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Abstract: We develop a facile, fast, and cost-effective method based on the electrowetting 
effect to fabricate concave microlens arrays (MLA) with a tunable height-to-radius ratio, 
namely aspect ratio (AR). The electric parameters including voltage and frequency are 
demonstrated to play an important role in the MLA forming process. With the optimized 
frequency of 5 Hz, the AR of MLA are tuned from 0.057 to 0.693 for an increasing voltage 
from 0 V to 180 V. The optical properties of the MLA, including their transmittance and light 
diffusion capability, are investigated by spectroscopic measurements and ray-tracing 
simulations. We show that the overall transmittance can be maintained above around 90% 
over the whole visible range, and that an AR exceeding 0.366 is required to sufficiently 
broaden the transmitted light angular distribution. These properties enable to apply the 
developed MLA films to correlated-color-temperature (CCT)-tunable light-emitting-diodes 
(LEDs) to enhance their angular color uniformity (ACU). Our results show that the ACU of 
CCT-tunable LEDs is significantly improved while preserving almost the same lumen output, 
and that the MLA with the highest AR exhibits the best ACU performance. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Microlens arrays (MLA) are micro-optical elements widely used in optical sensors [1], 
photovoltaics [2], 3D displays [3] as well as for light management in light emitting diodes 
(LEDs) [4,5]. The LED technology offers unique advantages compared to traditional 
incandescent bulbs and fluorescent lamps including a high efficiency, a low power 
consumption and a long lifetime [6–9]. To meet the demands of high-quality illumination and 
display, the angular color uniformity (ACU) of LEDs needs further improvement [10–12]. 
Numerous methods have been proposed to ameliorate the ACU of white LEDs, such as light 
scattering nano-particles [13,14], shaped phosphor layers [15,16], diffusing reflectors [17] 
and microstructured films [18,19]. Among these different approaches, the microstructured 
films method is particularly attractive as it is facile and suitable for various LED packages, 
and has been widely adopted in commercial applications. Furthermore, Chen et al. 
demonstrated that diffusing MLA significantly improve the ACU of correlated color 
temperature (CCT)-tunable LEDs [20], which motivated the present work. As a new type of 
intelligent LED light source, a CCT-tunable LED changes the CCT by independently 
adjusting the light intensity of cold and warm color light [21,22]. Because of the lack of a 
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proper light mixing scheme, CCT-tunable LED lamps suffer from a poor color uniformity and 
from the appearance of a blue circle and a yellow halo, which are detrimental to the 
illumination quality [23]. In our previous research, we effectively improved the ACU of 
CCT-tunable LEDs by MLA, reducing the CCT deviation from 1090 K to 218 K within the 
CCT range of 3000-4000 K [20]. Herein, the MLA morphology and more specifically their 
aspect ratio (AR), defined as the ratio of their height over their base radius, is a key factor for 
the ACU performance, which still needs to be investigated. 

The increasing demand for micro-optoelectronic devices has prompted the development of 
MLA fabrication methods including direct laser writing [24–26], reactive ion etching [27,28], 
cylindrical micropillars photoresist reflow [29–31], hot embossing [32–34] and inkjet printing 
[35,36]. Direct laser writing enables fabrication of MLA with different shapes. However, it is 
not suitable for mass fabrication because it is a serial process. Reactive ion etching requires 
vacuum which is slowing down fabrication. Photoresist reflow and hot embossing methods 
have the advantages of low cost and high surface flatness, but the lens morphology is hard to 
control. Many studies have shown that the microlenses shape has a significant impact on the 
MLA performance [37–39], hence the fabrication of morphology-controllable MLA has 
attracted much attention. Xu et al. controlled the curvature of the acrylate resin concave 
meniscus in a patterned PDMS template. To this end, the interfacial energy was adjusted by 
the processing time for the surface modification of the PDMS microholes [40]. Fang et al. 
used the UV laser writing method coupled with soft imprint technology to fabricate 
paraboloidal MLA with varying ARs, which can be easily tuned by changing the exposure 
laser power [41]. A breath figure method based on water fog condensing was proposed by 
Peng et al. to fabricate the MLA by adjusting the condensing temperature and time [42]. Yang 
et al. proposed to fabrication hexagonal compound eye MLA using a maskless lithography 
technique based on digital micromirror device which allowed a proper control of the 
morphology. To achieve this, three steps were involved and a final reflow process was 
required to smoothen the lenses' surface [43]. The above described methods can form MLA 
structures with varying ARs, but they do not allow to rapidly change them during fabrication. 

In our study, we propose to exploit a versatile, potentially low-cost and rapid route based 
on the electrowetting effect in order to fabricate concave MLA with controllable lens 
curvature [44,45]. The electrowetting phenomenon refers to the change in solid-liquid contact 
angle due to an applied potential difference between the solid and the liquid [46]. In our 
approach, liquid UV-cured polymer is filling the micro-holes of a patterned silicon template, 
whose preparation only requires one initial wet etching step and determines the diameter and 
arrangement of the MLA. Their AR can then be controlled by adjusting the voltage and 
frequency between the silicon template and the polymer which changes the contact angle of 
the polymer surface. In this contribution, we specifically tune these electrical parameters with 
a view to maximizing the AR of the MLA. Our objective is here to broaden the transmitted 
light angular distribution, to promote light mixing and in turn, to improve the ACU of CCT-
tunable LED lamps. This demonstration is supported in the next sections by both 
spectroscopic measurements and (ray tracing) optical simulations, and by testing the 
developed MLA in CCT-tunable LED lamps. 

2. Experimental and simulation methods 

2.1 Fabrication of MLA with tunable AR by electrowetting 

The concave MLA fabrication method we use requires a micro-patterned template and the 
application of an electrical field, as schematized in Fig. 1. First, UV curable polymer 
(Norland optical adhesive 65) was spin-coated on a glass substrate covered by a transparent 
conductive indium tin oxide (ITO) layer (Shenzhen Xiangcheng). A P-type doped conductive 
silicon template (with electrical resistance between 1 and 10Ω/cm), drilled by a hexagonal 
array of cylindrical micro-holes, was placed on the polymer layer while sufficient pressure 
was applied to confine the polymer in the holes, as shown in Fig. 1(a). In this study, the 
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micro-hole array was fabricated by conventional photolithography and wet etching. The 
diameter and arrangement of the MLA are determined by the design of the micro-holes array 
in the template. Their AR can be precisely controlled by the electric field. In order to provide 
enough space for the deformation of liquid polymer, the micro-holes depth should be much 
larger than the thickness of the polymer layer and was therefore set to 50 µm. A 600 nm thick 
dielectric silicon dioxide layer was subsequently formed on the template surface by thermal 
oxidation so as to enhance the electric field strength [47–49]. Before the electrowetting 
process, fluoroalkyl silane alcohol solution (Trichloro(1H,1H,2H,2H-perfluorooctyl) silane) 
was spin coated on the surface of the template and dried as an anti-adhesion layer. Then 
voltage was applied between the template and the conductive substrate to create an electric 
field that changes the curvature of the meniscus polymer surface in the hole array, as shown 
in Fig. 1(b). The voltage was driven by a waveform generator (Agilent 33250A) and a high 
voltage power supply (Trek Model 610E). While pressure and voltage were maintained, UV 
light was irradiated from the ITO coated glass substrate side to cure the polymer, as shown in 
Fig. 1(c). Finally, the conductive silicon template was separated from the ITO glass substrate 
and concave MLA films were obtained, as shown in Fig. 1(d). In order to generate replicas 
after the fabrication of the MLA film, polydimethylsiloxane (PDMS, Dow Corning 184) was 
spin-coated on the MLA film and separated after curing as a negative imprint template. By 
using the PDMS negative mold to soft imprint a UV curable polymer layer (Norland optical 
adhesive 65), multiple copies of the MLA film were reobtained facilely. In this method, the 
structured silicon template can be re-used to fabricate MLA with different ARs by simply 
changing the conditions of the applied electrical field, thereby limiting the cost of the process. 

 

Fig. 1. Schematic illustration of concave MLA fabrication by the electrowetting process. (a) 
Coating of a polymer layer on the bottom transparent conductive oxide substrate and contact of 
the micro-patterned template onto the polymer layer with a certain pressure to confine the 
polymer in the micro-holes; (b) Application of a voltage between the template and the 
conductive substrate under controlled pressure; (c) UV irradiation from the transparent 
conductive oxide substrate side to cure the polymer; (d) Separation of the template from the 
cured polymer. 
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2.2 Simulation methodology 

2.2.1 Electrowetting simulations 

The fabrication process was simulated using the finite element method (FEM) implemented in 
a commercial software (COMSOL Multiphysics version 5.3). 

For that purpose, we used a fluid mechanics model and an electric field model to describe 
the fluid motion during the electrowetting process. According to the electro-hydrodynamics 
principle, the movement of a fluid in an electric field can be described by the Navier−Stokes 
equation of momentum and mass conservation [50]: 
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where ρ  and η  denote the fluid’s mass density and viscosity, respectively, p  is the hydraulic 

pressure in the fluid, ef  denotes the volumetric force generated by an electric field, u
  is the 

fluid flow rate, g  is gravitational acceleration and t  represents time. The equation of motion 
sets the fluid flow in the model as non-compressible with momentum conservation. 
According to Maxwell's equation, the volumetric force ef  has mainly three manifestations: 

Coulomb force, electrostrictive force, and dielectrophoresis (DEP) force. DEP force is the 
force which is exerted on a dielectric material when it is subjected to a non-uniform electric 
field. Because the fluid used in this study is a dielectric polymer that has no free charge and 
the electric field strength is insufficient to generate noticeable electrostrictive forces, the 
electric volumetric force formula can be simplified to: 

 21

2
ef E ε= − ∇  (2) 

where E  represents the electric field intensity and ε  represents the fluid’s dielectric constant. 
In an electric field, the liquid molecules experience electric polarization. In a uniform electric 
field, polarization molecules are evenly distributed and offset each other without showing 
DEP force. In a non-uniform electric field, the distribution of polarization molecules is 
directional. The DEP forces of molecules cannot offset each other and always point in the 
direction of the stronger electric field region. In addition, the representation of the liquid 
interface layer was described by a troposphere in this study, and is described by the basic 
phase function ϕ  [51,52]. According to Eq. (2), the electric volumetric force ef  is only 

concentrated at the gas-liquid interface as the gradient of the dielectric constant ε  of the 
polymer-air system varies greatly in this region. 

In our simulation model, the thickness of the dielectric layer was set to 0.6 μm, as 
measured experimentally, and the minimum distance between the template and the substrate 
to 2 μm. Lastly, the polymer volume was fixed. The DEP force distribution and the motion of 
the polymer were simulated under varying voltages of 60 V, 120 V and 180 V. 

2.2.2 Ray tracing simulations 

Light transmission through the MLA films was simulated using the commercial software 
LightTools (Synopsys). The schematic diagram of the optical simulations is shown in Fig. 
2(a). In our model, 108 parallel rays are incident on the patterned side of the MLA films and 
one-period unit is illuminated, as depicted in the close-up shown in Fig. 2(b). The actual 3D 
morphology of the MLA film is extracted from laser scanning confocal microscope to 
establish a realistic model based on concave micro-lenses with a diameter of 20 µm and on a 
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need time to migrate in reverse. Before the charges finish migrating, the reverse electric field 
and the external electric field form a short-term codirectional superposition, making the 
electric field stronger than in the saturated state [53]. Under a certain frequency of reversing, 
the superposition electric field can maintain a stable value that is higher than the pristine 
saturation voltage, so the contour curvature formed under the square wave voltage condition 
is larger. 

Owing to the better smoothness and sag height of the MLA produced, 5 Hz was selected 
as the frequency for the next tests. Figure 4(c) shows the contour comparison of the MLA 
formed under different 5 Hz square wave voltages. The resulting AR value are 0.057 (0V), 
0.212 (60V), 0.547 (120V) and 0.693 (180V). As previously described, the surface curvature 
gradually increases with increasing voltage amplitude and reaches a maximum AR of 0.693. 
Compared with the constant voltage of the same magnitude, square wave voltage provides 
higher saturation voltages and achieves higher sag heights. By regulating the square wave 
voltage amplitude, the AR of the MLA can be tuned over a broad range. In the following, we 
refer to the planar polymer film as the “Smooth Film”, and to the concave MLA films formed 
by a square wave voltage of 0 V, 60 V, 120 V and 180 V as “S-0 film”, “S-60 film”, “S-120 
film”, and “S-180 film”, respectively. The macroscopic and microscopic images of S-0 film 
and S-180 film are shown in Fig. 4(d). It can be clearly seen that the AR of the S-180 film is 
significantly larger than S-0 film and the MLA has good spatial homogeneity. 

Details on the DEP force distribution and the morphology variation obtained from FEM 
simulations are shown in Fig. 4(e). The DEP forces concentrate at the surface of the polymer. 
The DEP force is close to zero in the central region and gradually increases towards the 
edges. By increasing the applied voltage, the DEP forces get higher on the polymer surface, 
thus increasing the AR of the MLA. The polymer surface in the initial state is almost flat. The 
DEP force vectors are shown by the white arrows in the insets of Fig. 4(e). As the DEP force 
is much larger in the edge regions and since the polymer volume is conserved, the edge 
regions are pulled upward, while the central region is forced down, finally forming a structure 
with parabolic shape. 
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Fig. 4. (a) MLA film surface contour at different constant voltages. (b) MLA surface contour 
for different square wave frequencies at 120 V (c) MLA surface contour for different square 
wave voltages at 5 Hz. (d) Photographs (left) and scanning electron microscope images (right, 
taken under 45° tilt angle) of the S-0 and S-180 films. The size of the patterned area is 20 mm 
× 20 mm. (e) Simulated DEP force distribution along the meniscus polymer surface for 
different applied voltages. The insets show the initial state (left) and the final state (right) of 
the polymer meniscus at 180 V. 
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respectively. This demonstrates that the increase of AR of the MLA surface can more evenly 
scatter the light into a wider angular range. 

 

Fig. 6. (a) Schematic of the light distribution in a CCT-tunable LED lamp. (b) Angle-
dependent CCT distribution of the lamps covered with the smooth film and with the MLA 
films. The insets show the photographs of the light spots obtained with a CCT-tunable LED 
with smooth film (left) and with the S-180V film (right). (c) Emission spectra of different films 
at the zenith angles of 65°. (d) Emission spectra of the corresponding samples measured with 
an integrating sphere. 

As the fabricated MLA exhibit a high optical transmittance and broaden the angular 
distribution of transmitted light, they are relevant candidates to improve light management in 
CCT-tunable LEDs. Figure 6(a) shows a schematic diagram of the light distribution of the 
CCT tunable LED. The LED is surrounded by a cylindric reflector as desired for practical 
applications. In the center region above the lamp, the CCT values are uniform because the 
rays from the warm-white and cold-white areas are not blocked and can be mixed well. In the 
yellow region the light coming from the cool-white area (located near the reflector), is 
blocked and cannot transmit to this region. In this part, warm-white light mostly dominates 
and the CCT is low, resulting in the appearance of a yellow halo. In the blue region, the light 
from the warm-white area is also shielded, and only the light from cool-white area, which is 
away from the reflector, illuminates this area. Thus, the CCT of this area is significantly 
higher than other angles and a blue ring appears. 

In view of the light scattering properties of MLA films, we covered the MLA film 
samples at the top of the CCT-tunable LED lamp for an ACU improvement demonstration. 
As shown in Fig. 6(b), the CCT curve of the lamp has a large fluctuation when covered with a 
smooth film. We define the difference between the maximum and minimum CCT values as 
the CCT deviation, which is as high as 791 K in the smooth film. As the AR of the MLA 
increases, the CCT deviation of the lamp gradually decreases. Thus, the CCT deviation of the 
S-180 film configuration is reduced to 357 K. The improvement of the ACU of the lamp is 
mainly caused by the CCT decrease at a zenith angle of 65°. In other words, it relieves the 
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blue ring phenomenon. Assisted by the MLA film, the emitting light is refracted and mixed 
more evenly and more light rays from the warm-white area enter the blue region. Therefore, 
the CCT at an angle of 65° gradually decreases as the AR of the MLA film increases. The 
inset shows the light spot patterns of the CCT-tunable LED with the smooth film (left) and 
the S-180 film (right). It is obvious that the former has a clear blue ring and a yellow halo. 
The latter has no obvious blue ring and the yellow halo is also significantly reduced. 

To verify the analysis regarding the disappearance of the blue ring phenomenon, we 
extracted and compared the emission spectra for the different configurations considered and 
for a zenith angle of 65° (see Fig. 6(c)). These spectra display little difference in the peaks of 
the blue light band (400 nm–500 nm). The enhancement of scattering performance has less 
effect on the blue light. On the other hand, these measurements indicate significant 
differences in the yellow portion of the spectra. With increasing applied voltage, the peaks 
and relative intensity of the yellow light (500 nm–750 nm) spectrum gradually increase. Films 
with a higher haze (higher AR, see Fig. 5(b)) have a better light diffusing property and more 
warm-white light can reach the spatial range of 65° which has an overall effect of lowering 
the resulting CCT at high zenith angles, as observed in Fig. 6(b). 

To investigate the influence of the MLA film on the luminous flux, we used an integrating 
sphere to measure the emission spectrum of the CCT-tunable LED lamp covered with the 
different films. The driven current is the same as for the ACU measurement and the results 
are shown in Fig. 6(d). The emission intensity of the CCT-tunable LED lamp upon integration 
of the MLA films is just slightly lower than by using the smooth film, in accordance with the 
transmittance values reported in Fig. 5(a). Thus, the maximum luminous flux loss ratio 
amounts to 4.53% when the lamp is covered with S-180 film and with respect to the smooth 
film configuration. 

In practical applications, CCT-tunable LED lamps need to be adjusted to different CCT 
ranges according to requirements. To this end, we validated the research results in different 
CCT ranges. Table 1 lists the CCT deviations and luminous fluxes of CCT-tunable LEDs 
covered by smooth film and S-180V film over the full CCT range of 2500–6500 K. From the 
CCT deviation comparison, it is found that as the average CCT value increases, the CCT 
deviation gradually increases. In each CCT range, the CCT deviation of the S-180V film lamp 
is significantly reduced compared with the smooth film configuration, which improves the 
ACU of the LED efficiently. In terms of luminous flux, the lamps covered with S-180V film 
have slightly narrower CCT range than smooth film, and the decreasing ratio is within 5%. 
Therefore, the MLA films can effectively improve the ACU of CCT-tunable LEDs and 
maintain a high luminous flux, which meets the needs of practical applications. 

Table 1. Correlated color temperature deviation (ΔCCT) and luminous flux of CCT-
tunable LED covered with a smooth film and with the S-180V film for different CCT 

ranges. The uncertainties of the CCT deviation and luminous flux data were derived out 
of 3 and 5 measurements, respectively. 

CCT Range (K) 

ΔCCT (K) Luminous Flux (lm) 

Smooth film S-180V film Smooth film S-180V film 

2500-3000 454 ± 4 214 ± 4 421.6 ± 0.3 403.9 ± 0.1 

3000-4000 772 ± 3 339 ± 2 466.4 ± 0.2 447.2 ± 0.1 

4000-5000 791 ± 6 357 ± 3 478.0 ± 0.3 456.4 ± 0.3 

5000-6000 997 ± 8 616 ± 7 470.1 ± 0.1 452.7 ± 0.2 

6000-6500 1206 ± 14 771 ± 9 472.6 ± 0.2 452.3 ± 0.2 
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4. Conclusion 

In summary, we have presented a novel approach that exploits the electrowetting effect to 
fabricate MLA with tunable ARs for CCT-tunable LED applications. At the optimized 
voltage frequency of 5 Hz, the AR of the MLA gradually increases from 0.057 to 0.693 by 
increasing the applied voltage from 0 V to 180 V, which leads to higher DEP forces. As 
confirmed experimentally and numerically, the MLA films with higher AR exhibit a higher 
haze and a broader angular light distribution. When the MLA films are applied to a CCT-
tunable LED with a CCT of 3000-4000 K, the CCT deviation is largely reduced and the best 
ACU performance is achieved with the S-180 MLA film, which has the highest AR of 0.693 
among all the fabricated MLA. The S-180 film also shows a remarkable performance for 
ACU improvement in other CCT ranges and helps to maintain a good lumen output. The 
ACU enhancement is caused primarily by the homogenous mixing of the warm and of the 
cool light, caused by the high diffusing property of the MLA film. Our method for the 
fabrication of MLA with tailorable ARs is facile, rapid and cost-effective. Higher 
improvements in ACU performances are expected by further optimizing the MLA design, 
especially by reducing the spacing between the micro-lenses. 

Funding 

National Natural Science Foundation of China (NSFC) (51805173, 51735004 and 
U1401249); Natural Science Foundation of Guangdong Province (2014A030312017); The 
Fundamental Research Funds for the Central Universities (2018MS44); Karlsruhe School of 
Optics & Photonics (KSOP) 

Acknowledgments 

The authors would like to thank Shudong Yu at South China University of Technology for his 
guidance and for making this collaboration possible. They also acknowledge Prof. Jinyou 
Shao, Prof. Xiangming Li and Prof. Hongmiao Tian at Xi'an Jiaotong University for 
experimental guidance and helpful discussions. 

References 

1. T. F. Zhu, Z. Liu, Z. Liu, F. Li, M. Zhang, W. Wang, F. Wen, J. Wang, R. Bu, J. Zhang, and H. X. Wang, 
“Fabrication of monolithic diamond photodetector with microlenses,” Opt. Express 25(25), 31586–31594 
(2017). 

2. J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical 
approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 
(2012). 

3. X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays 
based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 
(2016). 

4. H. Y. Lin, Y. M. Pai, J. X. Shi, X. Y. Chen, C. H. Lin, C. M. Weng, T. Y. Chen, C. C. Lin, M. D. B. Charlton, Y. 
P. Huang, C. H. Chen, H. P. Chen, and H. C. Kuo, “Optimization of nano-honeycomb structures for flexible w-
LEDs,” Opt. Express 25(17), 20466–20476 (2017). 

5. X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Pror. 
Energy Combust. Sci. 56, 1–32 (2016). 

6. Y. U. Shudong, Y. Tang, L. I. Zongtao, K. Chen, X. Ding, and Y. U. Binhai, “Enhanced optical and thermal 
performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” 
Photon. Res. 6(2), 90 (2018). 

7. S. Yu, Y. Tang, Z. Li, Y. Chen, B. Yu, and G. Liang, “Freeform illumination lens design combining energy and 
intensity mapping,” Opt. Eng. 56(4), 045101 (2017). 

8. X. Ding, M. Li, Z. Li, Y. Tang, Y. Xie, X. Tang, T. Fu," Thermal and optical investigations of a laser-driven 
phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).   

9. Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, “Preparation and luminescent 
performances of thermally stable redemitting phosphor-in-glass for high-power lighting,” J. Alloys Compd. 768, 
114–121 (2018). 

10. J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and 
Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–
2884 (2018).  

                                                                                               Vol. 27, No. 4 | 18 Feb 2019 | OPTICS EXPRESS A36 



11. Z. Huai, L. Sheng, and L. Xiaobing, “Enhancing Angular Color Uniformity of Phosphor-Converted White Light-
Emitting Diodes by Phosphor Dip-Transfer Coating,” J. Lightwave Technol. 31(12), 1987–1993 (2013). 

12. S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for 
color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42(23), 4962–
4965 (2017). 

13. L. Rao, Y. Tang, Z. Li, X. Ding, J. Li, S. Yu, C. Yan, and H. Lu, “Effect of ZnO nanostructures on the optical 
properties of white light-emitting diodes,” Opt. Express 25(8), A432–A443 (2017). 

14. Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and 
Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. 
Electron Dev. 65(1), 158–164 (2018). 

15. J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by 
Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016). 

16. J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs 
Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017). 

17. Y. Tang, G. Liang, J. Chen, S. Yu, Z. Li, L. Rao, and B. Yu, “Highly reflective nanofiber films based on 
electrospinning and their application on color uniformity and luminous efficacy improvement of white light-
emitting diodes,” Opt. Express 25(17), 20598–20611 (2017). 

18. H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, and 
Y. J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express 19(S4 
Suppl 4), A930–A936 (2011). 

19. S. Yu, Z. Li, G. Liang, Y. Tang, B. Yu, and K. Chen, “Angular color uniformity enhancement of white light-
emitting diodes by remote micro-patterned phosphor film,” Photon. Res. 4(4), 140 (2016). 

20. Q. Chen, Z. Li, K. Chen, Y. Tang, X. Ding, and B. Yu, “CCT-tunable LED device with excellent ACU by using 
micro-structure array film,” Opt. Express 24(15), 16695–16704 (2016). 

21. A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode 
Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015). 

22. A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled 
Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron. 29(1), 501–
513 (2014). 

23. C. Y. Liu, K. J. Chen, D. W. Lin, C. Y. Lee, C. C. Lin, S. H. Chien, M. H. Shih, G. C. Chi, C. Y. Chang, and H. 
C. Kuo, “Improvement of emission uniformity by using micro-cone patterned PDMS film,” Opt. Express 22(4), 
4516–4522 (2014). 

24. J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-
area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–
9385 (2013). 

25. R. Ahmed, A. K. Yetisen, and H. Butt, “High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional 
Flexible Polymer Microlens Array,” ACS Nano 11(3), 3155–3165 (2017). 

26. J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous 
relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008). 

27. M. Severi and P. L. Mottier, “Etching selectivity control during resist pattern transfer into silica for the 
fabrication of microlenses with reduced spherical aberrations,” Opt. Eng. 38(1), 146–150 (1999). 

28. A. M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33(11), 3547–
3551 (1994). 

29. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” 
Appl. Opt. 27(7), 1281–1284 (1988). 

30. J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS 
Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007). 

31. H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing 
density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015). 

32. C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-
assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006). 

33. D. Xie, X. Chang, X. Shu, Y. Wang, H. Ding, and Y. Liu, “Rapid fabrication of thermoplastic polymer refractive 
microlens array using contactless hot embossing technology,” Opt. Express 23(4), 5154–5166 (2015). 

34. X. J. Shen and L. Lin, Micro Plastic Embossing Process: Experimental and Theoretical Characterizations 
(Springer Berlin Heidelberg, 2001). 

35. M. Kuang, L. Wang, and Y. Song, “Controllable printing droplets for high-resolution patterns,” Adv. Mater. 
26(40), 6950–6958 (2014). 

36. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer 
microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. 
Express 1(2), 259–269 (2011). 

37. R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, 
and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in 
Thin�Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016). 

                                                                                               Vol. 27, No. 4 | 18 Feb 2019 | OPTICS EXPRESS A37 



38. B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of 
structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 
12(3), 036011 (2017). 

39. Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor 
layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018). 

40. Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer 
microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 
(2018). 

41. C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal 
Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 
21950–21956 (2018). 

42. Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with 
Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” 
ACS Photonics 4(10), 2479–2485 (2017). 

43. B. Yang, J. Zhou, Q. Chen, L. Lei, and K. Wen, “Fabrication of hexagonal compound eye microlens array using 
DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018). 

44. X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable 
dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011). 

45. X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by 
liquid trapping and electrohydrodynamic deformation in microholes,” Adv Mater 24, OP165–169, OP190 
(2012). 

46. M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene 
terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996). 

47. X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using 
dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011). 

48. X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of 
micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013). 

49. X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film 
for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 
5(20), 9975–9982 (2013). 

50. H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by 
coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011). 

51. D. Jacqmin, Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling (Academic Press 
Professional, Inc., 1999). 

52. C. Zhou, P. Yue, J. J. Feng, C. F. Ollivier-Gooch, and H. H. Hu, “3D Phase-Field Simulations of Interfacial 
Dynamics in Viscoelastic Fluids with Adaptive Meshing,” in 61st Annual Meeting of the APS Division of Fluid 
Dynamics (2008). 

53. X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in 
Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. 
Mater. 26(18), 2994–3002 (2016). 

 

                                                                                               Vol. 27, No. 4 | 18 Feb 2019 | OPTICS EXPRESS A38 




