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A Comparison of Markov Chain Methods for Reliability Estimation
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Two Markov chain Monte Carlo simulation methods for reliability estimation, subset simulation and the moving particles
algorithm, are compared based on theoretical arguments and test cases. The differences in the efficiency between both algo-
rithms are rather small. They seem to be well suited for off-the-sheif reliability estimations, but with a different setting for the
most important parameters (proposal density and initial sample size).
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1 Subset Simulation

Subset Simulation [1] is based on nested sets, Fy D Fy D ... Fy, where Fyy = {6 € R"|g(8) < 0} denotes the failure region
and g(8) is the performance function. If 8 is a vector of random variables, the failure probability is given by

M—1
Pr =Py, [] P(Fin1|Fi). o

i=1

The rather small failure probability is written as the product of larger probabilities that can be estimated with less effort.
However, the estimation of the conditional probabilities requires the application of MCMC simulations, because the corre-
sponding conditional probability density function is not known explicitly. In subset simulation, N; parallel Markov chains are
started from seeds that for step { — I lie in F;. The most influential parameters of subset simulation are the transition kernel
of the MCMC algorithm and the sets F;, for which sets of equal conditional probability po = P(Fi1|F), fori=1,..,M, are
preferred. Given py, the sets are obtained from a percentile estimation for the performance function. The failure probability is
then Py = p34 =1 B, where Py is the estimate for P(Fy|Fy—1). The coefficient of variation of the estimator for the conditional

probability P.y| = P(Fiy1|F) is given by {/%£(1+7) [1], where the additional term % is % = 2 A=) (1 . ’1,31) pi(k).

N; = poN is the number of samples that for step i — 1 lie in F; and constitute the initial values (seeds) of the Markov chains.
pi(k) is the correlation coefficient of the series IE(GJ(;(_I)), where 9},’:1) is the kth sample of the j Markov chain that is gen-
erated in step i — 1 and Ir,(+) denotes the indicator function of F;. A weak correlation of the samples produced by the Markov

chain is thus necessary for a reduction of the coefficient of variation. The coefficient of variation for the failure probability

estimated with subset simulation can be approximated by &y, ~ \/ %’%ﬁl “—_W where 7 is the average value of ¥; (aver-

aged over the number of subsets) and 11—‘(’)% represents the number of subsets. A typical value for 7 is ﬁ}-, = 0.4, cf. [2]. The
average number of function evaluation is thus approximated by

log pr
Nop=N{1 1—po)—— |, 2
£ ( + (1= po) logp()) (2)

and is composed by the initial Monte Carlo samples and the Markov chain samples (without burn-in) at each step.

2 Moving Particles Algorithm

The moving particles algorithm can be considered as subset simulation with a maximum number of steps. For each step, the
values g(8,), j = 1,..., Ny, of the Ny samples are ranked. The sample with the maximum value of the performance function is
moved: MCMC is carried out starting from one of the remaining samples and the final state of the Markov chain is accepted,
if the value of the performance function could be reduced. Otherwise, the sample is simply replaced by the seed of the Markov
chain. Instead of computing the probability of failure from eq. (1), each initial sample is moved until it reaches the failure
region and the number of moves is count. As has been shown in [3], the number of moves to get an initial sample into the failure
region follows a Poisson distribution with parameter A =log # The estimator for the parameter of the Poisson distribution
Ng
isA= 2'7\,';””., where M denotes the number of moves until sample j reaches the failure state. In order 1o obtain an unbiased
estimate, it is mandatory that the trajectories of the Poisson process generated from the initial samples remain independent
until the samples finally reach the failure domain. A burn-in period for the Markov chain should ensure the independence
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728 Section 15: Uncertainty quantification

of the candidate and the seed of the Markov chain. The coefficient of variation for the failure probability estimated with the
moving particles algorithm is given by &, = ¢/ %;nm cf. [3], and the average number of function evaluations is

Nip = Nu(1 T log pr), ©

where the first term accounts for the initial Monte Carlo simulation and the second term for the Markov chain samples (with
burn-in period T). A parallel version of the algorithm is easily obtained, if the k samples with highest values of the performance
function are moved in parallel.

3 Comparison

The algorithms differ in the following points: (1) In subset simulation, the number of steps is rather small; however, the
number of steps in the moving particles algorithm is maximal. (2) In subset simulation, only po (usually 10%) of the samples
are retained in each step and serve as seed for the Markov chains. In contrast, only one sample is resampled in each step of the
moving particles algorithm, and the seed can be selected among the other samples. (3) The moving particles algorithm has a
clear interpretation from Poisson process theory, but requires that all initial samples finally reach the failure region.
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Fig. 1: a) Burn-in period, such that the number of performance function evaluations of subset simulation and the moving particles algorithm
is approximately the same. b) Efficiency of subset simulation and the moving particles algorithm.

The efficiency of both algorithms can be compared by setting N, = 0.1N for the number of initial samples and po = 0.1 as
before. In this case, the coefficient of variation of both algorithms will be nearly the same. From equations (2) and (3), one
obtains the relationship

New  10(1—0.391og pF)
Npp - 1—-Tlogpr

4

By setting this expression to one, a burn-in period T can be obtained as a function of the failure probability for which both
algorithms would require approximately the same amount of function evaluations. This relationship is depicted in Fig. 1 a).
It can be seen that the obtained burn-in period is in the range of values that has been found to be sufficient and thus the
number of function evaluations for both algorithms is of the same order of magnitude. For small failure probabilities, subset
simulation becomes slightly more efficient than the moving particles algorithm, while for larger probabilities of failure, the
opposite is the case. The efficiency of both algorithms has been compared for the test cases summarized in [5], Table 1.
Figure 1 b), underlines that both algorithms lead to a similar efficiency. However, while the number of function evaluations
is approximately the same, the coefficient of variation for the results from the moving particles algorithm is slightly higher
than for subset simulation. As a burn-in period of T = 5 has been applied for the moving particles algorithm and the failure
probabilities are in the range from 10~* to 1075, this confirms the results of Figure 1 a). Finally, both algorithms have been
applied to high dimensional test cases, a single-degree-of-freedom oscillator with 1500 random variables and a paraboloid
with varying curvatures. Both algorithms yielded results of similar accuracy and efficiency. Acceptance rates were similar as
for the low-dimensional test cases.
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