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Abstract The variability of large‐scale moisture transport by atmospheric rivers (AR) and its linkage to
precipitation extremes in the North Atlantic‐European region is studied. A weather regime approach is
adopted to describe the variability of the large‐scale circulation. Weather regimes modulate the
climatologically mean westerly flow into Europe, in which ARs are commonly embedded. In cyclonic
regimes, AR landfall is enhanced in wide parts of Iberia, Western Europe, the British Isles, and southern
Scandinavia. In blocked regimes, ARs are deviated around the blocking anticyclone enhancing AR landfall
at high latitudes or in the western Mediterranean and North Africa. The likelihood of precipitation extremes
increases locally more than twofold in regions of enhanced AR occurrence during the different weather
regimes. These results suggest that specific weather regimes establish favorable conditions for AR landfall in
Europe. Therefore, accurate forecasts of weather regimes can give guidance for predicting also large‐scale
precipitation extremes.

Plain Language Summary Atmospheric rivers (ARs) are elongated bands of strong water vapor
transport, which are embedded in the large‐scale atmospheric circulation. ARs resemble rivers on land
except that, instead of liquid water, ARs transport water vapor which is important for the formation of
precipitation. The amount of water transported by an AR can be similar to the one of the largest rivers on
land. These ARs frequently trigger precipitation extremes along the west coasts of the midlatitude
continents. In this study, we investigate how the large‐scale circulation influences AR's landfall location and
subsequent precipitation extremes in Europe. To represent the natural variability of the westerly flow, we
use seven typical persistent flow patterns over the North Atlantic‐European region, called weather
regimes (WRs). WRs characterized by a strong zonal flow enhance AR landfall in Iberia, Western
Europe, the British Isles, and southern Scandinavia. WRs characterized by an anticyclone over Europe
deviate ARs around the blocking anticyclone enhancing AR landfall at high latitudes or in the western
Mediterranean and North Africa. The likelihood of precipitation extremes increases in regions of enhanced
AR occurrence during the different WRs. Therefore, accurateWRs forecasts can give guidance for predicting
also large‐scale precipitation extremes in Europe.

1. Introduction

The major fraction of poleward moisture transport occurs in narrow filaments of strong water vapor trans-
port in the lower troposphere, so‐called atmospheric rivers (ARs; Zhu & Newell, 1998). ARs are frequently
embedded within the warm sector of extratropical cyclones, in the low‐level jet region just ahead of the cold
front (e.g., Dacre et al., 2015; Gimeno et al., 2014; Neiman et al., 2008; Ralph et al., 2004, 2005). Due to their
large amount of water vapor, ARs can cause precipitation and flooding when making landfall, especially if
the moist air is forced to ascent in mountainous regions (Dettinger, 2011). It is expected that the increasing
atmospheric moisture content in a warming atmosphere will enhance the intensity of ARs (Dettinger, 2011;
Lavers et al., 2013; Warner et al., 2015). Therefore, and due to the severe socioeconomic impacts of the flood-
ing and landslides already associated with ARs in present‐day climate (Mastin et al., 2010; Neiman et al.,
2011; Piaget et al., 2015), understanding mechanisms determining AR landfall is of utmost importance.

The impact of ARs on precipitation has been widely investigated in limited geographical regions and/or for
short time periods. Most studies focused on AR's triggering precipitation in western North America (e.g.,
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Dettinger et al., 2011; Guan et al., 2010; Neiman et al., 2008, 2011; Payne &Magnusdottir, 2014; Ralph et al.,
2005, 2006; Rivera et al., 2014) and in Western Europe, for example, the UK (Champion et al., 2015; Lavers
et al., 2011, 2012), Norway (Sodemann & Stohl, 2013; Stohl et al., 2008), or the Iberian Peninsula (Eiras‐
Barca et al., 2016; Ramos et al., 2015). Moreover, the relationship between ARs and precipitation was further
established in coastal regions worldwide, for example, the Andes (Viale & Nuñez, 2011), Japan (Hirota et al.,
2016), South Africa (Blamey et al., 2018), and Antarctica (Gorodetskaya et al., 2014). Even if ARs mostly
impact coastal areas, they can penetrate and trigger precipitation farther inland as far as Poland,
Germany (Lavers & Villarini, 2013; Piaget et al., 2015), or central Arizona (Neiman et al., 2013).

It has commonly been recognized that ARs are more frequent during the cold season due to the association
between ARs and extratropical cyclones (Gimeno et al., 2014; Guan & Waliser, 2015), and several studies
only focus on winter months (e.g., Brands et al., 2017; Lavers et al., 2011; Payne & Magnusdottir, 2014;
Ralph et al., 2004; Rutz et al., 2014). Additionally, a majority of the literature assert that ARs cause more
precipitation on land during the cold season because the moisture transport is stronger and air is closer to
saturation (e.g., Champion et al., 2015; Eiras‐Barca et al., 2016; Guan & Waliser, 2015; Lavers & Villarini,
2013; Neiman et al., 2008).

Moisture Conveyor Belts (Bao et al., 2006) and Tropical Moistures Exports (Knippertz & Wernli, 2010) are
other flow concepts related to the tropospheric meridional transport of large amounts of water vapor. A
particularity of these two flow concepts is the prerequisite to have a tropical moisture source. In contrary,
a tropical origin is not required in the definition of ARs (Bao et al., 2006). In fact, both tropical moisture
(Jankov et al., 2009; Neiman et al., 2008) and local moisture convergence in the extratropics (Bao et al.,
2006; Dacre et al., 2015) were found to be important for the formation and maintenance of ARs.

The large‐scale atmospheric flow influences AR occurrence and determines if and where ARs make landfall
and possibly trigger precipitation (Guan & Waliser, 2015; Lavers & Villarini, 2013; Neiman et al., 2008;
Payne & Magnusdottir, 2014; Rutz et al., 2014). The connection between ARs and precipitation in the
North Atlantic‐European region has been studied for different phases of the North Atlantic Oscillation
(NAO). An enhanced influence of ARs on precipitation was found to occur over southern Europe during
the negative phase of the NAO (Eiras‐Barca et al., 2016; Lavers & Villarini, 2013) and over northern
Europe during the positive phase of the NAO (Lavers & Villarini, 2013; Stohl et al., 2008). In contrast,
Ramos et al. (2015) assess that the NAO pattern is not correlated with the number of ARs over the Iberian
Peninsula. In addition, Lavers and Villarini (2013) showed that the latitude of AR landfall in Europe is
strongly modulated by the prevailing large‐scale mean sea level pressure pattern. Low‐frequency weather
regimes (WRs) provide a more detailed description of the large‐scale circulation over the North Atlantic
European region than the NAO and, in contrast to the NAO, describe the major part of variability on
subseasonal (10–60 days) time scales (e.g., Grams et al., 2017; Zubiate et al., 2017).

WRs modulate the intensity and position of the midlatitude jet stream (e.g., Madonna et al., 2017) and
accompanying cyclone activity. Thus, the large‐scale flow pattern is different in the different WRs, which
likely affects the occurrence of AR and heavy precipitation events (Lavers & Villarini, 2013; Santos et al.,
2016; Yiou & Nogaj, 2004).

In this study, we use an extended definition of seven North Atlantic‐European WRs (Grams et al., 2017) to
investigate the modulation of AR activity due to variability of the large‐scale circulation in the North
Atlantic‐European region. The study is organized as follows. First, we examine the autumn climatology of
ARs in the North Atlantic‐European region. In a second step, we investigate the modulation of AR occur-
rence during different low frequency WRs. Finally, we evaluate if this modulation influences also the like-
lihood of precipitation extremes (PEs) in Europe.

2. Data and Methods
2.1. Reanalysis Data

The European Centre for Medium‐Range Weather Forecasts Interim Reanalysis (Dee et al., 2011) forms the
data basis of this study and is used to detect ARs, WRs, and PEs. If not stated otherwise, we use global
6‐hourly European Centre for Medium‐Range Weather Forecasts Interim Reanalysis data interpolated on
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a regular geographical grid at 1° horizontal resolution and the considered period is 1 January 1979 until 31
December 2014.

2.2. ARs

There is no generally accepted criterion or algorithm to identify ARs, and studies were completed using
different criteria which were oriented along the specific aim of the study. A recent international collabora-
tive effort within the Atmospheric River Tracking Method Intercomparison Project aims at understanding
and quantifying the uncertainties in AR science based on different detection algorithms (Shields et al.,
2018). Algorithms generally identify elongated objects of enhanced vertically integrated water vapor content
(IWV) and/or vertically integrated vapor transport (IVT). Anomalous IWV and IVT related to AR can either
be detected by absolute thresholds in these fields or relative thresholds with respect to a local climatology.
Here we adopt a detection algorithm using absolute thresholds, as we aim to study the modulation of the
actual moisture transport by the large‐scale extratropical circulation that eventually leads to impactful
precipitation events in Europe.

ARs are identified as two‐dimensional objects with spatial extensions of at least 2,000 km in one direction.
Every grid point within this object must fulfill the criteria that (1) the vertically integrated IWV is larger
than 20 kg/m2 and (2) the vertically IVT is larger than 250 kg·m−1·s−1. Furthermore, ARs are only iden-
tified northward of 20° N. These criteria and algorithm emerged from discussions in the AR research
community (https://eos.org/meeting‐reports/setting‐the‐stage‐for‐a‐global‐science‐of‐atmospheric‐rivers),
compare well with other methods, and are easily reproducible. Similar methods based on the same abso-
lute thresholds have been used in earlier studies (e.g., Dettinger et al., 2011; Gershunov et al., 2017;
Gimeno et al., 2014; Moore et al., 2012; Neiman et al., 2008; Ralph et al., 2004, 2006; Ralph &
Dettinger, 2011; Rutz et al., 2014; and Shields et al., 2018 for an overview). AR frequencies are calculated
by averaging the binary ARs field over the considered time period.

2.3. WRs

To characterize the large‐scale flow situation, we employ a year‐round definition of seven WRs previously
introduced in the context of wind power (Grams et al., 2017) and maritime cold air outbreaks (Papritz &
Grams, 2018). Seasonal WR definitions (e.g., Cassou, 2008; Ferranti et al., 2015; Michelangeli et al., 1995)
struggle in identifying robust patterns in the transition seasons as these are characterized by both summer
and winter regimes (cf. discussion in Supplement of Cassou, 2008). The extended seven WRs reflect the
variability in large‐scale flow patterns across all seasons, and thus also in autumn, which is the season of
interest in this study. Consistent with earlier work, the WRs are obtained from a k‐means clustering in
the phase space spanned by the first seven empirical orthogonal functions (EOFs) of low‐pass filtered, nor-
malized 500‐hPa geopotential height anomalies (Z500*) in the Euro‐Atlantic sector (80°W–40°E, 30–90°N)
available 6‐hourly from 11 January 1979 to 31 December 2015 (Grams et al., 2017). Geopotential height
anomalies are defined with respect to the 90‐day running mean of the climatology for the respective date.
In addition, WR life cycles are objectively identified based on the normalized projection of each 6‐hourly
Z500* into the cluster mean (see Grams et al., 2017) which allows us to filter out time steps that do not exhi-
bit a well‐established regime (“no regime,” about 31% of all days in autumn). Note that in contrast to the
bimodal NAO or AO, which are typically derived from the first EOF explaining about 20–25% of the
variance, WRs are based on the seven leading EOFs explaining about 75% of the variance and thus cover
almost the full range of large‐scale flow variability.

2.4. PEs and Cyclone Identification

The PE definition used in this work follows the method of Pfahl and Wernli (2012). At each grid point, PEs
are defined as the 1% most extreme 6‐hourly precipitation events per season using data from 1 January 1979
to 31 December 2015. This corresponds to the time steps when the precipitation exceeds the 99% local
percentile. This method allows associating PE with atmospheric flow features in an event‐based manner
and on a grid point basis (Pfahl & Wernli, 2012).

Cyclones are identified from sea level pressure following an updated version of the method of Wernli and
Schwierz (2006; see also Sprenger et al., 2017).
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3. Results

The mean AR frequency in the North Atlantic region in autumn (September to November; Figure 1h) shows
that the 500‐hPa geopotential height field (Z500) is characterized by a climatological mean trough over the
North American East Coast and a climatological mean ridge over the eastern North Atlantic and Western
Europe (contours in Figure 1h). This pattern is more pronounced and located farther equatorward in winter
than in summer (cf. supporting information Figures S1h and S3h). High AR frequencies extend from the
subtropical western North Atlantic and Gulf of Mexico toward Western Europe (shading in Figure 1).
Although AR frequencies of up to 40% in the North Atlantic in autumn might appear high, frequencies
are lower in winter and compare well to other studies using relative thresholds along the European coasts
(cf. AR frequency around 10% in winter in Figure S1h and Figure 9c in Guan & Waliser, 2015). It is striking
that the maximum AR frequencies occur just to the southeast of the maximum gradient in Z500 reflecting
the linkage of AR occurrence to the North Atlantic storm track. This agrees with the frequent location of
ARs within the warm sector of extratropical cyclones (e.g., Bao et al., 2006; Dacre et al., 2015; Gimeno
et al., 2014; Neiman et al., 2008; Ralph et al., 2004).

Autumn is used as exemplary season to describe the effect of WRs on ARs because (i) during the transition
seasons, the seven different year‐round WRs occur more evenly distributed than in summer or winter (e.g.,
only 3.5% of all summer days are in the zonal regime; Figure S3b) and (ii) the AR frequency is second largest
in autumn (cf. Figures 1 and S1–S3 and Text S1). Our main conclusions hold for other seasons and with
higher thresholds in the detection algorithm (see Supporting Information S1).

3.1. Modulation by WRs

The “Atlantic Trough” (AT), “Zonal” (ZO), and “Scandinavian Trough” (ScTr) regimes are dominated by
negative 500‐hPa geopotential height anomalies and enhanced extratropical cyclone activity (Grams et al.,
2017; Papritz & Grams, 2018) and can thus be regarded as “cyclonic regimes.” The three regimes differ in
the position of the accompanying upper‐level trough. During the AT regime, the trough extends from
Iceland toward Spain, and the gradient in Z500 is strongly enhanced compared to climatology (cf. contours
in Figures 1a and 1h). This flow configuration doubles the probability of AR landfall at the northern coast of
the Iberian Peninsula and the Atlantic coast of France and in southern England (cf. shading in Figures 1a
and 1h) and facilitates a farther inland penetration of ARs. This is also reflected in the AR frequency anom-
aly which is strongly positive (up to >20 pp) over wide parts of western and central Europe (shading in
Figure 2a).

The ZO regime also represents the positive phase of the NAO. Compared to AT, the trough is shifted west-
ward and located farther to the North (contours in Figure 1b). This flow configuration favors AR landfall on
the British Isles (shading in Figure 1b) with weakly (around 6 pp) enhanced AR frequency there and in the
adjacent North Sea region (Figure 2b). During the ScTr regime, only a weak modulation of AR frequencies
occurs over Europe (Figures 1c and 2c). However, ScTr is also accompanied by a weak ridge in the western
North Atlantic which shifts AR activity further poleward there.

The ridge in the North Atlantic is even more amplified during the “Atlantic Ridge” (AtR) regime. Other
“blocked regimes” that are characterized by a strong ridge and accompanying blocking anticyclone are
the “European Blocking” (EuBL), “Scandinavian Blocking” (ScBL), and “Greenland Blocking”
(GL) regimes.

During the AtR and EuBL regimes, the ridge extends from roughly 40°N to 60°N and over the North Atlantic
and Europe, respectively (contours in Figures 1d and 1e). The Z500 gradient is enhanced around the ridge.
As ARs in the western North Atlantic emerge at the southern flank of the storm track also at around 40°N,
these flow configurations facilitate a steering of ARs around the ridge (contours in Figures 1d and 1e).
Consequently, AR frequencies are enhanced at the western flanks of the ridge during AtR and EuBL regimes
but strongly reduced in the center of the ridge (Figures 2d and 2e). During AtR, this modulation generally
hinders AR landfall in Europe (reduction by up to 15 pp, Figure 2d) except for Iceland. During EuBL, how-
ever, the farther eastward location of the ridge allows for a more effective moisture transport around the
ridge and into Northern Europe. Consequently, AR frequencies are enhanced (by around 9 pp) in a region
extending from Iceland to Northern Scandinavia (Figure 2e).
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The ScBL and GL regimes are characterized by a blocking ridge at around 50–70°N over Scandinavia and
Greenland, respectively. Due to the high latitude, these ridges go along with a southward shift of the jet
stream and of cyclone activity. The meridional Z500 gradient is enhanced compared to climatology between
30°N and 50°N (cf. Figures 1f–1h). Consequently, also AR activity is focused into this zonal flow south of the
blocking ridge (Figures 1f and 1, 2g) and AR frequencies are enhanced there (Figures 2f and 2g). During the
GL regime, this results in a strongly increased likelihood of AR landfall on the Iberian Peninsula and in
Morocco/North Africa (up to 18 pp; Figure 2g). At the same time, AR occurrence is reduced over the
British Isles and in Scandinavia. During ScBL conditions, AR frequencies are enhanced over the Iberian
Peninsula, but also weakly over the British Isles, due to a concomitant poleward deflection of AR activity
on the western flank of the blocking ridge (Figure 2h).

Figure 1. Atmospheric river frequency (shading, every 0.05 [5%] ranging from 0 to 1 [0–100%]) and Z500 (contours, every
100 gpm) in the North Atlantic region for all autumn (September to November) days attributed to one of the seven
weather regimes (a–g) and climatology of Z500 and of atmospheric river frequency (h). Regime abbreviations and relative
weather regime frequencies (for September to November, in percent) are indicated in the upper‐left corner of each sub-
panel. AT = Atlantic Trough; ZO = Zonal; ScTr = Scandinavian Trough; AtR = Atlantic Ridge; EuBL = European
Blocking; ScBL = Scandinavian Blocking; GL = Greenland Blocking.
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In summary, the investigation of AR frequencies during different WRs in autumn revealed that ARs are pre-
ferentially embedded into a region with an enhanced Z500 gradient and thus enhanced geostrophic flow.
During cyclonic regimes such as the AT and ZO regimes, this enhanced gradient is primarily established
by a negative Z500 anomaly and associated trough poleward of the mean westerly flow (Figure 1). During
blocked regimes, the latitudinal position of the blocking ridge determines whether the mean westerly flow
is predominantly deflected poleward, as during the AtR and EuBL regimes, or equatorward, as during the
higher‐latitude ScBL and GL regimes. The most striking modulation of AR activity occurs during the AT
and the GL regimes with strongly enhanced AR landfall in western and central Europe and on the
Iberian Peninsula and Northern Africa, respectively (Figure 2).

3.2. Enhanced Likelihood of PEs

Next, we explore the modulation of the occurrence of PEs during different WRs (Figure 3). Therefore, we
compute at each grid point the fraction of 6‐hourly time steps exceeding the 99th percentile of 6‐hourly accu-
mulated precipitation of the respective season at that grid point during the different regimes. If that fraction

Figure 2. Atmospheric river frequency anomalies (shading, every 0.03 [3 percentage points]) and Z500 (contours, every
100 gpm) in the European region for all autumn (September to November) days attributed to one of the seven weather
regimes (a–g) and to no regime (h). Regime abbreviations and relative weather regime frequencies (for September to
November, in percent) are indicated in the upper‐left corner of each subpanel. AT = Atlantic Trough; ZO = Zonal;
ScTr = Scandinavian Trough; AtR = Atlantic Ridge; EuBL = European Blocking; ScBL = Scandinavian Blocking;
GL = Greenland Blocking.
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is higher than 1%, the likelihood is enhanced (e.g., a fraction of 2%means a doubling of the likelihood of PEs
at that grid point during the respective regime).

During the AT regime, the likelihood of a PE is strongly enhanced along the Atlantic, North Sea, and Baltic
Sea coasts of Europe (Figure 3a). In Brittany, southern England, and around Denmark, the likelihood of a PE
is 2.5 times higher during AT compared to the seasonal mean. The region of enhanced likelihood of a PE
(Figure 3a) coincides with the region of enhanced AR activity during the AT regime (red contour in
Figure 3a, cf. Figure 2a) suggesting that ARs help triggering the PEs. Indeed, in these regions, the AR fre-
quency during a PE often exceeds 80% (Figure S7a). Further to the North, for example, over Ireland,
Scotland, northern England, and Norway, the enhanced likelihood of PEs rather goes along with concomi-
tant cyclone activity (green contour in Figure 3a; see also Pfahl & Wernli, 2012). During the ZO regime, the
likelihood of PEs is enhanced over Northern Europe. Over the British Isles, PEs during ZO are also linked to
AR activity (red contour in Figures 3b and S7b). However, the enhanced PE likelihood further to the north

Figure 3. Enhanced frequency of precipitation extremes (PE; shading, every 0.5 ranging from 1 to 4) in the European
region for all autumn (September to November) days attributed to one of the seven WRs (a–g) and to no regime (h). A
value above 1.0 indicates that the relative PE frequency is higher than the seasonal mean, for example, 2.0 means that the
relative PE frequency during the respective WR is double compared to the seasonal mean. Additional contours indicate
500‐hPa geopotential height (black, every 100 gpm), positive atmospheric river frequency anomaly (red, 5% contour only),
and positive cyclone frequency anomaly (green, 5% contour only). Regime abbreviations and relative WR frequencies (for
September to November, in percent) are indicated in the upper‐left corner of each sub‐panel. AT = Atlantic Trough;
ZO = Zonal; ScTr = Scandinavian Trough; AtR = Atlantic Ridge; EuBL = European Blocking; ScBL = Scandinavian
Blocking; GL = Greenland Blocking.
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and over Scandinavia is rather linked to cyclone activity (green contour in Figure 3b). Also during the ScTr
regime, the enhanced likelihood of PEs over Scandinavia is related to enhanced cyclone activity (Figure 3c).

During the blocked AtR and EuBL regimes, PE are suppressed in wide parts of Europe (Figures 3d and 3e).
However, during EuBL, enhanced PE likelihood co‐occurs with AR activity in Iceland and northern
Scandinavia (red contour in Figures 3e and S7e). In the central Mediterranean, the Balkans and west of
Iberia enhanced likelihoods of PEs go along with enhanced cyclone activity during the AtR and EuBL
regimes (green contours in Figures 3d and 3e) at the flanks of the blocking ridge. During AtR, the cyclone
activity in the central Mediterranean might foster the formation of ARs in the eastern Mediterranean, which
are more frequent in a region of twofold enhanced likelihood of PEs (red contour in Figure 3d).

The high‐latitude blocked regimes ScBL and GL (Figures 3f and 3g) again enhance the likelihood of PEs
across wider parts of Europe. During ScBL, most parts of Western Europe experience twofold more likely
PEs than usual in autumn. Along the coasts of Iberia, southern France, Brittany, and Northern Scotland,
the PEs often co‐occur with AR activity (red contour in Figures 3f and S7f). At the same time, cyclone activity
is enhanced over the British Isles (green contour in Figure 3f) at the upstream flank of the blocking ridge in
regions of enhanced PE likelihood. During the GL regime, most parts of Europe experience a weakly
enhanced likelihood of PEs except for the Alpine region and Eastern Europe (Figure 3g). Over parts of
Iberia, North Africa/Morocco, the British Isles, and southern Sweden, the likelihood of PEs is twofold
enhanced. While over Iberia, North Africa, and in the Mediterranean, these PEs occur in regions with
enhanced AR activity (red contour in Figure 3g); in most parts of Europe, the enhanced PE likelihood occurs
in regions of enhanced cyclone activity extending from the Azores Islands to the Baltic Sea (green contour in
Figure 3g). Still, more than 80% of all PEs in Iberia, Morocco, and southern Ireland during GL co‐occur with
an AR (Figure S7g).

The investigation of the modulation of PE occurrence during different WRs revealed that indeed regions of
enhanced AR activity also experience an enhanced likelihood of PEs. These PEs are then often associated
with a concomitant AR. However, WRs also affect the occurrence of extratropical cyclones which can like-
wise trigger PEs. In particular at higher latitudes and further inland, an enhanced likelihood of PEs during
different regimes therefore often goes along with enhanced cyclone activity.

4. Concluding Remarks

It has been extensively documented that (i) the large‐scale flow in the North Atlantic‐European region is
modulated by the occurrence of specific WRs (e.g., Cassou, 2008; Grams et al., 2017; Michelangeli et al.,
1995) and (ii) the large‐scale moisture transport in ARs can be an important factor for the development of
extreme precipitation events (e.g., Lavers & Villarini, 2013; Ralph et al., 2006; Ramos et al., 2015). In this
study, we link these two aspects and provide a quantitative climatological analysis of the modulation of
AR occurrence and the influence of AR on PEs by European WRs. We show that the spatial distribution
of ARs, the probability of AR landfall in Europe, and, therefore, also the probability of European PEs are
strongly modulated by the occurrence of different WRs. AR frequency is typically increased in regions of
enhanced geostrophic wind velocities. In the UK, France, and northern Germany, AR landfall and asso-
ciated PEs are strongly favored during the ZO and AT regimes. The probability of PEs thereby increases
locally by more than 200%. The ScBL and GL regimes are associated with enhanced AR landfall and extreme
precipitation over the Iberian Peninsula and the northwestern Mediterranean coast. These results broadly
agree with previous studies showing an enhanced influence of ARs on precipitation over northern
(southern) Europe during the positive (negative) phase of the NAO (Eiras‐Barca et al., 2016; Lavers &
Villarini, 2013; Stohl et al., 2008). Nevertheless, the WR approach adapted in this study provides a more
detailed view on this modulation and explains a larger part of the flow variability compared to the
NAO index.

To forecast the occurrence of high‐impact PEs, in particular in coastal regions of Western Europe, it is thus
crucial to take the effect of WRs into account. In turn, predictable variability of WRs on subseasonal time
scales may provide opportunities to also forecast the probability of extreme precipitation beyond the classical
weather prediction time scale of a few days, complementing current activities that started to explore and
utilize the predictability of water vapor transport (Lavers, Pappenberger, et al., 2016; Lavers, Waliser,
et al., 2016).
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