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CHAPTER 1

Introduction

Ever since in 1973, Black & Scholes [12] and Merton [61] introduced what we call Black-
Scholes model today, pricing of exotic options using financial market models is an active
research area in mathematical finance. Over the years, researchers and practitioners
developed a still growing set of increasingly sophisticated option pricing models, such
as diffusion models, jump-diffusion models [56, 57, 62], pure jump models [20, 60], local
volatility models [23, 27], stochastic volatility models with and without jumps in the
underlying and the volatility [2, 36, 40], and Lévy models with stochastic time [16, 70].

All models of this era work similar in principle. They fix a certain underlying probability
space and assume that the random future behaviour of the underlying asset price process
is specified somehow, for example as the solution of a stochastic differential equation.
Further assuming no-arbitrage and completeness of the considered financial market, a
unique equivalent martingale measure, i.e. a probability measure such that the discounted
asset price process is a martingale, exists by the fundamental theorem of asset pricing.
Then using the law of one price, it is possible to derive the uniquely determined price of
an exotic option written on the underlying by calculating either the expected discounted
payoff of the exotic option with respect to the equivalent martingale measure or the price
of a self-financing, replicating hedging strategy. Most of the models are of parametric form,
where the parameters are determined by calibrating the model to observable market prices
of certain options. We refer to this model-based approach as classical mathematical finance
and remark that the connection of pricing and hedging of exotic options, which we call
pricing-hedging duality, is a revolving observation throughout mathematical finance in
general.
In this thesis however, we pursue a different approach that we refer to as robust or

model-independent (mathematical) finance. This approach is of growing interest since the
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seminal article of Hobson [41] on the lookback option from 1998 and the pioneering work
of Beiglböck, Henry-Labordère & Penkner [5] connecting model-independent finance and
optimal transport from 2013. Before we introduce the model-independent approach and
the techniques used in the two mentioned papers in detail, we shortly discuss reasons to
complement the classical methods in the first place.

For this purpose, we follow a categorization of model input into three different categories
by Obłój [66]. That is, any model input may be assigned to either of the categories beliefs,
information and rules. Classical models mostly rely on strong assumptions on the financial
market that have to be considered as beliefs, while observable market prices of liquidly
traded options that count as information are used for calibration purposes only. This leads
to two important drawbacks.

Stressing that the assumptions are simplifying and quite regularly unrealistic, we recognize
that the model prices are very likely to be inaccurate and unreliable. Indeed, various
studies, see for example Schoutens, Simons & Tistaert [71], observe a great range of option
prices when calibrating several different models to the same underlying market.
Furthermore, not using the information of observable option prices for more than just

calibration may lead to various inconsistencies of the model. The best known inconsistency,
that serves as an example here, is the so-called volatility smile as observed in the Black-
Scholes model. The inconsistency is that calibrating the Black-Scholes model to observable
prices of call options with different strike prices, the associated model prices differ from
each other and also from most of the market prices.
The lack of reliability and consistency that appears in classical mathematical finance

is addressed by the model-independent approach. The general recipe in terms of Obłój’s
categories is rather simple: Fewer beliefs, more information.

The first demand of this recipe is satisfied by omitting all assumptions on the dynamics
of the underlying asset price process as well as the completeness. In fact, the only remaining
assumption is that of no-arbitrage such that the existence of martingale measures is ensured.

In order to satisfy the second demand, we have to use observable market prices of certain
options and the desired consistency with these prices. Then we may derive restricting
conditions on the martingale measures that could potentially be used for the pricing of
exotic options. The historical development of financial markets favours this approach.
Indeed, Black, Scholes and Merton had to consider European call options as exotic options,
the value of which is derived from the value of the underlying asset. However, over the
years, trading of such options became so liquid that Dupire [26, 27] and others argued that
they should rather be considered as contingent claims with exogenously fixed prices. Thus,
the prices of European call options became available as information for pricing other, more
complicated exotic options. In model-independent finance, this is used under the idealizing
assumption that for the maturities of interest, the call option prices are observable for a
continuum of strike prices.
A very good intuition how the prices may be used is given by Hobson [42], who states

that „ideally we should use a model which calibrates perfectly to the full spectrum of
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traded calls. However, in principle there are many such models, and associated with each
model which is consistent with the market prices of liquidly traded options, there may be
a different price for the exotic. Instead, one might attempt to characterise the class of
models which are consistent with the market prices of options. This is a very challenging
problem, and a less ambitious target is to characterise the extremal elements of this set,
and especially those models for which the price of the exotic is maximised or minimised.“
An alternative motivation comes from Cox & Obłój [17] who “want to answer two questions.
First, for a given exotic option, what is the range of prices that we can charge for it without
introducing a model-independent arbitrage? Second, if we see a price outside this range,
how do we exploit it to make a riskless profit?”
Restating these motivating citations, we observe that the target of model-independent

finance is to price exotic options such that the prices satisfy no-arbitrage and are consistent
with certain observable call option prices. Therefore, no specific martingale measure but a
set of different consistent martingale measures emerges from the analysis. Thus, no unique
option price but a range of possible option prices may be derived. In return, the risk of
model misspecification is eliminated.

This intuition was first formalized by Hobson in his famous paper [41], where he used the
no-arbitrage assumption and the knowledge about the call option prices to derive upper
and lower price bounds for the lookback option in continuous time. For this, two tools are
crucial.

The first tool is the lemma of Breeden & Litzenberger [13, Sec. 2] from 1978. It states that
the distribution of the price of some asset at a certain time, i.e. the marginal distribution
of the asset price process at that time, may be inferred from the prices of call options
for different strike prices on the same underlying and the same maturity. Combining this
marginal condition with the usual martingale condition, Hobson derived the set of all
potential pricing measures over which then the expected discounted payoff of the exotic
option is maximized and minimized.

The second tool is the theorem of Dambis, Dubins & Schwarz, see for example Revuz &
Yor [69, Chap. V, Theorem 1.6], that enabled Hobson to translate the pricing problems
into Skorokhod-type stopping problems. That is, Hobson translated the continuous-
time martingale, which the underlying asset price process is, into a Brownian motion
and optimized over all stopping times such that the stopped Brownian motion has the
previously inferred marginal distribution.

Furthermore, Hobson derived sub- and super-replicating hedging strategies that help to
exploit arbitrage possibilities, if there are any.

The connection of model-independent finance and the Skorokhod embedding problem is
quite nice, as the latter is well-studied. A great survey on the Skorokhod embedding problem
was published by Obłój [66], providing various solutions that were known at the time.
Following the ideas of Hobson, a great variety of researchers investigated several different
exotic options using similar methods, see for example [14, 15, 17, 18, 19, 43, 44, 45, 46, 47].
A comprehensive survey on the connection between model-independent finance and the
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Skorokhod embedding problem is provided by Hobson [42].
All articles following this approach do not only use the same techniques but also provide

the same type of results. That is, for a particular path dependent exotic option, in each
article upper and lower price bounds as well as super- and sub-replicating hedging strategies
are derived using previously known solutions to the Skorokhod embedding problem. We
can think of such results as pricing-hedging dualities for very specific pairs of optimization
problems. The fact that this duality results apply for a wide range of exotic options
attracted the search for more general duality results.
Such results were finally established in 2013 by Galichon, Henry-Labordère & Touzi

[29] using stochastic optimal control theory in the continuous-time case and by Beiglböck,
Henry-Labordère & Penkner [5] using methods from optimal transport in the discrete-
time case. While the former actually generalizes the results derived using the Skorokhod
embedding problem, as both is done in continuous time, the latter is the approach that we
further pursue in this thesis. Before we discuss the approach in more detail, we shortly
discuss optimal transport.
In optimal transport, the problem is to minimize the cost that transportation of mass

from one point to another generates in the sense that a cost-minimal transport allocation is
aimed for. Mathematically, we may specify the mass at the origins and the destinations by
measures. Then, minimizing the transport cost is equivalent to minimizing the integral over
a usually two-variate function representing the cost of transporting a unit of mass from
one point to another with respect to the set of all couplings or so-called transport plans
which have the specified measures as marginals. The problem was originally introduced by
Monge [63] in 1781 and then refined by Kantorovich [53, 54] in 1948. A great variety of
researchers considered the optimal transport problem and in the course of their research
many important results on optimal transport were established, see for example Rachev &
Rüschendorf [67, 68] or Villani [77] for excellent monographes on the topic.
Observing that there is an analogy between model-independent finance and optimal

transport, as in both areas the marginals of the distribution over which some function
is optimized are specified, Beiglböck, Henry-Labordère & Penkner [5] introduced a new
research field that we refer to as martingale optimal transport. Re-interpreting the
transport cost function as the payoff function of an exotic option and implementing the
usual martingale condition of mathematical finance, the minimization problem of optimal
transport cost evolves to the lower price bound problem of model-independent finance. Also,
properly implementing the martingale condition in the dual problem of optimal transport,
a pricing-hedging duality is shown using only the usual assumptions of model-independent
finance, no-arbitrage and consistency with call options prices.
Here, the authors use three key tools. The first tool is again the lemma of Breeden

& Litzenberger enabling the authors to infer the marginal distributions of all potential
pricing measures. The second tool, the theorem of Strassen [73], is necessary to guarantee
the well-posedness of the lower price bound problem, as it implies assumptions on the
marginals which guarantee that pricing measures satisfying both the martingale and the
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marginal conditions do exist. Finally, the third tool, which rather is a toolbox, is the set of
all ideas, techniques and results from optimal transportation theory.

Using the connections made by Hobson [41] and Beiglböck, Henry-Labordère & Penkner
[5], a stream of articles emerged building up an immediate connection between the Skorokhod
embedding problem and martingale optimal transport that enabled the authors to bring
great progress to both areas using the methods and results from each other, see for example
[3, 4, 6, 31, 33, 34, 50, 52]. Following the continuous-time approach, a variety of results
emerged in this setting, see for example [24, 25, 35, 49, 75].
Finally, many researchers closely followed the ideas of Beiglböck, Henry-Labordère &

Penkner [5], answering questions brought up by them about the existence of dual optimizers,
see for example Beiglböck, Nutz & Touzi [9], about the structure of solutions to the pricing
problem, see for example Beiglböck & Juillet [7], and about the improvement of the price
bounds, see for example Lütkebohmert & Sester [59]. Other articles posed and answered
new questions and generalized earlier results, see for example [6, 8, 22, 30, 32, 38, 39, 48,
51, 58, 65] and the recent book on martingale optimal transport by Henry-Labordère [37].
The present thesis shall join this type of work, as we generalize various earlier results

and introduce different algorithmic tools to derive and approximate solutions to the price
bound and hedging problems.

This thesis is build up as follows. In Chapter 2, we setup the notation and introduce
basic notions from analysis and measure theory that we need in this thesis. In Section 2.1,
we discuss several continuity and differentiability properties of real-valued functions. Most
importantly, we present a characterization result for bounded, semi-continuous functions.
In Section 2.2, we introduce the measure theoretic terminology. Starting from the types of
measures we consider, we recall the usual notions up to couplings and marginals. Finally, we
discuss different convergence types for sequences of measures. In particular, we introduce
the Wasserstein distance and state a representation result that is useful to calculate
Wasserstein distances explicitly.

In Chapter 3, we recall the principles of model-independent finance discussed in the
introduction. In Section 3.1, we introduce two financial markets incorporating the essentials
of model-independent finance and thus provide the mathematical framework for this thesis.
In Section 3.2, we take a closer look at European call options. In particular, we discuss
several important no-arbitrage properties of the prices of European call options that we
regularly apply throughout this thesis.
In Chapter 4, we detail the connection between model-independent finance and classic

optimal transport, thus explaining the notion of martingale optimal transport. In Section
4.1, we discuss classic optimal transport in some detail. We present various well-known
results of this area that motivate recent research questions in martingale optimal transport.
In Section 4.2, we present the lemma of Breeden & Litzenberger. This lemma connects
model-independent finance and classic optimal transport using the assumptions made on
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observable call option prices. Then we define the set of martingale transport plans as an
adaption of classic transport plans. This set builds the foundation of martingale optimal
transport. We complement the definition of martingale transport plans in Section 4.3, where
we introduce the concepts of convex order, potential functions and call option price functions
in order to guarantee the existence of martingale transport plans using the theorem of
Strassen. Thus, in Section 4.4, we may finally introduce the primal problems of martingale
optimal transport in a well-defined manner. These problems allow an interpretation as
upper and lower price bound problems in model-independent finance. The dual problems
of martingale optimal transport, which allow an interpretation as super and sub hedging
problems, are introduced in Section 4.5. The first duality result of martingale optimal
transport derived by Beiglböck, Henry-Labordère & Penkner [5] is presented in Section 4.6.
This result allows an interpretation as a pricing-hedging duality for exotic options written
on a single underlying asset.

In Chapter 5, we begin to derive new results on model-independent finance via martingale
optimal transport. In Section 5.1, we use the duality result of Beiglböck, Henry-Labordère
& Penkner [5] as a guideline to prove a similar pricing-hedging duality result for the general
case of exotic options written on more than one underlying asset. We further discuss some
drawbacks of the general theory of martingale optimal transport concerning the existence
of optimizers to the dual problem and the extent of the gap between the lower and upper
price bounds. In Section 5.2, we present some conditions under which dual optimizers, i.e.
optimal hedging strategies, do exist. In particular, we present a result of Beiglböck, Lim
& Obłój [8] that implies certain Lipschitz properties for the optimizers. In Section 5.3,
we present improvements of the price bounds based on additional market information on
the asset return variances in the single asset case as derived by Lütkebohmert & Sester
[59]. Then we discuss possible generalizations to the multi-asset case using the entire asset
return covariance structure.

In Chapter 6, we consider the optimization problems separately and in a simpler setting
in order to establish structural conditions under which the problems may be solved
explicitly. In Sections 6.1 and 6.2, we present results of Beiglböck & Juillet [7] and of
Henry-Labordère & Touzi [38]. We introduce the notion of monotonicity, a structural
property of martingale transport plans. One of the results of Beiglböck & Juillet [7] implies
optimality of monotone martingale transport plans for the pricing problems considering
general underlying marginals and a certain type of payoff functions. We further introduce
the martingale Spence Mirrlees condition, a structural property of payoff functions. Similar
to the afore mentioned optimality statement, a result of Henry-Labordère & Touzi [38]
says that monotone martingale transport plans are optimal for the pricing problems
considering continuous marginals and payoff functions satisfying the martingale Spence
Mirrlees condition. In this case, we also present algorithmic methods of Henry-Labordère
& Touzi [38] that provide solutions to both the pricing and the hedging problems, thus
recovering a special case of the pricing-hedging duality. In Section 6.3, we generalize the
afore mentioned optimality results proving that monotone martingale transport plans are
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optimal for the pricing problems considering general marginals and payoff functions that
satisfy the martingale Spence Mirrlees condition, thus unifying the previous results. In
Section 6.4, we specialize ourselves to the case of discrete marginals. In this case, we
weaken the condition on the payoff functions for the optimality results and we introduce
constructive algorithms that provide optimizers for both the pricing and the hedging
problems.

In Chapter 7, we consider the results of model-independent finance via martingale optimal
transport from an application-oriented point of view. The key motivation is to overcome
the idealizing assumption that we could uniquely determine the true asset price process
marginals from observable call option prices. This is crucial in application, as we can
observe only finitely many call option prices in the market. The general idea to overcome
this assumption is to approximate the price bounds. Thus, in this chapter, we discuss
convergence issues. In Section 7.1, we evaluate properties of the true call option price
function and the associated marginals, which we also refer to as theoretical call option price
functions and theoretical marginals, in order to derive plausibility checks for observable
call option prices. Then we discuss how the observable prices can be transformed into
empirical call option price functions and associated marginals and how those can be used
to approximate the true price bounds. In Section 7.2, we investigate the convergence of
the approximating price bounds towards the true price bounds. This is done under the
assumptions that the payoff function satisfies the martingale Spence Mirrlees condition and
that the true marginals have bounded support. In Section 7.3, we introduce an explicit
sequence of empirical marginals and quantify the speed of the convergence of the associated
empirical price bounds towards the true price bounds in the situation of the previous
section. Finally, in Section 7.4, we generalize the convergence and the convergence speed
results of the previous sections. We get rid of the assumption that the payoff functions
satisfy the martingale Spence Mirrlees condition and we provide similar results for general
sequences of empirical marginals. Ultimately, we also overcome the assumption that the
true marginals have bounded support, thus providing a rather general result allowing to a
numerically approximate the true price bounds in application.





CHAPTER 2

Preliminaries

In this chapter, we introduce the basic notions of analysis and measure theory required
in this thesis. We work in the n-dimensional Euclidean space Rn, n ∈ N, equipped with
its usual topology induced by the standard scalar product 〈·, ·〉 and the corresponding
Euclidean norm ‖ · ‖. We denote by B(Rn) the Borel σ-algebra on Rn. We often restrict
ourselves to Rn+ := {(x1, . . . , xn) ∈ Rn | xj ≥ 0, j = 1, . . . , n} equipped with the same scalar
product and norm. By B(Rn+) we denote the Borel σ-algebra on Rn+.
Let X ∈ {Rn,Rn+}. For A ⊆ X , we denote the closure of A by Ā and the interior of A

by A◦. For x, y ∈ X and n = 1, we write x ∨ y := max {x, y} for the maximum of x and y,
x ∧ y := min{x, y} for the minimum of x and y, x+ := x ∨ 0 for the positive part of x, and
x− := (−x) ∨ 0 for the negative part of x.

2.1. Function spaces

Let f : X → R be a function. We always assume measurability properties for the functions
we consider. Therefore, we define

L0(X ) := {f : X → R | f is (B(X ),B(R))-measurable},

the set of all measurable functions on X . We often use the notion of semi-continuous
functions. The function f is called upper semi-continuous in x ∈ X , if for any sequence
(xk)k∈N in X such that limk→∞ xk = x, we have

lim sup
k→∞

f(xk) ≤ f(x),
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and it is called lower semi-continuous in x ∈ X , if for any sequence (xk)k∈N in X such that
limk→∞ xk = x, we have

lim inf
k→∞

f(xk) ≥ f(x).

A function is continuous if and only if it is upper and lower semi-continuous. We denote by

C(X ) := {f : X → R | f is continuous}

the set of all continuous functions on X , by

Cb(X ) := {f ∈ C(X ) | f is bounded}

the set of all bounded, continuous functions on X , and by

Cc(X ) := {f ∈ C(X ) | f has compact support}

the set of all continuous functions with compact support supp(f) := {x ∈ X | f(x) 6= 0}.
The function f is called Lipschitz continuous with constant L > 0, if

|f(x)− f(y)| ≤ L‖x− y‖, x, y ∈ X .

We denote the set of all Lipschitz continuous functions with constant L > 0 by

CL(X ) := {f ∈ C(X ) | f is Lipschitz continuous with constant L}.

For a sequence (fk)k∈N of functions fk : X → R, k ∈ N, we write fk ↗ f , if fk ≤ fk+1,
k ∈ N, and fk(x) k→∞→ f(x), x ∈ X . We write fk ↘ f , if −fk ↗ −f .

Lemma 2.1 ([10, Lemma 7.14]). Let X be a metrizable space and f : X → R∪ {−∞,∞}.

1. The function f is lower semi-continuous and bounded from below if and only if there
is a sequence (fk)k∈N in Cb(X ) such that fk ↗ f .

2. The function f is upper semi-continuous and bounded from above if and only if there
is a sequence (fk)k∈N in Cb(X ) such that fk ↘ f .

Let us now proceed with differentiability considerations. We denote by

Ck(X ) := {f ∈ C(X ) | f is k times continuously differentiable}

the set of all k times continuously differentiable functions on X . If X = R, then we denote
the derivatives of f ∈ Ck(R) by f ′, f ′′, f ′′′, f (4), . . . , f (k). By f ′(·−) and f ′(·+), we denote
the left and the right derivative of f respectively. If X = Rn, then we denote the total
derivatives of f ∈ Ck(Rn) by f ′, f ′′, f ′′′, f (4), . . . , f (k). For the partial derivatives, we write

fxi(x1, . . . , xn) := ∂f(x1, . . . , xn)
∂xi

, i = 1, . . . , n.
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Remark 2.2. By Rademacher’s theorem, see for example [28, Theorem 3.1.6], the left and
right derivatives exist for any convex function and are then equal almost everywhere. ♦

2.2. Measure theory

After discussing several properties of functions, we now consider measure theoretic aspects.
Let X ∈

{
Rn,Rn+

}
. We define

Pα(X ) :=
{
π

∣∣∣∣ π is a Borel measure on (X ,B(X )) : π(X ) <∞ and
∫
X
|x|π(dx) <∞

}
,

the set of all Borel measures π on (X ,B(X )) with finite mass π(X ) and finite barycentre or
first moment B(π) := 1

π(X )
∫
X xπ(dx). By

P(X ) := {π ∈ Pα(X ) | π(X ) = 1},

we denote the set of all Borel probability measures with finite first moment. A measure
π ∈ Pα(X ) is called discrete, if its support

supp(π) := {x ∈ X | For any neighborhood Nx of x, we have π(Nx) > 0}

is a countable set. An x ∈ X is called an atom of π, if π({x}) > 0. For a discrete measure,
the support is equal to the set of all atoms, i.e. supp(π) = {x ∈ X | π({x}) > 0}. A
measure π ∈ Pα(X ) is called continuous, if {x ∈ X | π({x}) > 0} = ∅, i.e. if it has no
atoms.

Now let (X ,B(X ), π) be a probability space, µ ∈ P(R) and X : X → R a random variable
on X , i.e. X ∈ L0(X ). Then µ is called the law of X under π, if

µ(B) = π(X ∈ B), B ∈ B(R).

In this case, we write X ∼ µ or X ∼π µ and we denote the distribution function of (the
law of) X by

Fµ : R→ [0, 1], x 7→ π(X ≤ x) = µ((−∞, x]),

and the quantile function of (the law of) X by

F−1
µ : (0, 1)→ R, t 7→ inf{x ∈ R | Fµ(x) ≥ t}.

For a measure π ∈ Pα(X ), we denote by

L1(X , π) :=
{
f ∈ L0(X )

∣∣∣∣ ∫
X
|f(x)|π(dx) <∞

}
the set of all π-integrable functions on X . If π ∈ P(X ) and f ∈ L1(X , π), then we write

Eπ[f(X)] :=
∫
X
f(x)π(dx)
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for the expected value of f(X) with respect to π.
For a sequence (πk)k∈N in P(X ) and π ∈ P(X ), we say πk converges weakly to π, denoted

by πk
w→ π, if for all f ∈ Cb(X ), we have∫

X
f(x)πk(dx) k→∞→

∫
X
f(x)π(dx).

For two measurable spaces (X1,B(X1)) and (X2,B(X2)), X1,X2 ∈ {Rn,Rn+}, a measurable
mapping f : X1 → X2 and a measure π ∈ Pα(X1), we define the pushforward measure
πf ∈ Pα(X2) by

πf (B) := (f#π)(B) := π(f−1(B)), B ∈ B(X2).

Using this notation, we may write µ = πX = X#π for the law µ of a random variable X
under the measure π.
Now let X = X1 × . . .Xm, X1, . . . ,Xm ∈ {Rn,Rn+}, m ∈ N. Then we define the i-th

projection mapping, i = 1, . . . ,m, by

projxi : X → Xi, x = (x1, . . . , xm) 7→ xi,

and the i-th marginal of π ∈ Pα(X ), i = 1, . . . ,m, by

µi(B) :=
(
projxi#π

)
(B), B ∈ B(Xi).

Let (Xi,B(Xi), µi), i = 1, . . . ,m, be probability spaces. Then, coupling µ1, . . . , µm means
constructing random variables X1, . . . , Xm on some probability space (Ω,P) such that
Xi ∼P µi, i = 1, . . . ,m. The couple (X1, . . . , Xm) is called coupling of (µ1, . . . , µm). We
also say π is a coupling of (µ1, . . . , µm), if (X1, . . . , Xm) ∼P π.

In a measure theoretic sense, coupling µ1, . . . , µm means constructing a measure π such
that π admits µ1, . . . , µm as marginals. There are three equivalent ways of rephrasing the
marginal condition for π:

1. For all i = 1, . . . ,m, π satisfies projxi#π = µi.

2. For all i = 1, . . . ,m and all measurable sets Bi ∈ B(Xi), π satisfies

µi(Bi) = π (X1 × . . .×Xi−1 ×Bi ×Xi+1 × . . .×Xm) .

3. For all i = 1, . . . ,m and all π-integrable (or non-negative, measurable) functions
ϕi : Xi → R, π satisfies∫

X1×...×Xm

m∑
i=1

ϕi(xi)π(d(x1, . . . , xm)) =
m∑
i=1

∫
Xi
ϕi(xi)µi(dxi).

Let us consider two rather extreme couplings as examples for m = 2. The first one is
the independence coupling. That is, the coupling (X1, X2) is distributed according to the
product measure of µ1 and µ2, i.e. (X1, X2) ∼ µ1 ⊗ µ2, and X1 and X2 are independent.
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The second one is a so-called deterministic coupling. That is, for a measurable function
T : X1 → X2 we have X2 = T (X1). Hence, we say (X1, X2) ∼ π is a deterministic coupling,
if one of the following equivalent conditions is satisfied.

1. π is concentrated on the graph of a measurable function T : X1 → X2.

2. X1 ∼ µ1 and X2 = T (X1), where µ2 = T#µ1.

3. For all µ2-integrable (or non-negative, measurable) functions ψ : X2 → R, we have∫
X2
ψ(x2)µ2(dx2) =

∫
X1
ψ(T (x1))µ1(dx1).

4. π = (Id, T )#µ1.

Let µ1 ∈ P(X1), . . . , µm ∈ P(Xm) and assume that Xi is ni-dimensional, i = 1, . . . ,m.
We denote by d =

∑m
i=1 ni the dimension of X1 × . . .×Xm. Then we denote the set of all

couplings of (µ1, . . . , µm) by

Πd(µ1, . . . , µm)

:=
{
π ∈ P(X1 × . . .Xm) | µi(Bi) = π(X1 × . . .×Xi−1 ×Bi ×Xi+1 × . . .×Xm),

Bi ∈ B(Xi), i = 1, . . . ,m
}
.

The elements of Πd(µ1, . . . , µm) are called transport plans. We have Πd(µ1, . . . , µm) 6= ∅,
as µ1⊗ . . .⊗ µm ∈ Πd(µ1, . . . , µm). If the dimensions are unspecified and irrelevant, with a
slight abuse of notation, we also write Πm(µ1, . . . , µm).
Clearly, considering the marginals of some measure and building a coupling of some

measures serve as inverse operations.
On P(X ) we define the Wasserstein distance of µ, ν ∈ P(X ) by

W (µ, ν) := inf
π∈Π2(µ,ν)

Eπ [‖X − Y ‖] , (2.1)

where X ∼ µ and Y ∼ ν are random variables.
We denote the topology induced by the metric W on the metric space (P(X ),W ) by
T1(X ). We further denote the weak topology induced by bounded, continuous functions by
Tcb(X ). Observe that in our case, see for example Villani [77, Theorem 6.9], the Wasserstein
distance metrizes weak convergence, as we consider measures with finite first moments.
We may characterize the Wasserstein distance using Lipschitz continuous functions by

W (µ, ν) = sup
f∈C1(X )

∫
X
f(x)(µ− ν)(dx). (2.2)

In order to calculate the Wasserstein distance of two probability measures, we often need
the following, more explicit lemma.
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Lemma 2.3 ([64, Sec. 6.1]). Let µ, ν ∈ P(R) and π ∈ Π2(µ, ν). Let X and Y be two
real-valued random variables with distribution functions Fµ : R→ [0, 1] and Fν : R→ [0, 1].
Let (X,Y ) be a coupling of X and Y with distribution function H : R2 → [0, 1], i.e.
EH [|X − Y |] =

∫
R2 |x− y|H(d(x, y)). Then we have

EH [|X − Y |] =
∫ ∞
−∞

Fµ(t) + Fν(t)− 2H(t, t)dt.

In particular, we have

W (µ, ν) =
∫ ∞
−∞

Fµ(t) + Fν(t)− 2 min {Fµ(t), Fν(t)} dt =
∫ ∞
−∞
|Fµ(t)− Fν(t)|dt.

Remark 2.4. A proof of Lemma 2.3 is given in Dall’Aglio [21, Sec. 1]. In particular, the
author shows that one may give up the assumption that the expected values exist. ♦

Remark 2.5. Let X be a non-negative random variable with distribution function F . Then

E[X] <∞⇒ (1− F (x)) · x x→∞→ 0. (2.3)

In order to prove the claim, we assume that the convergence does not hold. Then there is
an ε > 0 such that for all x0 ∈ R+ there is an x ≥ x0 such that

(1− F (x)) · x > ε, or equivalently 1− F (x) > ε

x
.

Now let (xk)k∈N be a sequence in R+ such that the above inequalities hold for every
xk, and that satisfies xk+1 > 2xk, k ∈ N. As the distribution function F is monotone
non-decreasing, we have

1− F (x) ≥ 1− F (xk) >
ε

xk

for all x ∈ (xk−1, xk]. Using the representation formula for the expected value, we get

E[X] =
∫ ∞

0
(1− F (x))dx ≥

∞∑
k=1

∫ xk+1

xk

(1− F (x))dx >
∞∑
k=1

∫ xk+1

xk

ε

xk+1
dx

=
∞∑
k=1

ε

xk+1
· (xk+1 − xk) = ε ·

∞∑
k=1

(
1− xk

xk+1

)
> ε ·

∞∑
k=1

1
2 =∞,

a contradiction to the existence of the expected value.
The converse implication in (2.3) is not true, as for example 1− F (x) := 1

x ln(x) yields a
counterexample.
Let now r ∈ N. Then the general version of the statement in (2.3) reads as

E[Xr] <∞⇒ (1− F (x)) · xr x→∞→ 0 ∧ F (x) · xr x→−∞→ 0,

where we allow the random variable X to take values in R. We do not discuss the assertion
in detail, as we do not need it in later chapters. ♦



CHAPTER 3

Principles of model-independent finance

In this chapter, we model the mathematical framework that we use in this thesis and present
some of its elementary properties. In Section 3.1, we model two different financial markets
that implement some of the core assumptions of model-independent finance mathematically.
In Section 3.2, we analyze call options and their price functions closely, as they play an
important role in model-independent finance and thus throughout this thesis.

3.1. The underlying financial markets

As this thesis is somehow twofold, we introduce two financial markets. Though one is
a special case of the other, we introduce the markets separately, because two different
parts of this thesis use the framework given by one of the subsequently defined markets
respectively. We start by introducing the more general financial market used in a first
part and then specialize and restate everything for the so-called standard market used in a
second part. The main advantages of doing so are much simpler notation and referencing
in the standard market case.

3.1.1. The general market

Let (Ωg,Fg) = (Rnd,B(Rnd)), n, d ∈ N, be the underlying measurable space. We already
know from the introduction that in model-independent finance, we do not specify a certain
probability measure on (Ωg,Fg), as we consider all probability measures that are admissible
in a certain sense at once. Based on (Ωg,Fg) we consider a frictionless financial market in
which we assume no-arbitrage.
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Let 0 = t0 < . . . < tn = T <∞ be discrete trading times and T the final maturity date.
We denote T := {t1, . . . , tn}.

We assume that there is a risk-free asset with price process (S0
t )t∈T and S0

t = S0
0 = 1 for

all t ∈ T . That is, we assume that the financial market pays no interest rates.
We further assume that there are d non-redundant risky assets with corresponding price

processes Sj = (Sjt )t∈T with Sjti ∈ R, i = 1, . . . , n, and Sj0 = sj0 ∈ R for all j = 1, . . . , d,
where sj0 is the observable market price of asset j at time t = 0. We denote S = (S1, . . . , Sd).
We assume that the risky assets pay no dividends. The risky assets S1, . . . , Sd are the
potential underlyings for the exotic options considered in this thesis.
As the future asset prices are unknown, we model the price processes as stochastic

processes using the canonical definition. That is, for all i = 1, . . . , n and all j = 1, . . . , d,
we define the single asset prices by coordinate mappings

Sjti : Ωg → R,
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
7→ sjti .

Analogously, for all j = 1, . . . , d, we define the price process of a single asset by

Sj : Ωg → Rn,
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
7→ (sjt1 , . . . , s

j
tn).

Thus, whenever we specify a probability measure on (Ωg,Fg), we have indeed random
variables, random vectors and stochastic processes.

The crucial novelty of model-independent finance is, as explained earlier, to assume that
the prices of call options on the underlyings are determined by market mechanics rather
than the underlying asset prices. Thus, the call option prices are observable in the market
at time 0. That is, we assume that call options with payoff function

Φi,j : Ωg × R→ R+,
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn , k

)
7→ (sjti − k)+

are liquidly traded for all i = 1, . . . , n and all j = 1, . . . , d, i.e. for all underlying assets at
all trading times and for all strike prices k ∈ R. We denote by Ci,j(k) the price of the call
option with payoff Φi,j

(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn , k

)
. As we assume no-arbitrage, we

may deduce some properties of the call option price functions k 7→ Ci,j(k), i = 1, . . . , n,
j = 1, . . . , d. We discuss these properties in Section 3.2.
Finally, we introduce a general exotic option depending on S. An exotic option is

represented by its payoff function

c : Ωg → R,
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
7→ c

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
,

where we assume c ∈ L0(Ωg). In this thesis, we derive results concerning the price at time
t = t0 of the exotic option with random payoff c

(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)
.

We already know that in model-independent finance the price is in general not uniquely
defined. Instead, there is an interval of possible no-arbitrage prices. Hence, whenever we
speak about the price of an exotic option, we actually mean upper and lower price bounds.
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In order to find these price bounds, we introduce several optimization problems, namely
two pricing problems and two hedging problems. We formalize these problems in Sections
4.4 and 4.5. We use the framework of this general financial market in Chapter 5.

Remark 3.1. Though we generally allow the asset prices Sjt to take values in R, we often
consider the case that the prices take values in R+. This case emerges from the above
by suitably replacing R by R+. This also applies to the next section. Further note that
whenever we choose d = 1, we remove the associated index j in the notation. ♦

3.1.2. The standard market

It is quite hard to deduce results in model-independent finance for the general market case.
Thus, we specialize ourselves to a situation in which we can say far more.

In particular, let in the general market case of the previous section be n = 2 and d = 1.
Then we have the underlying measurable space (Ωs,Fs) = (R2,B(R2)). As the notation
of the previous section is rather complicated for this simple case, we change it suitably.
We denote the trading times by 0 < t < T , the risk-free asset by B = (Bt, BT ) = (1, 1)
with B0 = 1 and for the risky asset we write S = (X,Y ) with S0 = s0 ∈ R. We use the
same canonical definitions as before in order to introduce the stochastic to the underlying
measurable space. Finally, we denote by Ct(k) the price of Φt(X, k) = (X − k)+ and by
CT (k) the price of ΦT (Y, k) = (Y − k)+. The exotic option under consideration is then
represented by the payoff function

c : Ωs → R, (x, y) 7→ c(x, y),

where we assume c ∈ L0(Ωs).
As the notations in the standard market case stay simpler when introducing the op-

timization problems, we proceed to distinguish the two market cases in the following
chapter.
We use the more special framework of the standard market in Chapters 6 and 7.

3.2. Call options

We know from the heuristic description in the introduction as well as from the market
specification in the previous section that call options play an important role in model-
independent finance. Though we do not yet formally know why, we take a closer look at
this special (exotic) option.
We stress the assumption of no-arbitrage, which also applies to the call option prices.

Hence, we may derive some properties of the price function k 7→ C(k), where in this section
C(k) shall represent the price of some call option with strike price k ∈ R. The underlying,
which we generically denote by S, and the maturity of the call option, which we denote by
T , are of no particular interest at the moment.
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Lemma 3.2. The mapping C : R → R+, k 7→ C(k) is monotone non-increasing and
convex.

Proof. 1. Monotonicity of C: Let k ≤ `. This implies (ST − k)+ ≥ (ST − `)+. If we
assume C(k) < C(`) to get a contradiction, then we realize an arbitrage by buying
a call option with strike price k and selling one with strike price `. In Table 3.1,

Portfolio Price in t = 0 Payoff in t = T

Call option with strike k long C(k) (ST − k)+

Call option with strike ` short −C(`) −(ST − `)+

In total C(k) − C(`) (ST − k)+ − (ST − `)+

Value < 0 ≥ 0

Table 3.1.: Arbitrage strategy, if C is not monotone non-increasing.

we illustrate that this arbitrage strategy has a non-negative payoff in t = T and a
negative price in t = 0. Thus, it realizes a free lunch, which is a contradiction to the
no-arbitrage assumption. Consequently, C(k) ≥ C(`) and C is non-increasing.

2. Convexity of C: Let s ∈ R, λ ∈ (0, 1) and k1, k2 ∈ R. Then we have

(s− (λk1 + (1− λ)k2))+ = (λ(s− k1) + (1− λ)(s− k2))+

≤ λ(s− k1)+ + (1− λ)(s− k2)+.

The left hand side is the payoff of a call option with strike price (λk1 + (1− λ)k2)
for ST = s and the right hand side is the payoff of a portfolio of λ call options with
strike price k1 and (1− λ) call options with strike price k2 for ST = s.

By the same arguments as for the monotonicity, we immediately get

C(λk1 + (1− λ)k2) ≤ λC(k1) + (1− λ)C(k2),

which is the convexity of C.

Remark 3.3. 1. Clearly, the assertion of Lemma 3.2 also holds when ST takes values in
R+. Then the call option price function is a mapping C : R+ → R+.

2. By Remark 2.2, the left and right derivatives C ′(·−) and C ′(·+) of C exist and are
equal almost everywhere on R. Hence, C is differentiable almost everywhere. ♦

Lemma 3.4. The mapping C : R→ R+, k 7→ C(k) has the following properties.

1. limk→∞C(k) = 0.

2. C ′(k+) ≥ −1, k ∈ R.

3. limk→−∞C(k) + k = s0.
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If ST takes values in R+, i.e. if C : R+ → R+, then we may replace 2. and 3. by the
following properties.

2.’ C ′(0+) ≥ −1.

3.’ C(0) = s0.

Proof. 1. limk→∞C(k) = 0: We know that C is a monotone non-increasing function.
As the payoff of a call option is always non-negative, it is bounded from below by 0.
Hence, we know that the limit exists.

In order to argue formally that the limit is indeed equal to 0, we need tools from
Chapter 4. This is detailed in Remark 4.15. Heuristically, the assertion is the
reasonable assumption that for increasing strike prices it is virtually impossible for
the option to generate a positive payoff.

2. C ′(k+) ≥ −1, k ∈ R : Assume there is an ` ∈ R such that C ′(`+) < −1. Then there
is an `′ > ` such that C ′(`′+) ≥ −1 with

C(`′)− C(`)
`′ − `

< −1.

Indeed, otherwise we have an immediate contradiction to C(k) ≥ 0, k ∈ R. The
former inequality is equivalent to

C(`′)− C(`) + `′ − ` < 0.

Using this, we may realize an arbitrage using the arbitrage strategy illustrated in
Table 3.2. It has a non-negative payoff in t = T and a negative price in t = 0, which

Price in t = 0 Payoff in t = T , if
Portfolio ST > `′ `′ ≥ ST > ` ` > ST

Call with strike `′ long C(`′) ST − `′ 0 0
Call with strike ` short −C(`) `− ST `− ST 0

Bond investment of `′ − ` `′ − ` `′ − ` `′ − ` `′ − `
In total C(`′)− C(`) + `′ − ` ST − `′ − (ST − `) + `′ − ` `′ − ST `′ − `
Value < 0 = 0 ≥ 0 ≥ 0

Table 3.2.: Arbitrage strategy, if C ′(`+) ≥ −1.

is a free lunch and a contradiction to the no-arbitrage assumption. Thus, we have
C ′(k+) ≥ −1, k ∈ R.

3. limk→−∞C(k) + k = s0: As for limk→∞C(k) = 0, we have to wait for Remark 4.15
to formally prove this assertion in the general case. However, if we assume that
ST takes values in [s,∞), then we may prove the claim using simple no-arbitrage
arguments. Therefore, assume k ≤ s. Then we even have C(k) = s0 − k.

Indeed, we have C(k) ≥ s0 − k, as for the payoff we have (ST − k)+ ≥ ST − k for
all k ∈ R. (Actually, as also (ST − k)+ ≥ 0, we even have C(k) ≥ (s0 − k)+.) Now
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assuming C(k) > s0−k, we have an arbitrage strategy buying the underlying, lending
money and selling the call option short as illustrated in Table 3.3. We observe that

Portfolio Price in t = 0 Payoff in t = T

Underlying long s0 ST

Bond investment of −k −k −k
Call option with strike k short −C(k) −(ST − k)+

In total s0 − k − C(k) (ST − k) − (ST − k)+

Value < 0 = 0

Table 3.3.: Arbitrage strategy if C(k) > s0 − k.

(ST − k)+ = ST − k, as k ≤ s. This strategy has a zero payoff in t = T and a
negative price in t = 0, which is a free lunch and a contradiction to the no-arbitrage
assumption. Thus, we have C(k) = s0 − k for all k ≤ s. Heuristically, this property
should also hold if s tends to −∞.

2.’ C ′(0+) ≥ −1 : Clearly, this holds by choosing ` = 0 in the proof of the second
property. By the convexity of C, we have C ′(k+) ≥ −1 for all k ∈ R+.

3.’ C(0) = s0: A call option with strike price k = 0 has a payoff of (ST − 0)+ = ST , as
ST ≥ 0 by assumption. Hence, any price unequal s0 immediately gives rise to an
arbitrage strategy.

The properties discussed are mainly guaranteed by no-arbitrage considerations. We gain
some deeper insight into the properties of call options and their price functions in Section
4.2, where we connect call option price functions and probability measures. We end this
chapter by introducing the notion of candidate functions.

Definition 3.5. A function C : R → R+ is called a candidate function for call option
prices, if it satisfies the following conditions.

1. C is monotone non-increasing and convex.

2. limk→∞C(k) = 0, C ′(k+) ≥ −1, k ∈ R and limk→−∞C(k) + k = s0.

A function C : R+ → R+ is called a candidate function for call option prices, if it satisfies
the following conditions.

1. C is monotone non-increasing and convex.

2. limk→∞C(k) = 0, C ′(0+) ≥ −1 and C(0) = s0.

We denote the sets of all candidate functions by KCR and KC respectively.



CHAPTER 4

Martingale optimal transport

In this chapter, we present the optimization problems which are at the core of our interest.
We understand the importance of call options formally and introduce the notion of mar-
tingale transport plans. We provide results from classic optimal transport that bring up
presumptions worthwhile to investigate and basic ideas how to handle the presumptions in
the martingale case. In Section 4.1, we recall several results from classic optimal transport
that motivate the investigation of duality, optimality and several structural properties
in martingale optimal transport. In Section 4.2, we transfer classic optimal transport to
model-independent finance presenting the celebrated lemma of Breeden & Litzenberger.
This finally explains the immense importance of the assumptions on call options. We also
define the set of martingale transport plans. In Section 4.3, we introduce the notion of
convex order and the theorem of Strassen in order to guarantee existence of martingale
transport plans. In Section 4.4, we finally introduce the optimization problems that yield
the upper and lower price bounds for exotic options in the general and the standard market
cases. We complement the price bound problems in Section 4.5, where we introduce the
super and sub hedging problems that prove to be the dual problems. In Section 4.6, we
recall the pioneering duality result of Beiglböck, Henry-Labordère & Penkner [5], which
serves as a guideline for our main theorem in the general market case.

4.1. Classic optimal transport

In this section, we introduce the idea of classic optimal transport in order to understand
that an adaption may be useful in model-independent finance. We present several results
of classic optimal transport, some of which we need explicitly or in an idea-generating way.
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Before we start to rigorously introduce the mathematics, we shortly explain the original
idea of optimal transport. In 1781, Gaspard Monge [63] introduced and studied the problem
of what we call classic optimal transport: Assume you have a certain amount of soil at
specified locations and have to transport it to other, not necessarily different locations.
As transport is costly, the question is, how can we assign the locations to each other in
a cost-minimizing and in this sense optimal way. We may assume that the locations on
both ends of the transport are given by probability measures. Then the transport problem
becomes the problem of coupling the measures with each other in a cost-minimizing way.
Based on this intuition, we formalize the problem and present several related results.

Thereby, we mostly follow Villani [77, Chap. 4, 5], but add a useful result from Kellerer
[55]. Finally, we motivate subsequent results by restating well-known assertions as it is
done in Beiglböck & Juillet [7] and Henry-Labordère & Touzi [38]. Though we only need
the results for probability measures on the Euclidean space, we state them in full generality.

Let (X , µ) and (Y, ν) be two Polish probability spaces and φ : X × Y → R a measurable
function indicating the cost φ(x, y) of transporting mass from some x ∈ X to some y ∈ Y.
Then Monge’s original problem of optimal transport is

inf
T

∫
X
φ(x, T (x))µ(dx),

where the infimum is taken over all transport maps T from µ to ν, i.e. all measurable
functions T : X → Y such that T#µ = ν. However, this problem may be unsolvable, as
there is not always a transport map between two probability measures.
Therefore, in 1948, Kantorovich [53, 54] introduced the more general so-called Monge-

Kantorovich problem of optimal transport

PMK(φ) := inf
π∈Π2(µ,ν)

∫
X×Y

φ(x, y)π(d(x, y)). (4.1)

Theorem 4.1 ([77, Theorem 4.1]). Let (X , µ) and (Y, ν) be two Polish probability spaces.
Let a : X → R∪{−∞} and b : Y → R∪{−∞} be two upper semi-continuous functions such
that a ∈ L1(X , µ) and b ∈ L1(Y, ν). Let φ : X × Y → R ∪ {∞} be a lower semi-continuous
cost function such that

φ(x, y) ≥ a(x) + b(y), (x, y) ∈ X × Y.

Then there is a coupling of (µ, ν) which minimizes the total cost
∫
X×Y φ(x, y)π(d(x, y))

among all possible couplings π of (µ, ν), i.e. there is a minimizer for PMK(φ) in (4.1).

As the proof helps to understand some parts of the proof of Theorem 5.1, we provide it
in detail. In advance, we present three results that we need in the proof and also in later
chapters. We start with the so-called theorem of Prohorov.

Theorem 4.2 ([1, Theorem 2.3]). Let (X , d) be a Polish space with metric d. Then a
family K ⊆ P(X ) is relatively compact with respect to the weak topology Tcb(X ) if and only
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if it is tight, i.e. if for all ε > 0 there is a compact set Kε ⊆ X such that π(X \Kε) ≤ ε

for all π ∈ K.

We now present two lemmata. The first lemma states the lower semi-continuity of the
cost functional π 7→

∫
φdπ and the second lemma states the tightness of certain sets of

transport plans. Both lemmata are useful in Chapter 5.

Lemma 4.3 ([77, Lemma 4.3]). Let X and Y be two Polish spaces, φ : X ×Y → R∪{∞} a
lower semi-continuous cost function and h : X ×Y → R∪ {−∞} an upper semi-continuous
function such that h ≤ φ on X × Y. Let (πk)k∈N be a sequence in P(X × Y) converging
weakly to some π ∈ P(X × Y) and such that h ∈ L1(X × Y, πk), h ∈ L1(X × Y, π) and∫

X×Y
h(x, y)πk(d(x, y)) k→∞→

∫
X×Y

h(x, y)π(d(x, y)).

Then ∫
X×Y

φ(x, y)π(d(x, y)) ≤ lim inf
k→∞

∫
X×Y

φ(x, y)πk(d(x, y)).

In particular, if φ is non-negative, then

Pφ :

P(X × Y)→ R

π 7→
∫
X×Y φ(x, y)π(d(x, y))

is lower semi-continuous on P(X × Y) equipped with the topology of weak convergence
Tcb(X × Y).

Lemma 4.4 ([77, Lemma 4.4]). Let X and Y be two Polish spaces. Let P ⊆ P(X ) and
Q ⊆ P(Y) be tight subsets of P(X ) and P(Y) respectively. Then the set

Π2(P,Q) := {π ∈ Π2(µ, ν) | µ ∈ P, ν ∈ Q}

is tight in P(X × Y).

Proof of Theorem 4.1. We first prove that Π2(µ, ν) is compact. Since X and Y are Polish,
{µ} and {ν} are tight in P(X ) and P(Y) respectively. By Lemma 4.4, Π2(µ, ν) is tight in
P(X × Y). Thus, by Theorem 4.2, Π2(µ, ν) is relatively compact.
Let now (πk)k∈N be a sequence in Π2(µ, ν). By the relative compactness, there is a

subsequence (πkn)n∈N that is weakly convergent to some π, i.e. for all f ∈ Cb(X × Y),∫
X×Y

f(x, y)πkn(d(x, y)) n→∞→
∫
X×Y

f(x, y)π(d(x, y)).

It remains to show that π ∈ Π2(µ, ν). For this purpose, choose f(x, y) independent of y,
i.e. f(x, y) = g(x) ∈ Cb(X ). Then∫

X
g(x)µ(dx) =

∫
X×Y

f(x, y)πkn(d(x, y))

n→∞→
∫
X×Y

f(x, y)π(d(x, y)) =
∫
X
g(x)(projx#π)(dx),
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which implies projx#π = µ. Analogously, we obtain projy#π = ν and thus π ∈ Π2(µ, ν).
Therefore, Π2(µ, ν) is closed and thus also compact.

Now we show that a minimizer does indeed exist. In order to do so, let (πk)k∈N
a minimizing sequence in Π2(µ, ν). By the compactness we may assume it is weakly
converging to some π ∈ Π2(µ, ν). Choosing h(x, y) := a(x) + b(y) the conditions of Lemma
4.3 are satisfied and thus∫

X×Y
φ(x, y)π(d(x, y)) ≤ lim inf

k→∞

∫
X×Y

φ(x, y)πk(d(x, y)).

That is, π is a minimizer.

Remark 4.5. The proof of Theorem 4.1 and the proofs of Lemma 4.3 and Lemma 4.4, as
presented in Appendix A.1, do not rely on aspects of dimensionality. Thus, the assertions
hold true if, for n ∈ N, we replace X and Y by X1, . . . ,Xn, X ×Y by X1× . . .×Xn, etc. ♦

Definition 4.6. Let X and Y be arbitrary sets and φ : X ×Y → R∪ {∞} a cost function.
A set Γ ⊆ X × Y is said to be φ-cyclically monotone, if

N∑
i=1

φ(xi, yi) ≤
N∑
i=1

φ(xi, yi+1)

holds for any N ∈ N and any family (x1, y1), . . . , (xN , yN ) of points in Γ, where yN+1 := y1.
A transport plan is said to be φ-cyclically monotone, if it is concentrated on a φ-cyclically
monotone set.

A φ-cyclically monotone transport plan can not be improved by simply rerouting the
transported masses along a cycle. That is, the total cost is not reduced by transporting
mass for example from x1 to y2 instead of y1, from x2 to y3 instead of y2, etc. We can
think of this property as a local optimality criterion. Clearly, an optimal transport plan is
φ-cyclically monotone. The converse is less obvious but still true by Theorem 4.7.

Before stating this result, we introduce the concept of the dual problem. While the primal
problem aims at minimizing the transport cost, the dual problem aims at maximizing a
certain profit. Indeed, assume a transport company may buy soil at location x for the price
ϕ(x) and sell it at location y for the price ψ(y). Then the profit of this transport company
is ψ(y)− ϕ(x). Since the customer may transport the soil herself for the cost φ(x, y), in
order to be competitive the transport company’s profit should satisfy ψ(y)−ϕ(x) ≤ φ(x, y).
The natural dual problem to the Monge-Kantorovich problem of optimal transport thus is

DMK(φ) := sup
{∫
Y
ψ(y)ν(dy)−

∫
X
ϕ(x)µ(dx)

}
,

where the supremum is taken over all functions ψ : Y → R and ϕ : X → R such that

ψ(y)− ϕ(x) ≤ φ(x, y), (x, y) ∈ X × Y.
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From a mathematical point of view, we should only consider functions ϕ ∈ L1(X , µ) and
ψ ∈ L1(Y, ν).

We are now able to state several well-known results on classic optimal transport. All of
the following results have counterparts in model-independent finance, some of which are
proved in this thesis.

Theorem 4.7 ([77, Theorem 5.10]). Let (X , µ) and (Y, ν) be two Polish probability spaces
and let φ : X × Y → R ∪ {∞} be a lower semi-continuous cost function such that

φ(x, y) ≥ a(x) + b(y), (x, y) ∈ X × Y,

for upper semi-continuous functions a : X → R and b : Y → R with a ∈ L1(X , µ) and
b ∈ L1(Y, ν). Then:

1. Strong duality holds, i.e.

min
π∈Π2(µ,ν)

{∫
X×Y

φ(x, y)π(d(x, y))
}

= PMK(φ) = DMK(φ)

= sup
(ϕ,ψ)∈L1(X ,µ)×L1(Y,ν)

{∫
Y
ψ(y)ν(dy)−

∫
X
ϕ(x)µ(dx)

∣∣∣∣ ψ(y)− ϕ(x) ≤ φ(x, y)
}

= sup
(ϕ,ψ)∈Cb(X )×Cb(Y)

{∫
Y
ψ(y)ν(dy)−

∫
X
ϕ(x)µ(dx)

∣∣∣∣ ψ(y)− ϕ(x) ≤ φ(x, y)
}
.

2. If φ is real-valued and the optimal transport cost PMK(φ) is finite, then there is a
measurable φ-cyclically monotone set Γ ⊆ X × Y such that for any π ∈ Π2(µ, ν) the
following are equivalent.

a) π is optimal for PMK(φ).

b) π is φ-cyclically monotone.

c) π is concentrated on Γ.

d) There exist functions ϕ : X → R ∪ {∞} and ψ : Y → R ∪ {−∞} such that
ψ(y)− ϕ(x) ≤ φ(x, y) for all (x, y) ∈ X × Y with equality π-almost surely.

Before stating a more general duality result, let us revisit some further results in the two
marginal case that motivate the work of Beiglböck & Juillet [7] and Henry-Labordère &
Touzi [38], which we present in Sections 6.1 and 6.2.

Theorem 4.8 ([7, Theorem 1.1]). Let µ, ν ∈ P(R) and φ : R2 → R be a cost function
defined by φ(x, y) = h(y − x), where h : R→ R is a strictly convex function. Assume that
there are functions a ∈ L1(R, µ) and b ∈ L1(R, ν) such that φ(x, y) ≥ a(x) + b(y) for all
(x, y) ∈ R2. If PMK(φ) is finite, then for π ∈ Π2(µ, ν), the following are equivalent.

1. π is optimal for PMK(φ).

2. π preserves the order, i.e. there is a set Γ ⊆ R2 with π(Γ) = 1 such that for
(x, y), (x′, y′) ∈ Γ if x < x′, then y ≤ y′.
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We define for µ, ν ∈ P(R) the so-called Hoeffding-Fréchet transport plan

πHF (B) :=
(
F−1
µ ⊗ F−1

ν

)
#
λ[0,1](B), B ∈ B

(
R2
)
,

and the increasing mapping THF : R → R, x 7→ F−1
ν ◦ Fµ(x). Furthermore, we define

functions ϕHF : R→ R and ψHF : R→ R by

ϕHF (x) := φ(x, THF (x))− ψHF (THF (x)) and ψ′HF (y) := φy(T−1
HF (y), y).

Definition 4.9. A function φ : R2 → R satisfies the Spence Mirrlees condition, if the
partial derivative φxy exists and satisfies φxy > 0.

Theorem 4.10 ([38, Theorem 2.2]). Let φ : R2 → R be an upper semi-continuous cost
function with linear growth, i.e. there exists a constant K ∈ R such that

φ(x, y) ≤ K(1 + |x|+ |y|), (x, y) ∈ R2.

Assume that φ satisfies the Spence Mirrlees condition. Assume further that µ is continuous
and that ϕHF ∈ L1(R, µ) and ψHF ∈ L1(R, ν). Finally, denote

PMK(φ) := sup
π∈Π2(µ,ν)

∫
X×Y

φ(x, y)π(d(x, y))

and by DMK(φ) the dual minimization problem. Then:

1. PMK(φ) = DMK(φ) =
∫
R φ (x, THF (x))µ(dx).

2. ϕHF (x) + ψHF (y) ≥ φ(x, y) and (ϕHF , ψHF ) is a solution for DMK(φ).

3. πHF (dx,dy) = µ(dx)δTHF (x)(dy) is a solution for PMK(φ) and πHF is the unique
optimal transport plan.

All results so far matched the standard market case. Now we shortly consider the general
market case at least for d = 1. Therefore, let µ1, . . . , µn ∈ P(R). Then Πn(µ1, . . . , µn) is a
convex and, by the same arguments as in the proof of Theorem 4.1, weakly compact subset
of P(Rn). We state a Kantorovich-type duality result of Kellerer [55] similar to Theorem
4.7 for this multi-marginal situation, as we need it in the proof of Theorem 5.1.

Theorem 4.11 ([55, Theorem 2.14]). Let µ1, . . . , µn ∈ P(R). Then, for all lower semi-
continuous functions φ : Rn → [0,∞], we have

PnMK(φ) := inf
π∈Πn(µ1,...,µn)

{∫
Rn
φ(x1, . . . , xn)π(d(x1, . . . , xn))

}

= sup
ϕj∈L1(R,µj)


n∑
j=1

∫
R
ϕj(xj)µj(dxj)

∣∣∣∣∣∣ ϕ1(x1) + . . .+ ϕn(xn) ≤ φ(x1, . . . , xn)


=: Dn

MK(φ).
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4.2. Transfer to model-independent finance

In this section, we understand the connection of classic optimal transport and our studies.
Therefore, let us consider the general market case for d = 1. Recall that we assume to
know the price functions of call options with n different maturities.

The connection from model-independent finance to classic optimal transport is made by
the so-called lemma of Breeden & Litzenberger. We first state it in a special case in which
the assertion may be denoted compactly and hence the consequences are easy to fathom.

Lemma 4.12 ([13, Sec. 2]). Let, in the situation of the general market case with d = 1,
Q ∈ P(Rn) be consistent with the price functions of call options, i.e. for all i = 1, . . . , n
and all k ∈ R, we have

Ci(k) =
∫
Rn

Φi(st1 , . . . , stn , k)Q(d(st1 , . . . , stn)). (4.2)

If Ci ∈ C2(R), then we have

FSti (k) = Q(Sti ≤ k) = 1 + C ′i(k) (4.3)

for the distribution function of Sti under Q and

fSti (k) = Q(Sti ∈ dk) = C ′′i (k) (4.4)

for the associated density for all i = 1, . . . , n and all k ∈ R.

Remark 4.13. 1. Without any formal proof of the above statement, we immediately see
that the consistency condition in (4.2) implies a strong connection between the price
function of the call option on Sti and its marginal distribution under the consistent
measure Q. Indeed, denoting the marginal of Sti under Q by µi, we may rewrite the
right hand side of the consistency condition as∫

Rn
Φi(st1 , . . . , stn , k)Q(d(st1 , . . . , stn)) =

∫
R

Φi(st1 , . . . , stn , k)µi(dsti).

Hence, the price function is determined by the associated marginal. This directly
yields one part of the one-to-one connection between the two notions.

2. The differentiability assumption is only important for the exact representations in
(4.3) and (4.4). The core assertion, namely the one-to-one connection between call
option price functions and the marginal distributions of the underlying under any
consistent measure, remains valid without it. ♦

Lemma 4.14 ([42, Lemma 2.2]). In the situation of Lemma 4.12, drop the differentiability
assumption on Ci. Then, for all i = 1, . . . , n and all k ∈ R, we have

FSti (k) = 1 + C ′i(k+).



28 Chapter 4. Martingale optimal transport

Lemma 4.12 is implied by Lemma 4.14. The assertion of Lemma 4.14 is discussed in
Hobson [42, Lemma 2.2]. It can also be derived from the following option price formula of
Bick [11, Proposition 1]. Assume that an exotic option, that only depends on the underlying
at some future time point T , has a payoff function c : R→ R that is twice continuously
differentiable except in a countable set of points. Then the price of the exotic option is∫

R
c(x)C ′′(x)dx+

∑
a∈D(C′)

(
C ′(a+)− C ′(a−)

)
c(a),

where C denotes the price function of a call option on the same underlying with maturity
T and D(C ′) denotes the set of all points where the left and right derivatives of C differ.

As the assertion of Lemma 4.14 is well-known and the proof does not yield any insight,
we do not report it here.

Remark 4.15. Before we make the connection of model-independent finance and classic
optimal transport even clearer, let us formally prove the first and the third assertion of
Lemma 3.4. Let us first assume that, for some call option price function C : R→ R+, we
have C(k) k→∞→ c > 0. Then, for k ∈ R, using µ as the marginal distribution of ST under
all consistent measures, we have

c ≤ C(k) =
∫
R

(s− k)+µ(ds) =
∫

[k,∞)
sµ(ds)−

∫
[k,∞)

kµ(ds)

= Eµ
[
ST1{ST≥k}

]
− k · (1− Fµ(k)).

The second summand tends to 0 by (2.3), as µ has a finite first moment. Thus, we have

lim
k→∞

Eµ
[
ST1{ST≥k}

]
≥ c > 0,

a contradiction to the existence of the expected value of ST . Similarly, for k ∈ R, we have

C(k) + k =
∫
R

(s− k)+µ(ds) + k =
∫

[k,∞)
(s− k)µ(ds) +

∫
R
kµ(ds)

=
∫

[k,∞)
sµ(ds) +

∫
(−∞,k)

kµ(ds) = Eµ
[
ST1{ST≥k}

]
+ k · Fµ(k).

Clearly, the first summand tends to s0 as k → −∞, while the second summand tends to 0
by the general version of (2.3) in the case r = 1. ♦

Let us now explain the connection of classic optimal transport and model-independent
finance as well as the implications of Lemma 4.14 therein. The target is to price an exotic
option characterized by its payoff function c : Rn → R. In order to reach this, we search
for potential pricing measures, i.e. measures that yield in a certain sense reasonable prices.
In order to obtain reasonable prices, such a measure has, in particular, to return

observable market prices correctly. As we assume that call option prices are observable,
potential pricing measures have to satisfy the consistency condition in (4.2). By Lemma
4.14, all such measures have the same marginals, that we denote by µ1, . . . , µn ∈ P(R).
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This implies that the set of all potential pricing measures is a subset of Πn(µ1, . . . , µn),
which formally connects model-independent finance with classic optimal transport. For
obvious reasons, we call elements of Πn(µ1, . . . , µn) consistent measures.

However, Πn(µ1, . . . , µn) is not the set of all potential pricing measures, as such measures
have to be martingale measures. That is, the (discounted) price process has to be a
discrete-time martingale with respect to any potential pricing measure. As the measures in
Πn(µ1, . . . , µn) do not satisfy this condition in general, we have to adapt classic optimal
transport to the subset of all martingale measures.

Definition 4.16. Let µ1, . . . , µn ∈ P(R). The elements of the set

Mn(µ1, . . . , µn)

:=
{
Q ∈ Πn(µ1, . . . , µn) | EQ[Sti+1 | Sti , . . . , St1 ] = Sti Q− a.s., i = 1, . . . , n− 1

}
are called martingale transport plans or potential pricing measures.

We may characterize the martingale property of a transport plan in several ways. For
Q ∈ Πn(µ1, . . . , µn), the following are equivalent.

1. Q ∈Mn(µ1, . . . , µn).

2. For all 1 ≤ i ≤ n− 1 and all h ∈ Cb(Ri), we have

EQ[h(St1 , . . . , Sti)(Sti+1 − Sti)] = 0.

Using the definition of martingale transport plans, we may consider the same problems
as in classic optimal transport only with a restricted underlying set of probability measures.
Clearly, we may hope that similar results as presented in the previous section apply for the
martingale case as well.

4.3. Convex order and Strassen’s theorem

Before we may state the adapted problems in a well-defined way, we need to consider
the question if and under which conditions potential pricing measures do exist, i.e. if
Mn(µ1, . . . , µn) 6= ∅. This question shall be answered in this section.
Unfortunately, the answer is not as easy as for Πn(µ1, . . . , µn), as there is no obvious

element. Indeed, the non-emptiness crucially depends on the measures µ1, . . . , µn and only
holds under additional assumptions. Therefore, we introduce the notion of convex order.

Definition 4.17. Two measures µ, ν ∈ Pα(R) are said to be in convex order, denoted by
µ ≤c ν, if for any convex function f : R→ R such that the integrals exist,∫

R
f(x)µ(dx) ≤

∫
R
f(x)ν(dx).
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Remark 4.18. Let µ, ν ∈ Pα(R) be two measures such that µ ≤c ν. Then, choosing f(x) = 1,
we have

µ(R) =
∫
R

1µ(dx) ≤
∫
R

1ν(dx) = ν(R).

With f(x) = −1, we also have µ(R) ≥ ν(R). Hence, µ and ν have the same mass. Choosing
f(x) = x, we get

B(µ) = 1
µ(R)

∫
R
xµ(dx) ≤ 1

ν(R)

∫
R
xν(dx) = B(ν).

With f(x) = −x, we also get B(µ) ≥ B(ν). Hence, µ and ν have the same barycentre. ♦

In order to state characterizations of convex order that are easier to be checked than the
definition, we introduce the notions of potential functions and call option price functions.

Definition 4.19. Let µ ∈ Pα(R). Then the potential function of µ is defined by

uµ : R→ R+, x 7→
∫
R
|t− x|µ(dt).

Proposition 4.20 ([7, Proposition 4.1]). Let µ ∈ Pα(R) and say γ = µ(R) is the mass of
µ and let β = 1

γ

∫
xµ(dx) be the barycentre of µ. Then:

1. uµ is convex.

2. lim
x→−∞

uµ(x)− γ|x− β| = 0 = lim
x→∞

uµ(x)− γ|x− β|.

Conversely, if f is a function with these properties for some β ∈ R and γ ∈ (0,∞), then
there exists a unique measure µ ∈ Pα(R) such that f = uµ.

Proposition 4.21 ([7, Proposition 4.2]). Let µ, ν ∈ Pα(R). Then:

1. We have µ ≤ ν if and only if uν − uµ is convex.

2. A sequence (µk)k∈N of measures in Pα(R) with mass γ and barycentre β converges in
Pα(R) weakly to some measure µ if and only if the sequence (uµk)k∈N of the potential
functions converges pointwise to a function u that is the potential function of some
measure µ′ ∈ Pα(R). In that case, µ = µ′.

Definition 4.22. Let µ ∈ Pα(R). Then the call option price function corresponding to µ
is defined by

Cµ : R→ R+, k 7→
∫
R

(x− k)+µ(dx).

Remark 4.23. We used the notion of a call option price function with respect to some
generic underlying S = (St1 , . . . , Stn) before and we denoted it by CSti , i = 1, . . . , n. If we
now denote by µi the marginal distribution of Sti under any potential pricing measure,
then by Lemma 4.14 it is obvious that we have Cµi ≡ CSti . ♦

With these definitions, we may answer the question under which conditions the set of
martingale transport plans is non-empty. The characterization using the convex order goes
back to Strassen [73, Theorem 8].
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Proposition 4.24. Let µ1, . . . , µn ∈ Pα(R). Then the following are equivalent.

1. Mn(µ1, . . . , µn) 6= ∅.

2. µ1 ≤c . . . ≤c µn.

If we assume µ1(R) = . . . = µn(R), then also the following is equivalent.

3. uµ1 ≤ . . . ≤ uµn .

If we additionally assume B(µ1) = . . . = B(µn), then also the following is equivalent.

4. Cµ1 ≤ . . . ≤ Cµn.

Remark 4.25. Further equivalent statements as well as general proofs can be found in
Shaked & Shanthikumar [72, Chap. 3]. One of the additional equivalent statements in the
case of equal total masses of the measures shall be mentioned here: There exist stochastic
kernels κt(x1, . . . , xt−1, dxt) such that for all (x1, . . . , xt−1) ∈ Rt−1, 2 ≤ t ≤ n,∫

R
|xt|κt(x1, . . . , xt−1, dxt) <∞ and

∫
R
xtκt(x1, . . . , xt−1, dxt) = xt−1,

and for all 1 ≤ t ≤ n,
µt = projxt# (µ1 ⊗ κ2 ⊗ . . .⊗ κn). ♦

Remark 4.26. When it comes to application in finance, the characterization of the existence
of martingale transport plans via call option price functions is important, as observable
call option prices increase with the maturity, i.e. for 1 ≤ i < j ≤ n, we have Cµi ≤ Cµj .
Indeed, to get a contradiction assume that for 1 ≤ i < j ≤ n and some k ∈ R, we have

Cµi(k) > Cµj (k). Recall that the measures µi and µj correspond to future underlying prices
Sti and Stj . Denote by CtiStj (k) the price of the call option on Stj with strike price k at
time ti. Then we have

CtiStj
(k) ≥ (Sti − k)+

by usual no-arbitrage arguments. This gives rise to an arbitrage strategy. Indeed, in Table
4.1 we illustrate the payoffs of a strategy where at time t = 0 we buy a call option on Stj
and sell a call option on Sti short and at time t = ti we resell the call option on Stj . This

Portfolio Price in t = 0 Payoff in t = ti

Call option on Stj with strike k long, sold in t = ti Cµj (k) CtiStj
(k)

Call option on Sti with strike k short -Cµi (k) −(Sti − k)+

In total Cµj (k) − Cµi (k) CtiStj
(k) − (Sti − k)+

Value < 0 ≥ 0

Table 4.1.: Arbitrage strategy, if call option prices do not increase with maturity.

strategy yields a free lunch and hence a contradiction to no-arbitrage. Hence, we have
Cµti ≤ Cµtj for all 1 ≤ i < j ≤ n.

Thus, we may assumeMn(µ1, . . . , µn) 6= ∅ without imposing too many restrictions. ♦
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4.4. Pricing problems: The primal approach

Knowing that martingale transport plans exist under certain conditions, in this section we
may formally introduce the price bound problems for the two market cases.

4.4.1. The general market case

Recall the general market from Section 3.1.1. Using the observable call option prices, we
receive information about the marginal distributions of the vector of asset price processes S.
We denote the marginal of Sjti with respect to any potential pricing measure by µi,j ∈ P(R)
and write µ = (µ1,1, . . . , µn,1, . . . , µ1,d, . . . , µn,d).

Let us assume that marginals corresponding to the same underlying asset are in convex
order as time increases. That is, we assume

µ1,j ≤c . . . ≤c µn,j (4.5)

for all j = 1, . . . , d. Then we denote by

Πd
n(µ) :=

{
π ∈ P

(
Rnd

) ∣∣∣ π (Sjti ∈ B) = µi,j(B), i = 1, . . . , n, j = 1, . . . , d, B ∈ B(R)
}

the set of all nd-dimensional transport plans with the desired marginals. We observe that
Πd
n(µ) = Πnd(µ1,1, . . . , µn,1, . . . , µ1,d, . . . , µn,d). Also, for all j = 1, . . . , d, we denote by

jΠn(µ) :=
{
π ∈ P (Rn)

∣∣∣ π (Sjti ∈ B) = µi,j(B), i = 1, . . . , n,B ∈ B(R)
}

the set of all n-dimensional transport plans with the marginals of the asset price process
Sj and observe that jΠn(µ) = Πn(µ1,j , . . . , µn,j) for all j = 1, . . . , d.
Based on these classic transport plan sets, we define the sets of martingale transport

plans. For j = 1, . . . , d, we denote by

jMn(µ) :=
{
Q ∈ jΠn(µ)

∣∣∣ EQ [Sjti+1

∣∣∣ Sjti , . . . , Sjt1] = Sjti Q-a.s., i = 1, . . . , n− 1
}
,

the set of all martingale transport plans with respect to the marginals of Sj . We observe
that jMn(µ) =Mn(µ1,j , . . . , µn,j) for all j = 1, . . . , d.
Finally, we define the set of all martingale transport plans incorporating the marginals

of the vector of asset price processes S

M :=Md
n(µ)

:=
{
Q ∈ Πd

n(µ)
∣∣∣ EQ [Sjti+1

∣∣∣ Sjti , . . . , Sjt1] = Sjti Q-a.s., i = 1, . . . , n− 1, j = 1, . . . , d
}
,

for which we may also write

M = Πnd(1Mn(µ), . . . , dMn(µ))

:=
{
π ∈ P

(
Rnd

) ∣∣∣ π has n-dimensional marginals πj ∈ jMn(µ), j = 1, . . . , d
}
.
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By (4.5), we know that jMn(µ) 6= ∅ for all j = 1, . . . , d. Hence, we have

M⊇
d⊗
j=1

jMn(µ) 6= ∅.

Recall that c : Rnd → R is the payoff function of some exotic option with payoff

c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)
.

We define the primal problem of model-independent finance in the general market case,
that we also call multi-asset and multi-marginal case. It is the problem of finding the lower
bound for the price of the exotic option with payoff function c,

P (c) := inf
Q∈M

EQ
[
c(S1

t1 , . . . , S
1
tn , . . . , S

d
t1 , . . . , S

d
tn)
]
. (4.6)

As usual, we may also consider the problem of finding the upper price bound

P (c) := sup
Q∈M

EQ
[
c(S1

t1 , . . . , S
1
tn , . . . , S

d
t1 , . . . , S

d
tn)
]
.

4.4.2. The standard market case

Now recall the standard market. Let µ ∈ P(R) be the marginal distribution corresponding
to X and ν ∈ P(R) the marginal distribution corresponding to Y . We assume µ ≤c ν and
henceM2(µ, ν) 6= ∅. Then we define the upper price bound problem

P c2 (µ, ν) := sup
Q∈M2(µ,ν)

EQ[c(X,Y )], (4.7)

and the lower price bound problem

P c2(µ, ν) := inf
Q∈M2(µ,ν)

EQ[c(X,Y )]. (4.8)

Remark 4.27. We use different kinds of notations for the primal problems in the two cases,
because in the chapter in which we deal with the general market case, the underlying
marginals are always the same, while in the chapters in which we study the standard
market case, we consider the problems for different marginals simultaneously. ♦

4.5. Hedging problems: The dual approach

From classical mathematical finance we know pricing-hedging dualities. We also know that
duality results hold in classic optimal transport. Thus, it is natural to hope for similar
results in martingale optimal transport and model-independent finance. In this section, we
introduce the relevant hedging problems for the two market cases.
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4.5.1. The general market case

Heuristically, the hedging problem that proves to be dual to the lower price bound problem
in (4.6) is the problem of finding the most expensive hedging strategy that sub-replicates
the payoff of an exotic option. Formally, this is the maximization problem

D(c) := sup
d∑
j=1

n∑
i=1

∫
R
ϕi,j

(
sjti

)
µi,j

(
dsjti

)
= sup

d∑
j=1

n∑
i=1
Eµi,j

[
ϕi,j(Sjti)

]
, (4.9)

where the supremum is taken over functions

ϕi,j ∈ S :=
{
u : R→ R

∣∣∣∣∣ u(x) = a+ bx+
m∑
`=1

c`(x− k`)+, a, b, c`, k` ∈ R,m ∈ N
}

such that there are functions hji ∈ Cb(Ri) with

Ψ(ϕi,j),(hji )

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
:=

d∑
j=1

n∑
i=1

ϕi,j
(
sjti

)
+

d∑
j=1

n−1∑
i=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
≤ c

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
for all

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
∈ Rnd. From this sub hedging inequality, we directly

derive the weak duality inequality P (c) ≥ D(c).
Analogously to the sub hedging problem and corresponding to the upper price bound

problem, we define the super hedging problem

D(c) := inf
d∑
j=1

n∑
i=1

∫
R
ϕi,j

(
sjti

)
µi,j

(
dsjti

)
= inf

d∑
j=1

n∑
i=1
Eµi,j

[
ϕi,j(Sjti)

]
,

where the infimum is again taken over functions ϕi,j ∈ S such that there are functions
hji ∈ Cb(Ri) with Ψ(ϕi,j),(hji )

≥ c on Rnd.

Remark 4.28. 1. Analogously to Beiglböck, Henry-Labordère & Penkner [5], the dual
problem can be formulated more general, considering µi,j-integrable functions ϕi,j and
bounded, measurable functions hji . Anyhow, we see later that ϕi,j ∈ S is sufficient to
achieve duality. Additionally, S is the set of payoff functions that can be build up
using only the risk-free and the risky assets, and the call options that we assume to
be liquidly traded. This guarantees that hedging strategies are meaningful when it
comes to application.

2. We could also consider functions hji ∈ Cb(Rid) in the sense that the dynamic investment
in any asset may depend on the history of all assets. As this enlarges the class of
functions over which we optimize, D(c) does only increase. In a setting different to
ours, Lim [58] considers this exact approach. ♦
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4.5.2. The standard market case

In the standard market case, we have dual problems that have an interpretation in the
sense of hedging as well. Therefore, we define the sets of all admissible super and sub
hedging strategies

D≥c2 := {(ϕ,ψ, h) | ϕ+ ∈ L1(R, µ), ψ+ ∈ L1(R, ν), h ∈ L0(R),

ϕ(x) + ψ(y) + h(x)(y − x) ≥ c(x, y), (x, y) ∈ R2},

D≤c2 := {(ϕ,ψ, h) | ϕ+ ∈ L1(R, µ), ψ+ ∈ L1(R, ν), h ∈ L0(R),

ϕ(x) + ψ(y) + h(x)(y − x) ≤ c(x, y), (x, y) ∈ R2}.

Hedging strategies of this form are called semi-static hedging strategies, as ϕ and ψ may be
interpreted as static investments in European options with maturity t and T respectively,
while h may be understood as a dynamic investment in the underlying asset. Clearly,
similar interpretations apply in the general market case.
Using such hedging strategies, we may define the super hedging problem

Dc
2(µ, ν) := inf

(ϕ,ψ,h)∈D≥c2

{∫
R
ϕ(x)µ(dx) +

∫
R
ψ(y)ν(dy)

}
(4.10)

= inf
(ϕ,ψ,h)∈D≥c2

{Eµ[ϕ(X)] + Eν [ψ(Y )]} ,

which is the dual problem to the upper price bound problem in (4.7). Analogously, we may
define the sub hedging problem

Dc
2(µ, ν) := sup

(ϕ,ψ,h)∈D≤c2

{∫
R
ϕ(x)µ(dx) +

∫
R
ψ(y)ν(dy)

}
(4.11)

= sup
(ϕ,ψ,h)∈D≤c2

{Eµ[ϕ(X)] + Eν [ψ(Y )]} ,

which is the dual problem to the lower price bound problem in (4.8).

4.6. The first duality result

In this section, we discuss the pioneering duality result of martingale optimal transport
by Beiglböck, Henry-Labordère & Penkner [5]. For this purpose, we describe the financial
market and the assumptions considered by the authors. We do not go into too much detail,
as they work in the general market case for d = 1.

Thus, let us consider the general market for d = 1. That is, we consider a discrete-time
financial market liquidly trading a single risky asset S = (St)t∈T . Denote by S0 := s0 ∈ R
the price of S at time t = 0. At the core of interest is a general exotic option with payoff
function c : Rn → R, the payoff of which is c(St1 , . . . , Stn).
We assume that for all maturities t1, . . . , tn and all strike prices k ∈ R, call options on
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the underlying, i.e. (exotic) options with payoff function

Φi : Rn × R→ R+, (st1 , . . . , stn , k) 7→ (sti − k)+

are liquidly traded at time t = 0 with price Ci(k). This has well-known implications for
the marginals of any potential pricing measure.
The problem under consideration is to find the lower price bound for the exotic option

PB(c) := inf
Q∈Mn(µ1,...,µn)

EQ[c(St1 , . . . , Stn)].

The dual problem considers semi-static sub hedging strategies, i.e. payoff functions of
the form

Ψ(ϕi),(hi)(st1 , . . . , stn) :=
n∑
i=1

ϕi(sti) +
n−1∑
i=1

hi(st1 , . . . , sti)(sti+1 − sti),

where the functions ϕi : R → R are assumed to be µi-integrable and the functions
hi : Ri → R are bounded and measurable. If payoff functions of that kind and additionally
sub-replicating the payoff of the exotic option in the sense Ψ(ϕi),(hi) ≤ c do exist, then for
any martingale transport plan Q ∈Mn(µ1, . . . , µn) holds the inequality

EQ[c(St1 , . . . , Stn)] ≥ EQ[Ψ(ϕi),(hi)(St1 , . . . , Stn)] = EQ

[
n∑
i=1

ϕi(Sti)
]

=
n∑
i=1
Eµi [ϕi(Sti)] .

This leads to the dual problem of finding the most expensive sub hedging strategy

DB(c) := sup
ϕi∈S

{
n∑
i=1
Eµi [ϕi(Sti)]

∣∣∣∣∣ ∃hi ∈ Cb(Ri) : Ψ(ϕi),(hi) ≤ c on R
n

}
,

for which we have PB(c) ≥ DB(c). Beiglböck, Henry-Labordère & Penkner [5] prove the
following strong duality theorem for the above pair of optimization problems.

Theorem 4.29 ([5, Theorem 1.1]). Let µ1, . . . µn be Borel probability measures on R such
that Mn(µ1, . . . , µn) 6= ∅. Let further c : Rn → (−∞,∞] be a lower semi-continuous
function such that there exists a constant K ∈ R with

c(st1 , . . . , stn) ≥ −K(1 + |st1 |+ . . .+ |stn |) (4.12)

on Rn. Then PB(c) = DB(c). Also PB(c) is attained, i.e. there is a martingale transport
plan Q∗ ∈Mn(µ1, . . . , µn) such that PB(c) = EQ∗ [c]. In general, DB(c) is not attained.



CHAPTER 5

Duality in the general market

In this chapter, our central aim is to generalize the pioneering duality result of model-
independent finance using martingale optimal transport, namely Theorem 4.29, to the
general market case. This is necessary in order to be able to treat multi-asset options
such as basket options. This generalization is presented in Section 5.1, where we also
list and illustrate some drawbacks of the theory. These are the possible non-existence of
optimizers for the dual problem and the potentially large deviations of the upper and lower
price bounds. In Section 5.2, we discuss several recent results on conditions under which
dual optimizers do exist, some of which are important in Chapters 6 and 7. Finally, in
Section 5.3, we investigate the question, how it is possible to tighten the price bound gap.
We discuss recent progress using information on asset return variances in the situation
considered in Theorem 4.29. Then we transfer some of the results to the general market
case additionally using information on asset return covariances.

5.1. The general duality result

In this section, we generalize Theorem 4.29. Before we state and prove the generalized
result, we discuss the general market and the associated optimization problems and detail
the differences to the situation and the problems considered in Section 4.6.

As notations are similar, we indicate by an indexed B whenever we consider objects from
that section, as the results are from Beiglböck, Henry-Labordère & Penkner [5]. That is, we
writeMB

n (µ) instead ofMn(µ1, . . . , µn), etc. We discuss the differences that appear in the
primal and dual problems respectively. For this purpose, we adapt the single asset situation
from dimension n to dimension nd. That is, then there are nd instead of n trading times
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and the dimensions of the compared problems are equal. We stress that the differences
result from the introduction of multiple underlying assets.

1. Primal problem: The formal difference is induced by the different sets from which
the optimizing measures can come. Indeed, while ΠB

nd(µ) and Πd
n(µ) are equal, the

setsMB
nd(µ) andM differ even for the same dimension.

Indeed, inMB
nd(µ) we have martingale conditions connecting all marginals, as the

marginals correspond to the same underlying risky asset. Counting the conditions
leads to nd− 1 conditions of the form

EQ[Sti+1 | Sti . . . St1 ] = Sti Q-a.s., i = 1, . . . , nd− 1.

Conversely, in M we have martingale conditions only connecting the marginals
corresponding to the same underlying asset. Marginals of different assets are in no
specific relation at all. Formally, for all j = 1, . . . , d, we have the n− 1 conditions

EQ
[
Sjti+1 | S

j
ti , . . . , S

j
t1

]
= Sjti Q-a.s., i = 1, . . . , n− 1.

Hence, we have d(n− 1) conditions, i.e. d− 1 fewer than in the single asset case.

2. Dual problem: As in the setting of Section 4.6 the nd marginals correspond to the
same risky asset, the dynamic part of the hedging strategies contains nd− 1 single
timestep investments in the underlying. In the general market case, the hedging
strategies only consist of n− 1 such investments for every risky asset.

In fact, the d− 1 missing dynamic investment possibilities would allow trading of the
form hjn(·)

(
Sj+1
t1 − Sjtn

)
, j = 1, . . . , d− 1, in the general market case. Though such

swap-type strategies may be considered somehow, we only allow for classic dynamic
hedging strategies corresponding to one single asset.

The mentioned differences of our problems to those introduced by Beiglböck, Henry-
Labordère & Penkner [5] induce value changes for P (c) and D(c). As for the sets of
considered martingale transport plans we have M ⊇ MB

nd(µ), P (c) decreases from the
single asset case to the multi-asset case, i.e. P (c) ≤ PB(c). However, in the multi-asset
case we have fewer possible dynamic hedging strategies such that D(c) decreases as well,
i.e. D(c) ≤ DB(c). Thus, we may still hope to achieve duality.

The key result in this chapter is the desired duality result for the optimization problems
introduced in (4.6) and (4.9). It guarantees that the lower bound for the price of the exotic
option and the price of the most expensive hedging strategy that sub-replicates the payoff
of the exotic option in a pointwise sense are equal. It generalizes Theorem 4.29 as it allows
the exotic option to depend on more than only one asset. In particular, it allows us to
incorporate basket options.
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Theorem 5.1. Let M 6= ∅ and c : Rnd → (−∞,∞] be a lower semi-continuous payoff
function such that there is a constant K ∈ R with

c
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
≥ −K

1 +
d∑
j=1

n∑
i=1

∣∣∣sjti ∣∣∣
 (5.1)

for all (s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn) ∈ Rnd. Then P (c) = D(c) and there is a Q∗ ∈M such

that P (c) = EQ∗ [c].

Considering c̃ := −c, we get the corresponding duality result for the upper price bound
and the cheapest super-replicating hedging strategy.

Corollary 5.2. Let M 6= ∅ and c : Rnd → [−∞,∞) be an upper semi-continuous payoff
function such that there is a constant K ∈ R with

c
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
≤ K

1 +
d∑
j=1

n∑
i=1

∣∣∣sjti ∣∣∣


for all (s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn) ∈ Rnd. Then P (c) = D(c) and there is a Q∗ ∈M such

that P (c) = EQ∗ [c].

Before we prove Theorem 5.1 on page 44, we collect several auxiliary results. First, we
introduce a duality result for classic optimal transport, that we use in the proof of Theorem
5.1 with the correct dimensionality, π ∈ Πd

n(µ) and a certain choice for the function φ.

Proposition 5.3 ([5, Proposition 2.1]). Let φ : Rn → (−∞,∞] be a lower semi-continuous
function such that there is a constant K ∈ R with

φ(x1, . . . , xn) ≥ −K(1 + |x1|+ . . .+ |xn|), (x1, . . . , xn) ∈ Rn,

and let µ1, . . . , µn ∈ P(R). Then

PnMK(φ) = inf
π∈Πn(µ1,...,µn)

{∫
Rn
φ(x1, . . . , xn)π(d(x1, . . . , xn))

}

= sup
ϕi∈S

{
n∑
i=1

∫
R
ϕi(xi)µi(dxi)

∣∣∣∣∣ ϕ1(x1) + . . .+ ϕn(xn) ≤ φ(x1, . . . , xn)
}

= Dn
MK(φ).

By Theorem 4.11, the main task in the proof is to show that it suffices to consider
functions ϕi ∈ S instead of functions ϕi ∈ L1(R, µi). In order to do so, we need Lemma 2.1
and the following approximation lemma, the proof of which is reported in Appendix A.2.

Lemma 5.4. Let f ∈ Cb(R), µ1, . . . , µn ∈ P(R) and ε > 0. Then there is a function u ∈ S
such that u ≤ f on R and, for all i = 1, . . . , n, we have∫

R
f(x)− u(x)µi(dx) < ε.
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Proof of Proposition 5.3. In the proof of Theorem 5.1, we show that without loss of gene-
rality we may assume φ ≥ 0. By Lemma 5.4, we may expand the class of admissible sub
hedging functions from S to Cb(R). Hence, we have to show

PnMK(φ) = sup
ϕi∈Cb(R)

{
n∑
i=1

∫
ϕi(xi)µi(dxi)

∣∣∣∣∣ ϕ1(x1) + . . . ϕn(xn) ≤ φ(x1, . . . , xn)
}
. (5.2)

We start the proof of (5.2) assuming φ ∈ Cc(Rn). Then in particular, φ is lower semi-
continuous. By Theorem 4.11, for all η > 0 there are ϕi ∈ L1(R, µi), i = 1, . . . , n, such
that ϕ1 + . . .+ ϕn ≤ φ and

PnMK(φ)−
n∑
i=1

∫
R
ϕi(xi)µi(dxi) ≤ η.

As Cc(R) is dense in L1(R, µi), i = 1, . . . , n, see for example [78, Lemma V.1.10], we may as
well assume ϕ1, . . . , ϕn ∈ Cc(R). Hence, φ, ϕ1, . . . , ϕn are uniformly bounded in particular.

Now we iteratively replace ϕ1, . . . , ϕn ∈ Cc(R) by ϕ̃1, . . . , ϕ̃n ∈ Cb(R). We define

ϕ̃1(x1) := ϕ1(x1) + inf
x2,...,xn∈R

{
φ(x1, . . . , xn)−

n∑
i=1

ϕi(xi)
}

= inf
x2,...,xn∈R

{
φ(x1, . . . , xn)−

n∑
i=2

ϕi(xi)
}

=: inf
x2,...,xn∈R

H(x1, . . . , xn). (5.3)

Let us prove ϕ̃1 ∈ Cb(R). Clearly, the boundedness of ϕ̃1 holds by definition as a sum of
bounded functions.

Now let us consider the continuity of ϕ̃1. For all ε > 0 there is a δ > 0 such that for all
x, x′ ∈ R with |x− x′| < δ, we have

|H(x, x2, . . . , xn)−H
(
x′, x2, . . . , xn

)
| = |φ(x, x2, . . . , xn)− φ(x′, x2, . . . , xn)| < ε (5.4)

for all x2, . . . , xn ∈ R, as φ is uniformly continuous. Hence, we also have

|ϕ̃1(x)− ϕ̃1(x′)| =
∣∣∣∣ inf
x2,...,xn∈R

H(x, x2, . . . , xn)− inf
x2,...,xn∈R

H
(
x′, x2, . . . , xn

)∣∣∣∣ ≤ ε.
In order to prove the last inequality by contradiction, let us assume without loss of

generality that for some ε0 > 0 and all δ > 0 there are x, x′ ∈ R with |x− x′| < δ such that

ϕ̃1(x)− ϕ̃1(x′) > ε0. (5.5)

Now let δ0 = δ0(ε0) be such that (5.4) is satisfied and x0 = x0(δ0), x′0 = x′0(δ0) ∈ R be
such that (5.5) is satisfied. Let also (x(k))k∈N with x(k) = (x(k)

2 , . . . , x
(k)
n ) ∈ Rn−1 be a

minimizing sequence for ϕ̃1(x′0), i.e. ϕ̃1(x′0) = limk→∞H(x′0, x(k)). As |x0 − x′0| < δ0, by
(5.4) we have −ε0 < H(x0, x

(k))−H(x′0, x(k)) < ε0 for all k ∈ N. Taking the limit we get

−ε0 ≤ lim
k→∞

H
(
x0, x

(k)
)
− ϕ̃1(x′0) ≤ ε0.
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However, contradicting the definition of ϕ̃1, this implies by (5.5) that we have

lim
k→∞

H
(
x0, x

(k)
)
< ϕ̃1(x0).

Hence, the assumption in (5.5) is wrong and thus the continuity of ϕ̃1 holds.
Finally, we prove ϕ̃1 to be a reasonable replacement function for ϕ1. By (5.3), we have

ϕ̃1(x1) + ϕ2(x2) + . . .+ ϕn(xn) ≤ φ(x1, . . . , xn)

⇐⇒ inf
x2,...,xn

{
φ(x1, . . . , xn)−

n∑
i=2

ϕi(xi)
}
≤ φ(x1, . . . , xn)−

n∑
i=2

ϕi(xi),

where the latter inequality is trivially satisfied. As ϕ̃1 ∈ Cb(R), we have ϕ̃1 ∈ L1(R, µ1) as
well. Finally, as φ ≥ ϕ1 + . . .+ ϕn, we have ϕ̃1 ≥ ϕ1 by definition. Thus, ϕ̃1 is suitable for
the optimization problem and improves the value of Dn

MK(φ).
Iterating this procedure for i = 2, . . . , n, we replace ϕi(xi) by

ϕ̃i(xi) := inf
x1,...,xi−1,xi+1,...,xn∈R

φ(x1, . . . , xn)−
i−1∑
j=1

ϕ̃j(xj)−
n∑

j=i+1
ϕj(xj)

 ,
and thus arrive at the duality in (5.2) for φ ∈ Cc(Rn).
Now let φ ∈ Cb(Rn) be non-negative. If we manage to prove the duality in (5.2) in this

case, using Lemma 2.1 and the exact same arguments as in the proof of Theorem 5.1, we
may transfer the result to general lower semi-continuous functions φ : Rn → [0,∞].
Recall that by definition we have PnMK(φ) ≥ Dn

MK(φ). To get the opposite inequality,
we observe that Πn(µ1, . . . , µn) is tight by Lemma 4.4 and Remark 4.5. Thus, for every
m ∈ N there is a compact set K̃m ⊆ Rn such that for all π ∈ Πn(µ1, . . . , µn) we have
π(Rn \ K̃m) ≤ 1

m . Furthermore, we define Km := K̃m ∪ [−m,m]n. Then we clearly have

π (Rn \Km) ≤ 1
m

for all π ∈ Πn(µ1, . . . , µn). For m ∈ N, we define

φ̃m(x1, . . . , xn) :=

φ(x1, . . . , xn), (x1, . . . , xn) ∈ Km

0, (x1, . . . , xn) /∈ Km.

Clearly, then φ̃m has compact support and satisfies 0 ≤ φ̃m ≤ φ for all m ∈ N. We also
have φ̃m(x1, . . . , xn)↗ φ(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn as m→∞. Smoothing φ̃m,
we achieve a continuous function φm that satisfies the following conditions.

1. φm = φ on Km.

2. 0 ≤ φ̃m ≤ φm ≤ φ on Rn.

3. φm has compact support.
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We thus have a sequence (φm)m∈N in Cc(Rn) such that φm(x1, . . . , xn)↗ φ(x1, . . . , xn) for
all (x1, . . . , xn) ∈ Rn as m→∞ . Let π ∈ Πn(µ1, . . . , µn). Then we have∫

Rn
φ(x1, . . . , xn)− φm(x1, . . . , xn)π(d(x1, . . . , xn))

=
∫
Km

φ(x1, . . . , xn)− φm(x1, . . . , xn)π(d(x1, . . . , xn))

+
∫
Rn\Km

φ(x1, . . . , xn)− φm(x1, . . . , xn)π(d(x1, . . . , xn))

=
∫
Rn\Km

φ(x1, . . . , xn)− φm(x1, . . . , xn)π(d(x1, . . . , xn))

≤ B · π (Rn \Km) ≤ B

m
,

where B ≥ 0 is the smallest bound for the bounded function φ. Hence, we have∫
Rn
φ(x1, . . . , xn)π(d(x1, . . . , xn)) =

∫
Rn
φm(x1, . . . , xn)π(d(x1, . . . , xn))

+
∫
Rn
φ(x1, . . . , xn)− φm(x1, . . . , xn)π(d(x1, . . . , xn))

≤
∫
Rn
φm(x1, . . . , xn)π(d(x1, . . . , xn)) + B

m
.

Applying the infimum over all π ∈ Πn(µ1, . . . , µn) on both sides, we get the first step of

PnMK(φ) ≤ PnMK(φm) + B

m
= Dn

MK(φm) + B

m
≤ Dn

MK(φ) + B

m
,

where we use the duality result for φm ∈ Cc(Rn) and φm ≤ φ in the second and the third
step. With m→∞ we get the desired duality for φ ∈ Cb(Rn).

With the adapted multi-marginal duality result of classic optimal transport proved, we
proceed to collect further useful facts. We recall that Πd

n(µ) is a compact and convex set.
Consider M ⊆ Πd

n(µ) and assume M 6= ∅. We show that M is as well compact with
respect to the weak topology Tcb(Rnd). For this purpose, we need two lemmata. While the
second lemma has to be adapted to our more general situation, the first lemma could be
used as stated by Beiglböck, Henry-Labordère & Penkner in [5, Lemma 2.2]. However, we
provide a more general version and report the proof in Appendix A.2.

Lemma 5.5. Let f ∈ C(Rn) and µ = (µ1, . . . , µn) ∈ P(R)n be such that there are functions
fi ∈ L(R, µi), i = 1, . . . , n, and a constant K ∈ R with

|f(x1, . . . , xn)| ≤ K
(

1 +
n∑
i=1

fi(xi)
)
, (x1, . . . , xn) ∈ Rn. (5.6)

Then the mapping
π 7→

∫
Rn
f(x1, . . . , xn)π(d(x1, . . . , xn))

is continuous on Πn(µ1, . . . , µn) with respect to the weak topology Tcb(Rn).
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Remark 5.6. Observe that the assertion of Lemma 5.5 holds in particular for the choice
fi(xi) = |xi|. That is, what is shown by Beiglböck, Henry-Labordère & Penkner [5] and it
is all we need in the proof of Theorem 5.1. ♦

Lemma 5.7. Let µ = (µ1,1, . . . , µn,1, . . . , µ1,d, . . . , µn,d) ∈ P(R)nd and π ∈ Πd
n(µ). Then

the following are equivalent:

1. π ∈M =Md
n(µ).

2. For all j = 1, . . . , d, all i = 1, . . . , n− 1 and all h ∈ Cb(Ri), we have∫
Rnd

h
(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
π
(
d
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

))
= 0.

Proof. 1.⇒ 2. Assume π ∈M. Then, by the definition ofM, we have∫
Rnd

h
(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
π
(
d
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

))
= Eπ

[
Eπ
[
h(Sjt1 , . . . , S

j
ti)(S

j
ti+1 − S

j
ti)
∣∣∣ Sjt1 , . . . , Sjti]] = 0

for all h ∈ Cb(Ri), all j = 1, . . . , d and all i = 1, . . . , n− 1.

2.⇒ 1. Assume π /∈ M. Then, by the properties ofM, there is a j ∈ {1, . . . , d} and an
i ∈ {1, . . . , n− 1} such that we have

Eπ
[
Sjti+1 − S

j
ti

∣∣∣ Sjt1 , . . . , Sjti] 6= 0,

which is a contradiction to the second condition.

Proposition 5.8. The setM is compact with respect to the weak topology Tcb(Rnd).

Proof. As Πd
n(µ) is compact and M ⊆ Πd

n(µ), it suffices to show that M is a closed
set. Therefore, for all i = 1, . . . , n − 1, all j = 1, . . . , d and all h ∈ Cb(Ri), we denote
hji

(
sjt1 , . . . , s

j
ti

)
:= h

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
. We also define

M(h, i, j) :=
{
π ∈ Πd

n(µ)
∣∣∣∣ ∫
Rnd

hji

(
sjt1 , . . . , s

j
ti

)
π
(
d
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

))
= 0

}
.

Then, by Lemma 5.7, we haveM =
⋂n−1
i=1

⋂d
j=1

⋂
h∈Cb(Ri)M(h, i, j). The functions hji are

continuous by definition and they satisfy∣∣∣hji (sjt1 , . . . , sjti)∣∣∣ ≤ B(h)
∣∣∣sjti+1 − s

j
ti

∣∣∣ ≤ B(h)
(∣∣∣sjti+1

∣∣∣+ ∣∣∣sjti ∣∣∣) ,
where B(h) ≥ 0 is the smallest bound for h. Hence, the functions satisfy the conditions of
Lemma 5.5 such that π 7→

∫
hjidπ is continuous. In particular,M(h, i, j) is closed for all

i = 1, . . . , n− 1, all j = 1, . . . , d and all h ∈ Cb(Ri). Thus,M is closed as an intersection of
closed sets.
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The last tool that we need to prove Theorem 5.1 is a minimax theorem as it is known
from game theory, optimal control and related fields. We report such a theorem in Appendix
A.2. In the proof of our general theorem, we use it together with the duality result in
Proposition 5.3 and the approximation statement in Lemma 2.1.

Proof of Theorem 5.1. In order to improve readability, whenever the full nd-tuple appears,
we write S for

(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)
and s for

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
.

We start the proof showing that we may without loss of generality assume c ≥ 0. Notice
that if c satisfies the assertion of Theorem 5.1, then so does c̃ := c+

∑d
j=1

∑n
i=1 ϕ̃i,j , where

ϕ̃i,j ∈ S, i = 1, . . . , n, j = 1, . . . , d.
Indeed, on the one hand we have

P (c̃) = inf
Q∈M

EQ[c̃(S)] = inf
Q∈M

EQ[c(S)] +
d∑
j=1

n∑
i=1
Eµi,j

[
ϕ̃i,j

(
Sjti

)]

= P (c) +
d∑
j=1

n∑
i=1
Eµi,j

[
ϕ̃i,j

(
Sjti

)]
,

where in the second equality we use that all Q ∈M have the same marginals and that the
second summand does not depend on the dependence structure between the marginals.
On the other hand we have

D(c̃) = sup
d∑
j=1

n∑
i=1
Eµi,j

[
ϕi,j

(
Sjti

)]
,

where the supremum is taken over functions ϕi,j ∈ S such that there are hji ∈ Cb(Ri) with

d∑
j=1

n∑
i=1

ϕi,j
(
sjti

)
+

d∑
j=1

n−1∑
i=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
≤ c̃(s) = c(s) +

d∑
j=1

n∑
i=1

ϕ̃i,j
(
sjti

)
,

which is the case if and only if

d∑
j=1

n∑
i=1

(ϕi,j − ϕ̃i,j)
(
sjti

)
+

d∑
j=1

n−1∑
i=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
≤ c(s). (5.7)

We define ψi,j := ϕi,j − ϕ̃i,j and immediately have ψi,j ∈ S. Thus, we have

D(c̃) = sup
d∑
j=1

n∑
i=1
Eµi,j

[
(ψi,j + ϕ̃i,j)

(
Sjti

)]
= D(c) +

d∑
j=1

n∑
i=1
Eµi,j

[
ϕ̃i,j

(
Sjti

)]
,

as the ψi,j are by (5.7) exactly the functions in S that are used for the optimization in
D(c). As P (c) = D(c) holds, we have P (c̃) = D(c̃) as well. Hence, we may consider the
function c̃, the non-negativity of which holds by (5.1), defined as

c̃(s) = c(s) +K

1 +
d∑
j=1

n∑
i=1

∣∣∣sjti ∣∣∣
 ≥ 0.
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Thus, let us assume c ≥ 0. Then the class of functions the theorem has to be shown for
is the set of all lower semi-continuous functions c : Rnd → [0,∞]. As those functions are in
particular bounded from below by 0, we may even assume c ∈ Cb(Rnd) by Lemma 2.1.
For such payoff functions, we justify the applicability of Theorem A.1 on the sets

K := Πd
n(µ),

the set of all transport plans on Rnd with suitable marginals, and

T :=
(
Cb (R)× Cb

(
R2
)
. . .× Cb

(
Rn−1

))d
,

the set of d(n− 1)-tuples of bounded, continuous functions, and the function

f : K × T → R, (π, h) 7→
∫
Rnd

χ
c,(hji )

(s)π(ds),

where we write h =
(
hji

)j=1,...,d

i=1,...,n−1
and define χ

c,(hji )
: Rnd → R by

χ
c,(hji )

(s) := c(s)−
d∑
j=1

n−1∑
i=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
.

We already know that K is compact. The convexity of K and T are well-known and
obvious respectively. Thus, we only have to show that f is indeed a suitable function.
Let us first check the second condition. Therefore, let h ∈ T be arbitrary. We have to

investigate the mapping π 7→ f (π, h) , which is convex by definition of the integral. In
order to check the continuity, recall that c ∈ Cb(Rnd) and hji ∈ Cb(Ri) for all i = 1, . . . , n− 1
and all j = 1, . . . , d. Hence, χ

c,(hji )
is continuous as a combination of continuous functions

and it satisfies

∣∣∣χc,(hji )(s)
∣∣∣ ≤ |c(s)|+ d∑

j=1

n−1∑
i=1

∣∣∣hji (sjt1 , . . . , sjti)∣∣∣ (∣∣∣sjti+1

∣∣∣+ ∣∣∣sjti ∣∣∣) .
Denote by B(c) ≥ 0 and B(hji ) ≥ 0 the smallest bounds for the bounded functions c and
hji , i = 1, . . . , n− 1, j = 1, . . . , d. Then we obtain

∣∣∣χc,(hji )(s)
∣∣∣ ≤ B(c) +

d∑
j=1

n−1∑
i=1

B
(
hji

) (∣∣∣sjti+1

∣∣∣+ ∣∣∣sjti ∣∣∣)

= B(c) +
d∑
j=1

n∑
i=1

B̃j
i

∣∣∣sjti ∣∣∣ =: B(c)

1 +
d∑
j=1

n∑
i=1

f ji

(
sjti

) ,
where B̃j

i ≥ 0 and f ji ∈ L1(R, µi,j), i = 1, . . . , n, j = 1, . . . , d, are defined in such a way that
the equalities hold. Clearly, the integrability holds, as the first moments of all marginals
exist. Thus, (5.6) is satisfied and π 7→ f (π, h) is continuous by Lemma 5.5.
Now let us check the third condition. Therefore, let π ∈ K be arbitrary. Then the
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mapping h 7→ f(π, h) is concave on T , as for all h, h̃ ∈ T and all λ ∈ [0, 1], we have

f
(
π,
(
λh+ (1− λ)h̃

))
= λf (π, h) + (1− λ)f

(
π, h̃

)
.

Now let us prove the desired duality. By definition of the sub hedging problem, we have

D(c) = sup
ϕi,j∈S


d∑
j=1

n∑
i=1

∫
R
ϕi,j

(
sjti

)
µi,j

(
dsjti

) ∣∣∣∣∣∣ ∃h ∈ T : Ψ(ϕi,j),(hji )
(s) ≤ c(s)

 .
By the definitions of Ψ(ϕi,j),(hji )

and χ
c,(hji )

, we have

Ψ(ϕi,j),(hji )
(s) ≤ c(s) ⇐⇒

d∑
j=1

n∑
i=1

ϕi,j
(
sjti

)
≤ χ

c,(hji )
(s) (5.8)

for all s =
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
∈ Rnd. Decomposing the supremum, we have

D(c) = sup
ϕi,j∈S


d∑
j=1

n∑
i=1

∫
R
ϕi,j

(
sjti

)
µi,j

(
dsjti

) ∣∣∣∣∣∣ ∃h ∈ T : Ψ(ϕi,j),(hji )
(s) ≤ c(s)


(�)= sup

h∈T
sup
ϕi,j∈S


d∑
j=1

n∑
i=1

∫
R
ϕi,j

(
sjti

)
µi,j

(
dsjti

) ∣∣∣∣∣∣
d∑
j=1

n∑
i=1

ϕi,j
(
sjti

)
≤ χ

c,(hji )
(s)

 . (5.9)

We justify (�) in the case that all the suprema are indeed maxima.
Let us first show that „≤“ holds. For this, let ϕ̄i,j , i = 1, . . . , n, j = 1, . . . , d, be

maximizing functions for the supremum on the left hand side of (�) and let the value be
denoted by I(ϕ̄i,j). Then by definition there is an h̄ ∈ T satisfying the left hand side of
(5.8). By the equivalence, the functions ϕ̄i,j are accessible for the inner supremum on the
right hand side of (�) for fixed h = h̄ in the outer supremum. Thus, we have

I(ϕ̄i,j) ≤ sup
ϕi,j∈S


d∑
j=1

n∑
i=1

∫
R
ϕi,j

(
sjti

)
µi,j

(
dsjti

) ∣∣∣∣∣∣
d∑
j=1

n∑
i=1

ϕi,j
(
sjti

)
≤ χ

c,(h̄ji )
(s)

 .
Clearly, maximizing over all possible h ∈ T the right hand side gets only bigger.
Now let us show that „≥“ is true. For this, let h̃ and ϕ̃i,j , i = 1, . . . , n, j = 1, . . . , d, be

maximizing functions for the double supremum on the right hand side of (�) with value
J (h̃, ϕ̃i,j). Then the right hand side of (5.8) is satisfied by definition and thus the ϕ̃i,j are
accessible for the supremum on the left hand side of (�). Thus, we get

sup
ϕi,j∈S


d∑
j=1

n∑
i=1

∫
R
ϕi,j(sjti)µi,j(ds

j
ti)

∣∣∣∣∣∣ ∃h ∈ T : Ψ(ϕi,j),(hji )
(s) ≤ c(s)

 ≥ J (h̃, ϕ̃i,j).

In total, we have the desired equality in the case of existing maximizers. The same
arguments work when we consider maximizing sequences instead of maximizers. Thus, (�)
does indeed hold.
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Now using Proposition 5.3 on the right hand side of (5.9) with the choice φ = χ
c,(hji )

, we
get the first equality of

D(c) = sup
h∈T

inf
π∈K

∫
Rnd

χ
c,(hji )

(s)π(ds)

= inf
π∈K

sup
h∈T

∫
Rn
χ
c,(hji )

(s)π(ds)

(◦)= inf
Q∈M

∫
Rnd

c(s)Q(ds) = P (c),

while the second equality holds by application of Theorem A.1. The last equality holds by
definition, but (◦) needs some more detailed justification.

For this, let π ∈ Πd
n(µ) \M be fixed. Then, by Lemma 5.7, there are i ∈ {1, . . . , n− 1},

j ∈ {1, . . . , d} and hji ∈ Cb(Ri) such that∫
Rnd

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)
π(ds) 6= 0.

Suitably scaling, we get this integral to be arbitrarily large. Hence, the supremum on the
left hand side of (◦) becomes arbitrarily large for any π ∈ Πd

n(µ) \M. As we minimize the
value over all π ∈ K, it suffices to consider Q ∈M. Furthermore, for all Q ∈M, we have∫

Rnd
hji (s

j
t1 , . . . , s

j
ti)(s

j
ti+1 − s

j
ti)Q(ds) = 0,

for all i = 1, . . . , n− 1, j = 1, . . . , d and hji ∈ Cb(Ri) by Lemma 5.7, Thus, by definition of
χ
c,(hji )

, we also have ∫
Rnd

χ
c,(hji )

(s)Q(ds) =
∫
Rnd

c(s)Q(ds),

which yields (◦). Thus, we have shown the desired duality for c ∈ Cb(Rnd).
In order to complete the proof, let us now assume that c is lower semi-continuous and as

before c ≥ 0. By Lemma 2.1, there is a sequence (ck)k∈N of functions in Cb(Rnd) such that
0 ≤ c1 ≤ c2 ≤ . . . and supk∈N ck = c.

Let us define a sequence (Qk)k∈N of measures inM such that, for all k ∈ N, we have

P (ck) ≥
∫
Rnd

c(s)Qk(ds)−
1
k
. (5.10)

Let k ∈ N. Then there is a sequence (Qk` )`∈N of measures inM such that

P (ck) = inf
Q∈M

∫
Rnd

ck(s)Q(ds) = lim
`→∞

∫
Rnd

ck(s)Qk` (ds).

We may choose the sequence such that the convergence is monotone, i.e. such that we have∫
Rnd ck(s)Qk` (ds)↘ P (ck). Hence, for all ε > 0 there is an `0 ∈ N such that

0 ≤
∫
Rnd

ck(s)Qk` (ds)− P (ck) ≤ ε
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for all ` ≥ `0. Choosing a suitable subsequence of (Qk` )`∈N, we have∫
Rnd

ck(s)Qk` (ds)− P (ck) ≤
1
2k

for all ` ≥ k and in particular∫
Rnd

ck(s)Qkk(ds)− P (ck) ≤
1
2k .

This yields a sequence (Qkk)k∈N of measures inM such that for all k ∈ N, we have

P (ck) ≥
∫
Rnd

ck(s)Qkk(ds)−
1
2k .

Furthermore, we have ck ↗ c. That is, for all ε > 0 there is an k0 ∈ N such that
0 ≤ c − ck ≤ ε and, in particular, ck ≥ c − ε for all k ≥ k0. Again choosing a suitable
subsequence, we obtain ck ≥ c− 1

2k for all k ∈ N. In total, we have

P (ck) ≥
∫
Rnd

ck(s)Qkk(ds)−
1
2k ≥

∫
Rnd

(
c(s)− 1

2k

)
Qkk(ds)−

1
2k =

∫
Rnd

c(s)Qkk(ds)−
1
k
.

Choosing (Qk)k∈N = (Qkk)k∈N, we have the desired sequence of measures inM.

AsM is compact by Proposition 5.8, we may assume that (Qk)k∈N converges weakly to
some Q̃ ∈M. Then we have

P (c) = inf
Q∈M

∫
Rnd

c(s)Q(ds) ≤
∫
Rnd

c(s)Q̃(ds) (�)= lim
`→∞

∫
Rnd

c`(s)Q̃(ds)

(∗)= lim
`→∞

(
lim
k→∞

∫
Rnd

c`(s)Qk(ds)
) (◦)
≤ lim

`→∞

(
lim
k→∞

∫
Rnd

ck(s)Qk(ds)
)

= lim
k→∞

∫
Rnd

ck(s)Qk(ds) ≤ lim
k→∞

∫
Rnd

c(s)Qk(ds)
(?)
≤ lim

k→∞

(
P (ck) + 1

k

)
= lim

k→∞
P (ck).

The equation marked with (�) holds by the monotone convergence theorem. The equation
marked with (∗) holds by the definition of weak convergence, since ck ∈ Cb(Rnd), k ∈ N. The
inequality marked with (◦) holds, since the sequence (ck)k∈N is monotone non-decreasing.
Finally, the inequality marked with (?) holds by (5.10).
By definition of the sequence (ck)k∈N, we have D(ck) ≤ D(c) and P (ck) ≤ P (c) for all

k ∈ N, which implies
D(c) ≥ D(ck) = P (ck)↗ P (c).

Thus, we have D(c) ≥ P (c). Recalling the weak duality inequality P (c) ≥ D(c), we finally
have P (c) = D(c) for general lower semi-continuous functions c : Rnd → [0,∞).

It remains to show that the infimum in the primal problem is attained. If P (c) =∞, then
this is trivially satisfied. Thus, we assume P (c) <∞. Then there is a sequence (Qk)k∈N
in M ⊂ Πd

n(µ) such that P (c) = limk→∞
∫
cdQk. As M is compact, a subsequence of

(Qk)k∈N converges weakly to some Q ∈M.
As the payoff function c is lower semi-continuous, for any sequence (πk)k∈N in Πd

n(µ)
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weakly converging to some π ∈ Πd
n(µ), we have by Lemma 4.3 and Remark 4.5 that

π 7→
∫
cdπ is lower semi-continuous, i.e.

lim inf
k→∞

∫
Rnd

c(s)πk(ds) ≥
∫
Rnd

c(s)π(ds).

Thus, the limit measure Q ∈M is a minimizer of P (c).

Remark 5.9. In Section 4.1, we mentioned that in classic optimal transport an optimizer
to the dual problem does not exist in general. The same applies to martingale optimal
transport. In the following sections we discuss, among other topics, the existence of dual
optimizers.
However, if we assume that a dual optimizer exists, i.e. if there are functions ϕi,j ∈ S

and hji ∈ Cb(Ri) such that Ψ := Ψ(ϕi,j),(hji )
≤ c and

∑d
j=1

∑n
i=1 Eµi,j

[
ϕi,j

(
Sjti

)]
= D(c),

and if further Q is a primal optimizer, i.e. if EQ[c] = P (c), then

0 ≤ EQ[c−Ψ] = P (c)−D(c) = 0.

That is, the sub-replicating hedging strategy Ψ replicates the payoff function c at least
Q-almost surely. This property of a dual optimizer is also used in the following chapters. ♦

Remark 5.10. A result similar to Theorem 5.1 may be obtained applying a result from
Zaev [79] on optimal transport with linear constraints. In order to understand how this is
done, let us shortly discuss the work of Zaev [79].
For this purpose, let µ1, . . . , µn ∈ P(R) and define for all i = 1, . . . , n,

CL(µi) := {f ∈ L1(R, µi) ∩ C(R)},

the set of all continuous functions that are absolutely integrable with respect to µi. Further
define

CL(µ) := CL(µ1, . . . , µn) :=
{
h ∈ C(Rn)

∣∣∣∣∣ ∃f =
n∑
i=1

fi ∈
n⊕
i=1
CL(µi) with |h| ≤ f

}

equipped with the seminorm

‖h‖L := sup
π∈Πn(µ1,...,µn)

∫
Rn
h(x1, . . . , xn)π(d(x1, . . . , xn)).

Now let W ⊆ CL(µ) be some subspace and c ∈ CL(µ). Then the author considers the
constrained Monge-Kantorovich problem of optimal transport

inf
π∈ΠW

∫
Rn
c(x1, . . . , xn)π(d(x1, . . . , xn)),

where

ΠW :=
{
π ∈ Πn(µ1, . . . , µn)

∣∣∣∣ ∫
Rn
w(x1, . . . , xn)π(d(x1, . . . , xn)) = 0 for all w ∈W

}
.
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Theorem 5.11 ([79, Theorem 2.1]). Let µ1, . . . , µn ∈ P(R), W ⊆ CL(µ) a subspace and
c ∈ CL(µ). Then

inf
π∈ΠW

∫
Rn
c(x1, . . . , xn)π(d(x1, . . . , xn)) = sup

n∑
i=1

∫
R
fi(xi)µi(dxi),

where the supremum is taken over functions fi ∈ CL(µi) such that there is a function w ∈W
with

∑n
i=1 fi(xi) + w(x1, . . . , xn) ≤ c(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn.

Using this theorem, we may state a result similar to our general duality theorem. In
order to do so, consider measures µ1,1, . . . , µn,1, . . . , µ1,d, . . . , µn,d ∈ P(R) and choose

W =


d∑
j=1

n−1∑
i=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

) ∣∣∣∣∣∣ hji ∈ Cb(Ri), i = 1, . . . , n− 1, j = 1, . . . , d

 .
The functions in W are obviously contained in C(Rnd) and further we have

∣∣∣∣ d∑
j=1

n−1∑
j=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

) ∣∣∣∣ ≤ d∑
j=1

n−1∑
j=1

B
(
hji

) ∣∣∣sjti+1 − s
j
ti

∣∣∣
≤

d∑
j=1

n−1∑
j=1

B
(
hji

) (∣∣∣sjti+1

∣∣∣+ ∣∣∣sjti ∣∣∣) =
d∑
j=1

n∑
j=1

B̃j
i

∣∣∣sjti ∣∣∣
=:

d∑
j=1

n∑
j=1

fi,j
(
sjti

)
=: f

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
,

where B(hji ) ≥ 0 are the smallest bounds for the bounded functions hji and B̃
j
i are suitable

constants such that the equality holds. Thus, we have indeed W ⊆ CL(µ).
Using Lemma 5.7, we obtain ΠW = M and thus the similarity of Theorem 5.1 and

the discussed special case of Theorem 5.11. However, we observe some differences in the
assumptions on the payoff function and the hedging functions between the two results.
Indeed, our theorem allows for more general payoff functions. In particular, we do not

need continuity such that payoff functions with jumps, as for example for binary type
options, are covered. Furthermore, the class of functions that we use for static hedging is a
subclass of the class considered by Zaev that allows nice interpretation when it comes to
application, as we only use payoff functions of liquidly traded options for the hedging. ♦

Let us close this section discussing some drawbacks of the theory of martingale optimal
transport.

A first drawback is, as we already mentioned, that dual optimizers do not exist in general.
This was first shown by Beiglböck, Henry-Labordère & Penkner [5, Proposition 4.1]. A
much simpler counterexample is given by Beiglböck, Nutz & Touzi [9, Example 8.2]. As we
do not contribute anything to the progress on existence of dual optimizers, but only present
some important proceedings in that direction, we do not discuss any counterexamples.
Instead, we proceed with a second drawback which is less technical but as important.
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That is, upper and lower price bounds may deviate vastly. This can for example be seen in
Lütkebohmert & Sester [59, Sec. 5], who numerically investigate the price differences in the
standard market case and also suggest methods to improve the situation using additional
information about the variance of asset returns. We complement their numerical studies
by illustrative investigations in the general market case for d = n = 2.

Example 5.12. In order to illustrate the problem, we do not need to consider marginals
too complicated. Thus, we restrict ourselves to the case of simple discrete measures. In
particular, we consider the marginals

µ1,1 = 1
3(δ8 + δ10 + δ12) ≤c

1
4(δ7 + δ9 + δ11 + δ13) = µ2,1,

µ1,2 = 1
3(δ8 + δ10 + δ12) ≤c

1
5(δ4 + δ7 + δ10 + δ13 + δ16) = µ2,2.

In Table 5.1, we state the payoff functions that we consider in this example.

Exotic option type Payoff function

Basket option cB
(
S1
t1 , S

1
t2 , S

2
t1 , S

2
t2

)
=
(

1
4 (S1

t1 + S1
t2 + S2

t1 + S2
t2 ) − 10

)+
Binary option c1

(
S1
t1 , S

1
t2 , S

2
t1 , S

2
t2

)
= 1{

S1
t2
>S1

t1

} · 1{
S2

t2
>S2

t1

}
Asian option cA

(
S1
t1 , S

1
t2 , S

2
t1 , S

2
t2

)
= 1

4

(
S1
t2 − S1

t1

)+ ·
(
S2
t2 − S2

t1

)+
Variance option cV

(
S1
t1 , S

1
t2 , S

2
t1 , S

2
t2

)
=
(
S1

t2
−S1

t1
S1

t1

)2
·
(
S2

t2
−S2

t1
S2

t1

)2

Covariance option cC
(
S1
t1 , S

1
t2 , S

2
t1 , S

2
t2

)
=
(
S1

t2
−S1

t1
S1

t1
·
S2

t2
−S2

t1
S2

t1

)+

Table 5.1.: Types of payoff functions

Let us now compare the resulting upper and lower price bounds for exotic options with
the given payoff functions with respect to the sets of measures

M2
2(µ) ⊆ Π2

2,≥0(µ) ⊆ Π2
2(µ),

where we define

Π2
2,≥0(µ) :=

{
π ∈ Π2

2(µ)
∣∣∣ Covπ(S1

t1 , S
1
t2) ≥ 0,Covπ(S2

t1 , S
2
t2) ≥ 0

}
.

This set is of interest as the dependence structure of martingales ensures non-negative
covariance in the above sense. However, it is easier to implement the above condition of
non-negative covariance than the martingale property itself.
In Tables 5.2 and 5.3, we state the upper and lower price bounds for the different

options and the different underlying sets of measures. The values are calculated numerically
using classic methods of linear programming, as the price bound problems reduce to finite
dimensional linear programs in this case.



52 Chapter 5. Duality in the general market

Payoff function c infπ∈Π2
2(µ) Eπ[c] infπ∈Π2

2,≥0(µ) Eπ[c] infQ∈M2
2(µ) EQ[c]

cB 0.075 0.09 0.1464
c1 0 0 0
cA 0 0 0
cV 0.0007 0.0007 0.001
cC 0 0 0

Table 5.2.: Lower price bounds for different exotic options

Payoff function c supQ∈M2
2(µ) EQ[c] supπ∈Π2

2,≥0(µ) Eπ[c] supπ∈Π2
2(µ) Eπ[c]

cB 1.022 1.033 1.033
c1 0.6 0.6 0.6
cA 0.9944 2.1125 2.675
cV 0.0218 0.0859 0.1092
cC 0.072 0.171 0.241

Table 5.3.: Upper price bounds for different exotic options

Finally, in Table 5.4, we collect the relative price range

supQ∈M2
2(µ) EQ[c]− infQ∈M2

2(µ) EQ[c]
infQ∈M2

2(µ) EQ[c]

and the relative sharpening of the price ranges by the martingale property

1−
supQ∈M2

2(µ) EQ[c]− infQ∈M2
2(µ) EQ[c]

supQ∈Π2
2(µ) EQ[c]− infQ∈Π2

2(µ) EQ[c]

for the different payoff functions, both denoted in percent.

Payoff function c Relative price range Relative sharpening
cB 1277.77 8.6013
c1 - 0
cA - 62.8262
cV 15500 80.8295
cC - 70.0124

Table 5.4.: Some key numbers to measure the price bound quality in percent.

We see that the price bound differences are rather great even in the martingale case,
but we also see that often the martingale property leads to a major improvement of the
price bounds. However, there is room for further improvement. We discuss some possible
improvements of the price bounds in Section 5.3, where we consider an approach using
additional information on the asset prices. 4
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5.2. Existence of dual optimizers

In this section, we present some results on the existence of dual optimizers for martingale
optimal transport. In Section 5.2.1, we present the first result in that direction derived by
Beiglböck, Nutz & Touzi [9]. The authors introduce the notion of irreducibility in order
to guarantee the existence of dual optimizers. We present some more recent results by
Beiglböck, Lim & Obłój [8] that we need in Chapter 7. Those results are achieved in the
standard market case. In Section 5.2.2, we present some generalizations to the general
market case provided by Nutz, Stebegg & Tan [65] and Lim [58]. We focus on the results
and do not discuss any difficulties or subtleties that are not important for our work.

5.2.1. The standard market case

We immediately state the central notion of irreducibility that goes back to Beiglböck, Nutz
& Touzi [9]. It plays an important role in Chapters 6 and 7, where we consider the standard
market case. The irreducibility property intuitively stems from the observation that points
in which the potential functions of the marginals µ and ν touch, i.e. points x ∈ R such
that uµ(x) = uν(x) holds, somehow restrict martingale transport plans.

Definition 5.13 ([9, Definition 2.2]). Let µ, ν ∈ Pα(R) be such that µ ≤c ν. The pair
(µ, ν) is called irreducible, if the set I := {uµ < uν} is connected and µ(I) = µ(R). In this
situation, let J be the union of I and any endpoints of I that are atoms of ν. Then (I, J)
is called the domain of (µ, ν).

While Henry-Labordère & Touzi [38] introduce an equivalent definition in terms of call
option price functions, Beiglböck, Nutz & Touzi [9] also discuss several useful consequences
of this definition. In order to understand the definition of irreducibility thoroughly, we
recall some of these consequences here.

First of all, recall that µ ≤c ν implies uµ ≤ uν . Hence, outside of I we have uµ = uν . As
both measures have the same mass and barycentre, we have ν(J) = ν(R). Indeed, J is the
smallest superset of I such that ν is concentrated on J . A very important property proved
by Beiglböck, Nutz & Touzi [9] implies that whenever discussing the standard market case,
we may assume the pair (µ, ν) of marginals to be irreducible.

Proposition 5.14 ([9, Proposition 2.3]). Let µ ≤c ν and let (Ik)1≤k≤N be the (open)
components of {uµ < uν}, where N ∈ {1, . . . ,∞}. Set I0 := R \

⋃
k≥1 Ik and µk := µ|Ik for

k ≥ 0, so that µ =
∑
k≥0 µk. Then there is a unique decomposition ν =

∑
k≥0 νk such that

1. µ0 = ν0 and µk ≤c νk for all k ≥ 1.

2. Ik = {uµk < uνk} for all k ≥ 1.

Moreover, any Q ∈ M2(µ, ν) admits a unique decomposition Q =
∑
k≥0Qk such that

Qk ∈M2(µk, νk) for all k ≥ 0.
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In order to show dual attainment using irreducibility, the set of functions over which the
dual problem is optimized has to be relaxed. For this purpose, a generalized integrability
notion is introduced. In the next two definitions, we assume the pair (µ, ν) with µ ≤c ν to
be irreducible with domain (I, J).

Definition 5.15 ([9, Def. 4.7 & 4.9]). Let ϕ : I → R∪{−∞,∞} and ψ : J → R∪{−∞,∞}
be Borel functions. If there exists a concave function χ : J → R such that ψ−χ ∈ L1(R, µ)
and ψ + χ ∈ L1(R, ν), then we say χ is a concave moderator for (ϕ,ψ) and define∫

I
ϕ(x)µ(dx) +

∫
J
ψ(y)ν(dy) :=

∫
J
(ϕ− χ)(x)µ(dx) +

∫
J
(ψ + χ)(y)ν(dy)

+ 1
2

∫
I
(uµ − uν)(x)χ′′(dx)−

∫
J\I

χ(y)ν(dy).

Denote by Lc(µ, ν) the set of all pairs (ϕ,ψ) of Borel functions that admit

1
2

∫
I
(uµ − uν)(x)χ′′(dx)−

∫
J\I

χ(y)ν(dy) <∞.

With the notion of a concave moderator and the relaxed notion of integrability, we may
introduce the relaxed set of super hedging strategies.

Definition 5.16 ([9, Definition 5.1]). Let c : I × J → [0,∞]. Then we denote by Dco,pwµ,ν (c)
the set of all triples (ϕ,ψ, h) of Borel functions ϕ : R→ R∪{−∞,∞}, ψ : R→ R∪{−∞,∞}
and h : R→ R such that (ϕ,ψ) ∈ Lc(µ, ν) and

ϕ(x) + ψ(y) + h(x)(y − x) ≥ c(x, y), (x, y) ∈ I × J.

Theorem 5.17 ([9, Theorem 6.2]). Let µ, ν ∈ Pα(R) be such that µ ≤c ν and (µ, ν) is
irreducible. Further let c : R2 → [0,∞] be a payoff function.

1. If c is upper semianalytic, i.e. if the set {c ≥ a} is the image of a Borel subset of a
Polish space under a Borel mapping for all a ∈ R, then

sup
Q∈M2(µ,ν)

EQ [c(X,Y )] = inf
(ϕ,ψ,h)∈Dco,pwµ,ν (c)

{∫
R
ϕ(x)µ(dx) +

∫
R
ψ(y)ν(dy)

}
∈ [0,∞].

2. If inf
(ϕ,ψ,h)∈Dco,pwµ,ν (c)

{
∫
R ϕ(x)µ(dx) +

∫
R ψ(y)ν(dy)} <∞, then there exists a dual mini-

mizer (ϕ,ψ, h) ∈ Dco,pwµ,ν (c).

Now we proceed with the results of Beiglböck, Lim & Obłój [8]. We remark that the
authors actually consider the lower price bound problem in (4.8) and associated to that the
sub hedging problem in (4.11). On the contrary, in the standard market case, we mostly
consider the upper price bound problem in (4.7) and the super hedging problem in (4.10).
However, the results of Beiglböck, Lim & Obłój [8] are crucial for our work in Chapter 7.
Therefore, we do not present the original results but adapted versions that we can apply
later.
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The authors investigate the existence of dual optimizers from an application-oriented
point of view in the sense that they try to find conditions on the payoff function and the
marginals such that optimizers do not only exist but also have some nice properties. For
this purpose, they introduce the notion of a dual optimizer independently of the super
hedging problem in (4.10) using the intuition that we developed in Remark 5.9.

Definition 5.18 ([8, Definition 2.1]). Let µ ≤c ν and c : R2 → R be a payoff function.
Then a triple (ϕ,ψ, h) of functions ϕ : R→ R ∪ {∞}, ψ : R→ R ∪ {∞} and h : R→ R is
called dual minimizer, if ϕ is finite µ-almost surely, ψ is finite ν-almost surely and, for any
maximizer Q∗ ∈M2(µ, ν) of the upper price bound problem in (4.7), we have

ϕ(x) + ψ(y) + h(x)(y − x) ≥ c(x, y), for all (x, y) ∈ R2,

ϕ(x) + ψ(y) + h(x)(y − x) = c(x, y), for Q∗-almost every (x, y).

Definition 5.19 ([8, Definition 2.2]). Let J be an interval and µ ∈ Pα(R). We say that a
function c : R2 → R is semi-concave in y ∈ J µ-uniformly, if there exists a Borel function
u : J → R such that for µ-almost every x, the mapping y 7→ c(x, y) + u(y) is continuous
and concave on J . In this case, we say that u is a y-concavifier on J for c.

Theorem 5.20 ([8, Theorem 2.3]). Let µ ≤c ν, J := conv(supp(ν)) and c : R2 → R.
Suppose that there exists a y-concavifier u on J for c. If J is not compact, then further
suppose that y 7→ c(x, y)+u(y) is of linear growth on J . Then there exists a dual minimizer
in the sense of Definition 5.18.

Theorem 5.21 ([8, Theorem 2.5]). Suppose the assumptions of Theorem 5.20 are satisfied
and that further c is Lipschitz continuous on J × J and u is Lipschitz continuous on J .
Then there exists a dual minimizer (ϕ,ψ, h) such that ϕ and ψ are Lipschitz continuous on
J and |h| is bounded on J .

Remark 5.22. 1. If c and u in Theorem 5.21 are Lipschitz continuous with constant Λ,
then the dual minimizer may be chosen such that ϕ and ψ are Lipschitz continuous
with constants 19Λ and 17Λ on J , and |h| is bounded by 18Λ on J . This is computed
in the proof of Beiglböck, Lim & Obłój [8, Theorem 2.5].

2. In a former version, the authors prove Theorem 5.21 for compact J . Then the
proof yields that the dual minimizer may be chosen such that ϕ and ψ are Lipschitz
continuous with constants 7Λ and 5Λ on J , and |h| is bounded by 6Λ on J .

3. Analyzing the proof of [8, Theorem 2.5], the authors recognize that the global
Lipschitz condition may be weakened. Instead, one demands that there is a Λ > 0
such that for the domain (I, J) of every irreducible component of (µ, ν), we have

• cy(x, b−) + u′(b−)− cy(x, a+)− u′(a+) ≤ 4Λ for all x ∈ I = (a, b).

• |c(x, y)− c(x′, y)| ≤ Λ|x− x′| for all x, x′, y ∈ J . ♦

For us, Theorem 5.21 and Remark 5.22 are of major importance in Chapter 7.
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5.2.2. The general market case

Nutz, Stebegg & Tan [65] generalize many aspects of the work of Beiglböck, Nutz & Touzi
[9] to the general market case for d = 1. In particular, they prove a generalized version of
Theorem 5.17 restating the well-known duality and proving the existence of dual optimizers
whenever the value of the dual problem is finite. The theorem is the same as Theorem 5.17
only for a version of the dual problem with a different space of functions over which the
hedging may be optimized. As the introduction of this so-called dual space takes several
pages, we skip the exact formulation of the generalized version.

Lim [58] generalizes some of the results from Beiglböck, Lim & Obłój [8] for the general
market in the case n = 2. Therefore, let µ1,1, µ2,1 . . . , µ1,d, µ2,d ∈ P(R) be such that
µ1,j ≤c µ2,j , j = 1, . . . , d and denote µ1 = (µ1,1, . . . , µ1,d), µ2 = (µ2,1, . . . , µ2,d), and
µ = (µ1, µ2). Consider the set of martingale transport plans Md

2(µ), which can also be
written as the set of all probability measures of Rd × Rd such that

1. If Q1 and Q2 are the d-copulas induced by an element Q ∈Md
2(µ), then they have

marginals µ1,1, . . . , µ1,d and µ2,1, . . . , µ2,d respectively.

2. If (Qx)x is a disintegration of Q with respect to Q1, then for any convex function
φ : Rd → R it must satisfy φ(x) ≤

∫
Rd φ(y)dQx(y) Q1-almost surely.

In this situation, Lim [58] considers the same lower price bound problem as we do in
(4.6). However, the dual problem is changed slightly. Indeed, instead of assuming ϕi,j ∈ S
and hj ∈ Cb(R) for i = 1, 2, j = 1, . . . , d, the author considers µi,j-integrable functions
ϕi,j : R → R ∪ {−∞} and hj : Rd → R bounded for i = 1, 2, j = 1, . . . , d. Differently to
our situation and as already discussed in the second part of Remark 4.28, this allows that
the dynamic investment in the assets depends on the history of all assets. Clearly, on R2d

the functions have to satisfy the usual sub hedging property

d∑
j=1

[
ϕ1,j

(
sjt1

)
+ ϕ2,j

(
sjt2

)
+ hj

(
s1
t1 , . . . , s

d
t1

) (
sjt2 − s

j
t1

)]
≤ c

(
s1
t1 , . . . , s

d
t1 , s

1
t2 , . . . , s

d
t2

)
.

(5.11)
Using such functions, the definition of a dual maximizer is quite similar to the definition of
a dual minimizer from Definition 5.18.

Definition 5.23 ([58, Definition 2.1]). We say that
(
ϕ1,j , ϕ2,j , h

j
)
j=1,...,d is a dual maxi-

mizer for the sub hedging problem in (4.9), if

1. The functions ϕi,j are finite µi,j-almost surely and such that (5.11) holds.

2. For any minimizer Q ∈ Md
2(µ) of the lower price bound problem in (4.6), we have

equality in (5.11) Q-almost surely.
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Theorem 5.24 ([58, Theorem 2.2]). Let (µ1,j , µ2,j) be irreducible with domain (Ij , Jj) for
j = 1, . . . , d. Let c : R2d → R be a lower semi-continuous payoff function and suppose that

∣∣∣c (s1
t1 , . . . , s

1
t2 , s

d
t1 , . . . , s

d
t2

)∣∣∣ ≤ d∑
j=1

vj
(
sjt1

)
+ wj

(
sjt2

)

for some vj ∈ L1(R, µ1,j) and wj ∈ L1(R, µ2,j), j = 1, . . . , d. Assume further that there is a
function q : J1×. . .×Jd → R such that q ∈ L1(J1×. . .×Jd, π) for all π ∈ Πd(µ2,1, . . . , µ2,d),
and for all (s1

t2 , . . . , s
d
t2) ∈ J1 × . . .× Jd, we have

sup(
s1t1

,...,sdt1

)
∈I1×...×Id

c
(
s1
t1 , . . . , s

1
t2 , s

d
t1 , . . . , s

d
t2

)
≤ q

(
s1
t2 , . . . , s

d
t2

)
.

Then a dual maximizer exists.

5.3. Improvements of the price bounds

In this section, we present some results on the improvement of the price bounds for
martingale optimal transport. In Section 5.3.1, we present an approach introduced by
Lütkebohmert & Sester [59], who use additional information on the variance of the asset
returns in order to tighten the price bounds in the situation of Beiglböck, Henry-Labordère
& Penkner [5] as presented in Section 4.6. In Section 5.3.2, we adapt this approach to the
general market using the entire covariance structure of the asset returns.

5.3.1. Improvements using information on return variance

When pricing an exotic option with payoff function c : Rn → R on an underlying risky
asset S = (St1 , . . . , Stn) with marginals µ1 ≤c . . . ≤c µn, Lütkebohmert & Sester [59] aim
to improve the price bounds PB(c) and PB(c) := supQ∈Mn(µ1,...,µn) EQ[c(St1 , . . . , Stn)] by
incorporating more than just the marginals and the martingale property into the set of
potential pricing measures. For this purpose, they assume to have information on the
variance of the asset returns

Var
(
Stj − Sti
Sti

)
for all 1 ≤ i < j ≤ n and motivate how this could be achieved in application. Clearly, in
order to have a well-defined variance, one does assume that the underlying takes positive
values, i.e. Sti > 0, i = 1, . . . , n, which is equivalent to supp(µi) ⊆ (0,∞), i = 1, . . . , n.

The authors restrict the set of potential pricing measures to the set of martingale
transport plans that additionally satisfy the above variance condition, i.e. to the set

V(σ, I, µ1, . . . , µn) :=
{
Q ∈M(µ1, . . . , µn)

∣∣∣∣ VarQ
(
Stj − Sti
Sti

)
= σ2

ij for (i, j) ∈ I
}
,

where I ⊆ {(i, j) ∈ {1, . . . , n}2, i < j} is an index set and σ = (σij)(i,j)∈I is the matrix of
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standard deviations of the asset returns. Then

PB(c) ≤ inf
Q∈V(σ,I,µ1,...,µn)

EQ[c(St1 , . . . , Stn)] ≤ sup
Q∈V(σ,I,µ1,...,µn)

EQ[c(St1 , . . . , Stn)] ≤ PB(c).

In this scenario, Lütkebohmert & Sester [59] prove several results. Those results are among
others a characterization result for the set V(σ, I, µ1, . . . , µn) similar to Lemma 5.7, a
strong duality result for the problems

inf
Q∈V(σ,I,µ1,...,µn)

EQ[c(St1 , . . . , Stn)]

and

sup
ϕi∈S

{
n∑
i=1
Eµi [ϕi (Sti)]

∣∣∣∣∣∃hi ∈ Cb(Ri), αij ≥ 0 : Ψ(ϕi),(hi),(αij ,σij) ≥ c on R
n

}
,

where

Ψ(ϕi),(hi),(αij ,σij)(st1 , . . . , stn) :=
n∑
i=1

ϕi(sti) +
n−1∑
i=1

hi(st1 , . . . , sti)(sti+1 − sti)

+
∑

(i,j)∈I
αij

((
stj
sti

)2
− 1− σ2

ij

)
,

similar to Theorem 4.29, and several results concerning the price gap between the lower and
upper price bounds with respect to V(σ, I, µ1, . . . , µn). Lütkebohmert & Sester [59] also
discuss the improvement of the price bounds by the additional information in an extensive
numerical study.

5.3.2. Improvements using information on return covariance

Now let us consider the situation of the general market case. Then proving similar results
as Lütkebohmert & Sester [59] considering return variances for the multi-asset case would
be a strong generalization, as this gives rise to basket options among others. Anyhow, we
intend to derive even stronger results by taking the complete covariance structure of asset
returns into account.

For this purpose, let µ1,1, . . . , µn,1, . . . , µ1,d, . . . , µn,d ∈ P((0,∞)) be the marginals of d
different assets S1, . . . , Sd taking strictly positive values with µ1,j ≤c . . . ≤c µn,j for all
j = 1, . . . , d and let c : Rnd → R be a payoff function. We incorporate information on the
covariance of the returns to the set of potential pricing measures Q by posing conditions of
the type

CovQ

Sj1ti2 − Sj1ti1
Sj1ti1

,
Sj2ti4
− Sj2ti3
Sj2ti3

 = σ(j1, j2, i1, . . . , i4), (5.12)

where j1, j2 ∈ {1, . . . , d}, i1, . . . , i4 ∈ {1, . . . , n}, j1 ≤ j2, i1 < i2, and i3 < i4. That is, we
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introduce the set of all covariance restricted martingale transport plans

C(Σ, I) := {Q ∈M | Q satisfies (5.12) for all (j1, j2, i1, . . . , i4) ∈ I} ,

where I is a suitable index set such that

I ⊆
{

(j1, j2, i1, . . . , i4) ∈ {1, . . . , d}2 × {1, . . . , n}4
∣∣∣ j1 ≤ j2, i1 < i2 and i3 < i4

}
and Σ = (σ(j1, j2, i1, . . . , i4))(j1,j2,i1,...,i4)∈I contains all return covariances. We shortly
denote a generic index by I6 := (j1, j2, i1, . . . , i4).
In this situation, we consider the upper and lower price bound problems

P Cnd(c) := inf
Q∈C(Σ,I)

EQ
[
c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)]
(5.13)

≤ sup
Q∈C(Σ,I)

EQ
[
c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)]
=: P Cnd(c).

Remark 5.25. 1. When it comes to application, we often choose i1 = i3 = i2− 1 = i4− 1
in order to consider one step returns with either j1 = j2 regarding the variances of
the returns or j1 6= j2 regarding the covariances of the returns of two different assets
at the same time point.

2. For k = 1, . . . , d, we denote by

Vk(Σ, I) :=
{
Q ∈Mn(µ1,k, . . . , µn,k)

∣∣∣∣∣ VarQ

(
Sktj − S

k
ti

Skti

)
= σ(k, k, i, j, i, j)

for all (k, k, i, j, i, j) ∈ I
}

the set of all martingale transport plans restricted with respect to the return variances
of the asset Sk as considered by Lütkebohmert & Sester [59]. Then we have

C(Σ, I) ⊆ V(Σ, I) := Πnd

(
V1(Σ, I), . . . ,Vd(Σ, I)

)
:=
{
π ∈ P(Rnd) | π has n-marginals πj ∈ Vj(Σ, I)

}
⊆M,

where V(Σ, I) is the set of martingale transport plans only incorporating variances.
We define I= := {(j1, j2, i1, . . . , i4) ∈ I | j1 = j2, i1 = i3, i2 = i4}, the subset of I
only containing indices that lead to variance conditions. Then V(Σ, I) = C(Σ, I=).
We may then consider the price bound problems

PVnd(c) := inf
Q∈V(Σ,I)

EQ
[
c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)]
≤ sup
Q∈V(Σ,I)

EQ
[
c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)]
=: PVnd(c).

Opposed to V(Σ, I), we may consider the set of martingale transport plans only
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incorporating true covariances. That is the set (C \ V)(Σ, I) := C(Σ, I \ I=). We may
then also consider the price bound problems

P
C\V
nd (c) := inf

Q∈(C\V)(Σ,I)
EQ

[
c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)]
≤ sup
Q∈(C\V)(Σ,I)

EQ
[
c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)]
=: P C\Vnd (c).

3. As the asset price processes Sk, k = 1, . . . , d, are martingales under any potential
pricing measure, we may derive an alternative representation of the covariances.
Indeed, we have

CovQ

Sj1ti2 − Sj1ti1
Sj1ti1

,
Sj2ti4
− Sj2ti3
Sj2ti3

 = CovQ

Sj1ti2
Sj1ti1

,
Sj2ti4
Sj2ti3


= EQ

Sj1ti2
Sj1ti1

·
Sj2ti4
Sj2ti3

− EQ
Sj1ti2
Sj1ti1

 · EQ
Sj2ti4
Sj2ti3

 = EQ

Sj1ti2
Sj1ti1

·
Sj2ti4
Sj2ti3

− 1,

where in the last step we use the tower property and the martingale property. If we
assume j1 = j2 and i2 6= i4 or i1 6= i3, then again using the tower property multiple
times, we obtain that the asset return covariances are equal to zero, as martingale
increments are always uncorrelated. Therefore, we may reduce the index set under
consideration to

I ⊆
{
(j1, j2, i1, . . . , i4) ∈ {1, . . . , d}2 × {1, . . . , n}4

∣∣ j1 ≤ j2, i1 < i2, i3 < i4,

and if j1 = j2, then i2 = i4 and i1 = i3
}
. ♦

Let us now at least shortly motivate how we could gain the necessary information about
the return covariances. By the third part of the previous remark, we have to derive
information about the common distribution of the asset returns Sj1ti2/S

j1
ti1

and S
j2
ti4
/Sj2ti3

for all
I6 ∈ I. For this purpose, we may use observable market prices of suitable rainbow options.
While it is difficult to derive the full distribution and thus the exact covariances, we at
least present an approach to derive upper and lower bounds for the covariances.
We assume that the prices of forward start options with payoff functions

max

Sj1ti2 − Sj1ti1
Sj1ti1

, F

 and max

Sj2ti4 − Sj2ti3
Sj2ti3

, F

 ,
and the prices of put on max options on the asset return with payoff functionK −max

S
j1
ti2

Sj1ti1

,
Sj2ti4
Sj2ti3


+

are observable. We denote the associated option prices by Si1,i2,j1(F ), Si3,i4,j2(F ) and
PMi1,i2,i3,i4,j1,j2(K). If we assume that the prices are differentiable and calculated under a
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martingale measure Q ∈M, then we have

∂

∂F
Si1,i2,j1(F − 1) = Q

Sj1ti2
Sj1ti1

≤ F

 and ∂

∂F
Si3,i4,j2(F − 1) = Q

Sj2ti4
Sj2ti3

≤ F


as shown in Lütkebohmert & Sester [59, Sec. 2.2.1]. Proceeding analogously, we obtain

∂

∂K
PMi1,i2,i3,i4,j1,j2(K) = ∂

∂K
EQ

K −max

S
j1
ti2

Sj1ti1

,
Sj2ti4
Sj2ti3


+

= Q

max

S
j1
ti2

Sj1ti1

,
Sj2ti4
Sj2ti3

 ≤ K
 .

Now let I6 = (j1, j2, i1, . . . , i4) ∈ I be fixed, K1,K2 ∈ R+ and denote R1 := S
j1
ti2
/Sj1ti1

and
R2 := S

j2
ti4
/Sj2ti3

. In order to bound the covariance CovQ(R1, R2), we estimate the probability

Q (R1 > K1, R2 > K2) = Q (R1 > K1) +Q (R2 > K2)−Q ({R1 > K1} ∪ {R2 > K2}) .

For the last expression, we have

Q (max {R1, R2} > max{K1,K2}) ≤ Q ({R1 > K1} ∪ {R2 > K2})

≤ Q (max {R1, R2} > min{K1,K2}) .

Thus, we may define random vectors (R1, R2) and (R1, R2) by

Q(R1 > K1, R2 > K2)

:= min {max {Q (R1 > K1) +Q (R2 > K2)−Q (max {R1, R2} > min{K1,K2}) , 0} , 1} ,

Q(R1 > K1, R2 > K2)

:= min {max {Q (R1 > K1) +Q (R2 > K2)−Q (max {R1, R2} > max{K1,K2}) , 0} , 1} .

All defining probabilities are determined by observable market prices and we have

Q(R1 > K1, R2 > K2) ≤ Q(R1 > K1, R2 > K2) ≤ Q(R1 > K1, R2 > K2).

By definition, that is equivalent to (R1, R2) ≤uo (R1, R2) ≤uo (R1, R2), where ≤uo is the
upper orthant order as defined in Shaked & Shantikumar [72, Chap. 6.G]. Now applying
[72, Theorem 6.G.1 (a)], we have

EQ[R1 ·R2]− 1 ≤ CovQ(R1, R2) ≤ EQ[R1 ·R2]− 1,

as f(x, y) = x · y is the product of two non-negative increasing functions.
These are the desired bounds for the covariance. Clearly, whenever R1 = R2, i.e.

when we have in fact variances, then the bounds collapse to singletons just as derived by
Lütkebohmert & Sester [59].
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However, the third part of Remark 5.25 does not only help to bound the covariance but
also implies a characterization lemma for C(Σ, I) similar to Lemma 5.7.

Lemma 5.26. Let Q ∈M. Then the following are equivalent.

1. Q ∈ C(Σ, I).

2. For all I6 ∈ I, we have

CovQ

Sj1ti2 − Sj1ti1
Sj1ti1

,
Sj2ti4
− Sj2ti3
Sj2ti3

 = σ(I6).

3. For all αI6 ∈ R, we have

∑
I6∈I

∫
Rnd

αI6

sj1ti2
sj1ti1

·
sj2ti4
sj2ti3

− 1− σ(I6)

Q (d
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

))
= 0.

Proof. 1. ⇐⇒ 2. Holds by definition of C(Σ, I).

2.⇒ 3. Clearly, the equation in the second condition implies

∫
Rnd

αI6

sj1ti2
sj1ti1

·
sj2ti4
sj2ti3

− 1− σ(I6)

Q (d
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

))
= 0

for any αI6 ∈ R. Summing over all I6 ∈ I implies the claim.

3.⇒ 2. In order to prove the equation in the second condition for a certain I6 ∈ I, choose
αI6 = 1 and αJ6 = 0 for all J6 ∈ I \ {I6}.

This lemma implies a natural dual problem, which we introduce in the following corollary,
where we provide a strong duality result.

Corollary 5.27. Let µ1,1, . . . , µn,1, . . . , µ1,d, . . . , µn,d ∈ P((0,∞)) be such that for all
i = 1, . . . , n and all j = 1, . . . , d, we have µ1,j ≤c . . . ≤c µn,j,

∫
(0,∞) x

2µi,j(dx) < ∞ and
that there exist bi,j > 0 with supp(µi,j) ⊆ [bi,j ,∞). Assume further that C(Σ, I) 6= ∅ and
let c : Rnd → (−∞,∞] be a lower semi-continuous payoff function such that there is a
constant K ∈ R with

c
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
≥ −K

1 +
d∑
j=1

n∑
i=1

∣∣∣sjti ∣∣∣


for all
(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
∈ (0,∞)nd. Then

inf
Q∈C(Σ,I)

EQ
[
c
(
S1
t1 , . . . , S

1
tn , . . . , S

d
t1 , . . . , S

d
tn

)]
= sup

d∑
j=1

n∑
i=1
Eµi,j

[
ϕi,j(Sjti)

]
,
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where the supremum is taken over ϕi,j ∈ S such that there are hji ∈ Cb(Ri) and αI6 ∈ R
with

Ψ(ϕi,j),(hji ),(αI6 )

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
:=

d∑
j=1

n∑
i=1

ϕi,j
(
sjti

)
+

d∑
j=1

n−1∑
i=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)

+
∑
I6∈I

αI6

sj1ti2
sj1ti1

·
sj2ti4
sj2ti3

− 1− σ(I6)


≤ c

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
for all

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
∈ (0,∞)nd. Furthermore, there is a minimizer

Q∗ ∈ C(Σ, I) for the lower price bound problem in (5.13).

Remark 5.28. The proof of Corollary 5.27 goes in the exact same lines as the proofs of
Theorem 5.1 and Lütkebohmert & Sester [59, Corollary 3.2]. Therefore, we do not report
it in any detail.

However, let us stress that the additional assumptions on the marginals are necessary in
order to be able to bound χ(ϕi,j),(hji ),(αI6 ) : Rnd → R, which is defined by

χ(ϕi,j),(hji ),(αI6 )

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
:= c

(
s1
t1 , . . . , s

1
tn , . . . , s

d
t1 , . . . , s

d
tn

)
−

d∑
j=1

n−1∑
i=1

hji

(
sjt1 , . . . , s

j
ti

) (
sjti+1 − s

j
ti

)

−
∑
I6∈I

αI6

sj1ti2
sj1ti1

·
sj2ti4
sj2ti3

− 1− σ(I6)

 ,
by the sum of integrable functions as in condition (5.6) of Lemma 5.5.

Indeed, for the only part of χ(ϕi,j),(hji ),(αI6 ) that is different to χ(ϕi,j),(hji )
as defined in

the proof of Theorem 5.1, we havesj1ti2
sj1ti1

·
sj2ti4
sj2ti3

− 1− σ(I6)

 ≤
sj1ti2
bj1i1
·
sj2ti4
bj2i3
− 1− σ(I6)


≤


sj1ti2
bj1i1

2

+

sj2ti4
bj2i3

2

− 1− σ(I6)

 ,
where the latter is the sum of integrable functions, as the second moments of the marginals
do exist. ♦
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The two marginal & two asset case

Let S1 = (X1, X2) and S2 = (Y1, Y2) be two underlying asset price processes with marginals
µ1, µ2, ν1, ν2 ∈ P((0,∞)) such that µ1 ≤c µ2 and ν1 ≤c ν2 respectively. We consider a
payoff function c : R4 → R and the corresponding optimization problems infQ∈C(Σ,I) EQ[c]

and supQ∈C(Σ,I) EQ[c], where Σ =
(
σ2
X σXY

σXY σ2
Y

)
with

σXY = CovQ
(
X2 −X1
X1

· Y2 − Y1
Y1

)
, σ2

X = VarQ
(
X2 −X1
X1

)
, σ2

Y = VarQ
(
Y2 − Y1
Y1

)
,

and I = {(j1, j2, i1, . . . , i4) ∈ {1, 2}6 | j1 ≤ j2, i1 = i3 = 1, i2 = i4 = 2}. Let us characterize
the non-emptiness of C(Σ, I) and thus the well-posedness of the price bound problems.

Proposition 5.29. Suppose µ1 ≤c µ2 and ν1 ≤c ν2, i.e. M2(µ1, µ2) 6= ∅,M2(ν1, ν2) 6= ∅
andM 6= ∅, and define the functions c̃X(x1, x2) :=

(
x2
x1

)2
− 1, c̃Y (y1, y2) :=

(
y2
y1

)2
− 1 and

c̃XY (x1, x2, y1, y2) :=
(
x2
x1

y2
y1

)
− 1. Then C(Σ, I) 6= ∅ if and only if

1. σ2
X ∈ Iσ2

X
:=
[

inf
Q∈M2(µ1,µ2)

EQ[c̃X ], sup
Q∈M2(µ1,µ2)

EQ[c̃X ]
]
.

2. σ2
Y ∈ Iσ2

Y
:=
[

inf
Q∈M2(ν1,ν2)

EQ[c̃Y ], sup
Q∈M2(ν1,ν2)

EQ[c̃Y ]
]
.

3. σXY ∈ IσXY :=
[

inf
Q∈V(Σ,I)

EQ[c̃XY ], sup
Q∈V(Σ,I)

EQ[c̃XY ]
]
.

We shortly write IΣ := Iσ2
X
× Iσ2

Y
× IσXY .

Remark 5.30. Similar assertions hold for (C \ V)(Σ, I), where the first and the second
condition vanish and the third condition becomes

σXY ∈ IC\VσXY
:=
[

inf
Q∈M

EQ[c̃XY ], sup
Q∈M

EQ[c̃XY ]
]
,

and for V(Σ, I), where the third condition vanishes. ♦

Proof of Proposition 5.29. By the compactness of M2(µ1, µ2) and the lower and upper
semi-continuity of c̃X , analogously to the proof of Theorem 5.1, there are measures
Q,Q ∈M2(µ1, µ2) such that Iσ2

X
=
[
EQ[c̃X ],EQ[c̃X ]

]
. If we now assume

σ2
X ∈

[
σ2
X , σ

2
X

]
:=
[
EQ[c̃X ],EQ[c̃X ]

]
,

then there is a λ ∈ [0, 1] such that σ2
X = λσ2

X + (1 − λ)σ2
X . We also know that then

λQ+ (1− λ)Q ∈ V1(Σ, I), asM2(µ1, µ2) is convex and the convex combination is chosen
such that, by (5.15), the measure has variance σ2

X . Hence, V1(Σ, I) 6= ∅.
Conversely, if Q ∈ V1(Σ, I), then in particular Q ∈M2(µ1, µ2). Hence, EQ[c̃X ] ∈ Iσ2

X
.
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The same applies to σ2
Y such that we have V1(Σ, I) 6= ∅ if and only if the first condition

is satisfied and V2(Σ, I) 6= ∅ if and only if the second condition is satisfied.
Clearly, this means that V(Σ, I) 6= ∅ if and only if the first and the second condition

are satisfied. Hence, it remains to show that there is a measure Q ∈ V(Σ, I) such that
CovQ

(
X2
X1
, Y2
Y1

)
= σXY if and only if the third condition is satisfied.

For this purpose, denote by σXY and σXY the lower and the upper bound for σXY given
by the third condition, i.e. IσXY = [σXY , σXY ]. Then there exists a λ ∈ [0, 1] such that
σXY = λσXY + (1− λ)σXY . We now denote by Q and Q measures in V(Σ, I) that realize
σXY and σXY . Then we define the measure Q := λQ + (1 − λ)Q. If we can show that
Q ∈ V(Σ, I) and that Q realizes the desired covariance σXY , then we have Q ∈ C(Σ, I).

As for all suitable functions f : R4 → R

EQ[f(X1, X2, Y1, Y2)] = λEQ[f(X1, X2, Y1, Y2)] + (1− λ)EQ[f(X1, X2, Y1, Y2)], (5.14)

it is clear that the marginal and martingale conditions of V(Σ, I) are satisfied by Q.
While in general variances and covariances may not be expressed as a simple expected

value as in (5.14), by the martingale property we have

VarQ
(
X2 −X1
X1

)
= EQ

[(
X2
X1

)2
− 1

]
, (5.15)

VarQ
(
Y2 − Y1
Y1

)
= EQ

[(
Y2
Y1

)2
− 1

]
,

CovQ
(
X2 −X1
X1

,
Y2 − Y1
Y1

)
= EQ

[(
X2
X1
· Y2
Y1

)
− 1

]
.

Hence, Q has the correct marginal return variances and the correct return covariance and
thus Q ∈ C(Σ, I).
Conversely, let Q ∈ C(Σ, I) and denote σXY = EQ

[
X2
X1
· Y2
Y1

]
− 1. Then the subset

property C(Σ, I) ⊆ V(Σ, I) immediately implies the third condition.

Example 5.31. Let us discuss some numerical aspects. We stick to the same exotic options
and marginals as in Example 5.12. As we consider the general market case for n = d = 2,
the notation of the payoff functions simplifies as presented in Table 5.5.

Exotic option type Payoff function

Basket option cB (X1, X2, Y1, Y2) =
(

1
4 (X1 +X2 + Y1 + Y2) − 10

)+
Binary option c1 (X1, X2, Y1, Y2) = 1{X2>X1} · 1{Y2>Y1}

Asian option cA (X1, X2, Y1, Y2) = 1
4 (X2 −X1)+ · (Y2 − Y1)+

Variance option cV (X1, X2, Y1, Y2) =
(
X2−X1
X1

)2 ·
(
Y2−Y1
Y1

)2
Covariance option cC (X1, X2, Y1, Y2) =

(
X2−X1
X1

· Y2−Y1
Y1

)+
Table 5.5.: Payoff functions
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Recall that we consider the discrete marginals

µ1 = 1
3(δ8 + δ10 + δ12) ≤c

1
4(δ7 + δ9 + δ11 + δ13) = µ2,

ν1 = 1
3(δ8 + δ10 + δ12) ≤c

1
5(δ4 + δ7 + δ10 + δ13 + δ16) = ν2.

In this situation, we discuss the impact of additional information about asset return
covariances to the upper and lower price bounds. For this purpose, recall that for fixed
marginals and payoff function, we may interpret the lower price bounds as functions of the
covariance parameters, i.e.

C : IΣ → R, (σ2
X , σ

2
Y , σXY ) 7→ inf

Q∈C(Σ,I)
EQ[c],

V : IΣ → R, (σ2
X , σ

2
Y , σXY ) 7→ inf

Q∈V(Σ,I)
EQ[c],

C \ V : IΣ → R, (σ2
X , σ

2
Y , σXY ) 7→ inf

Q∈(C\V)(Σ,I)
EQ[c],

M : IΣ → R, (σ2
X , σ

2
Y , σXY ) 7→ inf

Q∈M
EQ[c],

Analogously, we may define the upper price bounds as functions of the covariance parameters.
We denote the functions by C, V , C \ V,M. We collect the associated pairs of price bounds
denoting them by C,V, C \ V,M, where clearly V is actually independent of σXY , C \ V is
independent of σ2

X and σ2
Y andM is independent of all three parameters.

As Proposition 5.29 suggests, the parameters have to lie in certain intervals in order
not to contradict the existence of a suitable pricing measure. We partition these intervals
uniformly and calculate the price bounds for all parameter combinations in the partition.
By the structure of the mappings under consideration, we are not able to present the bounds
in tables or figures depending on all parameters, as these objects are three dimensional.
Instead, for certain fixed σ2

X and σ2
Y , we present the bounds as a function of σXY .

We first state the intervals from which the input parameters may come. We have

σ2
X ∈ [0.0211, 0.0298], σ2

Y ∈ [0.1281, 0.2062], σXY ∈ [−0.0656, 0.0718].

We stress that here the bounds for σXY result from the restriction by the martingale
property only. If we assume that certain return variances are fixed, then the bounds
become tighter.
Let us now consider the basket option price function cB. In Figures 5.1a, 5.1b, 5.1c,

5.1d and 5.1e, we show the upper and lower price bounds for different return variance
combinations. We combine high, medium and low variances from the possible intervals.
In black lines, we present the martingale optimal transport bounds that we already

considered in Example 5.12. In red lines, we present the price bounds that result when
incorporating the return variances σ2

X and σ2
Y . In orange lines, we present the price bounds

that only rely on the return covariance σXY . Finally, in olive lines, we present the price
bounds that use the full information of σ2

X , σ
2
Y and σXY .
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Figure 5.1.: Price bounds for basket options.

In Figures 5.2a, 5.2b, 5.2c, 5.2d and 5.2e, we show the same price bounds in the same
variance situations for the covariance swap type payoff function cC and in Figures 5.3a,
5.3b and 5.3c, we show price bounds in the case of medium variances σ2

X = 0.0255 and
σ2
Y = 0.1671 for the binary type payoff function c1, the asian type payoff function cA and

the variance swap type payoff function cV respectively.
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Figure 5.2.: Price bounds for covariance swaps.

Analyzing the figures closely, several observations come up. First of all, the olive bounds
are obviously the tightest and full covariance information yield quite strong improvements
of the price bounds for some of the exotic options. This is the case for example for
the covariance swap and the asian option. On the contrary, almost no improvement is
observable for the basket option.
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Figure 5.3.: Price bounds for σ2
X = 0.0255, σ2

Y = 0.1671.

The fact that the olive bounds C and C collapse for extreme choices of σXY for every choice
of σ2

X and σ2
Y suggests that for any payoff function there are parameters (σ2

X , σ
2
Y , σXY )

such that C(σ2
X , σ

2
Y , σXY ) = C(σ2

X , σ
2
Y , σXY ). This observation is similar to Lütkebohmert

& Sester [59, Proposition 3.4]. We also observe that for a certain covariance σXY these
bounds touch V and V respectively.

While we are not able to formally prove the former, as no well-known structural results
apply, the latter is virtually trivial, as the measures realizing the bounds in V and V realize
a certain covariance.
Finally, we observe the convexity of C and the concavity of C at least with respect to

σXY . However, looking at higher dimensional bound surfaces suggests that these properties
hold indeed true for the bounds as functions of IΣ. Thus, again similarly to Lütkebohmert
& Sester [59, Proposition 3.6], we claim that for suitable c, the mapping C is concave and
the mapping C is convex.
Structurally, the same observations hold true for the orange bounds C \ V and C \ V,

except they touchM andM respectively.



70 Chapter 5. Duality in the general market

Analyzing the red bounds V and V , we seem to lose the property that the bounds collapse
to a unique price, as the gaps are quite large though we consider rather extreme variances
σ2
X and σ2

Y . Heuristically, this should be expected, as ultimately V(Σ, I) is just a set
of transport plans of two specific two-dimensional marginals such that for any variance
combination there is a great variety of potential pricing measures. 4



CHAPTER 6

Monotonicity and optimality

In this chapter, we consider questions concerning explicit solutions to the price bound
and hedging problems for certain classes of payoff functions. As this is rather difficult, we
restrict ourselves to the standard market case and focus on the upper price bound problem
in (4.7) and the associated super hedging problem in (4.10). We begin the chapter by
defining the so-called monotone martingale transport plans and the martingale Spence
Mirrlees condition. These definitions generalize the order preserving transport plan of
Theorem 4.8 and the Spence Mirrlees condition of Definition 4.9 to the martingale case.
They are relevant throughout this and the following chapter. In Section 6.1, we present some
results of Beiglböck & Juillet [7] about existence, uniqueness and structural properties of
monotone martingale transport plans. In Section 6.2, we discuss results of Henry-Labordère
& Touzi [38] that build up on the results of the afore mentioned section. In particular,
those are constructive procedures to find explicit solutions to both problems whenever the
marginals are continuous. We illustrate one of the procedures with an extensive example.
Finally, we point out major drawbacks of the illustrated procedure. In Section 6.3, we
provide a generalization of some of the results presented in Sections 6.1 and 6.2, namely
the optimality of the (left) monotone martingale transport plan for the upper price bound
problem in (4.7) for payoff functions that satisfy the martingale Spence Mirrlees condition
and arbitrary marginals. In Section 6.4, we further restrict ourselves to the case of discrete
marginals. In this case, we discuss the structure of the pricing and hedging problems,
improve the main result of Section 6.3 and provide an algorithm to determine the (left)
monotone martingale transport plan. Complementing this, we introduce an algorithm
to determine a solution to the hedging problem. Finally, we compare our determination
techniques to those of other researchers and illustrate the algorithms.
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Let us now directly introduce the two crucial definitions. We begin with the structural
property of martingale transport plans that guarantees optimality for the upper price
bound problem in (4.7) for a certain class of payoff functions.

Definition 6.1 ([7, Definition 1.4]). Let µ, ν ∈ P(R). A martingale transport plan
Q ∈M2(µ, ν) is called left monotone, if there is a Borel set Γ ⊆ R2 with Q((X,Y ) ∈ Γ) = 1
and such that for (x, y1), (x, y2), (x′, y′) ∈ Γ with x < x′, we have y′ /∈ (y1, y2).
Respectively, Q ∈ M2(µ, ν) is called right monotone, if there is a Borel set Γ ⊆ R2 with
Q((X,Y ) ∈ Γ) = 1 and such that for all (x, y1), (x, y2), (x′, y′) ∈ Γ with x > x′, we have
y′ /∈ (y1, y2).
The set Γ is called monotonicity set of Q and we say it is left or right monotone respectively.

x x′

y− y′ y+

Figure 6.1.: Forbidden configuration for left monotonicity.

This definition was introduced by Beiglböck & Juillet [7] and picked up by Henry-
Labordère & Touzi [38]. Both articles achieve impressive results about existence, uniqueness,
optimality and the representation of monotone martingale transport plans. We recall those
results as far as we generalize or complement them in this thesis. In order to do so, we need
the structural property of payoff functions that guarantees that left monotone martingale
transport plans are optimal for the upper price bound problem in (4.7).

Definition 6.2. A function c : R2 → R satisfies the martingale Spence Mirrlees condition,
if the partial derivative cxyy exists and satisfies cxyy > 0.

Remark 6.3. This definition goes back to Henry-Labordère & Touzi [38]. We may rephrase
the definition. A function c : R2 → R satisfies the martingale Spence Mirrlees condition, if
one of the following conditions is satisfied.

1. The function c is measurable and the mapping x 7→ c(x, y) is continuously differenti-
able for all y ∈ R and such that y 7→ cx(x, y) is strictly convex for all x ∈ R.

2. The mapping y 7→ c(x′, y)− c(x, y) is strictly convex for all x′ > x.

3. For all x′ > x, y+ > y′ > y−, the function c satisfies

c(x′,y+)−c(x,y+)
x′−x − c(x′,y′)−c(x,y′)

x′−x
y+ − y′

−
c(x′,y′)−c(x,y′)

x′−x − c(x′,y−)−c(x,y−)
x′−x

y′ − y−
> 0.
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The first alternative definition goes back to Beiglböck, Henry-Labordère & Touzi [6] and
the second definition comes from Nutz, Stebegg & Tan [65]. The third alternative is based
on our proof of Theorem 6.23. It is in particular useful in the case of discrete marginals. ♦

6.1. The first optimality results

In this section, we state the central results of Beiglböck & Juillet [7] concerning left
monotone martingale transport plans in adapted versions such that the results apply to
the upper price bound problem in (4.7).
For this purpose, let µ, ν ∈ P(R) and c : R2 → R be measurable and such that there

exist a ∈ L1(R, µ) and b ∈ L1(R, ν) with

c(x, y) ≤ a(x) + b(y), x, y ∈ R.

Then, for all π ∈ Π2(µ, ν), we have∫
R2
c(x, y)π(d(x, y)) ∈

[
−∞,

∫
R
a(x)µ(dx) +

∫
R
b(y)ν(dy)

]
.

This property is called the sufficient integrability condition. Under these conditions,
Beiglböck & Juillet [7] show the following results.

Theorem 6.4 ([7, Theorem 1.5]). Let µ, ν ∈ P(R) be such that µ ≤c ν. Then there exists
a unique left monotone martingale transport plan inM2(µ, ν). We denote it by Qlc(µ, ν).

The next corollary is an analogue to the third part of Theorem 4.10, except we may
not expect the martingale coupling Qlc(µ, ν) to be deterministic, as it has to satisfy the
martingale condition. This can only be true in the trivial case µ = ν.

Corollary 6.5 ([7, Corollary 1.6]). Let µ, ν ∈ P(R) be such that µ ≤c ν and suppose
that µ is continuous. Then there exists a Borel set S ⊆ R and two measurable functions
Td, Tu : S → R such that

1. Qlc(µ, ν) is concentrated on the graphs of Td and Tu.

2. For all x ∈ S, Td(x) ≤ x ≤ Tu(x).

3. For all x < x′ ∈ S, Tu(x) < Tu(x′) and Td(x′) /∈ (Td(x), Tu(x)).

This result is exploited by Henry-Labordère & Touzi [38], who determine the mappings
Td and Tu explicitly. We present their results in Section 6.2.
Beiglböck & Juillet [7] also show the optimality of Qlc(µ, ν) for the upper price bound

problem in (4.7) for certain types of payoff functions.

Theorem 6.6 ([7, Theorem 1.7]). Let µ, ν ∈ P(R) be such that µ ≤c ν. Assume that for
some differentiable function h : R → R, the derivative of which is strictly concave, the
function c(x, y) = h(y−x) satisfies the sufficient integrability condition. If P c2 (µ, ν) > −∞,
then Qlc(µ, ν) is the unique maximizer of the upper price bound problem in (4.7).
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In the article, another type of payoff functions is proven to have Qlc(µ, ν) as maximizer,
namely functions of the form c(x, y) = ϕ(x)ψ(y) ≥ 0, where ϕ : R→ R is non-negative and
decreasing and ψ : R→ R is non-negative and strictly concave.

We prove in Section 6.3 that there is a general class of payoff functions such that Qlc(µ, ν)
is optimal for the upper price bound problem in (4.7), which includes both types of payoff
functions introduced by Beiglböck & Juillet [7].
Let now t ∈ R and π ∈ Π2(µ, ν). Then we define the measure νπt by

νπt (B) := projy#
(
π|(−∞,t]×R

)
(B), B ∈ B(R).

Then π moves the mass of µ|(−∞,t) to νπt . A transport plan π ∈ Π2(µ, ν) is uniquely defined
by the family (νπt )t∈R. This yields an equivalent characterization of Qlc(µ, ν) ∈M2(µ, ν).

Theorem 6.7 ([7, Theorem 1.8]). For every t ∈ R, the measure νQlc(µ,ν)
t is minimal with

respect to the convex order in the family{
νQt

∣∣∣ Q ∈M2(µ, ν)
}
.

The above results can be summarized as follows.

Theorem 6.8 ([7, Theorem 1.9]). Let µ, ν ∈ P(R) be such that µ ≤c ν. Let h : R → R
be differentiable and such that h′ is strictly concave. Assume that the payoff function
c(x, y) = h(y − x) satisfies the sufficient integrability condition. Moreover, assume that
P c2 (µ, ν) > −∞ and let Q ∈M2(µ, ν). Then the following are equivalent.

1. Q is left monotone.

2. Q is optimal for the upper price bound problem in (4.7).

3. Q = Qlc(µ, ν), i.e. for all (Q′, t) ∈M2(µ, ν)× R we have νQt ≤c ν
Q′
t .

Analogous results hold for the right monotone martingale transport plan and the lower
price bound problem in (4.8). We detail the connection in Section 6.2.4.

6.2. The continuous optimality result

In this section, we state and discuss the already mentioned results of Henry-Labordère &
Touzi [38] concerning the construction of the left monotone martingale transport plan and
an associated super hedging strategy.
For this purpose, let µ, ν ∈ P(R) and define the difference function δF : R → [−1, 1],

x 7→ Fν(x)− Fµ(x). Let c : R2 → R be upper semi-continuous and satisfying the sufficient
integrability condition. Under the conditions of Corollary 6.5, Henry-Labordère & Touzi
[38] construct the left monotone martingale transport plan explicitly. They also show
that it is optimal for the upper price bound problem in (4.7) for a general class of payoff
functions. For such payoff functions, optimizers for the super hedging problem in (4.10)
are derived as well. The results are achieved under the following assumption.
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Assumption 6.9 ([38, Asm. 3.5]). Let µ, ν ∈ P(R) satisfy µ ≤c ν and let µ be continuous.

Working under this assumption, we know by Theorem 6.4 and Corollary 6.5 that there
exists a unique left monotone martingale transport plan Qlc(µ, ν) ∈ M2(µ, ν) such that
Qlc(µ, ν) is concentrated on the graphs of some measurable functions Td, Tu : S → R with
Td(x) ≤ x ≤ Tu(x), x ∈ S. For the structure of Qlc(µ, ν), we thus have

Qlc(µ, ν)(dx, dy) = µ(dx)⊗
[
q(x)δTu(x) + (1− q(x))δTd(x)

]
(dy), (6.1)

where q(x) := x−Td(x)
(Tu−Td)(x)1{(Tu−Td)(x)>0}.

In order to present the results of Henry-Labordère & Touzi [38], we have to go into
more detail than in the previous section, as the results are derived constructively. Thus, in
order to understand and correctly state the results, we have to present certain parts of the
construction itself.

Remark 6.10. Observe that by µ ≤c ν, δF increases from zero at the left boundary and to
zero at the right boundary of its support. As Fµ is continuous by Assumption 6.9, δF is
upper semi-continuous. Thus, the local suprema of δF are attained in (lµ, rµ), where lµ
and rµ are the left and the right boundary of the support of µ. Indeed, we have δF = Fν

on (−∞, lµ) and δF = Fν − 1 on (rµ,∞). Thus, δF is increasing in that area. Hence, there
can not be any local suprema. Denoting by lν and rν the left and right boundary of the
support of ν, by the convex order we have lν ≤ lµ ≤ rµ ≤ rν . ♦

Let M(δF ) denote the set of all maximizers of δF and, for each m ∈ M(δF ), write
m− := sup{x < m | δF (x) < δF (m)} and m+ := inf{x > m | δF (x) < δF (m)}. Then the
set

M0(δF ) := {m ∈M(δF ) | m = m+ and δF ≡ δF (m) on [m−,m]}

plays a crucial role in the construction. The construction works under the following
additional assumption on µ and ν.

Assumption 6.11 ([38, Asm. 3.7]). Let ν be continuous and let M0(δF ) be finite.

It may also assumed that the pair (µ, ν) is irreducible, as the construction is done on
separate irreducible components, which may be considered by Proposition 5.14. Then, by
the continuity of µ and ν, we have I = J for the domain of the irreducible pair (µ, ν).

6.2.1. Construction of the left monotone martingale transport plan

The construction relies on the representation of Qlc(µ, ν) in (6.1). As Qlc(µ, ν) ∈M2(µ, ν),
Td and Tu have to be such that Qlc(µ, ν)(X ∈ dx) = µ(dx), Qlc(µ, ν)(Y ∈ dy) = ν(dy) and
EQlc(µ,ν)[Y | X] = X hold. The first and the third condition are trivially satisfied. Hence,
the construction is done in a fashion that guarantees Qlc(µ, ν)(Y ∈ dy) = ν(dy).
In the construction we need some more notations. We denote

g(x, y) := F−1
ν (Fµ(x) + δF (y))
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for all x, y ∈ R, and for all x ∈ R, we write

γ(x) :=
∫ F−1

ν ◦Fµ(x)

−∞
ξFν(dξ)−

∫ x

−∞
ξFµ(dξ).

Now let A ∈ B(R) be such that δF is increasing on A. Then, for t ≤ m ≤ x, we define

GmA (t, x) := −
∫ m

t
[g(x, ζ)− ζ]1A(ζ)δF (dζ) +

∫ x

m
[g(ξ,m)− ξ]Fµ(dξ).

As M0(δF ) is a finite set by assumption, let us write M0(δF ) = {m0
1, . . . ,m

0
n}, where

−∞ < m0
1 < . . . < m0

n <∞. Furthermore, we define

B0 := {x ∈ R | δF is increasing in a right neighborhood of x.}

and x0 := inf B0. We have x ∈ B0, if for all ε > 0 there is an xε ∈ (x, x + ε) such that
δF (xε) > δF (x). Observe that x0 < m0

1 and δF ≡ 0 on (−∞, x0]. The construction
recursively relies on the following ingredients.

(I1) m0 ∈ {−∞} ∪M0(δF ) and A0 ⊂ B0 ∩ (−∞,m0) with δF > 0 on A0, satisfying
Gm0
A0

(−∞, ·) = γ(·) and
∫m0
−∞ 1A0φ(dδF ) =

∫m0
−∞ φ(dδF ) for all non-decreasing maps φ.

(I2) x̄0 ∈ B0 ∩ [m0,m
0
n) and t0 ∈ A0 ∪ {∞}, satisfying δF (t0) = δF (x̄0) ≥ 0 and

Gm0
A0

(t0, x̄0) = 0.

Lemma 6.12 ([38, Lemma 4.1]). We define m1 := min {M0(δF ) ∩ (x̄0,∞)} as well as
A1 := (A0 \ [t0,m0]) ∪ (x̄0,m1). Then we have the following.

1. δF > 0 on A1, Gm1
A1

(−∞, ·) = γ(·) and
∫m1
−∞ 1A1φ(dδF ) =

∫m1
−∞ φ(dδF ) for all non-

decreasing maps φ.

2. For all x ≥ m1 with δF (x) ≤ δF (m1) there exists a unique scalar tm1
A1

(x) ∈ A1 such
that Gm1

A1
(tm1
A1

(x), x) = 0.

3. The function x 7→ tm1
A1

(x) is decreasing µ-almost everywhere on [m1, x1], where we
define x1 := inf{x > m1 | g(x, tm1

A1
(x)) ≤ x}.

4. If x1 <∞, then x1 ∈ B0 ∩ [m1,m
0
n) \M0(δF ), and δF (tm1

A1
(x1)) = δF (x1) ≥ 0.

Using Lemma 6.12, the functions Td and Tu may be constructed explicitly.

Algorithm 6.13 ([38, Sec. 4.2]). We start by defining Td(x) = Tu(x) = x for all x ≤ x0

and we continue the construction of Td and Tu along the following steps.

1. Set m0 := −∞, A0 := ∅, x̄0 := x0, t0 = −∞ and notice that (I1) and (I2) are
obviously satisfied by these ingredients. We may then apply Lemma 6.12 and obtain

m1 := min[M0(δF ) ∩ (x0,∞)] = minM0(δF ) = m0
1,

A1 := (A0 \ [t0,m0]) ∪ (x0,m1) = (−∞,m1) .
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We know that for all x ≥ m1 with δF (x) ≤ δF (m1), there is a scalar tm1
A1

(x) ∈ A1

and we choose x1 := inf
{
x > m1

∣∣∣ g (x, tm1
A1

(x)
)
≤ x

}
. Further define t1 := tm1

A1
(x1).

Then define the maps Tu and Td on (x0, x1) by

Td(x) = Tu(x) = x, x0 < x ≤ m1

Td(x) = tm1
A1

(x), Tu(x) = g(x, Td(x)), m1 ≤ x < x1.

If x1 = ∞, this completes the construction and we set mj = xj = ∞ for all j > 1.
Otherwise, Lemma 6.12 guarantees that the new ingredients (m1, A1, x1, t1) satisfy
conditions (I1) and (I2) and we may continue with the next step.

i. Suppose that the maps Td and Tu are defined on (−∞, xi−1) for some suitable quadru-
ple (mi−1, Ai−1, xi−1, ti−1) satisfying conditions (I1) and (I2). Using Lemma 6.12, we
obtainmi := min[M0(δF )∩(xi−1,∞)] and Ai := (Ai−1 \ [ti−1,mi−1])∪(xi−1,mi). By
the existence of a scalar tmiAi (x) ∈ Ai, we find xi := inf

{
x > mi

∣∣∣ g (x, tmiAi (x)
)
≤ x

}
and ti := tmiAi (xi). Then define the maps Td and Tu on (xi−1, xi) by

Td(x) = Tu(x) = x, xi−1 < x ≤ mi

Td(x) = tmiAi (x), Tu(x) = g(x, Td(x)), mi ≤ x < xi.

If xi = ∞, this completes the construction and we set mj = xj = ∞ for all j > i.
Otherwise, Lemma 6.12 guarantees that the new ingredients (mi, Ai, xi, ti) satisfy
conditions (I1) and (I2) and we may continue with the next step.

As M0(δF ) is finite, the algorithm terminates after finitely many steps. The next
theorem states that this yields the desired left monotone martingale transport plan using
the probability kernel

κ∗(x, dy) := 1D(x)δ{x}(dy) + 1Dc(x)
[
q(x)δ{Tu(x)}(dy) + (1− q(x))δ{Td(x)}(dy)

]
,

where D :=
⋃
i≥1(xi−1,mi] and q(x) = x−Td(x)

(Tu−Td)(x)1{(Tu−Td)(x)>0}.

Theorem 6.14 ([38, Theorem 4.5]). Let µ, ν ∈ P(R) be such that µ ≤c ν.

1. Assume the pair (µ, ν) is irreducible with domain (I, I) and satisfies Assumptions 6.9
and 6.11. Then we have

Qlc(µ, ν)(dx,dy) = µ(dx)⊗ κ∗(x, dy).

2. Let (µk, νk)k≥0 be the decomposition of (µ, ν) into irreducible components. Consider
the decomposition Q =

∑
k≥0Qk ∈ M2(µ, ν) with Qk ∈ M2(µk, νk), k ≥ 0. Then Q

is left monotone if and only if Qk is left monotone for all k ≥ 1.

We discussed the construction of the left monotone martingale transport plan in the
case of continuous marginals, which is the solution for the upper price bound problem in
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(4.7) in the case that the payoff function satisfies the conditions of Theorem 6.6. We now
present the construction of a solution to the super hedging problem in (4.10). Thereby,
the duality of Theorem 5.1 in the standard market case is recovered. The irreducibility of
(µ, ν) is important, as this implies the existence of a solution.

6.2.2. An associated super hedging strategy

In this section, we present the construction of a triple (ϕ∗, ψ∗, h∗) ∈ D≥c2 such that∫
R
ϕ∗(x)µ(dx) +

∫
R
ψ∗(y)ν(dy) = EQlc(µ,ν) [c(X,Y )]

as provided by Henry-Labordère & Touzi [38]. Such a triple is immediately optimal for
the super hedging problem in (4.10), whenever Qlc(µ, ν) is optimal for the upper price
bound problem in (4.7), compare Definition 5.18. We only present the results and omit the
construction process. The functions h∗ and ψ∗ are given by

h′∗ (x) := cx (x, Tu (x))− cx (x, Td (x))
Tu (x)− Td (x) , x ∈ Dc,

h∗ (x) := h∗
(
T−1
d (x)

)
+ cy (x, x)− cy

(
T−1
d (x) , x

)
, x ∈ D,

ψ′∗ (x) := cy
(
T−1
u (x) , x

)
− h∗

(
T−1
u (x)

)
, x ∈ Dc,

ψ′∗ (x) := cy
(
T−1
d (x) , x

)
− h∗

(
T−1
d (x)

)
, x ∈ D.

The corresponding function ϕ∗ is given by

ϕ∗(x) := EQlc(µ,ν)[c(X,Y )− ψ∗(Y ) | X = x]

= q(x)(c(x, Tu(x))− ψ∗(Tu(x))) + (1− q(x))(c(x, Td(x))− ψ∗(Td(x))), x ∈ R.

Finally, the exact values are chosen such that the function

x 7→ c(x, Tu(x))− ψ∗(Tu(x))− [c(x, Td(x))− ψ∗(x)]− (Tu − Td)(x)h(x)

is continuous.

Theorem 6.15 ([38, Theorem 5.1]). Let µ, ν ∈ P(R) with µ ≤c ν be such that (µ, ν) is
irreducible and Assumptions 6.9 and 6.11 are satisfied. Assume further that ϕ+

∗ ∈ L1(R, µ)
and ψ+

∗ ∈ L1(R, ν). Suppose the payoff function c : R2 → R satisfies the martingale Spence
Mirrlees condition. Then:

1. We have (ϕ∗, ψ∗, h∗) ∈ D≥c2 .

2. We have

sup
Q∈M2(µ,ν)

EQ[c(X,Y )] = inf
(ϕ,ψ,h)∈D≥c2

{∫
R
ϕ(x)µ(dx) +

∫
R
ψ(y)ν(dy)

}
.
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Also, Qlc(µ, ν) is a maximizer for the left hand side and (ϕ∗, ψ∗, h∗) is a minimizer
for the right hand side. That is,∫
R

∫
R
c(x, y)κ∗(x, dy)µ(dx) = EQlc(µ,ν)[c(X,Y )] =

∫
R
ϕ∗(x)µ(dx) +

∫
R
ψ∗(y)ν(dy).

6.2.3. An exemplary construction

We now execute Algorithm 6.13 in the simplest possible situation, namely in the case of
uniform marginals. We remark that this is one of the few situations, in which the algorithm
yields analytical results for Qlc(µ, ν). In almost all other cases, numerical procedures have
to be used.

Example 6.16. We study the construction of the left monotone martingale transport plan
in the case of continuous uniform marginal distributions. In this case, we achieve explicit
results for the relevant expressions.
Therefore, let a < c < d < b be such that m := a+b

2 = c+d
2 , and let µ ∼ U(c, d) and

ν ∼ U(a, b). Then, for x ∈ R, we have

Fµ(x) = x− c
d− c

1(c,d)(x) + 1[d,∞)(x),

fµ(x) = 1
d− c

1(c,d)(x),

Fν(x) = x− a
b− a

1(a,b)(x) + 1[b,∞)(x),

fν(x) = 1
b− a

1(a,b)(x),

δF (x) = x− a
b− a

1(a,c](x) +
(
x− a
b− a

− x− c
d− c

)
1(c,d)(x) +

(
x− a
b− a

− 1
)
1[d,b),

F−1
ν (x) =


−∞, x ≤ 0

(b− a)x+ a, 0 < x < 1

∞, x ≥ 1

for the distribution, density and quantile functions that are relevant for the construction.
The distributions satisfy the necessary conditions. Indeed, µ and ν are continuous with
finite first moments and the unique maximum of δF is attained at c. In particular, there
are only finitely many maxima.
Now let us calculate Td and Tu and thereby observe that the second marginal of the

resulting martingale transport plan is indeed ν. Afterwards, using certain choices of a, b, c, d,
we deepen the understanding of left monotonicity providing an illustrative figure. Clearly,
before we may determine the left monotone martingale transport plan associated to µ and
ν, we have to show that µ ≤c ν. However, this is an easy consequence of the structure of
the measures and we do not prove it in detail.
Thus, let us now determine Td and Tu using Algorithm 6.13. For this purpose, observe

that µ is concentrated right of the maximum of δF , which is attained in c. Hence, all of
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the mass of µ is split up by Td and Tu. As the maximum is unique, we know that the
algorithm terminates after one step. We start by calculating Td. We choose

m1 = minM0(δF ) = c and A1 = (x0,m1) = (−∞, c)

such that we can disregard 1A1 in the defining equality Gm1
A1

(Td(x), x) = 0, which is thus
equivalent to ∫ c

Td(x)
[g(x, ζ)− ζ]δF (dζ) =

∫ x

c
[g(ξ, c)− ξ]Fµ(dξ) (6.2)

for a ≤ Td(x) ≤ c ≤ x ≤ d. Recall g(x, y) = F−1
ν (Fµ(x) + δF (y)).

We start by calculating the left hand side of the above equality. This yields∫ c

Td(x)

(
F−1
ν (Fµ(x) + δF (ζ))− ζ

)
δF (dζ) =

∫ c

Td(x)

(
F−1
ν

(
x− c
d− c

+ ζ − a
b− a

)
− ζ

)
δF (dζ)

= 1
b− a

∫ c

Td(x)

(
F−1
ν

(
x− c
d− c

+ ζ − a
b− a

)
− ζ

)
dζ

(�)= 1
b− a

∫ c

Td(x)

(
(b− a)

(
x− c
d− c

+ ζ − a
b− a

)
+ a− ζ

)
dζ

=
∫ c

Td(x)

x− c
d− c

dζ = (c− Td(x))x− c
d− c

,

where in the first step we use x ∈ (c, d) and in the second step we use Td(x) ≥ a. The
equality under (�) is under closer review in Remark 6.17.
The right hand side of the equality in (6.2) is rearranged similarly. Skipping some

intermediate steps, we get∫ x

c

(
F−1
ν (Fµ(ξ) + δF (c))− ξ

)
Fµ(dξ) = 1

d− c

∫ x

c

(
F−1
ν

(
ξ − c
d− c

+ c− a
b− a

)
− ξ

)
dξ

(◦)= 1
d− c

∫ x

c

((b− a)(ξ − c)
d− c

+ c− ξ
)

dξ

= 1
d− c

[
b− a
d− c

∫ x

c
(ξ − c)dξ +

∫ x

c
(c− ξ)dξ

]
= 1

2
1

d− c

[
b− a
d− c

(x− c)2 − (x− c)2
]
,

where the equality under (◦) is as well discussed in Remark 6.17.
Plugging those results into the equation in (6.2), for all x ∈ (c, d), we receive

Td(x) = (d− c)− (b− a)
2 Fµ(x) + c.

Remark 6.17. Observe that solving equation (6.2) as above, we formally assume that the
arguments, that we evaluate F−1

ν in, are in (0, 1), as then the integrals are finite.
Clearly, these arguments are positive on both sides of the equation. Indeed, for the left

hand side we have

Fµ(x) + δF (ζ) = Fµ(x)− Fµ(ζ) + Fν(ζ) ≥ Fν(ζ) > 0,
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as x > c > ζ > a. Similarly, for the right hand side we have

Fµ(ξ) + δF (c) = Fµ(ξ)− Fµ(c) + Fν(c) ≥ Fν(c) > 0,

as ξ > c. Thus, only the condition of being less than 1 may restrict the arguments.
Let x ∈ supp(µ) and c < ξ < x. Then, for the right hand side, we have

Fµ(ξ) + δF (c) = ξ − c
d− c

+ c− a
b− a

!
< 1 ⇐⇒ ξ < (d− c)

(
b− c
b− a

)
+ c.

With ξ → x we have the condition x ≤ (d− c)
(
b−c
b−a

)
+ c. As we have b−c

b−a < 1, this upper
bound is strictly less than d. Hence, the integral on the right hand side of (6.2) is infinite
for all x ∈

(
(d− c) b−cb−a + c, d

)
.

Now let a < ζ < c < x. Then, for the left hand side, we analogously have

Fµ(x) + δF (ζ) = x− c
d− c

+ ζ − a
b− a

!
< 1 ⇐⇒ ζ < (b− a) d− x

d− c
+ a.

As long as the right hand side is greater than c, no problems occur. However, if

c > (b− a) d− x
d− c

+ a ⇐⇒ x > (d− c) b− c
b− a

+ c,

then the integral on the left hand side of (6.2) is infinite. Thus, for x ∈
(
(d− c) b−cb−a + c, d

)
,

no uniquely defined scalar tm1
A1

(x) exists.
Still, the analytic results that we derived for Td(x), x < (d− c) b−cb−a + c, determine the

function correctly for the complete support of µ by simply continuing Td onto the area
where it is not properly defined by the integral equation in (6.2). Thus, this procedure
ultimately yields the left monotone martingale transport plan as desired.

However, if no closed form results may be derived, as it is the case for example for normal
or log-normal marginals, then this gives rise to severe problems. Indeed, the necessary
numerical considerations will fail in such cases. ♦

Now let us calculate the second characterizing mapping Tu. For x ∈ (c, d), we have

Tu(x) = g(x, Td(x)) = F−1
ν

(
x− c
d− c

+
(d−c)−(b−a)

2 Fµ(x) + c− a
b− a

)

= (b− a)
(
x− c
d− c

+
(d−c)−(b−a)

2 Fµ(x) + c− a
b− a

)
+ a = (d− c) + (b− a)

2 Fµ(x) + c.

Remark 6.18. Considering the argument of F−1
ν in the calculation of Tu and using the

condition that the argument should be less than 1, similar to Remark 6.17 we obtain the
additional restriction

x < 2(d− c) b− c
(d− c) + (b− a) + c,

where the right hand side is strictly less than d. As for Td, continuation of the calculated
function for such x ∈ supp(µ) that do not satisfy the above condition is meaningful. ♦
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Finally, let us calculate q(x) in order to write down the left monotone martingale
transport plan in closed form. For x ∈ (c, d), we have Tu(x) > Td(x) and thus

q(x) =
x−

(
(d−c)−(b−a)

2 Fµ(x) + c
)

(d−c)+(b−a)
2 Fµ(x) + c−

(
(d−c)−(b−a)

2 Fµ(x) + c
)

= 2(d− c)x− ((d− c)− (b− a))(x− c)− 2(d− c)c
2(d− c)(b− a)Fµ(x)

= ((d− c) + (b− a))Fµ(x)
2(b− a)Fµ(x) = 1

2

(
1 + d− c

b− a

)
∈
(1

2 , 1
]
.

Thus, we get

Qlc(µ, ν)(dx,dy) = µ(dx)⊗
(1

2

(
1 + d− c

b− a

)
δTu(x) + 1

2

(
1− d− c

b− a

)
δTd(x)

)
(dy).

Let us now check that it has indeed the correct marginals. Therefore we show that
Fν(y) = Qlc(µ, ν)(Y ≤ y). We immediately have

Qlc (µ, ν) (Y ≤ y) =
∫
R

∫ y

−∞

(
q (x) δTu(x) + (1− q (x)) δTd(x)

)
(ds)µ (dx)

= 1
d− c

∫ d

c

(
q (x)

∫ y

−∞
δTu(x) (ds) + (1− q (x))

∫ y

−∞
δTd(x) (ds)

)
dx

=: 1
d− c

∫ d

c
(q (x) I1 (x, y) + (1− q (x)) I2 (x, y)) dx =: I3 (y)

In order to compute I1(x, y), I2(x, y) and I3(y), we have to distinguish two cases.

1. Let y < c. Then I1(x, y) ≡ 0, as Tu(x) ≥ c, and I2(x, y) = 1{Td(x)≤y} = 1{x≥T−1
d

(y)},

where T−1
d (y) = 2 (y−c)(d−c)

(d−c)−(b−a) + c.

Let now a < y < c. Using the above, we receive

I3(y) = 1
d− c

(1
2

(
1− d− c

b− a

))∫ d

c
1{x≥T−1

d
(y)}dx

= (b− a)− (d− c)
2(b− a)(d− c)

[
d−max

{
c, T−1

d (y)
}]
.

Now observe that (y−c)(d−c)
(d−c)−(b−a) ≥ 0, as y − c ≤ 0 and (d− c)− (b− a) ≤ 0, such that

T−1
d (y) ≥ c. Using this and b+ a = d+ c, we have

I3(y) = (b− a)− (d− c)
2(b− a)(d− c)

[
d− c− 2 (y − c)(d− c)

(d− c)− (b− a)

]
= (b− a)− (d− c)

2(b− a) + 2(y − c)
2(b− a)

= y − a
b− a

+ (b+ a)− (d+ c)
2(b− a) = y − a

b− a
= Fν(y).

If y < a, then the marginal condition is trivially satisfied.
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2. Let y > c. Then I1(x, y) = 1{c≤x≤T−1
u (y)} and I2(x, y) = 1{Td(x)≤c} = 1{x≥c}, where

T−1
u (y) = 2 (y−c)(d−c)

(d−c)+(b−a) + c.

Let now c < y < b. Using the above, we receive

I3(y) = 1
d− c

(∫ d

c
q(x)1{c≤x≤T−1

u (y)}dx+
∫ d

c
(1− q(x))dx

)

= (d− c) + (b− a)
2(d− c)(b− a)

∫ d

c
1{x≤F−1

u (y)}dx+ (b− a)− (d− c)
2(b− a)(d− c)

∫ d

c
1dx

= (d− c) + (b− a)
2(d− c)(b− a) min

{
d− c, 2 (y − c)(d− c)

(d− c) + (b− a)

}
+ (b− a)− (d− c)

2(b− a)(d− c) (d− c)

= min
{(d− c) + (b− a)

2(b− a) ,
y − c
b− a

}
+ 1

2 −
d− c

2(b− a) .

Here, the minimum is attained by the second term as y ≤ b. Thus, we get

I3(y) = 1
2(b− a) ((b− a)− (d− c) + 2(y − c)) = y − a

b− a
= Fν(y),

where in the last step we use again b+ a = d+ c.

If b < y, then the marginal condition is trivially satisfied.

Finally, let us consider an explicit example. For this, let now −a = b = 2, −c = d = 1.
Then we have m = 0, the mappings Td and Tu are defined by

Td : [−1, 1]→ [−2,−1], x 7→ −1
2(x+ 3)

Tu : [−1, 1]→ [−1, 2], x 7→ 3
2x+ 1

2 ,

and we have q(x) ≡ 3
4 . In order to illustrate the transport plan, we provide Figure 6.2,

where we see that the derivation of Td and Tu by the presented algorithm works and yields
the left monotone martingale transport plan. Formally, the derivation of Td(x) is correct
only for x ≤ 1

2 . With the help of Figure 6.2 and the previous theoretical investigations, we
see that the continuation indeed provides the left monotone martingale transport plan. 4

-2 -1 0 1 2

0.2

0.4

0.6

Figure 6.2.: fµ (red), fν (olive) and pointwise mass transport between µ ∼ U(−1, 1) and
ν ∼ U(−2, 2) for certain points in the support of µ (orange).
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6.2.4. On connections between left and right monotonicity

We presented some properties of the left monotone martingale transport plan, such as
uniqueness and optimality for the upper price bound problem in (4.7) with respect to a
certain class of payoff functions. In order to find the optimal solution to the lower price
bound problem in (4.8) for the same class of payoff functions, we have to find the right
monotone martingale transport plan, that we denote by Qrc(µ, ν).

The roles as maximizers and minimizers of those two martingale transport plans in the
continuous marginal case exchange when choosing the opposite type of payoff function, i.e.
replacing the condition cxyy > 0 by cxyy < 0. We detail these connections by transforming
the problems, a method introduced in [38, Remark 5.2].

1. Let us assume cxyy < 0. Then the upper price bound supQ∈M2(µ,ν) EQ [c(X,Y )] is
attained by the right monotone martingale transport plan Qrc(µ, ν). Indeed, define
c̄(x, y) := c(−x,−y). Then c̄xyy > 0 and thus, there is a stochastic kernel κ∗ such
that

sup
Q∈M2(µ,ν)

EQ[c̄(X,Y )] =
∫
R

∫
R
c̄(x, y)κ∗(x, dy)µ(dx).

We define a pair of probability measures (µ̄, ν̄) by their distribution functions

Fµ̄(x) := 1− Fµ(−x) and Fν̄(x) := 1− Fν(−y).

Then we have

sup
Q∈M2(µ̄,ν̄)

EQ[c̄(X,Y )] =
∫
R

∫
R
c̄(x, y)κ̄∗(x, dy)µ̄(dx). (6.3)

for some suitable stochastic kernel κ̄∗. We now show that also

sup
Q∈M2(µ,ν)

EQ[c(X,Y )] =
∫
R

∫
R
c̄(x, y)κ̄∗(x, dy)µ̄(dx).

In order to show this, replace X by −X and Y by −Y . Then the martingale condition
remains stable and for any Q̄ ∈M2(µ̄, ν̄), we have

Q̄(X ≤ x) = Fµ̄(x) = 1− Fµ(−x) ⇐⇒ Q̄(−X ≤ x) = Fµ(x)

and analogously Q̄(−Y ≤ y) = Fν(y). That is, the random variables −X and −Y
have marginals µ and ν under Q̄ respectively. Thus,

sup
Q∈M2(µ,ν)

EQ[c(X,Y )] = sup
Q∈M2(µ̄,ν̄)

EQ[c(−X,−Y )] = sup
Q∈M2(µ̄,ν̄)

EQ[c̄(X,Y )],

from which by (6.3), we deduce the desired equality

sup
Q∈M2(µ,ν)

EQ[c(X,Y )] =
∫
R

∫
R
c̄(x, y)κ̄∗(x, dy)µ̄(dx).
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We now know that for a payoff function such that cxyy < 0, we find the maximizing
martingale transport plan inM2(µ, ν) as the maximizing one fromM2(µ̄, ν̄), when
optimizing with respect to the payoff function c̄. By the structure of µ̄ and ν̄, we see
that this plan is right monotone with respect to µ and ν.

2. Let us now assume cxyy > 0. Then the problem of finding the lower price bound is
solved by the right monotone martingale transport plan as well. As −c(x, y) again
satisfies the condition cxyy < 0, using the previous part, we observe

inf
Q∈M2(µ,ν)

EQ[(c(X,Y ))] = − sup
Q∈M2(µ,ν)

EQ [−c(X,Y )] =
∫
R

∫
R
c̄(x, y)κ̄∗(x, dy)µ̄(dx).

The results of this section yield the overview in Table 6.1.

Optimizing martingale transport plan for the problem in (4.7) (4.8)
and payoff function s.t. cxyy > 0 Qlc(µ, ν) Qrc(µ, ν)
and payoff function s.t. cxyy < 0 Qrc(µ, ν) Qlc(µ, ν)

Table 6.1.: Optimality properties of left and right monotone martingale transport plans.

6.3. The general optimality result

In this section, we generalize Theorem 6.6 regarding the class of payoff functions and
Theorem 6.15 regarding the class of marginals. For this purpose, we need some further
definitions and results from Beiglböck & Juillet [7]. The idea is the same as for c-cyclical
monotonicity in classic optimal transport. That basically is, any optimal transport plan
should specify the best possible coupling target in the support of ν for any point in the
support of µ. In the martingale case, this is rigourously formulated by the two following
definitions.

Definition 6.19 ([7, Definition 1.10]). Let α be a measure on R2 with finite first moment
in the second argument. A measure α′ on the same space is called competitor, if α′ has the
same marginals as α and it satisfies∫

R
yαx(dy) =

∫
R
yα′x(dy)

for projx#α-almost every x ∈ R, where (αx)x∈R and (α′x)x∈R are disintegrations of the
measures α and α′ with respect to projx#α, i.e. α = projx#α⊗ αx and α′ = projx#α⊗ α′x.

Definition 6.20 ([7, Definition A.1]). For a payoff function c : R2 → R, a Borel set Γ ⊂ R2

is called finitely optimal for c, if for every measure α on R2 such that supp(α) ⊆ Γ and
| supp(α)| <∞ and every competitor α′ of α, we have∫

Γ
c(x, y)α(d(x, y)) ≥

∫
Γ
c(x, y)α′(d(x, y)).
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Using these definitions, we may present the so-called variational lemma that basically
states an equivalence of the optimality of a transport plan and the finite optimality of the
associated support set.

Lemma 6.21 ([7, Lemma 1.11]). Let µ, ν ∈ P(R) be such that µ ≤c ν and let c ∈ L0(R2)
be a payoff function that satisfies the sufficient integrability condition. Let Q ∈M2(µ, ν)
be an optimal martingale transport plan leading to a finite price P c2 (µ, ν). Then there is a
Borel set Γ ⊂ R2 such that Q(Γ) = 1 and Γ is finitely optimal for c.

Lemma 6.22 ([7, Lemma A.2]). Let µ, ν ∈ P(R) be such that µ ≤c ν and let c ∈ Cb(R2).
Let Q ∈M2(µ, ν). If there is a finitely optimal set Γ ⊂ R2 for c with Q(Γ) = 1, then Q is
an optimal martingale transport plan for the upper price bound problem in (4.7).

Recall the notions of left monotonicity and the martingale Spence Mirrlees condition.
With these notions and the above definitions and results, we may now prove the connection
between the optimality of the left monotone martingale transport plan for the upper price
bound problem in (4.7) and the satisfaction of the martingale Spence Mirrlees condition
by the payoff function. In the proof, we proceed similar to the proof of [7, Theorem 6.1].

Theorem 6.23. Let µ, ν ∈ P(R) be such that µ ≤c ν. Suppose c : R2 → R is a payoff
function that satisfies the martingale Spence Mirrlees condition and the sufficient integrabi-
lity assumption. Then the left monotone martingale transport plan Qlc(µ, ν) is optimal for
the upper price bound problem in (4.7).

Proof. Let Q ∈M2(µ, ν) be a finite optimizer for P c2 (µ, ν), which exists by Corollary 5.2.
Let further Γ ⊂ R2 be a finitely optimal set for c with Q(Γ) = 1, the existence of which is
guaranteed by Lemma 6.21. We prove that Γ is a left monotone set.

In order to get a contradiction, we assume that (x, y−), (x, y+), (x′, y′) ∈ Γ are such that
they contradict the left monotonicity of Γ, i.e. x < x′ and y− < y′ < y+. If we consider a
measure α with finite support contained in Γ, then any competitor α′ of α should satisfy∫

Γ
c(x, y)α(d(x, y)) ≥

∫
Γ
c(x, y)α′(d(x, y))

by the finite optimality of Γ.
We define such a measure α on Γ by

α := λδ(x,y−) + (1− λ) δ(x,y+) + δ(x′,y′),

where λ ∈ [0, 1] is such that λy+ + (1− λ)y− = y′ , i.e. λ = y′−y−
y+−y− . A general competitor

α′ = ω1δ(x,y−) + ω2δ(x,y′) + ω3δ(x,y+) + ω′1δ(x′,y−) + ω′2δ(x′,y′) + ω′3δ(x′,y+),

which we shortly denote by α′ =
(
ω1, ω2, ω3, ω

′
1, ω
′
2, ω
′
3

)>
, has to satisfy the conditions of

Definition 6.19, which in our situation translate to the following conditions.
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1. Marginal distribution projx#α:

• Mass in x: ω1 + ω2 + ω3
!= 1,

• Mass in x′: ω′1 + ω′2 + ω′3
!= 1.

2. Marginal distribution projy#α:

• Mass in y−: ω1 + ω′1
!= λ,

• Mass in y′: ω2 + ω′2
!= 1,

• Mass in y+: ω3 + ω′3
!= 1− λ.

3. Conditional distributions αx, α′x:

• Integral equation for x : ω1y
− + ω2y

′ + ω3y
+ != λy− + (1− λ)y+ =: ȳ,

• Integral equation for x′: ω′1y− + ω′2y
′ + ω′3y

+ != y′.

These conditions yield a linear equation system with variables (ω1, ω2, ω3, ω
′
1, ω
′
2, ω
′
3),

which we may state in matrix form as

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1
y− y′ y+ 0 0 0
0 0 0 y− y′ y+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ

1
1− λ

1
1
ȳ

y′


We see that the fourth row is redundant by adding the first, second and third row and
subtracting the fifth row, and that the sixth row is redundant by adding suitable multiples
of the first, second and third row and subtracting the seventh row, where we use that
ȳ − λy− − y′ − (1− λ)y+ = −y′.

We solve the above linear equation system in order to determine the form of a competitor
a′. Clearly, this system may be solved using classic methods as follows.

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 y− y′ y+

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ

1
1− λ

1
y′


 



1 0 0 0 −1 −1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 1 y+−y−

y′−y−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1
1

1− λ
1
1



Def.λ
 



1 0 0 0 0 1
λ − 1

0 1 0 0 0 − 1
λ

0 0 1 0 0 1
0 0 0 1 0 1− 1

λ

0 0 0 0 1 1
λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ

0
1− λ

0
1
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Thus, a general competitor α′ of α has the form

α′ =



λ

0
1− λ

0
1
0


+ t ·



1
λ − 1
− 1
λ

1
1− 1

λ
1
λ

−1


=



λ

0
1− λ

0
1
0


+ s ·



1− λ
−1
λ

λ− 1
1
−λ


= α+ s ·



1− λ
−1
λ

λ− 1
1
−λ


.

We immediately see that s ≤ 0 has to hold in order to have α′ ≥ 0. For s = 0, we obtain α.
Now let us consider the integral difference∫

Γ
c(x, y)α′(d(x, y))−

∫
Γ
c(x, y)α(d(x, y)) =

∫
Γ
c(x, y)(α′ − α)(d(x, y)).

As α′ − α = s ·
(
1− λ,−1, λ, λ− 1, 1,−λ

)>
, we have

∫
Γ
c(x, y)(α′ − α)(d(x, y))

= s
[
(1− λ)c(x, y−)− c(x, y′) + λc(x, y+)− (1− λ)c(x′, y−) + c(x′, y′)− λc(x′, y+)

]
.

Thus, we have
∫

Γ c(x, y)(α′ − α)(d(x, y)) > 0 for all s < 0, if and only if

λ
[
c(x′, y+)− c(x, y+)

]
+ (1− λ)

[
c(x′, y−)− c(x, y−)

]
−
[
c(x′, y′)− c(x, y′)

]
> 0.

This condition however may be rewritten by the differentiability of the payoff function. We
obtain the equivalent notion∫ x′

x
λcx(t, y+) + (1− λ)cx(t, y−)− cx(t, y′)dt > 0,

which is satisfied as c satisfies the martingale Spence Mirrlees condition. This however is a
contradiction to the finite optimality of α. Hence, Γ is left monotone.

Remark 6.24. The main assertion of Theorem 6.23 is independently reported in Beiglböck,
Henry-Labordère & Touzi [6, Theorem 3.3]. The authors also use similar ideas as in the
proof of [7, Theorem 6.1]. Thus, their proof is similar to our proof. However, our proof is
beneficial, as it allows us to deduce a stronger result in the case of discrete marginals. ♦

6.4. Monotonicity and optimality in the discrete case

In this section, we consider the special case of discrete marginals. We improve the assertion
of Theorem 6.23, present an algorithm to determine the left monotone martingale transport
plan and an algorithm to find an optimal super hedging strategy. This complements the
methods of Henry-Labordère & Touzi [38] in the continuous case. Finally, we discuss an
extensive example in order to illustrate the results of this section.
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For this purpose, we need several further results from Beiglböck & Juillet [7]. We start
with a generalized version of the convex order of two measures.

Definition 6.25 ([7, Definition 4.3]). Two measures µ, ν ∈ Pα(R) are said to be in extended
convex order, denoted by µ ≤E ν, if for any non-negative convex function f : R→ R+ such
that the integrals exist, ∫

f(x)µ(dx) ≤
∫
f(x)ν(dx).

Let us shortly discuss this notion. Since the class of test functions is reduced, we
immediately have that µ ≤c ν implies µ ≤E ν. The converse is not true. Indeed, if µ ≤ ν,
i.e. µ(B) ≤ ν(B) for all B ∈ B(R), then µ ≤E ν. This is an easy consequence of an
algebraic induction. As µ ≤ ν may hold for measures with different masses or barycentres,
this implies that the extended convex order extends the convex order in the sense that new
relations are introduced.
However, choosing f ≡ 1, µ ≤E ν implies µ(R) ≤ ν(R). Assuming µ(R) = ν(R), the

convex and the extended convex order are equivalent. This can easily be deduced using
Proposition 4.24, as then we have

µ ≤c ν ⇒ µ ≤E ν ⇒ uµ ≤ uν ⇒ µ ≤c ν.

An alternative proof can be found after Definition 4.3 in [7].
Beiglböck & Juillet [7] also show that µ ≤E ν if and only if there exists an η ∈ Pα(R)

such that µ ≤c η and η ≤ ν. In the following, we are interested in a certain choice of
η, namely the so-called shadow. In order to formally introduce this particular measure,
assume µ, ν ∈ Pα(R) are such that µ ≤E ν. Then we denote by F νµ the set of all measures
η ∈ Pα(R) such that µ ≤c η and η ≤ ν, i.e.

F νµ := {η ∈ Pα(R) | µ ≤c η, η ≤ ν}.

All measures in F νµ have the same mass and the same barycentre as µ. Thus, it is meaningful
to search for minimal and maximal elements in the partially ordered set (F νµ ,≤c).

Lemma 6.26 ([7, Lemma 4.6]). Let µ, ν ∈ Pα(R) be such that µ ≤E ν. Then there exists
a measure Sν(µ) such that

1. Sν(µ) ≤ ν.

2. µ ≤c Sν(µ).

3. If η is another measure satisfying 1. and 2., then Sν(µ) ≤c η.

As a consequence of 3., the measure Sν(µ) is uniquely determined. Further it satisfies

3.’ If η is a measure such that η ≤ ν and µ ≤E η, then Sν(µ) ≤E η.

There also is a measure T ν(µ) that is maximal in the convex order, i.e. in the third
condition of Lemma 6.26, we have instead η ≤c T ν(µ). This may be proven similar to the
proof of Lemma 6.44.
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Definition 6.27. The uniquely defined measure Sν(µ) from Lemma 6.26 is called the
shadow (measure) of µ in ν.

As Beiglböck & Juillet [7] show, the shadow measure has several useful properties. First
of all, it is associative in the sense of the following theorem.

Theorem 6.28 ([7, Theorem 4.8]). Let γ1, γ2, ν ∈ Pα(R) be such that γ1 + γ2 ≤E ν. Then
γ2 ≤E ν − Sν(γ1) and

Sν(γ1 + γ2) = Sν(γ1) + Sν−S
ν(γ1)(γ2).

Corollary 6.29. If γ1 + γ2 ≤c ν holds in the situation of Theorem 6.28, then we even
have γ2 ≤c ν − Sν(γ1) and

ν = Sν(γ1 + γ2) = Sν(γ1) + Sν−S
ν(γ1)(γ2).

Furthermore, the shadow measure allows a general characterization of the left monotone
martingale transport plan Qlc(µ, ν).

Theorem 6.30 ([7, Theorem 4.18]). Let µ, ν ∈ P (R) and assume µ ≤c ν. Then there is a
unique probability measure Q on R2 that transports µ|(−∞,x] to Sν

(
µ|(−∞,x]

)
. That is,

projx#
(
Q|(−∞,x]×R

)
= µ|(−∞,x] and projy#

(
Q|(−∞,x]×R

)
= Sν

(
µ|(−∞,x]

)
for all x ∈ R. Q is a martingale transport plan, i.e. Q ∈ M2 (µ, ν) , and it is the left
monotone martingale transport plan, i.e. Q = Qlc (µ, ν).

In the case of a discrete marginal µ, Beiglböck & Juillet [7] also provide an abstract
description of the left monotone martingale transport plan Qlc(µ, ν) using the shadow
measures of the single atoms of µ.

Example 6.31 ([7, Example 4.20]). Let δ = αδx and δ ≤E ν. Then Sν(δ) is the restriction
of ν to a measure of the form ν ′ = (F−1

ν )#λ[s,s′] with s′ = s+ α such that B(ν ′) = x.
If µ =

∑N
j=1 δj :=

∑N
j=1 ωjδxj with x1 < . . . < xN , then

Qlc(µ, ν) =
N∑
j=1

δ̄j ⊗ Sν−νj−1(δj),

where δ̄j := δj
δj({xj}) and νj := Sν(µj) with µj :=

∑j
i=1 δi. 4

While the description of Qlc(µ, ν) provided in the example is somehow useful when the
quantile function F−1

ν is well-defined and easy to determine, the description is not practical
when the quantile function is defined ambiguously, which is the case when the marginals µ
and ν are both discrete.
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6.4.1. The discrete case

Assumption 6.32. Let µ, ν ∈ P(R) be such that µ ≤c ν and (µ, ν) is irreducible. Let µ
and ν be discrete, i.e. there are N,M ∈ N ∪ {∞} such that

µ =
N∑
j=1

ωjδxj and ν =
M∑
i=1

ϑiδyi ,

where ωj , ϑi ≥ 0, xj , yi ∈ R for all j = 1, . . . , N and all i = 1, . . . ,M ,
∑N
j=1 ωj =

∑M
i=1 ϑi = 1

and m :=
∑N
j=1 ωjxj =

∑M
i=1 ϑiyi <∞ hold.

Under this assumption, martingale transport plans Q ∈M2(µ, ν) are of the form

Q =
N∑
j=1

M∑
i=1

qj,iδ(xj ,yi),

where the following additional constraints have to be satisfied.

1. The masses of Q are non-negative, i.e. we have qj,i ≥ 0, for all j = 1, . . . , N and all
i = 1, . . . ,M .

2. The marginal distributions of Q are µ and ν, i.e. we have

M∑
i=1

qj,i = ωj , j = 1, . . . , N,

N∑
j=1

qj,i = ϑi, i = 1, . . . ,M.

This clearly implies
∑N
j=1

∑M
i=1 qj,i = 1 such that Q is indeed a probability measure.

3. The measure Q satisfies the martingale condition. We know that the martingale
condition may be characterized in different ways. Transferring the classic condition
EQ [Y | X] = X to the discrete situation, we have

M∑
i=1

qj,i
ωj
yi = xj , j = 1, . . . , N,

as qj,i
ωj

= Q((X,Y )=(xj ,yi))
Q(X=xj) is the correct conditional distribution. Rewriting this as

M∑
i=1

qj,iyi = ωjxj ⇐⇒
M∑
i=1

qj,iyi −
M∑
i=1

qj,ixj = 0 ⇐⇒
M∑
i=1

qj,i(yi − xj) = 0,

we find an alternative condition, which resembles the alternative characterization
EQ[h(X)(Y −X)] = 0 for all suitable h : R→ R.

Altogether, the upper price bound problem in (4.7) reduces to a possibly infinite dimen-
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sional linear programm in the discrete case, namely

max
N∑
j=1

M∑
i=1

qj,ic(xj , yi) :=
N∑
j=1

M∑
i=1

qj,icj,i (6.4)

s.t.
M∑
i=1

qj,i = ωj , j = 1, . . . , N,

N∑
j=1

qj,i = ϑi, i = 1, . . . ,M,

M∑
i=1

qj,i(yi − xj) = 0, j = 1, . . . , N,

qj,i ≥ 0, j = 1, . . . , N, i = 1, . . . ,M.

Formulating a discrete version of the super hedging problem in (4.10) yields the problem

min
N∑
j=1

ωjpj +
M∑
i=1

ϑiri (6.5)

s.t. pj + ri + hj(yi − xj) ≥ cj,i, j = 1, . . . , N, i = 1, . . . ,M,

pj , hj , qi ∈ R, j = 1, . . . , N, i = 1, . . . ,M.

Remark 6.33. If we assume N,M <∞, then using classic methods of linear optimization,
we may state some observations.

1. In linear optimization, the dual problem for an optimization problem of the form

max qT c such that Aq = b, q ≥ 0

is given by
min hT b such that hTA ≥ c.

It is easy to check that the upper price bound problem in (6.4) and the super hedging
problem in (6.5) indeed satisfy this connection.

2. As µ ≤c ν, by Corollary 5.2 we know that there is an admissible solution to the upper
price bound problem in (6.4). As

∑N
j=1

∑M
i=1 qj,i = 1 holds, we also know that the

maximum is finite. Thus, the upper price bound problem is admissible and solvable.
Hence, by the strong duality theorem, see for example Vanderbei [76, Theorem 5.2],
we know that there is a solution to the super hedging problem in (6.5) as well, even
without assuming irreducibility. ♦

6.4.2. The discrete optimality result

From Theorem 6.23, we know for which payoff functions the left monotone martingale
transport plan Qlc(µ, ν) is optimal for the upper price bound problem in (4.7).
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The discrete version in (6.4) is slightly different from a structural point of view, as only
the discrete points x1, . . . , xN and y1, . . . , yM are important. Thus, we may prove the
optimality criterion to be slightly more general.

Theorem 6.34. Let µ, ν ∈ P(R) satisfy Assumption 6.32. Let c : R2 → R be a payoff
function such that

c(x′,y+)−c(x,y+)
x′−x − c(x′,y′)−c(x,y′)

x′−x
y+ − y′

−
c(x′,y′)−c(x,y′)

x′−x − c(x′,y−)−c(x,y−)
x′−x

y′ − y−
> 0 (6.6)

for all x′ > x and y+ > y′ > y− with x, x′ ∈ supp(µ) and y−, y′, y+ ∈ supp(ν). Then
Qlc(µ, ν) is optimal for the discrete upper price bound problem in (6.4).

Proof. As in the proof of Theorem 6.23, we find the optimality condition

λ
[
c(x′, y+)− c(x, y+)

]
+ (1− λ)

[
c(x′, y−)− c(x, y−)

]
−
[
c(x′, y′)− c(x, y′)

]
> 0,

which is then equivalent to

λ
[
c(x′, y+)− c(x′, y′)− c(x, y+) + c(x, y′)

]
− (1− λ)

[
c(x′, y′)− c(x′, y−)− c(x, y′) + c(x, y−)

]
> 0.

If we plugin λ = y′−y−
y+−y− , multiply by y+ − y− and divide by y+ − y′ and y′ − y−, then

we obtain

[c(x′, y+)− c(x′, y′)− c(x, y+) + c(x, y′)]
y+ − y′

− [c(x′, y′)− c(x′, y−)− c(x, y′) + c(x, y−)]
y′ − y−

> 0.

Finally, dividing by x′ − x and sorting the terms suitably, we have the desired condition

c(x′,y+)−c(x,y+)
x′−x − c(x′,y′)−c(x,y′)

x′−x
y+ − y′

−
c(x′,y′)−c(x,y′)

x′−x − c(x′,y−)−c(x,y−)
x′−x

y′ − y−
> 0.

The following lemma shows that all functions that satisfy the martingale Spence Mirrlees
condition satisfy condition (6.6) as well. In this sense, condition (6.6) is indeed more
general than the martingale Spence Mirrlees condition.

Lemma 6.35. Let c : R2 → R be a function satisfying the martingale Spence Mirrlees
condition. Then (6.6) holds for all x′ > x, y+ > y′ > y−.

Proof. In the following we prove an inequality from which we may deduce the claimed
implication by dividing by (y+ − y′)(y′ − y−) and x′ − x on both sides. In order to derive
the desired inequality, we repeatedly apply the fundamental theorem of calculus, which
is possible by the differentiability assumption on c. As cxyy > 0 and s ≥ y′ ≥ u for all
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s ∈ [y′, y+] and u ∈ [y−, y′], we have

0 <
∫ x′

x

∫ y+

y′

∫ y′

y−

∫ s

u
cxyy(t, v)dvdudsdt =

∫ x′

x

∫ y+

y′

∫ y′

y−
cxy(t, s)− cxy(t, u)dudsdt

=
∫ x′

x

∫ y+

y′
cxy(t, s)(y′ − y−)− (cx(t, y′)− cx(t, y−))dsdt

=
∫ x′

x
(cx(t, y+)− cx(t, y′))(y′ − y−)− (cx(t, y′)− cx(t, y−))(y+ − y′)dt

= [c(x′, y+)− c(x, y+)− (c(x′, y′)− c(x, y′))](y′ − y−)

− [c(x′, y′)− c(x, y′)− (c(x′, y−)− c(x, y−))](y+ − y′).

Let us now introduce a discrete case analogue of the explicit construction of Qlc(µ, ν) in
Section 6.2.1. The structure of Qlc(µ, ν) in this situation is abstractly discussed in Example
6.31. We translate this abstract description to a constructive algorithm.

6.4.3. Construction of the left monotone martingale transport plan

Assumption 6.36. Let µ, ν ∈ P(R) satisfy Assumption 6.32. Additionally assume that µ
and ν satisfy the following conditions.

1. x1 < . . . < xN , y1 < . . . < yM .

2. µ 6= ν.

3. µ has at least two different atoms of positive mass.

In this section, we detail an algorithm to determine Qlc(µ, ν) whenever µ and ν satisfy
Assumption 6.36. Instead of using the notion of the shadow as in Example 6.31, we
proceed intuitively. However, to prove the correctness of the algorithm, we prove that the
construction indeed yields the desired shadow measure. In order to clarify the connection
to the discrete upper price bound problem in (6.4), we denote the mass of the atom (xj , yi)
under Qlc(µ, ν), i.e. the mass transported from xj to yi, by qj,i.

Remark 6.37. Let us shortly discuss the additional properties of Assumption 6.36. The
first property is necessary to be able to work with left monotonicity, as this depends on the
order of the atoms. The two further conditions simplify notation and formalisms. The two
special cases ruled out yield formal difficulties in the algorithm though they are trivial to
handle. Indeed, if the second condition is violated, then the unique martingale transport
plan is the identity transport µ⊗ δid(x)(dx, dy). If the third condition is violated, then the
single atom µ = ωδx is trivially transported to the atoms of ν by just splitting the mass
properly. ♦

Let us now develop an intuition on how to proceed in a constructive algorithm. It is
natural to couple the single atoms ωjδxj of µ stepwise and one after another with suitable
measures ρj ≤ ν in order to determine a transport plan. As we construct the left monotone
martingale transport plan, this approach has to comply with some conditions.
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1. The marginal distributions of the coupling have to be µ and ν. As we couple the
atoms of µ stepwise and one after another, it is obvious that µ results as a marginal.
To ensure that ν results as a marginal, the measures ρj , j = 1, . . . , N , have to satisfy∑N
j=1 ρj = ν. This is satisfied by coupling the atoms ωjδxj of µ with suitable measures

ρj ≤ ν −
∑j−1
i=1 ρi.

2. The coupling has to satisfy the martingale condition. As µ ≤c ν, a martingale
transport plan does exist. Starting by coupling an arbitrary atom ωjδxj of µ with
some measure ρj ≤ ν, two conditions have to be satisfied not to contradict the
martingale property.

First, B(ρj) = xj is mandatory, as this is the martingale condition for the measure ρj .
However, as ρj(R) = ωj naturally holds, we may also require ωjδxj ≤c ρj , implying
both properties. Secondly, µ− ωjδxj ≤c ν − ρj is necessary to ensure the existence of
a martingale transport plan between the residual measures.

Hence, coupling all atoms of µ ordered by j1, . . . , jN should admit

ωjiδxji ≤c ρji

for all i = 1, . . . , N . Denoting µ(k) = µ−
∑k
i=1 ωjiδxji and ν

(k) = ν −
∑k
i=1 ρji for all

k = 0, . . . , N , it should also admit

µ(k) ≤c ν(k).

This demand reminds us of Corollary 6.29. Indeed, the corollary yields the desired
convex orders, whenever we can show that, for all i = 1, . . . , N , we have

ρji = Sν
(i−1) (

ωjiδxji

)
.

3. The coupling has to be left monotone. As the monotonicity is a property that relies
on the order of the atoms, it is natural to couple the atoms in a certain order such
that no contradictions are introduced.

Assume we couple the atom ωjδxj of µ first. Then the structure of left monotonicity
yields conditions for x1, . . . , xj−1 and for xj+1, . . . , xN respectively. Indeed, for all
i = 1, . . . , j − 1 and all y ∈ supp(ρj), we have to satisfy

y /∈ conv(supp(ρi))◦.

Analogously, for all i = j + 1, . . . , N and all y ∈ supp(ρi), we have to satisfy

y /∈ conv(supp(ρj))◦.

If in any step any of the above conditions is violated, this is a contradiction to the
left monotonicity of the constructed transport plan.
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As it is easier to control only one of the conditions, it seems useful to start the
coupling with either the smallest atom x1 or, if N <∞, the largest atom xN and to
proceed in either increasing or decreasing order. As we shall see later, starting with
the largest atom xN , the procedure may fail. Thus, we start with the smallest atom
x1 and proceed in increasing order. Then we have to ensure that ν(k) = ν −

∑k
j=1 ρj

has no mass between any atoms of ρk, i.e. it is crucial that, for all k = 0, . . . , N − 1,
we have

supp
(
ν(k)

)
∩ (conv(supp(ρk)))◦ = ∅.

As motivated, the algorithm describes detailed how to couple the smallest atom ω1δx1

of µ with some measure ρ1 ≤ ν such that the expected relations as discussed above
are satisfied. Iteratively applying this coupling procedure yields sequences (ρ1, . . . , ρN ),
(µ(0), . . . , µ(N)) and (ν(0), . . . , ν(N)) of measures such that µ(k) ≤c ν(k) for all k = 0, . . . , N ,
µ(N) = ν(N) = 0 and ρN = ν(N−1), as in the N -th step there only remains the coupling
of one single atom ωNδxN , which has to be coupled with the remaining residual measure
ν(N−1) as discussed in Remark 6.37. The sequences (ω1δx1 , . . . , ωNδxN ) and (ρ1, . . . , ρN )
then determine Qlc(µ, ν).
The iterative construction immediately guarantees the marginal and martingale con-

ditions. The left monotonicity is also directly implied by the iteration procedure. After
presenting the algorithm, it only remains to prove that the iteration may be continued
after each step. As announced in the intuition, we do this using Corollary 6.29.

However, before we provide the algorithm formally, we introduce two auxiliary lemmata.

Lemma 6.38. Let µ, ν ∈ P(R) satisfy Assumption 6.36 and suppose x1 ∈ supp(ν), say
x1 = y` for some ` ∈ {1, . . . ,M}.

1. Then (x1, y`) is an atom of Qlc(µ, ν).

2. Further suppose ` = 1. Then ω1 ≤ ϑ1.

Proof. 1. In order to get a contradiction, assume that x1 is not coupled with y` under
Qlc(µ, ν). Then there are y−, y+ ∈ supp(ν) with y− < y` < y+ and such that x1 is
coupled with y− and y+. Also, there is some x′ ∈ supp(µ) with x′ > x1 and such
that x′ is coupled with y`. This contradicts the left monotonicity.

2. In order to get a contradiction, assume that ω1 > ϑ1. After coupling x1 with y1 there
is mass of at least ω1 − ϑ1 left in x1. This has then to be coupled with some atoms
from supp(ν) \ {y1}. As yi > x1 for all i = 2, . . . ,M , this contradicts the martingale
property.

Lemma 6.39. Let µ, ν ∈ P(R) satisfy Assumption 6.36 and suppose y` < x1 < y`+1 for
some ` ∈ {1, . . . ,M − 1}. Then (x1, y`) and (x1, y`+1) are atoms of Qlc(µ, ν).

Proof. In order to get a contradiction, assume without loss of generality that x1 is not
coupled with y`+1. Then there is a y+ ∈ supp(ν) with y+ > y`+1 and such that x1 is
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coupled with at least y` and y+. Also, there is an x′ ∈ supp(µ) with x′ > x1 and such that
x′ is coupled with y`+1. This contradicts the left monotonicity.

Algorithm 6.40. Let µ, ν ∈ P (R) satisfy Assumption 6.36 and let x1 ∈ supp (µ) be the
smallest atom of µ. The atom x1 has mass ω1 and we denote δ := ω1δx1 . We distinguish
two cases.

1. x1 ∈ supp (ν) .

Then there is an ` ∈ {1, . . . ,M} with x1 = y`. By the first part of Lemma 6.38, x1

has to be coupled with y`.

1.1. ` = 1.

By the second part of Lemma 6.38, we have ω1 ≤ ϑ1. We define q1,1 := ω1,
ρ1 := q1,1δy1 ,

µ(1) :=
N∑
j=2

ωjδxj and ν(1) := ν − ρ1.

By coupling δ with ρ1, the total mass ω1 of x1 is transported to ν and we have
µ(1) ≤c ν(1). We may thus apply the iteration step to these measures for the
smallest atom x2 of µ(1).

1.2. ` = 2, . . . ,M − 1.

We have y`−1 < x1 < y`+1.

1.2.1. ω1 ≤ ϑ`.

As in 1.1, we define q1,` := ω1, ρ1 := q1,`δy` ,

µ(1) :=
N∑
j=2

ωjδxj and ν(1) := ν − ρ1.

By coupling δ with ρ1, the total mass ω1 of x1 is transported to ν and we
have µ(1) ≤c ν(1). We may thus apply the iteration step to these measures
for the smallest atom x2 of µ(1).

1.2.2. ω1 > ϑ`.

We define q1,` := ϑ` and ρ′1 := q1,`δy` . That is, we do not yet transport
the total mass ω1 of x1 to ν. Hence, we couple x1 with further atoms
of ν. By Lemma 6.39, we have to couple with y`−1 and y`+1 first. As
y`−1 < x1 < y`+1, there are numbers q′1,`−1, q

′
1,`+1 ≥ 0 such that

q′1,`−1 + q′1,`+1 = ω1 − ρ′1 (R) ,

q′1,`−1y`−1 + q′1,`+1y`+1 + ρ′1 (R)B
(
ρ′1
)

= ω1x1.

Considering q′1,`−1 and q′1,`+1, four cases may appear.
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1.2.2.1. q′1,`−1 > ϑ`−1 and q′1,`+1 > ϑ`+1. Proceed as in 2.1.[[`− 1], [`+ 1]].

1.2.2.2. q′1,`−1 > ϑ`−1 and q′1,`+1 ≤ ϑ`+1. Proceed as in 2.2.[[`− 1], [`+ 1]].

1.2.2.3. q′1,`−1 ≤ ϑ`−1 and q′1,`+1 > ϑ`+1. Proceed as in 2.3.[[`− 1], [`+ 1]].

1.2.2.4. q′1,`−1 ≤ ϑ`−1 and q′1,`+1 ≤ ϑ`+1. Proceed as in 2.4.[[`− 1], [`+ 1]].

1.3. ` = M.

Then x1 = yM , which is possible only if N = M = 1 and ω1 = ϑM . However,
that is µ = ν, a contradiction to Assumption 6.36.

2. x1 /∈ supp (ν) .

Then there is an ` ∈ {1, . . . ,M − 1} such that y` < x1 < yl+1. Thus, there are
numbers q′1,`, q′1,`+1 ≥ 0 such that

q′1,` + q′1,`+1 = ω1,

q′1,`y` + q′1,`+1y`+1 = ω1x1.

Considering q′1` and q′1`+1, four cases may appear.

2.1. [[`], [`+ 1]]: q′1,[`] > ϑ[`] and q′1,[`+1] > ϑ[`+1].

Then it is not possible to (additionally) couple x1 with only y[`] and y[`+1]. Thus,
we define q1,[`] := ϑ[`] and q1,[`+1] := ϑ[`+1] as well as

ρ′1 := ρ′1 + q1,[`]δy[`] + q1,[`+1]δy[`+1] .

That is, we do not yet transport the total mass ω1 of x1 to ν. Hence, the
remaining mass has to be coupled with y[`]−1 and y[`+1]+1. As y[`]−1 < x1 <

y[`+1]+1, there are numbers q′1,[`]−1, q
′
1,[`+1]+1 ≥ 0 such that

q′1,[`]−1 + q′1,[`+1]+1 = ω1 − ρ′1 (R) ,

q′1,[`]−1y[`]−1 + q′1,[`+1]+1y[`+1]+1 + ρ′1 (R)B
(
ρ′1
)

= ω1x1.

Considering q′1,[`]−1 and q′1,[`+1]+1, four cases may appear.

2.1.1. q′1,[`]−1 > ϑ[`]−1 and q′1,[`+1]+1 > ϑ[`+1]+1. Proceed as in 2.1.[[`− 1], [`+ 2]].

2.1.2. q′1,[`]−1 > ϑ[`]−1 and q′1,[`+1]+1 ≤ ϑ[`+1]+1. Proceed as in 2.2.[[`− 1], [`+ 2]].

2.1.3. q′1,[`]−1 ≤ ϑ[`]−1 and q′1,[`+1]+1 > ϑ[`+1]+1. Proceed as in 2.3.[[`− 1], [`+ 2]].

2.1.4. q′1,[`]−1 ≤ ϑ[`]−1 and q′1,[`+1]+1 ≤ ϑ[`+1]+1. Proceed as in 2.4.[[`− 1], [`+ 2]].

2.2. [[`], [`+ 1]]: q′1,[`] > ϑ[`] and q′1,[`+1] ≤ ϑ[`+1].

Then it is not possible to (additionally) couple x1 with only y[`] and y[`+1]. Thus,
we define q1,[`] := ϑ[`] and ρ′1 := ρ′1 + ϑ1[`]δy[`] . That is, we do not yet transport
the total mass ω1 of x1 to ν. Hence, the remaining mass has to be coupled with
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y[`]−1 and y[`+1]. As y[`]−1 < x1 < y[`+1], there are numbers q′1,[`]−1, q
′
1,[`+1] ≥ 0

such that
q′1,[`]−1 + q′1,[`+1] = ω1 − ρ′1 (R) ,

q′1,[`]−1y[`]−1 + q1,[`+1]y
′
[`+1] + ρ′1 (R)B

(
ρ′1
)

= ω1x1.

Considering q′1,[`]−1 and q′1,[`+1], four cases may appear.

2.2.1. q′1,[`]−1 > ϑ[`]−1 and q′1,[`+1] > ϑ[`+1]. Proceed as in 2.1.[[`− 1], [`+ 1]].

2.2.2. q′1,[`]−1 > ϑ[`]−1 and q′1,[`+1] ≤ ϑ[`+1]. Proceed as in 2.2.[[`− 1], [`+ 1]].

2.2.3. q′1,[`]−1 ≤ ϑ[`]−1 and q′1,[`+1] > ϑ[`+1]. Proceed as in 2.3.[[`− 1], [`+ 1]].

2.2.4. q′1,[`]−1 ≤ ϑ[`]−1 and q′1,[`+1] ≤ ϑ[`+1]. Proceed as in 2.4.[[`− 1], [`+ 1]].

2.3. [[`], [`+ 1]]: q′1,[`] ≤ ϑ[`] and q′1,[`+1] > ϑ[`+1].

Then it is not possible to (additionally) couple x1 with only y[`] and y[`+1].
Thus, we define q1,[`+1] := ϑ[`+1] and ρ′1 := ρ′1 + ϑ1[`+1]δy[`+1] . That is, we do not
yet transport the total mass ω1 of x1 to ν. Hence, the remaining mass has to
be coupled with y[`] and y[`+1]+1. As y[`] < x1 < y[`+1]+1, there are numbers
q′1,[`], q

′
1,[`+1]+1 ≥ 0 such that

q′1,[`] + q′1,[`+1]+1 = ω1 − ρ′1 (R) ,

q′1,[`]y[`] + q′1,[`+1]+1y[`+1]+1 + ρ′1 (R)B
(
ρ′1
)

= ω1x1.

Considering q′1,[`] and q
′
1,[`+1]+1, four cases may appear.

2.3.1. q′1,[`] > ϑ[`] and q′1,[`+1]+1 > ϑ[`+1]+1. Proceed as in 2.1.[[`], [`+ 2]].

2.3.2. q′1,[`] > ϑ[`] and q′1,[`+1]+1 ≤ ϑ[`+1]+1. Proceed as in 2.2.[[`], [`+ 2]].

2.3.3. q′1,[`] ≤ ϑ[`] and q′1,[`+1]+1 > ϑ[`+1]+1. Proceed as in 2.3.[[`], [`+ 2]].

2.3.4. q′1,[`] ≤ ϑ[`] and q′1,[`+1]+1 ≤ ϑ[`+1]+1. Proceed as in 2.4.[[`], [`+ 2]].

2.4. [[`], [`+ 1]] : q′1,[`] ≤ ϑ[`] and q′1,[`+1] ≤ ϑ[`+1].

We define q1,[`] := q′1,[`] and q1,[`+1] := q′1,[`+1] as well as

ρ1 := ρ′1 + q1,[`]δy[`] + q1,[`+1]δy[`+1] .

Further we define

µ(1) :=
N∑
j=2

ωjδxj and ν(1) := ν − ρ1.

By coupling δ with ρ1, the total mass ω1 of x1 is transported to ν and we have
µ(1) ≤c ν(1). Hence, we may apply the iteration step to these measures for
smallest atom x2 of µ(1).
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Let us now show that Corollary 6.29 applies in the cases 1.1, 1.2 and 2.4 in the sense
that indeed µ(1) ≤c ν(1) holds. As this is only useful, if we ensure that in case 2, case 2.4 is
reached somehow, we begin by showing that.

Lemma 6.41. In Algorithm 6.40, if x1 /∈ supp(ν) or x1 = y` ∈ supp(ν) such that ω1 > ϑ`,
then we reach case 2.4 after a finite number of recursive steps through cases 2.1, 2.2 and
2.3 for all µ, ν ∈ P(R) that satisfy Assumption 6.36.

Proof. By assumption, x1 is the smallest of at least two atoms of µ. Thus, the total mass
ω1 < µ(R) of x1 is coupled with a set of subsequent atoms from the countably many atoms
of ν, say with {yn, . . . , ym}. The algorithm guarantees that the masses ϑn+1, . . . , ϑm−1 are
used up entirely. In particular, after the coupling there is no remaining mass in (yn, ym)
and we have ω1 ≤

∑m
j=n ϑj . We distinguish two cases.

1. m <∞. Then x1 is coupled with finitely many atoms. Hence, we clearly reach case
2.4 after a finite number of iterated applications of the cases 2.1, 2.2 and 2.3, as in
each of this cases the mass of at least one of the atoms in {yn, . . . , ym} is used up.

2. m =∞. Then x1 is coupled with infinitely many atoms. However, this contradicts
the martingale and the left monotonicity properties. Indeed, only the atoms y1, . . . , yn

remain to be coupled with some atom x2 of µ−ω1δx1 . By assumption we have x2 > x1

and by construction we have x1 > yn. Thus, x2 is greater than the greatest atom
remaining in ν with which it could possibly be coupled. Thus m =∞ is possible only
if x1 is the last remaining atom of µ. This however is ruled out by Assumption 6.36.

We conclude that we do reach case 2.4 after a finite number of case applications.

In order to prove that Corollary 6.29 applies and implies µ(1) ≤c ν(1) in all relevant cases,
we show that ρ1 = Sν(δ), where in analogy to the algorithm we now write

ρ1 = q1,nδyn +
m−1∑
j=n+1

ϑjδyj + q1,mδym .

Lemma 6.42. Applying Algorithm 6.40, we have ρ1 = Sν(δ).

Proof. 1. By construction, we have ρ1 ≤ ν.

2. As δ is an atom, we have δ ≤c η for all η with the same mass and barycentre. By
construction, ρ1 satisfies this property.

3. Let η be a measure with δ ≤c η and η ≤ ν. Then η =
∑M
j=1 γjδyj , where 0 ≤ γj ≤ ϑj ,

j = 1, . . . ,M . By construction, we have ρ1 = q1,nδyn +
∑m−1
j=n+1 ϑjδyj + q1,mδym .

Let us now show that ρ1 ≤c η. For this purpose, we write

ρ1 = ρ1 − (ρ1 ∧ η) + (ρ1 ∧ η) =: ρ′1 + (ρ1 ∧ η),

η = η − (ρ1 ∧ η) + (ρ1 ∧ η) =: η′ + (ρ1 ∧ η).
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Now it is sufficient to show that ρ′1 ≤c η′, as adding ρ1∧η does not change the convex
order. Let us investigate ρ1 ∧ η. By construction, ρ1 is concentrated on [yn, ym] and
we also have ρ1 = ν on [yn+1, ym−1]. Thus,

(ρ1 ∧ η) =

η, on (yn, ym)

ρ1, on (−∞, yn) ∪ (ym,∞).

Concerning yn and ym we have to consider several cases.

3.1. ρ1 ≥ η on {yn, ym}. Then ρ1 ∧ η = η on {yn, ym} and thus

ρ′1 = ρ1 − (ρ1 ∧ η) =

ρ1 − η, on [yn, ym]

0, on [yn, ym]c,

η′ = η − (ρ1 ∧ η) =

0, on [yn, ym]

η − ρ1, on [yn, ym]c.

Now let f : R→ R be a convex function and g : R→ R the linear function with
f(yn) = g(yn) and f(ym) = g(ym) as illustrated in Figure 6.3.

yn ym

Figure 6.3.: A convex function (solid) and the intersecting linear function (dashed).

Then f ≤ g on [yn, ym] = supp(ρ′1) and f ≥ g on [yn, ym]c = supp(η′). Hence,∫
R
f(y)ρ′1(dy) ≤

∫
R
g(y)ρ′1(dy) =

∫
R
g(y)η′(dy) ≤

∫
R
f(y)η′(dy),

where in the equality we use that ρ1 and η, and thus ρ′1 and η′ have the same
mass and the same barycentre, and that g is a linear function. Hence, ρ′1 ≤c η′.

3.2. ρ1 ≥ η in yn and ρ1 ≤ η in ym. Then ρ1 ∧ η = η in yn and ρ1 ∧ η = ρ1 in ym.
The argumentation is done replacing ym by ym−1 in 3.1.

3.3. ρ1 ≤ η in yn and ρ1 ≥ η in ym. Then ρ1 ∧ η = ρ1 in yn and ρ1 ∧ η = η in ym.
The argumentation is done replacing yn by yn+1 in 3.1.

3.4. ρ1 ≤ η on {yn, ym}. Then ρ1 ∧ η = ρ1 on {yn, ym} The argumentation is done
replacing yn by yn+1 and ym by ym−1 in 3.1.
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Remark 6.43. 1. Based on Example 6.31 and Algorithm 6.40, in the discrete marginal
case, we now know how to choose s in Sν(δ) = (F−1

ν )#λ[s,s′] with s′ = s + ω1.
Obviously, Sν(δ) equals ν in between the quantiles s and s+ ω1 such that we have to
choose

s =
n∑
j=1

ϑj − q1,n.

Analogously, we get the alternative representation s′ =
∑m−1
j=1 ϑj + q1,m.

Similarly, the algorithm gives an intuition how the shadow Sν(δ) = (F−1
ν )#λ[s,s′]

looks like when ν is continuous. It is the measure that we receive by moving the
correct mass along the distribution function of ν until the correct barycentre results.
That is,

Fν(s′)− Fν(s) = ω1 and
∫ s′

s
xFν(dx) = x1.

2. We could expect that we also obtain the left monotone martingale transport plan,
when we proceed the other way around, i.e. when we start with the greatest atom
of µ and iteratively determine the greatest measure in convex order, Tν(δ), for each
atom δ. However, this is not the case as we see in the following example.

Consider the discrete probability measures

µ = 1
6δ1 + 1

2δ3 + 1
3δ6 and ν = 1

15δ−2 + 1
2δ2 + 1

6δ4 + 4
15δ8.

They satisfy µ ≤c ν, as we are able to construct a martingale transport plan between
the two measures. Let us try to determine the left monotone martingale transport
plan using T ν(·). Obviously, we have T ν(1

3δ6) = 1
15δ−2 + 4

15δ8. Then, using the
algorithm in consideration, we get

µ(1) := µ− 1
3δ6 = 1

6δ1 + 1
2δ3 and ν(1) := ν − T ν(δ6) = 1

2δ2 + 1
6δ4.

For those measure we immediately have µ(1) �c ν(1), as lµ(1) < lν(1) . Hence, there is
no martingale transport plan between those two measures and we are in particular
not able to determine T ν−T ν( 1

3 δ6)
(

1
2δ3
)
.

If we instead apply Algorithm 6.40 to the measures µ and ν, then we obtain

Sν
(1

6δ1

)
= 1

24δ−2 + 1
8δ2,

Sν−S
ν( 1

6 δ1)
(1

2δ3

)
= 11

36δ2 + 1
6δ4 + 1

36δ8,

and finally

Sν−S
ν( 1

6 δ1)−Sν−S
ν ( 1

6 δ1)( 1
2 δ3)

(1
3δ6

)
= 1

40δ−2 + 5
72δ2 + 43

180δ8.

This indeed determines the left monotone martingale transport plan. ♦
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In order to overcome this drawback of T ν(·), we now consider measures γ1, γ2, ν ∈ Pα(R)
such that γ1 + γ2 ≤c ν and the set

F ν,≤cγ1+γ2
:= {η ∈ Pα(R) | γ1 ≤c η, η ≤ ν and γ2 ≤c ν − η}.

It is clear that Sν(γ1) ∈ F ν,≤cγ1+γ2 holds and that Sν(γ1) is the minimal element with respect
to the convex order in F ν,≤cγ1+γ2 . Indeed, this follows from Lemma 6.26. Now let us consider
the maximal element with respect to the convex order in F ν,≤cγ1+γ2 .

Lemma 6.44. Let γ1, γ2, ν ∈ Pα(R) with γ1 + γ2 ≤c ν. Then there is a measure Cν(γ1)
such that

1. Cν(γ1) ≤ ν,

2. γ1 ≤c Cν(γ1),

3. γ2 ≤c ν − Cν(γ1),

4. If η is another measure with the above properties, then η ≤c Cν(γ1).

Proof. The proof goes essentially as the proof of [7, Lemma 4.6]. Thus, we translate the
problem in the language of potential functions. We aim to find a suitable convex function
h : R→ R+ that is the potential function of Cν(γ1). In order to understand the conditions
for a function to be suitable, we translate the first, the second and the third condition of
the lemma. Here, we write µ = γ1 + γ2 and denote by k1 = γ1(R) the mass of γ1 and by

m1 = 1
k1

∫
R
xγ1(dx)

the barycentre of γ1. We further denote by k2 = ν(R)−γ2(R) = µ(R)−γ2(R) = γ1(R) = k1

the mass of ν − γ2 and by

m2 = 1
k2

∫
R
x(ν − γ2)(dx) = 1

k1

(∫
R
xν(dx)−

∫
R
xγ2(dx)

)
= 1
k1

(∫
R
xµ(dx)−

∫
R
xγ2(dx)

)
= 1
k1

∫
R
xγ1(dx) = m1

the barycentre of ν − γ2, where in the above calculations we use µ ≤c ν. By Propositions
4.20 and 4.21, the translations of the three defining properties are the following.

1. uν − h is convex.

2. uγ1 ≤ h and lim
−x→∞

h(x)− k1|x−m1| = 0 = lim
x→∞

h(x)− k1|x−m1|.

3. uγ2 ≤ uν − h, i.e h ≤ uν − uγ2 .

We remark that the second part of the second condition in connection with the convexity
already guarantees that h is indeed a potential function, see Proposition 4.20. Thus, the
transformation in the third condition is unproblematic. Furthermore, we remark that in
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the third condition we omitted lim
−x→∞

h(x)− k2|x−m2| = 0 = lim
−x→∞

h(x)− k2|x−m2|, as
this is implied by the second part of the second condition and the previous calculations.
Now we define the set of all relevant functions

UF :=
{
h : R→ R+ | h is convex and satisfies conditions 1.− 3.

}
The set UF contains all functions that could be the potential function of Cν(γ1). The
actual potential function h̃ has to satisfy h̃ ≥ h for all h ∈ UF by the fourth condition.
By the existence of Sν(γ1) and Corollary 6.29, we know that UF 6= ∅. Thus, we define

h̃(x) := sup
h∈UF

h(x), x ∈ R.

The function h̃ is the potential function of some measure, as it satisfies the conditions of
Proposition 4.20. Furthermore, it satisfies the first, the second and the third condition
and is by construction the greatest such function. The desired measure Cν(γ1) now is the
unique measure ρ ∈ Pα(R) such that uρ ≡ h̃.

Remark 6.45. By the additional defining property of Cν(·) compared to Sν(·) and T ν(·),
which basically ensures the validity of an analogue to Corollary 6.29, it is possible to
introduce an abstract procedure to determine the left monotone martingale transport plan
Qlc(µ, ν). Using the measure Cν(·), we get it as follows.
For µ =

∑N
j=1 δj =

∑N
j=1 ωjδxj with x1 < . . . < xN , we have

Qlc(µ, ν) =
N−1∑
j=0

δ̄N−j ⊗ CνN−j (δN−j),

where δ̄N−j := δN−j
δN−j({xN−j}) , νN := ν, and νj := νj+1 − Cνj+1(δj+1), j = 0, . . . , N − 1.

However, a counterpart to Algorithm 6.40 is hard to provide, as the determination of
the measure Cν(·) is difficult. ♦

Remark 6.46. Independently of our work, Hobson & Norgilas [48] also considered the
problem of determining the left monotone martingale transport plan Qlc(µ, ν). The results
are similar to those of Beiglböck & Juillet [7] and Henry-Labordère & Touzi [38] in the
sense that two mappings are defined and constructed that fully characterize Qlc(µ, ν). In
the case of a continuous marginal µ, the mappings provided by Hobson & Norgilas [48]
and those provided of Henry-Labordère & Touzi [38] are in a one-to-one connection.

However, differently to Henry-Labordère & Touzi [38] and similar to our work, Hobson &
Norgilas [48] provide a procedure to determine Qlc(µ, ν) in the presence of atoms. Indeed,
whenever µ is a discrete measure the procedure yields the desired martingale transport
plan Qlc(µ, ν) in an algorithmic fashion and independently of the structure of ν. For
non-discrete µ, the determination of Qlc(µ, ν) has to be done by approximation.
Though the work of Hobson & Norgilas [48] covers all possible cases, we suggest to

prefer our approach and that of Henry-Labordère & Touzi [38] in the purely discrete and
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purely continuous cases respectively, as even the algorithmic part of the general procedure
is highly non-intuitive and complicated to implement and execute. We combine the three
complementary approaches altogether in the following example. ♦

Example 6.47 (Construction of Qlc(µ, ν) in the case of mixed marginals). We completely
presented techniques to determine the left monotone martingale transport plan in the cases
of purely discrete and purely continuous marginals. Also, we remarked that there is a
generally functioning approach that is rather difficult to apply.

Now we consider a special case not discussed so far, namely the case of mixed marginals.
We combine the three mentioned techniques to gain a procedure as easy as possible.

In particular, we consider the case of marginals supported in R+ having exactly one
atom located in 0. Heuristically, this could model the value of a company with a positive
default probability. Formally, let µ, ν ∈ Pα(R+) be continuous and 0 < ω0 < ϑ0 < 1 be
such that

µ′ := µ+ ω0δ0 ≤c ν + ϑ0δ0 =: ν ′,

µ′, ν ′ ∈ P(R+) and (µ′, ν ′) is irreducible. Clearly, ω0 ≤ ϑ0 is necessary in order not to
contradict the convex order µ′ ≤c ν ′. Also, ω0 < ϑ0 is necessary in order not to contradict
the irreducibility of (µ′, ν ′). However, this assumption is weak, as default probabilities
increase over time.
Let us now start to determine the left monotone transport plan Qlc(µ′, ν ′). Algorithm

6.40 immediately tells us that we have to couple the total mass ω0 of δ0 in µ′ with δ0 in ν ′,
as otherwise the martingale property is violated. As ω0δ0 = Sν

′(ω0δ0), by Corollary 6.29
we have

µ ≤c ν + (ϑ0 − ω0)δ0 =: ν + χ0δ0 =: ν̄.

This coupling does not interfere with the assertions of Theorem 6.30, as ω0δ0 = µ|(−∞,0].
Thus, we proceed to determine Qlc(µ, ν̄) such that

Qlc(µ′, ν ′) = Qlc(µ, ν̄) + ω0δ(0,0).

Therefore, we consider µ and ν̄. By assumption, µ is continuous and hence we are in the
situation of Corollary 6.5. Thus, we have

Qlc(µ, ν̄) = µ⊗
(
q(x)δTu(x) + (1− q(x))δTd(x)

)
,

where q(x) = x−Td(x)
Tu(x)−Td(x)1{Tu(x)>Td(x)} and Tu, Td : R+ → R+ are suitable mappings.

As ν̄ is not continuous, we may not apply the techniques of Henry-Labordère & Touzi
[38] directly. However, the structure having only one atom at the left boundary of the
support of ν̄ allows us to proceed very similarly. Indeed, we proceed as the authors do to
gain a first intuition.

Thus, let us assume that there is a unique maximum m ∈ R+ of the difference function
δF = Fν̄ − Fµ that also serves as a bifurcation point for Tu and Td, i.e. Tu ≡ Td ≡ id on
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(0,m), Tu : (m,∞) → (m,∞) is monotone non-decreasing and Td : (m,∞) → (0,m) is
monotone non-increasing. We also define

m0 := inf {x ∈ supp(µ) | Td(x) = 0, x ≥ m} ,

the smallest point in the support of µ that is coupled with δ0. While it is easy to calculate
the bifurcation point m, it is not immediately clear how to determine m0. We come back
to this later.
First, let us split up the measures µ and ν̄. We write

µ = µ|(0,m) + µ|(m,m0) + µ|(m0,∞) =: µ1 + µ2 + µ3.

We do this, as then we may easier couple in a left monotone fashion.
Indeed, on (0,m) we have Tu ≡ Td ≡ id, i.e. (0,m) is the set of particles of µ that

are coupled with themselves at least almost surely. We stress that this is necessary in
order to maintain the left monotonicity. Indeed, if there is a µ-non-null set Ns of points
x′ ∈ (0,m) such that Tu(x′) 6= Td(x′), then we have Td(x′) < x′ < Tu(x′) by the martingale
property. Then there must be a ν̄-non-null set of points x′′ such that there exists x′ ∈ Ns
with x′′ > x′ and Td(x′′) = x′, a contradiction to the left monotonicity.

Further, on (m,m0) we have 0 < Td < Tu and hence this is the set of particles of µ, the
mass of which is split up but not coupled with δ0. This however implies that the measure
ν2 ≤ ν with which µ2 is coupled, is continuous.

Finally, (m0,∞) is the set of particles of µ, the mass of which is coupled with δ0.
These thoughts also imply the splitting of ν̄, where we write

ν̄ = µ1 + S ν̄−µ1(µ2) + S ν̄−(µ1+Sν̄−µ1 (µ2))(µ3) =: ν1 + ν2 + ν3.

We already stated that µ1 has to be coupled with ν1 via an identity-mapping, i.e.
Qlc(µ1, ν1) = µ1⊗ δid. We have µ1 = S ν̄(µ1) = ν1 and ω0δ0 +µ1 = µ′|(−∞,m], which implies

ω0δ0 + ν1 = Sν
′(ω0δ0) + S ν̄(µ1) = Sν

′(ω0δ0) + Sν
′−Sν′ (ω0δ0)(µ1) = Sν

′ (
µ′|(−∞,m]

)
Hence, we do not have any contradictions to Theorem 6.30. Observe that this also holds for
µ′|(−∞,x] and Sν

′
(
µ′|(−∞,x]

)
for all x ∈ (−∞,m) such that by Theorem 6.30, the resulting

coupling is the correct one. By Corollary 6.29, we have

µ′′ := µ2 + µ3 ≤c ν2 + ν3 =: ν ′′.

Now let us come back to m0. As µ2 and ν2 are by construction continuous, we may
apply the theory of Henry-Labordère & Touzi [38]. Thus, m0 has to satisfy their integral
equation and we may choose

m0 := inf
{
x > m

∣∣∣∣∣
∫

(0,m)
(g(x, ζ)− ζ)δF (dζ) =

∫
(m,m0)

(g(ξ,m)− ξ)Fµ(dξ)
}
.



6.4. Monotonicity and optimality in the discrete case 107

Sometimes the easy bounds m ≤ m0 ≤ F−1
µ (1− χ0) may be useful.

Applying the theory presented in Section 6.2.1, we now determine the maps Td|(m,m0) and
Tu|(m,m0) as in Algorithm 6.13 and thus get Qlc(µ2, ν2). Remark that, by our assumption
that m is the unique maximum, the algorithm terminates after only one step and that
it actually also covers the identity mapping between µ1 and ν1. However, by definition
we have v2 = S ν̄−µ1(µ2) such that we have µ3 ≤c ν3 by Corollary 6.29. As before, we
understand that we have ω0δ0 + µ1 + µ2 = µ′|(−∞,m0] and

ω0δ0 + ν1 + ν2 = Sν
′(ω0δ0) + S ν̄(µ1) + S ν̄−µ1(µ2) = Sν

′ (
µ′|(−∞,m0]

)
and analogously that µ′|(−∞,x] is coupled with Sν

′
(
µ′|(−∞,x]

)
for all x ∈ (−∞,m0) by

construction. Hence, there are again no contradictions to Theorem 6.30.
Finally, we use the techniques of Hobson & Norgilas [48] to determine Qlc(µ3, ν3). Then

the same arguments as before guarantee that indeed

Qlc(µ′, ν ′) = ω0δ(0,0) +Qlc(µ1, ν1) +Qlc(µ2, ν2) +Qlc(µ3, ν3).

If we skip the assumption of a unique maximum of δF , then we have to proceed similarly
to the general version of Algorithm 6.13. As in the simple case discussed above, we have to
adapt the algorithm such that in each step we use the techniques of Hobson & Norgilas
[48] in order to check for particles the mass of which is transported to δ0. That is, in every
step of the algorithm, three instead of two cases are distinguished. However, we do not
discuss this case in detail. 4

6.4.4. An associated super hedging strategy

Assumption 6.48. Let µ, ν ∈ P(R) satisfy Assumption 6.32. Additionally assume that µ
and ν satisfy the following conditions.

1. x1 < . . . < xN , y1 < . . . < yM .

2. N,M ∈ N.

In this section, we complement Algorithm 6.40 in the case of finitely supported measures
that satisfy the conditions of Assumption 6.48, in the sense that we provide a technique to
determine a super hedging strategy associated to Qlc(µ, ν).
For this purpose, we rewrite the discrete super hedging problem in (6.5) in the fashion

of the general super hedging problem in (4.10). In particular, we change the notation from
pj , qi and hj to ϕ(xj), ψ(yi) and h(xj). Though this makes the notation more complicated,
it also yields a better intuition. The rewritten super hedging problem is

min
N∑
j=1

ωjϕ(xj) +
M∑
i=1

ϑiψ(yi) (6.7)

s.t. ϕ(xj) + ψ(yi) + h(xj)(yi − xj) ≥ c(xj , yi), j = 1, . . . , N, i = 1, . . . ,M.



108 Chapter 6. Monotonicity and optimality

Let in the following Γ ⊆ {x1, . . . , xN} × {y1, . . . , yM} be the monotonicity set of Qlc(µ, ν),
where we assume that µ and ν satisfy Assumption 6.48. The basic idea is to use the
characterization of a dual minimizer from Definition 5.18. That is, we search numbers
ϕ(x1), . . . , ϕ(xN ), ψ(y1), . . . , ψ(yM ) and h(x1), . . . , h(xN ) such that for all j = 1, . . . , N
and all i = 1, . . . ,M , we have

ϕ(xj) + ψ(yi) + h(xj)(yi − xj) ≥ c(xj , yi), (6.8)

where equality holds for all (xj , yi) ∈ Γ, i.e. Qlc(µ, ν)-almost surely.
In the following, we denote Γx := {y ∈ R | (x, y) ∈ Γ} and Γy := {x ∈ R | (x, y) ∈ Γ} as

well as XΓ := {x ∈ R | ∃y ∈ R : (x, y) ∈ Γ} and YΓ := {y ∈ R | ∃x ∈ R : (x, y) ∈ Γ}.
Using these sets and the previous thoughts, we now turn to the super hedging strategy.

Clearly, an ideal super hedging strategy can easily be found solving the linear program
in (6.7) using classic methods. However, we assume that the payoff function c : R2 → R
satisfies (6.6), the discrete analogue of the martingale Spence Mirrlees condition, and use
that we know the structure of Qlc(µ, ν). This leads to a more explicit approach.
Indeed, we provide an algorithm that yields an optimal super hedging strategy in two

steps. In a first step, many of the numbers of interest are determined explicitly before
ultimately a lower dimensional linear inequality system has to be solved.

This is somehow similar to the approach suggested in Guo & Obłój [32, Sec. 4.2]. Using
the so-called discrete concave envelope, the authors rewrite the super hedging problem in
(6.7) as a convex optimization problem for which various solving methods apply.

Herrmann & Stebegg [39, Sec. 5.1] use a somehow opposite approach. They first
determine a dual optimizer solving a semi-infinite linear program and then derive the
primal optimizer from that dual optimizer.

Though both articles consider finitely supported marginals, their results are more general,
as the discrete version of the martingale Spence Mirrlees condition does not apply. As a
consequence, the approaches are more technical and harder to understand and implement.
Let us now turn to our two step algorithm, where in the first step we choose numbers

such that the Qlc(µ, ν)-almost sure equality in (6.8) holds, while in the second step we
address the general inequality condition. For this purpose, we partition the set XΓ as

XΓ = Xϕ
Γ ∪X

h
Γ ∪X

ψ
Γ ,

where we use the disjoint subsets

Xϕ
Γ := {x ∈ XΓ | |Γx| = 1},

Xh
Γ := {x ∈ XΓ | |Γx| = 2},

Xψ
Γ := {x ∈ XΓ | |Γx| ≥ 3}.

That is, we partition by the number of atoms of ν, an atom of µ is coupled with. The
notations have a natural interpretation. In order to achieve equality in (6.8), for x ∈ Xϕ

Γ , it
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suffices to choose ϕ(x) suitably. For x ∈ Xh
Γ , additionally h(x) has to be usefully adapted.

Finally, for x ∈ Xψ
Γ , also ψ(y) has to be properly defined for at least one y ∈ Γx.

As in Algorithm 6.40, we go through the atoms of µ in a certain order. However, we start
with the greatest atom, which exists by Assumption 6.48. Recall that Γ is the monotonicity
set of Qlc(µ, ν) and that c : R2 → R satisfies (6.6). We define

D(x, y) := ϕ(x) + ψ(y) + h(x)(y − x)− c(x, y).

Finally, we may now provide an algorithm to define numbers such that D(x, y) = 0 for all
(x, y) ∈ Γ.

Algorithm 6.49. Let µ, ν ∈ P(R) satisfy Assumption 6.48 and Γ ⊆ R2 be the monotonicity
set of Qlc(µ, ν).

1. We begin considering xN and distinguish three cases.

1.1. xN ∈ Xϕ
Γ , i.e. |ΓxN | = 1. That is, xN ∈ supp (ν) and ΓxN = {xN}. Define

ϕ (xN ) := c (xN , xN )− ψ (xN ) .

1.2. xN ∈ Xh
Γ , i.e. |ΓxN | = 2 say ΓxN = {yN1 , yN2 }, where yN1 < xN < yN2 . Define

h (xN ) :=
c
(
xN , y

N
2

)
− c

(
xN , y

N
1

)
−
(
ψ
(
yN2

)
− ψ

(
yN1

))
yN2 − yN1

,

ϕ (xN ) := xN − yN1
yN2 − yN1

(
c
(
xN , y

N
2

)
− ψ

(
yN2

))
+ yN2 − xN
yN2 − yN1

(
c
(
xN , y

N
1

)
− ψ

(
yN1

))
.

1.3. xN ∈ Xψ
Γ , i.e. |ΓxN | ≥ 3, say ΓxN = {yN1 , . . . , yNnN } where yN1 < . . . < yNnN .

Define

h (xN ) :=
c
(
xN , y

N
nN

)
− c

(
xN , y

N
1

)
−
(
ψ
(
yNnN

)
− ψ

(
yN1

))
yNnN − y

N
1

.

Now let y ∈ {yN2 , . . . , yNnN−1}. Define

ψ (y) := c (xN , y)− y − yN1
yNnN − y

N
1

(
c
(
xN , y

N
nN

)
− ψ

(
yNnN

))
−

yNnN − y
yNnN − y

N
1

(
c
(
xN , y

N
1

)
− ψ

(
yN1

))
.

Finally, define

ϕ (xN ) := xN − yN1
yNnN − y

N
1

(
c
(
xN , y

N
nN

)
− ψ

(
yNnN

))
+
yNnN − xN
yNnN − y

N
1

(
c
(
xN , y

N
1

)
− ψ

(
yN1

))
.
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k+1. Assume that we have applied the previous step on xN and the procedure of this step
on xN−1, . . . , xN−k+1. Then we have defined numbers such that D (x, y) = 0 for all
(x, y) ∈

⋃k−1
j=0

(
{xN−j} × ΓxN−j

)
. In this step, we proceed to achieve D (xN−k, y) = 0

for all y ∈ ΓxN−k . Clearly, we may not change previously defined numbers. This is
only relevant if |ΓxN−k | ≥ 3. In order to improve readability, we write K := N − k.

k+1.1. xK ∈ Xϕ
Γ , i.e. |ΓxK | = 1. That is, xK ∈ supp (ν) and ΓxK = {xK}. Define

ϕ (xK) := c (xK , xK)− ψ (xK) .

k+1.2. xK ∈ Xh
Γ , i.e. |ΓxK | = 2, say ΓxK = {yK1 , yK2 }, where yK1 < xK < yK2 . Define

h (xK) :=
c
(
xK , y

K
2

)
− c

(
xK , y

K
1

)
−
(
ψ
(
yK2

)
− ψ

(
yK1

))
yK2 − yK1

,

ϕ (xK) := xK − yK1
yK2 − yK1

(
c
(
xK , y

K
2

)
− ψ

(
yK2

))
+ yK2 − xK
yK2 − yK1

(
c
(
xK , y

K
1

)
−
(
yK1

))
.

k+1.3. xK ∈ Xψ
Γ , i.e. |ΓxK | ≥ 3, say ΓxK = {yK1 , . . . , yKnK}, where y

K
1 < . . . < yKnK .

Define

h (xK) :=
c
(
xK , y

K
nK

)
− c

(
xK , y

K
1

)
−
(
ψ
(
yKnK

)
− ψ

(
yK1

))
yKnK − y

K
1

.

Now let y ∈ {yK2 , . . . , yKnK−1}. Define

ψ (y) := c (xK , y)− y − yK1
yKnK − y

K
1

(
c
(
xK , y

K
nK

)
− ψ

(
yKnK

))
−

yKnK − y
yKnK − y

K
1

(
c
(
xK , y

K
1

)
− ψ

(
yK1

))
.

Finally, define

ϕ (xK) := xK − yK1
yKnK − y

K
1

(
c
(
xK , y

K
nK

)
− ψ

(
yKnK

))
+
yKnK − xK
yKnK − y

K
1

(
c
(
xK , y

K
1

)
− ψ

(
yK1

))
.

In step k+1, we define ψ
(
yK2

)
, . . . , ψ

(
yKnK−1

)
, as it is clear that these numbers have not

been defined in a previous step, while for ψ
(
yK1

)
and ψ

(
yKnK

)
this can not be guaranteed.

Indeed, to get a contradiction, assume that there is a j ∈ {2, . . . , nK − 1} such that
ψ
(
yKj

)
has been defined prior to step k + 1. Then there is an L = N − ` > N − k = K

such that yKj ∈ Γ◦xL = ΓxL \
{
yL1 , y

L
nL

}
. But then, as xK < xL and yK1 < yKj = yLi < yKnK

for some i ∈ {1, . . . , nL}, we have a contradiction to the left monotonicity.
Now let us prove that Algorithm 6.49 indeed yields D(x, y) = 0 for all (x, y) ∈ Γ, where

in the proof we follow the steps and case distinctions of the algorithm.
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Lemma 6.50. Algorithm 6.49 yields D (x, y) = 0 for all (x, y) ∈ Γ.

Proof. 1.1. Implying D (xN , xN ) = 0, by definition we have

ϕ (xN ) = c (xN , xN )− ψ (xN ) = c (xN , xN )− ψ (xN )− h (xN ) (xN − xN ) .

1.2. Implying D
(
xN , y

N
2

)
= D

(
xN , y

N
1

)
, by definition we have

h (xN ) =
c
(
xN , y

N
2

)
− c

(
xN , y

N
1

)
−
(
ψ
(
yN2

)
− ψ

(
yN1

))
yN2 − yN1

,

Implying D
(
xN , y

N
2

)
= 0, we also have

ϕ (xN ) = xN − yN1
yN2 − yN1

(
c
(
xN , y

N
2

)
− ψ

(
yN2

))
+ yN2 − xN
yN2 − yN1

(
c
(
xN , y

N
1

)
− ψ

(
yN1

))
= c

(
xN , y

N
2

)
− ψ

(
yN2

)
− yN2 − xN
yN2 − yN1

(
c
(
xN , y

N
2

)
− c

(
xN , y

N
1

)
−
(
ψ
(
yN2

)
− ψ

(
yN1

)))
= c

(
xN , y

N
2

)
− ψ

(
yN2

)
− h (xN )

(
yN2 − xN

)
.

1.3. Implying D
(
xN , y

N
1

)
= D

(
xN , y

N
nN

)
, by definition we have

h (xN ) =
c
(
xN , y

N
nN

)
− c

(
xN , y

N
1

)
−
(
ψ
(
yNnN

)
− ψ

(
yN1

))
yNnN − y

N
1

.

For y ∈
{
yN2 , . . . , y

N
nN−1

}
, implying D (xN , y) = D

(
xN , y

N
nN

)
, we have

ψ (y) = c (xN , y)− y − yN1
yNnN − y

N
1

(
c
(
xN , y

N
nN

)
− ψ

(
yNnN

))
−

yNnN − y
yNnN − y

N
1

(
c
(
xN , y

N
1

)
− ψ

(
yN1

))
= c (xN , y)− c

(
xN , y

N
1

)
+ ψ

(
yN1

)
− h (xN )

(
y − yN1

)
.

Implying D
(
xN , y

N
nN

)
= 0, we finally have

ϕ (xN ) = xN − yN1
yNnN − y

N
1

(
c
(
xN , y

N
nN

)
− ψ

(
yNnN

))
+
yNnN − xN
yNnN − y

N
1

(
c
(
xN , y

N
1

)
− ψ

(
yN1

))
= c

(
xN , y

N
nN

)
− ψ

(
yNnN

)
−
yNnN − xN
yNnN − y

N
1

(
c
(
xN , y

N
nN

)
− c

(
xN , y

N
1

)
−
(
ψ
(
yNnN

)
− ψ

(
yN1

)))
= c

(
xN , y

N
nN

)
− ψ

(
yNnN

)
− h (xN )

(
yNnN − xN

)
.
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k+1.1. Implying D (xK , xK) = 0, by definition we have

ϕ (xK) = c (xK , xK)− ψ (xK) = c (xK , xK)− ψ (xK)− h (xK) (xK − xK) .

k+1.2. Implying D
(
xK , y

K
2

)
= D

(
xK , y

K
1

)
, by definition we have

h (xK) =
c
(
xK , y

K
2

)
− c

(
xK , y

K
1

)
−
(
ψ
(
yK2

)
− ψ

(
yK1

))
yK2 − yK1

.

Implying D
(
xK , y

K
2

)
= 0, we also have

ϕ (xK) = xK − yK1
yK2 − yK1

(
c
(
xK , y

K
2

)
− ψ

(
yK2

))
+ yK2 − xK
yK2 − yK1

(
c
(
xK , y

K
1

)
−
(
yK1

))
= c

(
xK , y

K
2

)
− ψ

(
yK2

)
− yK2 − xK
yK2 − yK1

(
c
(
xK , y

K
2

)
− c

(
xK , y

K
1

)
−
(
ψ
(
yK2

)
− ψ

(
yK1

)))
= c

(
xK , y

K
2

)
− ψ

(
yK2

)
− h (xK)

(
yK2 − xK

)
.

k+1.3. Implying D
(
xK , y

K
1

)
= D

(
xK , y

K
nK

)
, by definition we have

h (xK) =
c
(
xK , y

K
nK

)
− c

(
xK , y

K
1

)
−
(
ψ
(
yKnK

)
− ψ

(
yK1

))
yKnK − y

K
1

.

For y ∈
{
yK2 , . . . , y

K
nK−1

}
, implying D (xK , y) = D

(
xK , y

K
nK

)
, we have

ψ (y) = c (xK , y)− y − yK1
yKnK − y

K
1

(
c
(
xK , y

K
nK

)
− ψ

(
yKnK

))
−

yKnK − y
yKnK − y

K
1

(
c
(
xK , y

K
1

)
− ψ

(
yK1

))
= c (xK , y)− c

(
xK , y

K
1

)
+ ψ

(
yK1

)
− h (xK)

(
y − yK1

)
.

Implying D
(
xK , y

K
nK

)
= 0, we finally have

ϕ (xK) = xK − yK1
yKnK − y

K
1

(
c
(
xK , y

K
nK

)
− ψ

(
yKnK

))
+
yKnK − xK
yKnK − y

K
1

(
c
(
xK , y

K
1

)
− ψ

(
yK1

))
= c

(
xK , y

K
nK

)
− ψ

(
yKnK

)
−
yKnK − xK
yKnK − y

K
1

(
c
(
xK , y

K
nK

)
− c

(
xK , y

K
1

)
−
(
ψ
(
yKnK

)
− ψ

(
yK1

)))
= c

(
xK , y

K
nK

)
− ψ

(
yKnK

)
− h (xK)

(
yKnK − xK

)
.
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Now we proceed with the second part of our algorithm in order to achieve the inequality
D(x, y) ≥ 0 for all (x, y) ∈ supp(µ)× supp(ν). For this purpose, recall that we have already
defined ϕ(x) for all x ∈ supp(µ), h(x) for all x ∈ Xh

Γ ∪X
ψ
Γ and ψ(y) for all y ∈ supp(ν)

such that there is an x ∈ Xψ
Γ with y ∈ Γ◦x. Conversely, we have to define h(x) for all x ∈ Xϕ

Γ
and ψ(y) for all y ∈ Y ψ

Γ , where

Y ψ
Γ := {z ∈ supp(ν) | @x ∈ Xψ

Γ such that ∃z−, z+ ∈ Γx with z− < z < z+}.

Now we iteratively plugin all numbers ϕ(x), ψ(y) and h(x) into (6.8) that are defined
by Algorithm 6.49. Then the resulting inequality system is formulated depending on
x ∈ supp(µ), y ∈ supp(ν) and c(x, y) for x ∈ supp(µ) and y ∈ supp(ν), which are
constants, and on h(x) for x ∈ Xϕ

Γ and ψ(y) for y ∈ Y ψ
Γ , which are the variables of the

lower dimensional inequality system. In particular, the number of variables is reduced
from 2N + M to at most N + M , as at least ϕ(x) is defined by Algorithm 6.49 for all
x ∈ supp(µ) = {x1, . . . , xN}. Also, the number of (in-)equalities is reduced from NM to at
most N(M − 1), as Γ contains at least N elements for which equality is already guaranteed.
Solving this lower dimensional system then yields a dual minimizer satisfying (6.8) and
thus the conditions of Definition 5.18.
The existence of a solution to the simplified linear inequality system is implied by the

existence of a dual minimizer, i.e. a solution to the linear inequality system in (6.8).
Indeed, having any dual minimizer (ϕ∗, ψ∗, h∗), we may adapt it according to Algorithm

6.49 without causing any inequalities to be unsatisfied. This can be seen by a recursive case
distinction as indicated in the following. Remark that we do not argue completely formal,
as the necessary calculations, though mathematically straightforward, are rather lengthy.
Starting from the generic inequality

ϕ(x) + ψ(y) + h(x)(y − x) ≥ c(x, y)

for some (x, y) ∈ supp(µ)× supp(ν), we distinguish whether or not ϕ(x), h(x) and ψ(y) are
specified by Algorithm 6.49. Then we either plugin the algorithmically specified numbers
or those from the dual minimizer. After a first step the inequality does only depend on
ψ(·), ψ∗(·) and c(·, ·). Then, recursively plugging in the definition from Algorithm 6.49 if
ψ(·) is specified there and ψ∗(·) if it is not, we arrive at an inequality of the form

M∑
i=1

λiψ∗(yi) +
N∑
j=1

κj,ic(xj , yi)

 ≥ 0 (6.9)

for some λi, κj,i ∈ R. Then we show that the left hand side of (6.9) may be written as
N∑
j=1

M∑
i=1

λ∗j,i [ϕ∗(xj) + ψ∗(yi) + h∗(xj)(yi − xj)− c(xj , yi)] ,

where λ∗j,j ≥ 0 whenever ϕ∗(xj) +ψ∗(yi) + h∗(xj)(yi− xj) > c(xj , yi). This clearly implies
that (6.9) is satisfied and thus shows the claim.
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6.4.5. An exemplary construction

Example 6.51. Let µ, ν ∈ P(R) be two discrete measures with three atoms each, say

µ = ωdδxd + ωmδxm + ωuδxu and ν = ϑdδyd + ϑmδym + ϑuδyu .

We consider a combination of binary type options on two time points of an asset price
process (St)t=0,...,2 with payoff function

c(x, y) = 1{(x,y)>(S1,S2)} + 1{x>S1} + 1{y>S2} − 1{x<S1} − 1{y<S2} − 1{(x,y)<(S1,S2)},

where we choose S1 = 100 = S2, S1 = 110, and S2 = 120.
Before we illustrate this function in Figure 6.4, let us first prove that it is indeed of the

kind such that the left monotone martingale transport plan Qlc(µ, ν) is optimal for the
discrete upper price bound problem in (6.4). By Theorem 6.34, we have to show that the
condition in (6.6) is satisfied, where we denote the left hand side by D(x′, x, y+, y′, y−). By
the structure of the measures we have to consider three cases.

1. Let xu = x′ > x = xm and y+ = yu > ym = y′ > y− = yd. Then we have

D(x′, x, y+, y′, y−) = 1
yu − ym

( 3− 1
xu − xm

− 1− 0
xu − xm

)
− 1
ym − yd

( 1− 0
xu − xm

− 0− (−1)
xu − xm

)
= 1

(yu − ym)(xu − xm) > 0.

2. Let xu = x′ > x = xd and y+ = yu > ym = y′ > y− = yd. Then we have

D(x′, x, y+, y′, y−) = 1
yu − ym

( 3− 0
xu − xd

− 1− (−1)
xu − xd

)
− 1
ym − yd

(1− (−1)
xu − xd

− 0− (−3)
xu − xd

)
= 1
yu − ym

1
xu − xd

− 1
ym − yd

1
xu − xd

= 1
xu − xd

−yu + 2ym − yd
(yu − ym)(ym − yd)

!
> 0.

This inequality is satisfied if and only if ym > yu+yd
2 .

3. Let xm = x′ > x = xd and y+ = yu > ym = y′ > y− = yd. Then we have

D(x′, x, y+, y′, y−) = 1
yu − ym

( 1− 0
xm − xd

− 0− (−1)
xm − xd

)
− 1
ym − yd

(0− (−1)
xm − xd

− (−1)− (−3)
xm − xd

)
= 1

(ym − yd)(xm − xd)
> 0.
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Figure 6.4.: The binary type payoff function c.

In total, we see that the atoms of ν should satisfy ym > yu+yd
2 . This is ensured by the

explicit choice of the measures.
Let us think of a two-year horizon and choose S0 = 100 for the expected value of the

measures µ and ν. Also, choose xu = Su1 = 120, xm = Sm1 = 105 and xd = Sd1 = 80. Now
the measure µ has to be chosen such that two conditions are satisfied. First, we need that
the asset price is a martingale, which is satisfied if

120ωu + 105ωm + 80ωd = 100.

Also, we want µ to be a probability measure, i.e.

ωu + ωm + ωd = 1.

Furthermore, let us assume that the asset has an annualized volatility of 20 percent such
that we get the condition(120

100 − 1
)2
ωu +

(105
100 − 1

)2
ωm +

( 80
100 − 1

)2
ωd = 0.22. (6.10)

The unique solution to this linear equality system is

(ωu, ωm, ωd) =
(17

49 ,
12
49 ,

20
49

)
.

In a second step let us choose ν properly. We proceed in the same way as for µ and
assume yu = Su2 = 135, ym = Sm2 = 110 and yd = Sd2 = 65 such that indeed ym > yu+yd

2 . Let
again the weights be such that the annualized volatility is 20 percent. This is, differently to
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before, that equation (6.10) has the right hand side
(

1√
20.2

)2
. We get the unique solution

(ϑu, ϑm, ϑd) =
( 9

35 ,
17
45 ,

23
63

)
.

Formally, we have to show that µ ≤c ν. As the specifications of the measures do not
contradict this property immediately, we prove the convex order by constructing the left
monotone martingale transport plan.
Now let us determine the left monotone martingale transport plan, the upper price

bound, the right monotone martingale transport plan and the lower price bound for the
binary type option. Also, let us determine associated super and sub hedging strategies.
We begin with the calculation of Qlc(µ, ν).

1. The measures to be considered in the first step are

µ = 20
49δ80 + 12

49δ105 + 17
49δ120 ≤c

23
63δ65 + 17

45δ110 + 9
35δ135 = ν.

We algorithmically couple the mass of δ80 with ν. We have qxdyd + qxdym = 20
49 and

65qxdyd + 110qxdym = 20
49 · 80.

This implies
qxdyd = 40

147 and qxdym = 20
147 ,

which is admissible, as qxdyd = 40
147 <

23
63 = ϑd and qxdym = 20

147 <
17
45 = ϑm.

2. The residual measures are

µ′ = 12
49δ105 + 17

49δ120 ≤c
41
441δ65 + 533

2205δ110 + 9
35δ135 = ν ′.

We algorithmically couple the mass of δ105. Here, we have qxmyd + qxmym = 12
49 and

65qxmyd + 110qxmym = 12
49 · 105.

This implies
qxmyd = 4

147 and qxmym = 32
147 ,

which is again admissible, as qxmyd = 4
147 <

41
441 = ϑ′d and qxmym = 32

147 <
553
2205 = ϑ′m.

3. The residual measures are µ′′ = 17
49δ120 ≤c 29

441δ65 + 53
2205δ110 + 9

35δ135 = ν ′′. A simple
test shows that an admissible coupling is possible. That is, qxuyd = 29

441 , qxuym = 53
2205

and qxuyu = 9
35 .

An illustration of the above application of Algorithm 6.40 is given in Example A.2. We
determined Qlc(µ, ν) and thus we know that µ ≤c ν, as otherwise no martingale transport
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plan would exist. Let us calculate the associated upper price bound. We have

EQlc(µ,ν) [c(X,Y )] = 9
35 · 3 + 53

2205 · 1 + 29
441 · 0 + 32

147 · 0

+ 4
147 · (−1) + 20

147 · (−1) + 40
147 · (−3) = − 58

315 .

Similarly, we determine the right monotone martingale transport plan Qrc(µ, ν) in order
to compare the upper and lower price bounds.

1. The measures to be considered in the first step are

µ = 20
49δ80 + 12

49δ105 + 17
49δ120 ≤c

23
63δ65 + 17

45δ110 + 9
35δ135 = ν.

Here, we have to first couple the mass of δ120 with ν. We have qxuym + qxuyu = 17
49

and
110qxuym + 135qxuyu = 17

49 · 120.

This implies
qxuym = 51

245 and qxuyu = 34
245 ,

which is admissible, as qxuym = 51
245 <

17
45 = ϑm and qxuyu = 34

245 <
9
35 = ϑu.

2. The residual measures are

µ′ = 20
49δ80 + 12

49δ105 ≤c
23
63δ65 + 374

2205δ110 + 29
245δ135 = ν ′.

We couple the mass of δ105. Here, we have qxmyd + qxmym = 12
49 and

65qxmyd + 110qxmym = 12
49 · 105.

This implies
qxmyd = 4

147 and qxmym = 32
147 ,

which is not admissible, as qxmyd = 4
147 <

23
63 = ϑ′d, but qxmym = 32

147 >
374
2205 = ϑ′m.

Thus, we choose
qxmym = 374

2205
and get two new equations for the desired weights, namely

qxmyd + qxmyu = 12
49 −

374
2205 = 166

2205

and
65qxmyd + 135qxmyu = 12

49 · 105− 374
2205 · 110 = 3112

441 .

This implies
qxmyd = 137

3087 and qxmyu = 53
1715 ,

which then is admissible, as qxmyd = 137
3087 <

23
63 = ϑ′d and qxmyu = 53

1715 <
29
245 = ϑ′u.
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3. The residual measures are µ′′ = 20
49δ80 ≤c 110

343δ65 + 30
343δ135 = ν ′′. Again, an admissible

coupling exists and it is clear how to find it.

Thus, we determined Qrc(µ, ν). The lower price bound then is

EQrc(µ,ν) [c(X,Y )] = 34
245 · 3 + 51

245 · 1 + 53
1715 · 1

+ 374
2205 · 0 + 30

343 · 0 + 137
3087 · (−1) + 110

343 · (−3) = − 5419
15435 .

Let us now consider the hedging strategies. The super hedging strategy may be found
using Algorithm 6.49 and solving the residual inequalities. The application of the two step
algorithm is detailed in Example A.2. The resulting super hedging strategy is given by

ϕ(S1) =


−85

42 , S1 = 80
5
7 , S1 = 105
33
14 , S1 = 120,

ψ(S2) =


0, S2 = 65

−13
14 , S2 = 110

0, S2 = 135,

h(S1) =


41
630 , S1 = 80
3
70 , S1 = 105
3
70 , S1 = 120.

A sub hedging strategy is given by

ϕ(S1) =


−103

42 , S1 = 80

−1
9 , S1 = 105

73
45 , S1 = 120,

ψ(S2) =


0, S2 = 65

0, S2 = 110
4
9 , S2 = 135,

h(S1) =


23
630 , S1 = 80
1
45 , S1 = 105
14
225 , S1 = 120.
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(a) Qlc(µ, ν)-almost sure equality (bold).
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(b) Qrc(µ, ν)-almost sure equality (bold).

Figure 6.5.: Super hedging strategy (left) and sub hedging strategy (right)

The two hedging strategies are displayed in Figures 6.5a and 6.5b. 4



CHAPTER 7

Price bound approximation

In Chapter 4, we discussed the connection between observable call option prices and the
marginals of any potential pricing measure. In Chapters 5 and 6, we used this connection
in the sense that we considered the price bound problems with respect to sets of martingale
transport plans, for which we implicitly assume that the measures that serve as marginals
are uniquely defined by observable call option prices.
In the standard market case restricted to R+ that we consider in this chapter, this

formally means that we have two uniquely defined tuples (Cµ, µ) and (Cν , ν), where
Cµ, Cν : R+ → R+ are price functions of call options on the asset prices X and Y at the
two trading times t and T , and µ and ν are the associated marginals of the underlying
price process S = (X,Y ) at the same trading times. The pairs satisfy

Fµ(k) = 1 + C ′µ(k+) and Fν(k) = 1 + C ′ν(k+), k ∈ R+.

In this setting, µ and ν are probability measures with common finite expected value. Hence,
by Proposition 4.24 we have

Cµ ≤ Cν ⇐⇒ µ ≤c ν. (7.1)

However, the tuples consisting of a call option price function and its associated marginal
are uniquely defined if and only if call option prices are observable for strike prices that
form a dense subset of R+. Otherwise, there are infinitely many consistent call option price
functions and associated marginals. When it comes to application, this is the case as only
finitely many different call option prices may be observed. Thus, it is natural to consider
convergence issues, which shall be done in this chapter.

In detail, assume that there are sequences of measures (µn)n∈N and (νn)n∈N that approx-
imate the measures µ and ν in some sense. Then we investigate whether the associated
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upper price bounds with respect to µn and νn approximate the upper price bound with
respect to µ and ν as well, i.e. whether∣∣∣∣∣ sup

Q∈M2(µn,νn)
EQ[c(X,Y )]− sup

Q∈M2(µ,ν)
EQ[c(X,Y )]

∣∣∣∣∣ n→∞→ 0. (7.2)

In order to further motivate the interest in convergence issues, recall the situation of a
payoff function that satisfies the martingale Spence Mirrlees condition. In this case, the
left monotone martingale transport plan is optimal for the upper price bound problem
in (4.7) and there are techniques to determine it. However, for continuous marginals the
determination is difficult, while for discrete marginals it is very simple. Thus, we prefer to
approximate the actual upper price bound, given the convergence in (7.2) is valid.

In Section 7.1, we discuss the application-oriented point of view. We consider theoretical
and empirical tuples of price functions and marginals, explain how we may use observable
call option prices and define the notion of consistency rigorously. In Sections 7.2 and
7.3, we prove the convergence claimed in (7.2) and quantify the convergence speed for
certain approximating sequences of marginals, assuming that the payoff function satisfies
the martingale Spence Mirrlees condition and that the marginals are compactly supported.
In Section 7.4, we generalize the results of Sections 7.2 and 7.3, allowing for more general
payoff functions and arbitrary approximating sequences of marginals. Finally, we generalize
the results allowing for marginals with unbounded support.

7.1. Basic considerations

7.1.1. Theoretical price functions & marginals

Let (Cµ, µ) and (Cν , ν) be the tuples of the unknown theoretical call option price functions
and the associated unknown theoretical marginals of the underlying S with respect to
any potential pricing measure at two arbitrary trading times 0 < t < T . In the following
sections, we mostly use them as a reference. Let us additionally assume that the price of
the underlying at time t = 0 is s0 = 1.
We recall the no-arbitrage considerations of Section 3.2 and apply them to the tuples

(Cµ, µ) and (Cν , ν). As we assume the underlying to have prices in R+, the measures µ
and ν are concentrated on R+. In particular, recall the notion of a candidate function.

Definition 7.1. A function C : R+ → R+ is a candidate function for call option prices, if
it satisfies the following conditions.

1. C is monotone non-increasing and convex.

2. limk→∞C(k) = 0, C ′(0+) ≥ −1 and C(0) = s0 = 1.

We denote the set of all candidate function by KC .
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By the usual no-arbitrage considerations, we necessarily have that the theoretical call
option price functions are candidate functions, i.e. Cµ, Cν ∈ KC .
As the discounted underlying is a martingale with respect to every potential pricing

measure, we require the theoretical marginals to satisfy µ ≤c ν. Recalling equation (7.1),
we know that then the theoretical call option price functions satisfy Cµ ≤ Cν .

These intrinsic properties may be used in plausibility checks for observed call option
prices. Clearly, the observed prices must not contradict the existence of theoretical price
functions with the above properties, as the observed prices are evaluations of theoretical
call option price functions.

7.1.2. Empirical price functions & marginals

In the following, we additionally assume a compactness property for the theoretical call
option price functions Cµ and Cν that shall be satisfied in Sections 7.1.3, 7.2, 7.3 and 7.4.1.

Assumption 7.2. There are numbers 0 < K∗ ≤ L∗ < ∞ such that Cµ(k) = 0 for all
k ≥ K∗ and Cν(`) = 0 for all ` ≥ L∗. We denote the set of all candidate functions that
meet this assumption by KCK∗ and KCL∗ respectively.

Remark 7.3. Assumption 7.2 is not very strong when it comes to applications, as the call
option prices decrease to be numerically negligible when the strike prices increase. The
associated measures µ and ν have compact support under this assumption, i.e. we have
supp(µ) ⊆ [0,K∗] and supp(ν) ⊆ [0, L∗]. Indeed, for general ρ ∈ P(R+), we have

0 = Cρ(x) =
∫
R+

(s− x)+ρ(ds) ⇐⇒ ρ((x,∞)) = 0. ♦

Now let us choose finitely many strike prices in the intervals [0,K∗] and [0, L∗] and use
the associated observable call option prices for the approximation. In order to guarantee
that the approximating marginals are in convex order and to reduce numerical complexity,
we choose the strike prices suitably. Therefore, we define

m := max
{
n ∈ N0

∣∣∣∣ L∗K∗ ≥ 2n
}
,

and then K := L∗

2m ≥ K
∗ and L := L∗. For every n ∈ N, we choose the strike prices using

equidistant partitions of the intervals [0,K] and [0, L] defined by

Zµn :=
{
knj := j

2nK
∣∣∣∣ j = 0, . . . , 2n

}
and Zνn :=

{
`ni := i

2nL
∣∣∣∣ i = 0, . . . , 2n

}
.

Then the sets of associated call option prices are

Cµn := {Cµ(k) | k ∈ Zµn} =
{
Cµ(0), Cµ

(
K

2n
)
, . . . , Cµ

(
K − K

2n
)
, Cµ(K)

}
,

Cνn := {Cν(`) | ` ∈ Zνn} =
{
Cν(0), Cν

(
L

2n
)
, . . . , Cν

(
L− L

2n
)
, Cν(L)

}
.
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Now let us use the fact that the prices in Cµn and Cνn have to be evaluations of some
candidate functions Cµ ∈ KCK and Cν ∈ KCL respectively and the properties of such functions
in order to state conditions that these prices necessarily have to satisfy. The conditions
serve as a plausibility check when it comes to application.

Lemma 7.4. The prices in Cµn and Cνn satisfy the following conditions for all n ∈ N.

1. The sequences of price differences

(Cµ(knj )− Cµ(knj−1))j=1,...,2n and
(
Cν (`ni )− Cν

(
`ni−1

))
i=1,...,2n

are non-positive and monotone non-decreasing.

2. We have Cµ(kn0 ) = Cν(`n0 ) = 1.

3. We have Cµ(kn1 ) ≥ 1− K
2n and Cν(`n1 ) ≥ 1− L

2n .

4. We have Cµ(K) = Cν(L) = 0.

Proof. We only consider Cµ, as Cν is treated analogously.

1. We use the first part of Definition 3.5. The candidate function Cµ is monotone
non-increasing such that for all knj−1 ≤ knj , we have Cµ(knj−1) ≥ Cµ(knj ), which yields
the non-positivity. Further, Cµ is convex such that for all knj−1 ≤ knj ≤ knj+1, we have
that the slopes of the secants are monotone non-decreasing, i.e.

Cµ(knj+1)− Cµ(knj )
knj+1 − knj

−
Cµ(knj )− Cµ(knj−1)

knj − knj+1
≥ 0,

which is the claim by knj+1 − knj = knj − knj−1.

2. We have kn0 = `n0 = 0 and s0 = 1 such that the claim is implied by the third property
from the second part of Definition 3.5.

3. By the convexity of the candidate function and the second property of the second
part of Definition 3.5, we have

Cµ(kn1 )− Cµ(kn0 )
kn1 − kn0

≥ C ′µ(kn0 +) = C ′µ(0+) ≥ −1 ⇐⇒ Cµ(kn1 ) ≥ 1− K

2n .

4. This is immediately implied by Assumption 7.2. It is sufficient for the first property
of the second part of Definition 3.5.

Now let us state conditions that the prices have to satisfy in order not to contradict the
order conditions Cµ ≤ Cν and thus µ ≤c ν.

Lemma 7.5. For all n ∈ N, the prices in Cµn and Cνn satisfy

Cµ(2mkni ) ≤ Cν(`ni ), i = 0, . . . , 2n.
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Proof. As K = L
2m , we have

2mkni = 2m i

2nK = i

2nL = `ni .

If now Cµ(2mkni ) > Cν(`ni ), then this is a contradiction to Cµ ≤ Cν and thus to µ ≤c ν.

If the conditions of the Lemmata 7.4 and 7.5 are satisfied, then we may define suitable
price functions and measures for the approximation of (Cµ, µ) and (Cν , ν) based on Cµn
and Cνn. For the approximation of Cµ and Cν , and of µ and ν, only such functions and
measures should be considered that are consistent with Cµn and Cνn. Here, consistency is to
be understood in the following sense.

Definition 7.6. A candidate function C ∈ KC is called consistent with the prices of Cµn
and Cνn, n ∈ N, if respectively

C(knj ) = Cµ(knj ), j = 0, . . . , 2n,

C(`ni ) = Cν(`ni ), i = 0, . . . , 2n.

The set of such candidate functions is denoted by Cµn and Cνn, n ∈ N, respectively.

Definition 7.7. A probability measure ρ ∈ P(R+) is called consistent with the prices of
Cµn and Cνn, n ∈ N, if respectively∫

R+
(x− knj )+ρ(dx) = Cµ(knj ), j = 0, . . . , 2n,∫

R+
(y − `ni )+ρ(dy) = Cν(`ni ), i = 0, . . . , 2n.

The set of all such probability measures is denoted by Pµn and Pνn , n ∈ N, respectively.

Thus, we have defined the sets of all price functions and all measures that are possibly
of interest. The consistency immediately implies the compactness of the support of any
approximating measures µn ∈ Pµn and νn ∈ Pνn .

Observe that the sets do in general not consist of only one element, as the observed call
option prices do not determine the price function and the associated measures uniquely.
The notation already suggests that the sets are in a one-to-one connection and this is
indeed the case.

Lemma 4.14 guarantees that call option price functions and marginals are in a one-to-one
connection. Thus, we only have to justify that the consistency is preserved. For this
purpose, start with a consistent measure ρ ∈ P(R+) and observe that

Cρ(x) =
∫
R+

(s− x)+ρ(ds)

immediately yields the consistency of the price function Cρ ∈ KC . If we otherwise start
with a inconsistent measure ρ, then the same equation implies that Cρ is inconsistent as
well.
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7.1.3. Towards price bound approximation

Recall that the actual aim of this chapter is to approximate the upper price bound P c2 (µ, ν)
by a sequence of upper price bounds (P c2 (µn, νn))n∈N. Thus, we may not consider arbitrary
pairs of consistent call option price functions (Cµn , Cνn) and marginals (µn, νn). Indeed, in
order to let P c2 (µn, νn) be meaningful, we have to consider pairs such that Cµn ≤ Cνn and
µn ≤c νn. Therefore, we define

C≤n := {(Cµn , Cνn) ∈ Cµn × Cνn | Cµn ≤ Cνn} ,

P≤cn := {(µn, νn) ∈ Pµn × Pνn | µn ≤c νn} .

As Cµ ∈ Cµn , Cν ∈ Cνn, and Cµ ≤ Cν , we have (Cµ, Cν) ∈ C≤n for all n ∈ N. Analogously,
as µ ∈ Pµn , ν ∈ Pνn , and µ ≤c ν, we have (µ, ν) ∈ P≤cn for all n ∈ N. That is, the theoretical
price functions and marginals guarantee the non-emptiness of the sets of relevant pairs of
approximating price functions and marginals respectively. Furthermore, by (7.1) and the
same arguments as at the end of the previous section, C≤n and P≤cn are isomorphic. In the
following, we rather consider the measure theoretic point of view.
As P≤cn 6= ∅, we may formulate the two well-defined price bound problems

sup
(µn,νn)∈P≤cn

sup
Q∈M2(µn,νn)

EQ[c(X,Y )], and inf
(µn,νn)∈P≤cn

sup
Q∈M2(µn,νn)

EQ[c(X,Y )],

which yield the maximally and minimally possible values for the actual upper price bound
P c2 (µ, ν) that are consistent with the observable call option prices in Cµn and Cνn. We
observe that by the choice of (Zµn)n∈N and (Zνn)n∈N, we have P≤cn ⊇ P

≤c
n+1, n ∈ N. As

inf
(µn,νn)∈P≤cn

P c2 (µn, νn) ≤ P c2 (µ, ν) ≤ sup
(µn,νn)∈P≤cn

P c2 (µn, νn),

this subset property suggests that for n→∞, we have

inf
(µn,νn)∈P≤cn

P c2 (µn, νn)↗ P c2 (µ, ν)↙ sup
(µn,νn)∈P≤cn

P c2 (µn, νn).

That is, the largest and the smallest possible upper price bound considering marginals from
P≤cn converge from above and from below to the actual upper price bound. This would in
particular imply the convergence in (7.2) for any approximating sequence of price bounds.

7.2. Convergence in the martingale Spence Mirrlees
case

In this section, we prove that the convergence in (7.2) holds true, at least in the case that
the theoretical marginals are compactly supported and when the payoff function satisfies
the martingale Spence Mirrlees condition. In the following section, for all n ∈ N, we define
a pair (µdn, νdn) ∈ P≤cn based on the observable call option prices Cµn and Cνn in order to
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investigate the convergence speed of the price bounds both empirically and theoretically.
In order to investigate the convergence itself, let in this section 0 < R1 ≤ R2 <∞. Then

we define the set of all pairs of probability measures with finite first moments and suitable
compact support that are in convex order,

P≤cR1,R2
:= {(ρ1, ρ2) ∈ P(R+)× P(R+) | supp(ρ1) ⊆ [0, R1], supp(ρ2) ⊆ [0, R2], ρ1 ≤c ρ2} .

By Assumption 7.2 and Remark 7.3, we have (µ, ν) ∈ P≤cn ⊆ P≤cK∗,L∗ ⊆ P
≤c
K,L for the

theoretical marginals µ and ν and all n ∈ N.

Theorem 7.8. Let the payoff function c : R2
+ → R satisfy the martingale Spence Mirrlees

condition and let 0 < R1 ≤ R2 <∞. Then the mapping

P c,MSM
2 :

P
≤c
R1,R2

→ R

(ρ1, ρ2) 7→ EQlc(ρ1,ρ2)[c(X,Y )]

is continuous with respect to the topology Tcb(R+)2 as well as the topology T1(R+)2.

In order to prove the theorem, we need a continuity result from the work of Juillet [51].

Theorem 7.9 ([51, Theorem 2.16]). The mapping

Curt :

{(ρ1, ρ2) ∈ P(R)× P(R) | ρ1 ≤c ρ2} → P(R2)

(ρ1, ρ2) 7→ Qlc(ρ1, ρ2)

is continuous with respect to the topologies Tcb(R)2 and Tcb(R2) as well as the topologies
T1(R)2 and T1(R2).

Proof of Theorem 7.8. In order to use Theorem 7.9, we rewrite the mapping P c,MSM
2 as a

concatenation of a restriction of Curt to compactly supported measures and some additional
mapping. Indeed, we may write

P c,MSM
2 = I ◦ Curt|P≤cR1,R2

,

where

I :

P([0, R1]× [0, R2])→ R

Q 7→ EQ [c(X,Y )] .

The continuity of Curt|P≤cR1,R2
is implied by Theorem 7.9. The continuity of I holds directly

by the definition of weak convergence, since the payoff function c is in particular continuous
and thus bounded on the compact set [0, R1]× [0, R2].
It remains to prove that Curt(P≤cR1,R2

) ⊆ P([0, R1]× [0, R2]). This is clear, as arbitrary
couplings of measures are concentrated on some subset of the cartesian product of the
supports of their respective marginals.
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7.3. Convergence speed in the martingale Spence
Mirrlees case

In this section, we introduce a specially designed sequence (µdn, νdn)n∈N of pairs of marginals
such that (µdn, νdn) ∈ P≤cn ⊆ P

≤c
K,L for all n ∈ N, which converges to the theoretical marginals

(µ, ν) ∈ P≤cK,L with respect to the Wasserstein distance. Then we investigate the convergence
speed of the price bound difference∣∣∣EQlc(µdn,νdn) [c(X,Y )]− EQlc(µ,ν) [c(X,Y )]

∣∣∣ ,
the convergence of which is implied by Theorem 7.8, as we assume the payoff function
c : R2

+ → R to satisfy the martingale Spence Mirrlees condition, both empirically and
theoretically.

7.3.1. Specially designed marginals

For any n ∈ N, the pair of marginals (µdn, νdn) is defined using a suitable pair of consistent
call option price functions. We choose the consistent call option price functions Cµdn ∈ C

µ
n

and Cνdn ∈ C
ν
n to be exactly the functions that result from interpolating between the

observed call option prices in Cµn and Cνn. That is, for k ∈ [knj , knj+1), j = 0, . . . , 2n − 1, we
define

Cµdn(k) :=
knj+1 − k
knj+1 − knj

Cµ(knj ) +
k − knj

knj+1 − knj
Cµ(knj+1),

and for ` ∈ [`ni , `ni+1), i = 0, . . . , 2n − 1, we define

Cνdn(`) :=
`ni+1 − `
`ni+1 − `ni

Cν(`ni ) + `− `ni
`ni+1 − `ni

Cν(`ni+1).

Then the associated measures µdn and νdn, n ∈ N, are discrete measures of the form

µdn :=
2n∑
j=0

ωnj δknj :=
2n∑
j=0

[
Cµ(knj+1)− Cµ(knj )

knj+1 − knj
−
Cµ(knj )− Cµ(knj−1)

knj − knj−1

]
δknj

= 2n

K

2n∑
j=0

[
Cµ(knj+1)− 2Cµ(knj ) + Cµ(knj−1)

]
δknj ,

where we set Cµ(kn2n+1)−Cµ(kn2n )
kn2n+1−k

n
2n

= 0 and Cµ(kn0 )−Cµ(kn−1)
kn0−k

n
−1

= −1, and

νdn :=
2n∑
i=0

ϑni δ`ni :=
2n∑
i=0

[
Cν(`ni+1)− Cν(`ni )

`ni+1 − `ni
−
Cν(`ni )− Cν(`ni−1)

`ni − `ni−1

]
δ`ni

= 2n

L

2n∑
i=0

[
Cν(`ni+1)− 2Cν(`ni ) + Cν(`ni−1)

]
δ`ni ,

where we set Cν(`n2n+1)−Cν(`n2n )
`n2n+1−`

n
2n

= 0 and Cν(`n0 )−Cν(`n−1)
`n0−`

n
−1

= −1.



7.3. Convergence speed in the martingale Spence Mirrlees case 127

The distribution functions of the measures satisfy

Fµdn(x) =
2n∑
j=0

(
1 +

Cµ(knj+1)− Cµ(knj )
knj+1 − knj

)
1[knj ,knj+1)(x), (7.3)

Fνdn(y) =
2n∑
i=0

(
1 +

Cν(`ni+1)− Cν(`ni )
`ni+1 − `ni

)
1[`ni ,`ni+1)(y).

In Remark A.3, we show that Cµdn and Cνdn are recovered as the call option price functions
corresponding to µdn and νdn in the sense of Definition 4.22. We also show that µdn and νdn
are probability measures with expected value equal to s0 = 1.

Thus, we may deduce the convex order µdn ≤c νdn showing that Cµdn ≤ Cµdn . For this, let
x ∈ [knj , knj+1] ⊂ [`ni , `ni+1] and λnj , γ

n
i ∈ [0, 1] be such that x = λnj k

n
j+1 + (1 − λnj )knj and

x = γni `
n
i+1 + (1− γni )`ni . Then we have

Cµdn(x) = λnjCµ(knj+1) + (1− λnj )Cµ(knj )

≤ λnjCν(knj+1) + (1− λnj )Cν(knj )

≤ λnj

(
knj+1 − `ni
`ni+1 − `ni

Cν(`i+1) +
`ni+1 − knj+1
`ni+1 − `ni

Cν(`i)
)

+ (1− λnj )
(
knj − `ni
`ni+1 − `ni

Cν(`i+1) +
`ni+1 − knj
`ni+1 − `ni

Cν(`i)
)
.

In the first inequality, we use the fact that the theoretical price functions satisfy Cµ ≤ Cν .
In the second inequality, we use the convexity of Cν . If we now plugin the definition of λnj ,
then we get

Cµdn(x) ≤
x− knj

knj+1 − knj

(
knj+1 − `ni
`ni+1 − `ni

Cν(`i+1) +
`ni+1 − knj+1
`ni+1 − `ni

Cν(`i)
)

+
knj+1 − x
knj+1 − knj

(
knj − `ni
`ni+1 − `ni

Cν(`i+1) +
`ni+1 − knj
`ni+1 − `ni

Cν(`i)
)

≤ x− `ni
`ni+1 − `ni

Cν(`ni+1) +
`ni+1 − x
`ni+1 − `ni

Cν(`ni )

= γni Cν(`ni+1) + (1− γni )Cν(`ni ) = Cνdn(x),

where the second inequality follows from an easy calculation. Thus, Cµdn ≤ Cνdn .
Recall that for payoff functions c : R2

+ → R that satisfy the martingale Spence Mirrlees
condition, by Theorem 7.8 we have

EQlc(µdn,νdn) [c(X,Y )] n→∞→ EQlc(µ,ν)[c(X,Y )].

By Algorithm 6.40, Qlc(µdn, νdn) is easy to determine as µdn and νdn are discrete measures.
Thus, we easily get the sequence of upper price bounds that approximates the actual upper
price bound. In the following section, we illustrate this convergence for different theoretical
marginals and payoff functions.
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7.3.2. Empirical considerations

Example 7.10. Let us now discuss the convergence speed of the price bound approximation
for different compactly supported theoretical marginals and payoff functions that satisfy the
martingale Spence Mirrlees condition empirically. Therefore, we calculate the approximating
upper price bounds for several n ∈ N as well as the actual upper price bounds as far as
possible. Additionally, we calculate the corresponding normalized price bound differences
dn := 22n(P c2 (µ, ν)− P c2 (µdn, νdn)).

We calculate the approximating marginals slightly different from the theoretical definition
in the previous section. In fact, we always choose K = L, i.e. we potentially lose some
information available for the time t marginal µ. Also, we are not always able to calculate
the actual upper price bound correctly. Indeed, we can only do so in the case of uniform
marginals as discussed in Example 6.16. For all other distributions considered here, we
estimate the actual upper price bound based on the convergence results so far.

We begin with uniform marginal distributions and use the results about the left monotone
martingale transport plans from Example 6.16.

1. Let µ ∼ U [1, 3], ν ∼ U [0, 4]. Here, we partition the support of ν in maximally 2048
intervals, i.e. we have a difference of 1

512 between two partition points.

a) c (x, y) = xy2. The exact upper price bound is

P c2 (µ, ν) = sup
Q∈M2(µ,ν)

EQ [c (X,Y )] = EQlc(µ,ν)
[
XY 2

]
= Eµ

[
X

(
3
4

(3
2X + 1

2

)2
+ 1

4

(3
2 −

1
2X

)2
)]

= 12.5.

For all n = 3, . . . , 11, we calculate the upper price bound P c2 (µdn, νdn) and dn.
This yields the results of Table 7.1.

n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 12.808 12.57 12.517 12.504 12.501 12.5002 12.50006 12.50002 12.500004

dn 19.7 17.9 17.1 16.6 16.4 16.35 16.3 16.274 16.274

Table 7.1.: Approximation results in the case 1.a)

b) c (x, y) = −1
3(y−x)3. The exact upper price bound is P c2 (µ, ν) = 0.5. The upper

price bounds P c2 (µdn, νdn) are given in Table 7.2.

n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 0.493 0.499 0.5001 0.50004 0.50001 0.500004 0.500001 0.5000002 0.50000006

dn -0.44 -0.003 0.141 0.200 0.226 0.238 0.244 0.247 0.249

Table 7.2.: Approximation results in the case 1.b)

c) c (x, y) = exp(x) · y2. The exact upper price bound is P c2 (µ, ν) = 61.8801. The
upper price bounds P c2 (µdn, νdn) are given in Table 7.3.
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n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 65.8620 62.7911 62.0990 61.9338 61.8934 61.8834 61.8810 61.8803 61.8802

dn 254.8 233.2 224.1 219.8 217.7 216.7 216.1 215.8 215.5

Table 7.3.: Approximation results in the case 1.c)

2. Let µ ∼ U [9, 11], ν ∼ U [0, 20]. Here, we partition the support of ν in maximally 2048
intervals, i.e. we have a difference of 5

512 between two partition points.

a) c (x, y) = xy2. The exact upper price bound is

P c2 (µ, ν) = sup
Q∈M2(µ,ν)

EQ [c (X,Y )] = EQlc(µ,ν)
[
XY 2

]
= Eµ

[
X

(
11
20

(11
2 X −

81
2

)2
+ 9

20

(99
2 −

9
2X

)2
)]

= 1356.5.

For all n = 3, . . . , 11, we calculate the upper price bound P c2 (µdn, νdn) and dn.
This yields the results of Table 7.4.

n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 1421 1367.2 1359.35 1357.206 1356.676 1356.543 1356.511 1356.503 1356.501

dn 4133 2739 2922 2894 2882 2805 2826 2808 2819

Table 7.4.: Approximation results in the case 2.a)

b) c (x, y) = −1
3(y − x)3. The exact upper price bound is P c2 (µ, ν) = 16.5. The

upper price bounds P c2 (µdn, νdn) are given in Table 7.5.

n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 33.319 19.052 17.311 16.695 16.551 16.512 16.503 16.501 16.500

dn 1076 653 830 800 831 799 821 802 813

Table 7.5.: Approximation results in the case 2.b)

c) c (x, y) = exp(x) · y2. The exact upper price bound is P c2 (µ, ν) = 4041627.609.
The upper price bounds P c2 (µdn, νdn) are given in Table 7.6.

n 4 5 6 7 8 9 10 11
Pc

2 (µd
n, ν

d
n) 4826637 4236165 4093466 4054268 4044652 4042391 4041818 4041675

dn 200962386 199206022 212331405 207103361 198219006 200101331 199976026 200114438

Table 7.6.: Approximation results in the case 2.c)

Now let us consider more complicated marginals. We choose triangular distributions,
which still have a simple structure but already leave us no possibility to calculate the actual
upper price bound explicitly. Triangular distributions are slightly more natural to serve as
marginals for an asset price process than uniform distributions.
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3. Let µ ∼ ∆[1, 2, 3], ν ∼ ∆[0, 2, 4], i.e. the density functions of µ and ν are given by

fµ(x) =



0, x ≤ 1

x− 1, 1 < x ≤ 2

3− x, 2 < x ≤ 3

0, 3 < x

and fν(x) =



0, x ≤ 0

x, 0 < x ≤ 2

4− x, 2 < x ≤ 4

0, 4 < x.

Here, we partition the support of ν in maximally 2048 intervals, i.e. we have a
difference of 1

512 between two partition points.

a) c (x, y) = xy2. For all n = 3, . . . , 11, we calculate the upper price bound
P c2 (µdn, νdn). Assuming the standardization is correct, solving the equation

22n
(
P c2

(
µdn, ν

d
n

)
− P c2 (µ, ν)

)
= 22(n+1)

(
P c2

(
µdn+1, ν

d
n+1

)
− P c2 (µ, ν)

)
for n = 10, we receive a very good approximation to the exact price bound by
P c2 (µ, ν) ≈ 10.21832381, which we use in the calculation of dn. This yields the
results of Table 7.7.

n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 10.546 10.289 10.235 10.222 10.219 10.2186 10.21834 10.21834 10.21833

dn 20.98 18.13 17.03 16.54 16.24 16.10 16.01 15.99 15.98

Table 7.7.: Approximation results in the case 3.a)

b) c (x, y) = −1
3(y − x)3. The upper price bounds P c2 (µdn, νdn) are given in Table

7.8, where we use P c2 (µ, ν) ≈ 0.218323819 in the calculation of dn.

n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 0.22 0.218 0.2183 0.21833 0.21832 0.218323 0.2183236 0.2183238 0.21832381

dn -0.08 -0.1 -0.028 -0.028 -0.018 -0.0247 -0.0548 -0.0554 -0.0554

Table 7.8.: Approximation results in the case 3.b)

c) c (x, y) = exp(x) · y2. The upper price bounds P c2 (µdn, νdn) are given in Table 7.9,
where we use P c2 (µ, ν) ≈ 44.79714628 in the calculation of dn.

n 3 4 5 6 7 8 9 10 11
P c2 (µdn, νdn) 48.423 45.573 44.979 44.841 44.808 44.800 44.798 44.798 44.797

dn 232.03 198.45 186.00 180.60 177.34 175.92 174.89 174.61 174.57

Table 7.9.: Approximation results in the case 3.c)

The above considerations allude a convergence speed of 22n. However, we can only
investigate the case of uniform distributions exactly, as this is the only continuous distribu-
tion such that the mappings Td and Tu can be calculated explicitly using the methods of
Henry-Labordère & Touzi [38]. We shall later see that the general convergence speed is
indeed worse than this suspicion. 4
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7.3.3. Theoretical considerations

Theorem 7.11. Let (µ, ν) ∈ P≤cK,L. Let c : R2
+ → R be a Lipschitz continuous payoff

function such that cyy exists and c satisfies the martingale Spence Mirrlees condition. We
denote by Λ̂ the Lipschitz constant of c and assume max{Λ̂, sup(x,y)∈R2

+
|cyy(x, y)|} ≤ Λ.

Then, for any n ∈ N, we have∣∣∣EQlc(µdn,νdn) [c(X,Y )]− EQlc(µ,ν) [c(X,Y )]
∣∣∣ ≤ Mc

2n ,

where Mc := (7K + 5L) · Λ̃ with Λ̃ := Λ · max{L, 1}. If we additionally suppose that
Cµ, Cν ∈ C2(R+), then, for any n ∈ N, we have

∣∣∣EQlc(µdn,νdn) [c(X,Y )]− EQlc(µ,ν) [c(X,Y )]
∣∣∣ ≤ Md

2n+1 ,

where Md := (7TµK2 + 5TνL2) · Λ̃ with Tµ := sup
κ∈[0,K]

|C ′′µ(κ)| and Tν := sup
λ∈[0,L]

|C ′′ν (λ)|.

Remark 7.12. Without assuming that Cµ, Cν ∈ C2(R+), we also have∣∣∣EQlc(µdn,νdn) [c(X,Y )]− EQlc(µ,ν) [c(X,Y )]
∣∣∣

≤ 2Λ̃

7
2n−1∑
j=0

∥∥∥(Cµdn − Cµ)∣∣∣[knj ,knj+1)

∥∥∥
∞

+ 5
2n−1∑
i=0

∥∥∥(Cνdn − Cν)∣∣∣[`ni ,`ni+1)

∥∥∥
∞

 , n ∈ N.

This estimate is sharper than the ones in Theorem 7.11, but it directly depends on the
theoretical marginals µ and ν. ♦

In the proof of Theorem 7.11, we need some of the results presented in Section 5.2.1.
Thus, recall Definition 5.18, Theorem 5.21 and Remark 5.22. We also need to estimate the
Wasserstein distances of µdn and µ, and of νdn and ν. Therefore, recall the definition of the
Wasserstein distance in (2.1) and Lemma 2.3.

Theorem 7.13. Let (µ, ν) ∈ P≤cK,L. Then, for any n ∈ N, we have

W
(
µ, µdn

)
= 2 ·

2n−1∑
j=0

∥∥∥(Cµn
d
− Cµ

)∣∣∣[knj ,knj+1)

∥∥∥
∞
≤ K

2n , (7.4)

W
(
ν, νdn

)
= 2 ·

2n−1∑
i=0

∥∥∥(Cνn
d
− Cν

)∣∣∣[`ni ,`ni+1)

∥∥∥
∞
≤ L

2n . (7.5)

If we additionally suppose that Cµ, Cν ∈ C2(R+), then, for any n ∈ N, we have

W
(
µ, µdn

)
≤ Tµ ·K2

2n+1 , (7.6)

W
(
ν, νdn

)
≤ Tν · L2

2n+1 . (7.7)
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Proof. We only consider W
(
µ, µdn

)
, as the calculation of W

(
ν, νdn

)
is exactly the same.

By Lemma 2.3, we have

W
(
µ, µdn

)
=
∫ ∞
−∞

∣∣∣Fµ(t)− Fµdn(t)
∣∣∣ dt.

In order to calculate the integral, we plugin the distribution function representations using
the call option price function Cµ. In particular, we use Lemma 4.14 for Fµ and equation
(7.3) for Fµdn . Then we have

W
(
µ, µdn

)
=
∫ K

0

∣∣∣1 + C ′µ(t+)− Fµdn(t)
∣∣∣ dt =

2n−1∑
j=0

∫ knj+1

knj

∣∣∣∣∣C ′µ(t+)−
Cµ(knj+1)− Cµ(knj )

knj+1 − knj

∣∣∣∣∣ dt.
In the following, let us write mn

j := Cµ(knj+1)−Cµ(knj )
knj+1−k

n
j

. For all j = 0, . . . , 2n − 1 there
is a k(j, n) ∈ [knj , knj+1) such that for all t ∈ [knj , k(j, n)), we have Fµ(t) ≤ Fµdn(t), or
equivalently C ′µ(t+) ≤ mn

j , and for all t ∈ [k(j, n), knj+1), we have Fµ(t) ≥ Fµdn(t), or
equivalently C ′µ(t+) ≥ mn

j . Thus, we have

W
(
µ, µdn

)
=

2n−1∑
j=0

[∫ k(j,n)

knj

(
mn
j − C ′µ(t+)

)
dt+

∫ knj+1

k(j,n)

(
C ′µ(t+)−mn

j

)
dt
]
. (7.8)

Calculating the integrals leads to the exact representation in (7.4). We stress that the
set of points t ∈ R+ such that C ′µ(t−) 6= C ′µ(t+) is a Lebesgue null set. Hence, integrating
over the right derivative C ′µ(·+), we receive Cµ(·). Based on (7.8), we thus obtain

W
(
µ, µdn

)
=

2n−1∑
j=0

[
mn
j

(
k(j, n)− knj

)
−
(
Cµ(k(j, n))− Cµ(knj )

)
+
(
Cµ(knj+1)− Cµ(k(j, n))

)
−mn

j

(
knj+1 − k(j, n)

) ]

=
2n−1∑
j=0

[
Cµ(knj+1)− Cµ(knj )

knj+1 − knj

(
k(j, n)− knj

)
−
(
Cµ(k(j, n))− Cµ(knj )

)

+
(
Cµ(knj+1)− Cµ(k(j, n))

)
−
Cµ(knj+1)− Cµ(knj )

knj+1 − knj

(
knj+1 − k(j, n)

) ]

=
2n−1∑
j=0

1
knj+1 − knj

[ (
Cµ(knj+1)− Cµ(knj )

) (
k(j, n)− knj

)
−
(
Cµ(k(j, n))− Cµ(knj )

) (
knj+1 − knj

)
+
(
Cµ(knj+1)− Cµ(k(j, n))

) (
knj+1 − knj

)
−
(
Cµ(knj+1)− Cµ(knj )

) (
knj+1 − k(j, n)

) ]
,

where in the second and the third equality, we plugin the definition of mn
j and put its

denominator knj+1 − knj outside the brackets. If we now add a suitable zero and rearrange
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the terms, then we receive

W
(
µ, µdn

)
=

2n−1∑
j=0

2
knj+1 − knj

[ (
Cµ(knj+1)− Cµ(k(j, n))

) (
k(j, n)− knj

)
−
(
Cµ(k(j, n))− Cµ(knj )

) (
knj+1 − k(j, n)

) ]

= 2
2n−1∑
j=0

λnjCµ(knj+1) + (1− λnj )Cµ(knj )− Cµ
(
λnj k

n
j+1 + (1− λnj )knj

)

= 2
2n−1∑
j=0

Cµdn(k(j, n))− Cµ(k(j, n)),

where we use λnj := k(j,n)−knj
knj+1−k

n
j

and the linearly interpolating definition of Cµdn . By the choice
of k(j, n), we have that the slope of the secant through Cµ(knj ) and Cµ(knj+1) is contained
in [C ′µ(k(j, n)−), C ′µ(k(j, n)+)], i.e. it equals C ′µ(k(j, n)) whenever the derivative exists. In
particular, the distance of Cµdn and Cµ on [knj , knj+1) is maximal in k(j, n). That is,

k(j, n) = argmax
k∈[knj ,k

n
j+1)

∣∣∣Cµn
d
(k)− Cµ(k)

∣∣∣ .
Thus, we have the desired representation

W
(
µ, µdn

)
= 2 ·

2n−1∑
j=0

∥∥∥(Cµn
d
− Cµ

)∣∣∣[knj ,knj+1)

∥∥∥
∞
.

Now we turn to the estimate in (7.4). For this purpose, we estimate the slope C ′µ(t+)
for t ∈ [knj , knj+1). In particular, we have

C ′µ(t+)

≥ C
′
µ(knj +), t ∈ [knj , k(j, n))

≤ C ′µ(knj+1+), t ∈ [k(j, n), knj+1).

Using the above estimate in (7.8), we get

W
(
µ, µdn

)
≤

2n−1∑
j=0

[∫ k(j,n)

knj

(
mn
j − C ′µ(knj +)

)
dt+

∫ knj+1

k(j,n)

(
C ′µ(knj+1+)−mn

j

)
dt
]

=
2n−1∑
j=0

[ ∫ k(j,n)

knj

(
Cµ(knj+1)− Cµ(knj )

knj+1 − knj
− C ′µ(knj +)

)
dt

+
∫ knj+1

k(j,n)

(
C ′µ(knj+1+)−

Cµ(knj+1)− Cµ(knj )
knj+1 − knj

)
dt
]

=
2n−1∑
j=0

[(
Cµ(knj+1)− Cµ(knj )

knj+1 − knj
− C ′µ(knj +)

)(
k(j, n)− knj

)

+
(
C ′µ(knj+1+)−

Cµ(knj+1)− Cµ(knj )
knj+1 − knj

)(
knj+1 − k(j, n)

) ]
, (7.9)
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where we first plugin the definition of mn
j and then calculate the integrals. Then we

immediately get W (µ, µdn) ≤ K
2n . Indeed, if we apply the inequalities k(j, n) ≤ knj+1 and

−k(j, n) ≤ −knj in the estimate in (7.9), then we have

W
(
µ, µdn

)
≤

2n−1∑
j=0

(
C ′µ(knj+1+)− C ′µ(knj +)

) (
knj+1 − knj

)

= K

2n
2n−1∑
j=0

(
C ′µ(knj+1+)− C ′µ(knj +)

)
≤ K

2n . (7.10)

In order to obtain the estimate in (7.6), we use the fact that the slopes get closer and
closer when n increases. We assume that Cµ, Cν ∈ C2(R+) and rewrite the right hand side
of (7.9). Then we have

W
(
µ, µdn

)
≤

2n−1∑
j=0

[ (
Cµ(knj+1)− Cµ(knj )− C ′µ(knj )(knj+1 − knj )

)(k(j, n)− knj
knj+1 − knj

)

+
(
C ′µ(knj+1)(knj+1 − knj )− Cµ(knj+1) + Cµ(knj )

)(knj+1 − k(j, n)
knj+1 − knj

)]
.

Now let us use the Theorem of Taylor. In particular, for two times continuously differentiable
functions f : R→ R, we may use the formula of Taylor

f(x) = Tnf(x, a) +Rnf(x, a)

for n = 1, where T1f(x, a) = f(a) + f ′(a)(x− a) and R1f(x, a) =
∫ x
a (x− t)f ′′(t)dt. If we

now apply this formula in the form

f(x)− f(a)− f ′(a)(x− a) = f(x)− T1f(x, a) = R1f(x, a)

for f ≡ Cµ with x = knj+1 and a = knj , and with x = knj and a = knj+1, then we obtain

W
(
µ, µdn

)
≤

2n−1∑
j=0

((
k(j, n)− knj
knj+1 − knj

)
R1Cµ(knj+1, k

n
j ) +

(
knj+1 − k(j, n)
knj+1 − knj

)
R1Cµ(knj , knj+1)

)
.

The well-known general Taylor residual estimate states that we have

|R1f(x, a)| ≤ sup
ξ∈(a−r,a+r)

∣∣∣∣f ′′(ξ)2 (x− a)2
∣∣∣∣

for all x ∈ (a− r, a+ r). Choosing r = K
2n + ε, ε > 0, we achieve

∣∣∣R1Cµ
(
knj+1, k

n
j

)∣∣∣ ≤ sup
κ∈(knj−1−ε,k

n
j+1+ε)

∣∣∣∣∣C ′′µ(κ)
2

(
knj+1 − knj

)2
∣∣∣∣∣

= sup
κ∈(knj−1−ε,k

n
j+1+ε)

∣∣∣∣∣C ′′µ(κ)
2

(
K

2n
)2
∣∣∣∣∣ ≤ Tµ ·K2 · 2−(2n+1)
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and analogously |R1Cµ(knj , knj+1)| ≤ Tµ ·K2 · 2−(2n+1). Thus, we get

W
(
µ, µdn

)
≤

2n−1∑
j=0

(
k(j, n)− knj
knj+1 − knj

+
knj+1 − k(j, n)
knj+1 − knj

)
Tµ ·K2 · 2−(2n+1)

= 2n · Tµ ·K2 · 2−(2n+1) = Tµ ·K2

2n+1 ,

which is the desired estimate and thus ends the proof.

Remark 7.14. Theorem 7.13 yields two different estimates for the Wasserstein distance
W (µ, µdn) whenever we assume Cµ ∈ C2(R+). We analyze which one is the better estimate.
The second estimate is better if and only if

Tµ ·K2

2n+1 ≤ K

2n ⇐⇒ Tµ ≤
2
K
.

Using the definition of Tµ, we observe that it is better whenever C ′′µ(k) ≤ 2
K , k ∈ [0,K].

Let us now consider two exemplary call option price functions in order to show that both
estimates are relevant.
If we assume the structure Cµ(k) = (c0k

2 + c1k + c2)1{0≤k≤K} and as usual Cµ(0) = 1,
Cµ(K) = 0 and C ′µ(K) = 0, then we get

Cµ(k) =
((

k

K

)2
− 2 · k

K
+ 1

)
1{0≤k≤K}.

This price function satisfies C ′′µ ≡ 2
K2 ≤ 2

K on [0,K], whenever K ≥ 1. However, strictly
speaking we have Cµ /∈ C2(R+), as the second derivative C ′′µ(k) is not continuous in k = K.
Observe that the associated marginal µ has an atom of mass K−2

K in 0, as C ′µ(0) = − 2
K .

As any function Cµ such that Cµ(0) = 1, C ′µ(0) = −1 and C ′′µ(k) ≤ 2
K for all k ∈ [0,K],

takes negative values somewhere in
[
0, K−

√
K2−4K
2

]
assuming K ≥ 4, in this case there is

no continuous distribution µ on [0,K] such that C ′′µ ≤ 2
K .

Alternatively, choosing

Cµ(k) =
((

1− k

K

)
exp

(
−K − 1

K
k

))
1{0≤k≤K},

we have a price function such that the first estimate yields the better results. ♦

Proof of Theorem 7.11. We may rewrite
∣∣EQlc(µdn,νdn) [c(X,Y )]− EQlc(µ,ν) [c(X,Y )]

∣∣ as∣∣∣∣∣ sup
Q∈M2(µdn,νdn)

EQ [c(X,Y )]− sup
Q∈M2(µ,ν)

EQ [c(X,Y )]
∣∣∣∣∣ ,

since the payoff function c satisfies the martingale Spence Mirrlees condition.
Now we may reformulate this difference as the difference of the values of the dual

problems, as the payoff function satisfies the strong duality properties of Corollary 5.2 and
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Theorem 6.15 respectively. That is, we have

sup
Q∈M2(µdn,νdn)

EQ [c(X,Y )] = inf
(ϕ,ψ,h)∈D≥c2

{∫
R+
ϕ(x)µdn(dx) +

∫
R+
ψ(y)νdn(dy)

}
,

sup
Q∈M2(µ,ν)

EQ [c(X,Y )] = inf
(ϕ,ψ,h)∈D≥c2

{∫
R+
ϕ(x)µ(dx) +

∫
R+
ψ(y)ν(dy)

}
.

Now let us apply Theorem 5.21 and Remark 5.22. For this purpose, we have to prove that
the conditions are satisfied. By assumption and by construction respectively, we have that
µ ≤c ν and µdn ≤c νdn are compactly supported. The payoff function c is Lipschitz continuous
on [0, L] × [0, L] = conv(supp(ν)) × conv(supp(ν)) with constant Λ̂ ≤ Λ. It remains to
show that there is a Lipschitz continuous function u : [0, L] = conv(supp(ν))→ R such
that y 7→ c(x, y) + u(y) is concave on [0, L] for µ-almost every x ∈ R+. As cyy ≤ Λ, it
is clear that u(y) := −Λ

2 y
2 is such a function with Lipschitz constant ΛL. We define

Λ̃ := Λ ·max {L, 1}.
Thus, by Theorem 5.21 there are solutions (ϕ∗, ψ∗, h∗) and (ϕ∗n, ψ∗n, h∗n) for the dual

problems with respect to (µ, ν) and (µdn, νdn) respectively. By Remark 5.22, ϕ∗ and ϕ∗n

are Lipschitz continuous with constant 7Λ̃, and ψ∗ and ψ∗n are Lipschitz continuous with
constant 5Λ̃. Hence, we have

EQlc(µdn,νdn) [c(X,Y )]− EQlc(µ,ν) [c(X,Y )]

= inf
(ϕ,ψ,h)∈D≥c2

{∫
R+
ϕ(x)µdn(dx) +

∫
R+
ψ(y)νdn(dy)

}

− inf
(ϕ,ψ,h)∈D≥c2

{∫
R+
ϕ(x)µ(dx) +

∫
R+
ψ(y)ν(dy)

}

≤
∫
R+
ϕ∗(x)µdn(dx) +

∫
R+
ψ∗(y)νdn(dy)

−
(∫

R+
ϕ∗(x)µ(dx) +

∫
R+
ψ∗(y)ν(dy)

)

=
∫
R+
ϕ∗(x)

(
µdn − µ

)
(dx) +

∫
R+
ψ∗(y)

(
νdn − ν

)
(dy)

≤ 7Λ̃W
(
µ, µdn

)
+ 5Λ̃W

(
ν, νdn

)
,

where in the last inequality we scale the integrands by their Lipschitz constants and then
use the dual representation of the Wasserstein distance in (2.2). Completely analogous,
but using ϕ∗n and ψ∗n in the first inequality instead of ϕ∗ and ψ∗, we obtain

EQlc(µ,ν) [c(X,Y )]− EQlc(µdn,νdn) [c(X,Y )] ≤ 7Λ̃W
(
µ, µdn

)
+ 5Λ̃W

(
ν, νdn

)
.

Using the estimates in (7.4) - (7.7), we have the claimed convergence speed estimates.

In Example A.4, we show that the convergence speed of Theorem 7.11 is best possible.
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7.4. Generalized results

In this section, we generalize the results of Sections 7.2 and 7.3. In particular, we aim
at generalizing Theorems 7.8 and 7.11. In Section 7.4.1, we get rid of the assumption
that the payoff function satisfies the martingale Spence Mirrlees condition and also of the
specially designed sequence of marginals (µdn, νdn)n∈N. We further present a result relying
on a more general set of observable call option prices. All results of that section are derived
for theoretical marginals with bounded support. In Section 7.4.2, we adapt the definition
of the marginals µdn and νdn such that we get rid of Assumption 7.2, i.e. such that we may
consider theoretical marginals with unbounded support.

7.4.1. The case of general payoff functions & call option prices

In order to generalize the results of the previous sections, we closely analyze the proof
of Theorem 7.11. First we observe that the martingale Spence Mirrlees condition is not
necessary. Thus, we get the following result.

Theorem 7.15. Let (µ, ν) ∈ P≤cK,L. Let c : R2
+ → R be a Lipschitz continuous payoff

function such that cyy exists. We denote by Λ̂ the Lipschitz constant of c and assume
max{Λ̂, sup(x,y)∈R2 |cyy(x, y)|} ≤ Λ. Then, for any n ∈ N, we have∣∣∣∣∣ sup

Q∈M2(µdn,νdn)
EQ [c(X,Y )]− sup

Q∈M2(µ,ν)
EQ [c(X,Y )]

∣∣∣∣∣ ≤ Mc

2n ,

where Mc = (7K + 5L) · Λ̃ with Λ̃ = Λ · max{L, 1}. If we additionally suppose that
Cµ, Cν ∈ C2(R+), then, for any n ∈ N, we have∣∣∣∣∣ sup

Q∈M2(µdn,νdn)
EQ [c(X,Y )]− sup

Q∈M2(µ,ν)
EQ [c(X,Y )]

∣∣∣∣∣ ≤ Md

2n+1 ,

where Md = (7TµK2 + 5TνL2) · Λ̃ with Tµ = sup
κ∈[0,K]

|C ′′µ(κ)| and Tν = sup
λ∈[0,L]

|C ′′ν (λ)|.

Furthermore, we observe that the proof is parted in the estimation of the price bound
difference against the Wasserstein distances of the approximating marginals and the
estimation of those Wasserstein distances. Removing the second part and replacing µdn and
νdn by general approximating sequences µn and νn, we obtain the following result.

Theorem 7.16. Let (µ, ν) ∈ P≤cK,L. Let c : R2
+ → R be a payoff function as in Theorem

7.15. Finally, let (µn, νn) ∈ P≤cn , n ∈ N. Then, for any n ∈ N, we have∣∣∣∣∣ sup
Q∈M2(µn,νn)

EQ [c(X,Y )]− sup
Q∈M2(µ,ν)

EQ [c(X,Y )]
∣∣∣∣∣ ≤ Λ̃ [7W (µ, µn) + 5W (ν, νn)] .

We may quantify the Wasserstein distances of the previous theorem. For this purpose,
we need a lemma provided by Guo & Obłój [32].
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Lemma 7.17 ([32, Lemma 3.13]). Let ρ1, ρ2 ∈ P([0, R]), R > 0. If there is an ε > 0 such
that

|Cρ1(k)− Cρ2(k)| ≤ ε, k ∈ [0, R],

then W (ρ1, ρ2) ≤ R
√

2ε.

Lemma 7.18. Let (µ, ν) ∈ P≤cK,L and (µn, νn) ∈ P≤cn . Then, for any n ∈ N, we have

W (µ, µn) ≤ K
√

21−n,

W (ν, νn) ≤ L
√

21−n.

Proof. We prove the claim for W (µ, µn) and use Lemma 7.17. Therefore, we have to
estimate |Cµn(k)− Cµ(k)| for all k ∈ [0,K]. There is a 0 ≤ j ≤ 2n − 1 such that
k ∈ [knj , knj+1]. Then we have

Cµn(k)− Cµ(k) ≤ Cµn(knj )− Cµ(knj+1) = Cµ(knj )− Cµ(knj+1) ≤ knj+1 − knj = 1
2n ,

where the first inequality is the monotonicity of Cµ and Cµn , the equality is implied by
the consistency, and the second inequality holds by C ′µ(0+) ≥ −1 and the convexity of Cµ.
Analogously, we have

Cµn(k)− Cµ(k) ≥ Cµn(knj+1)− Cµ(knj ) = Cµ(knj+1)− Cµ(knj ) ≥ knj − knj+1 = − 1
2n .

Thus, |Cµn(k)−Cµ(k)| ≤ 1
2n for all k ∈ [0,K]. Using Lemma 7.17, the assertion holds.

This quantification yields the following explicit version of Theorem 7.16.

Corollary 7.19. Let the conditions of Theorem 7.16 be satisfied. Then, for any n ∈ N,
we have ∣∣∣∣∣ sup

Q∈M2(µn,νn)
EQ [c(X,Y )]− sup

Q∈M2(µ,ν)
EQ [c(X,Y )]

∣∣∣∣∣ ≤ Λ̃
√

21−n(7K + 5L).

Analyzing the proof of Lemma 7.18, we observe that a result similar to Corollary
7.19 may be deduced for general partitions and thus general sequences of approxima-
ting marginals. For R ∈ R+, we denote by ZR = (ZRn )n∈N a sequence of partitions of
[0, R]. If ZRn = {zn0 , . . . , znjn}, jn ∈ N with 0 = zn0 < . . . < znjn = R, then we denote
∆ZRn := max

j=1,...,jn
|znj − znj−1|.

For 0 < R1 ≤ R2 <∞, let (µ, ν) ∈ P≤cR1,R2
and ZR1 and ZR2 be sequences of partitions

of [0, R1] and [0, R2] respectively. Then, for all n ∈ N, we denote by

Cµ
Z
R1
n

:=
{
Cµ(z)

∣∣∣ z ∈ ZR1
n

}
and Cν

Z
R2
n

:=
{
Cν(z)

∣∣∣ z ∈ ZR2
n

}
the sets of observable call option prices associated to the strike prices in ZR1

n and ZR2
n .
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Finally, for all n ∈ N, we define

P≤c
Z
R1
n ,Z

R2
n

:=
{

(ρ1, ρ2) ∈ P(R+)× P(R+)
∣∣∣∣∣ ρ1 is consistent with Cµ

Z
R1
n

,

ρ2 is consistent with Cν
Z
R2
n

and ρ1 ≤c ρ2

}
.

Theorem 7.20. Let c : R2
+ → R be a payoff function as in Theorem 7.16. Let K,L ∈ R+

be arbitrary and (µ, ν) ∈ P≤cK,L. Let ZK and ZL be sequences of partitions of [0,K] and
[0, L] with ∆ZKn

n→∞→ 0 and ∆ZLn
n→∞→ 0 and let (µn, νn)n∈N be a sequence of approximating

marginals such that (µn, νn) ∈ P≤c
ZKn ,Z

L
n
for all n ∈ N. Then, for any n ∈ N, we have

∣∣∣∣∣ sup
Q∈M2(µn,νn)

EQ [c(X,Y )]− sup
Q∈M2(µ,ν)

EQ [c(X,Y )]
∣∣∣∣∣ ≤ Λ̃

(
7K
√

2∆ZKn + 5L
√

2∆ZLn
)
.

In particular, the mapping

P c2 :

P
≤c
K,L → R

(ρ1, ρ2) 7→ supQ∈M2(ρ1,ρ2) EQ[c(X,Y )]

is continuous with respect to the topology Tcb(R+)2 as well as the topology T1(R+)2.

Proof. As in the proof of Theorem 7.11, we get∣∣∣∣∣ sup
Q∈M2(µn,νn)

EQ [c(X,Y )]− sup
Q∈M2(µ,ν)

EQ [c(X,Y )]
∣∣∣∣∣ ≤ Λ̃ [7W (µ, µn) + 5W (ν, νn)] . (7.11)

Indeed, the techniques used to obtain the above estimate are independent of the approxi-
mating measures as well as the underlying partitions.
As in the proof of Lemma 7.18, for a general partition ZK of [0,K] and an arbitrary

measure µn consistent with Cµ
ZKn

, we obtain |Cµn(k)− Cµ(k)| ≤ ∆ZKn for all n ∈ N.

By Lemma 7.17, we then haveW (µ, µn) ≤ K
√

2∆ZKn . Proceeding analogously, we obtain

W (ν, νn) ≤ L
√

2∆ZLn . The claim concerning the convergence speed holds by (7.11).
The continuity of the mapping P c2 follows from the convergence speed assertion in

equation (7.11), when we observe that for every sequence (µn, νn)n∈N in P≤cK,L there are
sequences of partitions ZK and ZL such that (µn, νn) ∈ P≤c

ZKn ,Z
L
n
for all n ∈ N.

7.4.2. The case of general theoretical marginals

In this section, we adapt the definition of µdn and νdn to the case that Assumption 7.2 is not
satisfied, i.e. that the theoretical marginals µ, ν ∈ P(R+) have unbounded support. We
denote the resulting measures by µ∞n and ν∞n .
In this case, Guo & Obłój [32] derive various results on closely related problems using

similar techniques such as Theorem 5.21. However, we believe that their proofs are incorrect,
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as the conditions of the above mentioned theorem are not satisfied. We stress that the
results of this chapter, though very similar, are independent from those of Guo & Obłój
[32] in the sense that neither are special cases of the other. Still, the results are so similar
that techniques which overcome the errors in the work of Guo & Obłój [32] are very likely
to improve and generalize our results as well.

Differently to the compact situation, we do not allow the strike prices to be different for
the observed option prices. Thus, for every n ∈ N, we denote the set of strike prices by

Z∞n :=
{
knj := j

2n

∣∣∣∣ j = 0, . . . , 4n
}
.

Then we have kn0 = 0 and kn4n = 2n. We denote the options prices associated to Z∞n by

Cµ,∞n := {Cµ(k) | k ∈ Z∞n } and Cν,∞n := {Cν(k) | k ∈ Z∞n } .

Now let us define candidate functions Cµ∞n , Cν∞n ∈ K
C consistent with the prices in Cµ,∞n

and Cν,∞n such that Cµ∞n ≤ Cν∞n , from which we may then derive consistent measures
µ∞n , µ

∞
n ∈ P(R+) such that µ∞n ≤c ν∞n . As in the compactly supported case, let us use

piecewise linear functions. Then the main difference to the former case is the fact that
Cµ(kn4n) 6= 0 and Cν(kn4n) 6= 0. Hence, for k ≥ kn4n , it is unclear how to choose Cµ∞n (k) and
Cν∞n (k). However, for k ∈ [0, kn4n), we choose the functions Cµ∞n (k) and Cν∞n (k) similar to
Section 7.3.1, i.e. for k ∈ [knj , knj+1), j = 0, . . . , 4n − 1, we define

Cµ∞n (k) :=
knj+1 − k
knj+1 − knj

Cµ(knj ) +
k − knj

knj+1 − knj
Cµ(knj+1), (7.12)

Cν∞n (k) :=
knj+1 − k
knj+1 − knj

Cν(knj ) +
k − knj

knj+1 − knj
Cν(knj+1). (7.13)

It remains to decide how to choose Cµ∞n and Cν∞n on (kn4n ,∞). For this, we introduce
two methods that seem natural, explain why both do not work as desired, and adapt one
of them in order to be purposeful.

1. Replace the observed option prices Cµ∞n (kn4n) and Cν∞n (kn4n) by zero. Then we have
Cµ∞n ≡ Cν∞n ≡ 0 on (kn4n ,∞), and linearly interpolating on [kn4n−1, k

n
4n), we have

completely defined the price functions. This method yields two problems. While
the first problem - the consistency is lost - is of minor interest when it comes to
approximation and convergence, the second problem is more severe. In Figure 7.1,
we see that the convexity may be violated by this choice. This is impractical, as it
gives rise to signed measures.

2. Choose Cµ∞n and Cν∞n on (kn4n ,∞) as the pointwise maximum of the linear continuation
of Cµ∞n and Cν∞n on [kn4n−1, k

n
4n) respectively and the zero function. Then we remain

to have consistency and convexity of the two price functions. However, in general we
do not have Cµ∞n ≤ Cν∞n such that the convex order of the resulting measures is lost.
This is illustrated in Figure 7.2.
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kn4n−2 kn4n−1 kn4n

Cν(kn4n−2)

Cν(kn4n−1)

Cν(kn4n)

Cµ(kn4n−2)

Cµ(kn4n−1)

Cµ(kn4n)

Figure 7.1.: The convexity of Cν∞n (red) is lost.

kn4n−1 kn4n knν,0 knµ,0

Cν(kn4n−1)

Cν(kn4n)

Cµ(kn4n−1)

Cµ(kn4n)

Figure 7.2.: The order Cµ∞n ≤ Cν∞n is lost.
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In order to obtain a useful choice for the price function on the critical interval, we adapt
the second method slightly. For this purpose, we denote by knµ,0 and knν,0 the smallest zeros
of the continuations of Cµ∞n and Cν∞n on [kn4n−1, k

n
4n) to (kn4n ,∞) as described in the second

method, i.e. exactly the point at which the maximum switches. Formally, we have

knµ,0 = inf
{
k ∈ (kn4n ,∞)

∣∣∣∣∣ kn4n − k
kn4n − kn4n−1

Cµ(kn4n−1) +
k − kn4n−1
kn4n − kn4n−1

Cµ(kn4n) = 0
}
,

knν,0 = inf
{
k ∈ (kn4n ,∞)

∣∣∣∣∣ kn4n − k
kn4n − kn4n−1

Cν(kn4n−1) +
k − kn4n−1
kn4n − kn4n−1

Cν(kn4n) = 0
}
.

We have to distinguish two cases.

1. Let knµ,0 ≤ knν,0. Then the procedure described in the second method already remains
the order of the price functions. Hence, we choose Cµ∞n and Cν∞n exactly as the
described linear continuations truncated in zero. This is illustrated in Figure 7.3. For
the resulting measures, we observe that µ∞n and ν∞n have an atom in k∞µ,0 and knν,0
respectively, but neither have an atom in kn4n .

kn4n−1 kn4n knµ,0 knν,0

Cν(kn4n−1)

Cν(kn4n)

Cµ(kn4n−1)

Cµ(kn4n)

Figure 7.3.: If knµ,0 ≤ knν,0, then the convexity and the order Cµ∞n ≤ Cν∞n are preserved.

2. Let knν,0 < knµ,0. Then the procedure described in the second method fails to remain
the order of the price functions. Hence, we choose Cµ∞n as the described linear
continuation and Cν∞n as linear interpolation between the points (kn4n , Cν(kn4n)) and
(knµ,0, 0) on (kn4n , knµ,0) and constantly equal to zero on [knµ,0,∞). This procedure is
illustrated in Figure 7.4. Doing so, we reduce the slope for none of the functions in
order to keep the convexity and we guarantee the order of the functions by reducing
both to zero in the same point. For the resulting measures, we observe that ν∞n has
atoms in kn4n and knµ,0, while µ∞n has only one atom in knµ,0.
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kn4n−1 kn4n knν,0 knµ,0

Cν(kn4n−1)

Cν(kn4n)

Cµ(kn4n−1)

Cµ(kn4n)

Figure 7.4.: If knν,0 < knµ,0, then the convexity is preserved but the order Cµ∞n ≤ Cν∞n is lost.

After this heuristic description, we formalize the choices of Cµ∞n and Cν∞n on (kn4n ,∞). For
k ∈ (kn4n , knµ,0), we define

Cµ∞n (k) :=
knµ,0 − k
knµ,0 − kn4n

Cµ(kn4n) (7.14)

and Cµ∞n ≡ 0 on (knµ,0,∞). For Cν∞n a case distinction is necessary.

1. Let knµ,0 ≤ knν,0. Then we define

Cν∞n (k) :=
knν,0 − k
knν,0 − kn4n

Cν(kn4n) (7.15)

for k ∈ (kn4n , knν,0) and Cν∞n ≡ 0 on (knν,0,∞).

2. knµ,0 > knν,0. Then we define

Cν∞n (k) :=
knµ,0 − k
knµ,0 − kn4n

Cν(kn4n) (7.16)

for k ∈ (kn4n , knµ,0) and Cν∞n ≡ 0 on (knµ,0,∞).

By (7.12) - (7.16), we define call option price functions Cµ∞n , Cν∞n ∈ K
C .

From those functions we may derive probability measures µ∞n , ν∞n ∈ P(R+) with expected
value equal to one. The resulting measures are in convex order by construction, i.e.
µ∞n ≤c ν∞n , and they are discrete measures of the form

µ∞n :=
4n−1∑
j=0

ωnj δknj + µ∞n,r,
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where ωnj = Cµ(knj+1)−Cµ(knj )
knj+1−k

n
j

− Cµ(knj )−Cµ(knj−1)
knj −k

n
j−1

and

µ∞n,r := ωnµδknµ,0 :=
Cµ(kn4n−1)− Cµ(kn4n)

kn4n − kn4n−1
δknµ,0 ,

and slightly more complicated

ν∞n :=
4n−1∑
i=0

ϑni δkni + ν∞n,r,

where ϑni = Cν(kni+1)−Cν(kni )
kni+1−k

n
i

− Cν(kni )−Cν(kni−1)
kni −k

n
i−1

and

ν∞n,r :=
(
ϑn4nδkn4n + ϑnµδknµ,0

)
1{knµ,0>knν,0} + ϑnν δknν,01{knµ,0≤knν,0}

:=
([
−Cν(kn4n)
knµ,0 − kn4n

−
Cν(kn4n)− Cν(kn4n−1)

kn4n − kn4n−1

]
δkn4n + Cν(kn4n)

knµ,0 − kn4n
δknµ,0

)
1{knµ,0>knν,0}

+
Cν(kn4n−1)− Cν(kn4n)

kn4n − kn4n−1
δknν,01{knµ,0≤knν,0}.

Now we investigate the convergence and convergence speed of |P c2 (µ∞n , ν∞n )− P c2 (µ, ν)|,
where we assume Cµ, Cν ∈ C2(R+) and that c : R2

+ → R satisfies the assumptions of
Theorem 5.21, where we assume that the Lipschitz constants of c and the y-concavifier u
are less than Λ > 0. Thus, using Theorem 5.21, Remark 5.22 and the same techniques as
in the proof of Theorem 7.11, we obtain the estimate

|P c2 (µ∞n , ν∞n )− P c2 (µ, ν)| ≤ Λ [19W (µ, µ∞n ) + 17W (ν, ν∞n )] . (7.17)

Let us first calculate W (µ, µ∞n ). In great parts, we may proceed exactly as we do to
obtain (7.9) and (7.10) in the proof of Theorem 7.13. Thus, we get

W (µ, µ∞n ) =
4n−1∑
j=0

[∫ k(j,n)

knj

(mn
j − C ′µ(t))dt+

∫ knj+1

k(j,n)
(C ′µ(t)−mn

j )dt
]

+
∫ ∞
kn4n

∣∣Fµ(t)− Fµ∞n (t)
∣∣ dt

≤
1 + C ′µ(kn4n)

2n +
∫ ∞
kn4n

∣∣Fµ(t)− Fµ∞n (t)
∣∣ dt.

It remains to estimate the second summand. For this purpose, recall that µ∞n has no atom
in kn4n . Thus, we have Fµ ≥ Fµ∞n on [kn4n , knµ,0) and we have Fµ ≤ Fµ∞n ≡ 1 on [knµ,0,∞).
Hence, we have∫ ∞

kn4n

∣∣Fµ(t)− Fµ∞n (t)
∣∣ dt =

∫ knµ,0

kn4n
Fµ(t)− Fµ∞n (t)dt+

∫ ∞
knµ,0

1− Fµ(t)dt.

If we now plugin the distribution function representations using the associated call option
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price functions, then we get∫ ∞
kn4n

∣∣Fµ(t)− Fµ∞n (t)
∣∣ dt

=
∫ knµ,0

kn4n
1 + C ′µ(t)−

(
1 +

Cµ(kn4n)− Cµ(kn4n−1)
kn4n − kn4n−1

)
dt+

∫ ∞
knµ,0

1− (1 + C ′µ(t))dt

=
∫ knµ,0

kn4n
C ′µ(t)−

(
Cµ(kn4n)− Cµ(kn4n−1)

kn4n − kn4n−1

)
dt+ Cµ(knµ,0)

= Cµ(knµ,0)−
(
Cµ(kn4n) +

(
Cµ(kn4n)− Cµ(kn4n−1)

kn4n − kn4n−1

)
(knµ,0 − kn4n)

)
+ Cµ(knµ,0)

= 2Cµ(knµ,0),

where in the last step we use that
(
Cµ(kn4n) +

(
Cµ(kn4n )−Cµ(kn4n−1)

kn4n−k
n
4n−1

)
(knµ,0 − kn4n)

)
= 0, as

the fraction is exactly the slope of the linear function Cµ∞n on (kn4n , knµ,0), which has, starting
in Cµ(kn4n), its zero in knµ,0.

Now let us calculate W (ν, ν∞n ). Analogously to the situation with µ and µ∞n , we obtain

W (ν, ν∞n ) ≤ 1 + C ′ν(kn4n)
2n +

∫ ∞
kn4n

∣∣Fν(t)− Fν∞n (t)
∣∣ dt.

It remains to estimate the second summand. Therefore we have to distinguish two cases.

1. Let knµ,0 ≤ knν,0. Then ν∞n has no atom in kn4n , but only in knν,0. Thus, we are in the
exact same situation as for W (µ, µ∞n ), i.e. we have∫ ∞

kn4n

∣∣Fν(t)− Fν∞n (t)
∣∣ dt = 2Cν(knν,0).

2. Let knµ,0 > knν,0. Then ν∞n has atoms in kn4n and knµ,0, but we do not know the mass
of δkn4n in particular. Thus, depending on this mass, we have to distinguished three
further cases. We illustrate these cases in Figure 7.5.

k(4n − 1, n) kn4n knµ,0

1
Fν

Fν∞n

Figure 7.5.: Possible distribution functions of ν∞n (blue).
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2.1. Let Fν(kn4n) ≥ Fν∞n (kn4n). This is very similar to the first case as Fν ≥ Fν∞n on
[kn4n , knµ,0) and Fν ≤ Fν∞n on [knµ,0,∞). Though the value of Fν∞n is different and
we have to replace knν,0 by knµ,0 in the calculation, we analogously obtain∫ ∞

kn4n

∣∣Fν(t)− Fν∞n (t)
∣∣ dt = 2Cν(knµ,0).

2.2. Let Fν(kn4n) < Fν∞n (kn4n) and Fν(knµ,0−) > Fν∞n (knµ,0−). Then there exists some
k(4n, n) ∈ (kn4n , knµ,0) such that Fν ≤ Fν∞n on (kn4n , k(4n, n)) and Fν ≥ Fν∞n on
(k(4n, n), knµ,0). Thus, for the integral of interest we have

∫ ∞
kn4n

∣∣Fν(t)− Fν∞n (t)
∣∣ dt =

∫ k(4n,n)

kn4n
Fν∞n (t)− Fν(t)dt

+
∫ knµ,0

k(4n,n)
Fν(t)− Fν∞n (t)dt+

∫ ∞
knµ,0

1− Fν(t)dt

=
∫ k(4n,n)

kn4n

(
0− Cν(kn4n)
knµ,0 − kn4n

)
− C ′ν(t)dt

+
∫ knµ,0

k(4n,n)
C ′ν(t)−

(
0− Cν(kn4n)
knµ,0 − kn4n

)
dt+ Cν(knµ,0)

Now the two integrals may be estimated analogously to the estimates in (7.9)
and (7.10) in the proof of Theorem 7.13. Thus, we obtain∫ ∞

kn4n

∣∣Fν(t)− Fν∞n (t)
∣∣ dt ≤ (knµ,0 − kn4n) (C ′ν(knµ,0)− C ′ν(kn4n)

)
+ Cν(knµ,0).

2.3. Let Fν(kn4n) < Fν∞n (kn4n) and Fν(knµ,0−) ≤ Fν∞n (knµ,0−). Then we have Fν ≤ Fν∞n
on (kn4n ,∞). However, this is the case only if C ′ν ≤

0−Cν(kn4n )
knµ,0−k

n
4n

on (kn4n , knµ,0).
From Cν(kn4n) = Cν∞n (kn4n) we may then derive Cν ≤ Cν∞n on (kn4n , knµ,0). This
implies Cν(knµ,0) ≤ Cν∞n (knµ,0) = 0, which is a contradiction to Cµ ≤ Cν , as by
construction and Cµ ∈ C2(R+), we have Cµ(knµ,0) > 0. Thus, this case can not
appear.

Let us conclude the results on the Wasserstein distances. We have

W (µ, µ∞n ) ≤
1 + C ′µ(kn4n)

2n + 2Cµ(knµ,0) = Fµ(kn4n)
2n + 2Cµ(knµ,0)

and

W (ν, ν∞n ) ≤ 1 + C ′ν(kn4n)
2n + 2Cν(knν,0)1{knµ,0≤knν,0}

+ 1{knµ,0>knν,0} ×
(

2Cν(knµ,0)1{Fν(kn4n )≥Fν∞n (kn4n )}

+
((
knµ,0 − kn4n

) (
C ′ν(knµ,0)− C ′ν(kn4n)

)
+ Cν(knµ,0)

)
1{Fν(kn4n )<Fν∞n (kn4n )}

)
.
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Defining hν(kn4n) := 1{Fν(kn4n )≥Fν∞n (kn4n )} and using the structural properties, we achieve
the simplified estimate

W (ν, ν∞n ) ≤ Fν(kn4n)
2n + Cν

(
max{knν,0, knµ,0}

)
+ Cν

(
max{knν,0, knµ,0}

)(
1{knµ,0≤knν,0} + 1{knµ,0>knν,0}h

ν(kn4n)
)

+
(
knµ,0 − kn4n

) (
C ′ν(knµ,0)− C ′ν(kn4n)

)
1{knµ,0>knν,0}(1− h

ν(kn4n)).

Now plugging in the estimates for the Wasserstein distances in (7.17), we obtain

|P c2 (µ∞n , ν∞n ) − P c2 (µ, ν)| ≤ 19Λ
(
Fµ(kn4n)

2n + 2Cµ(knµ,0)
)

+ 17Λ
(
Fν(kn4n)

2n + Cν
(
max{knν,0, knµ,0}

)
+ Cν

(
max{knν,0, knµ,0}

)(
1{knµ,0≤knν,0} + 1{knµ,0>knν,0}h

ν(kn4n)
)

+
(
knµ,0 − kn4n

) (
C ′ν(knµ,0)− C ′ν(kn4n)

)
1{knµ,0>knν,0}(1− h

ν(kn4n))
)

The previous calculations prove the following theorem, which concludes the results derived
in this section.

Theorem 7.21. Let µ, ν ∈ P(R+). Let c : R2
+ → R satisfy the assumptions of Theorem

5.21 such that the Lipschitz constants of c and its y-concavifier are less than Λ > 0. Let
Cµ, Cν ∈ C2(R+). Then, for any n ∈ N, we have

|P c2 (µ∞n , ν∞n ) − P c2 (µ, ν)| ≤ 19Λ
(
Fµ(kn4n)

2n + 2Cµ(knµ,0)
)

+ 17Λ
(
Fν(kn4n)

2n + Cν
(
max{knν,0, knµ,0}

)
+ Cν

(
max{knν,0, knµ,0}

)(
1{knµ,0≤knν,0} + 1{knµ,0>knν,0}h

ν(kn4n)
)

+
(
knµ,0 − kn4n

) (
C ′ν(knµ,0)− C ′ν(kn4n)

)
1{knµ,0>knν,0}(1− h

ν(kn4n))
)
.

Remark 7.22. Assuming in Theorem 7.21 that the measures µ and ν have compact support,
say contained in [0,K], we recover an assertion similar to Theorem 7.15 for all n ∈ N such
that 2n ≥ K. Indeed if n is great enough, then under the compactness assumption we
have by definition knµ,0 = knν,0 = kn4n as well as Cµ(knµ,0) = Cν(max{knµ,0, knν,0}) = 0 and
Fµ(knµ,0) = Fµ(kn4n) = Fν(knν,0) = Fν(kn4n) = 1. Thus, we then have

|P c(µ∞n , ν∞n )− P c(µ, ν)| ≤ 36 · Λ
2n . ♦

Finally, as in the previous section, we may generalize the above theorem concerning the
sequence of approximating measures. In return, we lose the explicit numerical statement.
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Theorem 7.23. Let the assumptions of Theorem 7.21 be satisfied and let µn, νn ∈ P(R+)
be such that µn ≤c νn for all n ∈ N. Then, for any n ∈ N, we have

|P c2 (µn, νn)− P c2 (µ, ν)| ≤ 19ΛW (µ, µn) + 17ΛW (ν, νn).

In particular, the mapping

P c2 :

P(R+)× P(R+)→ R

(ρ1, ρ2) 7→ supQ∈M2(ρ1,ρ2)) EQ[c(X,Y )]

is continuous with respect to the topology Tcb(R+)2 as well as the topology T1(R+)2.



APPENDIX A

Useful supplements

A.1. Supplements to Chapter 4

Proof of Lemma 4.3. Replacing φ by φ− h, we may without loss of generality assume that
φ is non-negative and lower semi-continuous. By Lemma 2.1, we may write φ = limn→∞ φn,

where (φn)n∈N is a non-decreasing sequence of functions φn ∈ Cb(R). Then we have∫
X×Y

φ(x, y)π(d(x, y)) = lim
n→∞

∫
X×Y

φn(x, y)π(d(x, y))

= lim
n→∞

lim
k→∞

∫
X×Y

φn(x, y)πk(d(x, y)),

where the first equality holds by the monotone convergence theorem and the second equality
holds by the definition of weak convergence. As the φn are continuous and such that we
have φn ≤ φ, n ∈ N, we obtain∫

X×Y
φ(x, y)π(d(x, y)) = lim

n→∞
lim inf
k→∞

∫
X×Y

φn(x, y)πk(d(x, y))

≤ lim
n→∞

lim inf
k→∞

∫
X×Y

φ(x, y)πk(d(x, y))

= lim inf
k→∞

∫
X×Y

φ(x, y)πk(d(x, y)).

Proof of Lemma 4.4. Let µ ∈ P, ν ∈ Q and π ∈ Π2(µ, ν). By assumption, for any ε > 0
there are a Kε ⊆ X independent of the choice of µ ∈ P such that µ(X \Kε) ≤ ε and an
Lε ⊆ Y independent of the choice of ν ∈ Q such that ν(Y \Lε) ≤ ε. Then, for any coupling
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(X,Y ) of (µ, ν), we have

P((X,Y ) /∈ Kε × Lε) ≤ P(X /∈ Kε) + P(Y /∈ Lε) = µ(X \Kε) + ν(Y \ Lε) ≤ 2ε. (A.1)

As Kε × Lε is a compact set and (A.1) is independent of the coupling (X,Y ), we obtain
that Π2(P,Q) is indeed tight in P(X × Y).

A.2. Supplements to Chapter 5

Proof of Lemma 5.4. We construct a suitable function u ∈ S starting with an approxima-
ting step-function t ≤ f . Therefore let ε > 0. We proceed with the construction such
that it is uniform for all µi, i = 1, . . . , n. Therefore we notice that the set {µ1, . . . , µn} of
probability measures is tight as it is finite. Hence, there is a compact set K = [a, b] ⊂ R
such that for all i = 1, . . . , n, we have

µi(K) ≥ 1− ε

12B ,

where B ≥ 0 is the smallest bound for the bounded function f . Then we choose

µ := argmax {ν(K) | ν ∈ {µ1, . . . , µn}} .

Notice that the function f is uniformly continuous on K, as it is bounded and continuous
and K is compact. Hence, there is a k ∈ N such that for all |x− x′| < b−a

k , we have

|f(x)− f(x′)| < ε

6µ(K) .

We partition K = [a, b] in k intervals of length b−a
k . That is, we have

[a, b] =
k⋃
i=1

[xi−1, xi) :=
k⋃
i=1

[
a+ (i− 1) · b− a

k
, a+ i · b− a

k

)
.

Let us further define x(i) := argmin{f(x)|x ∈ [xi−1, xi)}, i = 1, . . . , k, and the step function

t(x) :=
k∑
i=1

1[xi−1,xi)(x)f
(
x(i)

)
+ 1{b}(x)f

(
x(k)

)
.

Then we have t ≤ f and |x− x(i)| < b−a
k for x ∈ [xi−1, xi), i = 1, . . . , k. Thus, we have

f(x)− t(x) = f(x)− f
(
x(i)

)
<

ε

6µ(K) . (A.2)

As the construction aims for a function in S, we have to change this step function such
that it is continuous. This has to be done with neither violating the order relation with
respect to f nor letting the distance to f grow too big. Therefore we connect the „inner,
lower corners“ of the step function such that the resulting function is continuous and
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slightly smaller than the step function. Below, we formally define the function u(x) for
x ∈ K and give a visual aid in Figure A.1.

u(x) := 1[x0,x1)(x)(x1 − x)t(x0) + (x− x0)(t(x0) ∧ t(x1))
x1 − x0

+
k−1∑
i=2

1[xi−1,xi)(x)(xi − x)(t(xi−2) ∧ t(xi−1)) + (x− xi−1)(t(xi−1) ∧ t(xi))
xi − xi−1

+ 1[xk−1,xk](x)(xk − x)(t(xk−1) ∧ t(xk)) + (x− xk−1)t(xk)
xk − xk−1

.

Figure A.1.: Some step function t (solid) and its associated continuous adaption u (dashed).

By definition, we have u ≤ t ≤ f on K. Hence, the order relation is satisfied. Let
x ∈ [xi−1, xi), i = 1, . . . , k. Then, for the distance between f and u, we have

f(x)− u(x) = |f(x)− u(x)| ≤ |f(x)− t(x)|+ |t(x)− u(x)| ≤ ε

6µ(K) + |t(x)− u(x)|,

where we use (A.2). Let us now analyze the second summand. We have

|t(x)− u(x)| =
∣∣∣∣f (x(i)

)
− (xi − x) (t (xi−2) ∧ t (xi−1)) + (x− xi−1) (t (xi−1) ∧ t (xi))

xi − xi−1

∣∣∣∣
=

∣∣∣∣∣∣
(xi − x)

(
f
(
x(i)

)
−
(
f
(
x(i−1)

)
∧ f

(
x(i)

)))
xi − xi−1

+
(x− xi−1)

(
f
(
x(i)

)
−
(
f
(
x(i)

)
∧ f

(
x(i+1)

)))
xi − xi−1

∣∣∣∣∣∣ .
We observe that the greatest value results when both minima are not realized by f

(
x(i)

)
,
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as in any other case we get rid of at least one summand. Thus, we have

|t(x)− u(x)| ≤

∣∣∣∣∣∣
(xi − x)

(
f
(
x(i)

)
− f

(
x(i−1)

))
+ (x− xi−1)

(
f
(
x(i)

)
− f

(
(i+1)

))
xi − xi−1

∣∣∣∣∣∣ .
As xi−x

xi−xi−1
, x−xi−1
xi−xi−1

≤ 1 and |x(i) − xi−1|, |xi−1 − x(i−1)|, |x(i) − xi|, |xi − x(i+1)| < b−a
k , we

finally obtain

|t(x)− u(x)| ≤
∣∣∣f (x(i)

)
− f

(
x(i−1)

)∣∣∣+ ∣∣∣f (x(i)
)
− f

(
x(i+1)

)∣∣∣
≤
∣∣∣f (x(i)

)
− f (xi−1)

∣∣∣+ ∣∣∣f (xi−1)− f
(
x(i−1)

)∣∣∣
+
∣∣∣f (x(i)

)
− f (xi)

∣∣∣+ ∣∣∣f (xi)− f
(
x(i+1)

)∣∣∣ < 4ε
6µ (K) .

We stress that a separate investigation of the cases i = 1 and i = k is not necessary, as
they are covered by the above in the sense that one of the summands in the expression
before (�) does not appear in these cases. In total, we have

f(x)− u(x) < 5ε
6µ(K)

for all x ∈ K such that in particular∫
K

(f(x)− u(x)) µi(dx) <
∫
K

5ε
6µ(K) µi(dx) = 5ε

6
µi(K)
µ(K) ≤

5
6ε

for all i = 1, . . . n. By construction u is piecewise linear and continuous on K.
It remains to show that we may expand u suitably on R \ K such that the integral

condition is satisfied. Therefore let us define u outside of K. For x ∈ (−∞, a), we choose
u(x) := max{−B, l(x)}, where l(x) is the linear function with the smallest slope ml ≥ 0
such that l(a) = u(a) and l(x) ≤ f(x) for all x ≤ a. Analogously, for x ∈ (b,∞), we choose
u(x) := max{−B, r(x)}, where r(x) is the linear function with the greatest slope mr ≤ 0
such that r(b) = u(b) and r(x) ≤ f(x) for all x ≥ b.

Then u is piecewise linear and continuous on R and since u is not differentiable in only
finitely many points, we have u ∈ S. We also have −u ≤ B by definition and f ≤ B by
assumption such that finally, for all i = 1, . . . , n, we have∫

R\K
(f(x)− u(x))µi(dx) ≤

∫
R\K

2Bµi(dx) = 2Bµi(R \K) < 2Bε
12B = ε

6 .

Thus, u ∈ S satisfies u ≤ f on R and
∫
R(f(x)− u(x))µi(dx) < ε for all i = 1, . . . , n.

Proof of Lemma 5.5. Let (πk)k∈N be a sequence in Πn(µ1, . . . , µn) weakly converging to
some π ∈ Πn(µ1, . . . , µn), i.e πk

w→ π. We have to show that

Ak :=
∣∣∣∣∫
Rn
f(x1, . . . , xn)(π − πk)(d(x1, . . . , xn))

∣∣∣∣ k→∞→ 0.
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Let a > 0. Then we have

Ak ≤
∣∣∣∣∣
∫

[−a,a]n
f(x1, . . . , xn)(π − πk)(d(x1, . . . , xn))

∣∣∣∣∣
+
∣∣∣∣∣
∫
Rn\[−a,a]n

f(x1, . . . , xn)(π − πk)(d(x1, . . . , xn))
∣∣∣∣∣

=: Ak(a) + εa(k).

As [−a, a]n is compact and f is continuous and thus bounded on [−a, a]n, we have
Ak(a) → 0 for all a > 0 as k → ∞. This is an immediate consequence of the weak
convergence of the sequence (πk)k∈N.
We further observe

εa(k) ≤
∫
Rn\[−a,a]n

|f(x1, . . . , xn)|(π + πk)(d(x1, . . . , xn))

≤
∫
Rn\[−a,a]n

K

(
1 +

n∑
i=1

fi(xi)
)

(π + πk)(d(x1, . . . , xn)),

where we used the triangle inequality and the condition in (5.6). Then, partly calculating
the integral, we get

εa(k) ≤K
(

(π + πk)(Rn \ [−a, a]n) +
n∑
i=1

(∫
Rn\[−a,a]n

fi(xi)(π + πk)(d(x1, . . . , xn))
))

=K ((π + πk)(Rn \ [−a, a]n)) + 2K
n∑
i=1

∫
R\[−a,a]

fi(xi)µi(dxi). (A.3)

With a→∞ we have Rn \ [−a, a]n → ∅. Thus, the first summand of (A.3) tends to 0 as
a→∞ for all k ∈ N. For the second summand we get the same by the integrability of the
fi, i = 1, . . . , n, i.e. we have εa(k)→ 0 uniformly for all k ∈ N as a→∞. Hence, for all
ε > 0 there is an a > 0 such that εa(k) < ε for all k ∈ N.

Thus, for all ε > 0 there is an a > 0 such that

lim
k→∞

Ak ≤ lim
k→∞

Ak(a) + lim
k→∞

εa(k) < ε.

Finally, we get limk→∞Ak = 0 as ε→ 0.

Theorem A.1. [74, Theorem 45.8] Let X ,Y be vector spaces such that X is locally convex,
and let K ⊆ X and T ⊆ Y be convex sets. Let f : K × T → R. If

1. K is compact,

2. x 7→ f(x, y) it continuous and convex on K for all y ∈ T ,

3. y 7→ f(x, y) is concave on T for all x ∈ K,

then
sup
y∈T

inf
x∈K

f(x, y) = inf
x∈K

sup
y∈T

f(x, y).
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A.3. Supplements to Chapter 6

Example A.2. In this example, we complement Example 6.51 by presenting a step by step
illustration of the algorithmic determination of the left monotone martingale transport
plan and the super hedging strategy. We start with the illustration of Algorithm 6.40.

1. The measures µ and ν illustrated.

80 100 105 120

0.5

0.25

20
49

12
49

17
49

65 100 110 135

0.5

0.25

23
63

17
45

9
35

2. We start coupling the mass of the smallest atom of µ, δ80.

80 100 105 120

0.5

0.25

20
49

12
49

17
49

65 100 110 135

0.5

0.25

23
63

17
45

9
35
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3. As δ80 is no atom of ν, we couple with δ65 and δ110.

80 100 105 120

0.5

0.25

20
49

12
49

17
49

65 100 110 135

0.5

0.25

23
63

17
45

9
35

4. We determine the weights qxdyd = 40
147 and qxdym = 20

147 and check the suitability.

80 100 105 120

0.5

0.25

20
49

12
49

17
49

65 100 110 135

0.5

0.25

23
63

17
45

9
35
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5. We proceed with the measures µ′ and ν ′.

80 100 105 120

0.5

0.25

0 12
49

17
49

65 100 110 135

0.5

0.25

41
441

533
2205

9
35

6. We couple the smallest atom of µ′, δ105.

80 100 105 120

0.5

0.25

0 12
49

17
49

65 100 110 135

0.5

0.25

41
441

533
2205

9
35
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7. As δ105 is no atom of ν ′, we couple with δ65 and δ110.

80 100 105 120

0.5

0.25

0 12
49

17
49

65 100 110 135

0.5

0.25

41
441

533
2205

9
35

8. We determine the weights qxmyd = 4
147 and qxmym = 32

147 and check for suitability.

80 100 105 120

0.5

0.25

0 12
49

17
49

65 100 110 135

0.5

0.25

41
441

533
2205

9
35
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9. We proceed with the measures µ′′ and ν”.

80 100 105 120

0.5

0.25

0 0 17
49

65 100 110 135

0.5

0.25

29
441

53
2205

9
35

10. We finish the algorithm coupling the smallest atom of µ′′, δ120.

80 100 105 120

0.5

0.25

0 0 17
49

65 100 110 135

0.5

0.25

29
441

53
2205

9
35
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11. As δ120 is no atom of ν ′′, we couple with δ110 and δ135.

80 100 105 120

0.5

0.25

0 0 17
49

65 100 110 135

0.5

0.25

29
441

53
2205

9
35

12. We determine the weights qxuym = 51
245 and qxuyu = 34

245 and check for suitability.

80 100 105 120

0.5

0.25

0 0 17
49

65 100 110 135

0.5

0.25

29
441

53
2205

9
35
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13. We choose qxuym = ϑ′′m = 53
2205 .

80 100 105 120

0.5

0.25

0 0 712
2205

65 100 110 135

0.5

0.25

29
441 0 9

35

14. We couple the remaining mass of δ120.

80 100 105 120

0.5

0.25

0 0 712
2205

65 100 110 135

0.5

0.25

29
441 0 9

35
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15. We couple the mass of δ120 with δ65 and δ135.

80 100 105 120

0.5

0.25

0 0 712
2205

65 100 110 135

0.5

0.25

29
441 0 9

35

16. We determine the weights qxuyd = 29
441 and qxuyu = 9

35 and check for suitability.

80 100 105 120

0.5

0.25

0 0 712
2205

65 100 110 135

0.5

0.25

29
441 0 9

35
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17. We determined the left monotone martingale transport plan Qlc(µ, ν).

80 100 105 120

0.5

0.25

0 0 0

65 100 110 135

0.5

0.25

0 0 0

18. The left monotonicity is obvious.

µ: 80 100 105 120

ν: 65 100 110 135

Theoretically, the algorithm does not apply when coupling the mass of δ120, as it is the
last atom of µ to couple. Instead, we should just transport its mass to the residual of
ν. However, in order to illustrate a situation in which a case distinction is necessary, we
decided to determine the transport weights using the algorithm.



A.4. Supplements to Chapter 7 163

Let us now construct a super hedging strategy. For this purpose, observe that (xd, yu)
and (xm, yu) are the only points in supp(µ) × supp(ν) not contained in the support of
Qlc(µ, ν). Thus, ultimately we have to solve the inequalities

ϕ(xd) + ψ(yu) + h(xd)(yu − xd) ≥ c(xd, yu), (A.4)

ϕ(xm) + ψ(yu) + h(xm)(yu − xm) ≥ c(xm, yu). (A.5)

Before we solve this linear inequality system, let us apply Algorithm 6.49 in order to
guarantee equality on the support of Qlc(µ, ν). We skip the detailed calculations and
immediately state the resulting numbers.
We start with xu = 120. As xu ∈ Xψ

Γ = {yd, ym, yu}, we have

h(xu) = 3− (ψ(yu)− ψ(yd))
70 ,

ψ(ym) = −13
14 + 9

14ψ(yu) + 5
14ψ(yd),

ϕ(xu) = 33
14 −

11
14ψ(yu)− 3

14ψ(yd).

For xm = 105, we have xm ∈ Xh
Γ = {yd, ym} and hence

h(xm) = 3− (ψ(yu)− ψ(yd))
70 ,

ϕ(xm) = 5
7 −

4
7ψ(yu)− 3

7ψ(yd).

Finally, for xd = 80, we have xd ∈ Xh
Γ = {yd, ym} and hence

h(xd) = 41
630 −

1
70ψ(yu) + 1

70ψ(yd),

ϕ(xd) = −85
42 −

3
14ψ(yu)− 11

14ψ(yd).

If we now plugin these numbers as well as (xd, yu) and (xm, yu) into the inequalities
(A.4) and (A.5), then we obtain the inequalities 14

9 ≥ 0 and 2 ≥ 1, which are satisfied
independently of the choices of ψ(yd) and ψ(yu). Thus, we may choose ψ(yd) = ψ(yu) = 0.
If we now plugin those values into the above hedging functions, then we obtain the super
hedging strategy presented in Example 6.51. 4

A.4. Supplements to Chapter 7

Remark A.3. In this remark, we prove that Cµdn is recovered when considering the definition
of a call option price functions corresponding to the measure µdn. Let k ∈ [knj , knj+1). Then
we have

Cµdn(k) =
∫
R+

(x− k)+µdn(dx) =
∫ K

k
(x− k)µdn(dx) =

2n∑
i=j+1

ωni (kni − k).
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If we now plugin the definition of ωni , then we have

Cµdn(k) =
2n∑

i=j+1

(
Cµ(kni+1)− Cµ(kni )

kni+1 − kni
−
Cµ(kni )− Cµ(kni−1)

kni − kni−1

)
(kni − k)

=
2n∑

i=j+1

(
Cµ(kni+1)− Cµ(kni )

kni+1 − kni

)
(kni − k)−

2n∑
i=j+1

(
Cµ(kni )− Cµ(kni−1)

kni − kni−1

)
(kni − k)

=
2n−1∑
i=j+1

(
Cµ(kni+1)− Cµ(kni )

kni+1 − kni

)
(kni − k) + 0

−
(
Cµ(knj+1)− Cµ(knj )

knj+1 − knj

)
(knj+1 − k)−

2n∑
i=j+2

(
Cµ(kni )− Cµ(kni−1)

kni − kni−1

)
(kni − k),

where we just split off the last and the first summand of the first and the second sum
respectively. Then shifting the index and writing the two remaining sums as one, we get

Cµdn(k) =
2n∑

i=j+2

(
Cµ(kni )− Cµ(kni−1)

kni − kni−1

)
(kni−1 − kni )−

(
Cµ(knj+1)− Cµ(knj )

) knj+1 − k
knj+1 − knj

= (−1) ·

 2n∑
i=j+2

(
Cµ(kni )− Cµ(kni−1)

)− (Cµ(knj+1)− Cµ(knj )
) knj+1 − k
knj+1 − knj

= Cµ(knj+1)−
(
Cµ(knj+1)− Cµ(knj )

) knj+1 − k
knj+1 − knj

=
k − knj

knj+1 − knj
Cµ(knj+1) +

knj+1 − k
knj+1 − knj

Cµ(knj ),

where in the third equality we simplify the telescope sum and use that Cµ(kn2n) = 0.

We also show that µdn and νdn both have mass and expected value equal to one. Having
mass equal to 1 is immediately clear for both measures by definition of the weights.
Concerning the expected value, let X ∼ µdn and Y ∼ νdn. Then we have

Eµdn [X] =
2n∑
j=0

ωnj k
n
j =

2n∑
j=0

2n

K

(
Cµ(knj+1)− 2Cµ(knj ) + Cµ(knj−1)

)
knj

=
2n∑
j=0

j
(
Cµ(knj+1)− 2Cµ(knj ) + Cµ(knj−1)

)

=
2n∑
j=0

jCµ(knj+1)− 2
2n∑
j=0

jCµ(knj ) +
2n∑
j=0

jCµ(knj−1)

=
2n+1∑
j=1

(j − 1)Cµ(knj )− 2
2n∑
j=0

jCµ(knj ) +
2n−1∑
j=−1

(j + 1)Cµ(knj )

= 2n · Cµ(kn2n+1) + (2n − 1) · Cµ(kn2n)

− 2 · 2n · Cµ(kn2n)− 2 · 0 · Cµ(kn0 )

+ 0 · Cµ(kn−1) + Cµ(kn0 ),
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as only those summands of the three sums remain present that are not contained in all
sums. Rearranging and using some of the earlier definitions, we have

Eµdn [X] = 2n
(
Cµ(kn2n+1)− Cµ(kn2n)

)
− Cµ(kn2n) + Cµ(kn0 )

=
Cµ(kn2n+1)− Cµ(kn2n)

kn2n+1 − kn2n
− Cµ(K) + Cµ(0) = Cµ(0) = s0 = 1.

Analogously, we obtain Eνdn [Y ] = 1. ♦

Example A.4. In this example, we show that the convergence speed proven in Theorem
7.11 is ideal in the sense that it can not be improved. This means that the speed in our
empirical investigations is better than the guaranteed convergence speed. For this purpose,
we consider the two discrete measures

µ = 1
4δ1 + 1

2δ 7
3

+ 1
4δ3 and ν = 1

4δ0 + 1
2δ 7

3
+ 1

4δ4.

These measures have mass 1, mean 7
3 and the call option price functions

Cµ(k) =
(13

6 − k
)
1{0≤k≤1} +

(23
12 −

3
4k
)
1{1≤k≤ 7

3} +
(3

4 −
1
4k
)
1{ 7

3≤k≤3},

Cν(`) =
(13

6 −
3
4`
)
1{0≤`≤ 7

3} +
(

1− 1
4`
)
1{ 7

3≤`≤4}.

We easily see that Cµ ≤ Cν and thus µ ≤c ν.
By the requirements of Theorem 7.11, we have cxyy > 0. Hence, the upper price bounds

are realized by the left monotone martingale transport Qlc(µ, ν). Using Algorithm 6.40, we
easily verify that

Qlc(µ, ν) = 1
7δ1,0 + 3

28δ1, 73
+ 5

112δ 7
3 ,0

+ 11
28δ 7

3 ,
7
3

+ 1
16δ 7

3 ,4
+ 1

16δ3,0 + 3
16δ3,4.

The most simple payoff function satisfying the martingale Spence Mirrlees condition is
c(x, y) = xy2. For this function, we get

P c2 (µ, ν) = 3
28c

(
1, 7

3

)
+ 11

28c
(7

3 ,
7
3

)
+ 1

16c
(7

3 , 4
)

+ 3
16c(3, 4) = 913

54 .

In order to prove the optimality of the convergence speed, we calculate the approximating
measures µdn and νdn and the associated price bounds for general n ≥ 3. The measures have
the structure

µdn = 1
4(δ1 + δ3) + µrn and νdn = 1

4(δ0 + δ4) + νrn,

for all n ∈ N, where µrn and νrn are also measures with two atoms close to 7
3 each. This

follows from the determination technique of the approximating measures based on the
associated piecewise linearly interpolated call option price functions Cµdn and Cνdn . Indeed,
these deviate from the functions Cµ and Cν only on the interval

(
knj(n), k

n
j(n)+1

)
, where

j(n) is such that knj(n) <
7
3 < knj(n)+1. Consequently, k

n
j(n) and knj(n)+1 are the atoms of the

residual measures.
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We determine the general structure of these values and denote j = j(n) and kj = knj(n)
for the rest of the example. We have

kj <
7
3 < kj+1 ⇐⇒ 4 · j2n <

7
3 < 4 · j + 1

2n ⇐⇒ j <
7
3 ·

2n

4 < j + 1.

As j ∈ N, we clearly have

j =
⌊7

3 ·
2n

4

⌋
=


7
3 ·

2n
4 −

1
3 , n even,

7
3 ·

2n
4 −

2
3 , n odd,

from which we immediately get

kj = 4 · j2n =


7
3 −

4
3·2n , n even,

7
3 −

8
3·2n , n odd,

and kj+1 = 4 · j + 1
2n =


7
3 + 8

3·2n , n even,
7
3 + 4

3·2n , n odd.

The masses of µdn and νdn in the atoms δkj and δkj+1 are the differences of the slopes
of Cµdn and Cνdn on the intervals (kj , kj+1) and (kj−1, kj), and (kj+1, kj+2) and (kj , kj+1)
respectively. As Cµ and Cν have the same slopes in these areas, we know that the masses
of the atoms are equal for µdn and νdn. Hence, we have

ωnj = ϑnj = mn
j −

(
−3

4

)
and ωnj+1 = ϑnj+1 = −1

4 −m
n
j ,

where mn
j = Cµ(kj+1)−Cµ(kj)

kj+1−kj = 2n
4 (Cµ(kj+1)− Cµ(kj)) = 2n

4 (Cν(kj+1)− Cν(kj)). Using the
representations of Cµ and Cν , we deduce

mn
j = 2n

4

(
1− 1

4kj+1 −
(13

6 −
3
4kj

))
= 2n

4

(
−7

6 −
1
4(kj+1 − kj) + 1

2kj
)

= 2n

4

(1
2kj −

7
6

)
− 1

4

=


2n
4

(
1
2

(
7
3 −

4
3·2n −

7
6

))
− 1

4 = − 5
12 , n even,

2n
4

(
1
2

(
7
3 −

8
3·2n −

7
6

))
− 1

4 = − 7
12 , n odd.

This finally implies

ωnj = ϑnj =


1
3 , n even,
1
6 , n odd,

and ωnj+1 = ϑnj+1 =


1
6 , n even,
1
3 , n odd.

In total, we have the general structure

µdn = 1
4(δ1 + δ3) + 1

6
(
δkj + δkj+1

)
+ 1

6
(
δkj1{n even} + δkj+11{n odd}

)
,

νdn = 1
4(δ0 + δ4) + 1

6
(
δkj + δkj+1

)
+ 1

6
(
δkj1{n even} + δkj+11{n odd}

)
.
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By construction we have µdn ≤c νdn. Thus we may calculate Qlc(µdn, νdn). In the following,
let n ≥ 3 be even. Then we have to transport the mass 1

4 of δ1 to δ0 and δkj such that

q1,0 + q1,kj = 1
4 ,

0 · q1,0 + kj · q1,kj = 1
4 · 1.

These equalities imply q1,0 = kj−1
4kj and q1,kj = 1

4kj . As n is even, we have ωnkj = ϑnkj = 1
3 .

Since kj ≥ 1, we obviously have 1
4kj <

1
3 .

Now we transport as much mass as possible from δkj to δkj . Thus, we have qkj ,kj = 1
3−

1
4kj .

The leftover mass is transported to δ0 and δkj+1 according to

qkj ,0 + qkj ,kj+1 = 1
4kj

,

0 · qkj ,0 + kj+1 · qkj ,kj+1 = 1
3kj −

(
1
3 −

1
4kj

)
kj = 1

4 .

Thus, we obtain qkj ,0 = 1
4kj −

1
4kj+1

and qkj ,kj+1 = 1
4kj+1

.

Now we transport as much mass as possible from δkj+1 to δkj+1 . Therefore we have
qkj+1,kj+1 = 1

6 −
1

4kj+1
. The leftover mass is transported to δ0 and δ4 according to

qkj+1,0 + qkj+1,4 = 1
6 −

1
4kj+1

,

0 · qkj+1,0 + 4 · qkj+1,4 = 1
6kj+1 −

(
1
6 −

1
4kj+1

)
kj+1 = 1

4 .

This yields qkj+1,0 = 1
4kj+1

− 1
16 and qkj+1,4 = 1

16 .

Finally, two equations have to be satisfied, namely

q3,0 + q3,4 = 1
4 ,

0 · q3,0 + 4 · q3,4 = 1
4 · 3,

which is satisfied by q3,0 = 1
16 and q3,4 = 3

16 .

In total, we get

Qlc
(
µdn, ν

d
n

)
=δ1,0 ·

kj − 1
4kj

+ δ1,kj ·
1

4kj

+ δkj ,kj ·
(

1
3 −

1
4kj

)
+ δkj ,0 ·

(
1

4kj
− 1

4kj+1

)
+ δkj ,kj+1 ·

1
4kj+1

+ δkj+1,kj+1 ·
(

1
6 −

1
4kj+1

)
+ δkj+1,0 ·

(
1

4kj+1
− 1

16

)
+ δkj+1,4 ·

1
16

+ δ3,0 ·
1
16 + δ3,4 ·

3
16 .
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Analogously, we proceed for n ≥ 3 odd. Then we get

Qlc
(
µdn, ν

d
n

)
=δ1,0 ·

kj − 1
4kj

+ δ1,kj ·
1

4kj

+ δkj ,kj ·
(

1
6 −

1
4kj

)
+ δkj ,0 ·

(
1

4kj
− 1

4kj+1

)
+ δkj ,kj+1 ·

1
4kj+1

+ δkj+1,kj+1 ·
(

1
3 −

1
4kj+1

)
+ δkj+1,0 ·

(
1

4kj+1
− 1

16

)
+ δkj+1,4 ·

1
16

+ δ3,0 ·
1
16 + δ3,4 ·

3
16 .

With these transport plans, we may now calculate the approximating upper price bound
sequences. For n ≥ 3 even, we find

P c2

(
µdn, ν

d
n

)
=c (1, kj) ·

1
4kj

+ c (kj , kj) ·
(

1
3 −

1
4kj

)
+ c (kj , kj+1) · 1

4kj+1

+ c (kj+1, kj+1) ·
(

1
6 −

1
4kj+1

)
+ c (kj+1, 4) · 1

16 + c (3, 4) · 3
16

=kj
4 +

k3
j

3 −
k2
j

4 + kj · kj+1
4 +

k3
j+1
6 −

k2
j+1
4 + kj+1 + 9.

Plugging in the derived representations of kj and kj+1, we get

P c2

(
µdn, ν

d
n

)
=9 + 7

12 −
1

3 · 2n + 7
3 + 8

3 · 2n +
k3
j

3 +
k3
j+1
6 +

kj · kj+1 − k2
j − k2

j+1
4 .

If we now also plugin the representations for the higher degree terms and rearrange the
former, then we achieve

P c2

(
µdn, ν

d
n

)
=143

12 + 7
3 · 2n + 1

3

((7
3

)3
−
(7

3

)2 4
3 · 2n + 7

3 ·
16

9 · 22n −
64

27 · 23n

)

+ 1
6

((7
3

)3
+
(7

3

)2 8
3 · 2n + 7

3 ·
64

9 · 22n + 512
27 · 23n

)

+ 1
4

(49
9 + 28

9 · 2n −
32

9 · 22n −
(49

9 −
56

9 · 2n + 16
9 · 22n

)
−
(49

9 + 112
9 · 2n + 64

9 · 22n

))
=913

54 + 84
54 · 2n +O

( 1
22n

)
.

Analogously, for n ≥ 3 odd, we have

P c2 (µdn, νdn) = 913
54 + 78

54 · 2n +O
( 1

22n

)
.

That is indeed the convergence speed from Theorem 7.11. 4
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