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Abstract 

Water diffusion into silica glass results in a thin zone near the surface of the 
glass. In this zone the water reacts with the SiO2 structure and “damages” the 
originally intact SiO2 rings. The consequence is a reduced Young’s module. 
This effect can be described by use of continuum damage mechanics 
according to Kachanov [1] and Lemaitre [2]. 
In this paper the dependency between hydroxyl concentration and damage 
will be described for large water concentrations by using the pore models of 
Wang [3] and Phani and Niogy [4]. As an application, the hydroxyl 
concentration at crack tips is computed and crack-tip stress intensity factor is 
estimated. 
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1 Damage by hydroxyl generation [1,2] [3] [4].  

When water comes in contact with silica [SiO2], it reacts with the silica network 
according to  

 Si-O-Si +H2O  SiOH+HOSi (1) 

and generates hydroxyl S = [SiOH]. In (1) [H2O]=C is the concentration of the mole-
cular water.  

When a hydroxyl has been formed, the initial silica ring is broken and the mechanical 
cohesion is weakened as is illustrated in Fig. 1. Such “defects” in the glass structure 
can be treated by using the damage variable D of continuum damage mechanics 
(Kachanov [1], Lemaitre [2]). This parameter is proportional to the density of micro-
defects. In preceding reports [5,6,7] we discussed the effect of water on the Young’s 
modulus E, and showed that the water reaction reduces E, for small water concentra-
tions proportional to the amount of water generated in the reaction. 
The damage variable D can be interpreted as the part of the material cross-section that 
can no longer transmit forces. Consequently, the area that can carry load, AD, is 
reduced to  

  )1(0 DAAD   (2) 

where A0 denotes the total geometrical cross section subsuming damaged and un-
damaged regions. 
According to the postulate of strain equivalence by Lemaitre [8], the effective elastic 
modulus, ED, decreases with increasing damage  

  )1(0 DEED    (3) 

where E0 is the modulus of virgin glass.  

The damage variable D can be determined from module measurements via eq.(3). To 
the authors’ knowledge, so far no measurements on fused silica are available. There-
fore, we temporarily consider the damage D as a certain function of the hydroxyl con-
centration: 

  )(SfD    (4) 

Apart from the equi-triaxial loading case with x = y = z (including the case of dis-
appearing stresses), the elastic modulus must become a tensor with components de-
pending on the degree of loading multiaxiality. Since this possibility would make the 
further treatment very difficult [8] and non-transparent, we assume in the following 
considerations that the damage remains isotropic and is considered to be of scalar 
nature. This is equivalent to the assumption of randomly orientated defects. Then also 



 2

E remains isotropic. We assume that nano-pores in SiO2, caused by hydroxyl 
generation, might behave like normal pores. 
 

 
Fig. 1 Volume element of silica showing damage by bond breaking due to the water/silica reaction, 

third dimension ignored. 

2 Experimental evidence for modulus reduction in silica 

In literature, there is experimental evidence for modulus decrease with increasing 
hydroxyl content. This can be seen from measurements of Young’s modulus as a 
function of water content. Measurements on longitudinal sound velocities and 
densities in silica specimens with different water content were reported by Fraser [9] 
and Le Parc et al. [10]. Individual least-squares fits were made resulting for the data 
set by Fraser [9]  

  (m/s)in)185.41(5974 Sv   (5) 

and the set by LeParc et al. [10]  

  (m/s)in)34.51(5959 Sv   (6) 

When we normalize the results of the two test series on their individual mean values 
for S=0, we get the representation in Fig. 2. A common straight-line fit of these data 
yields 

  SB1
0v

v
  (7) 

with the parameter  

B=5.04 [4.23, 5.85]  

(90%-CI in brackets).  

prospective 
crack plane 

H Si O 
damaged  
region  
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The dependency of eq. (7) is introduced in Fig. 2 as the straight line. Since the longitu-

dinal sound velocity depends on Young’s modulus E and density  via /Ev , 

(Poisson’s ratio  assumed to be constant) we obtain for small S:  

  S
E

ED   1)/(/ 2
00

0

vv   (8) 

with =10.6 [8.7, 12.5]. It has to be noted that this value holds for isotropic damage 
since the natural OH-content doesn’t show any preference for a special direction.  

 

 
Fig. 2 Longitudinal sound velocity in silica with different OH-content (blue circles: results by Fraser 
[9], red circles: results by LeParc et al. [10]). 

3 Modelling of damage by spherical pores 

Analytical computations on the reduction of Young’s modulus with porosity were 
carried out by Wang [3] for spherical pores. Unfortunately, the results were given as 
tabulated data. They were the basis of a number of fitting relations, mostly using 
exponential functions, which trivially must fail for large porosities since they could not 
represent the requirement of E=0 for a finite critical porosity. Wang [11] suggested a 
quadratic argument in the exponential function: 

  ]exp[ 2
21

0

PAPA
E

ED   (9) 
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On the other hand, when P=1 (the whole volume is “pore”) a finite modulus comes out 
what is of course not correct. An overview on descriptions can be obtained from [12, 
13].  
Wang [3] determined the effect of porosity on Young’ modulus theoretically via model 
computations. He changed the porosity by compacting a cubic array of spheres with 
identical size. The analytical data were given in a Table for three cases: the ideal case 
1 in which each particle center remains on the lattice symmetry lines; case 2 for shear 
effects included and case 3 for combined shear and hinge effects included. The results 
of the computations are shown in Fig. 3a by the circles. We described the numerically 
given data by Wang [3] for all the three cases by the equation  

  









 2
/1

max

2
1

0 )(
exp P

PP

A
PA

E

E
n

D
  (10) 

with Pmax=0.4764 from [3]. The other parameters A1, A2, and n were obtained by curve 
fitting to the numerical data. 
The results are compiled in Table 1. The fitting curves are entered in Fig. 3. In order to 
show the good agreement of the fitting equation with the numerical data, the confi-
dence intervals are given for case 3. The very narrow 90% confidence intervals indi-
cate the good agreement with the numerical data. 

Case A1 A2 n

1 1.0286 1.6699 6

2 2.3289 2.6190 7

3 3.580 [3.565, 3.595] 3.747 [3.699, 3.795] 8

Table 1 Fitting parameters for eq.(10) 

Figure 3b shows the numerical solution by Wang [3] as the circles and the linear 
dependency for small porosities 

  PA
E

ED
1

0

1   (11) 

as the dashed straight line that intersects the abscissa at a characteristic porosity Pc of  

  max1 278.0/1 PAPc    (12) 

The description by eq.(10) is entered as the solid curve. Good agreement between 
eq.(10) and the numerical data can be stated over the full porosity range.  
In order to give a better resolution for the agreement at low modules, Fig. 3c repre-
sents the same results in logarithmic ordinate scaling. 
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Fig. 3 Effect of porosity on Young’s modulus for spherical pores; a) analytical results from Wang [3] 

(circles) compared with suggested fitting relation eq.(10) (curves); b) comparison of the 
approximation eq.(11) with eq.(10), c) logarithmic ordinate scaling of the data in Fig. 3b.  

 
 

For our purpose we rewrite eq.(10) by normalizing the porosities on the maximum 
value Pmax and then replace P by S  
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





















2

max
/1

max

2
max1

0 )/1(
)/(exp

S

S

SS

B
SSB

E

E
n

D
  (13) 

with the parameters n=8, B1=1.667, B2=0.933. The result is plotted in Fig. 4 together 
with the linear approximation. From eq.(8) and the initial slope of eq.(13) we obtain 
via B1/Smax= the maximum value of hydroxyl concentration  

  ]192.0,133.0[157.01
max 


B

S   (14) 

A simpler pore model was proposed by Phany and Niyogi [4] with the simple result of 

  
nD aP

E

E
)1(

0

  (15) 

This type of equation applied to the hydroxyl damage gives good agreement with the 
Wang solution over a large range of hydroxyl concentrations for the parameter set 

  n = 2, a = /2 5.3 (16) 

 
Fig. 4 Young’s modulus as a function of hydroxyl concentration. 

The related dependency is shown in Fig. 4 by the red curve that gives disappearing of 
Young's modulus at Smax = 0.188 [0.16, 0.23]. The modulus ratio can be described by 

  
2

2
1
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)1( S
E

ED   (17) 
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4 Application on crack-tip behaviour 
At crack tips under externally applied loads, the singular stresses must result in high 
hydroxyl concentrations. This fact is known for instance in subcritical crack growth of 
glasses as can be concluded from the reaction rate theory and the molecular bond-
splitting theory (for an overview see e.g. Freeman et al. [14]). Consequently, high 
damage has to be expected at crack tips followed by a strong stress reduction. As long 
as a positive crack-tip stress intensity factor exists, Ktip0, also stress singularity must 
exist with ij. The hydroxyl concentration must reach its maximum possible value, 
Smax, with the consequence that the damage must tend to D1 and the Young’s modu-
lus must disappear at the tip, ED0. These consequences make the occurrence of sin-
gular stresses and a crack-tip stress intensity factor at least questionable.  

 

Fig. 5 Two J-integral paths around a crack tip; path  far away from the tip reflects the properties of 
the bulk material, path D the water-affected and damaged crack-tip region.  

The problem will be discussed here by using the path-independence of the J-Integral 
by Rice [15]. For any time-independent material behaviour the fracture mechanics J-
integral can be used as the loading parameter. It simply reads for linear-elastic 
materials 

 G
E

K
J 




)1( 22 
  (18) 

where the right-hand side is also called the energy release rate G. Since the J-integral 
for any path around the crack tip is a parameter independent of the specially chosen 
path, its value must be the same for a path  far away from the tip (in the bulk) and the 
path D directly at the crack tip, i.e. in the damaged region as is illustrated in Fig. 5 

 
D

Dtipappl

E

K

E

K )1()1( 22

0

2
0

2  



  (19a) 

where ED and D are the elastic properties at the tip affected by water. For D0  



D
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0E

E
KK D

appltip    (19b) 

This relation also holds for notches [16]. 

From eqs.(19b) and (17) a simple approximation for the crack-tip stress intensity 
factor is obtained: 

 )1( 2
1 SKK appltip    (20) 

Next, we will compute the local hydroxyl concentration and the damage as a function 
of the externally applied stress intensity factor Kappl.  
At temperatures T < 450°C, the equilibrium constant k of the silica/water-reaction 
eq.(1) is 

 
C

S
k  .  (21) 

Here C=[H2O] is the concentration of molecular, and S=[SiOH] the concentration of 
hydroxyl water. The equilibrium constant for the reaction under pressure p is [17],[18] 

 
RT

V

p

k 



 ln

. (22) 

where p is pressure, V  is the activation volume, R the universal gas constant and T 
the temperature in °K.  
In applying eq.(22) to mechanical problems, it must be noted that the signing in me-
chanics differs from that in chemistry. In chemistry, pressures are regarded as positive 
variables, but are counted as negative stresses in continuum mechanics. This makes it 
necessary to replace the pressure p in eq.(22) by the hydrostatic stress term h, 
defined as the average of the three normal stress components of any stress tensor  

 
RT

Vk

h







ln

 (23) 

The equivalent representation of eq. (23) is given by  

 






 


RT

V

k

k hexp
0

. (24) 

where k0 is the equilibrium constant in the absence of stresses. The hydrostatic stress 
under plane strain conditions is  

 )2/cos(
2

)1()( 3
2 




r

K
K tip

tiph   (25) 
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where r and  are polar coordinates with the origin at the crack tip. Crack extension 
under inert conditions occurs at fracture toughness KIc. Then the normal component y 
on the prospective crack plane  

 
r

K
y 


2

Ic  (26) 

reaches a critical stress value 0. At the same location the hydrostatic stress ahead a 
crack tip, =0 is 

 03
2 )1( 

Ic

tip
h K

K
  (27) 

The fracture toughness of silica is KIc = 0.8 MPam [19] and the theoretical strength is 
about [20] 

  GPa 230 


 E
 (28) 

as is in agreement with strengths up to 25GPa measured by Brambilla and Payne [21] 
on extremely thin silica fibers of about 60 nm radius. The highest tensile strengths for 
thicker silica glass fibers in ultra high vacuum at room temperature are about c  

12.6 GPa [22].  

From eqs.(24) and (27) it follows  

  









Ic
0 exp

K

K
SS tip

TR

V
 0

3
2 )1(,

   (29) 

and with the approximate solution, eq.(20), 

  







 )1(exp 2

1

Ic
0 S

K

K
SS appl    (30) 

The unknown quantity S appears on both sides of eq.(30). This implicit equation in S is 
solved by 

  

















Ic
0

Icmax

Ic
max expPLog

K

K
S

KS

K

K

K
SS applappl

appl




  (31) 

where the “PLog” stands for the Lambert W function or product log function, i.e. the 
solution W=PLog(z) of the equation z=W exp(W) [23]. 
Due to eq.(20) a similar relation holds for the crack-tip stress intensity factor  
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  



























Ic
0

Icmax

Ic expPLog1
K

K
S

KS

K

K

K
KK applappl

appl
appltip 


  (32) 

The solutions for S and Ktip are shown in Fig. 6 in normalized representation. The 
hydroxyl concentration in the absence of stresses, S0, results from the total water con-
centration by Zouine et al. [24] and the equilibrium constant k0 0.41 according to 
[25]. At room temperature we obtain S0 0.035 wt%.  

 

 
Fig. 6 Hydroxyl concentration S and crack-tip stress intensity factor Ktip as a function of Kappl/KIc for 

S00.035 wt% as obtained for room temperature.  

5 Examples of application  

5.1 Crack-tip stress intensity factor and hydrostatic stress 

For an example let us use V  = 15 cm3/mol,  = 0.17, KIc = 0.8 MPam. At room tem-
perature, a typical stress intensity factor in subcritical crack growth experiments is 
Kappl = 0.4 MPam. 
Then we obtain on the basis of eq.(17): 

S=16.7 wt%,  E 0.95 GPa,  Ktip 0.045 MPam, h =1.01 GPa  for    0=23 GPa 

S=15.2 wt%,  E 2.7 GPa,  Ktip 0.078 MPam, h =0.99 GPa for    0=13 GPa 

The corresponding results obtained by numerical evaluation of eq.(12) are 

S15.7 wt%,  E 0.88 GPa,  Ktip 0.044 MPam, h =0.993 GPa  for    0=23 GPa 

S=15.5 wt%,  E 2.76 GPa,  Ktip 0.078 MPam, h =0.991 GPa for    0=13 GPa 

From these examples it becomes obvious that the Young’s modulus and the crack-tip 
stress intensity factor are drastically reduced for cracks loaded in water. 
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The solutions for Ktip and h are shown in Fig. 7a in dependence of the applied stress 
intensity factor for strongly varied hydroxyl concentration in the absence of stresses, 
S0.   

 

    
Fig. 7 a) Hydrostatic stress h and crack-tip stress intensity factor Ktip as a function of the applied 

stress intensity factor Kappl, b) apparent reaction volume for subcritical crack growth (black curves: 
0=23 GPa, red curves: 0=13 GPa), (I) mathematically sharp crack, (II) plain strain conditions and 

(III) plane stress conditions at a slender notch. 

5.2 Apparent reaction volume 

In the case of subcritical crack growth experiments, the v-K curves are plotted usually 
against the applied stress intensity factor Kappl and not versus the crack-tip stress 
intensity factor Ktip. Therefore, the product VK tip  used in reaction rate theory may be 
replaced by the measurable Kappl combined with an apparent reaction volume V 
resulting in the same value, namely 

  VKVK appltip    (33) 

Since Kappl > Ktip, it must hold VV  . The apparent reaction volume is plotted in Fig. 

7b for different crack models and different strengths 0. The red curves show results 
for 0 = 13 GPa, the black curves for 0 = 23 GPa. The curves indicated by (I) were 
computed with the apparent volume for the hydrostatic stresses ahead the tip of a sharp 
crack according to eq.(27). Sometimes, the crack-tip region is modeled by a slender 
notch with a finite notch root in the order of the “micro-structure”, i.e. the silica ring 
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structure. A notch-root radius of 0.5 nm was for instance suggested by Wiederhorn et 
al. [26]. Under plain strain conditions it holds at a notch root 

 03
1 )1( 

Ic

tip
h K

K
  (34) 

and under plane stress conditions 

 03
1 

Ic

tip
h K

K
  (35) 

Equation (34) results in the curves indicated by (II) and in case of eq.(35) the curves 
are marked as (III). In all cases the apparent reaction volume is clearly smaller than the 
true reaction volume of V =15 cm3/mol introduced by the dash-dotted line in Fig. 7b.  

Summary 

We studied the effect of hydroxyl generation accompanied by damaging the initial 
SiO2 ring structure. For the mathematical treatment, the damage variable D was used 
that describes the effective reduction of the load-carrying cross section as suggested by 
Lemaitre [2]. Results from literature on sound velocity by Fraser [9] and Le Parc et al. 
[10] were transformed into a relation between the Young’s modulus for the damaged 
glass and the hydroxyl concentration. As an application of the relation between 
hydroxyl concentration, damage, and Young's modulus, we estimated the effect of 
these parameters at mechanically loaded crack tips. Strong reduction of crack-tip stress 
intensity factor and Young's modulus are visible. 
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