2012) and Kantzow and Weuster-Botz (2016). They investigate the 

effect of increased p
H2

 but leave the effect of carbon dioxide partial pressure out of their 

consideration. Hence, one part of this thesis focuses on the effects of increased pressure on 

growth and product formation of C. ljungdahlii with a gas mixture devoid of carbon 

monoxide. Furthermore, this thesis examines the effects of different mass transfer coefficients 

and stirrer set-ups on substrate consumption with CO containing syngas as substrate. The aim 

is to investigate if mass transfer limitation can be overcome and whether complete substrate 

utilization is possible by applying elevated pressure or varying the gas feed rate. Experiments 

in 1.5 L-scale are used to scale-up process parameters to 2.5 L-scale, where experiments at 

absolute system pressures of 1 bar, 4 bar and 7 bar are conducted. 

Use of syngas in chemical catalysis requires the crude gas to be cleansed of minor 

constituents to avoid catalyst poisoning. Gas conditioning makes for about 22 % of the total 

investment costs of biomass to liquid plants (BTL) and 1/3 of the investment costs for 

gasification alone [Hannula and Kurkela, 2013]. Hence, processes capable of using crude 

syngas offer an economic advantage over other processes that depend on purified syngas 

[Ahmed et al 2006, Xu et al. 2011, Abubackar et al. 2011]. In addition to the principal 

constituents hydrogen, carbon monoxide and carbon dioxide, crude syngas also contains: 

nitrogen – if air is used as the gasification medium – and variable amounts of C1 and C2 

hydrocarbons (e. g. methane, ethane, ethylene and acetylene), tar components ( e. g. benzene, 

toluene, xylene and naphthalene), halogens such as hydrogen chloride and hydrogen fluoride, 

sulfur compounds like hydrogen sulfide, carbonyl sulfide and carbonyl disulfide and nitrogen 

species such as nitrogen oxides, ammonia and hydrogen cyanide as well as oxygen and 

reactive oxygen species [Hofbauer et al. 2009]. Feedstock and gasification method impact the 

concentrations of these minor constituents. Cyanide levels of crude syngas, for example, 

range from below 25 ppm [Boerrighter et al. 2013] to 2500 ppm [Broer et al. 2015]. Carbon 

monoxide dehydrogenase and hydrogenase, two important enzymes in the autotrophic 

metabolism of acetogens, have been shown to be inhibited by many of the above-named 

impurities [Thauer et al. 1974, Ha et al. 2007, Grahame and Stadtman 1987, Diekert and 

Thauer 1978, Anderson et al. 1993, Hyman et al. 1989, Vega et al. 1990, Klasson et al., 1992, 

Hyman and Arp 1988, Krasna and Rittenberg 1954]. Competitive effects and interferences of 
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inhibition have been described when applying mixtures of catalyst poisons to those enzymes 

[Thauer et al. 1974, Terlesky et al. 1986, Grahame and Stadtman 1987, Ensing et al. 1989, 

Hyman et al. 1989]. Hence, understanding the effects of syngas impurities is necessary to 

avoid delays in reaching full-scale production capacity and additional costs when using crude 

syngas as substrate [Lane 2014]. The removal of gas impurities is named as a crucial point in 

literature that deals with the usage of syngas or waste gases for syngas fermentation. Many 

publications describe the effect of minor syngas components on enzymes of the acetogenic 

metabolism – but those studies usually examine isolated enzymes or cell extracts. So far only 

few reports can be found in literature about the effects of syngas impurities on growing 

acetogens, and no reports about the effects of cyanide on growing acetogens exist. Therefore, 

one part of this thesis investigates the effect of cyanide ions on growth and product formation 

of Clostridium ljungdahlii under heterotrophic and autotrophic conditions in closed serum 

bottles. Determining a maximum cyanide concentration tolerated by the cells will help in 

determining whether crude syngas with a certain cyanide load is usable as substrate without 

further pretreatment. 

As described above, production of products with more than two carbon atoms in acetogens 

faces bioenergetic constrains and is always linked to the by-production of acetic acid or 

ethanol. To overcome this, different researchers across the globe suggest using the acetic acid 

or ethanol from syngas fermentation as a substrate to produce other higher-value products 

[Evonik Industries 2013, Hu et al. 2016, Molitor et al. 2017, Gildemyn et al. 2017, Liebal et 

al. 2018]. Suitable candidates for higher-value products are various dicarboxylic acids – 

because of their suitability to be used for the synthesis of various polymers – as was 

summarized by Lee et al. [2011]. In 2004, the US Department of Energy selected the C4 

dicarboxylic acids malic acid, fumaric acid and succinic acid to be one of the 12 most 

important platform chemicals produced from biomass [Werpy and Petersen 2004]. Recently, 

Liebal et al. [2018] reviewed different metabolic routes and process strategies to produce 

succinic acid. Their outcome is, that the most economic route for succinic acid production is 

syngas fermentation to acetic acid and conversion of acetic acid to succinic acid by an E. coli 

strain. Malic acid is a C4 dicarboxylic acid from the list of the US Department of Energy 

which is still mostly produced from crude oil [Lohbeck et al. 2000, Miltenberger 2000]. It can 

be used for the synthesis of polymers for the food and pharmaceutical industries [Werpy and 

Petersen 2004], as well as for many other bulk and fine chemicals. Some fungi from the genus 

Aspergillus – like A. flavus or A. oryzae – produce, under certain stress conditions, sizeable 
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amounts of malic acid which is secreted to the culture media [Knuf et al. 2013]. Ochsenreither 

et al. [2014] showed that A. oryzae can convert different carbon sources to malic acid, like 

glycerol or pentose sugars (i.e. xylose), which are also part of lignocellulosic. The "food or 

fuel" debate shows the importance to develop a biotechnological route for production of 

dicarboxylic acids based on sustainable non-food carbon sources. Therefore, the last part of 

this thesis uses malic acid as an example of broadening the substrate spectrum for production 

of other biotechnological products beyond glycerol and sugars. This will also expand the final 

product spectrum from syngas fermentations. By sequential link-up of anaerobic syngas 

fermentation and aerobic malic acid production, the substrate spectrum is broadened to 

syngas, which can be obtained from steel mill off-gas [Köpke et al. 2011] or by gasification 

of biomass organic wastes and fossil feedstocks [Neumann 2015], forging a completely new 

and highly innovative path towards the establishment of a biobased economy [Oswald et al. 

2016]. 
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2. Theoretical principles 

2.1 Acetogenic microorganisms 

2.1.1 Overview 

Bacteria that are able to form acetate form C1 units like CO2 or CO are called acetogens. 

Those organisms are obligate anaerobes able to form acetic acid from either organic carbon 

and energy sources (hetertrophic growth) or hydrogen and carbon monoxide/carbon dioxide 

(autotrophic growth) [Diekert and Wohlfarth 1994]. The group of acetogenic microorganisms 

is quite heterogeneous and consists of many different genera of gram positive as well as gram 

negative bacteria [Drake 1994]. Although the majority of acetogens is mesophilic, there are 

also some thermophilic, like Moorella thermoacetica, and even psychrotrophic bacteria 

[Drake 1994], like Acetobacterium tundrae [Simankova et al. 2000] belonging in this group. 

Characteristic feature of this group is that they convert one mole of glucose or fructose to 

three moles of acetic acid by incorporating the CO2 released by decarboxylation of pyruvate 

back into the methyl- and carbonyl group of acetic acid [Barker and Kamen 1945, Wood 

1952].  

2.1.2 Organoheterotrophic metabolism 

In presence of hexoses or other organic carbon sources like pyruvate or lactate, acetogenic 

microorganisms grow organoheterotrophically while converting the substrates into acetyl-

CoA. This is then used for cell growth or converted to acetic acid. Figure 2.1 gives an 

overview of the anaerob, organoheterotrophic metabolism. One mole of hexose or two moles 

of lactate are converted to two moles of pyruvate. This gains two moles of adenosine 

triphosphate (ATP) and four moles of reduction equivalents per mole hexose or four moles of 

reduction equivalents per two moles of lactate. A decarboxylation reaction splits off CO2 from 

pyruvate and links the remaining acetaldehyde to CoA forming acetyl-CoA. With ethanol as a 

substrate, two moles ethanol are oxidized into two moles acetyl CoA and eight moles of 

reduction equivalents [Bertsch et al. 2016]. To recycle the reduction equivalents, two 

molecules CO2 are reduced to an additional molecule acetyl-CoA. This also consumes one 

ATP. The carbon dioxide fixating pathway is called reductive Acetyl-CoA or Wood-

Ljungdahl-Pathway (WLP) and is going to be described in detail in the next chapter. The 

WLP is a path of anaerobic respiration with CO2 as the final electron acceptor and serves as 
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an electron sink to recycle ferredoxin, NADP+ and NAD+ under heterotrophic growth 

conditions [Drake 1994]. It is also the only known pathway of CO2 fixation that does not link 

CO2 to an organic compound produced during CO2 fixation (e. g. Calvin-Cycle) but to another 

C1-component [Wood 1991]. In contrast to hexoses, lactate or ethanol, the reactions for using 

methanol as a substrate are only located in the WLP. To form one mol of acetate, two mol of 

methanol are necessary. One mol is oxidized to CO2 and fixed into the carboxyl group of 

acetyl-CoA while one mol serves as the methyl group of acetyl-CoA. [Kerby et al. 1983] 

Excess acetyl-CoA, which is not used for cell growth, gets converted to acetate, gaining one 

mole ATP per mole of acetate formed. End products of energetic metabolism are not limited 

to acetate alone. Other products are ethanol, acetone, propanol, butyrate, butanol and 

butandiol. Though, when growing on glucose, the formation of acetic acid yields more energy 

in the form of ATP per mole of glucose consumed than the formation of butyric acid [Gößner 

et al. 2008]. 

Hexose 

2 Lactate 2 Pyruvate 

4 [H] 

3 Acetyl-CoA 

4 [H] 2 CO2 

3 Acetate 

3 ATP 

ATP + 8 [H] 

2 ATP + 4 [H] 

2 Ethanol 

8 [H] 

4 Methanol + 2 CO2 

0.5 ATP 

Figure 2.1 – Basic scheme of organoheterotrophic metabolism in acetogenic bacteria. One 

mol of hexose, two mol of lactate or two mol of ethanol are converted into two mol of acetate. 

Up to one additional mol of acetate is formed by fixation of CO2 from pyruvate 

decarboxylation and recycling the reduction equivalents. In the case of ethanol, the reaction is 

only feasible if external CO2 is present since the oxidation of ethanol does not result in CO2 

formation [Bertsch et al. 2016]. With methanol as an organic substrate four mol methanol are 

necessary to gain three mol acetyl-CoA [Kerby et al. 1983]. 
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2.1.3 Chemolithoautotrophic metabolism 

As mentioned above, the WLP enables acetogenic bacteria to use CO2 as a carbon source. 

Figure 2.1 shows that for fixation of two molecules CO2, energy in the form of one ATP and 

eight reduction equivalents is necessary. Without any organic substances to gain energy from, 

autotrophic growing acetogenes have to use anorganic energy sources such as carbon 

monoxide and/or hydrogen. Figure 2.2 gives a detailed view of the Wood-Ljungdahl-Pathway 

and the means of energy conservation in autotrophic growing acetogens. The WLP consist of 

two branches – the methyl branch and the carbonyl branch. The first step of the methyl branch 

is the reduction of CO2 to formate. In Clostridium autoethanogenum, a close relative of 

Clostridium ljungdahlii, this reaction is catalyzed by the electron bifurcating [FeFe]-

hydrogenase formate dehydrogenase complex HytA-E/FdhA [Wang et al. 2013]. Depending 

on the available substrates, either reduced ferredoxin (Fd2-) and NADPH or H2 is used as an 

electron donor [Wang et al. 2013, Mock et al. 2015]. Formate is then linked to 

tetrahydrofolate (THF) by formyl-THF synthase consuming one ATP per molecule formyl-

THF formed. The following tree subsequent reactions reduce formyl-THF group via 

methenyl-THF and methylene-THF to methyl-THF. While the electron donor for the 

methylene-THF forming methylene-THF dehydrogenase in C. autoethanogenum is NADPH, 

the cofactor for the reduction of methenyl-THF to methyl-THF is unknown [Wang et al. 

2013, Schuchmann and Müller 2014, Mock et al. 2015,]. The methyl group is then transferred 

to the iron-sulfur cluster of a corrinoid-protein (CoFeS). 

In the carbonyl-branch, a carbon monoxide dehydrogenase acetyl-CoA synthase complex 

(CODH/Acs) reduces CO2 to CO in the CODH part of the complex. CO is then transferred to 

the Acs side via channel-like structures inside the complex [Ragsdale and Wood 1985, 

Maynard and Lindahl 1999, Seravalli and Ragsdale 2000,]. The acetyl-CoA synthase then 

links the methyl group delivered by the corrinoid-protein, CoA and CO together to form 

acetyl-CoA [Ragsdale and Wood 1985]. Exchanging CoA by phosphate to form acetyl 

phosphate enables the generation of one ATP via substrate level phosphorylation (SLP) 

yielding acetic acid as the final product of WLP. Some Acetogenic bacteria can also form 

ethanol for witch two routes are possible. Direct conversion of acetyl-CoA to acetaldehyde 

and further to ethanol consumes two NADPH or NADH and will not yield ATP from SLP. 

The actual electron donor of aldehyde and alcohol dehydrogenase is not known. This route 

will result in an ATP yield of 0.5 per ethanol formed [Mock et al. 2015]. The other route is  
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HCO2
- 

0,5 Fd2- + 0,5 NADPH H2 

0,5 Fd + 0,5 NADP+ 

HCO−THF 
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Fd 
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CH3CO−S−CoA 
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CH3CO−O−PO3
2- 
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CH3COO- + H+ 

NAD(P)H 
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CH3CHO 

2 H+ 

Fd 

Fd2- 

CH3CH2OH 

NAD(P)+ NAD(P)H 

3.66 H+ 

Fd2- 

Fd 
NAD+ 

NADH 

ATP ADP + Pi 

2 Fd2- 

2 Fd 

2 NADP+ 

4 H2 

2 NADPH 

8 H+ 

Fd2- 

 

Fd 

2 NADP+ 

NADH 

2 NADPH 

NAD+ 

Fd2- 

CM 

CODH 

HytA-E/ 

FdhA 

Fts 

Ftch 

Mtdh 

Mtr 

Mt 

CODH/Acs 

CODH/Acs 

Pta Ak 

Adh 

Afor 

Adh 

Nfn 

HytA-E 

RnfA-G 

F0F1 

Figure 2.2 – The Wood-Ljungdahl-Pathway and means of chemiosmotic energy conservation in 

Clostridium autoethanogenum and Clostridium ljungdahlii. Adh, aldehyde/alcohol dehydrogenase; AOR, 

aldehyde:ferredoxin oxidoreductase; Ak, acetate kinase; CM, cell membrane; CODH, carbon monoxide 

dehydrogenase; CODH/Acs, carbon monoxide dehydrogenase-acetyl-CoA-synthase complex; F0F1, ATP 

synthase; Fd, ferredoxin; THF, tetrahydrofolate; FdhA, formate dehydrogenase A; Ftch, formate-THF 

cyclohydrolase; Fts, formate-THF synthase; HytA-E, electron bifurcating [FeFe]-hydrogenase; HytA-E/FdhA, 

electron bifurcating [FeFe]-hydrogenase formate dehydrogenase complex; Mt, methyl transferase; Mtdh, 

methylene-THF dehydrogenase; Mtr, methylene-THF reductase; Nfn, ferredoxin depending electron bifurcating 

transhydrogenase; Pta, phosphotransacetylase; RnfA-G, membrane bound electron trasnfere chain. HytA-E/FdhA 

catalyzes the reduction of CO2 to formate either with Fd2- and NADPH (continuous line) or with H2 (dotted line) 

[Wang et al. 2013]. 
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the conversion of acetyl-CoA to acetic acid as described above and then, using an 

aldehyde:ferredoxin oxidoreductase (AOR) with Fd2- as electron donor, form acetaldehyde 

[White et al. 1993, Huber et al. 1994, Huber et al. 1995] which is converted to ethanol. This 

yields 1.2 ATP per ethanol formed. [Mock et al. 2015] With an excess of reducing 

equivalents this second route to ethanol gives an energetic advantage because the WLP will 

stay ATP-neutral and ferredoxin can be recycled [Köpke et al. 2010]. Mock et al. [2015] 

showed that at an internal pH of 6 for C. autoethanogenum the reduction of acetate to 

acetaldehyde is exergonic at an acetate to acetaldehyde ratio of 1000. At extracellular pH-

values near the pKa-value of acetic acid undissociated acetic acid can diffuse freely through 

the cytoplasmic membrane resulting in an intracellular acetate concentration that is 10-fold 

higher than the extracellular concentration. Under these conditions an extracellular acetate 

concentration of 0.6 g L-1 is already enough to result in ethanol formation. [Mock et al. 2015] 

Energy can be conserved in presence of carbon monoxide in the form of reduced ferredoxin 

through CODH catalyzed oxidation of CO or by oxidation of hydrogen. In 

C. autoethanogenum oxidation of hydrogen is catalyzed by a NADP and ferredoxin 

depending, electron bifurcating [FeFe]-hydrogenase (HytA-E) [Wang et al. 2013]. Genes 

encoding for all subunits of HytA-E are present in C. ljungdahlii as well. [Köpke et al. 2010, 

Wang et al. 2013]. NADPH and Fd2- can directly enter the WLP as electron donors. Fd2- can 

also interact with the membrane bound Rnf-complex (RnfA-G) that transfers electrons from 

Fd2- to NAD+ translocating two protons for every two electrons transferred [Tremblay et al. 

2012]. This generates a transmembrane proton gradient that drives a membrane associated 

F0F1 ATP synthase [Köpke et al. 2010] that generates one ATP per 3.66 H+ [Mock et al. 

2015]. Although in C autoethanogenum hydrogenase activity yields reduction equivalents in 

the form of equimolar amounts of NADPH and Fd2- [Wang et al. 2013], interaction of Fd2- 

with the Rnf-complex gives NADH [Tremblay et al. 2912]. If mainly acetic acid is the 

product of WLP there is not much need for NADH in the associated reactions. Hence the 

ferredoxin depending electron bifurcating transhydrogenase Nfn is a way of regenerating 

NADPH from NADH and Fd2- [Wang et al. 2010]. Simulations revealed that in this case Nfn 

is essential for the conversion of NADH to NADPH and with H2 as electron donor, CO2 as the 

electron acceptor and ethanol as WLP end-product 1.5 ATP can be gained through Rnf proton 

translocation per ethanol produced [Nagarajan et al. 2013]. Nfn was first isolated form 

Clostridium kluyveri but the enzyme and encoding genes have also been found in 

Moorella thermoacetica (formerly known as C. thermoaceticum), C. autoethanogenum and 
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C. ljungdahlii [Wang et al. 2010, Huang et al. 2012, Wang et al. 2013]. In the latter two the 

gene encoding for the two subunits of Nfn are fused together [Wang et al. 2013]. 

2.1.4 The acetogenic bacterium Clostridium ljungdahlii 

C. ljungdahlii was first isolated by Barik et al. in 1988 using chicken yard waste as an 

inoculum for enrichment cultures. Cells are 0.6 by 2-3 µm in size, rod-shaped, gram-positive 

and motile [Tanner et al. 1993]. Tanner et al. [1993] also describe that the cells are covered 

by a thick coat of material, visible in their transmission electron micrograph. This can also be 

seen in Figure 2.3 where the same scanning electron microscope (SEM) picture was taken 

with two different detectors. With its size of 4.6 Mbp the genome of C. ljungdahlii is one of 

the largest known among clostridia [Köpke et al. 2010]. Although the genome contains genes 

involved in sporulation [Köpke et al. 2010] the formation of spores is rarely observed [Tanner 

et al. 1993].  

Optimum conditions for growth of C. ljungdahlii are a pH-value of 6.0 and a temperature of 

37 °C. The addition of vitamins and yeast extract to the media is necessary [Tanner et al. 

1993]. The organism is not capable of synthesizing biotin on its own, making the presence of 

biotin in the media essential [Köpke et al. 2010]. C. ljungdahlii converts 1 mol of fructose to 

2.44 mol of acetic acid which classifies this organism as an acetogen. It can also grow on H2 

and CO [Barik et al. 1988] or H2 and CO2 as sole energy- and carbon sources quantitatively 

converting 4 mol of hydrogen and 2 mol of carbon dioxide into 1 mol of acetic acid. Thus 

C. ljungdahlii uses the WLP of CO2-fixation with acetic acid and ethanol as products. [Tanner 

et al. 1993] Organoheterotrophicaly C. ljungdahlii can grow on ethanol, 1-propanol, 1-

butanol, α-ketoglutarate, pyruvate, citrate, fumarate, gluconic acid, erythrose, threose, 

A B 

1 µm 1 µm 

Figure 2.3 – Scanning electron micrographs of fructose grown cultures of C. ljungdahlii.  Dehydrated cells 

of C. ljungdahlii encapsuled by an unknown material. Picture was taken with a secondary electron detector (A) 

and an InLens detector (B) for better distinction between the cell and its capsule. 
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arabinose, ribose, xylose, mannose, sucrose, glucose, rhamnose and fructose. It can also 

utilize various nitrogen sources such as alanine, arginine, glutamate, glutamine, histidine 

serine, choline, citrulline, guanine, hypoxantine. [Tanner and Laopaiboon 1997, Huhnke et al. 

2010] Genetic information further revealed that C. ljungdahlii might be able to use nitrate as a 

source of nitrogen or even fix molecular nitrogen [Köpke et al. 2010]. 

2.2 Process characteristics and mass transfer 

2.2.1 Cultivation of microorganisms 

Processes for cultivation of microorganisms can be divided into three groups: batch, semi 

continuous and continuous processes. In batch processes, all nutrients necessary for microbial 

growth are present from the beginning. The reactor is inoculated and products are harvested 

after a specific process time. Semi continuous processes start like batch processes, but after a 

short batch phase nutrient solution is added to the reactor (fed-batch) or part of the culture 

broth is harvested and replaced with fresh media (repeated batch). Combinations of fed-batch 

and repeated batch are also possible. In continuous running cultivations a continuous harvest 

of the culture broth is balanced with a continuous feed stream of fresh media. For the purpose 

of this thesis only batch processes are relevant and will be described below. Without any 

initial inhibitions or limitations and all nutrients available in limited amounts, the growth of 

microbial cultures can be divided into six phases (see Figure 2.4). During the lag phase, the 

microorganisms adjust to the conditions of the freshly inoculated media and little to no 

growth happens. In the acceleration phase the number of cells increases slowly and leads to 

time 
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Figure 2.4 – Growth phases of a bacterial batch culture. I, lag phase; II, 

acceleration phase; III, exponential growth phase; IV, limitation phase; V, 

stationary phase; VI, death phase. 
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the exponential growth phase, in which the cell number increases with maximum growth rate. 

Once one or more substrates reach limiting concentrations or an inhibition due to a metabolite 

occurs, growth decreases (limitation phase) until growth rate and death rate are equal. This 

phase is called stationary phase. Death phase is reached when the death rate exceeds the 

growth rate and the cell number decreases. 

2.2.2 Process parameters 

To compare different experiments, certain parameters are necessary to describe the process. 

Some of those parameters can be derived from the mass balance which consists of a 

convective term and a reaction term as described in equation (2.1).  

d(β
i
V)

dt
= V̇inβi

- V̇offβi
+ riV (2.1) 

 βi concentration of component i, g L-1 

V reactor volume, L 

V̇in  ingoing flux, L min-1 

V̇off outgoing flux, L min-1 

ri reaction rate, g L-1 h-1 

For batch cultivation, all nutrients are available from the beginning. Besides pH-adjustment 

solutions and anti-foaming agent, no other liquids are added during the course of 

fermentation. Only the gaseous phase passes through the reactor continuously. Therefore, the 

bioreactor volume is approximately constant and the mass balance of a component i in the 

liquid phase for batch processes simplifies to 

dβ
i

dt
= ri. 

(2.2) 

The first process parameter is the grow rate µ of the biomass X. With r
X
 = µ β

X
 in (2.2) the 

solution of the differential equation is 

ln (
β

X, t

β
X, t-1

) =µ Δt. (2.3) 

Substrate consumption rate and product formation rate are two other important process 

parameters: 
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rS= Q
S
= 

dβ
S

dt
 (2.4) 

rP= Q
P
= 

dβ
P

dt
 

(2.5) 

 Q
S
 substrate consumption rate, g L-1 h-1 

Q
P
 production rate, g L-1 h-1 

To evaluate the conversion efficiency of a bioprocess, it is useful to determine the yield of 

produced biomass per consumed substrate 

YX S⁄ = 
rX

rS

= 
dβ

X

dβ
S

 (2.6) 

and analog determine the yield of produced product per consumed substrate: 

YP S⁄ = 
rP

rS

= 
dβ

P

dβ
S

. (2.7) 

The unit of Y is gram biomass or product per gram substrate, aka g g-1.  

2.2.3 Gas-liquid mass transfer 

Gases such as carbon monoxide, hydrogen or oxygen have low solubility in water and 

aqueous solutions. Processes using gaseous substrates like carbon monoxide and hydrogen 

strongly depend on the mass transfer rate of these substrates from the gaseous- to the liquid 

phase because availability of substrates limits growth and product formation [Worden et al. 

1997]. To describe mass transfer between gaseous- and liquid phase, three models regularly 

come up:  

• The penetration model where mass transfer happens through nonsteady diffusion 

between laminar moving phases. 

• The theory of surface renewal where volume elements on the gas-liquid interface are 

continuously replaced due to turbulent flow. 

• The two-film theory where mass transfer happens through two thin layers on each side 

of the gas-liquid boundary surface by diffusion. 
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Due to its simplicity of calculations the latter model is commonly used to describe mass 

transfer between gas bubbles and the culture broth in bioprocesses. Figure 2.5 gives a 

schematic view of mass transfer between a gas bubble and the surrounding liquid phase. 

According to two-film theory, thermodynamic balance at the boundary surface is established 

immediately. On both sides of the boundary surface, a laminar interface forms whereas the 

core of the gas bubbles and the surrounding liquid phase has turbulent flow. While 

concentration gradients are negligible for turbulent flow due to domination of convective 

mass transfer, driving force in the laminar interface is the concentration gradient between 

boundary surface concentration and the surrounding liquid- and gaseous phase. Diffusion in 

the laminar interface is defined by the diffusion coefficient D and the layer thickness. Since 

diffusion in gases is faster than in liquids and the gaseous interface is much smaller than the 

liquid interface, the main resistance for mass transfer from the gaseous to the liquid phase is 

on the liquid side. Therefore, the gas interface is negligible and mass transfer consists of the 

mass transfer coefficient kl of the liquid phase, the gas-liquid boundary surface in relation to 

the reactor liquid volume a = A/Vl and the concentration difference between gas-liquid 

boundary surface at equilibrium with the gaseous phase and surrounding liquid phase. In 

bubble sparged bioreactors kl and a cannot be determined independently. Hence the volume-

based mass transfer coefficient kla in s-1 is introduced. It strongly depends on many 

parameters such as volumetric power input, coalescence properties of the liquid phase and 

flow pattern. kla is defined via the gas transfer rate 

gas bubble 

c
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liquid phase 

gas interface liquid interface 

gas-liquid boundary surface 
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Figure 2.5 – Schematic drawing of concentration 

changes between a gas bubble and the surrounding 

liquid phase [Bailey and Ollis 1991]. 
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dci

dt
= kla (ci, l

* -ci, l). (2.8) 

 ci concentration of substance i, mol L-1 

ci, l
*  liquid phase concentration of substance i 

 in equilibrium with the gaseous phase, mol L-1 

ci, l liquid phase concentration of substance i, mol L-1 

The kla value indicates the efficiency of gas input into the liquid phase and therefore indicates 

how good the microorganisms are supplied with gaseous substrates. Equation (2.8) shows that 

the mass transfer rate depends on the gas-liquid boundary-surface, which is mainly defined by 

the bubble size, the saturation concentration and the actual concentration of the gas in the 

liquid phase. The mass transfer coefficient kl could be increased by reducing the layer 

thickness of the liquid interface, but this is not possible with the conditions in a bioreactor.  

Increasing the gas-liquid boundary surface actually means to decrease bubble size and 

increase the number of bubbles. The common approach for this in biotechnological 

applications is to increase the stirrer speed. With this, volumetric power input and shear forces 

at the tips of the stirrer blades are increased, resulting in smaller bubbles, thus increasing the 

kla-value. Also, smaller bubbles have lower rise velocities and stay longer in the aqueous 

phase and therefore have more time to solute [Bredwell and Worden 1998]. Increasing the gas 

sparging rate also leads to an increase in gas-liquid boundary surface due to a rise in bubble 

number, but the effect is smaller compared to increased stirrer speed. 

Coalescence describes the process of small gas bubbles merging to bigger bubbles. The liquid 

layer between adjacent gas bubbles thins out until the layer bursts and the bubbles merge. 

This happens fast in pure liquids but with increasing concentration of soluble substances, the 

stable bubble diameters in the solution decrease. The more likely a liquid is to foam, the lower 

is the tendency of bubbles to coalescent. [Zlokarnik 1981] Due to the nutritional needs of 

bacteria, the possibilities of varying the coalescence of the culture broth are limited. But 

because of metabolic activity (e. g. secretion of proteins, surfactants or lysis of dead cells) 

bioreactor cultivations tend to foam. To prevent them from foaming over the addition of anti-

foaming (AF) agents might be necessary. These AF-agents increase bubble coalescence which 

effectively destructs the foam. Increased bubble coalescence also means an increase in stable 
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bubble diameters, and therefore a decrease in total gas-liquid boundary surface and gas-liquid 

mass transfer [Zlokarnik 1979]. 

For certain gases like oxygen or carbon dioxide c and c* can be measured with suitable 

methods, whereas the equilibrium concentration c* can also be calculated for all gases from 

Henry’s law to 

ci, l
*  = Hi pi

 = H𝐢xip. (2.9) 

 Hi Henry’s law solubility constant of substance i, mol m-3 Pa-1 

pi partial pressure of substance i in the gaseous phase, 

  Pa 

xi mol-fraction of substance i in the gaseous phase, - 

p absolute pressure in the system, Pa 

Hence, a third option of increasing the mass transfer rate is to increase the equilibrium or 

saturation concentration c*. This can be achieved by either increasing the mol fraction/volume 

fraction of the desired substance in the gas stream or by increasing the total pressure of the 

system. 

2.2.4 Scale-up 

If experiments of the same kind are supposed to be compared in different scales, model theory 

demands that in each scale, the experiment has to be conducted in geometrical similar spaces 

and at least important dimensionless numbers describing the process have to be of the same 

value (partial similarity). For stirred tank reactors, geometric similarity means to keep the 

ratio of stirrer diameter to reactor diameter (d/D) constant. All other reactor lengths are scaled 

to this ratio. As for the dimensionless numbers, they have to be derived from dimensional 

analysis of the process. For gas sparged STRs important dimensionless numbers in addition to 

geometric similarity are Newton number, Reynolds number, Froude number and gas 

throughput number. The Reynolds number 

Re= 
nd

 2

ν
 

(2.10) 

 n stirrer speed, min-1 

 ν kinematic viscosity, m2 s-1 

 d stirrer diameter, m 
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describes the flow condition inside STRs with homogenous media. For Re ≥ 50 (STR with 

baffles) or Re ≥ 104 (STR without baffles) the flow condition is turbulent. Under those 

conditions the Newton number 

Ne= 
P

ρn 3d
 5 (2.11) 

 P impeller power, kg m2 s-3 

 ρ liquid density, kg m-3 

has a constant value depending on stirrer type and liquid density. For gas sparged STRs, the 

Froude number (Fr), surface tension coefficient (σ*), coalescence number (S) and gas 

throughput number are added. However, Zlokarnik [1973] shows that in the area of technical 

relevant Newton numbers Fr, σ* and S have no influence on Ne. Therefore, under turbulent 

conditions Ne only depends on the gas throughput number 

Q = 
V̇g

nd
 3

. (2.12) 

 V̇g ingoing gas flow rate, L min-1 

The higher the gas flow into the STR, the lower gets the Ne number due to reduced power 

uptake of the stirrer. 

2.3 Influence of gas impurities on Clostridium ljungdahlii 

2.3.1 Composition of crude syngas 

Hydrogen, carbon monoxide and carbon dioxide are main constituents of gas yielded by 

gasification of coal or biomass, also called syngas. Gasification is a thermal process that 

degrades carbon and hydrogen containing feedstocks in their molecular building blocks. The 

gas composition varies depending on gasifier type, feedstock and process mode but consists 

mainly of CO, CO2, H2 and, if air is used as gasifier media, N2. In addition to this main 

constituents crude syngas also contains fluctuating amounts of: methane and volatile C2-

compounds (e. g. ethane, ethylene and acetylene), tar components (e. g. benzene, toluene, 

xylene and naphthalene), halogens (e. g. hydrogen chloride and hydrogen fluoride), sulfur 

compounds (e. g. hydrogen sulfide, carbonyl sulfide and carbonyl disulfide) and nitrogen 

species (e. g. nitrogen oxides, ammonia and hydrogen cyanide) as well as oxygen (O2) and 
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reactive oxygen species (ROS). The amounts vary with feedstock and gasification method. 

Those minor constituents are known catalyst poisons for chemical applications of syngas and 

need to be removed. Compared to the chemical route, the above-mentioned microorganisms 

catalyze the conversion of syngas to acetic acid or ethanol at 37 °C and ambient pressures and 

some of the named minor constituents of syngas like NH3 are usable substrates for 

microorganisms. If crude syngas is supposed to be used for syngas fermentations using 

organisms of the above-mentioned group, understanding of the effects of syngas impurities is 

necessary to avoid delays in reaching full scale production capacity and additional costs [Lane 

2014]. 

2.3.2 Effects of gas impurities on carbon monoxide dehydrogenase 

CODHs are found in various organisms; some inhibitory effects are well described in 

literature. Among the previously named impurities effects of cyanide on CODHs are well 

characterized. Thauer et al. [1974] show that carbon monoxide oxidation activity of cell-free 

extracts of Clostridium pasteurianum is inhibited by cyanide at concentrations of 10 µM. Ha 

et al. [2007] find that 75 µM cyanide completely inactivate purified CODH from 

Carboxydothermus hydrogenoformans. Inhibition is reversed by CO and is already a 100-fold 

lower in presence of the same concentration of CO and cyanide [Thauer et al. 1974]. Other 

researchers described the same competitive behavior of CODH inhibition by cyanide for 

Methanosarcina thermophile [Terlesky et al. 1986], Methanosarcia barkeri [Grahame and 

Stadtman 1987], Moorella thermoaceticum (formerly Clostridium thermoaceticum) [Ragsdale 

et al. 1983a, Diekert and Thauer 1978, Anderson et al. 1993], Clostridium formicoaceticum 

[Diekert and Thauer 1978], Rhodospirillum rubrum [Ensing et al. 1989, Smith et al. 1992], 

Acetobacterium woodii [Ragsdale et al. 1983b] and C. hydrogenoformans [Ha et al. 2007]. 

The competitive behavior and the protection against cyanide inhibition by CO indicate a 

common binding side of CN- and CO [Terlesky et al. 1986, Grahame and Stadtman 1987, 

Ensing et al. 1989]. Anderson et al. [1993] discover that CN- bind directly to the C-cluster of 

M. thermoaceticum and Ha et al. [2007] show that cyanide competes with CO at the [Ni-4Fe-

5S]-cluster of CODH from C. hydrogenoformans. It is suggested that the C-cluster is part of 

the active side in all Ni-Fe CODHs [Anderson et al. 1993]. Cell-free extracts of 

C. pasteurianum regained CODH activity even without carbon monoxide treatment and 

Thauer et al. [1974] measure activity for rhodanese reaction that detoxifies cyanide and 

converts it to thiocyanate and sulphite. 
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Sulfur components are another class of CODH inhibitors. In this class, carbonyl sulfide (COS) 

and hydrogen sulfide (H2S) are of special interest [Hyman et al. 1989, Vega et al. 1990]. The 

inhibition of CO oxidizing activity of purified CODH from R. rubrum by COS is completed 

in less than 5 s and hints toward a rapid-equilibrium inhibition. The inhibition kinetic seems to 

follow a ping-pong mechanism. CODH has to be in an oxidized state before COS can bind to 

the enzyme and the whole inhibition process is more complex than with cyanide. 

Nevertheless, the inhibition is fully reversible when COS is removed from the atmosphere and 

CODH is incubated in presence of CO. [Hyman et al. 1989] Experiments by Hyman et al. 

[1989] with purified CODH revealed that in presence of 11.5 µM COS in solution, the 

inhibitory effect of 100 µM cyanide is decreased 5-fold, thus indicating that COS, CN- and 

CO share the same binding side. With increasing aqueous COS concentration, the protective 

effect against cyanide inhibition saturates at 70 % remaining activity (250 µM COS). 

Although COS, SO2 and CS2 can reverse cyanide inhibition, the latter two prove ineffective as 

inhibitors for CO oxidation. [Hyman et al. 1989] Vega et al. [1990] investigated four 

microorganisms on their tolerance against H2S and COS components in syngas up to 

concentrations of 39.5 % of each compound. For R. rubrum and 

Peptostreptococcus productus the substrate gaseous phase consisted of CO and CO2 in a ratio 

of 4:1 and for Methanobacterium formicum and M. barkeri  it is H2 and CO2 in a ratio of 3:1. 

R. rubrum shows no changes in growth and substrate consumption in presence of up to 26.3 % 

H2S in the gaseous phase, but is already inhibited at gaseous concentrations of 6.6 % COS. 

CO utilization by P. productus is inhibited at concentrations higher than 19.7 % of COS and 

H2S respectively. M. barkeri is unaffected by H2S and COS up to concentrations of 26.3 %, 

whereas M. formicum shows significant inhibition at 13.2 % H2S and 6.6 % COS. [Vega et al. 

1990] C. ljungdahlii cultures which are previously grown in Na2S containing media showed 

no effects on growth or CO consumption at H2S or COS concentrations in the gaseous phase 

of up to 5.2 % but at 9.9 % growth and CO consumption essentially stopped [Klasson et al. 

1992]. 

2.3.3 Effects of gas impurities on hydrogenase activity 

In 1988, Hyman and Arp published a review article about the inhibitory effects of acetylene 

on metaloenzymes and pointed out that studies on acetylene inhibition of purified 

hydrogenases has only focused on enzymes of aerobic, nitrogen-fixing microorganisms. 

Those organisms have dimeric, Ni-containing hydrogenases. Also, hydrogenase of the aerobic 

proteobacterium Azotobacter vinelandii proves to be unaffected by acetylene as soon as trace 
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amounts of hydrogen are present. Hydrogenases are insensitive to cyanide but are inhibited by 

carbon monoxide. [Hyman and Arp 1988] Isolated Ni-Fe hydrogenase from 

Desulfovibrio gigas remained less than 20 % of their activity in presence of 10 % acetylene in 

the gaseous phase without hydrogen. The same study states that acetylene has no inhibitory 

effect on Fe-only hydrogenase from D. vulgaris and Ni-Fe-Se hydrogenase from D. baculatus 

remains at 50 % activity when incubated with 100 % acetylene. Selenium (Se) containing Ni-

Fe hydrogenases are less sensitive to acetylene than Ni-Fe hydrogenases without Se. The 

same tendency can be found for Ni-Fe and Ni-Fe-Se hydrogenases from Methanococus voltae 

and Methanosarcina thermophila. [He et al. 1989]. Experiments with whole cells of 

R. rubrum also revealed an insensitivity of hydrogen consumption in presence of acetylene 

[Maness and Weaver 2001]. 

Another inhibitor of hydrogenase activity is nitric oxide (NO). In cell-free extracts of 

Proteus vulgaris 87 % hydrogenase activity is lost when exposed to 20 ppm NO in the gas 

phase [Krasna and Rittenberg 1954]. Experimental data of Ahmed and Lewis [2006] showed 

that cells of Clostridium carboxidivorans are growth inhibited when exposed to 13 ppm NO 

after the inoculation, but but continued growth is observed when 130 ppm NO is applied after 

the cells reached the first stationary growth phase. 40 ppm nitric oxide showed no inhibitory 

effects – even when applied straight after inoculation. Studies on whole-cell hydrogenase 

activity of C. carboxidivorans show that activity decreases at NO concentrations higher than 

40 ppm with 10-95 % inhibition between 60 and 130 ppm. Hydrogenase inhibition by NO is 

non-competitive. [Ahmed and Lewis 2006] 

2.3.4 Effects of tar components 

Tar components are lipophilic hydrocarbons. When exposed to microorganisms, those 

lipophilic molecules accumulate in the cell membrane, increasing the surface area. This 

changes structure and functionality and increases fluidity of the membrane as well as protein 

conformations. Those changes can lead to proton leakage, which negatively affects 

chemiosmotic energy conservation. [Sikkema et al. 1995] Exposure of continuous running 

C. carboxidivorans syngas fermentation to tar compounds resulted in cell dormancy and wash 

out of the cells [Ahmed et al. 2006]. 
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3. Materials & Methods 

A complete list of all used chemicals and their respective suppliers can be found in the 

appendix of this thesis. 

3.1 General procedures for cultivation and analytics 

3.1.1 Cultivation of Clostridium ljungdahlii 

Clostirium ljungdahlii DSM135228 belongs to the group of obligate anaerobic bacteria. 

Hence, all cultivations have to be carried out under oxygen-free conditions. Organisms used 

in the experiments of this thesis were kindly provided by the group of Peter Dürre at the 

University of Ulm. Cultivation medium for C. ljungdahlii is based on a modified medium 

from Tanner [2007] used by Bengelsdorf et al. [2016] and has been further optimized for low 

nitrogen content. All media, trace element solution (TES) and vitamin solution are prepared 

using ddH2O. Table 3.1 displays the composition of the medium, TES and vitamin solution. 

The pH-value is adjusted to 5.9 using solid KOH before bottling. Culture bottles are 

anaerobized using a gas mixture containing 20 vol-% CO2 in N2. After autoclaving the bottles 

at 121 °C, 1 g Cystein-HCl ∙ H2O and 10 g fructose (for fructose-grown cultures) per liter are 

added. Bottle cultures are seeded with 10 % of their final volume using a 48 h grown culture 

or are seeded with 1 mL of a glycerol stock per 50 mL of culture medium. Cultures are 

cultivated for 48 h (72 h when seeding from a glycerol stock) at 37 °C. [Oswald et al. 2016] 

3.1.2 Preparation of glycerol-stock cultures 

The method for preparing glycerol-stock cultures is based on the one described in the PhD 

thesis of Melanie Straub [2012]. Glycerol-stock cultures are prepared in 10 mL Hungate vials 

as follows: 5 mL of a 48 h grown fructose culture of C. ljungdahlii, with an optical density 

(OD) not higher than 2.0, are filled in a sterile and anaerobic Hungate. The culture is then 

centrifuged at 3000 g and 4 °C for 5 min. The supernatant is carefully discarded with a syringe 

and the pellet is dissolved in 1 mL of a mixture consisting of one part anaerobic, 50 vol-% 

glycerol solution and one part fresh media as described above. The stock cultures are then 

stored at -80 °C. 

  



3. Materials & Methods 

22 

 

Table 3.1 – Composition of cultivation medium, trace element solution (TES) and vitamin solution. 

Component Amount per liter 

Cultivation medium 

2-(N-morpholino) ethansulfonic acid (MES) 20.0 g 

Yeast extract   0.5 g 

NaCl   2.0 g 

NH4Cl   0.33 g 

KCl   0.25 g 

KH2PO4   0.25 g 

MgSO4∙7 H2O   0.5 g 

CaCl2∙2 H2O   0.1 g 

TES 10 mL 

Vitamin solution 10 mL 

Resazurin   0.001 g 

TES 

Nitrilotriacetic acid   2.0 g 

MnSO4∙H2O   1.0 g 

FeSO4∙7 H2O   0.567 g 

CoCl2∙6 H2O   0.2 g 

ZnSO4∙7 H2O   0.2 g 

CuCl2∙2 H2O   0.02 g 

NiCl2∙6 H2O   0.02 g 

Na2MoO4∙2 H2O   0.02 g 

Na2SeO3∙5 H2O   0.02 g 

Na2WO4∙2 H2O   0.022 g 

Vitamin solution 

Biotin   0.002 g 

Folic acid   0.002 g 

Pyridoxine   0.01 g 

Thiamine-HCl   0.005 g 

Riboflavin   0.005 g 

Niacin   0.005 g 

Ca-pantothenate   0.005 g 

Cobalamin   0.005 g 

4-aminobenzoic acid   0.005 g 

Lipoic acid   0.005 g 
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3.1.3 Determination of gaseous H2, CO, CO2 and N2 

A GC-2010 Plus AT gas chromatograph (GC) by Shimadzu (Japan) is used to analyze the off-

gas composition of syngas cultivations for hydrogen, oxygen, nitrogen, carbon monoxide and 

carbon dioxide. The GC is equipped with a customized column setup using a ShinCarbon ST 

80/100 Column (2 m×0.53 mm ID, Restek, Germany) and a Rtx-1 capillary column (1 µm, 

30 m×0.25 mm ID, Restek, Germany). The installed detector is a thermal conductivity 

detector with helium used as carrier gas. Column flow rate is 3 mL min-1. Oven temperature 

profile is 40 °C for 3 min followed by a ramp of 35 °C min-1. Total analysis time is 7.5 min. 

For the automated measurement of off-gas data of different reactors, the off-gas lines of all 

bioreactors used are connected to the GC via a stream selector. [Oswald et al. 2016] 

Gas samples of cyanide bottle experiments are analyzed with a 3000 micro-GC (Inficon, 

Switzerland) to determine the consumption of the individual syngas components. The micro-

GC is equipped with a 10 m molecular sieve module for CO, H2 and N2 detection and a 10 m 

PoraPlot Q module for CO2 detection. All modules are equipped with a thermal conductivity 

detector. Isothermal conditions at 80 °C are used for analysis. 

3.1.4 Calculation of substance flow and substrate consumption during 

syngas fermentation 

Syngas in this work contains N2 and C. ljungdahlii does not consume noteworthy amounts of 

N2 under the conditions used. Hence, the nitrogen mass flow in the off-gas equals the ingoing 

nitrogen mass flow. Therefore, the flow rate in the off-gas line (V̇off(t)) calculates to  

V̇off(t)= 
xN2, in

xN2, off

 V̇in(t). (3.1) 

 xN2, in nitrogen content of feed gas, - 

 xN2, off nitrogen content of off-gas, - 

 V̇in(t) gas feed rate, L min-1 

Using the result of equation (3.1) as well as the ideal gas law and calibration conditions of the 

mass-flow controller (T = 273,15 K; p = 1,013 bar) it is possible to calculate the amount of 

substance flow rate (ṅi) in mmol min-1 for each component i in the off-gas to 
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ṅi(t)=0,0446 xi, off V̇off(t). (3.2) 

 xi, off content of substance i in the off-gas,- 

Equation (3.3) calculates the amount of substance balance (∆ṅi) between off-gas and gas inlet. 

∆ṅi(t) = ṅi,in(t) - ṅi,off(t) (3.3) 

  ṅi,in(t) amount of substance flow rate of substance i in the feed gas, mmol min-1 

  ṅi,off(t) amount of substance flow rate of substance i in the off- gas, mmol min-1 

Since there is no other sink or source for H2, CO and CO2 other than the metabolism of 

C. ljungdahlii, ∆ṅi equates to the uptake- or release rate of those compounds by the bacteria. 

Equation (3.4) calculates the consumption in percent of the ingoing amount of substance flow 

rate. 

ei = 100
∆ṅi(t)

ṅi,in

 (3.4) 

For gaining the total consumed amount of substance (𝑛i,R(t)), linear interpolation of ∆𝑛̇i 

between two points of measurement gives a better approximation. 𝑛i,R(t) is calculated by 

integration of the linear interpolation to  

ni, R(tj)
 = ni, R(tj-1) + 

∆ṅi(tj)
+∆ṅi(tj-1)

2
(tj - tj-1). (3.5) 

Dividing ni, R(t) by the reactor volume gives a concentration equivalent for substance i  

(ci, R = ni, R(t) VR
-1), while dividing by the total amount of substance i that has gone into the 

bioreactor gives the ratio of accumulation for each substance in percent as shown by equation 

(3.6). 

Ei(t) = 100
ni, R(t)

t ṅi,in

 (3.6) 

During experiments in this work, product yields are calculated based on consumed substrates 
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YP/S
* = 

(Δβ
acetic acid

+ Δβ
ethanol

) VR

∆mSub

 (3.7) 

 Δβacetic acid concentration of formed acetic acid, g L-1 

 Δβethanol concentration of formed ethanol, g L-1 

 ΔmSub mass of consumed substrates, g 

and based on overall fed hydrogen and carbon monoxide 

YP/S
** = 

(Δβ
acetic acid

+ Δβ
ethanol

) VR

tend (ṅH2, in M̃H2
+ ṅCO,in M̃CO)

. (3.8) 

 tend total process time, min 

 M̃H2 molar mass of H2, g mol-1 

 M̃CO molar mass of CO, g mol-1 

The mass of consumed substrates does include carbon dioxide if nCO2,R is positive. 

∆mSub= {
nH2,R M̃H2

+ nCO,R M̃CO+ nCO2,R M̃CO2
       if nCO2,R >0

nH2,R M̃H2
+ nCO,R M̃CO                             else             

 

The unit of YP/S is gram product per gram substrate (g g-1). 

3.1.5 Determination of optical density and cell dry weight 

OD of samples is measured at 600 nm wavelength using an Ultrospec1100pro 

spectrophotometer (Amersham Bioscience). The OD of a liquid sample is measured against 

air. Centrifugation for 10 min at 16100 g separates the cells from the broth and the OD of the 

supernatant is measured. The difference of both values gives the OD of the sample. This 

procedure is necessary because OD values of the supernatant change during fermentation. The 

linear range of the OD to cell dry weight (CDW) relation ends at measured OD values of 0.45 

and samples exceeding this value must be diluted using a 9 g L-1 NaCl solution. 30 mL 

samples for CDW determination are taken once the OD reaches a stationary value. Samples 

are centrifuged in dry, pre-weight sample tubes at 4816 g and 4 °C for 15 min. Supernatant is 

discarded and cells are washed two times with 9 g L-1 NaCl solution. Washed pellets are dried 

at 60 °C for 72 h before weighting. [Oswald et al. 2016] 

3.1.6  Fructose, acetic acid, formic acid and ethanol 

Contents of formic acid of all samples and fructose, acetic acid, and ethanol of fructose 

containing samples are measured by using enzymatic assays for D-fructose/D-glucose, acetic 
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acid and ethanol by Roche Yellow Line (Hoffman-La Roche, Switzerland) following their 

respective instructions. Gas chromatographic measurement of acetic acid and ethanol is used 

for fructose free samples and is conducted with a 6890N GC (Agilent), equipped with auto-

sampler, FFAP capillary column (0.5 µm, 30 m×0.32 mm ID, Macherey-Nagel) and flame 

ionization detector. Carrier gas is helium with a pressure of 1 bar and split ratio is 7.5:1. 

Analytical standard mixture consists of 10 mM ethanol, 10 mM sodium acetate and 9.09 mM 

isobutanol in 0.18 M HCl. Samples are prepared by acidifying 500 µL with 50 µL internal 

standard solution, consisting of 100 mM isobutanol in 2 M HCl. Analysis is conducted by 

injecting 1 µL of sample or standard. The temperature profile of the column oven starts with 

initial 60 °C for 2 min, followed by a temperature ramp of 10 °C/min up to an end 

temperature of 180 °C. Total analysis time is 20 min. [Oswald et al. 2016]  

3.2 Characterization of stirred tank reactor system 

3.2.1 Stirrer configurations 

Two stirrer configurations are tested for mass transfer properties and substrate consumption. 

Figure 3.1 shows both stirrer configurations used in this thesis. The first stirrer configuration 

is a set-up of two Rushton impellers arranged on the bottom and middle part of the stirrer 

shaft and three additional baffles at the walls of the reactor. This configuration will be 

referred to as Rushton-Rushton-Baffles (RRB) configuration throughout this thesis. Rushton 

impellers are radial flow impellers which cause high shear forces at the outer edges of the 

blades and therefore are good for dispersing gas bubbles. Both impellers dissipate the gas 

bubbles from the microsparger and the high shear forces in this arrangement result in finely 

dispersed bubbles through the whole liquid phase. 
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The second configuration is consisting of a marine impeller between two Rushton impellers, 

with no baffles in the reactor. This will be referred to as Rushton-Marine-Rushton (RMR) 

configuration throughout this thesis. The marine impeller causes a vortex which enables the 

upper Rushton impeller to intensely mix the liquid with the gaseous phase from the headspace 

of the reactor. The Rushton impeller at the bottom of the stirrer shaft disperses the gas bubbles 

from the microsparger in the liquid phase. In this configuration, no additional baffles inside 

the reactor are used other than the installed probes, sparger and sample line. 

3.2.2 Determination of kla-values 

There are different methods on how to determine mass transfer coefficients in stirred tank 

reactors. The most reliable and accurate one is the steady state sulphite method [Linek and 

Vacek 1981, Lara Márguez et al. 1994] which uses a model system consisting of about 0.8 M 

NaSO3 solution at pH 8 with Co+ or Cu+ as catalyst. The disadvantage of this method lies in 

the fact that determined kla-values do not reflect the values of the biological system. Salt 

concentrations and kinds of salt strongly influence the properties of the gaseous-liquid 

boundary layer and coalescence properties of the liquid [Zlokarnik 1999]. Hence, those 

properties are different in the biological and chemical system. 

 

 

 

 

8 cm 

1 cm 

5 cm 

2 cm 

Figure 3.1 – Stirrer configurations used for syngas fermentation in this work. Rushton-

Rushton-Baffles (RRB, left) consist of two Rushton impeller arranged on the stirrer shaft and 

additional baffles in the reactor. The Rushton-Marine-Rushton (RMR) approach (right) consist 

of a marine impeller between two Rushton impellers and no additional baffles. 
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Dynamical methods are suitable for measurements in the actual culture medium but require 

sterile procedures. The most common dynamic method is the desorption of nitrogen by air or 

pure oxygen. Detailed descriptions of this method can be found e. g. in Zlokarnik [1999] and 

Gaddis [1999]. However, this method has one major drawback. Due to nonideal mixing in 

noncolascent dispersions, the composition of the gaseous phase will be inhomogeneous after a 

step change of the inlet gas composition (e. g. from nitrogen to air). This leads to lower 

measured kla-values [Linek et al. 1989]. An alternative option, which avoids this drawback 

and gives back accurate values for kla, is proposed by Linek et al. [1989] and uses a sudden 

pressure step instead of a change in the ingoing gas composition. With our bioreactor set-up, 

this method is not usable and the method of nitrogen desorption by air is used to determine 

kla-values for the RRB and RMR stirrer configuration. Therefore, bioreactors are filled with 

1.5 L freshly prepared media (see Table 3.1 for composition) without fructose and equipped 

with Pt-100 temperature probe (Infors-HT), microsparger (Infors-HT), pH-probe (Mettler 

Toledo) and an optical dissolved oxygen probe (Hamilton). The total volume of each 

bioreactor is 2.5 L. Hence, the headspace of each reactor has a volume of 1 L. Red-y smart 

series MFCs by Vögltin Instruments (Switzerland) calibrated for air are used to maintain 

constant air and nitrogen flow rates. kla-vaules are determined at 37 °C for each stirrer 

configuration with gas feed rates of 18 mL min-1, 25 mL min-1 and 50 mL min-1 each at stirrer 

speeds of 600 min-1, 800 min-1 and 1000 min-1. In a first step, all oxygen in the bioreactor is 

displaced with nitrogen. Once the pO2-signal is close to zero, the aeration is switched to air. 

Upon reaching oxygen saturation, the aeration is switched back to nitrogen. To determine the 

kla-vaules equation (2.8) is integrated to 

ln (
cO2

*  - cO2, t0

cO2

*  - cO2, ti

)  = kla (ti-t𝟎). (3.9) 

The kla-value is gained as the slope of the linear regression of ln (
cO2

*  - cO2, to

cO2

*  - cO2, ti

) over Δt. For 

determining the kla-vaule with the nonsteady dynamic method, the response characteristic of 

the pO2-probe is of utter importance. Unadulterated values are gained only if the time constant 

τp of the oxygen probe is much smaller than kla
-1. [Gaddis 1999] This is true for the optical 

oxygen probe used in this work and therefore τp of the oxygen probe is not taken into further 

consideration. 
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If the kla-value for one gas is known for a given system and process parameters, then kla-

values of other gases can be calculated according to  

𝑘𝑙𝑎𝑖

𝑘𝑙𝑎𝑗
= 

Di

Dj

 . (3.10) 

 D Diffusion coefficient of substance i or j in water, m2 s-1 

Equation (3.10) is based on the 1st Fick’s law of diffusion and the assumption that the gas 

composition does not affect the specific interfacial area a and kla-values of different gases 

differ only in their diffusion coefficients. [Kodama et al. 1976, Löser et al. 2005] This is in 

accordance with the two-film theory, but Kodama et al. [1976] showed that experimentally 

measured kla-values are better resembled by 

klai

klaj

= √
Di

Dj

 . (3.11) 

Differences between results calculated by equation (3.10) and (3.11) are rather small [Chisti 

2010], so that for the purpose of this thesis, kla-values are calculated with equation (3.11). 

The diffusion coefficients necessary to calculate kla-values for other gases are estimated with 

the equation by Wilke and Chang [1955] 

Di, H2O=7.4 ∙ 10
-8

 

T √ϕ
H2O

 M̃H2O

η
H2O

 ṼM

0.6
 

(3.12) 

 T temperature, K 

  ϕ
H2O

 association parameter for i in water, - 

 M̃H2O molar weight of water, g mol-1 

 ṼM molal Volume of dissolved gas at normal boiling point, mL g-1 mol-1 

as suggested by Kodama et al. [1976]. The association parameter ϕ for water is 2.6 [Wilke 

and Chang, 1955] and molal volumes of H2, O2, CO and CO2 are 14.3 mL g-1 mol-1, 

25.6 mL g-1 mol-1, 30.7 mL g-1 mol-1 and 34.0 mL g-1 mol-1 respectively [Arnold 1930, Wilke 

and Chang 1955]. 
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For comparison of kla-values with values from literature, it is necessary to calculate the kla-

value at 20 °C. Zlokarnik [1999] suggests the following equation: 

kla(20 °C)= 
100 kla(ϑ)

100+2,665 (ϑ-20)
. (3.13) 

 ϑ relative temperature, °C 

3.2.3 Evaluation of substrate consumption 

Both stirrer configurations are investigated for their substrate consumption performance. 

Therefore, for each combination of stirrer configuration and gas feed rate from section 3.2.2, 

cultivations with C. ljungdahlii using artificial syngas are conducted. Syngas is composed of 

32.5 vol-% H2, 32.5 vol-% CO and 16.0 vol-% CO2 in nitrogen. Bioreactor cultivations are 

conducted in triplicates, using a Minifors stirred tank reactor (STR) by Infors-HT 

(Switzerland) equipped as described above with an ORP-probe (Hamilton, Switzerland) 

instead of the optical dissolved oxygen probe and the stirrer configurations from Figure 3.1. 

Temperature of the cultivation broth is maintained at 37 °C using the heating block of the 

bioreactor housing. The pH-value is regulated to 5.9 using 4 M KOH which is kept under a 

nitrogen atmosphere. In case of intense foam formation, all bioreactors of a triplicate are 

supplemented with one drop of the anti-foaming agent Contraspum A 4050 HAC (Zschimer 

und Schwarz, Germany). Substrate consumption is evaluated at atmospheric pressure for the 

following gas feed rates: 10 mL min-1 (0.007 vvm), 18 mL min-1 (0.012 vvm) and 44 mL min-1 

(0.029 vvm). The installed microsparger generates fine microbubbles, which enhance mass 

transfer between the gaseous and liquid phase [Bredwell 1998]. Stirrer speed for these 

fermentations is set to 800 min-1. For bioreactor cultivations, the media is prepared under 

aerobic conditions with the composition described in chapter 3.1.1. Only exceptions are that 

fructose is omitted and cysteine-HCl is reduced to 0.53 g L-1. After autoclaving at 121 °C for 

20 min, the redox potential of the media was lowered to about -200 mV by sparging with 

syngas and adding the amount of cysteine-HCl stated above. Bioreactors are seeded with 

150 mL of a 48 h grown bottle culture. Off-gas data is evaluated as described in section 3.1.4 

and off-line samples are analyzed for OD, CDW, ethanol and acetic acid as described above. 

Total cultivation time for all conducted experiments is 96 h. 
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3.3 Elevated pressure for increased mass transfer 

3.3.1 Influence of pressure on the gas-liquid mass transfer 

One possibility to overcome potential mass transfer is increasing the mass transfer coefficient. 

According to Equation (2.8), increasing the driving force Δc also leads to an increase in mass 

transfer. As outlined in the theory section, this can be done by either increasing the mole 

fraction of a gas component in the gas stream or by increasing the total pressure of the system. 

Both will lead to an increased partial pressure of the component. But increasing the mole 

fraction of one component requires the mole fraction of another component in the gas stream 

to be reduced. It also offers only limited range of increased partial pressure due to the 

stoichiometry of the acetogenic metabolism. Therefore, this part of the thesis focuses on 

increasing mass transfer by increasing the total pressure of the system. For these experiments, 

C. ljungdahlii is grown in medium of section 3.1.1 with a mixture of 53,3 vol-% H2 and 

26.7 vol-% CO2 in nitrogen as energy and carbon source. 

3.3.2 Experiments in 1.5 L-scale 

Experiments in 1.5 L scale are conducted at atmospheric pressure using the same bioreactor 

set-up, fermentation procedure and medium as described in section 3.2.3 with the RRB stirrer 

configuration from Figure 3.1. The fructose content of the preculture media is reduced to 

5 g L-1 and the gas feed rate for the bioreactor cultivation is 43 mL min-1 (0.029 vvm). If 

necessary, AF-agent is added manually to all bioreactors one drop at a time. 

3.3.3 Scale-up to 2.5 L and elevated pressure 

Cultivations at elevated pressure are carried out together with the group of Dr. Nikolaos 

Boukis in the course of the PhD thesis of Katharina Stoll at the Institute of Catalysis Research 

and Technology (IKFT) at the Karlsruhe Institute of Technology. To ensure the comparability 

of results obtained in 1.5 L-scale and 2.5 L-scale, the geometric similarity between both scales 

needs to be given and important dimensionless numbers describing the process must be kept 

constant. 

Figure 3.2 shows a schematic drawing of both reactor scales. The bioreactor for experiments 

in 2.5 L-scale is a stainless steel, double jacket vessel (VEB CLG – Chemieanlagenkombinat 

Leibzig-Grima, Germany) with an inner diameter D2.5 of 126 mm and a total volume of 4 L. 
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The total height of the internal space is 349 mm with a conical bottom of 54 mm height. For 

1.5 L-scale experiments, a glass vessel by Infors (see also section 3.5.1) with an inner 

diameter D1.5 of 110 mm, a total height of 270 mm and a hemispherical bottom (r = 55 mm) is 

used. With the fixed dimensions of the stainless-steel vessel, the only possibility to keep d/D 

constant is by adjusting the stirrer diameter d2.5. Using the stirrer diameter from 1.5 L-scale 

d1.5 = 46 mm and the inner diameter of the glass vessel d1.5/D1.5 calculates to 0.418. 

Transferring this to the measures of 2.5 L-scale results in d2.5 of 57.5 mm. The stirrer of the 

2.5 L-scale is a proportional magnification of the stirrer in 1.5 L-scale. [Oswald et al.2018a] 

The geometric similarity representing stirrer positions would be 51.5 mm and 157 mm above 

the deepest part of the stainless-steel vessel. As Figure 3.2 shows, the stirrer shaft (Büchi, 

Switzerland) of the bigger scale does not reach into the conical part of the vessel. With that, a 

position of 51.5 mm above the deepest part of the reactor is not possible. Hence, the 

hl, 1.5 

D1.5 

D2.5 

hl, 2.5 

d1.5 

d2.5 

D‘ 

Baffles 

lS, 1.5 

lS, 2.5 

Figure 3.2 – Schematic drawing of the STRs used for 1.5 L scale (left) and 2.5 L scale (right).  Between 

both is one of the two Rushton-Turbines used in each of the reactors. D1.5 = 110 mm, d1.5 = 46 mm, 

lS, 1.5 = 235 mm, hl, 1.5 = 176 mm, D2.5 = 126 mm, d2.5 = 52.7 mm, lS, 2.5 = 240 mm, hl, 2.5 = 234.6 mm. Filling level hl 

is without installed equipment (stirrer shaft, baffles, probes, sparger). [Oswald et al. 2018a] 
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compromise is to calculate the stirrer positions, filling volume and filing level from the 

cylindrical part of the vessel and neglecting the conical bottom. Resulting stirrer positions are 

105.5 mm and 211 mm above the deepest part of the vessel (including the conical part) and 

total filling level hl, 2.5 is 234.6 mm. This also affects the filling volume of the reactor (without 

installed equipment) which is the volume of the 1.5 L-scale multiplied with (D2.5/D1.5)
3 plus 

the volume of the conical part yielding a volume of 2.51 L. [Oswald et al. 2018a] 

To ensure comparability of both scales, it is necessary to keep the important process 

characteristics constant. Ju and Chase [1992] summarize different scale-up strategies from 

literature. The strategies used in this thesis are geometric similarity as well as constant kla-

value, stirrer speed and Ne number. Schlüter et al. [1992] state that if volumetric power input 

P/Vl and volumetric gas feed rate Vġ/Vl are of the same value in both scales, then the 

volumetric mass transfer coefficient has the same value as well. Other authors conclude that a 

reliable scale-up with constant kla-value depends on keeping the superficial gas velocity (v) 

constant [Van’t Riet 1979; Henzel 1982; Zlokarnik 1999]. Schlüter et al. [1992] also state that 

for small changes in scale, the kla correlation with Vġ/Vl instead of v leads only to 

insignificant deviations. Therefore, power input for 1.5 L-scale is measured as the difference 

in power uptake of stirring in air and stirring in 1.5 L of water and a gas feed rate of 

0.029 vvm. Keeping Ne constant allows calculating the necessary stirrer speed at 

P/Vl = constant to 757 min-1. The gas feed rate of the larger scale calculates to 72 mL min-1. 

[Oswald et al. 2018a] 

3.3.4 Experiments in 2.5 L-scale 

The following pressure steps are investigated (in absolute pressure): 1 bar, 4 bar and 7 bar. The 

medium composition is explained in section 3.1.1, cultivation volume is 2.5 L. the volumetric 

amount of substance flow rate ṅ Vl
-1 is kept constant for all experiments. 

Gas is dispersed inside the reactor by a sintered metal plate at the end of a ¼”-tube and 

pressurization of the bioreactor starts immediately after inoculation. Each experiment is 

seeded with 10 % of the final volume of a 48 h, fructose grown culture. Cultivation 

temperature and pH-value are set to 37 °C and 5.9 respectively and the stirrer speed and gas 

feed rate as calculated above are applied. Maximum cultivation time is 90 h. Figure 3.3 shows 

the flow chart of the high-pressure reactor and its installed periphery. Mass flow of feed gas is  
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controlled and regulated by a Coriolis force MFC (Bronkhorst, Netherlands) and mass-flow-

meter (MFM, Bronkhorst, Netherlands). Pressures higher than 1 bar absolute are regulated by 

a pressure regulator and sensory valve (Bronkhorst, Netherlands) positioned in the off-gas line 

behind the MFM. Off-gas composition is measured by a GC (Shimadzu, Japan). Cultivation 

temperature is maintained via the double jacket and a thermostat (Haake, Germany) and the 

off-gas is cooled to minimize water loss through evaporation. A HPLC-pump (Bischoff, 

Germany) controls the addition of pH adjustment solutions through capillary tubes. If 

necessary, a six-port valve allows switching between 4 M H3PO4 and 4 M KOH. Both pH 

adjustment solutions are kept under a nitrogen atmosphere. A second HPLC-pump (Bischoff, 

Germany) adds AF-agent (Zschimer und Schwarz, Germany) in case the AF-electrode gives a 

signal. Gas streams are sterile filtered by a 0.2 µm sinter metal filter (Swagelock, USA) before 

the feed gas enters the reactor and before the off-gas enters the pressure senor. A check valve 

between the reactor and feed gas filter prevents liquid from the reactor to block the filter. 

ORP-probe (Corr Instruments, USA) and pH-probe (Corr Instruments, USA) are mounted 

horizontally at half height through the sides of the reactor. The pH-probe is disinfected with 

Figure 3.3 – Flow chart of STR used for elevated pressure cultivations with installed periphery.  FIRC, 

flow indication, recording and control; QIRCS+-A+-, pH indication, recording and control (pH probe); QIRA+, 

redox potential indication and recording (redox probe); CIRC, courent indication, recording and control (AF-

electrode); TIR, temperature indication and recording; PIRC, pressure indication, recording and control; FIR, 

flow indication and recording; PI, pressure indicator. [Oswald et al. 2018] 
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isopropanol. It is installed after steam sterilizing at 121 °C and before medium is filled into 

the reactor, due to a maximum temperature tolerance of the pH-probe of 80 °C. [Oswald et al. 

2018a] 

3.4 Influence of cyanide on growth and product formation of 

Clostridium ljungdahlii 

CODH is an important enzyme in the WLP, since it not only catalyzes the oxidation of CO to 

CO2, but also forms a functional complex with acetyl-CoA synthase which links the methyl-

branch and the carbonyl-branch of WLP to form the central metabolite acetyl-CoA. As 

outlined in chapter 2.3.2, a well-known inhibitor of CODH is cyanide, which is also a minor 

constituent of crude synthesis gas. Data on how cyanide affects C. ljungdahlii is scarce. 

Therefore, the experiments in this thesis are conducted to show the influence of cyanide on 

growth and product formation of this organism. Cyanide is prepared as potassium cyanide 

solution in 100 mM potassium phosphate buffer at pH 11 to prevent hydrogenation of CN- and 

degassing of HCN during anaerobisation, sterilization and storage. All buffers are prepared in 

sealed serum bottles. C. ljungdahlii DSM135228 is grown in 50 mL complex media with 

either 10 g L-1 fructose or 2.02 bar absolute pressure of synthesis gas as carbon and energy 

source. Fructose experiments are conducted in 125 mL serum bottles and syngas experiments 

50 mL Culture media 

+ 

1 mL H2O, potassium phosphate buffer or potassium phosphate buffer with KCN 

2.02 bar  

Synthesis gas 

10 g L
-1

 

Fructose 

Figure 3.4 – Overview of cyanide experiments with C. ljungdahlii.  Effects of cyanide are 

investigated in both fructose and syngas growing cultures with cyanide concentrations of 

0 mmol L-1, 0.025 mmol L-1, 0.05 mmol L-1, 0.1 mmol L-1 and 1.0 mmol L-1. [Oswald et al. 2018b] 
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in 250 mL serum bottles. Culture media and bottles are prepared as described in section 3.1.1. 

Figure 3.4 gives an overview of the experiments. The following final cyanide concentrations 

are investigated (all numbers are in mM): 0.025, 0.05, 0.1 and 1.0. To achieve the desired 

KCN concentrations for every flask, 1 mL of potassium phosphate buffer with cyanide is 

added per 50 mL of culture media. Cultures with 1 mL sterile anaerobic water or 1 mL of 

sterile anaerobic phosphate buffer per 50 mL of culture media are used as controls for growth 

and product formation. Headspace pressure in cultures growing with syngas is used as an 

indicator of substrate consumption and is measured before and after collection of liquid and 

gas samples. Gas samples are analyzed with a micro-GC (see section 3.1.3) to determine the 

consumption of the individual components of the syngas. [Oswald et al. 2018b] 

3.5 Process link-up: From syngas to malic acid 

3.5.1 Nitrogen reduction in culture media for Clostridium ljungdahlii 

This experiment aims to show that acetic acid, as the main product of the acetogenic 

metabolism, can be used as a substrate for further aerobic cultivations. For this, acetic acid 

containing broth of a C. liungdahlii syngas fermentation is fed to Aspergillus oryzae, a 

filamentous fungus, for the production of malic acid. This is a cooperation experiment with 

Stefan Dörsam from the “BLT section II: Technical Biology” who does the fungal 

fermentation part of the experiment. Due to that, the following chapters show the syngas part 

and the final link-up experiment. Methods and results of preliminary experiments for the 

fungal part can be found in Oswald et al. [2016]. 

The original medium used by Benglesdorf et al. [2016] contains 2.5 g L-1 ammonia chloride, 

but A. oryzae produces malic acid only under nitrogen limited conditions [Knuf et al. 2013]. 

To use the syngas fermentation broth as culture media for A. oryzae, it is necessary to check 

how much ammonia is left in the broth after 96 h of syngas fermentation and reduce the initial 

amount if necessary. Therefore, bioreactor cultivations are conducted in triplicates using the 

set-up and procedures described in section 3.2.3. The stirrer set-up for this experiment is the 

RMR configuration from section 3.2.1. Figure 3.5 shows the stirrer configuration for the 

nitrogen reduction experiments. [Oswald et al. 2016] 

The total volume of each bioreactor is 2.5 L, the filling volume is 1.5 L; thus leaving a 

headspace of 1 L. Carbon- and energy source is a synthesis gas consisting of 32.5 vol-% H2, 

32.5 vol-% CO and 16.0 vol-% CO2 in Nitrogen. This mixture resembles the composition of 
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syngas from entrained flow gasification of straw. In case of intense foam formation, each 

bioreactor is fitted with an anti-foam probe as seen in Figure 3.5 using 

Contraspum A 4050 HAC (Zschimer und Schwarz, Germany) as an anti-foaming agent. Red-

y smart series MFC by Vögtlin Instruments (Switzerland) keep the gas flow rate in the 

bioreactor at 10.4 mL min-1 and stirrer speed is set to 800 min-1. The ammonia content for the 

nitrogen limited media is reduced according to the results of the first triplicate. Concentrations 

of ammonia at the beginning and the end of each cultivation are measured with an ion 

chromatograph. Measurements are kindly conducted by the group of Prof. Clemens Posten 

(BLT Section III: Bioprocess engineering). Cultivation time on syngas is 96 h and the broth is 

harvested and handed to Stefan Dörsam for preliminary experiments with A. oryzae. [Oswald 

et al. 2016] 

 

 

 

 

Cable tie 

AF-electrode 

Rushton impeller 

Marine impeller 

Rushton impeller 

Lid 
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2 cm 
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Figure 3.5 – Rushton-Marine-Rushton stirrer configuration for syngas 

fermentation. The cable ties on the upper part of the stirrer shaft are in total 

7.5 cm long and serve as foam disrupter. 
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3.5.2 Process link-up via sequential mixed culture 

Bioreactor set-up and cultivation procedure for the syngas fermentation part of the sequential 

mixed culture is the same as stated in chapter 3.5.1. The syngas flow rate is set to 

12.6 mL min-1 and is increased to 18 mL min-1 between 41.5 h and 71.5 h. Instead of 

harvesting the culture broth after 96 h, the conditions are changed to aerobic. Therefore, the 

reactor is flushed with air for approx. 30 min to replace all remaining syngas and temperature 

is reduced to 35 °C. After that, to avoid clogging of the microsparger by the fungus, the anti-

foam probe is exchanged for a standard issue sparger of the Minifors reactors and the 

microsparger is turned sideways to make space for the new sparger. The ORP-probe is 

removed so that 90 g L-1 CaCO3 can be added to get the pH-value to 5.5 and to reseed the 

broth with washed precultures of A. oryzae. Figure 3.6 shows the process set-up for both parts 

of the sequential mixed culture. The aerobic fungal fermentation part of the sequential mixed 

culture takes 100 h, an aeration rate of 600 mL min-1 and a stirrer speed of 300 min-1. The 

added amount of CaCO3 is enough to keep the pH-value at 5.5 for the whole course of the 

fungal fermentation. [Oswald et al. 2016] 

Figure 3.6 – Process scheme for anaerobic syngas fermentation (left) and aerobic fungal fermentation 

(right). pHICR: pH indicate, control and record, TICR: temperature indicate, control and record, ORPIR: ORP 

indicate and record, AF: anti foam, GC: gas chromatograph. For aerobic fungal fermentation the microsparger 

had to be turned sideways to make room for the standard sparger. No pH adjustment was conducted during fungal 

fermentation. [Oswald et al. 2016] 
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4. Results 

4.1 Characterization of stirred tank reactor system 

4.1.1 Determination of kla-values 

The stirrer set-ups RRB and RMR are tested for their mass transfer properties and effect on 

substrate consumption. The RRB set-up shows high shear forces at the tips of the turbine 

blades and ensures formation of fine bubbles while the additional marine impeller and 

missing baffles in the RMR set-up allows for vortex formation and partial recirculation of gas 

from the headspace. Values for the volumetric mass transfer coefficient are determined at 

stirrer speeds of 600 min-1, 800 min-1 and 1000 min-1 using air at flow rates of 18 mL min-1, 

25 mL min-1 and 50 mL min-1 each. Figure 4.1 and Figure 4.2 show the measured kla-values 

for both stirrer set-ups with air and ammonia reduced medium. 

Values in Figure 4.1 are determined with the given flow rates, while simultaneously aerating 

the headspace of the bioreactor with 0.2 L min-1. This is to quickly replace the nitrogen in the 

headspace. Thus, reflecting a situation where headspace and feed gas have the same 

composition. For 18 mL min-1 average kla-values at 800 min-1 and 1000 min-1 are of the same 

Figure 4.1 – kla-values for 600 min-1, 800 min-1 and 1000 min-1 

with simultaneous aeration of the headspace, sorted by stirrer 

configuration and air flow rate. 
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order of magnitude for both stirrer set-ups with a maximum average of  

5.5 10-3 s-1 for the RMR and 5.7 10-3 s-1 for the RRB. At 25 mL min-1 average values of the 

RMR set-up for all three stirrer speeds are between5.3 10-3 s-1 and 5.8 10-3 s-1 whereas for the 

RRB set-up maximum average kla is 6.9 10-3 s-1. At 50 mL min-1, the RMR stirrer arrangement 

has a maximum kla-value of 8.0 10-3 s-1 at a stirrer speed of 600 min-1 and the RRB set-up at  

800 min-1 with a value of 10.2 10-3 s-1. 

Resulting values for gas-liquid mass transfer rate without additional aeration of the headspace 

are summarized in Figure 4.2. Without flushing the headspace of the bioreactor with air, 

nitrogen is not removed from the headspace. Therefore, these values represent kla-vaules of a 

process feed gas and headspace are not similar (e. g. when all fed substrates are immediately 

consumed). Similar to the results in Figure 4.1, maximum kla-vaules for each stirrer set-up 

and -speed are achieved at a gas feed rate of 50 mL min-1 with 5.9 10-3 s-1 for the RMR set-up 

at 600 min-1 and 8.3 10-3 s-1 for the RRB set-up at 800 min-1. 

The main reason behind the RMR stirrer configuration is the recirculation of gas from the 

headspace in the vortex zone of the fluid flow. Significant vortex formation is achieved at 

minimum stirrer speed of 800 min-1 which therefore is chosen for both configurations in the 

following substrate consumption cultivations. After conducting the experiments for the 

evaluation of substrate consumption, it has been found that the calibration of the syngas mass 

Figure 4.2 - kla-values for 600 min-1, 800 min-1 and 1000 min-1 

sorted by stirrer configuration and air flow rate. 
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flow controllers delivered by the manufacturer is wrong. For settings of 18 mL min-1, 

25 mL min-1 and 50 mL min-1 the resulting gas flow rates are 10.3 mL min-1, 17.8 mL min-1 

and 44.4 mL min-1 respectively. Figure 4.3 A shows results of kla measurements at 800 min-1 

and afore mentioned resulting flow rates while simultaneously aerating the headspace. It also 

contains values for headspace aeration alone. Those are 3.7 10-3 s-1 for the RMR and  

A 

B 

Figure 4.3 – kla-values for gas feed rates of 10.3 mL min-1, 

17.8 mL min-1 and 44.4 mL min-1 at 800 min-1. A with simultaneous 

aeration of the headspace. Also included are gas-liquid mass transfere 

coeficients for headspace areation only. B without headspace aeration. 
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1.2 10-3 s-1 for the RRB set-up. Maximum mass transfer coefficients for both set ups are 

achieved with a gas feed rate of 44 mL min-1 with 7.9 10-3 s-1 (RMR) and 9.0 10-3 s-1 (RRB). 

Like Figure 4.2, Figure 4.3 B shows mass transfer coefficients for the resulting flow rates of 

the wrong calibrated MFCs without additional headspace aeration. Values increase from 

1.0 10-3 s-1 (RMR) and 2.3 10-3 mL min-1 (RRB) at 10.3 mL min-1 to 6.3 10-3 s-1 and 9.7 10-3 s-1 

(RRB) at 44.4 mL min-1.  

4.1.2 Evaluation of substrate consumption 

Experiments for the determination of substrate consumption are carried out with the MFCs as 

described in section 3.2.3 for gas feed rate set points of 18 mL min-1, 25 mL min-1 and 

50 mL min-1. As explained previously, the manufacturer calibration of those MFCs is 

incorrect and resting gas flowrates are: 10.33 ± 0.21 mL min-1 (18 mL min-1 setting), 

17.78 ± 0.22 mL min-1 (25 mL min-1 setting) and 44.38 ± 0.26 mL min-1 (50 mL min-1 setting). 

This directly impacts the total volume of syngas and amount of substance for H2, CO and CO2 

used for each experiment. Although experiments are conducted in triplicates, one and always 

the same, bioreactor of each experimental set-up behaves differently than the other two. Since 

these bioreactors show little deviation between each other, the following results show the 

average of these two bioreactors. The data of the third bioreactor can be found in the appendix 

for comparison. Table 4.1 summarizes the results of product and fructose analytics and online 

off-gas analytics as well as the total gas volume and amount of substance for H2, CO and CO2 

that have been fed during each experimental set-up. For gas feed rates of 10.3 mL min-1 and 

17.8 mL min-1 final concentrations of acetic acid increase from 15 g L-1 to 21 g L-1. At 

44.4 mL min-1, the final acetic acid concentration goes down to 10.49 ± 0.13 g L-1 for the RMR 

approach while the RRB approach yields with 8.82 ± 0.46 g L-1 the lowest acetic acid 

concentration. On the other hand, ethanol concentrations increase from 0.5 g L-1 to 2.7 g L-1 

with increasing gas feed rates. 

While the amount of consumed carbon monoxide increases with increasing gas feed rates, the 

consumed amount of hydrogen shows a maximum at 17.8 mL min-1 and is close to zero at 

44.4 mL min-1. This is also reflected in the overall consumption ratio for hydrogen, which 

decreases from 72.5 % to 3.3 % for the RMR set-up and from 77.3 % to zero for RRB. The 

overall amount of consumed carbon monoxide might increase with increasing gas feed rates, 

but when compared to the ingoing amount of carbon monoxide, the consumption ratio 
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 between 10.3 mL min-1 and 17.8 mL min-1 increases for the RMR set-up and decreases for the 

RRB set-up. At 44.4 mL min-1, the consumption ratio decreases to 47.5% (RMR) and 37.9 % 

(RRB) at. 

Yields based on either consumed substrate (YP/S
*) or total fed substrate (YP/S

**) can be found in 

Table 4.2 together with average durations of complete substrate consumption (tei ≥ 97 %). In this 

thesis, complete substrate consumption is defined as the time in which the actual consumption 

rate (ei) is more than 97 % of the ingoing substrate feed rate (see equation 3.4). The yields 

based on consumed substrates and used substrates show the same tendency. YP/S
* gives  

 

Table 4.1 – Results of substrate consumption experiments with C. ljungdahlii growing with syngas as 

sole carbon and energy source. 

Set-up RMR-10 RRB-10 RMR-18 RRB-18 RMR-44 RRB-44 

βCDW/g L-1 0.73 ± 0.04 0.71 ± 0.01 0.82 ± 0.02 0.77 ± 0.05 0.53 ± 0.03 0.28 ± 0.05 

βacetic acid/g L-1 14.95 ± 0.22 15.27 ± 1.91 21.48 ± 0.05 20.72 ± 0.78 10.49 ± 0.13 8.82 ± 0.46 

βEtOH/g L-1 0.47 ± 0.07 0.55 ± 0.21 2.15 ± 0.18 2.42 ± 0.72 2.68 ± 0.29 1.91 ± 0.38 

βfructose/g L-1 0.57 ± 0.00 0.45 ± 0.02 0.59 ± 0.02 0.53 ± 0.00 0.73 ± 0.02 0.79 ± 0.02 

cH2,R/mol L-1 0.42 ± 0.00 0.45 ± 0.01 0.57 ± 0.02 0.62 ± 0.01 0.08 ± 0.01 0.00 ± 0.01 

cCO,R/mol L-1 0.45 ± 0.00 0.46 ± 0.00 0.68 ± 0.19 0.78 ± 0.01 1.15 ± 0.02 0.91 ± 0.03 

cCO2,R/mol L-1 0.00 ± 0.00 0.00 ± 0.02 -0.15 ± 0.02 -0.07 ± 0.01 -0.62 ± 0.00 -0.56 ± 0.02 

Vgas, total/L 60.40 ± 0.39 60.01 ± 0.02 103.50 ± 0.01 102.42 ± 0.03 257.05 ± 0.78 256.39 ± 0.91 

t/h 97.73 ± 0.63 97.10 ± 0.03 96.91 ± 0.01 95.90 ± 0.03 96.49 ± 0.29 96.24 ± 0.34 

EH2/% 72.49 ± 0.09 77.32 ± 1.09 57.43 ± 1.86 65.63 ± 1.06 3.26 ± 0.40 0.00 ± 0.28 

ECO/% 81.38 ± 0.05 83.91 ± 0.37 83.60 ± 0.21 81.50 ± 0.66 47.46 ± 1.00 37.87± 1.17 

ECO2/% -1.76 ± 1.94 0.93 ± 9.21 -36.51 ± 4.26 -16.45 ± 2.96 -55.25 ± 0.05 -50.88 ± 2.44 

Average values of two bioreactors per experimental set-up. The numbers behind RMR and RRB in the table header stand for the gas feed 

rate with 10 = 10.3 mL min-1, 18 = 17.8 mL min-1, 44 = 44.4 mL min-1. βCDW, maximum concentration of CDW; βFructose, concentration of 

fructose at beginning of fermentation; βacetic acid, final concentration of acetic acid; βEtOH, final concentration of ethanol; cH2,R, consumed 

amount of hydrogen per liter reactor volume; cCO,R, consumed amount of carbon monoxide per liter reactor volume; cCO2,R, consumed 

amount of carbon dioxide per liter reactor volume; Vgas, total,  total volume of used syngas over the course of fermentation; t, total process 

time; EH2
, consumption ratio of hydrogen as consumed amount of hydrogen in per cent of total amount of ingoing hydrogen; ECO, 

consumption ratio of carbon monoxide as consumed amount of carbon monoxide in per cent of total amount of ingoing carbon 

monoxide; ECO2
, consumption ratio of carbon dioxide as consumed amount of carbon dioxide in per cent of total amount of ingoing 

carbon dioxide. Negative Values in the columns cCO2,R and ECO2
 mean that more CO2 has left the reactor than has gone in. 
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information about the ratio in which consumed substrates are converted into products (acetic 

acid and ethanol) while YP/S
** gives information about the overall substrate-to-product 

conversion ratio of the process. Both yields decrease with increasing gas feed rate. At 

10 mL min-1, all consumed substrates end up in products. Both stirrer set-ups give here the 

same yield for totally used substrates of 0.85 g g-1 with only slight difference in the standard 

deviation. With increasing gas feed rate yields decrease to YP/S
* of 0.41 g g-1 (both set-ups) 

and YP/S
** of 0.19 g g-1 (RMR) and 0.15 g g-1 (RRB). The value for YX/S decreases with 

increasing gas feed rate to 0.02 g g-1 at 17.8 mL min-1 and 0.005 g g-1 at 44.4 mL min-1 for both 

stirrer configurations. 

Times of complete substrate consumption shown in Table 4.2 indicate that the duration of 

complete hydrogen consumption is always shorter than the duration of complete carbon 

monoxide consumption. The difference between the two durations is 5.1 h for the RRB set-up 

at 10 mL min-1 gas feed rate. At the lowest gas feed rate, once complete consumption of 

hydrogen and carbon monoxide is established it is kept up until the end of the fermentation. 

For 18 mL min-1 durations of complete substrate consumption are shorter, being 22.35 ± 0.49 h 

(RMR) and 10.65 ± 3.61 h (RRB) for hydrogen and 30.45 ± 3.18 h (RMR) and 43.15 ± 3.61 h 

(RRB) for carbon monoxide. At 44 mL min-1, complete hydrogen consumption is achieved in 

none of the two stirrer configurations. This is also visualized in Figure 4.4 which shows the 

amount of substance flow rates per liter reactor medium for H2, CO, and CO2 in the off-gas of 

substrate consumption experiments. In addition to the information from Table 4.2, the figure  

 

Table 4.2 – Product yields based on consumed and used substrate as well as average durations of 

complete substrate consumption. 

Set-up RMR-10 RRB-10 RMR-18 RRB-18 RMR-44 RRB-44 

YP/S
*/g g-1 1.05 ± 0.04 0.99 ± 0.02 0.95 ± 0.00 0.97 ± 0.03 0.41 ± 0.01 0.41 ± 0.03 

YP/S
**/g g-1 0.85 ± 0.03 0.85 ± 0.05 0.78 ± 0.00 0.78 ± 0.03 0.19 ± 0.01 0.15 ± 0.02 

teH2 ≥ 97%/h 53.95 ± 0.78 69.47 ± 1.0 9.51 ± 0.07 18.25 ± 1.80 0.00 ± 0.00 0.00 ± 0.00 

teCO ≥ 97%/h 71.31 ± 0.16 74.60 ± 0.28 37.84 ± 12.05 61.46 ± 13.97 0.00 ± 0.00 0.00 ± 0.00 

*, based on consumed H2 and CO; **, based on totally fed H2 and CO; teH2 ≥ 97%, duration of complete 

hydrogen consumption; teCO ≥ 97%, duration of complete carbon monoxide consumption. Average values 

of two bioreactors per experimental set-up. 



4. Results 

45 

 

 

Figure 4.4 – Average amount of substance flow rates per liter medium in the off-gas of substrate 

consumption experiments. Graphs show average values of two bioreactors per experimental set-up. 

Results of experiments with RMR (left) and RRB stirrer set-up (right) at average gas flow rates of 

10.33 ± 0.21 mL min-1, 17.78 ± 0.22 mL min-1 and 44.38 ± 0.26 mL min-1 (top to bottom). Hydrogen (red 

line), carbon monoxide (yellow line) and carbon dioxide (green line). The areas around the lines indicate the 

standard deviation.  
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shows that for each gas feed rate the development of off-gas data shows the same tendency. 

While at a gas feed rate of 10 mL min-1 hydrogen consumption only starts to decline at the end 

of RMR-10, it starts to decline at 48 h in RMR-18 and 56 h in RRB-18. At 44 mL min-1, there 

is only significant hydrogen consumption in RMR-44. Carbon monoxide stays at complete 

consumption in all experiments with 10 mL min-1 and 18 mL min-1 gas feed rate with an 

increase in off-gas carbon monoxide at 48 h (RMR-18) and 50 h (RRB-18) due to manual 

addition of AF agent. At 44 mL min-1 carbon monoxide goes down to 0.03 mmol min-1 (RMR-

44) and 0.05 mmol min-1 (RRB-44) but starts to increase again between 36 h and 40 h. 

4.2 Elevated pressure for increased mass-transfer 

According to Henry’s law of solubility, increasing the total system pressure while keeping the 

gas composition constant will result in higher solubility of the gas components. Therefore, the 

driving force for mass transfer, Δc, will be increased, too. To avoid any possible inhibitory 

effects by increased carbon monoxide partial pressures, the following experiments are 

conducted only with hydrogen, carbon dioxide and nitrogen. Figure 4.5 shows the volumetric 

amount of substance flow rates ṅ VL
-1 in the off-gas of three fermentations in 1.5 L-scale. 

Initial carbon dioxide and hydrogen flow rates of 0.3 mmol min-1 L-1 (CO2) and 

Figure 4.5 – Amount of substance flow rates per liter medium 

for hydrogen (red, solid) and carbon dioxide (green, dashed) in 

the off-gas of 1.5 L-scale. Results are average values of three 

experiments. Standard deviation is indicated by the light-colored 

area around the average lines. [Oswald et al. 2018a] 
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0.63 mmol min-1 L-1 (H2) continuously decrease until 60 h (CO2) and 63 h (H2), where they 

reach their local minimum of 0.18 mmol min-1 L-1 (CO2) and 0.35 mmol min-1 L-1 (H2), 

respectively. Here, C. ljungdahlii consumes 45 % of the ingoing hydrogen and 38 % of the 

ingoing carbon dioxide. From that point on, uptake rate of both gases decreases and reaches 

off-gas flow rates of 0.25 mmol min-1 L-1 for carbon dioxide and 0.49 mmol min-1 L-1 for 

hydrogen at the end of fermentation. Transferring the 1.5 L-scale to 2.5 L for pressurized 

experiments while keeping ṅ VL
-1 constant resulted in decreasing volumetric flow rates with 

increasing pressure. Development of ṅ VL
-1 in off-gases from 2.5 L-scale are shown in Figure 

4.6. Off-gas data from high pressure fermentation at 1 bar of absolute pressure (HPF-1) shows 

a development comparable to the data of 1.5 L-scale in Figure 4.5. The three experiments 

summarized in HPF-1 (Figure 4.6) show some degree of variation in the development of 

hydrogen and carbon dioxide in the off-gas and thus have a higher standard deviation than the 

data from 1.5 L-scale. Off-gas data from both, high pressure fermentation with 4 bar of 

absolute pressure (HPF-4) and 7 bar of absolute pressure (HPF-7) show a similar 

development. Hydrogen and carbon dioxide have a sharp decrease and while in HPF-4 

hydrogen jumps back to about 1.4 mmol min-1, the amount of substance flow rate of carbon 

dioxide asymptotically increases to the initial flow rate in both. In HPF-7 hydrogen 

asymptotically goes back to the initial value. Pressure build up takes 30 min for HPF-4 and 

75 min for HPF-7. Complete consumption of substrates could not be achieved in any of the 

Figure 4.6 – Amount of substance flow rates per liter medium for hydrogen (red, solid) and carbon 

dioxide (green, dashed) in the off-gas of 2.5 L-scale experiments. Results are average values of three 

experiments for HPF-1 and HPF-7 and two experiments for HPF-4. Numbers behind HPF indicate the absolute 

pressure of the fermentation in 2.5 L-scale. Standard deviation is indicated by the light-colored area around the 

average lines. [Oswald et al. 2018] 
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conducted fermentations. [Oswald et al. 2018] 

Figure 4.7 shows the development of product concentrations over the course of the 

fermentations in 2.5 L-scale while Table 4.3 shows resulting product concentrations and 

consumed amount of substrates per liter reactor volume of experiments in 1.5 L-scale together 

with the results form HPF-1, HPF-4 and HPF-7. In difference to the experiments from 4.4 and 

4.1.2 the fructose content of the pre-culture is reduced from 10 g L-1 to 5 g L-1 to have as little 

fructose left as possible when inoculating the bioreactor. At atmospheric pressure, ethanol and 

acetic acid are the main products, their concentrations decrease with increasing pressure 

whereas formic acid concentration increases from final concentrations of 0.09 g L-1 to  

1.34 g L-1 at 4 bar and 3.23 g L-1 at 7 bar absolute pressure. Acetic acid production starts in all 

experiments immediately after inoculation while formic acid formation has its strongest 

increase between 12 h and 28 h. [Oswald et al. 2018] 

Table 4.3 gives the average values for product concentrations and consumed substrates at the 

end of the fermentation for all conducted cultivations in this project. The consumed amounts 

of substrates per liter reactor volume at atmospheric pressure in 2.5 L-scale are a third of the 

amounts in 1.5 L-scale. Whereas the overall consumption ratio E (consumed amount of 

substance divided by the total fed amount of substance in per cent) is about half the value 

from 1.5 L-scale. Comparing the biomass specific uptake rates for hydrogen (q
H2

) and carbon 

dioxide (q
CO2

) shows only differences in the uptake of hydrogen. Experiments in HPF-1 show 

Figure 4.7 – Development of product concentrations for formic acid, acetic acid and ethanol at different 

headspace pressures. Results are average values of three experiments for HPF-1 (dark grey squares) and HPF-7 

(dark yellow diamonds) and two experiments for HPF-4 (orange triangles). Numbers behind HPF indicate the 

absolute pressure of the fermentation in 2.5 L-scale. [Oswald et al. 2018] 
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about twice the maximum uptake rates for hydrogen than the ones found for 1.5 L-scale. 

However, the replicates in HPF-1 divert significantly from each other as can be seen in the 

off-gas data in Figure 4.6. This results in rather high standard deviations. Despite the 

differences in overall consumption, the product yields based on consumed substrates (H2 and 

CO2) are quite similar with 0.67 g g-1 in 1.5 L-scale and 0.64 g g-1 in HPF-1. For experiments 

at 4 bar and 7 bar, no consumption data is available. As can be seen from the off-gas data in 

Figure 4.6, under pressurized conditions no reasonable values for consumed substrates can be 

determined since the data resembles saturation curves for carbon dioxide at elevated 

pressures. Therefore, yields are only calculated based on totally fed substrates (YP/S
**). In 

1.5 L-scale, an YP/S
** of 0.15 g g-1 is achieved whereas in 2.5 L-scale for HPF-1, HPF-4 and 

HPF-7 YP/S
** values of 0.05 g g-1, 0.04 g g-1 and 0.04 g g-1 are achieved, respectively. No 

significant increase in OD is observed at elevated pressures (data not shown). [Oswald et al. 

2018] 

Table 4.3 – Average values for products and consumed substrates from cultivations 

of C. ljungdahlii with hydrogen and carbon dioxide as sole energy- and carbon 

source at different pressures after 90 h of cultivation. 

Set-up 1.5 L HPF-1 HPF-4 HPF-7 

βformic acid/g L-1 0.03 ± 0.00 0.09 ± 0.09 1.34 ± 0.28 3.23 ± 0.32 

βacetic acid/g L-1 9.30 ± 2.30 4.29 ± 0.67 1.90 ± 0.36 0.79 ± 0.11 

βEtOH/g L-1 2.81 ± 0.13 0.42 ± 0.15 0.20 ± 0.03 0.07 ± 0.01 

cH2,R/mol L-1 1,00 ± 0.06 0.32 ± 0.08 N/A N/A 

cCO2,R/mol L-1 0,40 ± 0.02 0.14 ± 0.03 NA N/A 

EH2/% 
25.63 ± 1.3

2 
12.17 ± 3.07 N/A N/A 

ECO2/% 
21.52 ± 0.9

0 
11.17 ± 2.79 N/A N/A 

qH2, max/mmol min-1 g-1 2.40 ± 0.10 4.56 ±4.69 N/A N/A 

qCO2, max/mmol min-1 g-1 1.00 ± 0.05 1.05 ±0.61 N/A N/A 

Numbers behind HPF indicate the absolute pressure of the fermentation in 2.5 L-scale. In 1.5 L-scale, the 

absolute pressure is 1 bar. Average values of three bioreactors per experimental set-up except for HPF-4. For 

this, values are averages of two bioreactors. cH2,R, consumed amount of hydrogen per liter reactor volume; cCO2,R, 

consumed amount of carbon dioxide per liter reactor volume; EH2
, consumption ratio of hydrogen as consumed 

amount of hydrogen in per cent of total amount of ingoing hydrogen; ECO2
, consumption ratio of carbon dioxide 

as  consumed amount of carbon dioxide in per cent of total amount of ingoing carbon dioxide; qH2, max, maximum 

biomass specific uptake rate of hydrogen; qCO2, max, maximum biomass specific uptake rate of carbon dioxide; 

N/A, data not available.  
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Because in 2.5 L-scale the pH-probe is installed after the reactor is sterilized, contamination 

with Bacillus cereus spores can be found in all HPF cultivations. Blank cultivations without 

C. ljungdahlii inoculum but with the 0.1 g L-1 of fructose carried over from the pre-culture, 

yield the same degree of contamination as the samples from experiments with C. ljundahlii 

cells. Neither growth nor products can be found in these blank cultivations. [Oswald et al. 

2018] 

4.3 Influence of cyanide on growth and product formation of 

Clostridium ljungdahlii 

4.3.1 Experiments with fructose as substrate 

Cyanide is a potent inhibitor of CODH, the central enzyme of the WLP. At heterotrophic 

conditions, the WLP is the only way for acetogens to recycle reduction equivalents while 

simultaneously fixating carbon into acetic acid. Heterotrophic growth in presence of cyanide 

can give an indication as to what the critical cyanide concentration might be. All experiments 

are conducted in sealed serum bottles. First experiments on the influence of cyanide use 

concentrations of 0 mM, 0.025 mM, 0.05 mM, 0.1 mM and 1.0 mM potassium cyanide in 

cultures with either fructose or synthesis gas as a substrate. The effects of cyanide on growth 

and product formation are shown in Figure 4.8. With increasing cyanide concentration, lag-

phase increases, and maximum growth rate decreases from 0.1 h-1 without cyanide to 0.08 h-1 

(0.025 mM cyanide), 0.05 h-1 (0.05 mM cyanide), 0.02 h-1 (0.1 mM cyanide) and 0.05 h-1 

(1.0 mM cyanide). Substrate consumption and product formation show this tendency as well. 

While cultures without cyanide reach a maximum CDW of 0.73 ± 0.03 g L-1, all cyanide 

containing cultures reach, within the margin of standard deviation, the same maximum CDW 

of approximately 0.49 g L-1. The exception is the culture with 1.0 mM cyanide where the cells 

do not start to grow until 168 h and the maximum CDW is the same as at cyanide free 

conditions. After the 1.0 mM cyanide culture starts to grow, they consume the same amount 

of fructose as the other cultivations within the following 96 h. Another effect of increasing 

cyanide concentrations can be found with the formed products. C. ljungdahlii converts 

consumed fructose into acetic acid and ethanol. The yields for those two are 0.76 g g-1 (acetic 

acid) and 0.03 g g-1 (ethanol) when growing without cyanide. Those yields shift with 

increasing cyanide concentrations. For acetic acid values of 0.61 g g-1 (0.025 mM cyanide),  
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0.65 g g-1 (0.05 mM cyanide), 0.48 g g-1 (0.1 mM cyanide) and 0.06 g g-1 (1.0 mM cyanide) are 

obtained while the yields for ethanol are 0.05 g g-1 (0.025 mM cyanide), 0.11 g g-1 (0.05 mM 

cyanide), 0.14 g g-1 (0.1 mM cyanide) and 0.48 g g-1 (1.0 mM cyanide). [Oswald et al. 2018b] 

Figure 4.8 – Response of fructose growing C. ljungdahlii to increasing concentrations of cyanide. Control 

cultures (black squares) do not contain any phosphate buffer or cyanide while cultures with 0 mM cyanide (blue 

dots) contain 1 mL 100 mM potassium phosphate buffer at pH 11. Other cyanide concentrations are 0.025 mM 

(red triangles), 0.05 mM (magenta upturned triangles), 0.1 mM (yellow diamonds) and 1.0 mM (petrol tilted 

triangles). A, CDW; B, mass concentration of fructose; C, mass concentration of acetic acid; D, mass 

concentration of ethanol. Average values of three independent cultivations. [Oswald et al. 2018b] 
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Since C. ljungdahlii, once it starts growing at 1.0 mM cyanide, reaches CDW concentrations 

of the same value as without cyanide, the next step is to use the grown culture from 1.0 mM 

cyanide containing medium (aka adapted strain) to inoculate fresh, cyanide containing media. 

Experiments with 0 mM, 0.1 mM and 1.0 mM cyanide are conducted, using not-adapted 

C. ljungdahlii and the adapted strain. Figure 4.9 shows the results of that comparison. Without 

cyanide present the strains reach comparable maximum CDW of 0.72 ± 0.03 g L-1 (not-

adapted strain) and 0.78 ± 0.11 g L-1 (adapted strain). However, with increasing cyanide 

Figure 4.9 – Not-adapted C. ljungdahlii (full symbols) vs. the adapted strain (half filled symbols) at 

different cyanide concentrations with fructose as carbon source.  Cyanide concentrations are 0 mM (blue 

dots), 0.1 mM (yellow diamonds) and 1.0 mM (petrol tilted triangles). A, CDW; B, mass concentration of 

fructose; C, mass concentration of acetic acid; D, mass concentration of ethanol. Average values of three 

independent cultivations. [Oswald et al. 2018b] 
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concentrations the adapted strain shows no significant delay in growth at 0.1 mM cyanide and 

a lag-phase of about 24 h at 1.0 mM cyanide. The not-adapted strain on the other side has a 

lag-phase of about 24 h at 0.1 mM cyanide and of about 260 h at 1.0 mM. Notably the adapted 

strain reaches a maximum CDW of 0.83 g L-1 at 0.1 mM cyanide, which is above the values 

found in cultures of both strains without cyanide. As for the maximum growth rates, the not-

adapted strain reaches values of 0.11 h-1 (0 mM cyanide), 0.05 h-1 (0.1 mM cyanide) and 

0.04 h-1 (1.0 mM cyanide) while the adapted strain reaches 0.10 h-1 (0 mM and 0.1 mM 

cyanide) and 0.06 h-1 (1.0 mM cyanide). [Oswald et al. 2018b] 

Substrate consumption of the adapted strain is unaffected by 0.1 mM cyanide and only 

slightly affected by 1.0 mM cyanide. At 0.1 mM cyanide, the not-adapted strain shows a 

consumption comparable to the adapted strain at highest cyanide concentration and at 1.0 mM 

cyanide, fructose uptake is not observable before 260 h. When looking at product formation 

the adapted strain and not-adapted strain yield the same concentration of acetic acid at 0 mM 

cyanide and while the not adapted strain only produces 0.06 g L-1 ethanol at this cyanide 

concentration, the adapted strain produces a maximum of 1.43 g L-1. For cyanide 

concentrations of 0.1 mM the adapted strain produces more ethanol than the not-adapted 

strain, too. Maximum acetic acid concentrations in not-adapted and adapted strain culture are 

comparable to the values found in cultures without cyanide. At highest cyanide concentrations 

not-adapted and adapted strain produce equal amounts of ethanol with the difference that the 

adapted strain reaches the maximum concentration after 159 h while the not-adapted strain 

takes 358 h. At 1.0 mM cyanide the not-adapted strain produces a maximum of 1.3 ± 0.16 g L-1 

acetic acid while the adapted strain produces 2.85 ± 0.10 g L-1. [Oswald et al. 2018b] 

4.3.2 Cultivations with syngas as carbon and energy source 

To investigate whether the cyanide present in crude syngas affects autotrophic metabolism of 

C. ljungdahlii, sealed serum bottle cultures are studied for the same concentrations of cyanide 

as for heterotrophic growth. Figure 4.10 shows the development of CDW and headspace 

pressure for cultures growing in presence of 0 mM, 0.025 mM, 0.05 mM, 0.1 mM and 1.0 mM 

potassium cyanide with a gas atmosphere of 21.1 ± 3.13 vol-% H2, 23.1 ± 3.74 vol-% CO, 

10.4 ± 1.70 vol-% CO2 and 39.5 ± 6.85 vol-% N2. Cultures are seeded from 5 % inoculated 

cultures grown for 7 d with syngas as carbon and energy source. The control culture without 

additional phosphate buffer added and the culture with 0 mM cyanide show the same growth 

behavior. For cyanide concentrations of 0.025 mM, 0.05 mM and 0.1 mM the lag-phase 
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increases with increasing cyanide concentration. However, despite that cultures at 0.05 mM 

and 0.1 mM cyanide reach the same maximum CDW of about 0.20 g L-1, the 0.025 mM 

culture reaches with 0.16 ± 0.01 g L-1 a slightly lower value. Maximum growth rates are 

0.08 h-1 (control), 0.08 h-1 (0 mM cyanide), 0.03 h (0.025 mM cyanide), 0.04 h-1 (0.05 mM 

cyanide), 0.04 h-1 (0.1 mM cyanide). No growth can be observed within 497 h in presence of 

1.0 mM cyanide. Due to lack of samples between 96 h and 150 h it might be possible that the 

maximum growth rate in the 0.025 mM cyanide cultures is higher than 0.03 h. [Oswald et al. 

2018b] 

The development of headspace pressure, representing the available substrate, shows a similar 

trend as the CDW development. Final pressure in cyanide free cultures is 0.86 ± 0.01 bar. At 

this pressure the gas atmosphere consists only of carbon dioxide and nitrogen (data not 

shown). With their lag-phase reflecting time delay, cultures with 0.025 mM and 0.05 mM 

cyanide reach the same pressure as cyanide free cultures. At 432 h (18 d) the 0.1 mM cyanide 

containing culture reaches a pressure of 0.90 ± 0.04 bar but has only completely consumed 

carbon monoxide. Hydrogen partial pressure in that culture after 18 d is 34.42 ± 3.31 mbar. 

The pressure drop in 1.0 mM cultures is due to liquid and gaseous samples taken from the 

Figure 4.10 – Development of CDW and headspace pressure of cultivations of C. ljungdahlii in prescence 

of different cyanide concentrations. Control cultures (black suqares) do not contain any phosphate buffer or 

cyanide while cultures with 0 mM cyanide (blue dots) contain 1 mL 100 mM potassium phosphate buffer at pH 

11. Other cyanide concentrations are 0.025 mM (red triangles), 0.05 mM (magenta upturned triangles), 0.1 mM 

(yellow diamonds) and 1.0 mM (petrol tilted triangles). A, CDW; B, headspace pressure. Average values of three 

independent cultivations. [Oswald et al. 2018b] 
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bottles since no growth or product formation occurred (data not shown). 

Similar to the approach with fructose growing cultures, bottles with 0 mM, 0.1 mM and 

1.0 mM are seeded with not-adapted C. ljungdahlii and a strain adapted on fructose in 1.0 mM 

cyanide containing medium. Pre-cultures for this experiment are grown for 48 h with syngas 

as carbon and energy source. Syngas composition is 27.1 ± 0.6 vol-% H2, 29.0 ± 0.5 vol-% CO, 

13.5 ± 0.2 vol-% CO2 and 28.3 ± 0.4 vol-% N2. Figure 4.11 shows the results for CDW, 

Figure 4.11 – Not-adapted C. ljungdahlii (full symbols) vs. the adapted strain (half filled symbols) at 

different cyanide concentrations with syngas as carbon and energy source.  Cyanide concentrations are 

0 mM (blue dots), 0.1 mM (yellow diamonds) and 1.0 mM (petrol tilted triangles). A, CDW; B, mass 

concentration of fructose; C, mass concentration of acetic acid; D, mass concentration of ethanol. Average 

values of three independent cultivations. [Oswald et al. 2018b] 
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headspace pressure and concentrations of acetic acid and ethanol. Cultures of the not-adapted 

strain without cyanide show the shortest lag-phase and reach maximum CDW of  

0.12 ± 0.02 g L-1. Not-adapted cultures at 0.1 mM cyanide do not start to grow before 188 h 

and reach a maximum CDW of 0.24 ± 0.01 g L-1. As for the adapted cultures, the ones with 

0 mM and 0.1 mM cyanide show the same growth behavior in the first 259 h. The cyanide free 

cultures of adapted C. ljungdahlii reach a maximum CDW of 0.11 ± 0.02 g L-1 while the ones 

at 0.1 mM cyanide reach 0.13 ± 0.01 g L-1. No increase in CDW is measured for 1.0 mM 

cyanide for both not-adapted and adapted strain. Maximum growth rates for not-adapted 

cultures are 0.04 h-1 (0 mM cyanide) and 0.03 h-1 (0.1 mM) and for the adapted strain 0.03 h-1 

(0 mM cyanide) and 0.06 h-1 (0.1 mM cyanide). Initial headspace pressure is 2.03 ± 0.01 bar. 

For each cyanide concentration, the not-adapted cultures reach the lowest final pressure 

except for 1.0 mM where no growth occurred. [Oswald et al. 2018b] 

Final acetic acid concentrations are within the same margin of standard deviation for not-

adapted and adapted strain at 0 mM cyanide and the not-adapted at 0.1 mM cyanide. On 

average they reach 2.06 g L-1. At 353 h maximum concentration of acetic acid in 0.1 mM 

cultures of the adapted strain are measured with 1.54 ± 0.24 g L-1. Final ethanol concentrations 

are below 0.3 g L-1 for all cultures except the not-adapted cultures in 0.1 mM cyanide 

containing medium which have 0.53 ± 0.24 g L-1 ethanol. [Oswald et al. 2018b] 

4.4 Process link-up: From syngas to malic acid 

4.4.1 Nitrogen reduction in culture media for Clostridium ljungdahlii 

As Knuf et al. [2013] outlined, A. oryzae only produces malic acid under nitrogen limited 

conditions. Hence, if acetic acid from syngas fermentation is to be converted to malic acid by 

A. oryzae it is necessary to adjust the ammonia contend of the syngas fermentation medium so 

that no ammonia is left at the end of syngas fermentation. Table 4.4 summarizes the results of 

initial cultivations on syngas using culture medium from section 3.1.1 with a starting 

concentration of ammonia chloride of 2.5 g L-1 and medium were the ammonia contend is 

reduced to 0.33 g L-1. The concentration of ammonia chloride for the NH4-reduced medium 

(NH4-red) calculates from the consumed amount of ammonia during syngas fermentation 

using the original medium composition. This is reflected by ΔβNH4Cl of 0.3 g L-1 and 0.41 g L-1 

for the original medium. Due to a huge potassium peak in the ion chromatograph 
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chromatogram of the ammonia reduced medium it is not possible to determine the exact 

amount of ammonia left after 96 h of syngas fermentation. [Oswald et al. 2016] 

The first cultivation using the original medium composition from section 3.1.1 consists of a 

single fermentation experiment. The initial gas flow rate of 10.4 mL min-1 is increased to 

18 mL min-1 after reaching 98 % consumption of CO and H2. In difference to the first, the 

second cultivation with unaltered ammonia contend consists of two independent fermentation 

experiments in which the gas flow rate is kept at 10.4 mL min-1 over the course of the 

cultivation. The same conditions apply for the first set of three experiments with medium 

featuring a reduced ammonia contend whereas in the second triplicate of fermentations with 

Table 4.4 – Results of preliminary experiments with C. ljungdahlii 

growing with syngas as sole carbon and energy source. 

Medium Original1 Original2 NH4-red3 NH4-red3 

βNH4Cl/g L-1 2.5 2.5 0.33 0.33 

βCDW/g L-1 0.62 0.83 ± 0.37 0.59 ± 0.02 0.59 ± 0.03 

βacetic acid/g L-

1 

16.34 14.74 ± 2.00 15.38 ± 1.83 18.78 ± 0.98 

βEtOH/g L-1 1.24 0.23 ± 0.08 0.47 ± 0.29 1.80 ± 0.22 

ΔβNH4Cl/g L-

1 

0.30 0.41 ± 0.05 N/A N/A 

cH2,R/mol L-1 0.59 0.46 ± 0.01 0.42 ± 0.01 0.47 ± 0.06 

cCO,R/mol L-1 0.67 0.48 ± 0.00 0.46 ± 0.02 0.76 ± 0.04 

cCO2,R/mol L-

1 

-0.02 0.02 ± 0.00 0.02 ± 0.00 -0.18 ± 0.04 

YP/S
*/g g-1 0.85 0.92 ± 0.15 1.00 ± 0.03 0,89 ± 0.01 

Vgas, total/L 79.5 59.46 ± 1.13 59.84 ± 1.13 97.01 ± 1.37 

nH2,in/mol 1.21 0.85 ± 0.00 0.80 ± 0.03 1.37 ± 0.04 

nCO,in/mol 1.21 0.84 ± 0.01 0.82 ± 0.03 1.36 ± 0.02 

nCO2,in/mol 0.55 0.37 ± 0.00 0.37 ± 0.02 0.59 ± 0.01 

YP/S
**/g g-1 0.69 0.84 ± 0.11 0.90 ± 0.04 0.73 ± 0.02 

cH2,R, consumed amount of hydrogen per liter reactor volume; cCO,R, consumed amount of 

carbon monoxide per liter reactor volume; cCO2,R, consumed amount of carbon dioxide per 

liter reactor volume; Vgas, total,  total volume of used syngas over the course of 96 h; nH2,in, total 

amount of fed hydrogen; nCO,in, total amount of fed carbon monoxide; nCO2,in, total amount of 

fed carbon dioxide 

*  based on consumed substrates 

** based on totally fed H2 and CO 

1  single experiment 

2  two replicas 

3  three replicas 
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reduced ammonia contend the gas feed rate is varied in different stages of cultivation. Similar 

to the first cultivation with the original ammonia contend the first increase in gas flow rate 

from 10.4 mL min-1 to 12.6 mL min-1 happens after reaching 98 % consumption of carbon 

monoxide and hydrogen. 8.6 h later the gas flow rate is increased to 18 mL min-1 and again 

after additional 13 h to 28.2 mL min-1. At both points consumption of hydrogen and carbon 

monoxide is 98 %. After the last increase in gas feed rate the hydrogen consumption 

continuously decreased and, in an attempt to stabilize the cultivation, the gas feed rate is 

reduced first to 23.3 mLmin-1 and 12.6 mL min-1 at 11.2 h and 33.4 h after the last increase in 

gas feed rate respectively. Despite the reduction in gas feed rate the hydrogen consumption 

continues to decrease until the end of the cultivation. 

Among final values for CDW and product concentrations Table 4.4 states consumed amounts 

of substance per liter reactor volume for hydrogen (cH2,R), carbon monoxide (cCO,R) and 

carbon dioxide (cCO2,R) as well as the overall amount of substance of those three (nH2,in, nCO,in, 

nCO2,in) in the total syngas volume used during fermentation. It also gives two values for 

substrate-based product yields (YP/S), the first one (YP/S
*) is based on consumed substrates 

only. In this case substrates include CO2 if cCO2,R is positive. YP/S
** is based on the overall fed 

mass of hydrogen and carbon monoxide during cultivation. 

Since preliminary aerobic experiments with A. oryzae were conducted by Stefan Dörsam, 

those results are only summarized briefly here and can be found in Oswald et al. [2016]. 

Using the established malic acid production medium and acetic acid as carbon source YP/S 

values of 0.28 g g-1 and L-malic acid concentrations of 8.62 ± 1.15 g L-1 are achieved. 

Cultivations of A. oryzae on acetic acid in presence of ethanol result in maximum yields of 

0.55 g g-1 but ethanol is not used as a carbon source. When syngas fermentation broth is 

harvested from the reactor and used for A. oryzae cultivation yields of 0.27 g g-1 are achieved 

only if C. ljungdahlii cells are not removed. Otherwise no malic acid is produce. [Oswald et 

al. 2016] 

4.4.2 Process link-up via sequential mixed culture 

Based on the above shown preliminary results the main link-up experiment is using NH4-red 

medium to ensure ammonia limited conditions after 96 h. This is necessary to enable malic 

acid production. Starting gas feed rate is 12.6 mL min-1 and is increased to 18 mL min-1 at 

41.5 h after inoculation. 71.5 h after inoculation the gas feed rate is reduced back to the initial 



4. Results 

59 

 

12.6 mL min-1 due to decreasing hydrogen consumption. Figure 4.12 shows average online 

and offline values (A), overall concentration of consumed substrates and consumption rates 

for hydrogen, carbon monoxide and carbon dioxide (B). 

Between 0 h and 20 h, fructose concentration and amount of carbon monoxide in the off-gas 

decrease constantly until fructose is not detectable anymore. Biomass concentration 

continuously increases until 49 h and stays at 0.3 g L-1 for the rest of the fermentation. Acetate 

and Ethanol concentrations increase to maximum mean values at the end of the syngas 

fermentation of 15.9 g L-1 and 2.0 g L-1, respectively. Similar to the decrease of carbon 

A B 

Figure 4.12 – Mean online and offline values for syngas fermentation part of sequential mixed 

culture as well as overall concentration and consumption rate of consumed substrates. A Upper part: 

Average amount of substance flow rates for hydrogen (red), carbon monoxide (yellow), and carbon dioxide 

(green) in the off-gas. The lightly colored areas around the average lines show minimum and maximum 

variance between bioreactors. Bottom part: Average values for ORP (blue line), βCDW (black dots), βfructose 

(light green squares), βacetate (blue-green diamonds), and βethanol (orange half-filled diamonds). B Overall 

concentration of consumed substrates and consumption rates. Values are given as absolute values ci, Reactor 

and ṅi, Reactor (solid lines) and in percent of the fed syngas at each specific time Ei and in percent of the 

amount of substance fed rates ei (dotted lines). Hydrogen (H2, red), carbon monoxide (CO, yellow), and 

carbon dioxide (CO2, green). The lightly colored areas around the average lines show minimum and 

maximum variance between three bioreactors. [Oswald et al. 2016] 
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monoxide in the off-gas, carbon dioxide increases up to a local maximum of 0.13 mmol min-1 

after 17 h of cultivation. With starting hydrogen consumption, carbon dioxide flow rate in the 

off-gas drops to an average of 0.05 mmol min-1. Hydrogen off-gas flow rates stayed as low as 

0.002 mmol min-1 and slightly increased when the rate of ingoing syngas was increased. After 

about 47 h the hydrogen content in the off-gas started to increase. In contrast to hydrogen and 

carbon dioxide, carbon monoxide values in the off-gas stayed low until 83.0 h when they 

started to increase until the end of the fermentation. The decreasing gas flow rates at 71.0 h 

are due to reduction of the gas feed rate to 12.6 mL min-1. [Oswald et al. 2016]  

The amount of consumed carbon monoxide per liter medium increases continuously and 

reaches an average maximum of 0.62 mol L-1. This equals to 87.4 % of the total CO that went 

into the bioreactor (dotted yellow line). The amount of consumed hydrogen per liter medium 

started to increase considerably after 19 h and went up to 0.53 mol L-1 or 74.9 % of total 

hydrogen (dotted red line). Similar to the increase of carbon dioxide in the off-gas in Figure 

4.12 A, the amount of consumed carbon dioxide decreased down to -0.02 mol L-1 or -32.4 % 

of the amount of carbon dioxide at 20 h. From that point, the amount of consumed carbon 

dioxide increased to 0 mol L-1 and started to decrease down to -0.03 mol L-1 (-10.5 %) when 

hydrogen consumption faded. Uptake rate of carbon monoxide increased continuously during 

the first 20 h, where it reached its maximum average of 0.16 mmol min-1 equaling 98.3 % of 

Figure 4.13 - Malic acid production (cMalic acid), and acetic acid (cAetic acid) consumption in three 

bioreactors A, B, C from syngas fermentation after 96 h of fermentation. Fumaric acid is the 

main side product during A. oryzae fermentation. [Oswald et al. 2016] 
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the ingoing carbon monoxide stream at that time. Hydrogen uptake rate started to increase at 

16 h and reached a maximum average of 0.16 mmol min-1 or 98.5 %. At 41.5 h the uptake rate 

of carbonmonoxide and hydrogen increased to 0.23 mmol min-1, due to the elevated gas feed 

rate. After 48 h the hydrogen uptake rate started to decrease and went down to 0.10 mmol min-

1 at the end of the fermentation. Following the syngas fermentation, the reactor is changed to 

fungal fermentation as stated in section 3.2.2 without removing of microbial biomass. 

[Oswald et al. 2016] 

As with the preliminary results of experiments with A. oryzae and conversion of acetic acid to 

malic acid, the experiments of the fungal part of the process link-up are conducted by Stefan 

Dörsam. The results are taken from Oswald et al. [2016], the resulting publication of that 

project. Figure 4.13 shows the results of the three replicates approach of direct fungal 

fermentation of fermentation broth from syngas fermentation (see directly above). 

Malic acid production can only be detected in two of the three bioreactor runs (A and B). In 

reactor C however, acetic acid is partly metabolized, but no product is formed. Acetic acid 

concentration of reactor A decreases from 15.53 g L-1 to 10.02 g L-1 and results in 1.83 g L-1 

malic acid. This corresponds to a yield of 0.33 g g-1. The initial acetic acid concentration of 

14.26 g L-1 in reactor B decreases to 6.15 g L-1 during the fermentation and, with a yield of 

0.18 g g-1, gains 1.42 g L-1 malic acid. A total of 5.39 g L-1 of the initial 18.39 g L-1 acetic acid 

is consumed in reactor C but no malic acid formation occurred. [Oswald et al. 2016] 
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5. Discussion 

5.1 Characterization of stirred tank reactor system 

5.1.1 Determination of kla-values 

Two phases of operation with two different stirrer set-ups (RMR and RRB) are investigated. 

In the first phase the gas composition in the off-gas and the headspace of the bioreactor is 

close to the composition of the inlet gas stream. In the second phase, the off-gas and gas in the 

headspace consists only of non-usable gases like nitrogen and carbon dioxide. Values for the 

volumetric mass transfer coefficient in the first phase increase with increasing gas feed rate 

for each of the two stirrer set-ups. If gas from the headspace is entrained back into the liquid 

in a well-mixed STR both, sparged gas and entrained gas together determine the kla-value 

[Van’t Riet 1979]. The results with headspace aeration alone show that. For the RMR stirrer 

set-up the influence of the headspace gas is 87 % (10.3 mL min-1), 78 % (17.8 mL min-1) and 

48 % (44.4 mL min-1). While for the RRB set-up the influence is 47 % (10.3 mL min-1), 29 % 

(17.8 mL min-1) and 14 % (44.4 mL min-1). Looking at the values for each gas feed rate 

reveals highest kla-values at 800 min-1 except for the RMR set-up at 50 mL min-1 where the 

maximum can be found at 600 min-1. However, at 1000 min-1 the RRB and RMR set-up only 

show an increase in kla-values at a gas feed rate of 50 mL min-1 while there is no difference at 

18 mL min-1 and 25 mL min-1. 

The higher volumetric power input at 1000 min-1 results in smaller gas bubbles which have a 

higher residence time. If air or any other mixture of oxygen and an inert gas is used, they also 

reach diffusion equilibrium faster due to their increased ratio of surface to volume [Linek et 

al. 1987]. At diffusion equilibrium no net mass transfer across the gas-liquid boundary surface 

is possible and gas bubbles in this state are considered dead volume. Hence, small gas bubbles 

in the state of diffusion equilibrium combined with increased gas residence times reduce the 

observed kla-value. [Linek et al. 1987] Working with a gas atmosphere consisting only of 

oxygen (or the desired substrate gases) would omit this problem [Linek et al. 1989] but 

typical sources for gases for syngas fermentation usually contain still other gases as well 

[Abubackar et al. 2011, Liew et al. 2013, Neumann et al. 2016] so that this is a problem that 

cannot be easily avoided at process conditions. 
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For the other phase, where the headspace consists mainly of inert gases (e. g. nitrogen), the 

kla-values decrease with increasing stirrer speed for both stirrer set-ups at all investigated gas 

feed rates. Except for the RRB set-up at a gas feed rate of 50 mL min-1. Here, the highest 

volumetric mass transfer coefficient is obtained at 800 min-1. Since the headspace in this 

scenario is not replaced with air at the beginning of each measurement, one explanation is that 

with increasing stirrer speed more gas from the headspace is brought back into the liquid 

phase. For the RMR set-up this is the prime intention, but this also means for this situation, 

that the mean oxygen content of the dispersed gas bubbles is lower than 21 % due to the 

nitrogen atmosphere in the headspace. In consequence, the mean concentration difference in 

RMR set-up is lower than in the RRB set up. [Gaddis 1999] As described above also in the 

second phase part of the gas bubbles can be considered dead volume which do not contribute 

to mass transfer [Linek at al. 1987]. Of course, this only holds true as long as the gas 

composition above the surface is different from the composition of the feed gas. Values for 

kla at each stirrer speed are always lower for the RMR set-up than the corresponding values 

with the RRB set-up while the values in phase one are quite similar for 18 ml min-1 and 

25 mL min-1. Due to the above-mentioned problems with the mean concentration difference 

for the RMR set-up the measured values are not reflecting the kla-values at process conditions 

properly. Using the dynamic pressure method for determination of kla-values as described by 

Linek et al. [1989] would avoid such problems but is not applicable in the used glass vessel. 

For proper comparison with kla-values from other syngas converting processes available in 

literature, it is necessary to find a suitable correlation that takes all influencing parameters into 

account. Schlüter et al. [1992] describe the influencing parameters on the mass transfer 

coefficient as power input by the stirrer per volume of liquid (P/Vl, W m-3) and the gas feed 

rate per volume of liquid (Vġ/Vl, vvm). However, Van’t Riet [1979] Henzler [1982] and 

Zlokarnik [1999] write that the superficial gas velocity (v, m s-1) is more suitable for 

comparison of different scales. The correlation 
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was introduced by Henzler [1982] and connects the kla with volume-based power input by the 

stirrer, superficial gas velocity (v, m s-1) earth gravitational force (g, m s-2) and the liquid 
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parameters density (ρ, kg m-3) and dynamic viscosity (ν, m2 s-1). With A, a and b being 

constants. Furthermore, Henzler [1982] simplifies this correlation to 
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because b ≈ 1 – a for all investigated systems. Unfortunately, literature data on mass transfer 

coefficients for syngas fermentation processes does not generally state values for P/Vl. But 

under turbulent conditions (Re > 104) and Fr ≥ 0.65 as well as D/d ≥ 2.2, the equation 
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by Zlokarnik [1973] is used to calculate P/Vl for reactor systems with one Rushton turbine. 

Where D is the inner diameter of the reactor, d is the stirrer diameter and the gas-throughput 

number Q = Vġ n-1 d-3. For stirrer set-ups with more than one Rusthon turbine on the same 

stirrer shaft the equation  

Ne = z 
Ne0 + 187 Q Fr-0.32 (

d
D

)
1.53

 - 4.6 Q
1.25

1 + 136 Q (
d
D

)
1.14

 (5.4) 

from Judat [1976] was modified by Henzler [1982] for different amounts of stirrer (z) with 

Ne0 being the Newton number of the stirrer without aeration. Using equations (5.3) and (5.4) 

as well as the relation in (5.2), literature data from Kapic et al. [2006] and Orgill et al. [2013] 

for stirred tank reactors is plotted together with own measurements at 800 min-1 and the RRB 

set-up without additional headspace aeration in Figure 5.1.  

The data presented in Figure 5.1 shows that for Vġ/Vl < 0.029 vvm at 800 min-1 changes in gas 

feed rate are proportional to the resulting changes in kla since kla v-1 results in the same value 

for all three investigated gas feed rates. Note that (ν2 g-1)1/3 is constant for all datapoints. For 

Vġ/Vl > 0.029 vvm values for kla v-1 decrease, indicating an only small effect of the gas feed 

rate on kla. This as has also been stated by Schlüter et al. [1992] and is commonly found for 

all STR systems [Zlokarnik 1999]. Increasing Vġ also reduces the power necessary for stirring 
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[Zlokarnik 1973; Henzler 1982]. Over all, the kla-values found in this work are in agreement 

with literature data for STRs. 

Vega et al. [1989a] investigated the conversion of carbon monoxide to acetic acid in 

continuous running STR cultivations with hydrogen and carbon monoxide containing syngas. 

They find that the most economical optimum of such processes can be achieved only at mass 

transfer limited conditions, when every substrate that goes into solution is immediately taken 

up by the cells. Here, risks of inhibition from substrates, like inhibition of hydrogenase 

activity by CO [Gray and Gest 1965; Kim et al. 1984; Devarapalli et al. 2016], is eliminated 

[Vega et al. 1989a] and complete usage of fed substrates can be achieved. Because partial 

recirculation of gas atmosphere from the headspace is intended with the RMR set-up, the 

stirrer speed of 800 min-1 is chosen for all cultivations. 

Figure 5.1 – Sorption characteristic for CO in STRs with one and two Rushton turbines.  

Black, filled symbols are calculated from data in Kapic et al. [2006] and half-filled symbols from 

data in Orgill et al. [2013] with two stirrers. Colored diamonds are calculated data from own 

measurements at 800 min-1 and the RRB stirrer set-up. kla-values are all calculated to 20 °C using 

equation (3.13). 
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5.1.2 Evaluation of substrate consumption 

Increasing the mass-transfer coefficient in syngas cultivation processes is only reasonable 

within certain boundaries. It has been shown that the economic ideal mode of operation is 

under mass-transfer limited conditions [Vega et al. 1989a] so that the liquid concentration of 

limiting gaseous substrates is always zero. As long as this criterion is met, the productivity 

will increase with increasing kla. However, Bredwell et al. [1999] pointed out that increasing 

kla by means of increasing Vġ can lead to decreasing overall conversion efficiency of syngas 

into products. The reason for this is that the bubble residence time becomes too short to allow 

for complete diffusion of CO and H2 of a gas bubble from the gaseous into the liquid phase 

[Bredwell et al. 1999]. In the experiments conducted in this thesis, kla is increased by means 

of increased gas feed rate. The results show that at a volume-based gas-feed rate of as low as 

0.029 vvm (44.4 mL min-1 experiments) complete substrate consumption cannot be achieved 

in both of the investigated stirrer set-ups under batch cultivation conditions. Even though, the 

mass transfer coefficient is at 0.029 vvm six-fold (RMR) and four-fold (RRB) increased 

compared to the value at 0.007 vvm. Figure 5.2 shows the consumption rates for all six 

investigated set-ups in per cent of the amount of substance feed rate. The data of those 

experiments shows that hydrogenase activity is inhibited during the first 18 h of cultivation at 

0.007 vvm and 0.012 vvm due to high CO contend [Gray and Gest 1965; Kim et al. 1984; 

Devarapalli et al. 2016]. Hydrogen continues to be co-consumed with CO for the rest of the 

cultivation at 0.007 vvm with the RRB stirrer set-up and up until 78 h with the RMR set-up. 

At 0.012 vvm duration of co-consumption of H2 and CO is also longer with the RRB set-up 

but starts to decrease in the last third of the cultivation, too. At 0.029 vvm H2 consumption 

could only be observed for the RMR stirrer set up. It is likely that the liquid CO concentration 

is no low enough in 0.029 vvm experiments to allow hydrogenase activity [Vega et al. 1989a]. 

The phenomenon of decreasing hydrogen consumption with liquid batch cultures of 

C. ljungdahlii can also be found in Cotter et al. [2009] and Maddipati et al. [2011] but both 

publications do not state an explanation on that topic. However, Liu et al. [2014] compared 

corn steep liquor (CSL) and yeast extract as sources of nitrogen and vitamins in CSTR 

cultivations with Alkalibaculum bacchi strain CP15 and fond that with CSL the consumption 

of hydrogen is 1/3 lower than with yeast extract. Comparing this findings from continuous 

running culture with the data in Figure 5.2 indicates that a component of yeast extract 

negatively influences hydrogenase activity when it becomes limiting. 
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  Figure 5.2 – Consumption rates for syngas fermentation with C. ljungdahlii in per cent of the amount 

of substance feed rate. Results of experiments with RMR (left) and RRB stirrer set-up (right) at average 

volume based gas flow rates of 0.007 vvm, 0.012 vvm and 0.029 vvm (top to bottom). Hydrogen (red line), 

carbon monoxide (yellow line) and carbon dioxide (green line). The areas around the lines indicate the 

standard deviation. Graphs show average values of two bioreactors per experimental set-up. 
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The incorporation of an axial flow impeller between two radial flow impellers and the 

abandonment of baffles in the RMR set-up resulted in vortex formation and dissipation of gas 

from the vortex zone by the upper Rushton impeller. The lower Rushton impeller dissipated 

the gas from the sparger. Zlokarnik [1999] describes that an intensively stirred vessel without 

baffles becomes a centrifuge, causing most of the dissipated gas to exit the liquid near the 

stirrer. Gas within the vortex zone experiences high recirculation rates but vortex aeration 

alone is no alternative to gas sparging by a hollow shaft stirrer or submerged sparger. 

[Zlokarnik 1999] The recirculation in the vortex zone could explain the observed hydrogen 

consumption at 0.029 vvm in the RMR set-up while the RRB set-up shows less entrainment of 

headspace gas. 

Between RMR and RRB stirrer set-up the difference in substrate consumption is the duration 

and amount of hydrogen consumption. Table 5.1 summarizes the ratio of consumed 

substrates, product yields based on consumed (YP/S
*) and fed (YP/S

**) substrates and the molar 

ratio of acetic acid to ethanol at the end of each fermentation. For 0.007 and 0.012 vvm the 

total consumption of carbon monoxide is in the range of 81 % to 84 % for both stirrer set-ups 

while hydrogen consumption decreases. At 0.029 vvm the RMR set-up consumes 3.26 % and 

Table 5.1 – Per cent consumption of substrates, yield based on consumed and fed 

substrates and molar acetic acid to ethanol ratio of substrate consumptions 

experiments. 

Set-up 
EH2 

% 

ECO 

% 

ECO2 

% 

YP/S
* 

g g-1 

YP/S
** 

g g-1 

HAc:EtOH 

- 

RMR-10 72.49 81.38 -1.73 1.05 0.85 24.79 

RRB-10 77.32 83.92 0.96 0.99 0.85 22.24 

RMR-18 57.43 83.60 -36.5 0.95 0.78 7.27 

RRB-18 65.63 81.50 -16.45 0.97 0.78 5.88 

RMR-44 3.26 47.46 -55.20 0.41 0.19 3.24 

RRB-44 0.00 37.87 -50.83 0.41 0.15 3.62 

The numbers behind RMR and RRB in the “set-up” column stand for the gas feed rate wit 10 = 10 mL min-1 

(0.007 vvm), 18 = 18 mL min-1 (0.012 vvm), 44 = 44 mL min-1 (0.029 vvm). EH2
, consumption ratio of hydrogen as 

consumed amount of hydrogen in per cent of total amount of ingoing hydrogen; ECO, consumption ratio of carbon 

monoxide as consumed amount of carbon monoxide in per cent of total amount of ingoing carbon monoxide; ECO2
, 

consumption ratio of carbon dioxide as consumed amount of carbon dioxide in per cent of total amount of ingoing 

carbon dioxide; YP/S
*, product yield based on consumed substrates; YP/S

**, yield based on total fed substrates; 

HAc:EtOH, molar ratio of acetic acid to ethanol. 
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47.46 % of the total fed hydrogen and carbon monoxide respectively. The RRB set-up 

consumes only 37.87 % carbon monoxide. The better performance of the RMR set-up at 

0.029 vvm is in my opinion due to the high recirculation of gas in the vortex zone as 

described above. The YP/S
* values of the substrate consumption experiments show only small 

differences between both stirrer set-ups. The low value of 0.41 g g-1 at 0.029 vvm is in 

agreement with the maximum theoretical values for acetic acid and ethanol from CO which is 

0.45 g g-1 at a molar acetic acid to ethanol ratio of 3. Of more significance in evaluating the 

overall process efficiency is the YP/S
**. Abubackar et al. [2016] used C. autoethanogenum, a 

close relative of C. ljungdahlii, in liquid batch culture fed with 0.008 vvm of pure CO with 

conditions favoring solventogenesis. Their data allows the calculation of YP/S
** at the end of 

their process to 0.02 g g-1 which is 5 %  of the theoretical maximum for ethanol from carbon 

monoxide and 6.26 % of the fed CO is consumed [Abubackar et al. 2016]. With a comparable 

gas feed rate we reach higher overall substrate consumption and YP/S
** with a gas mixture 

consisting of equimolar amounts of hydrogen and carbon monoxide. 

5.2 Elevated pressure for increased mass-transfer 

Experiments in 1.5 L-scale are conducted at a kla value of 10.2 10-3 s-1 (see section 4.1.1 RRB 

stirrer set-up) and since P/Vl and Vġ/Vl are kept constant, the mass transfer coefficient should 

have the same value in 2.5 L-scale [Schlüter et al., 1992]. Nevertheless, both scales do not 

show complete geometric similarity as outlined in the Methods section. Those discrepancies 

from geometric similarity may explain the observed deviations in product concentration and 

substrate consumption between 1.5 L-scale and 2.5 L-scale at 1 bar absolute pressure. 

Supporting this are the YP/S values based on consumed substrates. For both scales, this yield is 

quite similar with the one from HPF-1 being only 4 % lower than the one found in 1.5 L-scale. 

That means that in both cases metabolic activity is similar since the same ratio of consumed 

substrates end up in products. Of far more interest in assessing the whole experimental set-up 

for 2.5 L-scale is the yield based on totally fed substrates during the fermentation. This value 

shows the overall conversion efficiency of the set-up and one aim of improving every process 

should be to bring this value as close to the yield based on consumed substrates as possible. 

For the case at hand, 15 % of gaseous substrates fed in 1.5 L-scale end up in products while in 

2.5 L-scale only 5 % and at elevated pressures 4 % can be found in products. I interpret the 

high conformity of the values for 2.5 L-scale as indication that the found differences in 

substrate consumption and product concentration between scales at atmospheric conditions 
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are due to incomplete geometric similarity and independent of absolute process pressure. 

[Oswald et al. 2018a] 

When looking at the product spectrum of the conducted experiments in Figure 3.7, the main 

thing that jumps the eye is that with increasing pressure the spectrum is shifted towards 

formic acid formation. At a total pressure of 7 bar almost no ethanol and only 0.8 g L-1 acetic 

acid is produced over the course of fermentation (see Figure 3.7) while a total of 3.2 g L-1 of 

formic acid is produced. Figure 5.3 shows the amount of substance ratios (xi = ci/Σci) of the 

products at the end of the cultivations at elevated pressure. It seems that at a p
H2

 of 2.13 bar 

(4 bar total pressure) formic acid and acetic acid are produced in equimolar amounts while at 

a p
H2

 of 3.73 bar (7 bar total pressure) values of x for formic acid and acetic acid seem to be 

inverted compared to experiments at atmospheric conditions. The data also suggests that in 

the range of p
H2

 from 0.5 to 3.37 bar (corresponding p
CO2

 from 0.25 to 1.9 bar) there might be 

a linear relationship between xi and the substrate partial pressure. Increased formic acid 

production at elevated pressures with H2/CO2 is described by Bleichert and Winter [1994] for 

pure cultures of Methanobacterium formicum and M. palustre as well as for mixed cultures 

Figure 5.3 – Amount of substance ratio for products at the end of 

cultivations at elevated pressure. dark grey diamonds, formic acid; 

orange upturned triangles, acetic acid; dark yellow triangles, ethanol. 

[Oswald et al. 2018a] 
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from sewage sludge at hydrogen partial pressures of more than 2 bar. Kantzow and Weuster-

Botz [2016] and before them Peters et al. [1999] show that formic acid formation is linked to 

the hydrogen partial pressure in A. woodii. By shifting the hydrogen partial pressure from 

1.4 bar to 2.1 bar, they increased final formic acid concentration after 74.4 h of cultivation 

from 4.2 g L-1 to 7.3 g L-1 and increased the yield of formic acid per gram substrates fed of 

about 67 % [Kantzow and Weuster-Botz, 2016]. Peters et al. [1999] report an increase in 

formic acid production for bottle experiments of 0.5 mM per 0.1 bar increase in initial pH2. In 

A. woodii, the hydrogen dependent carbon dioxide reductase (HDCR) catalyzes the 

hydrogenation of CO2 with molecular hydrogen [Schuchmann and Müller, 2013] while in 

C. autoethanogenum, a close relative to C. ljungdahlii, the direct hydrogenation of CO2 with 

H2 is one of three possible reactions of the hydrogenase-formate dehydrogenase complex 

funneling CO2 into the methyl branch of the Wood-Ljungdahl pathway [Wang et al., 2013]. It 

might be that the ATP consuming reaction of formic acid and THF to formyl-THF is a 

possible bottleneck in the methyl branch and results in accumulation of formic acid at 

increased substrate partial pressures. At these conditions, ATP formation is not high enough 

to provide enough energy for formyl-THF formation [Yang and Drake, 1990; Kantzow and 

Weuster-Botz, 2016] and/or a limited pool of THF slows down the processing of formic acid. 

At biological standard conditions, the formation of formic acid is scratch feasible. Increasing 

the partial pressure of hydrogen and carbon dioxide makes the reaction more favorable 

[Daniels, 1982], which in my opinion favors the direct hydrogenation of CO2 by the 

hydrogenase-formate-dehydrogenase complex. However, the results give that there is a 

nonlinear relationship between formic acid formation and p
H2

. Peters et al. report a linear 

relationship of 0.5 mM formic acid produced per 0.1 bar increase in p
H2

 for A. woodii and 

A. carbinolicu. Calculating the increase in formic acid formation divided by the increase in 

hydrogen partial pressure in this work results in 17 mM bar-1 when increasing p
H2

 to 2.13 bar 

(4 bar absolute pressure) and 25.6 mM bar-1 when increasing pH2 further to 3.73 bar. 

[Oswald et al. 2018a] 

Unfortunately, the only publications that state results from experiments with C. ljungdahlii at 

elevated substrate pressures so far do not report if formic acid production is increased at 

higher pressures. This may be because no formic acid is produced when working with CO 

containing gases at elevated pressures or more likely because the authors did not check for 

formic acid in their sample analytics. However, since no significant growth could be observed 
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at 4 bar and 7 bar, even without CO in the gas atmosphere, growth inhibition at elevated 

pressures seems not to be linked to inhibitory effects of carbon monoxide alone, as reported 

by Vega et al. [1989c] and the Department of Chemical Engineering and the University of 

Arkansas [1993]. Dissolved CO2 is in balance with the concentration of HCO3
-
, it is likely that 

increased concentrations of CO2/HCO3
-
 cause similar effects in C. ljungdahlii as it is reported 

for Saccharomyces cervisiae. Shifts in CO2/HCO3
-
 concentration causes multiple intracellular 

responses, which in total result in prolonged lag phases during which the cells adapt to the 

increased concentrations. [Eigenstetter and Takors, 2017] 

In the cultivations at 4 bar and 7 bar, p
H2

 is 2.13 bar and 3.73 bar but volumetric power input 

and gas feed rate is lower than the ones used by Kantzow and Weuster-Botz [2016]. From the 

data in their publication a yield of formic acid per fed substrates of 0.002 g g-1 can be 

calculated which is 14 % of what is reported here at similar p
H2

 with an overall YP/S for formic 

acid of 0.015 g g-1. This indicates that, despite the differences between 1.5 L-scale and 2.5 L-

scale, working with constant ṅ Vl
-1 yields a more substrate efficient process at elevated 

pressure than the classical approach of keeping Vġ/V
l

-1
 constant does. While the approach of 

constant volumetric gas feed rate ensures constant kla-values if P/VL is kept constant as well 

[Schlüter et al., 1992] even at elevated pressure [Maier et al., 2001], Vġ/V
l

-1
 decreases with 

increasing pressure when ṅ Vl
-1 is kept constant. The actual volumetric flow rates for each 

pressure stage in this work are 0.029 vvm (1 bar), 0.007 vvm (4 bar) and 0.004 vvm (7 bar). 

Under these conditions, the kla-value cannot assumed to be equal in all pressure stages. But 

since kl is independent from pressure, an approximation for kla at different pressures with 

ṅ Vl
-1 = constant can be calculated by [Linek and Sinkule 1991] 

kla(p2)
= (

p
1

p
2

)

2
3

kla(p1)
. 

(5.5) 

Approximation of kla-values for oxygen in medium with equation (5.5) results in 4.0 10-3 s-1 

at 4 bar and 2.8 10-3 s-1 at 7 bar. kla-values for different gases are proportional to each other 

by the square root of the quotient of their diffusion coefficients [Kodama et al., 1976]. 

However, the formation of formic acid is more substrate efficient at higher pressures when ṅ 

Vl
-1 is kept constant although the gas-liquid mass transfer coefficient significantly decreases 

with increasing pressure. [Oswald et al. 2018a] 
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Table 5.2 – Results for CDW, growth rate, lag-phase and product yield of heterotrophic cultures 

in presence of different concentrations of cyanide [Oswald et al. 2018b] 

Culture βCDW, max 

g L-1 

µmax 

h-1 

tlag-phase 

h 

YP/S,aa 

g g-1 

YP/S,etOH 

g g-1 

Non-adapted Cultures      

0 mM cyanide* 0.73 0.10 0 0.76 0.03 

0.025 mM cyanide 0.54 0.08 0 0.61 0.05 

0.05 mM cyanide 0.46 0.05 0 0.65 0.11 

0.1 mM cyanide* 0.60 0.04 49 0.65 0.10 

1.0 mM cyanide* 0.75 0.05 227 0.09 0.42 

Adapted Cultures      

0 mM cyanide 0.78 0.10 0 0.63 0.08 

0.1 mM cyanide 0.87 0.10 0 0.65 0.28 

1.0 mM cyanide 0.53 0.06 20 0.23 0.35 

*, Mean values from the initial experiments and the experiments where adapted and non-

adapted strain are compared with each other; YP/S,aa, yield of acetic acid per substrate; 

YP/S,etOH, yield of ethanol per substrate. 

5.3 Influence of cyanide on growth and product formation of 

Clostridium ljungdahlii 

5.3.1 Experiments with fructose as substrate 

Cyanide is known to reversible inhibit the enzyme carbon monoxide dehydrogenase of 

acetogenic bacteria [Thauer et al. 1974, Ragsdale et al. 1983, Terlesky et al. 1986, Grahame 

and Stadtman 1987, Ha et al. 2007], but available literature deals only with the effect of 

cyanide on crude extract or isolated CODH. Table 5.2 summarizes the results of experiments 

under heterotrophic conditions. Since CODH is involved in the uptake of carbon dioxide, 

formed during glycolysis, it is not surprising to see inhibitory effects on growth on fructose. 

However, it is interesting to note that for cyanide concentrations of 0.025 mM to 0.1 mM the 

resulting maximum CDW is lower than in cyanide free cultures but at 1 mM cyanide it is 

within the same range as the control cultures. Though, when comparing the not-adapted with 

the adapted strain at 1.0 mM cyanide, the later grows to a maximum CDW lower than both 

strains without cyanide while the not-adapted strain, after 261 h lag-phase, reaches a CDW 

comparable to the control cultures. The reason for this remains unknown. Although the lag-
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phase of the adapted strain in presence of 1.0 mM cyanide is prolonged compared to 0.1 mM, 

the cultures start to grow after 24 h. This is less than a 10th of the time the not-adapted strain 

needs to start growing under these conditions, which shows that C. ljungdahlii can be 

conditioned to grow in presence of cyanide. Once adapted, growth happens with the same 

growth rate than without cyanide (0.1 h-1) up to CN- concentrations of 0.1 mM. [Oswald et al. 

2018b] 

At heterotrophic growth conditions, the purpose of the Wood-Ljungdahl-Pathway (WLP) is to 

recycle NAD+ and ferredoxin by capturing the CO2 from decarboxylation of pyruvate. CODH 

is the central enzyme in the WLP and if it is inactivated by cyanide, capturing of CO2 is no 

longer possible. However, the eight reducing equivalents gained from glycolysis need to be 

discarded to recycle NAD+ and ferredoxin. With the WLP disabled by cyanide, one possibility 

for C. ljungdahlii to recycle NAD+ and ferredoxin is to convert acetic acid to ethanol [Köpke 

et al. 2010]. This shifts the main product from acetic acid to ethanol. Figure 5.1 illustrates the 

molar ratio of products (xi = ci (ΣcProducts)
-1) in both sets of experiments with fructose as a 

carbon source. It is evident, that with increasing cyanide concentration more ethanol is formed 

while the amount of acetic acid decreases. This indicates that with increasing cyanide 

concentration CODH activity is increasingly inhibited and NAD+ and ferredoxin are recycled 

by conversion of acetic acid to ethanol. The overall product yield is supporting this as well. 

Figure 5.4 – Molar ratio of products formed by C. ljungdahlii in presence of increasing concentrations of 

cyanide with fructose as carbon source. A, experiments with not-adapted cultures only; B, experiments with 

not-adapted and adapted cultures; Orange, upturned triangles, acetic acid; dark yellow triangles, ethanol. 

[Oswald et al. 2018b] 
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With no CODH activity, the maximum possible product yield is 0.51 g g-1. In our 

experiments, the YP/S decreases from 0.79 g g-1 at 0 mM cyanide to 0.51 g g-1 in the non-

adapted cultures and 0.58 g g-1 in the adapted cultures at 1.0 mM cyanide. This indicates that 

at 1.0 mM of cyanide the WLP is disabled by inhibition of CODH. [Oswald et al. 2018b] 

5.3.2 Cultivations with syngas as carbon and energy source 

Table 5.3 summarizes the results for CDW, maximum growth rate and lag-phase of the 

experiments under autotrophic conditions. Similar to the results with fructose as carbon 

source, the lag-phase is prolonged with increasing levels of cyanide. In contrast to the results 

at heterotrophic growth, no increase in CDW or consumption of substrates is measurable at 

1.0 mM cyanide. Autotrophic growth on CO or CO2 is only possible with the WLP functional. 

Therefore, this result is in accordance with the findings from fructose grown cultures, where 

product spectrum and product yield indicate a loss of most of the CODH activity at 1.0 mM 

cyanide. Inhibitory effects of cyanide on CODH will directly result in reduced growth and 

product formation. However, the final CDW and maximum growth rate seems unaffected by 

cyanide up to concentrations of 0.1 mM. Figure 5.5 shows the development of the partial 

pressures of hydrogen, carbon monoxide and carbon dioxide in the headspace of the culture 

bottles. At 0.1 mM cyanide, the CO consumption in the adapted strain cultures starts after a  

 
Table 5.3 – Results for CDW, growth rate and lag-phase of autotrophic cultures 

in presence of different concentrations of cyanide [Oswald et al. 2018b] 

Culture βCDW, max 

g L-1 

µmax 

h-1 

tlag-phase 

h 

Non-adapted Cultures    

0 mM cyanide* 0.17 0.06 32 

0.025 mM cyanide 0.16 0.03 65 

0.05 mM cyanide 0.20 0.04 160 

0.1 mM cyanide* 0.21 0.04 221 

1.0 mM cyanide* no growth no growth no growth 

Adapted Cultures    

0 mM cyanide 0.11 0.07 43 

0.1 mM cyanide 0.14 0.06 66 

1.0 mM cyanide no growth no growth no growth 

* Mean values from the initial experiments and the experiments where adapted and non-adapted strain 

are compared with each other 
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Figure 5.5 – Development of partial pressures of H2, CO, and CO2 

for not-adapted C. ljungdahlii (full symbols) vs. the adapted cultures 

(half filled symbols) at different cyanide concentrations. Cyanide 

concentrations are 0 mM (blue dots), 0.1 mM (yellow diamonds) and 

1.0 mM (petrol tilted triangles). [Oswald et al. 2018b] 
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lag-phase of 48 h and the non-adapted strain after 192 h. Both show no other signs of cyanide 

inhibition when compared with the cyanide-free cultures but completely consume the 

available carbon monoxide. This indicates that either cyanide is actively degraded, or the 

organism adapts to it in another way. Whatever the mechanism behind the adaption is, it 

seems to influence hydrogenase activity. Usually, in cultures growing on CO and H2, 

hydrogenases are inhibited by CO until the liquid CO concentration is low enough to revoke 

the inhibition [Vega et al. 1989]. While for both strains hydrogen consumption starts at pCO of 

300 mbar, only about 50 mbar H2 are consumed by the adapted strain (the difference between 

last measured partial pressure in 1.0 mM and 0.1 mM culture) whereas the non-adapted strain 

consumes 260 mbar H2. [Oswald et al. 2018b] 

Hydrogenases are usually not inhibited by cyanide [Adams et al., 1981] and since the non-

adapted strain does consume 260 mbar of hydrogen in presence of 0.1 mM CN-, an inhibitory 

effect of cyanide on hydrogenase activity in the adapted strain cultures seems 

unlikely.[Oswald et al. 2018b] However, cyanide not only inhibits CODH but is also known 

to inactivate formate dehydrogenases of several organisms [Barber et al. 1986, Ohyama and 

Yamazaki 1975] as well as interfering with the methanol metabolism of 

Moorella thermoacetica [Das et al. 2007]. Inactivation of formate dehydrogenase would 

prevent the formation of the methyl group in the WLP and therefore result in reduced need for 

hydrogen, product formation and growth. Still, carbon monoxide metabolism is unaltered at 

0.1 mM cyanide compared to the control cultures of not-adapted and adapted strain. This and 

the fact that the development of products and CDW is also comparable to the control does 

make inhibition of formate dehydrogenase by cyanide unlikely. It is noteworthy that acetic 

acid concentration in cultures with the adapted strain and 0.1 mM cyanide reaches the highest 

value once CO is completely consumed. After this point (330 h) parts of the acetic acid are 

converted to ethanol, thus tripling the ethanol concentration from 0.1 g L-1 to 0.3 g L-1. The 

same late beginning of ethanol formation can be found in the not-adapted cultures at 0.1 mM 

cyanide. Although, with a higher final concentration. 

How C. ljungdahlii is adapting to the applied cyanide concentration could not be identified 

during this study. Hydrocyanic acid in aqueous solution is known to slowly disintegrate into 

ammonia and formic acid [Roempp 2012]. While at first glance this could indicate that 

growth after a prolonged lag-phase is due to autocatalytic disintegration of cyanide, it is 

refuted by the fact that the adapted strain shows only effects of inhibition when exposed to 
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concentrations of 1 mM cyanide. Another possibility could be that C. ljungdahlii upregulates 

enzymes like cyanase, cyanidase, nitrilase or rhodanese to neutralize HCN [Dubey and 

Holmes]. However, none of these enzymes can be found in the published complete genome of 

C. ljungdahlii DSM 13528 (Köpke et al. 2010) and the product and yield data from 

heterotrophic cultures show no signs of cyanide degradation. Further investigation of the 

transcriptome and proteome at different cyanide concentrations is necessary to determine in 

what way C. ljungdahlii adapts to cyanide. [Oswald et al. 2018] 

5.4 Process link-up: From syngas to malic acid 

Utilization of acetic acid, the main product of acetogenic metabolism, by aerobic organisms 

would broaden the spectrum of products that can be made from syngas. Using the filamentous 

fungi A. oryzae to produce L-malic acid from the acetic acid in the broth of syngas 

fermentation is one option. The main challenges for such a process link-up are the involved 

organisms and their requirements in terms of reactor set-up, medium composition and product 

synthesis. When optimizing product yield and/or productivity of a certain process, common 

procedure is to address the needs of the involved organism. In this case two fermentation 

processes are interlinked by sequentially cultivating A. oryzae in culture broth of syngas 

fermentation with C. ljundahlii. Key aspect of the success of this process is either a medium 

compromise for both organisms or the compatibility of the first (optimized) medium for 

A. oryzae fermentation in terms of product synthesis. Furthermore, the second organism has to 

be able to use the product of the first process as a carbon source. The combination of both 

aspects must be fulfilled to achieve a successful process chain from syngas to malic acid. 

[Oswald et al. 2016] 

The Aspergillus part of this study shows for the first time that A. oryzae can use acetic acid as 

a sole source of carbon to produce malic acid. For carbohydrate based malic acid production 

the metabolic pathways are largely understood. A partly reductive TCA cycle following on 

glycolysis and malic acid is then synthesized from pyruvic acid and oxaloacetic acid [Osmani 

and Scrutton 1983; Peleg et al. 1988, 1989; Bercovitz et al. 1990]. Not much is known for the 

pathways with other carbon sources. In terms of acetic acid, acetyl-CoA synthase is the 

central enzyme of ethanol and acetic acid metabolism, which converts acetic acid to acetyl-

CoA in Candita albicans [Carman et al. 2008]. Acetyl-CoA may then enter the glyoxylate 

cycle, which is partly located in the peroxisome and contains malic acid as an intermediate. 
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This might be the pathway to form malic acid from acetic acid. The metabolic flux of this 

path is summarized by Strijbis and Distel [2010]. [Oswald et al. 2016] 

Preliminary experiments with A. oryzae, conducted by Stefan Dörsam, indicated that if 

nitrogen is omitted from syngas medium, the yield of 0.37 gram L-malic acid per gram 

consumed acetic acid is comparable to the one in malic acid production medium with acetic 

acid as carbon source (YP/S = 0.28 g g-1). Even though the yield of malic acid per gram 

consumed acetic acid is higher in syngas fermentation medium, the concentration of malic 

acid after 168 h of fermentation is only about half of the concentration in optimized malic acid 

production medium (4.11 ± 0.50 g L-1 compared to 8.62 ± 1,15 g L-1). Malic acid production 

also seems to be influenced by the presence of biomass from syngas fermentation. Without 

removal of C. ljungdahlii cells, malic acid could already be detected after 48 h while in 

medium with removed cells no formation of malic acid could be observed. The biomass itself 

might serve as a source of nutrients and minerals. Ethanol is not used as carbon source, but 

the presence of ethanol (up to 1.24 g L-1) resulted in the highest YP/S value. This may indicate 

a possible stimulation effect of ethanol on L-malic acid formation. Knuf et al. [2013] found 

that stress conditions are beneficial the production of L-malic acid. Overall, the preliminary 

experiments with A. oryzae show that the conversion of acetic acid to L-malic acid in broth 

from syngas fermentation is possible and that the link-up of the two processes is a promising 

approach. [Oswald et al. 2016] 

Results from preliminary experiments with C. ljungdahlii indicate that reducing the ammonia 

concentration does not negatively affect acetic acid formation, substrate consumption and 

overall yield during syngas fermentation. The slightly lower biomass concentration in 

ammonia reduced medium is consistent with results from Xu et al. [2011] which also show 

slight differences of biomass concentration in this range of ammonia concentrations. Off-gas 

data and fructose measurements from the main process link-up experiment show that during 

the first 18 h of fermentation C. ljungdahlii is only consuming fructose and carbon monoxide 

but no hydrogen. Carbon monoxide is a known inhibitor of hydrogenase activity [Gray and 

Gest 1965; Chen and Blanchard 1978; Kim et al. 1984; Devarapalli et al. 2016] and therefore 

hydrogen consumption can only start if the carbon monoxide partial pressure in the broth is 

below a certain threshold which seems to be around 5 vol-% CO in the headspace of the 

bioreactor. Fuchs et al. [1974] report that concentrations of more than 5 % of CO inhibits 

growth of C. pasteurianum on glucose as carbon and energy source. This could also explain 
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that it takes C. ljungdahlii 18 h to completely consume the 0.77 g L-1 of fructose left from the 

preculture. Considerable formation of acetic acid is observed after fructose is depleted and 

hydrogen consumption starts. This point is accompanied by a temporary increase of the redox 

potential in the broth. [Oswald et al. 2016] 

Acetic acid is continuously produced up to the moment when hydrogen consumption starts to 

decrease. At this point, ethanol formation can be observed. In case the decrease of hydrogen 

consumption is due to the increase in gas feed rate and therefore increased CO supply, we 

reduced the gas feed rate to stabilize the uptake rates again. This yielded only a temporary 

improvement and the rate of hydrogen consumption decreased for the rest of the experiment. 

The occurrence of sudden decrease in hydrogen consumption is a known phenomenon when 

cultivating C. ljungdahlii on syngas [Cotter et al. 2009, Maddipati et al. 2011]. However, the 

reason for this is still unknown. [Oswald et al. 2016] 

The malic acid production in the main link-up experiment varied widely. Two out of three 

reactors showed malic acid production. With different production profiles. The high 

complexity of the medium composition after syngas fermentation makes finding an 

explanation for the very different behavior of the reactors in the A. oryzae stage of the link-up 

experiment is difficult. Small differences in syngas fermentation seem to have large effects on 

the following fungal fermentation. For preliminary experiments medium of syngas 

fermentations has been pooled to gain a similar medium for all experiments. Since in the main 

link-up experiment each reactor resulted in a possible different medium composition, the 

results should be seen as three different batches of link-up experiments. However, the results 

clearly show, that conversion of syngas to malic acid by means of sequential mixed culture is 

possible. The conversion efficiency of syngas into acetic acid and ethanol can be expressed by 

an overall YP/S of 0.86 g g-1. Combined with the YP/S of 0.33 g g-1 for aerobic conversion of 

acetic acid to malic acid the overall conversion efficiency of syngas into malic acid is 28 %. 

This is achieved by complete conversion of CO and H2 into products. [Oswald et al. 2016] 

Due to the lack of other processes that converse CO, CO2 and H2 into dicarboxylic acids, 

yields are compared with anaerobic production of other C4 molecules. Yields for anaerobic 

production of butanol from sugars of lignocellulosic substrates with C. beijerinckii or 

C. acetobutylicum are between 0.1 g g-1 to 0.3 g g-1 [Schiel-Bengelsdorf et al. 2013]. Using 

syngas for production of butanol yields 0.08 g butanol per gram of consumed carbon 

monoxide [Lewis et al. 2007]. Other processes described in literature for production of C4-
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molecules using anaerobic syngas fermentation do not state values for YP/S and lack of proper 

information for calculation of yields by the reader. This prevents proper comparison. [Oswald 

et al. 2016] Approaches using synthetic biology to introduce new pathways or enhance 

existing pathways for production of C4 and higher products are accompanied by 3 to 60-fold 

higher by-production of acetic acid or ethanol [Banerjee et al. 2014, Fernández-Naveira et al. 

2017, Doll et al. 2018]. 

Sequential mixed cultures are used for centuries in food industry, e. g. sake production, 

applications for production of chemicals are rare. It could be shown, that this kind of 

biotechnological process is suitable to produce low price chemicals like single cell oils for 

biofuel production [Hu et al. 2016]. Other approaches co-cultivate a homoacetogen, e. g. 

C. ljungdahlii and an anaerobic organism that can grow on ethanol or acetate and produces 

butanol or butyrate [Datta and Reeves 2014]. Lagoa-Costa et al. [2017] sequentially link 

anaerobic syngas fermentation with C. autoethanogenum with aerobic formation of 

polyhydroxyalkanoates from acetic acid but do not name organism. Another approach uses 

C. kluyveri to convert ethanol-acetic acid mixtures from syngas fermentation into medium 

chain carboxylic acids [Gildemyn et al. 2017]. Other interlinking processes are a combination 

of algae and yeast fermentation [Dillschneider et al. 2014], dextran fermentation [Kim and 

Day 1994] and biogas production. [Oswald et al. 2016] Recently, Liebal et al. [2018] did a 

theoretical examination of possible routes from CO2 to succinic acid. Their conclusion is, that 

the most economic route would be to link acetic acid formation by syngas fermentation with 

aerobic production of succinic acid by an E. coli strain [Liebal et al. 2018]. 
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6. Conclusions 

Characterization of the 1.5 L-scale cultivation system with RMR and RRB stirrer set-up 

revealed that with the syngas mixture used, even at a volume-based gas feed rate of 

0.029 vvm the process becomes inefficient in terms of substrate conversion into products. 

This is despite the six-fold and four-fold increase in kla for the RMR and RRB stirrer set-up 

respectively when increasing the gas feed rate from 0.007 vvm to 0.029 vvm. The substrate 

conversion efficiency is much better at lower values. However, due to the nature of a batch 

process, it is possible that a continuous cultivation with cell retention could also achieve 

complete substrate consumption at 0.029 vvm and higher if a continuous running culture 

could circumvent the decrease in hydrogen consumption. Then a volume-based gas feed rate 

above 0.012 vvm would also be substrate efficient and result in higher titers of products. The 

other strategy discussed in literature to improve mass-transfer, increasing the absolute system 

pressure and therefore the partial pressure of gaseous substrates, does not result in higher 

product yields. However, in the work at hand the product spectrum shifts from 2.4 % formic 

acid, 86.5 % acetic acid and 11.1 % ethanol to 82.7 % formic acid, 15.6 % acetic acid and 

1.7 % ethanol. Final CDW does decrease with increasing pressure. Whether this reduction of 

CDW is subject to an inhibitory effect of increased hydrogen partial pressure [Kantzow and 

Weuster-Botz 2016] or more likely due to inhibitory effects of increased intracellular 

dissolved carbon dioxide concentration [Eigenstetter and Takors 2017] remains a topic of 

interest for further investigations. When dealing with inhibition caused by increased dissolved 

carbon monoxide concentrations, a stepwise increase in process pressure avoided that 

problem [University of Arkansas 1993]. Using constant ṅ Vl
-1 results in a 7.5 times higher 

yield of formic acid per fed substrate than with the process published by Kantzow and 

Weuster-Botz [2016] where Vġ/V
l
 is kept constant. However, at constant ṅ Vl

-1 the kla-value 

decreases with increasing pressure. [Oswald et al. 2018a] 

The complete usage of substrates is a crucial point in increasing the overall efficiency of 

syngas fermentation processes. Therefore, further investigations on the influence of feed gas 

flow rate and substrate partial pressure on the substrate conversion efficiency are necessary to 

increase the efficiency of anaerobic syngas fermentation. [Oswald et al. 2018a] 

To further increase the economics of syngas fermentation-based processes it is necessary to 

reduce gas purification efforts by using crude or partially purified syngas [Ahmed et al 2006, 
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Xu et al. 2011, Abubackar et al. 2011]. Typical cyanide loads of crude syngas from wood or 

straw are below 25 ppm for wood [Boerrighter et al. 2013] and 250 ppm for straw [Kurkela et al. 

1996] but can also reach values up to 2500 ppm when gasifying switchgrass [Broer et al. 2015]. 

The resulting liquid concentrations range from 0.24 mM (straw) to 2.4 mM (wood) and 24.3 mM 

(switchgrass). Assuming a gas feed rate of 0.1 vvm it would take more than 41 h of gas sparging 

to reach saturation concentrations and the actual concentrations a culture has to deal with in the 

beginning of cultivation is much lower. 

The results of this work show that maximum growth rates are unaffected by cyanide up to 0.1 mM 

cyanide with syngas as carbon source. Using cultures that are already adapted to cyanide will also 

decrease the lag-phase at the beginning of the cultivation. These results are the first to show that 

C. ljungdahlii can be adapted to cyanide, which is a huge step, since literature commonly 

states that if syngas is used as a substrate for fermentation, it needs to be as clean as possible 

to avoid inhibitory effects [Xu et al. 2011; Daniell et al. 2012; Liew et al. 2016]. Nevertheless, 

this work only shows the influence in bottle experiments and further investigation in bioreactors 

with continuous feed of cyanide containing gas is necessary to determine at which cyanide load 

the crude syngas needs to be purified. On the other hand, some impurities counter the effect of 

others or protect against inhibition when applied as a mixture. Unfortunately, the lack of studies 

using mixtures of impurities or crude syngas for cultivation of whole cells makes it difficult to 

give a common statement on that topic. 

Together with Stefan Dörsam, it was possible to show that a process link-up of anaerobic 

syngas fermentation with aerobic fungal production of malic acid is possible. The linking 

metabolite is acetic acid. This is the second successful process of this kind described in 

literature. Further increase in yield is feasible since only wild type strains of C. ljungdahlii 

and A. oryzae are used and the medium is neither optimized for acetic acid production nor for 

malic acid production. Linking syngas fermentation with other processes offers the 

opportunity to extend the product portfolio of syngas fermentation. When interlinking with an 

aerobic process, such as Stefan Dörsam and I did, no further step is necessary other than 

changing the feed gas from syngas to air and addition of calcium carbonate to prepare the 

medium for fungal fermentation. In demonstrating the successful production of malic acid 

using a sequential mixed cultures of C. ljungdahlii and A. oryzae Stefan Dörsam and I not 

only broadened the feedstock for malic acid production from glycerol and sugars to the whole 

feedstock of gasification processes but also reported the highest yield to date for the 

production of C4 components from syngas. [Oswald et al. 2016] As has recently be outlined 
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by Liebal et al. [2018] the production of succinic acid with continuous cultures of 

C. ljungdahlii and E. coli in series is economically superior to other ways of CO2 to succinic 

acid conversion. In general, any organism capable of producing a valuable substance from 

acetic acid as carbon source is a potential candidate for further process link-up strategies. 



85 

 

References 

Abubackar, H. N., Bengeldorf, F. R., Dürre, P., Veiga, M. C. and Kennes, C. 2016. Improved operation strategy 

for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia. Applied Energy. 169:210-

217. 

Abubackar, H. N., Veiga, M. and Kennes, C. 2011. Biological conversion of carbon monoxide: rich syngas or 

wase gasest o bioethanol. Biofuels, Bioproducts and Biorefining. 5:93-114. 

Adams, M. W. W., Mortenson, L. E. and Chen, J.-S. 1981. Hydrogenase. Biochimica et Biophysica Acta. 

594:105-176. 

Ahmed, A. and Lewis, R. S. 2006. Fermentation of Biomass-Generated Synthesis Gas: Effects of Nitric Oxide. 

Biotechnology and Bioengineering. 97(5):1080-1086. 

Ahmed, A., Cateni, B. G., Huhnke, R. L. and Lewis, R. S. 2006. Effects of biomass-generated producer gas 

constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans 

P7
T
. Biomass and Bioenergy. 30(7):665-672. 

Anderson, M. E., DeRose, V. J., Hoffman, B. M. and Lindahl, P. A. 1993. Identification of a Cyanide Binding 

Site in CO Dehydrogenase from Clostridium thermoaceticum Using EPR and ENDOR Spectroscopies. 

Journal of the American Chemical Society. 115(25):12204-12205. 

Arnold, J. H. 1930. Studies in Diffusion. I – Estimation of Diffusivities in Gaseous Systems. Industrial and 

Engineering Chemistry. 22(19):1091-1095. 

Bailey, J. E. and Ollis, D. F. 1991. Biochemical engineering fundamentals. McGraw-Hill: New York. 

Banerjee, A., Leang, C., Ueki, T., Nevin, K. P. and Lovley, D. R. 2014. Lactose-Indicible System for Metabolic 

Engineering of clostridium ljungdahlii. Applied and Environmental Microbiology. 80(8):2410-2416. doi: 

10.1128/AEM.03666-13. 

Barber, M. J., Hal, D. and Ferry, J. G. 1986. Inactivation of Formate Dehydrogenase from 

Methanobacterium formicum by Cyanide. Biochemistry. 25:8150-8155. 

Barik, S., Prieto, S., Harrison, S. B., Clausen, E. C. and Gaddy, J. L. 1988. Biological production of alcohols 

from coal through indirect liquefaction. Applied Biochemistry. 18(1):363-378. 

Barker, H. A. and Kamen M. D. 1945. Carbon Dioxide Utilization in the Synthesis of Acetic Aceid by 

Clostridium thermoaceticum. Proceedings of the National Academy of Sciences. 31(8):219-225. 



References 

 

86 

 

Bengelsdorf, F. R., Poehlein, A., Linder, S., Erz, C., Hummel, T., Hoffmeister, S. Daniel, R. and Dürre, P. 2016. 

Industrila Acetogenic Biocatalysis: A Comperative Metabolic and Genomic Analysis. Frontiers in 

Microbiology. 7:1036. DOI: 10.3389/fmicb.2016.01036. 

Bengelsdorf, F., Straub, M. and Dürre, P. 2013. Bacterial synthesis gas (syngas) fermentation. Environmental 

Technology. 34(13-14):1639-1651. 

Bercovitz, A., Peleg, Y., Battat, E., Rokem, J., S., and Goldberg, I. 1990. Localization of pyruvate carboxylase in 

organic acid-producing aspergillus strains. Applied Environmental Microbiology. 56:1594–1597. 

Bertsch, J. and Müller, V. 2015. Bioenergetic constrains for cnversion of syngas to biofuels in acetogenic 

bacteria. Biotechnology for Biofuels. 8:210. doi: 10.1186/s13068-015-0393. 

Bertsch, J., Siemund, A. L., Kremp, F. and Müller, V. 2016. A novel route forethanol oxidation on the 

acetogenic bacterium Acetobacterium woodii: the acetaldehyde/ethanol dehydrogenase pathway. 

Environmental Microbiology. 8(9):2913-2922. doi: 10.1111/1462-2920.13082 

Bleichert, K. and Winter, J. 1994. Formate production and utilization by methanogens and by sewage sludge 

consortia – interference with the concept of interspecies formate transfer. Applied Microbiology and 

Biotechnology. 40:910-915. 

Boerrighter, H., Uil, H. and Calis, H.-P. 2013. Green Diesel from Biomass via Fischer-Tropsch synthesis: New 

Insights in Gas Cleaning and Process Design. Pyrolysis and Gasification of Biomass and Waste. 371-383. 

Bredwell, M. D. and Worden, R. 1998. Mass-Transfer Properties of Microbubbles. 1. Experimental Studies. 

Biotechnology progress. 14:31-38. 

Bredwell, M. D., Srivastava, P. and Worden, R. M. 1999. Reactor Design Issues for Synthesis-Gas 

Fermentations. Biotechnology Progress. 15(5):834-844. 

Broer, K. M., Woolock, P. J., Johnston, P. A. and Brown, R. C. 2015. Steam/oxygen gasification system for the 

production of clean syngas. Fuel. 140:282-292. 

Carman, A. J., Vylkova, S. and Lorenz, M. C. 2008. Role of acetyl coenzyme a synthesis and breakdown in 

alternative carbon source utilization in candida albicans. Eukaryotic Cell. 7:1733–1741. doi: 

10.1128/EC.00253-08. 

Chen, J.-S. and Blanchard, D. K. 1978. Isolation and Properties of a unidirectional H2-oxidizing hydrogenase 

from strictly anaerobic N2-fixing bacteriumClostridiumpasteurianumW5. Biochemical and Biophysical 

Research Communications. 84:1144–1150. doi: 10.1016/0006-291X(78)91703-5 

Chisti, Y. 2010. Mass transfer. In: M. C. Flickinger (ed.) Encyclopedia of Industrial Biotechnology – Bioprocess, 

Bioseparation and Cell Technology. New York: Wiley. 3241-3276. 



References 

 

87 

 

Daniell, J., Köpke, M. and Simpson, S. D. 2012. Commercial Biomass Syngas Fermentation. Energies. 

5(12):5372-5417. doi: 10.3390/en5125372. 

Daniels, L. 1982. Comments on Enzymatic Synthesis of Organic Acids and Alcohols from H2, CO2 and CO. 

Communications to the editor. Biotechnoloy and Bioenineering. 24:2099-2102. 

Das, A., Fu, Z.-Q., Tempel, W., Liu, Z.-J., Chang, J., Chen, L., Lee, D., Zhou, W., Xu, H., Shaw, N., John, P. R., 

Ljungdahl, L. G. and Wang, B.-C. 2007. Characterization of a Corrinoid Protein Involved in the C1 

Metabolism of Strict Anaerobic Bacterium Moorella thermoacetica. Proteins: Structure, Funkction and 

Bioinformatics. 67:167-176. 

Datta, R. and Reeves, A. 2014. Syntropic Co-Culture of Anaerobic Microorganism for Production of n-Butanol 

from syngas. US patent no. US2014/0206066 A1. 

Demler, M. 2012. Reaktionstechnische Untersuchung zur autotrophen Herstellung von Acetat mit 

Acetobacterium woodii. Dissertation, TU München. 

Devarapalli, M., Atiyeh, H. K., Phillips, J. R., Lewis, R. S. and Huhnke, R., L. 2016. Ethanol production during 

semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Bioresource 

Technology. 209:56–65 doi: 10.1016/j.biortech.2016.02.086 

Diekert, G. and Wohlfarth, G. 1994. Metabolism of homoacetogens. Antonie van Leeuwenhoek. 66(1-3):209-

221. 

Diekert, G. B. and Thauer, R. T. 1978. Carbon Monoxide Oxidation by Clostridium thermoaceticum and 

Clostridium formicoaceticum. Journal of Bacteriology. 136(2):597-606. 

Dillschneider, R., Schulze, I., Neumann, A., Posten, C. and Syldatk, C. 2014. Combination of algae and yeasr 

fermentation for an integrated process to produce single cell oils. Applied Microbiology and Biotechnology. 

98(18):7793-7802. doi: 10.1007/s00253-014-5867-4. 

Doll, K. Rückel, A., Kämpf, P., Wende, M. and Weuster-Botz, D. 2018. Two stirred-tank bioreactors in series 

enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. 

Bioprocess and Biosystems Engineering. 41(10):1403-1416. doi: 10.1007/s00449-018-1969-1. 

Drake, H. L. 1994. Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past 

and Current Perspectives. In: Harold L. Drake (ed.) Acetogenesis. Dordrecht: Springer Science and 

Business. 3-60. 

Dubey, S. K. and Holmes, D. S. 1995. Biological cyanide destruction mediated by microorganisms. World 

Journal of Microbiology & Biotechnology. 11(5):257-265. 

Eigenstetter, G. and Takors, R. 2017. Dynamic modeling reveals a three-step response of 

Saccharomyces cervisiae to high CO2 levels accompanied by increasing ATP demands. FEMS Yeast 

Research. Doi: 10.1093/femsyr/fox008. 



References 

 

88 

 

Ensing, S. A., Hyman, M. R. and Ludden, P. W. 1989. Nickel-Specific, Slow-Binding Inhibition of Carbon 

Monoxide Dehydrogenase from Rhodospirillum rubrum by Cyanide. Biochemistry. 28(12):4973-4979. 

Evonik Industries 11/14/2013. Mehrstufiges Syntheseverfahren mit Synthesegas. Patent no.: DE 10 2012207 921 

A1. 2013.11.14. 

Fernández-Naveira, Á., Abubackar, H. N., Veiga, M. C. and Kennes, C. 2017. Production of chemicals from C1 

gases (CO, CO2) by Clostridium carboxidivorans. World Journal of Microbiology and Biotechnology. 

33:43. doi: 10.1007/s11274-016-2188-z. 

Fernández-Naveira, Á., Abubackar, H. N., Veiga, M. C. and Kennes, C. 2016. Efficient butanol-ethanol (B-E) 

production from carbon monoxide fermentation by Clostridium carboxidivorans. Applied Microbiology 

and Biotechnology. 100(7):3361-3370. 

Fuchs, G., Schnitker, U. and Thauer, R. K. 1974. Carbon Monoxide Oxidation by Growing Cultures of 

Clostridium pasteurianum. European Journal of Biochemistry. 49(1):111-115. 

Gaddis, E. S. 1999. Mass transfer in gas-liquid contactors. Chemical Engineering and Processing. 38(4):503-

510. 

Gildemyn, S., Molitor, B., Usack, J., Nguyen, M., Rabaey, K. and Angenent, L. T. 2017. Upgrading syngas 

fermentation effluent using Clostridium kluyveri in a continuous fermentation. Biotechnology for Biofuels. 

10:83. doi: 10.1186/s13068-017-0764-6. 

Gößner, A. S., Picardal, F., Tanner, R. S., Drake, H. L. 2008. Carbon metabolism of the moderate acid-tolerant 

acetogen Clostridium drakei isolated from peat. FEMS Microbiology Letters. 287(2):236-242. 

Grahame, D. A. and Stadtman, T. C. 1987. Carbon Monoxide Dehydrogenase from Methanosarcina barkeri. 

Disaggregation, Purification, and Physicochemical Properties of the Enzyme. The Journal of Biological 

Chemistry. 262(8):3706-3712. 

Gray, C. T. and Gest, H. 1965. Biological formation of molecular hydrogen. Science. 148:186–192. 

Ha, S-W., Korbas, M., Klepsch, M., Meyer-Klaucke, W., Meyer, Ortwin and Svetlitchnyi, V. 2007. Interaction 

of Potassium Cyanide with the [Ni-4Fe-5S] Active Site Cluster of CO Dehydrogenase from 

Carboxydothermus hydrogenoformans. The Journal of Biological Chemistry. 282(14):10639-10646. 

Hammerschmidt, A., Boukis, N., Hauer, E., Galla, U., Dinjus, E., Hitzmann, B., Larsen, T., Nygaard, S. D. 2011. 

Catalytic conversion of waste biomass by hydrothermal treatment. Fuel. 90(2):555-562. 

Hannula I, Kurkela E 2013. Liquid transportation fuels via largescale fluidised-bed gasification of lignocellulosic 

biomass. VTT Technology. 91:114. 



References 

 

89 

 

He, S.-H., Woo, S. B., DerVartanian, D. V., Le Gall, J. and Peck, H. D. 1989. Effects of Acetylene on 

Hydogenase from the Sulfate Reducing and Methanogenic Bacteria. Biochemical and Biophysical Research 

Communications. 161(1):127-133. 

Henzler, H. 1982. Verfahrenstechnische Auslegungsunterlagen für Rührbehälter als Fermenter. Chemie 

Ingenieur Technik. 54(5):461-476. 

Hofbauer H, Vogel A, Kaltschmitt M 2009. Vergasungstechnik. In: M. Kaltschmitt, Hartmann H, Hofbauer H 

(eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. 2. neu bearbeitete und erweiterte 

Auflage. Heidelberg and others: Springer. 600–628 

Hu, O., Chakraborty, S., Kumar, A., Woolston, B., Liu, H., Emerson, D. and Stephanopoulos, G. 2016. 

Integrated bioprocess for conversion of gaseous substrates to liquids. Proceedings of the National Academy 

of Science. 113(14):3773-3778. 

Huang, H., Wang, S., Moll, J. and Thauer, R. K. 2012. Electron Bifurcation Involved in the Energy Metabolism 

of the Acetogenic Bacterium Moorella thermoacetica Growing on Glucose or H2 plus CO2. Jouornal of 

Bacteriology. 194(14):3689-3699. 

Huber, C., Caldeira, J., Jongejan, J. A. and Simon, H. 1994. Further characterization of 2 different, reversible 

aldehyde oxidoreductases from Clostridium formicoaceticum, one containing tungsten and the other 

molybdenum. Archives of Microbiology. 162(5):303-309. 

Huber, C., Skopan, H., Feich, R., White, H. and Simon, H. 1995. Pterin cofactor, substrate specificity, and 

observations on the kinetics of the reversible tungsten-containing aldehyde oxidoreductase from 

Clostridium thermoaceticum: preperative reductions of a series of carboxylates to alcohols. Archives of 

Microbiology. 164(2):110-118. 

Huhnke, R. L., Lewis, R. S., Tanner, R. S. 04/27/2010. Isolation and Characterisation of Novel Clostridial 

Species. US-Patent no.: US 7,704,723 B2. 

Hyman, M. R. and Arp, D. J. 1988. Acetylene Inhibition of Metaloenzymes. Analytical Biochemistry. 

173(2):207-220. 

Hyman, M. R., Ensing, S. A., Arp, D. J. and Ludden, P. W. 1989. Carbonyl Sulfide Inhibition of CO 

Dehydrogenase from Rhodospirillum rubrum. Biochemistry. 28(17):6821-6826. 

Ju, L.-K. and Chase, G. G. 1992. Improved scale-up strategies of bioreactors. Bioprocess Engineering. 8(1):49-

53. 

Judat, H. 1976. Zum Dispergieren von Gasen. Dissertation TU Dortmund. 

Kantzow, C. and Weuster-Botz, D. 2016. Effects of hydrogen partial pressure on autotrophic growth and product 

formation of Acetobacterium woodii. Bioprocess and Biosystems Engineering. 39:1325-1330. Doi: 

10.1007/s00449-016-1600-2. 



References 

 

90 

 

Kapic, A., Jones, S. T. and Heindel, T. J. 2006. Carbon Monoxide Mass Transfer in a Syngas Mixture. Industrial 

& Engineering Chemistry Research. 45(26):9150-9155. 

Kerby, R., Niemczura, W. and Zeikus, J. G. 1983. Single-Carbon Catabolism in Acetogens: Analysis of Carbon 

Flow in Acetobacterium woodii and Butyribacterium methylotrophicum by Fermentation and 
13

C Nuclear 

Magnetic Resonance Measurement. Journal of Bacteriology. 155(3):1208-1218. 

Kim, B. H., Bellows, P., Datta, R. and Zeikus, J. G. 1984. Control of carbon and electron flow in Clostridium 

acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and enhance 

butanol yields. Applied Environmental Microbioloy. 48:764–770. 

Kim, D. and Day, D. F. 1994. A new process for the production of clinical dextran by mixed-culture 

fermentation of lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme and microbial Technology. 

16(10):844-848. doi: 10.1016/0141-0229(94)90058-2 

Klasson, K. T., Ackerson, M. D., Clausen, E. C. and Gaddy, J. L. 1992. Bioliquefaction of coal synthesis gas. 

American Chemical Society Division Fuel Chemistry. 37:1977-1982. 

Knuf, C., Nookaew, I., Brown, S. H., McCulloch, M., Berry, A., and Nielsen, J. 2013. Investigation of Malic 

Acid Production in Aspergillus Oryzae under Nitrogen Starvation Conditions. Applied and Environmental 

Microbiology. 79(19):6050–58. DOI: 10.1128/AEM.01445-13. 

Ko, C. W., Vega, J. L., Clausen, E. C. and Gaddy, J. L. (1989). Effect of High Pressure on a Co-Culture for the 

Production of Methane from Coal Synthesis Gas. Chemical Engineering Communications. 77:155-169. 

Kodama, T., Goto, E. and Minoda, Y. 1976. Determination of Dissolved Hydrogen Concentration and [KLa]H2 in 

Submerged Culture Vessels. Agricultural Biology and Chemistry. 40(12):2373-2377. 

Köpke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., Ehrenreich, A., Liebl, W., Gottschalk, 

G. and Dürre, P. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. 

Proceedings of the National Academy of Sciences. 107(29):13087-13092. 

Köpke, M., Mihalcea, C., Liew, F., Tizard, J. H., Ali, M. S., Conolly, J. J., Al-Sinawi, B. and Simpson, S. D. 

2011. 2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, 

Using Industrial Waste Gas. Appl. Environ. Microbiol. 77:5467–5475 

Krasna, A. I. and Rittenberg, D. 1954. The Inhibition of Hydrogenase by Nitric Oxide. Proceedings of the 

National Academy of Sciences. 40(4):225-227. 

Kurkela, E., Laatikainen-Luntama, J., Stahlberg, P. and Moilanen, A. 1996. Pressurised fluidised-bed 

gasification experiments with biomass, peat and coal at VTT in 1991-1994. Part 3. Gasification of Danish 

wheat straw and coal. VTT Technology. 291. 



References 

 

91 

 

Lagoa-Costa, B., Abubackar, H. N., Fernández-Romastana, M., Kennes, C. and Veiga, M. C. 2017. Integrated 

bioconversion of syngas into bioethanol and biopolymers. Bioresource Technology. 239:244-249. 

Lane, J. 2014. On the Mend: Why INEOS Bio Isn't Producing Ethanol in Florida [online]. BiofuelsDigest. 

Available at: http://www.biofuelsdigest.com/bdigest/2014/09/05/on-the-mend-why-ineos-bio-isnt-

reporting-much-ethanol-production/ [accessed June 13. 2017]. 

Lara Márquez, A., Wild, G. and Midoux, N. 1994. A review of recent chemical techniques for the determination 

of the volumetric mass-transfer coefficient kLa in gas-liquid reactors. Chemical Engineering and 

Processing. 33:247-260. 

Lewis, R. S., Tanner, R. S. and Huhnke, R. L. 11/29/2007. Indirect or direct fermentation of biomass to fuel 

alcohol. US patent no.: US 2007/0275447 A1. 

Liebal, U. W., Blank, L. M. and Ebert, B. E. 2018. CO2 to succinic acid – Estimating the potential of biocatalytic 

routes. Metabolic engineering Communications.7:75. doi: 10.1016/j.mec.2018.e00075. 

Liew, F. M., Köpke, M. and Simpson, S. D. 2013. Gas Fermentation for Commercial Biofuels Production. In: 

Zhen Fang (Ed.) Liquid, Gaseous and Solid Biofuels – Conversion Techniques. Rijeka: INTECH. 125-173. 

Liew, F. M., Martin, M. E., Tappel, R. C., Heijstra, B. D., Mihalcea, C. and Köpke, M. 2016. Gas Fermentation 

– A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste 

and Renewable Feedstocks. Frontiers in Microbiology. 7:1-28. Doi: 10.3389/fmicb.2016.00694. 

Linek, V. and Sinkule, V. 1991. The Influence of Gas and Liquid Axial Dispersion on Determination of kLa by 

Dynamic Method. Transactions of the Institution of Chemical Engineers. 69(A):308-312. 

Linek, V. and Vacek, V. 1981. Chemical engineering use of catalyzed sulphite oxidation kinetics for 

determination of mass transfer characteristics of gas-liquids contactors. Chemical Engineering Science. 

36(11):1747-1768. 

Linek, V. Benes, P. and Vacek, V. 1989. Dynamic Pressure Method for kLa Measurement in Large-Scale 

Bioreactors. Biotechnology and Bioengineering. 33(11):1406-1412. 

Linek, V., Vacek, V. and Bennes, P. 1987. A critical review and experimental verification of the correct use of 

the dynamic method for the determination of oxygen-transfer in aerated agitated vessels to water, 

electrolyte-solutions and viscous liquids. The Chemical Engineering Journal. 34(1):11-34. 

Liu, K., Atiyeh, H. K., Stevenson, B. S., Tanner, R. S., Wilkins, M. R. and Huhnke, R. L. 2014. Continuous 

syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresource Technology. 

151:69-77. 

Lohbeck, K., Haferkorn, H., Fuhrmann, W. and Fedtke, N. 2000. Meleic and fumaric acids. In: Elvers, B. (ed.) 

Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag. 145-155. 



References 

 

92 

 

Löser, C., Schröder, A., Deponte, S. and Bley, T. 2005. Balancing the Ethanol Formation in Continuous 

Bioreactors with Ethanol Stripping. Engineering in Life Sciences. 5(4):325-332. 

Maier, B., Dietrich, C. and Büchs, J. (2001). Correct application of the sulphite oxidation methodology of 

measuring the volumetric mass transfer coefficient kLa under non-pressurized and pressurized conditions. 

Transactions of the Institution of Chemical Engineers. 79(2):107-113. 

Maness, P.C. and Weaver, P. F. 2001. Evidence for three distinct hydrogenase activites in 

Rhodospirillum rubrum. Applied Microbiology and Biotechnology. 57(5-6):751-756. 

Miltenberger, K. 2000. Hydroxycarboxylic acids, aliphatic. In: Elvers, B. (ed.) Ullmann’s Encyclopedia of 

Industrial Chemistry. Weinheim: Wiley-VCH Verlag. 145-155. 

Mock, J., Zheng, Y., Mueller, A. P., Ly, S., Tran, L., Segovia, S., Nagaraju, S., Köpke, M., Dürre, P. and Thauer, 

R. K. 2015. Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium 

autoethanogenum Involving Electron Bifurcation. Journal of Bacteriology. 197(18):2965-2980. 

Molitor, B., Marcellin, E. and Angenent, L. T. 2017. Overcoming the energetic limitations of syngas 

fermentation. Current Opinion in Chemical Biology. 41:84-92. doi: 10.1016/j.cbpa.2017.10.003. 

Müller, V. 2003. Energy Conservation in Acetogenic Bacteria. Applied and Environmental Microbiology. 

69(11):6345-6353. 

Nagarajan, H., Sahin, M., Nogales, J., Latif, H., Lovley, D. R., Ebrahim, A. and Zengler, K. 2013. 

Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium 

ljungdahlii. Microbial Cell Factories. 12(1):118-131. 

Neumann, A., Dörsam, S., Oswald, F. and Ochsenreither, K. 2016. Microbial Production of Value-Added 

Chemicals from Pyrolysis Oil and Syngas. In: M. Xian (Ed.) Sustainable Production of Bulk Chemicals. 

Integration of Bio-, Chemo-Resources and Processes. Dordrecht: Springer Science+Business Media. 

Ochsenreither, K., Fischer, C., Neumann, A. and Syldatk, C. 20014. Process characterisation and influence of 

alternative carbon sources and carbon-to-nitrogen ratio an organic acid production by Aspergilus oryzae 

DSM1863. Applied Microbiology and Biotechnology. 98(12):5449-5460. doi: 10.1007/s00253-014-5614-x. 

Ohyama, T. and Yamazaki, I. 1975. Formate Dehydrogenase. Subunit and Mechanism of Inhibition by Cyanide 

and Azide. The Journal of Biochemistry. 77:845-852. 

Orgill, J. J., Atiyeh, H. K., Devarapalli, M., Phillips, J. R., Lewis, R. S. and Huhnke, R. L. 2013. A comparison 

of mass transfer coefficients between trickle-bed, hollow fiber and stirred tank reactors. Bioresource 

Technology. 133:340-346. 

Osmani, S. A. and Scrutton, M. C. 1983. The sub-cellular localisation of pyruvate carboxylase and of some other 

enzymes in Aspergillus nidulans. Eur. J. Biochem. 133:551–560. doi: 10.1111/j.1432-1033.1983.tb07499.x 



References 

 

93 

 

Oswald, F., Dörsam, S., Veith, N., Zwick, M., Neumann, A., Ochsenreither, K. and Syldatk, C. 2016. Sequential 

Mixed Cultures: From Syngas to Malic Acid. Frontiers in Microbiology. 7:891. DOI: 

10.3389/fmicb.2016.00891. 

Oswald, F., Stoll, I. K., Zwick, M., Herbig, S., Sauer, J., Boukis, N. and Neumann, A. 2018a. Formic Acid 

Formation by Clostridium ljungdahlii at Elevated Pressures of Carbon Dioxide and Hydrogen. Frontiers in 

Bioengineering and Biotechnology. 6:6. doi: 10.3389/fbioe.20180006. 

Oswald, F., Zwick, M., Omar, O., Hotz, E. H. and Neumann, A. 2018b. Growth and Product Formation of 

Clostridium ljungdahlii in Presence of Cyanide. Frontiers in Microbiology. 9:1213. doi: 

10.3389/fmicb.2018.01213. 

Peleg, Y., Barak, A., Scrutton, M. C. and Goldberg, I. 1989. Malic acid accumulation by Aspergillus flavus. III. 

13CNMR and isoenzyme analysis. 30:176–83. doi: 10.1007/BF00264008 

Peleg, Y., Stieglitz, B. and Goldberg, I. 1988. Malic acid accumulation by Aspergillus flavus - I. biochemical 

aspects of acid biosynthesis. Applied Microbiology and Biotechnology. 28:69-75. doi: 

10.1007/BF00250501 

Peters, V., Janssen, P. H. and Conrad, R. (1999). Transient Production of Formate During Chemolithothrophic 

Growth of Anaerobic Microorganisms on Hydrogen. Current Microbiology. 38:285-289. 

Ragsdale, S. W. and Wood, H. G. 1985. Acetate Biosynthesis by Acetogenic Bacteria. Journal of Biological 

Chemistry. 260(7):3970-3977. 

Ragsdale, S. W., Clark, J. E., Ljungdahl, L. G., Lundie, L. L. and Drake, H. L. 1983a. Properties of Purified 

Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum, a Nickel, Iron-Sulfur Protein. The 

Journal of Biological Chemistry. 258(4):2364-2369. 

Ragsdale, S. W., Ljungdahl, L. G. and DerVartanian, D. V. 1983b. Isolation of Carbon Monoxide 

Dehydrogenase from Acetobacterum woodii and Comparison of Its Properties with Those of the 

Clostridium thermoaceticum Enzyme. Journal of Bacteriology. 155(3):1224-1237. 

Roempp 2012. Article on the search term „Blausäure“. Available at: 

https://roempp.thieme.de/roempp4.0/do/data/RD-02-01881 [last called at 25
th

 of November 2017, 5:32 pm]. 

Rokni, M. 2015. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide 

fuel cell and Stirling hybrid system. International Journal of Hydrogen Energy. 40(24):7855-7869. 

Schiel-Bengelsdorf, B., Montoya, J., Linder, S. and Dürre, P. 2013. Butanol fermentation. Environmental 

Technology. 34(13-14):1691-1710. 

Schlüter, V., Yonsel, S. and Deckwer, W.-D. 1992. Korrelation der O2-Stoffübergangskoeffizienten (kLa) in 

Rührreaktoren mit niederviskosen Fermentationsmedien. Chemie Ingenieur Technik. 64(5):474-475. 

https://roempp.thieme.de/roempp4.0/do/data/RD-02-01881


References 

 

94 

 

Schmidt, R. L. and Cooney, C. L. 1986. Production of acetic acid from hydrogen and carbon dioxide by 

Clostridium species ATCC 29797. Chemical Engineering Communications. 45(1-6):61-73. 

Schuchmann, K. and Müller, V. 2013. Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial 

Carbon Dioxide Reductase. Science. 342:1382-1385. 

Schuchmann, K. and Müller, V. 2014. Autotrophy at the thermodynamic limit of life: a model for energy 

conservation in acetogenic bacteria. Nature Reviews Microbiology. 12:809–821. doi: 10.1038/nrmicro3365. 

Seravalli, J. and Ragsdale, S. W. 2000. Channeling of carbon monoxide during anaerobic carbon dioxide 

fixation. Biochemistry. 39(6):1274-1277. 

Sikkema, J., De Bont, J. A. M. and Poolman, B. 1995. Mechanisms of Membrane Toxicity of Hydrocarbons.  

Microbiological Reviews. 59(2):201-222. 

Simankova, M. V., Kotsyurbenko, O. R., Stackebrandt, E., Kostrikina, N. A., Lysenko, A. M., Osipov, G. A. and 

Nozhevnikova, A. N. 2000. Acetobacterium tundra sp. nov., a new psychrophilic acetogenic bacterium 

from tundra soil. Archives of Microbiology. 174(6):440-447. 

Smith, E. T., Ensing, S. A., Ludden, P. W. and Feinberg, B. A. 1992. Direct electrochemical studies of 

hydrogenase and CO dehydrogenase. Biochemical Journal. 285(1):181-185. 

Straub, M. 2012. Fermentative Acetatproduktion durch Homoacetat-Gärung bzw. Acetatbildung. Dissertation. 

Institute for Microbiology and Biotechnology. University of Ulm. 

Strijbis, K., and Distel, B. 2010. Intracellular Acetyl Unit Transport in Fungal CarbonMetabolism. Eukaryotic 

Cell. 9:1809–1815. doi: 10.1128/EC.00172-10. 

Tanner, R. 2007. Cultivation of Bacteria and Fungi. In: C. J. Hurst et al. (ed.) Manual of Enviromental 

Microbiology. 3
rd

 Edition. Washington, D. C.: ASM Press. 69-78. 

Tanner, R. S. and Laopaiboon, R. 1997. Invited Abstracts of The Art of Anaerobes Conference. Metabolism of 

Clostridium ljungdahlii, an acetogen in the clostridial RNA homology group I. BioFactors. 6(1):53-81. 

Tanner, R., Miller, L. M. and Yang, D. 1993. Clostridium ljungdahlii sp. Nov., an Acetogenic Species in 

Clostridial rRNA Homology Group I. International Journal of Systematic Bacteriology.43(2):232-236. 

Terlesky, K. C., Nelson, M. J. K. and Ferry, J. 1986. Isolation of an Enzyme Complex with Carbon Monoxide 

Dehydrogenase Activity Containing Corrinoid and Nickel from Acetate-Grown Methanosarcina 

thermophila. Journal of Bacteriology. 168(3)1053-1058. 

Thauer, R. K., Fuchs, G., Käufer, B. and Schnitker, U. 1974. Carbon-Monoxide Oxidation in Cell-Free Extracts 

of Clostridium Pasteurianum. European Journal of Biochemistry. 45(2):343-349. 



References 

 

95 

 

Tremblay, P-L., Zhang, T., Dar, S. A., Leang, C. and Lovley, D. R. 2012. The Rnf Complex of Clostridium 

ljungdahlii Is a Proton-Translocating Ferredoxin:NAD
+
 Oxidoreductase Essential for Autotrophic Growth. 

mBio. 4(1): e00406-12. doi:10.1128/mBio.00406-12. 

University of Arkansas, Department of Chemical Engineering 1993. High Pressure Synthesis Gas Conversion. 

Final Report for the United States Department of Energy. 

Van’t Riet, K. 1979. Review of Measuring Methods and Results in Nonviscous Gas-Liquid Mass Transfer in 

Stirred Vessels. Industrial & Engineering Chemistry Process Design and Development. 18(3):357-364. 

Vega, J. L., Antorrena, G. M., Clausen, E. C. and Gaddy, J. L. 1989a. Study of Gaseous Substrate Fermentations: 

Carbon Monoxide Conversion to Acetate. 2. Continous Culture. Biotechnology and Bioengineering. 

34:785-793. 

Vega, J. L., Clausen, E. C. and Gaddy, J. L. 1989b. Study of Gaseous Substrate Fermentations: Carbon 

Monoxide Conversion to Acetate. 1. Batch Culture. Biotechnology and Bioengineering. 34:774-784. 

Vega, J. L., Klasson, K. T., Kimmel, D. E., Clausen, E. C. and Gaddy, J. L. 1990. Sulfur Gas Tolerance and 

Toxicity of CO-Utilizing and Methanogenic Bacteria. Applied Biochemistry and Biotechnology. 24-

25(1):329-340. 

Vega, J. L., Prieto, S., Elmore, B. B., Clausen, E. C. and Gaddy, J. L. 1989c. The Biological Production of 

Ethanol from Synthesis Gas. Applied Biochemistry and Biotechnology. 20/21:781-797. 

Wang, S., Huang, H., Kahnt, A., Mueller, A. P., Köpke, M. and Thauer, R. K. 2013. NADP-Specific Electron-

Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium 

autoethanogenum Grown on CO. Journal of Bacteriology. 195(19):4373-4386. 

Wang, S., Huang, H., Moll, J. and Thauer, R. K. 2010. NADP
+
 Reduction with reduced Ferredoxin and NADP

+
 

Reduction with NADH Are Coupled via an Electron-Bifurcating Enzyme Complex in Clostridium kluyveri. 

Journal of Bacteriology. 192(19):5115-5123. 

Werpy, T. and Petersen, G. 2004. Top Value Added Chemicals from Biomass Volume I. Results of Screening for 

Potential Candidates from Sugars and Synthesis Gas. Washington: U. S. Department of Energy. 

White, H., Huber, C., Feich, R. and Simon, H. 1993. On a reversible molybdenum-containing aldehyde 

oxidoreductase from Clostridium formicoaceticum. Archives of Microbiology. 159(3)244-249. 

Wilke, C. and Chang, P. 1955. Correlation of Diffusion Coefficients in Dilute Solutions. AIChE Journal. 

1(2):264-270. 

Wood, H. G. 1952. A Study of Carbon Dioxide Fixation by Mass Determination of Types of C
13

-Acetate*. 

Journal of Biological Chemistry. 194(2):905-932. 

Wood, H. G. 1991. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB. 5(2):156-163. 



References 

 

96 

 

Worden, R. M., Bredwell, M. D. and Grethlein, A. J. 1997. Engineering Issues in Synthesis Gas Fermentations. 

In: Saha, B. (Ed.) Fuels and Chemicals from Biomass. ACS Symposium Series. Washington, DC: 

American Chemical Society. 320-335. 

Xu, D., Tree, D. R. and Lewis, R. S. 2011. The effects of syngas impurities on syngas fermentation to liquid 

fuels. Biomass and Bioenergy. 35(7):2690-2696. 

Yang, H. and Drake, H. 1990. Differential Effects of Sodium on Hydrogen- and Glucose-Dependent Growth of 

Acetogenic Bacterium Acetogenium kivui. Applied and Environmental Microbiology. 56:81-86. 

Zlokarnik, M. 1973. Rührleistung in begasten Flüssigkeiten. Chemie Ingenieur Technik. 45(9-10):689-692. 

Zlokarnik, M. 1979. Sorption characteristics of slot injectors and their dependency on the coalescence behaviour 

[!] of the system. Chemical engineering Science. 34(10):1265-1271. 

Zlokarnik, M. 1981. Verfahrenstechnische Grundlagen der Reaktorgestaltung. Acta Biotechnologica. 1(4):311-

325. 

Zlokarnik, M. 1999. Rührtechnik. Theorie und Praxis. Berlin a. o.: Springer-Verlag. 



XX 

 

List of figures 

Figure 2.1 – Basic scheme of organoheterotrophic metabolism in acetogenic bacteria. ........... 6 

Figure 2.2 – The Wood-Ljungdahl-Pathway and means of chemiosmotic energy conservation 

in Clostridium autoethanogenum and Clostridium ljungdahlii. ........................... 8 

Figure 2.3 – Scanning electron micrographs of fructose grown cultures of C. ljungdahlii. .... 10 

Figure 2.4 – Growth phases of a bacterial batch culture. ......................................................... 11 

Figure 2.5 – Schematic drawing of concentration changes between a gas bubble and the 

surrounding liquid phase [Bailey and Ollis 1991]. ............................................. 14 

Figure 3.1 – Stirrer configurations used for syngas fermentation in this work. ....................... 27 

Figure 3.2 – Schematic drawing of the STRs used for 1.5 L scale (left) and 2.5 L scale (right).

 ............................................................................................................................. 32 

Figure 3.3 – Flow chart of STR used for elevated pressure cultivations with installed 

periphery. ............................................................................................................ 34 

Figure 3.4 – Overview of cyanide experiments with C. ljungdahlii. ....................................... 35 

Figure 3.5 – Rushton-Marine-Rushton stirrer configuration for syngas fermentation............. 37 

Figure 3.6 – Process scheme for anaerobic syngas fermentation (left) and aerobic fungal 

fermentation (right). ............................................................................................ 38 

Figure 4.1 – kla-values for 600 min-1, 800 min-1 and 1000 min-1 with simultaneous aeration 

of the headspace, sorted by stirrer configuration and air flow rate. .................... 39 

Figure 4.2 - kla-values for 600 min-1, 800 min-1 and 1000 min-1 sorted by stirrer 

configuration and air flow rate. ........................................................................... 40 

Figure 4.3 – kla-values for gas feed rates of 10.3 mL min-1, 17.8 mL min-1 and 44.4 mL min-1 

at 800 min-1......................................................................................................... 41 

Figure 4.4 – Average amount of substance flow rates per liter medium in the off-gas of 

substrate consumption experiments. ................................................................... 45 

Figure 4.5 – Amount of substance flow rates per liter medium for hydrogen (red, solid) and 

carbon dioxide (green, dashed) in the off-gas of 1.5 L-scale. ............................. 46 

Figure 4.6 – Amount of substance flow rates per liter medium for hydrogen (red, solid) and 

carbon dioxide (green, dashed) in the off-gas of 2.5 L-scale experiments. ........ 47 

Figure 4.7 – Development of product concentrations for formic acid, acetic acid and ethanol 

at different headspace pressures. ......................................................................... 48 



List of figures 

 

XXI 

 

Figure 4.8 – Response of fructose growing C. ljungdahlii to increasing concentrations of 

cyanide. ............................................................................................................... 51 

Figure 4.9 – Not-adapted C. ljungdahlii (full symbols) vs. the adapted strain (half filled 

symbols) at different cyanide concentrations with fructose as carbon source. ... 52 

Figure 4.10 – Development of CDW and headspace pressure of cultivations of C. ljungdahlii 

in prescence of different cyanide concentrations. ............................................... 54 

Figure 4.11 – Not-adapted C. ljungdahlii (full symbols) vs. the adapted strain (half filled 

symbols) at different cyanide concentrations with syngas as carbon and energy 

source. ................................................................................................................. 55 

Figure 4.12 – Mean online and offline values for syngas fermentation part of sequential mixed 

culture as well as overall concentration and consumption rate of consumed 

substrates. ............................................................................................................ 59 

Figure 4.13 - Malic acid production (cMalic acid), and acetic acid (cAetic acid) consumption 

in three bioreactors A, B, C from syngas fermentation after 96 h of fermentation.

 ............................................................................................................................. 60 

Figure 5.1 – Sorption characteristic for CO in STRs with one and two Rushton turbines. ..... 65 

Figure 5.2 – Consumption rates for syngas fermentation with C. ljungdahlii in per cent of the 

amount of substance feed rate. ............................................................................ 67 

Figure 5.3 – Amount of substance ratio for products at the end of cultivations at elevated 

pressure. .............................................................................................................. 70 

Figure 5.4 – Molar ratio of products formed by C. ljungdahlii in presence of increasing 

concentrations of cyanide with fructose as carbon source. ................................. 74 

Figure 5.5 – Development of partial pressures of H2, CO, and CO2 for not-adapted 

C. ljungdahlii (full symbols) vs. the adapted cultures (half filled symbols) at 

different cyanide concentrations. ........................................................................ 76 

 

 

 

 

 

 



XXII 

 

List of tables 

Table 3.1 – Composition of cultivation medium, trace element solution (TES) and vitamin 

solution. ................................................................................................................. 22 

Table 4.1 – Results of substrate consumption experiments with C. ljungdahlii growing with 

syngas as sole carbon and energy source. ............................................................. 43 

Table 4.2 – Product yields based on consumed and used substrate as well as average durations 

of complete substrate consumption. ...................................................................... 44 

Table 4.3 – Average values for products and consumed substrates from cultivations of 

C. ljungdahlii with hydrogen and carbon dioxide as sole energy- and carbon 

source at different pressures after 90 h of cultivation. .......................................... 49 

Table 4.4 – Results of preliminary experiments with C. ljungdahlii growing with syngas as 

sole carbon and energy source. .............................................................................. 57 

Table 5.1 – Per cent consumption of substrates, yield based on consumed and fed substrates 

and molar acetic acid to ethanol ratio of substrate consumptions experiments. ... 68 

Table 5.2 – Results for CDW, growth rate, lag-phase and product yield of heterotrophic 

cultures in presence of different concentrations of cyanide [Oswald et al. 2018b]

 ............................................................................................................................... 73 

Table 5.3 – Results for CDW, growth rate and lag-phase of autotrophic cultures in presence of 

different concentrations of cyanide [Oswald et al. 2018b] ................................... 75 

 

 

 

 

 

 

 



XXIII 

 

Appendix 

List of chemicals and vendors 

Table 0.1 – List of Chemicals and their respective vendors used throughout this thesis. 

Name Elemental formula Vendor 

2-(N-morpholino) 

ethansulfonic acid (MES) 

C6H13NO4S Carl-Roth, Germany 

Yeast extract n. a. BD, USA 

Sodium chloride NaCl Carl-Roth, Germany 

Ammonium chloride NH4Cl Carl-Roth, Germany 

Potassium chloride KCl Carl-Roth, Germany 

Potassium dihydrogen 

phosphate 

KH2PO4 Carl-Roth, Germany 

Magnesium sulfate 

heptahydrate 

MgSO4 ∙ 7 H2O Carl-Roth, Germany 

Calcium chloride dihydrate CaCl2 ∙ 2 H2O Carl-Roth, Germany 

Resazurin sodium salt NaC12H6NO4 Sigma-Aldrich, Germany 

Nitrilotriacetic acid C6H9NO6 Sigma-Aldrich, Germany 

Manganese(II) sulfate 

monohydrate 

MnSO4 ∙ H2O Sigma-Aldrich, Germany 

Iron(II) sulfate heptahydrate FeSO4 ∙ 7 H2O Carl-Roth, Germany 

Cobalt(II) chloride 

hexahydrate 

CoCl2 ∙ 6 H2O Riedel de haën, Germany 

Zinc(II) sulfate heptahydrate ZnSO4 ∙ 7 H2O Carl-Roth, Germany 

Copper(II) chloride dihydrate CuCl2 ∙ 2 H2O Carl-Roth, Germany 

Nickel(II) chloride 

hexahydrate 

NiCl2 ∙ 6 H2O Sigma-Aldrich, Germany 

Sodium molybdate dihydrate Na2MoO4 ∙ 2 H2O Sigma-Aldrich, Germany 

Sodium selenite pentahydrate Na2SeO3 ∙ 5 H2O Sigma-Aldrich, Germany 

Sodium tungstate dihydrate Na2WO4 ∙ 2 H2O Sigma-Aldrich, Germany 

Biotin (vitamin B7) C10H16N2O3S Sigma-Aldrich, Germany 

Folic acid (vitamin B9) C19H19N7O6 Sigma-Aldrich, Germany 

Pyridoxine (vitamin B6) C8H11NO3 Alfa Aesar, Germany 

Thiamine-HCl (vitamin B1) C12H18Cl2N4OS Carl-Roth, Germany 
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Table 0.1 – continuation  

Name Elemental formula Vendor 

Riboflavin (vitamin B2) C17H20N4O6 Sigma-Aldrich, Germany 

Niacin (vitamin B3) C6H5NO2 Sigma-Aldrich, Germany 

Ca-pantothenate (vitamin B5) C18H32CaN2O10 Sigma-Aldrich, Germany 

Cobalamin (vitamin B12) C72H100CoN18O17P Sigma-Aldrich, Germany 

4-aminobenzoic acid C7H7NO2 Sigma-Aldrich, Germany 

Lipoic acid C8H14O2S2 Cayman Chemical, USA 

Contraspum A5040 n. a. Zschimmer und Schwarz, 

Germany 

Cysteine-HCl C3H7NO2S∙HCl Carl-Roth, Germany 

Calcium carbonate CaCO3 Carl-Roth, Germany 

Ethanol C2H6O Carl-Roth, Germany 

Sodium acetate C2H3NaO2 Carl-Roth, Germany 

Isobutanol C4H10O Carl-Roth, Germany 

Hydrochloric acid HCl Carl-Roth, Germany 

Potassium cyanide KCN Sigma-Aldrich, Germany 

Potassium hydroxide KOH Carl-Roth, Germany 

Orthophosphoric acid H3PO4 Carl-Roth, Germany 
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Results of third reactor from substrate consumption experiments 

  

Table 0.2 – Results of substrate consumption experiments with C. ljungdahlii growing with syngas as 

sole carbon and energy source for the third bioreactor 

Set-up RMR-10 RRB-10 RMR-18 RRB-18 RMR-44 RRB-44 

βCDW/g L
-1

 0.77 0.77 0.83 0.81 0.51 0.24 

βacetic acid/g L
-1

 12.47 11.76 22.32 20.33 5.33 6.11 

βEtOH/g L
-1

 0.90 1.09 1.36 1.11 4.47 2.75 

βfructose/g L
-1

 0.71 0.45 0.61 0.53 0.72 0.76 

cH2,R/mol L
-1

 0.38 0.42 0.56 0.65 0.05 -0.03 

cCO,R/mol L
-1

 0.42 0.43 0.54 0.77 1.02 0.77 

cCO2,R/mol L
-1

 -0.015 -0.01 -0.15 -0.07 -0.62 -0.51 

Vgas, total/L 58.39 60.03 103.50 102.42 254.81 254.15 

t/h 96.35 96.20 95.83 94.83 96.30 96.05 

EH2/% 69.17 75.27 60.02 68.16 1.99 -1.35 

ECO/% 77.59 81.19 83.86 81.00 42.26 32.11 

ECO2/% -7.05 -2.67 -34.74 -15.82 -56.99 -47.80 

The numbers behind RMR and RRB in the table header stand for the gas feed rate with 10 = 10.3 mL min-1, 18 = 17.8 mL min-1, 

44 = 44.4 mL min-1. βCDW, maximum concentration of CDW; βFructose, concentration of fructose at beginning of fermentation; βacetic acid, 

final concentration of acetic acid; βEtOH, final concentration of ethanol; cH2,R, consumed amount of hydrogen per liter reactor volume; 

cCO,R, consumed amount of carbon monoxide per liter reactor volume; cCO2,R, consumed amount of carbon dioxide per liter reactor 

volume; Vgas, total,  total volume of used syngas over the course of fermentation; t, total process time; EH2
, consumption ratio of hydrogen 

as consumed amount of hydrogen in per cent of total amount of ingoing hydrogen; ECO, consumption ratio of carbon monoxide as 

consumed amount of carbon monoxide in per cent of total amount of ingoing carbon monoxide; ECO2
, consumption ratio of carbon 

dioxide as consumed amount of carbon dioxide in per cent of total amount of ingoing carbon dioxide. Negative Values in the columns 

cCO2,R and ECO2
 mean that more CO2 has left the reactor than has gone in. 
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Table 0.3 – Product yields based on consumed and used substrate as well as average durations of 

complete substrate consumption for the third bioreactor. 

Set-up RMR-10 RRB-10 RMR-18 RRB-18 RMR-44 RRB-44 

YP/S
*
/g g

-1
 0.98 0.93 0.95 0.90 0.32 0.40 

YP/S
**

/g g
-1

 0.76 0.76 0.79 0.73 0.13 0.12 

teH2 ≥ 97%/h 38.5 49.5 12.00 15.13 0.00 0.00 

teCO ≥ 97%/h 68.10 72.30 29.78 33.30 0.00 0.00 

*
, based on consumed H2 and CO; 

**
, based on totally fed H2 and CO; teH2 ≥ 97%, duration of complete 

hydrogen consumption; teCO ≥ 97%, duration of complete carbon monoxide consumption. 
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Figure 0.1 - amount of substance flow rates per liter medium in the off-gas of substrate consumption 

experiments for the third bioreactor. Results of experiments with RMR (left) and RRB stirrer set-up 

(right) at average gas flow rates of 10.33 ± 0.21 mL min
-1

, 17.78 ± 0.22 mL min
-1

 and 44.38 ± 0.26 mL min
-1

 

(top to bottom). Hydrogen (red line), carbon monoxide (yellow line) and carbon dioxide (green line). 
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