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We systematically analyze the full angular distribution in D → P1P2lþl− decays, where P1;2 ¼ π, K,
l ¼ e, μ. We identify several null tests of the standard model (SM). Notably, the angular coefficients I5;6;7,

driven by the leptons’ axial-vector coupling Cð0Þ
10 , vanish by means of a superior Glashow-Iliopoulos-Maiani

(GIM) cancellation and are protected by parity invariance below the weak scale. CP-odd observables
related to the angular coefficients I5;6;8;9 allow us to measure CP asymmetries without D tagging. The
corresponding observables A5;6;8;9 constitute null tests of the SM. Lepton universality in jΔcj ¼ jΔuj ¼ 1

transitions can be tested by comparing D → P1P2μ
þμ− to D → P1P2eþe− decays. Data for P1P2 ¼ πþπ−

and KþK− on muon modes are available from LHCb and on electron modes from BESIII. Corresponding
ratios of dimuon to dielectron branching fractions are at least about an order of magnitude away from
probing the SM. In the future electron and muon measurements should be made available for the same cuts
as corresponding ratios RD

P1P2
provide null tests of e-μ universality. We work out beyond-SM signals

model-independently and in SM extensions with leptoquarks.

DOI: 10.1103/PhysRevD.98.035041

I. INTRODUCTION

Rare charm decays are notoriously challenging theoreti-
cally, yet offer singular insights into flavor in the up-quark
sector [1]. With standard model (SM) branching ratios of
jΔcj ¼ jΔuj ¼ 1 modes in the 10−7–10−6 (semileptonic)
and 10−6–10−4 (radiative) range, precision studies are
feasible at the experiments LHCb [2], Belle II [3] and
BESIII [4]. In view of the substantial hadronic uncertainties
there are three main avenues to probe for beyond the
standard model (BSM) physics in charm: (i) a measurement
in an obvious excess of the SM such as the D → πμþμ−
branching ratio at high dilepton mass [5]—a window that
can be closing soon [6], (ii) extract the SM contribution
from a SM-dominated mode and use SUð3ÞF, e.g., recently
demonstrated for D → Vγ, V ¼ ρ, K̄�, ϕ and DðsÞ → Kππγ
decays in [7] or (iii) perform null tests of (approximate)
symmetries of the SM. The latter includes searches for

lepton-flavor violation (LFV), CP violation, or lepton
nonuniversality (LNU).
In this work we consider angular observables, and LNU

tests in semileptonic rare charm decays into electrons and
muons. Exclusive semileptonic 3-body charm decays have
been studied in some detail in the decays D → πlþl− [6,8]
and D → ρlþl− [1,8,9] within QCD factorization (QCDF)
[10]. Previous theory works on the four-body decays
D → P1P2lþl−, P1;2 ¼ π, K highlight T-odd asymmetries
[11,12] or the leptonic forward-backward asymmetry [12],
however, a systematic analysis of the virtues of the full
angular distribution at par with the corresponding one in B
decays [13] is missing. Modes sensitive to BSM physics in
semileptonic transitions are

D0 → πþπ−lþl−; D0 → KþK−lþl−;

Dþ → KþK̄0lþl−;

Ds → Kþπ0lþl−; Ds → K0πþlþl−;

ð1Þ

which all are singly Cabibbo suppressed. We do not
consider D → πþπ0ll decays because isospin-conserving
BSM contributions, such as those we are interested in this
work, drop out in the isospin limit. However, this mode can
complement SM tests in hadronic 2-body decays of charm
[11,14–16]. Experimental results on four-body decays exist
from LHCb for branching ratios [17] of D0 decays into
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muons and from BESIII for upper limits on branching
ratios [18] of D0, Dþ decays into electrons.
The aim of this work is to study the angular distribution

inD → P1P2lþl− decays on and off resonance, and to work
out opportunities for BSM signals. Related distributions in
B → Kπlþl− decays have been analyzed in [13]. We
describe nonresonant contributions with an operator prod-
uct expansion (OPE) in 1=Q, Q ¼ f

ffiffiffiffiffi
q2

p
; mcg, applicable

at q2 ¼ Oðm2
cÞ and detailed for B → Vlþl− decays in [19].

Here, q2 denotes the dilepton invariant mass squared, and
mc is the charm mass.D → P1P2 form factors are available
from heavy hadron chiral perturbation theory (HHχPT)
[20]. To capture the phenomenology we model resonance
effects, which dominate the decay rates, assuming factori-
zation and vector meson dominance, as in [12], amended
by data [17].
Despite the significant hadronic uncertainties there are

features in the SM which are sufficiently clean to warrant
phenomenological exploitation of semileptonic rare charm
decays: negligible contributions to axial-vector lepton

coupling, Cð0Þ
10 , and the suppression of CP, lepton flavor

and lepton universality violation. Our proposal to test the
SM with D → P1P2lþl− decays is based on these features,
which allow us to perform null tests and to identify new
physics. An interpretation in terms of BSM couplings,
however, will again be subject to hadronic uncertainties.
This paper is organized as follows: In Sec. II we review

the weak Lagrangian, SM values and constraints on jΔcj ¼
jΔuj ¼ 1 couplings. The D → P1P2lþl− angular distribu-
tion is given in Sec. III. Phenomenological resonance
contributions are discussed in Sec. IV. BSM signals are
worked out in Sec. V, where we also discuss LNU-sensitive
observables, probing BSM interactions which distinguish
between electrons and muons. In Sec. VI we conclude.
Auxiliary information on D → P1P2lþl− matrix elements
is given in the Appendix.

II. WEAK LAGRANGIAN

We consider BSM effects in the semileptonic operators,

Q9 ¼ ðūγμPLcÞðl̄γμlÞ; Q0
9 ¼ ðūγμPRcÞðl̄γμlÞ; ð2Þ

Q10¼ðūγμPLcÞðl̄γμγ5lÞ; Q0
10¼ðūγμPRcÞðl̄γμγ5lÞ; ð3Þ

QS ¼ ðūPRcÞðl̄lÞ; Q0
S ¼ ðūPLcÞðl̄lÞ; ð4Þ

QP ¼ ðūPRcÞðl̄γ5lÞ; Q0
P ¼ ðūPLcÞðl̄γ5lÞ; ð5Þ

QT ¼
1

2
ðūσμνcÞðl̄σμνlÞ; QT5 ¼

1

2
ðūσμνcÞðl̄σμνγ5lÞ; ð6Þ

in the effective Lagrangian

Lweak
eff ¼4GFffiffiffi

2
p αe

4π

�X
q¼d;s

V�
cqVuq

X2
i¼1

CiQ
ðqÞ
i

þ
X

i¼9;10;S;P

ðCiQiþC0
iQ

0
iÞþCTQTþCT5QT5

�
; ð7Þ

where GF is the Fermi constant, αe denotes the fine
structure constant and Vij are Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements. PL, PR denote left-
and right-chiral projectors, respectively.
In the SM, the four-quark operators QðqÞ

1;2 ∼ðūγμPLqÞðq̄γμPLcÞ give rise to the dominant contributions
to the branching ratios in jΔcj ¼ jΔuj ¼ 1 decays. The
Wilson coefficients of the BSM-sensitive operators given
in (2)–(6), on the other hand, are subject to an efficient
GIM-cancellation, and suppressed. At the charm mass scale
μ ¼ mc at next-to-next-to-leading-order [6,21,22],

jCeff
7 j≃Oð0.001Þ; jCeff

9 jhighq2 ≲0.01; CSM
10;S;P;T;T5 ¼ 0.

ð8Þ

Here, the coefficient of the dipole operator Q7 ¼
mc
e ðūσμνPRcÞFμν, where Fμν denotes the electromagnetic
field strength tensor, is also given for completeness. The
effective coefficients Ceff

7;9 equal C7;9 up to matrix elements
of 4-quark operators which relax the GIM cancellation,
thus being the dominant contribution [6,22] and inducing a
q2 dependence, see [23].
In addition, all primed coefficients C0

i are negligible in
the SM. Experimental constraints, available from the upper
limit on the Dþ → πþμþμ− branching ratio, and D0 → ρ0γ
are presently very weak, at least about 2 orders of
magnitude away from the SM [6,24]

jCð0Þ
7 j≲ 0.3; jCð0Þ

9;10j≲ 1; jCT;T5j≲ 1; jCð0Þ
S;Pj≲ 0.1;

ð9Þ

see [6] for correlated constraints. Corresponding con-
straints on c → ueþe− processes are about a factor 2–4
(5 times for CT;T5

) weaker than the ones in (9) on dimuons.
Constraints on LFV processes c → ue�μ∓ are 6–7 times

(4 times for Cð0Þ
S;P) weaker than the dimuon constraints. To

discuss LNU or LFV, Wilson coefficients and operators
become lepton-flavor dependent. To avoid clutter, we
refrain from showing lepton-flavor superscripts throughout
this paper.

III. FULL ANGULAR DISTRIBUTION

In Sec. III A we discuss the full angular distribution for
D → P1P2lþl− decays and identify SM null tests that exist
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thanks to the extreme GIM suppression in charm. In
Sec. III B we give the angular distribution in the low
hadronic recoil OPE, which defines a factorization-type
framework at leading order in 1=mc. To estimate
possible BSM signals, which involve SM-BSM interfer-
ence, we need to estimate SM contributions to decay
amplitudes as well. The phenomenological description of
the dominant resonance-induced contributions is detailed
in Sec. IV.

A. General case

The D → P1P2lþl− angular distribution, with the angles
θl, θP1

, ϕ defined as in [25] taking into account footnote 2
of Ref. [26], can be written as

d5Γ ¼ 1

2π

�X
ciðθl;ϕÞIiðq2; p2; cos θP1

Þ
�

× dq2dp2d cos θP1
d cos θldϕ; ð10Þ

where q2, p2 denotes the invariant mass squared of the
dileptons, (P1P2) subsystem, respectively, and

c1 ¼ 1; c2 ¼ cos 2θl; c3 ¼ sin2θl cos 2ϕ;

c4 ¼ sin 2θl cosϕ; c5 ¼ sin θl cosϕ;

c6 ¼ cos θl; c7 ¼ sin θl sinϕ;

c8 ¼ sin 2θl sinϕ; c9 ¼ sin2θl sin 2ϕ: ð11Þ

θl denotes the angle between the l−-momentum and the
D-momentum in the dilepton center-of-mass system (cms),
θP1

is the angle between the P1-momentum and the
negative direction of flight of the D-meson in the (P1P2)
cms, and ϕ is the angle between the normals of the (P1P2)
plane and the (ll) plane in the D rest frame. The angles are
within the ranges

−1< cosθP1
≤ 1; −1< cosθl ≤ 1; 0<ϕ≤ 2π: ð12Þ

P1 is the meson that contains the quark emitted from the
semileptonic weak ūcll vertex. For instance, P1 ¼ πþ and
P1 ¼ Kþ in the D0, Dþ decays in (1).
The angular coefficients Ii ≡ Iiðq2; p2; cos θP1

Þ are
given in terms of transversity amplitudes1 as

I1 ¼
1

16

�
jHL

0 j2 þ ðL → RÞ

þ 3

2
sin2θP1

fjHL⊥j2 þ jHL
k j2 þ ðL → RÞg

�
;

I2 ¼ −
1

16

�
jHL

0 j2 þ ðL → RÞ

−
1

2
sin2θP1

fjHL⊥j2 þ jHL
k j2 þ ðL → RÞg

�
;

I3 ¼
1

16
½jHL⊥j2 − jHL

k j2 þ ðL → RÞ�sin2θP1
;

I4 ¼ −
1

8
½ReðHL

0H
L
k
�Þ þ ðL → RÞ� sin θP1

;

I5 ¼ −
1

4
½ReðHL

0H
L⊥�Þ − ðL → RÞ� sin θP1

;

I6 ¼
1

4
½ReðHL

kH
L⊥�Þ − ðL → RÞ�sin2θP1

;

I7 ¼ −
1

4
½ImðHL

0H
L
k
�Þ − ðL → RÞ� sin θP1

;

I8 ¼ −
1

8
½ImðHL

0H
L⊥�Þ þ ðL → RÞ� sin θP1

;

I9 ¼
1

8
½ImðHL

k
�HL⊥Þ þ ðL → RÞ�sin2θP1

: ð13Þ

The subscript 0, k and ⊥ stands for longitudinal, parallel
and perpendicular polarization, respectively. Here, L, R
denotes the handedness of the lepton current. In the SM
electromagnetically induced contributions dominate c →
ulþl− transitions due to the GIMmechanism (8). Hence, by
inspecting the relative signs between the left-handed and
the right-handed contributions in (13), it follows that I5;6;7
constitute null tests, as they require axial-vector contribu-
tions to be nonvanishing.
One may wonder about backgrounds to ISM5;6;7 ¼ 0.

Intermediate pseudoscalar resonances D → P1P2η
� →

P1P2lþl− induce a contribution to pseudoscalar operators
QP not included in (15). The impact can be read off from
the D → Vð→ P1P2Þlþl− angular distribution [26]:
Contributions from CP to I5;6;7 require the presence of
tensor operators. Similarly, lepton mass effects pose no
challenge to the null tests, as finiteml contributions require
the presence of scalar or tensor operators, which are both
negligible in the SM (8). Finite SM contributions to axial-
vector couplings are expected to arise from higher order
electromagnetic effects. For instance, a 2-loop diagram

with an insertion of QðqÞ
1;2 with two photons induces a

contribution at the relative order αe=ð4πÞ, about permille
level. We estimate contributions from electromagnetic
operator mixing as C10 < 0.01C9 [23,27,28], which is
small, at most 10−4 in the SM (8). As will be shown in
Sec. VA, order one BSM contributions are needed to
generate finite angular coefficients up to few percent.
Therefore, higher order effects are of no concern to the

1No tensor and no (pseudo)-scalar operators included, and for
vanishing lepton mass.
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null tests I5;6;7 within the accuracy that can be achieved in
the foreseeable future, 3%ð1%Þ at Run II (upgrade) on
D0 → πþπ−μþμ− asymmetries at LHCb [29]. We learn that
angular analysis in charm is simpler than in B decays
because charm is dominated by resonances.
Integrating (10) over ϕ, cos θl and both, respectively,

yields the decay distributions

d4Γ
dq2dp2d cos θP1

d cos θl
¼ I1 þ I2 cos 2θl þ I6 cos θl;

ð14Þ

d4Γ
dq2dp2d cos θP1

dϕ
¼ 1

π

�
I1 −

I2
3
þ π

4
I5 cosϕþ π

4
I7 sinϕ

þ 2

3
I3 cos 2ϕþ 2

3
I9 sin 2ϕ

�
; ð15Þ

d3Γ
dq2dp2d cos θP1

¼ 2

�
I1 −

I2
3

�
: ð16Þ

The forward-backward asymmetry in the leptons, AFB ∝ I6
can be obtained from asymmetric cos θl integration

I6¼
1

2

�Z
1

0

dcosθl−
Z

0

−1
dcosθl

�
d4Γ

dq2dp2dcosθP1
dcosθl

:

ð17Þ

The observables I7 and I5 can be obtained, for instance, as
follows:

I7 ¼
�Z

π

0

dϕ −
Z

2π

π
dϕ

�
d4Γ

dq2dp2d cos θP1
dϕ

; ð18Þ

I5 ¼
�Z

π=2

−π=2
dϕ −

Z
3π=2

π=2
dϕ

�
d4Γ

dq2dp2d cos θP1
dϕ

: ð19Þ

Methods to get angular coefficients for P-wave contribu-
tions are given in [25].
At the kinematic end point of zero hadronic recoil the

following exact relations hold [13]:

I3 ¼ −
I1 þ I2

2
;

I4 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI1 þ I2ÞðI1 − 3I2Þ

2

r
; I5;6;7;8;9 ¼ 0: ð20Þ

The corresponding observables of the CP-conjugated D̄
decays are given by I1;2;3;4;7 → Ī1;2;3;4;7 and I5;6;8;9 →
−Ī5;6;8;9, where Ī equals I with the weak phases flipped.
In D̄ decays, θl is the angle between the l−-momentum and
D̄-momentum in the dilepton cms, θP1

is the angle between
the P1-momentum and the negative D̄-momentum in the

(P1P2) cms, and ϕ the angle between the (P1P2) and (ll)
planes. We keep the definition of P1 from D decays for
D̄ decays.
The observables I7;8;9 are (naive) T-odd and correspond-

ing CP asymmetries are not suppressed by small strong
phases. The observables I5;6;8;9 are odd under the CP
transformation. Therefore, if distributions from (untagged)
D0 and D̄0 decays are averaged one measures a CP
asymmetry, Ak, k ¼ 5, 6, 8, 9. Due to the smallness
of V�

cbVub=ðV�
csVusÞ these constitute null tests of the

SM. Note that time-dependent effects in angular observ-
ables [25] are suppressed by the small D0 − D̄0 width
difference [30].

B. OPE and factorization

At leading order low recoil OPE, long- and short-
distance physics factorizes as follows [13]:

I1¼
1

8

�
jF 0j2ρ−1 þ

3

2
sin2θP1

fjF kj2ρ−1 þjF⊥j2ρþ1 g
�
;

I2¼−
1

8

�
jF 0j2ρ−1 −

1

2
sin2θP1

fjF kj2ρ−1 þjF⊥j2ρþ1 g
�
;

I3¼
1

8
½jF⊥j2ρþ1 − jF kj2ρ−1 �sin2θP1

;

I4¼−
1

4
ReðF 0F �

kÞρ−1 sinθP1
;

I5¼ ½ReðF 0F �⊥ÞReρþ2 þ ImðF 0F �⊥ÞImρ−2 �sinθP1
;

I6¼−½ReðF kF �⊥ÞReρþ2 þ ImðF kF �⊥ÞImρ−2 �sin2θP1
;

I7¼ ImðF 0F �
kÞδρsinθP1

;

I8¼
1

2
½ReðF 0F �⊥ÞImρþ2 − ImðF 0F �⊥ÞReρ−2 �sinθP1

;

I9¼
1

2
½ReðF⊥F �

kÞImρþ2 þ ImðF⊥F �
kÞReρ−2 �sin2θP1

; ð21Þ

where the short-distance coefficients read

ρ�1 ¼ jCeff
9 � C0

9j2 þ jC10 � C0
10j2;

δρ ¼ Re½ðCeff
9 − C0

9ÞðC10 − C0
10Þ��;

Reρþ2 ¼ Re½Ceff
9 C�

10 − C0
9C

0�
10�;

Imρþ2 ¼ Im½C0
10C

�
10 þ C0

9C
eff�
9 �;

Reρ−2 ¼ 1

2
½jC10j2 − jC0

10j2 þ jCeff
9 j2 − jC0

9j2�;
Imρ−2 ¼ Im½C0

10C
eff�
9 − C10C0�

9 �: ð22Þ

As we are anticipating BSM contributions to semileptonic
operators (2), (3) only2 we dropped the contributions from

2BSM effects in dipole operators can be tested in radiative D
decays, e.g., [7,24,31].
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dipole operators, which enter as ∝ ðmcmD=q2ÞCeff
7 for

clarity. Full formulas can be seen in [13]. We explicitly
checked that contributions from dipole operators are
negligible for the purpose of our analysis.
The transversity form factors F i, i ¼ 0, ⊥, k can be

written as

F 0 ¼
N nr

2

�
λ1=2wþðq2; p2; cos θP1

Þ

þ 1

p2
fðm2

P1
−m2

P2
Þλ1=2

− ðm2
D − q2 − p2Þλ1=2p cos θP1

g

× w−ðq2; p2; cos θP1
Þ
�
;

F k ¼ N nr

ffiffiffiffiffiffiffiffiffiffiffi
λp

q2

p2

s
w−ðq2; p2; cos θP1

Þ;

F⊥ ¼ N nr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λλp

q2

p2

s
hðq2; p2; cos θP1

Þ;

N nr ¼
GFαe

27π4mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffi
λλp

p
mDp2

s
: ð23Þ

Here, λ ¼ λðm2
D; q

2; p2Þ and λp ¼ λðp2; m2
P1
; m2

P2
Þ, where

λða;b;cÞ¼a2þb2þc2−2ðabþacþbcÞ. The D → P1P2

transition form factors are defined as

hP1ðp1ÞP2ðp2Þjūγμð1 − γ5ÞcjDðpDÞi
¼ i½wþpμ þ w−Pμ þ rqμ þ ihϵμαβγpα

Dp
βPγ�; ð24Þ

hP1ðp1ÞP2ðp2Þjūiqνσμνð1þ γ5ÞcjDðpDÞi
¼ −imD½w0þpμ þ w0−Pμ þ r0qμ þ ih0εμαβγpα

Dp
βPγ�;

ð25Þ

where the right-hand sides have to be multiplied by an
isospin factor of 1=

ffiffiffi
2

p
for every neutral pion in the final

state and we tacitly suppressed the dependence on q2, p2

and cos θP1
in the form factors. Here, qμ ¼ pμ

þ þ pμ
−, pμ ¼

pμ
1 þ pμ

2 ¼ pμ
D − qμ and Pμ ¼ pμ

1 − pμ
2. Since the dipole

operators in the SM are negligible and we do not consider
BSM tensor operators, the dipole form factors (25) are
not needed for our analysis. rð0Þ does not contribute to
D → P1P2lþl− decays for ml ¼ 0.3

The relevant nonresonant D → P1P2 form factors w�, h
are available from HHχPT [20]. Numerical input is given in
the Appendix. Note that HHχPT applies if the participating
light mesons are sufficiently soft. We find that Eπ −mπ in

the D-meson’s cms in D → πþπ−lþl− decays does not
exceed 0.4 (0.6) GeV for q2 above m2

ϕ (m2
ρ), where Eπ

denotes the energy of any of the pions in the D cms. The
region above m2

ϕ is kinematically closed for D →
KþK−lþl− decays. In these decays EK −mK in the D
cms does not exceed 0.3 GeV for all q2, where EK denotes
the energy of any of the kaons in the D cms. Although
formally they are limited to low hadronic recoil we use the
HHχPT form factors in the full phase space also for D →
πþπ−lþl− in absence of other estimates. While this pro-
cedure leaves room for improvement, it does not invalidate
the null test feature of the observables we discuss as a probe
of BSM physics.
We use this prescription, factorization plus HHχPT form

factors, for the BSM short-distance contributions from
4-fermion operators (2), (3) to estimate BSM signals in
the whole phase space for both ππ and KK modes. In Fig. 1
the q2, p2-phase space forD0 → πþπ−lþl− (plot to the left)
and D0 → KþK−lþl− decays (plot to the right) is shown
with dominant resonances. The OPE formally applies for
q2 ¼ Oðm2

cÞ. This is approximately the region above the ϕ
peak in D → πþπ−lþl− decays, and nowhere in
D → KþK−lþl−. QCDF at least formally works for p2 ¼
OðΛ2Þ and p2 ∼ q2, that is, when the (P1P2) system is light
and energetic in the D cms, see also [32]. While QCDF
therefore can be used in D0 → πþπ−lþl− for low q2, this
region is mostly occupied by resonances. In D →
KþK−lþl− with p2

min ≈ 1 GeV2 there is little room left.
For p2 ¼ Oðm2

cÞ the dilepton system is soft in theD cms. A
related discussion of phase space has been given in [33] for
B → ππlν decays. Due to the lower value of the heavy
quark mass the phase space in charm is much more
compressed than in b decays.

IV. RESONANCE CONTRIBUTIONS

Several resonances contribute to D → P1P2lþl− decays.
First we consider resonances in the (P1P2) subsystem, that
is, in p2. Depending on the spin j ¼ 0; 1;… of the
resonance, such contributions are termed S; P;… wave,
respectively. Due to the lower mass of the D-mesons
relative to the B ones, there are fewer resonances and ones
with lower spin contributing in charm. Lowest lying
resonances with sizable branching ratios into ππ are the
ρ and scalars σ ¼ f0ð500Þ and f0ð980Þ. At spin 2 there is
the f2ð1270Þ. For KþK−, it is essentially the ϕ, and for Kπ
there is the K�ð892Þ, the scalars κ and K�

0ð1430Þ and the
spin 2 resonance K�

2ð1430Þ.
We model the resonance structure in p2 for D0 →

πþπ−lþl− decays by the ρ contribution, which is dominant
at least in the wider vicinity of p2 ≈m2

ρ. D → ρ form
factors are taken from [34], see the Appendix.D waves and
higher are phase space suppressed relative to the ρ and
contribute to small q2 ≲ 0.4 GeV2 only. Further study

3(Pseudo)-scalar operators would also require r,
hP1ðp1ÞP2ðp2Þjūð1þγ5ÞcjDðpDÞi¼i=mc½wþp·qþw−P·qþrq2�.
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including scalar contributions, which are rather wide and
less known, is beyond the scope of this work, which aims at
identifying null tests and illustrating the sensitivity to BSM
physics. We stress, however, that since there is no S-wave
contribution to I3;6;9 [13] these angular coefficients are
unaffected by scalars. In addition, the S-P interference
terms in I4;5;7;8 can be separated from the P-wave con-
tribution by angular analysis, therefore scalars can be
experimentally subtracted in these coefficients.
The other type of resonances contribute in q2 as

D → P1P2γ
�, γ� → lþl− via ω, ρ0, ϕ and ηð0Þ. We model

these contributions with a phenomenological Breit-Wigner
shape for C9 → CR

9 for vector and CP → CR
P for pseudo-

scalar mesons [6,8]

CR
9 ¼ aρeiδρ

�
1

q2 −m2
ρ þ imρΓρ

−
1

3

1

q2 −m2
ω þ imωΓω

�

þ aϕeiδϕ

q2 −m2
ϕ þ imϕΓϕ

;

CR
P ¼ aηeiδη

q2 −m2
η þ imηΓη

þ aη0

q2 −m2
η0 þ imη0Γη0

; ð26Þ

where mM, ΓM denotes the mass and total width, respec-
tively, of the resonance M ¼ ηð0Þ, ρ0, ω, ϕ, and we used
isospin to relate the ρ0 to the ω. Corresponding transversity
form factors are given in the Appendix, Eqs. (A2)–(A5).
LHCb [17] has provided branching ratios in q2 bins around
the resonances ρ=ω and ϕ,

BðD0 → πþπ−μþμ−Þj½0.565−0.950� GeV ¼ ð40.6� 5.7Þ× 10−8;

ð27Þ

BðD0 → πþπ−μþμ−Þj½0.950−1.100� GeV ¼ ð45.4� 5.9Þ× 10−8;

ð28Þ

BðD0 → KþK−μþμ−Þj½>0.565� GeV ¼ ð12.0� 2.7Þ × 10−8;

ð29Þ

where we added uncertainties in quadrature and neglected
correlations. The resonance parameters in CR

9;P are in
general p2 dependent. We assume that the dominant p2

dependence is taken care of by the ρ line shape specified in
the Appendix such that the aM are fixed by (27), (28) at
p2 ≈m2

ρ:

aππϕ ≃ 0.3 GeV2; aππρ ≃ 0.7 GeV2: ð30Þ

For M ¼ ηð0Þ we use BðD0 → πþπ−Mð→ μþμ−ÞÞ ≃
BðD0 → Mπþπ−ÞBðM → μþμ−Þ and take the right-hand
side from data [35] together with Bðη0 → μþμ−Þ ∼Oð10−7Þ
[35,36]. We obtain

aππη ≃ 0.001 GeV2; aππη0 ∼ 0.001 GeV2: ð31Þ

To implement the pseudoscalar contributions we employed
the D → ρlþl− distributions that can be inferred from [26].
We note that fitting M ¼ ρ0, ω, ϕ in the zero-width

FIG. 1. Phase space and dominant resonances in q2 and p2 for D0 → πþπ−μþμ− decays (left) and D0 → KþK−μþμ− decays (right).
The bands correspond to ðmass� widthÞ2. The very wide scalar resonances f0ð500Þ and f0ð980Þ would fill everything below the f2 in
the ππ plot and are not shown.
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approximation [35] and using 2 × BðD0 → ρ0ρ0Þ ×
Bðρ0 → μþμ−Þ for the ρ0, one obtains parameters consis-
tent with (30), with aω somewhat below the isospin
prediction aρ=3 as already noticed for Dþ → πþμþμ−

[6]. The strong phases δM remain undetermined by this
and introduce theoretical uncertainties.
The situation in the D0→KþK−lþl− channel is different

as the obvious resonance, the ϕ, is not produced through a
significant form-factor-type contribution in D0 decays. The
small uū admixture in the ϕ should give approximately few
percent of the corresponding ρ → ππ amplitude. Similarly,
lowest lying mesons with larger uū content, f2ð1270Þ,
a2ð1320Þ, decay with about 5% branching ratio to KK̄,
which again is a correction. The dominant contribution is
expected to originate from annihilation topologies
D0 → ϕð→ KþK−Þγ�, recently discussed in [10] for D →
ρlþl− decays within QCDF. Here we continue following a
phenomenological approach, as in [12], based on factori-
zation and vector meson dominance, and use

hγ�ðqÞϕðpÞjC1Q
ðsÞ
1 þ C2Q

ðsÞ
2 jD0ðpDÞi

∼ CR
9 jaϕ¼0 · hVðqÞjūγμPLcjD0ðpDÞihϕðpÞjs̄γμsj0i;

ð32Þ

where V ¼ ρ0, ω, and we neglect differences between the
D → ρ0 and D → ω form factors. The corresponding
amplitude in D → πþπ−lþl− decays, that is, when the ρ0

which decays to πþπ− is created at the weak vertex rather
than through a form factor, is effectively included in our
prescription with resonance parameters fixed by data—
allowing for the extra amplitude would merely result in
refitting aππϕ and aππρ .4 Specifically, for D0 → KþK−lþl−

decays we use CR
9 as in (26) with aϕ ¼ 0, and the

transversity form factors Fiϕ given in the Appendix. The
ϕ line shape is parametrized by a Breit-Wigner distribution.
To include the contribution from η → lþl− we use

hγ�ðqÞϕðpÞjC1Q
ðsÞ
1 þC2Q

ðsÞ
2 jD0ðpDÞi

∼CR
Pjaη0¼0 · hηðqÞjūγμPLcjD0ðpDÞihϕðpÞjs̄γμsj0i: ð33Þ

Note, the η0 is kinematically forbidden. We then obtain
from (29) and the zero-width approximation for the η [35]

aKKρ ≃ 0.5 GeV2; aKKη ≃ 0.0003 GeV2: ð34Þ

In Table I branching ratio data on D0 → πþπ−lþl− and
D0 → KþK−lþl− decays from LHCb [17] and BESIII [18]
are shown, together with our evaluation for resonant and
nonresonant branching ratios, and the predictions from
[12].5 In Fig. 2 we show the differential branching ratio
dB=dq2 for δρ − δϕ ¼ π (red solid curve) and δρ − δϕ ¼ 0

(red dotted curve). The ρ=ω-ϕ interference matters in the
regions around the resonances. The ηð0Þ contributions are
subleading. The purely nonresonant—neither q2 nor p2

resonances are included—SM contribution (blue band) is
much smaller than the resonance-induced distributions
except for very low q2. This remains true with BSM
couplings (long-dashed purple curve) as illustrated for a
maximal scenario CBSM

9 ¼ 1 (9). We learn that, unlike
presently in D → πμþμ− decays, in the branching ratio of
D → ππμþμ− decays and with nonresonant form factors
(A1) there is no room left to probe BSM physics in the high
q2 region above the ϕ. In Fig. 2 we also show the prediction
by [12] (green dashed curve). The rise of the branching
ratio at very low q2 in [12] is due to the onset of
bremsstrahlung, computed using an extrapolation of
Low’s theorem [37], an effect which will be more pro-
nounced for electrons as lower values of q2 can be
accessed. We recall that the soft photon approximation
holds for photon energies up to m2

P=EP [38], P ¼ π, K,
which limits its controlled use to q2 ≲ 0.1 GeV2 in D0 →
KþK−lþl− and to q2 ≲ 0.001 GeV2 in D0 → πþπ−eþe−

decays. As it is a small effect on the D0 → P1P2μ
þμ−

branching ratios, and except for the difference in phase
space a lepton universal one, we refrain from including this

TABLE I. Branching ratios for D0 → πþπ−lþl− and D0 → KþK−lþl− from data, LHCb [17] (l ¼ μ) and BESIII [18] (l ¼ e), our
evaluation, resonant and nonresonant, and [12]. Upper limits are at 90% CL.

Branching ratio D0 → πþπ−μþμ− D0 → KþK−μþμ− D0 → πþπ−eþe− D0 → KþK−eþe−

LHCb [17]† ð9.64� 1.20Þ × 10−7 ð1.54� 0.33Þ × 10−7 � � � � � �
BESIII [18] � � � � � � <0.7 × 10−5 <1.1 × 10−5

Resonant ∼1 × 10−6 ∼1 × 10−7 ∼10−6 ∼10−7
Nonresonant 10−10–10−9 Oð10−10Þ 10−10–10−9 Oð10−10Þ
[12] ∼10−6 ∼10−7 ∼10−6 ∼10−7

†Statistical and systematic uncertainties are added in quadrature.

4There is a subtlety here, because the two contributions have
slightly different p2 behavior from the form factors. Since these
are slowly varying functions, as opposed to the Breit-Wigner
resonance shapes, this is a negligible effect within the uncer-
tainties and the purpose of this work.

5There is a sign error in Eq. (25) of [12]: the relative sign
between the ρ and the ω contributions from isospin must be
negative, as in our (26).
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effect in our numerics. We comment on bremsstrahlung in
the discussion of LNU in Sec. V C.
So far we discussed D0 → πþπ−lþl− and D0 →

KþK−lþl− decays. The former is special as it is the only
one from (1) with a proper distribution at high q2 above the
ϕ. The latter decay is special as it is the only mode from (1)
which only proceeds through the annihilation-type top-
ology. On the other hand, the decays Dþ → KþK̄0lþl− are
expected to have a more pronounced nonresonant contri-
bution in p2 as the presumably leading resonance in KþK̄0

is a2ð1320Þ, with only a small branching ratio to KK̄. The
rare, semileptonic 4-body Ds decays are somewhere
between the two D0 decays, with contributions from both
topologies, however, with color-enhanced annihilation at
q2 ≃m2

ϕ and m2
ηð0Þ . We stress that we employ such a

phenomenological description only to obtain BSM signa-
tures, worked out in the next section. The SM predictions,
that is, specific observables being null tests, are indepen-
dent of the resonance model.

V. BSM SIGNATURES

In this section we work out BSM signatures of SM null
tests model-independently and in BSM scenarios with
leptoquarks. For null tests related to the angular observ-
ables I5−9 largest effects are expected from SM-BSM
interference near the resonances ρ=ω and ϕ. The depend-
ence on the semileptonic jΔcj ¼ jΔuj ¼ 1 coefficients can
be taken from (21), (22).
In Secs. VA and V B we study the angular null

tests I5;6;7 and CP asymmetries, respectively. In Sec. V
C we discuss ratios of dimuon to dielectron branching
ratios as a probe of LNU. LFV branching ratios are worked
out in Sec. V D.

A. Angular null tests I5;6;7
We define integrated null test observables, normalized to

the D → P1P2lþl− decay rate Γ,

hI6iðq2Þ¼
1

Γ

Z ðmD−
ffiffiffiffi
q2

p
Þ2

4m2
π

dp2

Z þ1

−1
dcosθPI6ðq2;p2;cosθPÞ;

ð35Þ

hI5;7iðq2Þ¼
1

Γ

Z ðmD−
ffiffiffiffi
q2

p
Þ2

4m2
π

dp2

�Z þ1

0

dcosθP−
Z

0

−1
dcosθP

�

×I5;7ðq2;p2;cosθPÞ: ð36Þ

We calculate Γ from integrating (16) over the full phase
space.
We show the integrated I5;6;7 as a function of q2 in

Fig. 3 for four BSM benchmarks Cð0Þ
9 ¼ −Cð0Þ

10 ¼ 0.5 and

Cð0Þ
9 ¼ −Cð0Þ

10 ¼ 0.5i. The curves for Cð0Þ
9 ¼ þCð0Þ

10 ¼ 0.5

and Cð0Þ
9 ¼ þCð0Þ

10 ¼ 0.5i can be obtained by flipping the
signs of the hI5;6;7i, see (21), (22). The latter also explains
why I5 and I6 have similar BSM sensitivity and why I7 is
different. As anticipated, the effects are largest where the
SM contribution peaks, around the ρ=ω and the ϕ reso-
nances. The shape between the resonances depends on their
relative strong phase, shown here for δρ − δϕ ¼ π. The
effect of δρ − δϕ ¼ 0 is a reflection of the ϕ peak at the x
axes. Our findings for the magnitude of hI6i are consistent
with [12].6

FIG. 2. The differential branching ratio dBðD0 → πþπ−μþμ−Þ=dq2 (left) and dBðD0 → KþK−μþμ−Þ=dq2 (right) in the SM for
central values of input. The lowest curve (blue solid) corresponds to the nonresonant prediction including uncertainties from mc=

ffiffiffi
2

p
≤

μ ≤
ffiffiffi
2

p
mc represented by the band. The long-dashed purple curve illustrates the impact of CBSM

9 ¼ 1 on the nonresonant distribution.
The resonance curves are our evaluation for δρ − δϕ ¼ π (red solid), as from SUð3ÞF, and δρ − δϕ ¼ 0 (red dotted) to illustrate
uncertainties related to strong phases, compared to the model [12] (green, dashed). The latter employs fixed δρ − δϕ ¼ π and the relative
sign between the ρ and the ω is as in (26), see footnote 5.

6Note, θl is defined in [12] with respect to the positively
charged lepton, whereas we use the negatively charged one. It
follows that A½12�

FB ¼ −2hI6i.
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B. CP asymmetries without tagging

The CP asymmetries corresponding to the CP-odd
angular coefficients Ik, k ¼ 5, 6, 8, 9 are defined as [25]

Ak ¼ 2
Ik − Īk
Γþ Γ̄

¼ Ik − Īk
Γave

; ð37Þ

where Γave corresponds to the CP-averaged decay rate. The
observables I8 and I9 can be obtained from the angular
distribution (10), for instance, as follows:

I8 ¼
3π

8

�Z
π

0

dϕ −
Z

2π

π
dϕ

��Z
1

0

d cos θl −
Z

0

−1
d cos θl

�

×
d5Γ

dq2dp2d cos θP1
d cos θldϕ

; ð38Þ

I9 ¼
3π

8

�Z
π=2

0

dϕ −
Z

π

π=2
dϕþ

Z
3π=2

π
dϕ −

Z
2π

3π=2
dϕ

�

×
d4Γ

dq2dp2d cos θP1
dϕ

: ð39Þ

I5;6 are given in (19), (17).

We define the integrated angular coefficients hI8i analo-
gous to hI5;7i, (36), and hI9i analogous to hI6i, (35).
From here we obtain the integrated CP asymmetries
hAki ¼ ðhIki − hĪkiÞ=Γave. Numerical values for high q2,
q2min ¼ ð1.1 GeVÞ2 in BSM benchmarks are given in
Table II. To obtain the ranges given we varied strong
phases and explicitly verified that the sign of C9 in the first
and C0

9 in the second case does not matter, in agreement
with (22). In the analysis of the CP asymmetries in (26) we
effectively take into account the CKM factors V�

cdVud and
V�
csVus for the ρ=ω and ϕ, respectively. The SM predictions

for hA8;9iSM at high q2 are below the permille level, and

FIG. 3. Angular observables hI5;6;7i integrated over p2, see (35), (36), for D0 → πþπ−μþμ− normalized to ΓðD0 → πþπ−μþμ−Þ for
Cð0Þ
9 ¼ −Cð0Þ

10 ¼ 0.5, Cð0Þ
9 ¼ −Cð0Þ

10 ¼ 0.5i and relative strong phase δρ − δϕ ¼ π.

TABLE II. Ranges for the high q2, q2min ¼ ð1.1 GeVÞ2, inte-
grated CP asymmetries hAii for D0 → πþπ−μþμ− decays for
different BSM benchmarks, varying strong phases.

C9 ¼ −C10 ¼ �0.5i C0
9 ¼ −C0

10 ¼ �0.5i

hA5i ½−0.04; 0.04� ½−0.03; 0.03�
hA6i ½−0.06; 0.05� ½−0.06; 0.06�
hA8i ½−0.02; 0.02� ½−0.02; 0.02�
hA9i ½−0.03; 0.03� ½−0.03; 0.03�
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zero for hA5;6iSM due to the GIMmechanism,CSM
10 ¼ 0. CP

asymmetries integrated over the full q2 region are
at most permille level in BSM models, and smaller in
the SM.

C. Testing lepton universality

LNU ratios in semileptonic decays [13,39,40]

RD
P1P2

¼
R q2max

q2min
dB=dq2ðD → P1P2μ

þμ−ÞR q2max

q2min
dB=dq2ðD → P1P2eþe−Þ

; ð40Þ

with the same cuts in the dielectron and dimuon measure-
ment provide yet another null test of the SM in charm as
RD
P1P2

jSM ≃ 1. Phase space corrections of the order
m2

μ=m2
c amount to percent level effects. Electromagnetic

effects are another source of nonuniversality, and expected
at order αem=ð4πÞ × logarithms, parametrically suppressed
[25,28,41]. A detailed calculation is beyond the scope of
this work. Within the SM we obtain for q2min ¼ 4m2

μ and
q2max ¼ ðmD −mP1

−mP2
Þ2

RDSM
ππ ¼ 1.00�Oð%Þ; RDSM

KK ¼ 1.00�Oð%Þ: ð41Þ

Beyond the SM, RD
ππ can be modified significantly.

Varying strong phases and Wilson coefficients Cð0Þ
9;10 one

at a time within allowed ranges (9), we obtain RD
ππjBSM ∈

½0.85; 0.99� and RD
KKjBSM ∈ ½0.94; 0.97�. The latter is barely

distinguishable from (41), as well as RD
ππ and RD

KK in
leptoquark models, e.g., [6,40]. It is advantageous to
consider the LNU ratios in bins with a smaller SM
contribution to increase the BSM sensitivity. For ππ,
this is, for instance, the high q2 region above the ϕ,
q2min ¼ ð1.1 GeVÞ2, as in [17], and with the SM prediction
(41) intact. Here, in this high q2 bin, leptoquark effects are

within RD
ππjhigh q2

LQ ∈ ½0.7; 4.4�, consistent with related siz-
able SM deviations in D → πlþl− decays at high q2 [40].
Such sizable deviations from universality are possible
for the scalar and vector SUð2ÞL-singlet and doublet
representations S1;2, Ṽ1;2, respectively, which escape kaon
bounds because there is no coupling to quark doublets [6].
The other leptoquark representations give SM-like values
for RD

P1P2
.

For D0 → KþK−lþl− decays we investigate possibilities
to enhance the BSM sensitivity by lowering q2max. This
increases the sensitivity to lepton mass effects such that
(41) does not hold anymore. We find, even when simulta-
neously increasing q2min, that leptoquark-induced LNU
cannot be unambiguously distinguished from the SM in
the KK mode. The long-distance dominance of the branch-
ing ratio, even with BSM contributions, is also manifest

from Fig. 2. For instance, below the η, for q2max ¼
ð0.525 GeVÞ2 [17], we find that RD

KK in leptoquark
models is within the ballpark of the SM prediction,
RDSM
KK ¼ 0.83�Oð%Þ. On the other hand, model-

independently RD
KK can be suppressed relative to the

SM, RD
KKj<ηBSM ∈ ½0.60; 0.87�.

While data on muons [17] and electrons [18] exist for
D0 → πþπ−lþl− and D0 → KþK−lþl− decays, see Table I,
unfortunately, this does not permit us to compute the
respective clean LNU ratios (40) due to incompatible q2

cuts employed by the two experiments. In particular,
BESIII included q2 regions not accessible with dimuons
and vetoed the ϕ → eþe− region. We recommend to give
dielectron results for q2 values above the dimuon threshold
to allow for a measurement of RD

P1P2
(40). Naive ratios of

the branching ratio measurements [17,18] given in Table I
result in lower limits,

R̄D
πþπ− ≳ 0.1; R̄D

KþK− ≳ 0.01; ð42Þ

whose respective SM predictions are, due to the different q2

cuts, subject to sizable hadronic uncertainties. Using the
same cuts as in the BESIII analysis—none on the dielectron
invariant mass squared except for excluding the region
[0.935, 1.053] GeV [18]—we find in the model of [12]
R̄DSM
πþπ− ≃ 0.9 and R̄DSM

KþK− ≃ 0.1, about an order of magnitude
away from the data. The smallness of the ratio R̄DSM

KþK−

follows from the bremsstrahlung enhancement for elec-
trons. A similar effect is present in the ππ mode, however,
here it is lifted by the contribution of the ϕ in the dimuon
mode. The main difference between our resonance model
and [12] is, besides the use of on-peak data (27)–(29), the
inclusion of bremsstrahlung effects at very low q2, subject
to systematic uncertainties as briefly discussed in Sec. IV.
Lepton mass corrections in our model are small such that
the main difference between electrons and muons is due to
the vetoed ϕ in the denominator, R̄DSM

πþπ− ∼ 2, and R̄DSM
KþK− ∼ 1.

A measurement with identical cuts (40) would avoid this
model dependence.

D. LFV

We work out predictions for LFV branching ratios
D0 → πþπ−e�μ∓ and D0 → KþK−e�μ∓, which vanish
in the SM. Integrating the nonresonant distributions over
the full q2 range, and using the constraints discussed in
Sec. II, we find model-independently and in leptoquark
models, following [6],

BðD0 → πþπ−e�μ∓Þ≲ 10−7;

BðD0 → KþK−e�μ∓Þ≲ 10−9: ð43Þ
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VI. CONCLUSIONS

The SM angular distribution in semileptonic 4-body
D-decays is considerably simpler than in B decays because
of long-distance dominance in charm. The latter implies P
conservation and equal chirality of the lepton currents. As a
result, the angular coefficients I5;6;7 are null tests of the SM.

BSM contributions to the axial-vector coupling, Cð0Þ
10 , can,

on the other hand, induce rates at few percent level,
see Fig. 3.
Rare semileptonic D0 decays are not self-tagging and

benefit from the CP asymmetries related to I5;6;8;9, which
are CP odd and do not require D tagging. Due to the
smallness of V�

cbVub=ðV�
csVusÞ corresponding CP asym-

metries A5;6;8;9 constitute null tests of the SM. BSM-
induced integrated asymmetries can reach few percent,
see Table II.
Ratios of branching fractions into muons and electrons

(40) probe lepton universality in the up sector and comple-
ment studies with B decays. LNU tests in charm are
presently not very constraining as only upper limits on
branching ratios of D → P1P2eþe− decays exist. We
strongly encourage experimenters to provide in the future
data based on the same kinematic cuts for muons and
electrons, enabling more powerful SM tests.
Leptonic P invariance and suppression of SM CP

violation holds in the whole (p2, q2)-phase space on and
off-resonance peaks. Therefore, there is no particular need
for cutting on ππ around or outside the ρ, or ll around ϕ or
ρ=ω, and one can collect events from the whole phase
space. Yet, experimental information on the otherwise
SM-dominated branching ratios with on-resonance cuts
assists tuning the hadronic model parameters. Note, near-
resonance BSM signals in the angular observables I5−9 are
larger due to enhanced interference with the SM, as
exploited in [12,42] and evident in Fig. 3. On the other
hand, deviations from lepton universality in the ratios (40)
are enhanced in regions where the SM contribution is
smaller, such as in the high q2 region above the ϕ in
D0 → πþπ−lþl− decays, where order one BSM effects are
possible. LFV branching ratios BðD0 → πþπ−e�μ∓Þ
and BðD0 → KþK−e�μ∓Þ can reach 10−7 and 10−9,
respectively.
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APPENDIX D → P1P2l + l − MATRIX ELEMENTS

1. D → P1P2 form factors

We employ the form factors from HHχPT [20]

w� ¼ � ĝfD
2f2P1

mD

v · pP1
þ Δ

;

h ¼ ĝ2fD
2f2P1

1

ðv · pP1
þ ΔÞðv · pþ ΔÞ ; ðA1Þ

with input Δ ¼ ðmD�0 −mD0Þ ¼ 0.1421 GeV, fD ¼
0.21 GeV, fπ ¼ 0.13 GeV, fK ¼ 0.156 GeV, ĝ ¼
0.570� 0.006 [43], v ·pP1

¼ððm2
D−q2þp2Þ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðm2
D;q

2;p2Þð1−4m2
P1
=p2Þ

q
cosθP1

Þ=ð4mDÞ and v · p ¼
ðm2

D − q2 þ p2Þ=ð2mDÞ.

2. Resonance amplitudes

The transversity form factors for the contributions from
resonances R with spin JR read [13]

F 0 ≡F 0ðq2; p2; cosθP1
Þ≃

X
R

P0
JR
ðcosθP1

Þ ·F0JRðq2;p2Þ;

F i ≡F iðq2; p2; cosθP1
Þ≃

X
R

P1
JR
ðcosθP1

Þ
sinθP1

·FiJRðq2;p2Þ;

i¼ k;⊥; ðA2Þ

where Pm
l denote the associated Legendre polynomials,

e.g., P0
1ðcos θPÞ ¼ cos θP and P1

1ðcos θPÞ ¼ − sin θP. For
vector V resonances with mass mV and width ΓV [13,44]

F0V ¼ −3NV
ðm2

D −m2
V − q2ÞðmD þmVÞ2A1ðq2Þ − λðm2

D;m
2
V; q

2ÞA2ðq2Þ
2mVðmD þmVÞ

ffiffiffiffiffi
q2

p PV; ðA3Þ

FkV ¼ −
3ffiffiffi
2

p NV

ffiffiffi
2

p
ðmD þmVÞA1ðq2ÞPV; ðA4Þ

F⊥V ¼ 3ffiffiffi
2

p NV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λðm2

D;m
2
V; q

2Þ
p

mD þmV
Vðq2ÞPV; ðA5Þ
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with the resonance shape PV . For the latter we employ a
Breit-Wigner parametrization [45],

PVðp2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mVΓV

π

r
p�

p�
0

1

p2 −m2
V þ imVΓVðp2Þ ; ðA6Þ

ΓVðp2Þ ¼ ΓV

�
p�

p�
0

�
3 mVffiffiffiffiffi

p2
p 1þ ðrBWp�

0Þ2
1þ ðrBWp�Þ2 ; ðA7Þ

p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2;m2

P1
;m2

P2
Þ

q
2

ffiffiffiffiffi
p2

p ; p�
0¼p�jp2¼m2

V
; ðA8Þ

which is normalized
R
dp2jPVðp2Þj2 ¼ 1. For the ρ we use

the Blatt-Weisskopf parameter rBW ¼ 3 GeV−1 [46]. In the
normalization factor

NV ¼ GFαe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βlq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D; p
2; q2Þ

p
3ð4πÞ5m3

D

s
; βl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

q2

s
;

ðA9Þ
we use the Källen function suitable for off-resonance
effects, instead of λðm2

D;m
2
V; q

2Þ, and include an overall

finite ml phase space suppression. Form factors A1;2, V are
provided in [34,47,48]. Following [24] we employ the form
factors by [34], parametrized as

Fðq2Þ ¼ F̃ð0Þ
1 − σ1q2=m2

D�
; ðA10Þ

where F̃ð0Þ ¼ Fð0Þ=ð1 − q2=m2
D� Þ for F ¼ V and F̃ð0Þ ¼

Fð0Þ for F ¼ A1;2. For D → ρ the parameters are given as

Vð0Þ ¼ 0.90; σ1 ¼ 0.46;

A1ð0Þ ¼ 0.59; σ1 ¼ 0.50;

A2ð0Þ ¼ 0.49; σ1 ¼ 0.89: ðA11Þ

Since the modeling of the resonances itself is accompanied
by large uncertainties, we neglect the form factor uncer-
tainties in the numerical evaluations as well as differences
between D → ρ and D → ω form factors.
For the resonance-induced D0 → KþK−lþl− contribu-

tion we use the form factors

F0ϕ ¼ −3NV
ðm2

D −m2
ρ − p2ÞðmD þmρÞ2A1ðp2Þ − λðm2

D;m
2
ρ; p2ÞA2ðp2Þ

2mρðmD þmρÞ
ffiffiffiffiffi
q2

p Pϕ; ðA12Þ

Fkϕ ¼ −
3ffiffiffi
2

p NV

ffiffiffi
2

p
ðmD þmρÞA1ðp2ÞPϕ; ðA13Þ

F⊥ϕ ¼ 3ffiffiffi
2

p NV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λðm2

D;m
2
ρ; p2Þ

q
mD þmρ

Vðp2ÞPϕ; ðA14Þ

where V, A1;2 are D → ρ form factors given above. We
employ a constant width (normalized) Breit-Wigner dis-
tribution for the ϕ line shape

Pϕðp2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mϕΓϕ

π

r
1

p2 −m2
ϕ þ imϕΓϕ

: ðA15Þ
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