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Enhanced nematic fluctuations near an antiferromagnetic Mott
insulator and possible application to high-Tc cuprates
Peter P. Orth 1, Bhilahari Jeevanesan2,5, Rafael M. Fernandes3 and Jörg Schmalian2,4

Motivated by the widespread experimental observations of nematicity in strongly underdoped cuprate superconductors, we
investigate the possibility of enhanced nematic fluctuations in the vicinity of a Mott insulator that displays Néel-type
antiferromagnetic order. By performing a strong-coupling expansion of an effective model that contains both Cu-d and O-p orbitals
on the square lattice, we demonstrate that quadrupolar fluctuations in the p-orbitals inevitably generate a biquadratic coupling
between the spins of the d-orbitals. The key point revealed by our classical Monte-Carlo simulations and large-N calculations is that
the biquadratic term favors local stripe-like magnetic fluctuations, which result in an enhanced nematic susceptibility that onsets at
a temperature scale determined by the effective Heisenberg exchange J. We discuss the impact of this type of nematic order on the
magnetic spectrum and outline possible implications on our understanding of nematicity in the cuprates.
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INTRODUCTION
Hole-doped cuprates are susceptible to a variety of different types
of electronic order in the underdoped regime. Examples include
tendencies toward charge order,1–4 which becomes long-ranged
in the presence of large magnetic fields,1,4 and tendencies toward
nematic order,5–10 characterized by the breaking of the tetragonal
symmetry of the system.11,12 The fact that these tendencies
appear in the region of the phase diagram where a pseudogap is
also observed (see schematic Fig. 1) suggest a close interplay
between these seemingly different phenomena, a topic that
remains widely debated in the field (for recent reviews, see13,14).
Although the microscopic mechanisms behind these different

ordering tendencies, and particularly of nematicity, remain
unsettled, they have been the subject of many different
theoretical proposals (see, for instance,15–30 and also the
reviews11,12). While a complete theory for nematicity in the
cuprates is beyond the scope of our work, here we show that an
important contribution to the nematic susceptibility arises already
near the Mott (or more precisely, charge-transfer31) insulating
state of the parent compound. For the rest of the paper, thus, we
focus only on the spin correlations near the Mott state, and
neglect other phenomena that are certainly important for a
complete description of the hole-doped cuprates, and which may
also be important to describe nematicity, such as charge order,
pseudogap, time-reversal symmetry-breaking, pair-density waves,
and superconductivity.13,14

To be more specific, we consider the so-called Emery model,32

an effective model that attempts to capture both Cu and O low-
energy degrees of freedom by introducing dx2�y2 orbitals on the
sites of the square lattice and px (py) orbitals on the horizontal
(vertical) bonds. Consider first the case where only d-orbitals are
present. In the half-filled Mott insulating state, the charge degrees

of freedom are quenched, and the low-energy physics is described
completely in terms of an AFM Heisenberg interaction J between
the d-orbital spins, which ultimately gives rise to a Néel AFM
ground state. Upon light hole-doping, the effective Hamiltonian is
known as the t–J model:33

Ht�J ¼
X
ijα

tijedyi;αedj;α þ J
X
ijh i

Si � Sj �
1
4
ninj

� �
: (1)

Here, tij denotes the hole hopping parameters and J the AFM
exchange coupling. The operator Si ¼ 1

2

P
αβ
edyi;ασαβ

edi;β describes
the d-orbital spin and ni ¼

P
α
edyi;αedi;α the corresponding charge.

The strong local Coulomb interaction is incorporated in terms of
the hole creation operator edyi;α ¼ 1� niαð Þdyi;α, reflecting the fact
that double occupancy of the sites is not allowed near the Mott
insulating state.
As we demonstrate below via a strong-coupling expansion of

the Emery model, the inclusion of the p-orbitals leads to an
important additional term in the t–J Hamiltonian. While the two
terms in Eq. (1) remain the same, albeit with a different
microscopic expression for J, noncritical quadrupolar fluctuations
of the p-orbitals, enhanced by the repulsion between p-orbitals,
generate a positive biquadratic coupling K > 0 between the d-
orbital spins:

HK ¼ �K
X
i

Si � Si�x̂ þ Siþx̂ � Si�ŷ � Siþŷ

� �� �2
; (2)

resulting in an effective t−J−K Hamiltonian, Ht−J−K= Ht−J+ HK.
Using classical Monte-Carlo and large-N analytical methods, we

find that the main consequence of HK is to enhance the static
electronic nematic susceptibility χnem near the AFM-Mott insulat-
ing state. However, χnem is not found to diverge on its own—
instead, it peaks at a temperature scale proportional to J, instead
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of K. The location of the peak depends on the relative strength of
quantum and thermal fluctuations and shifts towards smaller
temperatures for larger quantum fluctuations. As illustrated in Fig.
1c, the enhancement of nematic fluctuations promoted by HK has
its origins in the short-ranged magnetic stripe ordered regions that
this term favors within the (much longer ranged) Néel ordered
background. Consequently, within the t−J−K model, the onset of
nematic order requires an additional symmetry-breaking field that
can take advantage of the enhanced susceptibility. While a more
detailed discussion of the application of these results to the
cuprates is left to the end of this paper, we note that this
mechanism for enhanced nematic susceptibility can in principle
be combined with other mechanisms proposed in the literature to
yield long-range nematic order. Detailed reviews on the proposed
mechanisms for nematicity in cuprates, both within weak and
strong-coupling regimes, can be found for instance in refs. 11,12.

RESULTS
Microscopic model
Our starting point is the interacting three-orbital Emery model H
= H0+ HU+ HV.

32 As depicted in Fig. 1b, it includes the dx2�y2 Cu

orbital with creation operator dyi;σ at Bravais lattice position Ri and
spin σ as well as the px and py O orbitals with creation operators

py
iþx̂

2;σ
and py

iþŷ
2;σ
. The noninteracting part H0 includes hopping

between p-orbitals with (amplitude tpp) and between d- and p-
orbitals (with amplitude tpd). The corresponding sign factors of the
hopping elements follow from the phases of the orbitals (see Fig.
1b).32 In addition, H0 contains on-site terms where the energy
difference between Cu and O orbitals is given as Δ= εp− εd.
Interactions are included on-site HU ¼ Udd

P
i n

d
i;"n

d
i;# +

Upp

2

P
i;u n

p
iþu;"n

p
iþu;# with u 2 x̂

2 ;
ŷ
2

n o
, and number operators ndi;σ ¼

dyi;σdi;σ and npiþu;σ ¼ pyiþu;σpiþu;σ . We also consider nearest-neighbor

interactions HV ¼ Vpp
2

P
i;u;u0 n

p
iþun

p
iþuþu0 + Vpd

P
i;u n

d
i n

p
iþu with u0 2

± 1
2 x̂ þ ŷð Þ; ± 1

2 x̂ � ŷð Þ
� 	

and ndi ¼
P

σ n
d
i;σ , n

p
iþu ¼

P
σ n

p
iþu;σ .

The largest energy scales are the local repulsion Udd between d-
orbitals and the charge-transfer energy Δ (with Udd much larger
than Δ), suggesting a strong-coupling expansion in small
tij � Δ;Udd � Δ. This yields a description in terms of localized d-
orbital spins Si coupled to mobile p-orbital holes. An expansion up
to fourth order in the hopping term tpd was performed in refs 34,35.
There appear Kondo-like exchange couplings / Si � siþu1 ;iþu2
between the d- and p-orbital spin-densities
siþu1 ;iþu2 ¼ 1

2

P
τ;τ0 p

y
iþu1;τ

σττ0piþu2 ;τ0 ,
36 the familiar Heisenberg spin

exchange term J
P

hi;ji Si � Sj and terms that renormalize the p-
orbital hole dispersion. For details we refer to the Methods section
and the Supplementary Information. The Kondo-like terms also
modify the hole dispersion as the tunneling process of holes
through a d-orbital becomes spin dependent. For example,
tunneling through a background of Néel ordered d-orbital spins

leads to the spin dependent hopping parameters ta ¼
t2pd
2

1
Δ þ 3

Udd�Δ


 �
and tb ¼

t2pd
2

3
Δ þ 1

Udd�Δ


 �
for holes with spin parallel

and antiparallel to the central d-orbital spin.24 The hole Fermi
surface thus appears at momenta k ¼ ± π

2 ; ±
π
2

� �
for small doping

np.
Most notably for our considerations, the strong-coupling

expansion also yields a spin exchange term that depends on the
occupation of the intermediate p-orbital between d-orbital sites:

HJ0 ¼ �J0
X
i;δ

np
iþδ

2
Si � Siþδ (3)

where δ 2 ± x̂; ± ŷf g and the spin exchange coupling constant is

given by J0 ¼
P3

n¼0
t4pdsign 3� 2nð Þ
Δ3�n Udd �Δð Þn. Note that J ¼

P2
n¼0

t4pd 4� n2 � δn;2ð Þ
2Δ3�n Udd �Δð Þn

and in the large-Udd limit both are of the same order J′/J→ 1/2.
Oxygen charge fluctuations thus not only renormalize the
Heisenberg exchange via the Kondo coupling terms, but, as we
show now, also lead to the biquadratic spin exchange interaction
K in Eq. (2).
We derive the biquadratic exchange K by first decomposing the

p-orbital densities as np
iþx̂

2
¼ npi þ ηi and np

iþŷ
2

¼ npi � ηi , where ηi is

the quadrupolar (nematic) component of the oxygen charge
density.21 The combination of on-site and nearest-neighbor
Coulomb interactions between p-orbital leads to a term

�2
P

Ukηkη�kð Þ in the Hamiltonian, where Uk ¼
1
4 VppRe fk � Upp

2


 �
and fk ¼ 1þ e�ikx þ eiky þ ei ky�kxð Þ. Integrating

out the quadrupolar charge fluctuations associated with the p-
orbitals (details of this analysis are presented in the Methods
section and the Supplementary Information) yields the result for
the biquadratic exchange interaction in Eq. (2) with:

K ¼ J02

2

R
kΠ

η
k

1� Vpp � Upp

8


 �
Πη
k¼0

gt; 0: (4)

Here, Πη
k ¼ �

R
q;ω0 Tr Gp

q;ω0 τzσ0s0ð ÞGqþk;ω0 τzσ0s0ð Þ
h i

is the bare p-

orbital charge susceptibility in the quadrupolar (i.e., nematic)
channel. We have used the long-wavelength approximation in the
denominator for simplicity (the full expression can be found in the
Supplementary Information and yields qualitatively identical
results). The Pauli matrices τj, sj and σi act in orbital (px, py), spin
and reduced wavevector (k, k+ (π, π)) space, respectively. Note
that the presence of the AF background of d-orbital spins leads to
a doubling of the unit cell, and thus

R
q �

R
mBZ

d2q
2π2 is an integration

Fig. 1 Microscopic manifestation of nematic fluctuations. a Sche-
matic phase diagram of hole-doped cuprate superconductors. b The
microscopic model we use contains a Cu 3dx2�y2 orbital (center
orbital) and O 2px and 2py orbitals in a single unit cell. The hopping
parameters are given by tpd, tpp, and interactions are considered on-
site Udd, Upp, and between nearest-neighbors Vpd, Vpp. c Simple
illustration that nematic fluctuations induce a short-ranged mag-
netic stripe ordered region (light red) within a Néel ordered
background (yellow). This snapshot is taken from our classical
Monte-Carlo simulations. Red and blue color of the arrows denote
out-of-the-plane components of the spins
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over the magnetic Brillouin zone (mBZ). Explicit expressions for
the p-orbital Green’s functions Gp

q;ω are given in the Methods
section and the Supplementary Information and yield

Πη
k ¼ �

Z
q

X4
i;j¼1

vij;q;qþk nF ξ i;q
� �

� nF ξ j;qþk
� �� 	

ϵi;q � ϵj;qþk
(5)

with ϵi;q being the renormalized p-orbital dispersion and ξ i;q ¼
ϵi;q � μ with the chemical potential μ. The matrix elements
vij;q;qþk ¼ Wy

q τzσ0ð ÞWq�k contain Wq, which are unitary matrices
that transform between orbital/reduced k-space (σi ⊗ τj) and band
space. Most importantly, Eq. (4) makes it clear that the biquadratic
exchange K in Eq. (2) is a direct consequence of quadrupolar
oxygen charge fluctuations. This is a generic feature of the model
and exist even if the p-orbital holes are not dressed by d-orbital
spins.
The oxygen quadrupolar susceptibility Πη

k (and thus K) is strictly
positive for all k and is determined by the occupation number
difference between the different oxygen bands. In the relevant
regime of small hole fillings np � 1, the response approaches a
value Πη

k¼0 / np at low T, peaks around T ≈ |μ| and vanishes as 1/T

at large T. The response increases for smaller bandwidth, e.g.,
smaller tpp. This is derived explicitly in the Supplementary
Information for a simpler two-band model that neglects the
interaction with the AF background. It also holds true numerically
for the full four-band model, as shown in Fig. 2a, where we

present results for the renormalized quadrupolar response ~Π
η

k¼0 ¼
1
2 Πη

k¼0

� ��1�Uk¼0

h i�1
and for the resulting K/J within the

microscopic four-band model. In the calculation we keep nd= 1,
assuming that holes are doped into the p-orbitals, but we take the
interaction of the mobile holes with the AF background of d-
orbital spins fully into account. We clearly observe that a large
nearest-neighbor repulsion Vpp and a small bandwidth tpp
enhance K (see Eq. (4)). Our results also indicate that an
enhancement of the quadrupolar density fluctuations by Vpp is
necessary for a significant biquadratic exchange coupling. This
follows from K/J∝ (J′2/J)(np/tpp) at small np where J′= 0.08, J= 0.15
for the parameters in Fig. 2. Finally, while phonon modes in the
same channel are, by symmetry, allowed to give rise to similar
behavior, the electronic mechanism for biquadratic exchange is
expected to be quantitatively much stronger.

Fig. 2 Strength of biquadratic exchange K within Emery model and enhanced nematic spin fluctuations. a Renormalized quadrupolar oxygen

density response function ~Π
η

k¼0 ¼ 1
2 Πη

k¼0

� ��1�Uk¼0

h i�1
as a function of p-orbital holes np (per planar d-orbital) obtained within the three-band

Emery model at low temperature T= 10−2tpp and fixed nd= 1. The interaction of the mobile holes with the antiferromagnetic Néel
background of d-orbital spins is fully taken into account. Other parameters are set to tpd= 1, Δ= 2.5, Udd= 11, and Vpd= Vpp such that
Uk¼0 ¼ Vpp � Upp

8 . We use Upp= 5.5 for Vpp= 5.5 and Upp= 4.5 for all other values of Vpp. Amplitude of oxygen quadrupolar fluctuations
increases with Vpp and smaller oxygen bandwidth, e.g., smaller tpp. The inset shows the resulting value of K/J∝ (J′2/J)(np/tpp) (at small np) from
which we conclude that an enhancement of the fluctuations by Vpp is crucial for a significant biquadratic exchange coupling. Note that we
have approximated Πη

k � Πη
k¼0 for simplicity, which does not affect our conclusion. b, c show the static nematic susceptibility χnem in Eq. (7) for

the Ht−J−K model of Eq. (2) at half-filling as a function of temperature T obtained by Monte-Carlo simulations of classical spins. A non-zero K
enhances the response in the nematic B1g channel only. Inset phase diagram shows that we are investigating χnem above the Néel ordered
state. For consistency with the known spin-wave spectrum, we consider a small ferromagnetic next-nearest-neighbor exchange J2=−0.1J
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Enhanced nematic susceptibility
The implications of HK can be better understood in the limit of K >
J. In this case, the AFM ground state is no longer the Néel
configuration with ordering vector Q= (π, π), but the striped
configuration with Q= (π, 0) or (0, π). While the limit of large K/J is
clearly not realized in the cuprates, it reveals that HK supports
quantum and classical fluctuations with local striped-magnetic
order that have significant statistical weight.
We qualitatively demonstrate this behavior in Fig. 1c by

showing typical spin configurations of a Monte-Carlo analysis of
Ht–J–K in the limit of classical spins and where the kinetic energy of
the holes is ignored. One clearly sees local striped-magnetic
fluctuations (light red background) in an environment of Néel
ordered spins (yellow background). Configurations with parallel
spins along the x-axis and along the y-axis occur with equal
probability, hence preserving the tetragonal symmetry of the
system. If one, however, weakly disturbs tetragonal symmetry, e.g.,
by straining one of the axes, this balance is disturbed and one
favors striped configurations of one type over the other.
The behavior described above can be quantified in terms of the

composite spin variable:

φi ¼ Si � Si�x̂ þ Siþx̂ � Si�ŷ � Siþŷ

� �
(6)

which changes sign under a rotation by π/2. Note that the square
of this term, which appears in Eq. (2), is invariant under this
transformation, and therefore is fully consistent with the fourfold
symmetry of the Emery model. While 〈φi〉= 0 for realistic values of
K (and in the absence of external strain), the static nematic
susceptibility

χnem Tð Þ ¼
Z 1=T

0
dτ
X
i

T τφi τð Þφ0 0ð Þh i (7)

is a measure for the increased relevance of local stripe magnetic
configurations. Here, T τ denotes imaginary time ordering.
We present a quantitative demonstration that the biquadratic

exchange K yields an enhanced nematic susceptibility in the B1g
(x2− y2) symmetry channel in Fig. 2b, c. It contains Monte-Carlo
results for χnem for a collection of classical Heisenberg spins that
interact according to the HJ–K model. For consistency with the
known spin-wave spectrum, we have included an additional small
second-neighbor exchange J2=−0.1J in the simulation. One
clearly sees that the biquadratic term K enhances the nematic
response in the B1g channel, corresponding to an inequivalence
between the x- and y-axes. In the limit of classical spins, the
nematic susceptibility χnem(T) is nonmonotonic, peaking at a
temperature governed by the effective exchange interaction of
the spins, Tnem ~ J, which is independent on K.
The Monte-Carlo results also display that χnem(T→ 0)→ 0, which

is a consequence of the classical nature of the spins in the
simulations and a resulting absence of (thermal) fluctuations in
the zero temperature limit. Quantum fluctuations crucially modify
this behavior and lead to χnem(T→ 0) > 0. This is demonstrated in
Fig. 3, where we present results of an analytical calculation of the
nematic response χnem that includes the effect of quantum
fluctuations within a soft-spin field-theoretical version of the spin
degrees of freedom in Eq. (2). After decoupling the biquadratic
exchange term K in the nematic channel and taking the long-
wavelength limit, which is appropriate to study the low-energy
excitations, we obtain the effective action:

S¼ Sdyn þ
R
r ∇nrð Þ2 �φr ∂xnrð Þ2 � ∂ynr

� �2
 �h i
þ
R
r r0n2

r þ u
2 nr � nrð Þ2þ φ2

r
2g � hrφr

h i (8)

where nr is the N= 3 component staggered Néel order parameter,
as used in the nonlinear sigma model of refs. 37,38. The parameter
r0 controls the distance to the AFM Néel quantum-critical point

located at r0,c. For δr0≡ r0− r0,c < 0, the system has long-range
AFM order at T= 0, whereas for δr0 > 0 it is in the paramagnetic
phase (see sketches at the bottom of Fig. 3), and the interaction
parameters are g∝ K/J > 0, u > g. The integrations are overR
r �

R 1=T
0 dτ

R
d2r, where r= (τ, r) combines imaginary time τ and

position r= (x, y). In addition, φr is the nematic order parameter of
Eq. (6) and hr is an external strain field. The quantum dynamics of
the Néel order parameter is governed by Sdyn ¼

R
q f ωnð Þnq � n�q ,

where f ωnð Þ / ω2
n at half filling, while f(ωn)= γ|ωn| was proposed

to describe particle-hole excitations, and will be used below as we
describe the system away from half-filling np > 0. Here, q= (ωn, q)
combines Matsubara frequency ωn and momentum q (measured
relative to the AFM ordering vector Q= (π, π)) andR
q � T

P
n

R d2q
2πð Þ2.

The nematic susceptibility in Eq. (7) can be obtained for general
N and reads (see Methods section and Supplementary Informa-
tion):

χnem ¼ χ
0ð Þ
nem

1� g
N χ

0ð Þ
nem

; (9)

where the bare nematic susceptibility is given by χ
0ð Þ
nem ¼

N
2

R
q

qj j4cos2ð2θÞ
ξ�2 þ qj j2 þ f ωnð Þð Þ2 with q= |q|(cos θ, sin θ). Here, ξ is the

magnetic correlation length for Néel order, that includes
interaction corrections and diverges at the AFM phase transition.
Right above the quantum-critical point at δr0= 0, one finds ξ−2=
aγT with nonuniversal constant a. As shown in Fig. 3a, the exact

shape of χ
ð0Þ
nemðTÞ depends on this nonuniversal parameter a,

which depends, for example, on the interaction parameter u or the

lattice constant. While χ
ð0Þ
nem peaks at finite temperatures for a < π,

which is similar to the classical case, the maximum occurs at T= 0
for a > π. Note that nematic correlations remain finite ranged at

the AFM quantum-critical point and universal behavior of χð0Þnem is
not guaranteed (in contrast to the AFM susceptibility, which is
universal). Being a nonuniversal quantity, we thus expect that the

precise shape of χð0Þnem can be different for different systems.
In order to make analytic progress and calculate a(u), or more

generally ξ(T, δr0), we consider the limit of large N. This approach
led to important insights in both the description of antiferromag-
netic correlations of the cuprate parent compounds38 and of
nematic fluctuations of iron-based superconductors.39 The mag-
netic correlation length ξ is determined self-consistently within
large-N for a given distance to the AFM quantum-critical point δr0.
Despite the similarity between Eq. (9) and the expression for the
nematic susceptibility of iron-based superconductors,39 there are
very important differences between the two systems. Because the
iron-pnictides order magnetically in a striped configuration, χ 0ð Þ

nem
diverges when ξ→∞, which guarantees that a nematic transition
takes place already in the paramagnetic state for any g > 0.
However, because our model orders in a Néel configuration, χ 0ð Þ

nem
remains finite even when ξ→∞. Although long-range nematic
order is not present, nematic fluctuations can be significantly
enhanced if the biquadratic exchange K∝ g is sufficiently large.
In Fig. 3b, c, we show the nematic susceptibility obtained within

the large-N approach (see Methods section and Supplementary
Information). Like in the Monte-Carlo results (see Fig. 2), we
observe, in Fig. 3b, a broad maximum at finite temperatures
around T ≈ J, corresponding at δr0= 0 to a < π. The lattice cutoff Λ
plays the role of J in the continuum model. The effect of g, and
thus of the biquadratic exchange K, is to enhance the amplitude of
the peak (comparing dashed and solid lines). The pronounced
peak of χnem originates from the bare susceptibility χ

0ð Þ
nem. As

discussed above, the bare response is in turn governed by the
magnetic correlation length ξ that is set by T/J. Notably, at low
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temperatures, quantum fluctuations render χnem (and χ
ð0Þ
nem) finite,

in stark contrast to our MC results for classical spins. Keeping T
fixed and varying the non-thermal tuning parameter δr0, we
observe in Fig. 3c that the nematic response increases for an
increasing magnetic correlation length, i.e., Néel fluctuations
enhance the nematic susceptibility. This follows from the
observation that χnem(δr0, T) is an increasing function for
decreasing δr0.

Consequences of long-range nematic order
As we discussed above, the nematic susceptibility does not
diverge within our HJ–K model. Nevertheless, it is interesting to
study what happens to the magnetic spectrum if nematic order is
induced—either by the presence of a small tetragonal-symmetry
breaking field h, which can induce a sizable nematic order
parameter φ ≈ χnemh, or by combination with other microscopic

mechanisms for nematicity. From the action in Eq. (8), we can
readily obtain the dynamic spin susceptibility in the presence of
nematic order

χAFM Qþ q;ωð Þ ¼ 1

ξ�2 þ q2 � φ q2x � q2y

 �

þ f ωnð Þ
; (10)

Therefore, as shown in Fig. 4, nonzero φ modifies the spin–spin
structure factor near the Néel ordering vector Q from a circular
shape, which preserves tetragonal symmetry, to an elliptical
shape, which breaks tetragonal symmetry. In addition, as φ
increases, it shifts the maximum of χAFM(Q+ q, ω) from the
commensurate q= 0 value to an incommensurate wavevector
qIC ≠ 0, with qIC parallel to either the x-axis (if φ > 0) or to the y-axis
(if φ < 0). Note that a somewhat related mechanism for the
incommensurate spin order, based on the t–Jmodel, was reported
in refs 40–42. Previous works have also focused on nematicity

Fig. 3 Nematic susceptibility including quantum fluctuations. Effects of quantum fluctuations are included in the analytical treatment of a
soft-spin field theory of the HJ–K model. a shows the bare nematic susceptibility χ

ð0Þ
nemðξ; TÞ (normalized to its T= 0 value) as a function of

temperature T, right above the Néel QCP r0= r0,c (see inset). Different curves correspond to different functional behavior of the Néel
correlation length ξ(T)−2= aγT. The nonuniversal constant a determines whether χð0Þnem peaks at T= 0 (a > π) or at finite T (a < π). Thus, χð0Þnem can
exhibit different shapes in different systems, as expected for a nonuniversal susceptibility, which remains finite at the AFM QCP. b, c contain
results of a large-N treatment of the model, which allows an explicit solution of ξ(T, δr0). Dashed (solid) lines are for g= 0 (g= 0.1), where g∝ K/
J. b is for fixed distances to the QCP δr0= {−r0,c, 0, r0,c} (green, yellow, red; as indicated in the sketch below) and varying T. Quantum
fluctuations render the susceptibility at T= 0 finite, but have no strong effect on the finite temperature behavior. Importantly, nonzero
biquadratic exchange g > 0 enhances the finite temperature nematic response and increases the maximal value of χnem around T ~Λ2/γ ~ J
(with momentum cutoff Λ= 10 and frequency cutoff γΛω= 100). c is for fixed temperatures γT/Λ2= {0, 0.1, 0.2} (blue, purple, magenta) and
varying δr0. It demonstrates that the nematic response increases with the magnetic correlation length, as the system approaches the QCP. The
quartic coefficient is set to u/γ= 50 in (b) and u/γ= 5 in (c)
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arising from a pre-existing incommensurability,28 whereas in our
scenario incommensurate magnetic order is a consequence of
nematic order, caused by an enhanced nematic susceptibility in
the presence of an (external) symmetry-breaking field.
While these effects onset in the paramagnetic phase, the

presence of nematic order should also be manifested in the Néel
ordered state by the direction of the d-orbital moments, which
would align parallel to either the x-axis or to the y-axis.43 Within
our model, we argue that such an effect would arise in the
presence of spin–orbit coupling in the p-orbitals, which convert an
imbalance in the charge of the px and py orbitals into a preferred
direction for the d-orbital moment.
At first sight, one might anticipate that K would affect the spin-

wave dispersion of the AFM Néel ground state.44 As we show in
the Supplementary Information, however, the biquadratic
exchange of Eq. (2) does not modify the linearized classical spin-
wave spectrum. The reason for this peculiar behavior is that the
biquadratic exchange annihilates the classical Néel state, i.e., the
vacuum of the linear spin-wave excitations:

HK Ne
0
el

��� E
¼ 0 : (11)

It is important to point out that all results discussed here were
obtained considering that the spins of the HJ–K Hamiltonian are
treated as vectors, either classical or in the large-N regime. It is
interesting to ask what happens if one considers the quantum
spin-1/2 case. It turns out that, for spin-1/2, the biquadratic term K
> 0 transforms into an AFM next-nearest neighbor bilinear
exchange coupling, which certainly changes the spin-wave
spectrum. It remains an open question whether the results
presented here remain unchanged if one performs this transfor-
mation from biquadratic to bilinear exchange in the microscopic
model. Importantly, however, we note that a large AFM next-
nearest neighbor exchange also favors a stripe magnetic state
over a Néel state. Thus, the main ingredient that enhances the
nematic susceptibility in the classical spin case seems also to be
present in the spin-1/2 case.

DISCUSSION
In summary, we showed via a strong-coupling expansion of the
Emery model that quadrupolar charge fluctuations in the p-
orbitals generate a biquadratic exchange coupling between the d-
orbital spins, extending the celebrated t–J model employed to
describe lightly-doped Mott insulators. The main effect of this
biquadratic term is to enhance B1g nematic fluctuations, which
however is not translated into a diverging nematic susceptibility.
Importantly, the temperature at which the nematic susceptibility

onsets is determined not by the biquadratic coupling K, but by the
standard nearest-neighbor exchange coupling J. The position of
the peak is controlled by the relative strength of thermal versus
quantum fluctuations, and moves from a temperature of order J
for dominant thermal fluctuations toward zero for dominant
quantum fluctuations. The biquadratic exchange K, however, sets
the amplitude of the peak, and both increase for larger values of
the repulsion Vpp between nearest-neighbor p-orbitals.
Thus, our main result is that magnetic correlations associated

with the Mott insulating state generate an enhanced nematic
susceptibility, which is driven by quadrupolar oxygen density
fluctuations. In the remainder of this section, we discuss the
possible applications of these results to the nematic tendencies
observed in hole-doped cuprates.11,12 The mechanism discussed
here does not lead to long-range nematic order on its own.
However, given the enhanced nematic susceptibility, it is expected
that a small tetragonal symmetry-breaking field would lead to a
sizable nematic order parameter. Such a symmetry-breaking field
is naturally provided by the CuO chains or double chains in
YBa2Cu3O7−δ and YBa2Cu4O8, respectively. Interestingly, in YBCO,
several experimental observations are consistent with the
existence of an electronic nematic order parameter.5–7,10 Whether
the observed nematicity is the result of the intrinsic small
symmetry-breaking field combined with a large nematic suscept-
ibility, or the consequence of true long-range order that would
onset even if the chains were absent, remains to be determined.
Still in what concerns YBCO, it is interesting to note that

nematic order is observed already at rather small doping levels, in
the vicinity of the Mott insulating Néel state.6,45 In this region of
the phase diagram, where our results are the most relevant, the
experimental nematic onset temperature is comparable to that of
the Néel transition temperature, which in turn is set by J. Of
course, since nematicity is not restricted only to the vicinity of the
Néel state, it is possible that there are different mechanisms
responsible for nematicity in different regions of the phase
diagram.28

Neutron scattering experiments in YBCO also reveal a strong
feedback of nematic order on the magnetic spectrum.6,43,45 In
particular, nematic order is manifested as an elliptical spin
structure factor centered at the Néel ordering vector. Upon
lowering the temperature, the peak splits and gives rise to two
unidirectional incommensurate peaks. These observations are
qualitatively consistent with our results for the effect of nematicity
on the AFM magnetic spectrum (see Fig. 4).
To further test the applicability of the effect discussed here on

the physics of the cuprates, it would be desirable to directly
measure the nematic susceptibility in tetragonal cuprates. In

Fig. 4 Incommensurability transition induced by nematic order. a–c schematically illustrate the effect of finite nematic order φ on the
spin–spin correlation function. It shows χAFM(k) from Eq. (10) (including a fourth order term ∝ q4) for ξ−2= 0.2 and φ= {0., 1., 1.5}. In the
absence of nematic order (φ= 0) the magnetic susceptibility peak is isotropic around the Néel ordering vector Q= (π, π), but nonzero 0 < φ < 1
leads to an elliptic deformation of the peak. For larger values of φ > 1 the peak splits and two incommensurate scattering peaks emerge at (π
± δ, π). Note that, within our model, the inequivalence of x- and y-direction appears only in response to an external (or intrinsic) strain field
that explicitly breaks C4 symmetry
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analogy to what has been done for the iron-pnictides (see ref. 46),
χnem is closely related to several observables, such as the
elastoresistance,47 the shear modulus, or electronic Raman
scattering. If the biquadratic term found here was to govern the
nematic properties of tetragonal cuprates, such as HgBa2CuO4,
χnem should be enhanced but not divergent—possibly displaying
a peak at a temperature comparable to J. Furthermore, the
temperature dependences of χnem in the B1g and B2g channels
would be similar, although the former would be larger.
Because the biquadratic term is the result of charge fluctuations

on the oxygen p-orbitals, it is only present in the hole-doped side
of the phase diagram, since electron-doping adds charge carriers
directly to the Cu sites.48 To the best of our knowledge, nematic
tendencies have not been reported in electron-doped cuprates.11

It would be interesting to verify this effect by experimentally
determining χnem in tetragonal electron-doped systems, such as
Nd2CuO4.

METHODS
Derivation of t–J–K-model from microscopic three-band model
We derive the biquadratic K spin exchange term in Eq. (2) from a
microscopic interacting three-band model H= H0+ HU+ HV that takes Cu
dx2�y2 and O px, py orbitals into account and reads

H0 ¼
P
i;σ

Δnpiσ þ tpd
P
hi;ji

ð�1Þuij dyi;σpj;σ þ h:c:

 �

þ tpp
P
hhi;jii

ð�1Þu
0
ij pyi;σpj;σ þ h:c:


 � ; (12)

HU ¼ Udd

X
i

ndi"n
d
i# þ

Upp

2

X
i

npi"n
p
i#; (13)

HV ¼ Vpd
X
hi;ji

ndi n
p
j þ Vpp

X
hhi;jii

npi n
p
j : (14)

Here, dyi;σ creates a hole in the dx2�y2 orbital at Bravais lattice site Ri, and pyi;σ
creates a hole in the O px and py orbital i � Ri þ x̂

2 and i � Ri þ ŷ
2,

respectively (see Fig. 1b). The parameters in the Hamiltonian are the on-
site orbital energy difference Δ ¼ ϵp � ϵd , hoppings tpp, tpd (see Fig. 1), on-
site interactions Upp, Udd and nearest-neighbor interactions Vpp, Vpd.
As Udd is the largest energy scale, we perform a strong-coupling

expansion which yields a description in terms of localized Cu-site spins Si
and mobile oxygen holes. The second-order terms contain direct O
hopping terms and Cu–O Kondo coupling terms. We consider these terms
in two complementary limits: (i) assuming an antiferromagnetically
ordered background of Cu spins that renormalizes the oxygen bandstruc-
ture (main text) and (ii) disregarding both terms which yields a free oxygen
dispersion (Supplementary Information). Both calculations yield qualita-
tively identical results for the quadrupolar response ~Π

η
(see Fig. 2a) and

biquadratic exchange K. To fourth order appears the Heisenberg exchange
interaction term and the exchange interaction term in Eq. (3) that includes
the density of the intermediate O orbital. Upon integrating out the O holes
this term yields the biquadratic exchange K term of Eq. (2).
As the theory is quartic in O hole operators, we must first decouple the

interaction terms. We perform the decoupling in the channel of the total
and relative density of O atoms in a unit cell: npi ¼ np

iþx̂
2
þ np

iþŷ
2

and

ηpi ¼ np
iþx̂

2
� np

iþŷ
2

. Introducing the vector νk ¼ npk ; η
p
k

� �T
, where

npi ¼ 1
NL

P
k npke

ik�Ri , the interaction terms read

HUpp þ HVpp ¼ �
X
k; kx>0

ν
y
kU

�1
k νk ; (15)

with interaction matrix

U�1
k ¼ 2

NL

�Re Uþ;k
iVpp
4 Im fk

� iVpp
4 Im fk ReU�;k

 !
: (16)

Here, U± ¼ 1
8 2Vppfk ±Upp
� �

and fk ¼ 1þ e�ikx þ eiky þ ei ky�kxð Þ . We decou-
ple the interactions using a Hubbard–Stratonovich (HS) transformation,
which yields an action that is purely quadratic in O operators, but contains

the HS fields Φk= (ψk, ϕk):

S ¼ �
Z

q;q0

X
α; α0; σ; σ0

pyQG
�1
Q;Q0pQ0 þ

Z
q
Φy

qUqΦq: (17)

Here, Q= (q, α, σ) combines the Matsubara frequency–momentum index
q= (iqn, q) with index α= x, y, which runs over the O orbital index px, py,
and σ, which denotes spin. The Green’s function G−1 contains the Cu spin
operators due to the coupling term ∝ J′ in Eq. (3), the O hopping terms and
the HS variables: G�1 ¼ G�1

0 þ G�1
Φ þ G�1

J0 . It is diagonal in spin space, and
is in orbital space (τα) given by

G�1
0 Q;Q0ð Þ ¼ iqn � Δþ μð Þ1� tppRe hq

� �
τx þ tppIm hq

� �
τy ; (18)

with hq ¼ 1� eiqx � e�iqy þ ei qx�qyð Þ . Here, we suppress the second-order
terms of the strong-coupling expansion, which simply renormalize the
dispersion. If one considers the motion of O holes in the background of AF
ordered Cu spins, as we have done to calculate the results of Fig. 2a, the
dispersion entering G�1

0 is modified accordingly24 (for details, see the
Supplementary Information). The other terms in the Green’s function read

G�1
Φ þ G�1

J0
� �

Q;Q0ð Þ ¼ A0 q� q0ð Þτ0 þ Az q� q0ð Þτz : (19)

Here, τ0≡ 1 and we have defined the two functions

A0 q� q0ð Þ ¼ ψq�q0 �
X
p

Sp;q�q0hn p;q0 � qð Þ; (20)

Az q� q0ð Þ ¼ ϕq�q0 �
X
p

Sp;q�q0hη p;q0 � qð Þ; (21)

with Cu spin bilinear Sp;q ¼ Sp � S�p�q and lattice functions hn=ηðp; kÞ=
J0
2 eipx ± eipy þ e�i pxþkxð Þ ± e�i pyþkyð Þ

 �

, where the upper (lower) sign relates

to hn (hη).
Integrating over the O degrees of freedom results in an action of the

form

S ¼
Z

q
Φy

qUqΦq � Tr ln �G�1� �
; (22)

We expand this expression to second order S2 ¼ 1
2 Tr G0 G�1

Φ þ G�1
J0

� �� 	2h i
in order to find

S2 ¼ � 1
2

Z
q

X
α;α0

AαðqÞAα0 ð�qÞΠαα0

�q ; (23)

which includes the biquadratic exchange K term. Here, we have introduced
the oxygen density response function

Παα0

q ¼ �
Z

k
Tr G0ðkÞταG0ðk þ qÞτα0
h i

: (24)

The bare biquadratic exchange constant K0 is given by the zz-component
of this response function at zero frequency as

K0 ¼
ðJ0Þ2

2

Z
q
Πzz
q : (25)

Note that we write Πzz
q � Πη

q in the main text. It is straightforward to obtain
the biquadratic exchange renormalized by O density fluctuations by
performing the Gaussian integration over the HS fields in Eq. (22), which
yields the renormalized response function

~Π
αα0

q ¼ Παα0

q þ 1
2

X
β;β0

~U�1
q


 �
ββ0

Πβα
q Πβ0α0

q ; (26)

where we have defined ~Uq
� �

¼ Uq
� �

αα0
� 1

2Π
αα0

q . Approximating the local

response by the long-wavelength q= 0 component ~Π
zz
ii � ~Π

zz
q¼0 yields the

renormalized biquadratic exchange constant K as given in Eq. (4) of the
main text.

Nematic susceptibility within soft-spin quantum field theory
In the main text, we analyze the nematic susceptibility χnem in the t–J–K-
model using a soft-spin quantum field theory. This allows us to investigate
the effect of quantum fluctutations on the nematic response. Our main
results are shown in Fig. 3. After decoupling the biquadratic K term using
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HS variable φr the soft-spin action reads

S¼ γ
R
q r0 þ q2 þ φr þ hφ

� �
q2x � q2y

 �

þ γ ωnj j
2
z

h i
Mα

qM
α
�q

þ γ2u
2N

R
q1 ;q2 ;q3

Mα
q1M

α
q2M

β
q3M

β
�q1�q2�q3 þ

R
r
Nφr
2g :

(27)

Here, Mq denotes an N-component Néel magnetization order parameter
(N= 3 in the physical system) and summation over repeated indices α, β is

implied. The integrations are over
R
r ¼

R 1=T
0 dτ

R
d2r and

R
q ¼ T

PΛω

ωn

R d2q
ð2πÞ2

up to some dimensionless momentum and frequency cutoffs Λ and γΛω.
The parameter r0 controls the distance to the quantum-critical point
separating a Néel ordered regime from a quantum disordered para-
magnetic regime, u is an interaction constant and the coupling constant
g∝ K/J is proportional to the biquadratic exchange. We have added a
source field hφ≡ hr that couples to homogeneous nematic order. We use a
dynamic critical exponent of z= 2 in the following, which describes
damping due to particle-hole excitations in the presence of mobile holes.
The nematic susceptibility in Eq. (7) can be calculated from the partition

function Z ¼
R
D Mq;φr

� �
e�S as

χnem ¼ T
L2

∂2Z
∂h2φ

�����
hφ¼0

¼
χnem;0

1� g
N χnem;0

(28)

where L is the linear system size and the bare nematic susceptibility is
given by

χnem;0 ¼
N
g
� T

L2 φ2
r


 � ; (29)

with φr ¼ φr þ hφ . In the following, we consider homogeneous HS fields
φr, φr . To calculate the expectation value φ2

r


 �
, we first decouple the

quartic u-term in Eq. (27) using HS field ψ, then separate longitudinal and
transverse components Mr ¼

ffiffiffiffi
N

p
M;πr

� �
and integrate over the transverse

ones to arrive at the (dimensionless) action s≡ S/[L2(γT)−1] given by

s¼ NrM2 þ N φr�hφð Þ2
2~g � ψ2

2~u

þ N�1
2 γ
R
q ln rq þ φr q2x � q2y


 �
 � : (30)

Here, rq= r+ q2+ γ|ωn|, r= r0+ ψ and we have defined dimensionless
interaction constants ~g ¼ g=γ and ~u ¼ u=γ. Next, we expand the logarithm
in small φr up to second order and obtain Eq. (29) by differentiation as

χnem;0 ¼
NT
2

X
ωn

Z Λ d2q

ð2πÞ2
q4cos2ð2θÞ

r þ q2 þ γ ωnj jð Þ2
: (31)

We can exactly perform the summation over Matsubara frequencies
(without imposing a frequency cutoff), the momentum integration and
then absorb the cutoff Λ by expressing χnem,0 in terms of the dimensionless
variables ~T ¼ γT=Λ2 and ~r ¼ r=Λ2. The lengthy expression is given in the
Supplementary Information together with a three-dimensional plot as a
function of ~T and ~r. Cuts for different functional behaviors of the magnetic
Néel correlation length on temperature r(T)≡ ξ−2(T) are shown in Fig. 3a.
We can derive the functional behavior of r(T) within a large-N approach,

where we need to solve the following well-known self-consistency
equation

r ¼ r0 þ uM2 þ u
2

Z
q

1
r þ q2 þ γ ωnj j : (32)

Solving this equation requires us to introduce a finite frequency cutoff Λω,
but the qualitative behavior of χnem,0 and χnem does not depend on the
cutoff choice as long as Λ;Λω � r; γT . The results for χnem,0 and χnem
shown in Fig. 3b, c are obtained from the large-N solution of r(T)
for fixed parameters ~u;Λ;Λω and distance to the quantum-critical point
δr0= r− r0,c.

Details on the classical Monte-Carlo simulations
The Monte-Carlo simulations were carried out at 100 equally spaced
temperature points in the interval 0.001 < T/J < 2.971. We applied a
combination of single-move Metropolis Monte-Carlo steps and nonlocal
parallel-tempering-exchange steps between neighboring temperature
configurations. The simulations shown in Fig. 2b, c of the main text were
carried out for systems of 40 × 40 spins and biquadratic exchange
couplings K/J= {0.0, 0, 35, 0.45}. We consider a ferromagnetic next-
nearest-neighbor exchange coupling J2=−0.1J as well. Note that the
ground state phase transition in the classical model between Néel and

collinear order occurs at J/2= J2+ K. Following thermalization, the
averages were computed for each temperature with at least 4.5 × 106

Monte-Carlo sweeps (MCS). The error bars were estimated by using the
well-known Jackknife procedure.
Finally, we mention that we have performed Monte-Carlo simulations

also for the purely bilinear spin Hamiltonian that is obtained from HJ–K by
using the well-known relations valid for spin-1/2 operators: Si � Sj

� �2¼
3
16 � 1

2 Si � Sj and Si � Sj
� �

Si � Skð Þ ¼ 1
4 Sj � Sk þ i

2 Si � Sj ´ Sk
� �

. These allow
rewriting the biquadratic K term as a sum of three bilinear spin exchange
terms

~HJ�K ¼ 1
2 J þ K

4S2
� �P

i

P
δ

Si � Siþδ

þ K
8S2
P
i

P
δ0

Si � Siþδ0 � K
16S2
P
i

P
δ00

Si � Siþδ00
: (33)

Here, δ(δ′) runs over the (next-)nearest neighbors of the square lattice and
δ″ runs over the second-neighbors along the bonds. Importantly, classical
Monte-Carlo simulation results for this Hamiltonian ~HJ�K show the same
enhancement of the nematic susceptibility χnem as a function of K as results
for the original Hamiltonian HJ−K that includes the biquadratic exchange
term.
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