
Quantum transport and relaxation

in one-dimensional interacting systems

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Physik
des Karlsruher Instituts für Technologie

genehmigte

DISSERTATION

von

Matthias Bard, M. Sc.
aus St. Wendel

Tag der mündlichen Prüfung: 09.11.2018
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Introduction

The physics of interacting one-dimensional (1D) systems has been fascinating for decades [1–33]. Inter-
action effects are of crucial importance leading to peculiar phenomena such as spin-charge separation
[26, 27] and charge fractionalization [24, 25]. While in the early years the physics in one dimension was
studied from the theoretical point of view, nowadays many experimental realizations of 1D systems
exist. Early discovered realizations were bulk materials with an internal 1D structure like organic
conductors and superconductors [13] as well as ladder compounds [20, 21]. The discovery of the quan-
tum Hall effect [34, 35] and the class of two-dimensional (2D) topological insulators [36] opened new
opportunities to investigate 1D edge states [22, 23]. Advances in the nanotechnology allow now to
fabricate 1D devices such as nanotubes [33], nanowires [32, 37] and Josephson junction (JJ) chains
[38]. Moreover, cold atomic systems [28–31] can be used to artificially engineer 1D systems with highly
tunable parameters.

Among all these realizations, JJ chains play a distinctive role since a superconductor-insulator tran-
sition (SIT) can be observed [39–43]. This quantum phase transition connects the superconducting
and insulating phases, which are characterized by infinite and zero conductivity, respectively. In
low dimensions, an intermediate metallic phase is usually absent due to strong localization effects.
Josephson-junction chains are composed of superconducting islands smaller than the bulk coherence
length. These islands are interconnected by tunneling barriers allowing for Cooper-pair hopping. If the
devices are constructed in a superconducting quantum interference device (SQUID) geometry [39–43],
the SIT can be investigated in a single device. Applying a perpendicular magnetic field allows the
tuning of the Josephson coupling in situ without affecting other parameters of the chain. Such a de-
vice was used in Ref. [39] where the SIT was investigated experimentally. At weak magnetic fields, the
chain behaves superconducting with a decreasing resistance as the temperature is lowered. At higher
magnetic fields, the resistance curves become strongly non-monotonic with a sharp increase at low
temperatures. However, the transition is located at unexpected low values of the Josephson coupling
[44, 45].

Charging effects and the Cooper-pair tunneling compete in JJ chains. In the regime where the
Cooper-pair tunneling dominates, the charge transport is characterized by a superconducting current-
voltage curve [39, 46]. Reducing the Josephson coupling induces a SIT which is driven by the prolifer-
ation of quantum phase slips (QPS)[14, 47–50] — topological excitations changing the phase difference
across one of the junctions by 2π. If the charging effects are dominating, i. e., in the insulating regime,
the Coulomb blockade is observed [38]. Moreover, at low bias, thermally activated hopping of Cooper
pairs leads to a finite conductance [51]. The onset of conduction at higher voltages is shown to be
well-described by depinning physics [52, 53]. In the presence of strong random stray charges, the island
charges are pinned to the disorder potential inhibiting transport. Another remarkable effect in con-
nection with the charge disorder was discovered in a theoretical work by Matveev et al. [47]. Studying
a closed ring of JJs pierced by a magnetic flux deep in the insulating regime, the authors of Ref. [47]
obtained a weaker decay of the amplitude of the persistent current as a function of the system size in
the presence of strong charge disorder. This surprising effect, the weakening of the insulating state by
disorder, could be explained by the partially destructive interference of QPS.
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An early theoretical study analyzing the SIT in JJ chains was performed by Bradley and Doniach
[14]. Considering a capacitive coupling to the ground, the model of the JJ chain is mapped onto the
2D XY model displaying a Berezinskii-Kosterlitz-Thouless (BKT) transition [54–56]. Extensions of
this work incorporated the effect of dissipation [57–59] and generalized it to the case of capacitive
couplings to the ground and between the islands [44, 49, 57]. The connection to the physics of a
Luttinger liquid was emphasized in Refs. [60–62]. Recently, the effect of disorder on the statistics of
QPS is studied theoretically in Ref. [63]. The authors considered both random stray charges as well
as random fluctuations of the junction area leading to a spatially fluctuating Josephson coupling. It
was found that in the thermodynamic limit, the distribution of the phase-slip amplitude is Gaussian,
while for a finite chain, a long tail at large amplitudes is present.

In one dimension, the SIT was observed not only in JJ chains but also in MoGe nanowires [64–66].
The transition can be induced by reducing the wire cross section or by applying a magnetic field normal
to the wire and the substrate. Theoretically, the description of the destruction of superconductivity
in nanowires by QPS was developed in Refs. [67, 68]. Up to the present day, there is no quantitative
agreement on the parameter controlling the SIT in 1D structures as well as on the scaling close to the
transition. With this theoretical work, we want to contribute to a better understanding of the SIT in
1D systems.

In recent years, the investigation of the properties of JJ chains under microwave irradiation received
much attention. The current-voltage characteristics show quantized current steps in the presence of
microwave radiation which are promising in the field of metrology [69]. Moreover, in the context of
circuit quantum electrodynamics, JJ chains allow to reach novel regimes where many-body effects
become important [70, 71]. As was shown recently in Ref. [72], JJ chains permit the realization of a
tunable ohmic environment allowing for example the exploration of dissipative quantum phase tran-
sitions. Such an environment is implemented by two capacitively coupled chains that are inductively
coupled to transmission lines.

A similar device was employed in Ref. [73] where the reflection coefficient of a double chain of JJs
under microwave irradiation was measured. The two parallel chains are short-circuited at one end and
connected to a dipole antenna at the other one enabling a coupling to the microwave radiation. In
this way, antisymmetric plasma waves, i. e., modes with opposite amplitudes in both chains, can be
excited. Plasma waves in this context are the collective excitations of the superconducting phases of the
islands. The individual modes at quantized values of the momenta are clearly visible as resonances in
the reflection coefficient. Due to the finite damping, the excited plasmons relax leading to a finite width
of the resonances. Measuring the modulus as well as the phase of the reflection coefficient enables the
authors of Ref. [73] to separate the internal damping from external losses related, e. g., to the leakiness
of the resonator. The damping is quantified by the quality factor defined as the product of mode
frequency and inverse linewidth. Chains with a large value of the Josephson coupling are characterized
by an increasing quality factor upon decreasing the frequency. The quality factor of weaker devices
with a lower value of the Josephson coupling show an almost flat behavior as a function of frequency
with a tendency to drop at lowest measured frequencies. This type of behavior was interpreted by the
authors of Ref. [73] as a hallmark of the SIT. At variance with theoretical predictions, the behavior is
governed by the short-wavelength and not by the long-wavelength part of the Coulomb interaction in
the chain. Moreover, apparent superconducting behavior, i. e., a growing quality factor when lowering
the frequency, is observed in devices that are expected [44, 45] to be deep in the insulating regime.

The relaxation of excitations is a general phenomenon that can be observed in fermionic systems as
well. In the regime of low energies, the relaxation time is usually long compared to other timescales
governing the dynamics of many-body systems. This fact is essential for Landau’s Fermi-liquid theory

iv



Introduction

[74–76]. The relaxation rate (inverse lifetime) of a Landau quasiparticle with energy ε measured from
the Fermi energy εF scales as 1/τ ∼ ε2/εF � ε. The long lifetimes of low-energy quasiparticles are
responsible for a number of interesting quantum phenomena including the quantum corrections to the
conductivity [77–79] and quantum Hall interferometry [22, 23].

Relaxation processes have been studied in many solid-state setups and for several types of excitations
ranging from electrons in normal metals [80–82] over Bogolyubov quasiparticles in Bose gases [83–88]
and superconductors [89] to electrons in 1D wires [90, 91] and quantum Hall edge states [92–97]. The
focus of most of these works was on the decay properties at low energies, where long lifetimes are
expected.

In a recent work [98], it was noted that the lifetime of fermionic excitations can also become long at
high energies larger than the Fermi energy. By means of scanning tunneling microscopy, the interaction-
induced decay of hot electrons in an InAs nanowire is investigated. Specifically, two approaches that
extract the decay properties of injected electrons are employed. Firstly, the scattering from the end
of the nanowire is investigated. From the quasiparticle interference pattern, which is embedded in the
differential conductance as a function of the distance to the end of the nanowire, the phase coherence
length can determined. Secondly, in a Fabry-Pérot-like structure formed by adjacent stacking faults,
the energy width of the resonances in the differential conductance yields the relaxation rate of the
injected quasiparticle. According to the authors of Ref. [98], only electrons from the lowest subband of
transverse quantization could be analyzed within their methods. In both approaches, it is found that
in the low-energy regime, the relaxation rate grows as a function of energy as expected from the Fermi-
liquid theory. However, as the energy exceeds the Fermi energy, the rate reaches a maximum and starts
to decrease again. As a consequence, hot electrons experience a revival of their coherence. This effect
opens new opportunities for quantum coherent operations in various applications and technologies.

This thesis is concerned with the transport properties of JJ chains as well as with the relaxation of
plasmonic waves in JJ chains and the relaxation of fermionic excitations in quantum wires. Our study
of the charge transport in JJ chains is based on a lattice model that includes capacitive couplings to
the ground (C0) as well as between the islands (C1). Our theory is able to describe the physics in the
limit of short-range (C0 � C1) Coulomb interaction as well as in the experimentally most relevant
regime of non-local Coulomb interaction (C0 � C1). Moreover, we include two types of disorder:
random stray charges and spatial fluctuations of the device parameters. As can be anticipated from
the above discussion on the persistent current in insulating JJ chains with a ring geometry, the effect
of random stray charges may as well lead to counterintuitive effects close to the SIT. In order to verify
this hypothesis, we establish the phase diagram and compute the conductivity around the SIT.

Concerning the relaxation of plasmonic waves in JJ chains, we study a single chain as well as a
double-chain device consisting of two capacitively coupled chains that was also used in the experiment
of Ref. [73]. We derive at first the effective field theory for the antisymmetric mode in the double
chain, which is excited in the experiment by means of the coupling to microwaves through the dipole
antenna. Two different mechanisms contributing to the relaxation of plasmonic waves are considered:
the scattering off QPS and the interaction of plasmons due to other anharmonicities like the fourth order
nonlinearity originating from the expansion of the Josephson potential. With the help of this model
we understand the apparent superconducting behavior of the quality factor observed in the experiment
of Ref. [73] in a parameter regime where actually insulating behavior is expected. Moreover, we show
how the interplay of the above mentioned mechanisms leads to an imitation of the SIT at intermediate
frequencies.

Another main aspect of this thesis is the relaxation of fermionic excitations in nanowires. Motivated
by the recent experiment in Ref. [98], we focus mainly on the regime of high energies above the Fermi
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energy. Based on the findings of Ref. [98], we ask the following questions. Is the non-monotonic
behavior of the relaxation rate and the regain of coherence a universal phenomenon? Do we find a
different behavior in a quasi-1D wire if the injected electron is not in the lowest subband of transverse
quantization? What is the role of the dimensionality of the system? We answer these questions
by considering fermions with a parabolic energy spectrum under otherwise quite general conditions.
The cases of short-range as well (screened) Coulomb interaction are analyzed in quasi-1D wires with
multiple subbands and single-channel 1D wires. To better understand the relaxation in quasi-1D wires,
we analyze three-dimensional (3D) and 2D bulk systems as well.

The remainder of this thesis is structured as follows. In chapter 1, we present a brief introduction
to the Josephson effect and discuss the lattice model for JJ chains and its relation to the 2D XY model.
Moreover, important theoretical methods that are used to study the transport properties of JJ chains
are introduced. At the end, we discuss experiments in the context of the charge transport around the
SIT and spectroscopic measurements providing information about the relaxation of plasmonic waves
in JJ chains. Chapter 2 is devoted to the introduction to the theoretical methods needed to study
the interaction-induced relaxation of excitations with a focus on fermionic systems. In chapter 3, we
turn to the discussion of the SIT in JJ chains. We start by presenting the low-energy field theory.
Subsequently, we analyze the renormalization group and the transport properties around the SIT. In
chapter 4, we consider the relaxation of plasmonic waves in JJ chains. After the introduction of the
model for a double-chain device, we consider two mechanisms leading to the decay of plasmonic waves:
the relaxation due to QPS and gradient anharmonicities. Chapter 5 is devoted to the discussion of the
relaxation of fermionic excitations in quantum wires at high energies. After a discussion of relaxation
in higher-dimensional systems, we study the lifetime of fermions in multichannel and strictly 1D wires.
Finally, we summarize our main results and outline possible directions for future projects. Technical
details are presented in the appendices. For the convenience of the reader, we provide a compilation
of the notations and conventions as well as a list of acronyms used throughout this thesis on pages 109
and 113, respectively.
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1 Chapter 1

Fundamentals on Josephson-junction
chains

This chapter is devoted to the introduction to one-dimensional (1D) Josephson junction (JJ) chains.
These artificial systems are ideally suited to study transport properties in one dimension. Experi-
mentally these chains can be fabricated with a high accuracy, and depending on the architecture a
high tunability can be achieved. Of particular interest is the superconductor-insulator transition (SIT)
observed in these devices [39]. Besides the interesting quantum transport properties observed in JJ
chains, relaxation phenomena in 1D, which are of particular importance for this thesis as well, can be
studied.

We start in Sec. 1.1 with a basic introduction to superconductivity and the Josephson effect. Further,
we present a short discussion of a superconducting quantum interference device (SQUID), which is of
key importance for many experiments that investigate the transport properties of JJ chains. In Sec. 1.2,
we turn to the presentation of a lattice model for JJ chains. Basic properties of this model are discussed
and compared to the classical two-dimensional (2D) XY model. Section 1.3 presents an introduction
to the main theoretical concepts used to analyze the SIT in JJ chains. The last two sections review a
few experiments related to the transport properties (Sec. 1.4) and decoherence phenomena (Sec. 1.5)
in JJ chains. The theoretical investigation of the transport characteristics and the decay properties of
collective modes in JJ chains are discussed in Chaps. 3 and 4, respectively.

1.1 Superconductivity and the Josephson effect

Superconductivity is a phenomenon that is characterized by a vanishing resistance and perfect dia-
magnetism. In 1911 H. K. Onnes made the glorious discovery of the zero-resistance state in mercury
[99]. When cooling mercury to the boiling point of liquid helium, the resistance showed an abrupt
drop below his measurement resolution. W. Meissner and R. Ochsenfeld observed in 1933 that the
superconducting state is not only a perfect conductor but also expels weak magnetic fields [100]. After
the discovery of Onnes, it took almost half a century until a microscopic theory explaining these effects
was developed. In 1957 J. Bardeen, L. N. Cooper, and J. R. Schrieffer (BCS) presented a microscopic
theory of superconductivity [101, 102]. This theory is based on the formation of electron bound states,
so called Cooper pairs [103]. The effective attractive interaction between electrons, which leads to
these bound states if it exceeds the Coulomb repulsion, can be mediated via phonons. The BCS theory
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1 Fundamentals on Josephson-junction chains

Figure 1.1: a) Superconducting ring pierced by a magnetic flux Φ. The contour C is assumed
to be sufficiently far away from the boundaries such that the current density is negligable in this
region. b) Two superconductors coupled by two tunnel barriers (dark blue areas) form a SQUID.

successfully explained many effects in conventional superconductors such as the Meissner-Ochsenfeld
effect, the isotope effect, and the jump of the specific heat at the transition temperature.

Superconductivity is a macroscopic quantum phenomenon; the superconducting state can be de-
scribed by a macroscopic wave function,

ψ(r) =
√
ns(r) eiθ(r), (1.1)

where ns(r) is the Cooper-pair density. An interesting phenomenon that can be derived from this
fact, is the flux quantization in multiply connected superconductors. As an example, we consider a
superconducting ring that is pierced by a magnetic flux Φ, see Fig. 1.1 a). We assume that the ring
is thick enough, such that a closed path C in the interior of the superconductor exists, along which
the current is zero. Supercurrents, which screen the external magnetic field, flow in a narrow region
close to the boundary of the superconductor. From elementary quantum mechanics the current in the
presence of a vector potential A(r) is given by

j(r) =
q

2m

ψ∗(r)

(
~
i
∇− q

c
A

)
ψ(r) + ψ(r)

(
−~
i
∇− q

c
A

)
ψ∗(r)

 , (1.2)

where the charge and mass are twice the values for an electron, q = 2e and m = 2me, respectively.
The reason for this is that the charge carriers are Cooper pairs. Inserting the wave function (1.1), we
find

j(r) =
e~
me

ns(r)

[
∇θ(r)− 2π

Φ0
A(r)

]
(1.3)

with the (superconducting) flux quantum Φ0 = π~c/e. Integrating the current density j(r) along a
closed path C in the interior of the superconductor where the current vanishes, and assuming that the
Cooper-pair density is homogeneous ns(r) =const. along the path, we find

0 =

∮
C
∇θ(r)dr− 2π

Φ0

∮
C
A(r)dr =

∮
C
∇θ(r)dr− 2πΦ

Φ0
. (1.4)

Since the wave function (1.1) should be single-valued, the phase θ can wind only by a multiple of 2π
when going along the path C. This leads to the quantization condition for the magnetic flux inside the
hole,

Φ = nΦ0, n ∈ Z. (1.5)

2



1.1 Superconductivity and the Josephson effect

Josephson effect Another fascinating phenomenon is the Josephson effect. In a seminal work [104]
B. D. Josephson investigated the properties of two superconductors separated by a narrow insulating
barrier. We follow Ref. [105] and derive the Josephson equations in a phenomenological way. We
denote by ψ1 and ψ2 the many-body wave functions and by H1 and H2 the Hamilton operators of the
two superconductors. The Schrödinger equation can be written in the following form:

i~
∂

∂t
ψ1 = H1ψ1 + T ψ2,

i~
∂

∂t
ψ2 = H2ψ2 + T ψ1,

(1.6)

where the off-diagonal terms describe the effects due the coupling via the tunnel barrier. Assuming the
tunneling to be weak, we can employ perturbation theory and use the wave functions for the isolated
superconductors,

ψj =
√
nj eiθj , j = 1, 2. (1.7)

Inserting this wave function into the Schrödinger equation (1.6) and assuming homogeneous supercon-
ductors, we get

i~
[

1

2
ṅ1 + in1θ̇1

]
eiθ1 = E1n1eiθ1 + T

√
n1n2eiθ2 , (1.8)

i~
[

1

2
ṅ2 + in2θ̇2

]
eiθ2 = E2n2eiθ2 + T

√
n1n2eiθ1 , (1.9)

where E1,2 is the energy of the state ψ1,2. Splitting the real and imaginary parts in Eq. (1.8), we get

−~
2
ṅ1 sin θ1 − ~n1 cos θ1θ̇1 = E1n1 cos θ1 + T

√
n1n2 cos θ2, (1.10)

~
2
ṅ1 cos θ1 − ~n1 sin θ1θ̇1 = E1n1 sin θ1 + T

√
n1n2 sin θ2. (1.11)

Combining both equations, we extract

ṅ1 =
2T
~
√
n1n2 sin(θ2 − θ1), (1.12)

θ̇1 = −T
~

√
n2

n1
cos(θ2 − θ1)− E1

~
. (1.13)

The analogous equations for the variables of the second superconductor can be obtained by interchang-
ing 1↔ 2:

ṅ2 = −ṅ1, θ̇2 = −T
~

√
n1

n2
cos(θ2 − θ1)− E2

~
. (1.14)

The tunneling rate ṅ1 is proportional to the tunneling current I. We can now state the first Josephson
equation,

I = Ic sin(θ2 − θ1), (1.15)

that predicts a zero-voltage current through the junction if both superconductors have different phases
(DC Josephson effect). The maximum current which the junction can sustain is denoted by Ic. If
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1 Fundamentals on Josephson-junction chains

further a finite voltage drop across the junction exists, the eigenenergies are shifted, E1 − E2 = 2eV .
For identical superconductors, i. e., n1 = n2, the phase difference evolves in time according to

θ̇2 − θ̇1 =
E1 − E2

~
=

2e

~
V. (1.16)

This means that a constant voltage drop V across the junction leads to an alternating current of fre-
quency 2eV/~ (AC Josephson effect). The energy stored in the junction can be obtained by integrating
the electrical work [106],

E =

∫
dtI V. (1.17)

With the help of (1.15) and (1.16), we find

E = EJ

∫ θ2−θ1

0
dϕ sinϕ = EJ[1− cos(θ2 − θ1)] (1.18)

with the Josephson energy EJ = ~Ic/2e.

SQUID A very powerful tool consisting of two parallel junctions is the superconducting quantum
interference device (SQUID) depicted in Fig 1.1 b). We follow Ref. [106] to derive the amplitude of
the supercurrent through the device. The magnetic flux piercing the device can be written as

Φ =

∮
C
Adr =

∫
electrodes

Adr +

∫
links

Adr =
Φ0

2π

∫
electrodes

∇θdr +

∫
links

Adr, (1.19)

where in the last step we made use of Eq. (1.3), and assumed the contour C to be in the interior of the
superconductor where the current can be neglected. Here, the integrals along the (superconducting)
electrodes and links are directed according to the orientation of C. The change of the phase along the
whole contour is a multiple of 2π,∫

electrodes
∇θdr + δθ2 − δθ1 = 0 mod 2π, (1.20)

where the jumps of the phase across the links δθ1 and δθ2 are defined with an orientation from left to
right. Introducing the gauge-invariant phase jumps

γi = δθi −
2π

Φ0

∫
link i

Adr, i = 1, 2, (1.21)

where here the integral across the i-th link is oriented from left to right, we find the constraint

γ1 − γ2 = 2π
Φ

Φ0
mod 2π. (1.22)

If both junctions can support the same critical current, the total current through the device is given
by

I = Ic(sin γ1 + sin γ2). (1.23)

The maximum supercurrent with the constraint (1.22) is given by

Imax = 2Ic| cos(πΦ/Φ0)|. (1.24)
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1.2 Model for Josephson junction chains

Figure 1.2: Sketch of a one-dimensional Josephson junction chain. Superconducting islands (blue
rectangles) are connected via tunnel barriers which provide a capacitance C1 and allow for the
tunneling of Cooper pairs. The capacitive coupling to the ground is taken into account by the
capacitance C0. The superconducting phase of the i-th grain is denoted by θi, the number of
Cooper pairs by Ni.

Thus, the maximal supercurrent is modulated by the magnetic flux Φ. Such a device can be used
to measure tiny magnetic fields. It further allows to tune the effective Josephson energy EJ of the
junction, which is proportional to the maximal current (see above). This mechanism can be exploited
to induce a superconductor-insulator transition in a Josephson junction chain with a SQUID geometry
by changing the magnetic flux through the SQUIDs. More details on experiments with Josephson
junction chains are discussed in Sec. 1.4.

1.2 Model for Josephson junction chains

After the short introduction to superconductivity and the Josephson effect, we discuss a linear chain
of Josephson junctions. In the first part of this section, we present a lattice model for this system, and
in the second part we discuss its relation to the 2D XY model. The discussion of the lattice model is
based on Sec. II of Ref. [107].

Figure 1.2 shows a sketch of a 1D JJ chain. The size of the superconducting islands is assumed to
be smaller than the bulk coherence length so that we can characterize them by a single phase θ. Thin
tunneling barriers between the grains allow for hopping of Cooper pairs along the chain. The tunneling
is characterized by the Josephson energy EJ. In our model, we consider two capacitive couplings, the
junction capacitance C1 and the ground capacitance C0. The associated charging energy scales are
E0 = (2e)2/C0 and E1 = (2e)2/C1. For the behavior of the theory at large scales, the charging
energy E0 is of key importance. A superconductor-insulator transition in a JJ chain takes place at
K0 ≡

√
EJ/E0 ∼ 1 [14, 44]. The charging energy E1 has a strong influence on the local properties

of the chain for C0 � C1. Namely, the local superconducting correlations at length scales shorter
than the screening length Λ =

√
C1/C0 � 1 are governed by the parameter K1 ≡

√
EJ/E1. In the

opposite limit C0 � C1, the charging energy E1 is irrelevant. Typical values for the screening length
in experiments are Λ ' 10 [39, 40, 50].

The lattice model of a clean JJ chain can be written in the form

H =
E1

2

∑
i,j

(
S−1

)
ij
NiNj + EJ

∑
i

[
1− cos

(
θi − θi+1

)]
, (1.25)

where the number of Cooper pairs and the superconducting phase of the i-th island are denoted by Ni
and θi, respectively. Both variables obey the canonical commutation relations,

[Ni, θj ] = iδi,j . (1.26)
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1 Fundamentals on Josephson-junction chains

Figure 1.3: Schematic depiction of a phase-slip process in the x-τ plane. For imaginary times
τ < 0, the system is assumed to be in the (classical) superconducting ground state, θ(x) ≡ 0. At
τ = 0 a phase slip occurs in the junction at x = 0. All the phases at x < 0 suddenly jump by 2π.

In the charging part of the Hamiltonian (1.25), we introduced the dimensionless capacitance matrix

Sij =

(
2 +

1

Λ2

)
δi,j − δi,j+1 − δi,j−1, (1.27)

that takes into account the capacitive couplings between the islands as well as to the ground.
The derivation of the corresponding low-energy field theory is presented in Sec. 3.1. Here, we

briefly discuss qualitative features of the theory. In the limit EJ → ∞, the chain is in the classical
superconducting ground state, where all phases are the same, θi ≡ const. In the quasi-classical regime
where the Josephson energy dominates but the charging energy is finite, small fluctuations of the
phases occur. These fluctuations are the plasmonic waves. The crucial role in the destruction of
the superconducting correlations are played by topological excitations, so called quantum phase slips
(QPS). These are fluctuations, where the phase difference across one of the junctions jumps by 2π.
Figure 1.3 illustrates a QPS process in the x-τ plane. We assume the system to be in the (classical)
superconducting ground state for imaginary times τ < 0. Smooth deformations of this state are not
important for the purpose of the illustration. At τ = 0 all phases at x < 0 jump by 2π resulting in
a phase difference of 2π across the junction at x = 0. In this formulation, a QPS is a vortex of θ in
space-time. In the following we present the 2D XY model and draw a few analogies to our model of
Josephson junction chains.

2D XY model The classical 2D XY model describes the interaction of classical two-component spins
in two spatial dimensions. A detailed discussion of this model can be found in Refs. [108–110]. The
Hamiltonian

HXY = −J
∑
<ij>

cos(θi − θj) (1.28)

describes the exchange interaction between nearest neighboring spins of length S = 1. The angle θi
denotes the orientation of the i-th spin relative to a reference direction. We assume the coupling to be
ferromagnetic, J > 0. The classical ground state at J →∞ is the ferromagnetic state, where all spins
point in the same direction [see Fig. 1.4 a)]. Small fluctuations around the ferromagnetic state can be
taken into account by a gradient expansion of the Hamiltonian (1.28). The continuum Hamiltonian

Hcont
XY =

J

2

∫
dxdy

[
(∂xθ)

2 + (∂yθ)
2
]

(1.29)
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1.2 Model for Josephson junction chains

Figure 1.4: Spin configurations in the (ferromagnetic) 2D XY model. a) Ferromagnetic ground
state: All spins point in the same direction. b) Smooth deformation of the ground state (spin
wave); c) vortex configuration: The angle winds by 2π if one moves along a closed path around
the center of the vortex.

describes the spin waves, which are the long-wavelength fluctuations of the angles in the 2D XY model
[see Fig. 1.4 b)]. In JJ chains, the corresponding fluctuations are the plasmonic waves. The role of the
second space dimension is played by the imaginary time. Here we considered an isotropic version of
XY model. In Sec. 3.2, we study the JJ chain in the limit C1 = 0. There, the plasmonic waves have
a linear spectrum and are described by the continuum theory (3.16) that is completely analogous to
Eq. (1.29). In a more general anisotropic XY model, the spin-wave action would be analogous to the
action (3.3) corresponding to plasmonic waves with a curved spectrum.

The above continuum description is applicable to configurations that can be continuously deformed to
the ground state, such as the one shown in Fig. 1.4 b). There are, however, other configurations that are
topologically distinct from the ground state. An example of such a topological defect, a vortex with unit
charge, is depicted in Fig. 1.4 c). A vortex in the 2D XY model corresponds to a phase slip in the case
of JJ chains. The configuration of the superconducting phases in Fig. 1.3 can be continuously deformed
to the configuration of the vortex in the 2D XY model depicted in Fig. 1.4 c). Berezinskii, Kosterlitz
and Thouless [54, 56] demonstrated that the XY model exhibits a topological phase transition which is
driven by the unbinding of vortices. This transitions is called Berezinskii-Kosterlitz-Thouless (BKT)
transition. Such a transition is not accompanied by the spontaneous breaking of the U(1) symmetry
present in the model. Because of the Mermin-Wagner theorem [111], a continuous symmetry can not
be broken in two dimension at finite temperature. However, the behavior of the correlation function
〈exp{i[θ(r)− θ(0)]}〉 changes from an exponential decay at high temperatures to a power-law decay at
low temperatures (quasi long-range order).

With the help of the renormalization group, the BKT transition can be analyzed in a rigorous way.
On the other hand, there is a way to qualitatively understand the existence of the phase transition,
and to estimate the transition temperature. In the following we present qualitative arguments that
can be found in the paper by Kosterlitz and Thouless [56]. We consider a single vortex, and divide the
space into two regions: the vortex core and the outer region, where the orientation of spins changes
sufficiently smoothly such that the continuum theory (1.29) is valid. The (arbitrary) length-scale a is
introduced to distinguish between both parts. For a vortex of topological charge n, the angle winds
by 2πn when one goes once around its center,∮

∇θdr = 2πn, n ∈ Z. (1.30)
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1 Fundamentals on Josephson-junction chains

The energy to create a vortex can be written as

En = Ecore
n +

J

2

∫
r>a

d2r (∇θ)2. (1.31)

A configuration that fulfills the circulation condition (1.30) can be parametrized as

∇θ =
n

r
êϕ, (1.32)

where êϕ is the polar unit vector. The energy for a vortex in a system of size L assumes then the form

En = Ecore
n + πJn2 ln

(
L/a

)
. (1.33)

The number of possible places of the center of the core is given by (L/a)2, which leads to the entropy

Sn = ln[(L/a)2]. (1.34)

At the temperature above which it becomes favorable to create vortices, the free energy Fn = En−TSn
changes sign. In a large system, the core energy can neglected, and the critical temperature to create
a vortex of charge n is given by

Tc =
πJn2

2
. (1.35)

It becomes evident that vortices of unit charge (n = ±1) are predominantly responsible for the phase
transition. The result (1.35) is exact in the limit of zero fugacity exp{−Ecore

1 /T}. In the case of a
finite fugacity, vortex-antivortex pairs renormalize the transition temperature. The distortion field
of a dipole of size d is a superposition of the individual vortices in the outer part of the dipole:
∇θdip = ∇θ(x+ d/2, y)−∇θ(x− d/2, y). Since the infrared divergent contributions cancel (L→∞),
the energy associated with dipoles is finite. This means that dipoles exist at any finite temperature.
Below the transition they are tightly bound. At the transition the vortex-antivortex pairs dissociate
destroying the (quasi-long-range) order.

There are other models that are in the same universality class (see Refs. [108, 109, 112] for details).
The 2D Coulomb gas in which the interactions between charges is logarithmic shows the same critical
properties as the XY model. More important for this thesis is the fact that the 2D sine-Gordon model
belongs to this universality class as well. In Sec. 1.3.2, we carry out explicitly the renormalization
group treatment of the sine-Gordon model. As will be shown in Chap. 3, the field theory describing
the superconductor-insulator transition in JJ chains can be written in the form of a sine-Gordon theory.

1.3 Theoretical methods

This section gives an overview over the important theoretical concepts used in the discussion of the
SIT in JJ chains in Chap. 3. We start in Sec. 1.3.1 with an introduction to the Luttinger liquid, which
replaces the Fermi liquid in one dimension. In this thesis, the Luttinger-liquid model constitutes the
Gaussian theory of Josephson junction chains. To understand the role of perturbations on top of a
Gaussian theory, the renormalization group can be employed. This technique is discussed in Sec. 1.3.2.
We use the renormalization group to extract the low-energy properties of Josephson junction chains. In
this way, we can obtain the phase diagram and improve the bare transport calculations. The transport
formalism is presented in Sec. 1.3.3. The conductivity is expressed with the help of the memory
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1.3 Theoretical methods

function, which plays the role of a self-energy for the conductivity. In contrast to the conductivity, the
memory function (usually) admits a perturbative expansion in the coupling constant of the scattering
term. Using this formalism, the transport characteristics of Josephson junction chains are analyzed in
Chap. 3.

1.3.1 Luttinger liquid model

The Luttinger liquid (LL) is a very important concept of the physics in one dimension. We present
here a short qualitative introduction to this topic. More details can be found in the literature, see e. g.
Refs. [12, 16, 17, 113]. In this thesis, we encounter the LL as the low-energy theory of JJ chains, see
Sec. 3.1 and also Refs. [60, 61]. The concept is, however, much more generic in 1D, and appears in
fermionic systems as well. Here, we follow Ref. [17] and outline the main qualitative features of the
low-energy properties of 1D systems.

In higher dimensions, there is the very powerful Fermi-liquid theory introduced by Landau [74–76].
The main statement of this theory is that the low-energy excitations of an interacting Fermi system
are adiabatically connected to free fermions. The ground state of free fermions at zero temperature
is the filled Fermi sea. This means that the occupation number jumps by 1 at the Fermi surface.
An additional fermion above the Fermi sea has an infinite lifetime since it is an eigenstate of the
Hamiltonian. In a Fermi liquid, the elementary particles, so called quasiparticles, are not the free
fermions but fermions dressed by particle-hole pairs (density fluctuations). These quasiparticles still
have a fermionic character with renormalized parameters such as an effective mass that differs from the
bare mass. At the Fermi surface the discontinuity of the occupation number survives. The amplitude
of the jump is, however, smaller than 1. Due residual interactions, quasiparticles have a finite lifetime.
However, as a result of the vanishing phase space for the scattering of quasiparticles at the Fermi
surface, the lifetime diverges when the energy of the quasiparticle approaches the Fermi energy (see
Sec. 2.2 for more details).

The situation in 1D is completely different. Because of strong interaction effects in 1D, the Fermi
liquid theory breaks down. Intuitively, it is clear that particles confined to move on a line can not move
individually. A collective motion is, however, easily possible. These collective excitations correspond to
density fluctuations which have bosonic character. The formal description of interacting (1D) fermionic
systems in terms of a bosonic theory is called bosonization [12, 16, 17]. The low-energy theory in a
gapless situation of a generic 1D system assumes the form of a LL,

H =
1

2π

∫
dx

[
uK(∂xθ(x))2 +

u

K
(∂xφ(x))2

]
, (1.36)

where u is the velocity of the long-wavelength density fluctuations (plasmons) and K is the Luttinger
parameter. For simplicity we assumed a system without a spin degree of freedom. In principle both
parameters can be calculated for a specific microscopic model. In a fermionic system, K = 1 corre-
sponds to a non-interacting system and K < 1 (K > 1) to fermions with repulsion (attraction). The
operators in the Hamiltonian (1.36) fulfill the commutation relations[

φ(x), ∂x′θ(x
′)
]

= iπδ(x− x′), (1.37)

and can be related to physical observables: The (particle number) density is given by −∂xφ/π and the
(particle number) current density by uK∂xθ/π. In this thesis, we come across the LL as the low-energy
theory of JJ chains. The action (3.16) is equivalent to the LL Hamiltonian (1.36) (up to a rescaling of
φ). The role of perturbations on top of the quadratic LL theory is discussed in the next section.
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1.3.2 Renormalization group

The renormalization group (RG) is a powerful tool to extract the low-energy properties of a field
theory. We present here a short introduction to this method and discuss in detail an example which is
important for this thesis: The renormalization of the sine-Gordon theory. More details on the general
procedure and further examples can be found in the literature, see e. g. Refs. [108, 114, 115].

A field theory is usually equipped with a high-energy cutoff Λ that restricts the validity of the
continuum field theory. The idea of the RG is to obtain a theory with a lower cutoff Λ′ but the same
low-energy properties. This goal can be achieved by eliminating unimportant high-energy degrees of
freedom and adapting the coupling constants of the theory. The explicit procedure in a Wilsonian type
of the RG [114] can be qualitatively summarized in the following way. We start with a field theory
with coupling constants g and ultraviolet (UV) cutoff Λ. Now, an artificial scale Λ′ = Λ/b, b > 1 is
introduced. Modes with energy in the range Λ′ < ε < Λ are dubbed “fast” modes, and are integrated
out. After this elimination process generically two different situations can occur. The structure of
the theory is completely changed, or, besides the possible generation of a few additional couplings,
the theory assumes the same form as before. In the latter scenario, the theory is renormalizable, and
the effective theory can be related to the original one by adjusting the coupling constants. To read
off the change of the parameters one usually rescales momenta and frequencies (q, ω) → (b q, b ω) to
restore the initial value of the cutoff Λ. This procedure can be iterated until the (highest) typical scale
of the physics under consideration is reached. This scale at which the RG is stopped could be the
temperature or the external frequency at which the system is probed. By integrating in each step an
infinitesimally small portion of the modes, b = 1 + dl, differential equations (RG equations) governing
the flow of the coupling constants g can be derived,

dg

dl
= β(g). (1.38)

The beta function β(g) encodes the complete behavior of the renormalization of the coupling constants.
Of particular interest are the points in parameter space where the beta function vanishes. Such points,
where the theory is scale invariant, are called fixed points. The scale invariance typically occurs at a
second order phase transition where the correlation length diverges and no finite length scale remains.
The fixed points of the RG thus correspond to the (candidates for) critical points at which phase
transitions occur.

Away from the critical points, terms in the theory are called relevant (irrelevant) if the corresponding
coupling constant increases (decreases) in the course of the RG. Usually, the elimination process of the
fast modes is performed in a perturbative way. The validity of this procedure is consequently limited
to the region where the coupling constant is still small.

Let us now consider a specific example that is of particular importance for this thesis. The sine-
Gordon model,

S = S0 + S1, (1.39)

S0 =
1

2πuK

∫
dxdτ

[
u2(∂xφ)2 + (∂τφ)2

]
, (1.40)

S1 = g

∫
dxdτ cos[2φ(x, τ)]. (1.41)

The imaginary-time action (1.39) consists of the LL action S0 and the perturbation S1 that is of
cosine form. We will see in Sec. 3.2 that this action describes the low-energy properties of a clean JJ
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chain in the limit of local Coulomb interaction, cf. Eqs. (3.16) and (3.6). In the following the explicit
derivation of the RG equations of this model is presented. Instead of the Wilsonian-type derivation
sketched above, we use a different method to extract the RG equations that is based on correlations
functions [110]. The presentation follows closely the derivation in Giamarchi’s book [17, p. 56 ff]. The
procedure is based on the behavior of the (time-ordered) correlation function

R(x1 − x2, τ1 − τ2) =

〈
ei
√

2φ(x1,τ1)e−i
√

2φ(x2,τ2)

〉
. (1.42)

This function can not be evaluated exactly due to the non-linearity S1. Instead, we perform a pertur-
bative expansion of this correlation function up to second order in g. For the average of exponentials
of φ with respect to the Gaussian action (1.40), the formula〈∏

j

eiσjφ(rj)

〉
0

=

e
1
2
K
∑
i<j σiσjF1(ri−rj),

∑
j σj = 0,

0, else
(1.43)

is helpful. Here, we introduced the short-hand notation r = (x, uτ) and

F1(r) =
1

2
ln

(
x2 + (u|τ |+ a)2

a2

)
(1.44)

with the UV cutoff a. For g = 0 the correlation function reads

R(0)(r1 − r2) =

〈
ei
√

2φ(x1,τ1)e−i
√

2φ(x2,τ2)

〉
0

= e−KF1(r1−r2) '

(
a

|r1 − r2|

)K
. (1.45)

The first order correction vanishes because of the neutrality condition in Eq. (1.43), while the second
order correction is given by

δR =
g2

8u2
e−KF1(r1−r2)

∑
σ=±

∫
d2r3d2r4 e−2KF1(r3−r4)

×
[
e
√

2σK[F1(r1−r3)+F1(r2−r4)−F1(r1−r4)−F1(r2−r3)] − 1

]
.

(1.46)

Let us now switch to relative and center-of-mass coordinates,

r = (x, y) = r3 − r4, R = (X,Y ) =
1

2
(r3 + r4). (1.47)

Due to the exponential in front of the square bracket in Eq. (1.46), which is a power-law of r = |r|,
large r are suppressed. We can thus expand

e

√
2σK

[
F1

(
r1−R− r

2

)
+F1

(
r2−R+ r

2

)
−F1

(
r1−R+ r

2

)
−F1

(
r2−R− r

2

)]
− 1 ' e−

√
2σK(r·∇)[F1(R−r1)−F1(R−r2)] − 1.

(1.48)
Expanding also the exponential, the linear term vanishes when summing over σ. The “mixing term”
in the second order (contains x y) vanishes after integrating over the relative coordinates. Integrating
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by parts in the center-of-mass coordinates and performing the integration over the polar angle of the
relative coordinates results in the correction to the correlation function

δR = −πg
2K2a3

4u2
e−KF1(r1−r2)

∫ ∞
a

dr

(
r

a

)3−2K ∫
d2R [F1(R− r1)− F1(R− r2)]

× (∂2
X + ∂2

Y )[F1(R− r1)− F1(R− r2)].

(1.49)

With the help of

(∂2
X + ∂2

Y )F1(R) = 2πδ(R), (1.50)

we arrive at the expression for the correlation function up to second order in g,

R(r1 − r2) = e−KF1(r1−r2)

1 +
π2g2a3K2

u2
F1(r1 − r2)

∫ ∞
a

dr

(
r

a

)3−2K
 . (1.51)

We now recognize that this expression is the beginning of the expansion of exp{−KeffF1(r1 − r2)} in
powers of g, where

Keff = K − y2K2

∫ ∞
a

dr

a

(
r

a

)3−2K

(1.52)

and y = πga2/u is the dimensionless coupling constant of the perturbation S1. This effective exponent
controls the behavior of the correlation function at low energies. It should not be sensitive to the
precise value of the cutoff. Consequently, varying the cutoff, a → a + da, should be compensated by
adjusting the parameters,

K(a+ da) = K(a)− y2(a)K2(a)
da

a
, (1.53)

y2(a+ da) =

[
1 + (4− 2K)

da

a

]
y2(a). (1.54)

Parametrizing the cutoff in the usual way, a(l) = a0 el, yields the RG equations

dK

dl
= −y2(l)K2(l), (1.55)

dy

dl
= [2−K(l)]y(l). (1.56)

Similar equations govern the RG of the 2D XY model [116]. More generally, they appear for all models
that belong to the BKT universality class [55, 56, 116]. The corresponding RG flow is visualized
in Fig. 1.5. Depending on the bare values of the action (1.39), there are two different scenarios. If
K > 2 and y is sufficiently small (below the separatrix), the parameter y renormalizes to zero. The
perturbation S1 is irrelevant. The low-energy theory is of LL type. On the contrary, if K < 2 or for
parameters above the separatrix, y flows to strong coupling. The perturbation S1 is relevant. It is
expected that a gap is generated. We can estimate the gap in the following way. The (perturbative)
RG can be used until the point where y is of order one. At strong coupling, the cosine locks the
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Figure 1.5: RG flow of the sine-Gordon model. For parameters below the separatrix (solid, almost
straight line), y flows to zero (Luttinger-liquid phase). For K < 2 or above the separatrix, y flows
to strong coupling.

field φ to its minimum at φ(x, τ) = π. A better approximation is to expand around this minimum,
φ(x, τ) = π + δφ(x, τ), leading to the action

S = S0 +
2uy

πa2

∫
dxdτδφ2(x, τ) =

1

2πuK

∫
dq

2π

dω

2π

[
ω2 + u2q2 +

4Ku2y

a2

]
|δφ(q, ω)|2. (1.57)

The spectrum acquires a gap of the order of

∆ =

√
4Ku2y

a2
∼ u

a
. (1.58)

The gap can be related to the bare energy cutoff (bandwidth) ∆0. Denoting by l∗ the scale at which
y is of order one, we find

∆(l∗) ' ∆0 e−l
∗
. (1.59)

After the discussion of the Luttinger liquid and the renormalization group, we turn in the next section
to the transport formalism in 1D.

1.3.3 Transport theory: Memory-function formalism

In this section, the formalism to study charge transport in 1D systems is introduced. We employ this
formalism in Secs. 3.2.2 and 3.3.2 to compute the DC conductivity of a JJ chain. In our presentation
of the transport theory we follow the main steps outlined in Ref. [17]. The conductivity σ quantifies
the linear response of the current je as a consequence of an applied electrical field E,

je(q, ω) = σ(q, ω)E(q, ω). (1.60)

Using the continuity equation,

∂tρe + ∂xje = 0 (1.61)

with the charge density ρe(x, t) = −2e∂xφ/π, we obtain

je(x, t) =
2e

π
∂tφ. (1.62)
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Making use of the Heisenberg equation of motion

∂tφ(x, t) = i[H, φ(x, t)], (1.63)

the current operator in a LL theory with arbitrary perturbations that do not depend on θ(x) can be
derived. With the LL Hamiltonian (1.36), we obtain the current operator,

je =
2

π
euK∂xθ. (1.64)

In the Kubo formalism [117, 118], the conductivity

σ(ω) =
i

ω

[
4

π
e2uK + χ(ω)

]
, (1.65)

is related to the retarded current-current correlation function

χ(ω) = −
∫

dx

∫ t

−∞
dt′eiω(t−t′)

〈[
je(x, t), je(x

′, t′)
]〉

. (1.66)

For a pure LL an infinite DC conductivity is found,

σ(ω) = 4e2uK

[
δ(ω) +

i

π
P 1

ω

]
, (1.67)

where P denotes the principal value.
A finite conductivity requires the possibility to relax momentum. Disorder or umklapp processes

which transfer momentum to the lattice are possible sources for a finite conductivity. A perturbative
expansion of the φφ correlation function in powers of the coupling constant of the momentum relaxing
perturbation is not possible in the zero-frequency limit. As shown above, the DC conductivity of a LL
is infinite, while a finite perturbation is expected to produce a finite result. Such a behavior appears
in the Drude formula as well. The Drude conductivity, σ = ne2τ/m, is proportional to the scattering
time τ , which is in turn inversely proportional to the coupling constant of the momentum relaxing
perturbation.

A way to circumvent this issue is to calculate the self-energy of the φφ correlation function in powers
of the coupling constant. This procedure is used in Refs. [119, 120]. Here, we present a different
method, the memory-function formalism [121–124]. At the lowest order, the two procedures yield the
same result [17]. The idea is to bring the expression (1.65) to a Drude-like from,

σ(ω) =
ine2/m

ω + i/τ
. (1.68)

Assuming a finite conductivity in the zero-frequency limit, leads according to Eq. (1.65) to χ(0) =
−4e2uK/π. Now, we introduce the memory function

M(ω) =
ωχ(ω)

χ(0)− χ(ω)
. (1.69)

The conductivity can be rewritten in terms of the memory function in a Drude-like form

σ(ω) =
4i

π
e2uK

1

ω +M(ω)
. (1.70)
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1.3 Theoretical methods

In this form, we can interpret the memory function as the self-energy of the conductivity, from which
the characteristic time of the current relaxation can be read off. Assuming the memory function M(ω)
to have a non-singular dependence on the coupling constants of the momentum relaxing perturbations,
we make a hydrodynamic approximation. Without any perturbations, the current-current correlation
function χ(ω) vanishes for ω 6= 0 (current commutes with the Hamiltonian). Hence, we can approximate

χ(0)− χ(ω) ' χ(0). (1.71)

We rewrite the numerator in Eq. (1.69) as

ωχ(ω) = −i
∫

dx

∫ ∞
0

dt
(
∂te

iωt
)〈[

je(x, t), je(0, 0)
]〉

(1.72)

= i

∫
dx

∫ ∞
0

dt eiωt
〈[
∂tje(x, t), je(0, 0)

]〉
(1.73)

= −
∫

dx

∫ ∞
0

dt eiωt
〈[[
H, je(x, t)

]
, je(0, 0)

]〉
, (1.74)

where we integrated by parts and used the Heisenberg equation of motion. The total Hamiltonian of
the system is denoted by H. At this stage, we see already that the memory function vanishes if the
Hamiltonian commutes with the current operator. Introducing the function F (x, t) = [H, je(x, t)] and
making use of the Jacobi identity for commutators, we get

[F (x, t), je(0, 0)] =
[
H, [je(x, t), je(0, 0)]

]
− [je(x, t), F (0, 0)]. (1.75)

The first term on the RHS of Eq. (1.75) vanishes after averaging. Substituting this result into Eq. (1.74),
yields

ωχ(ω) =

∫
dx

[
i

ω

〈
[je(x, 0), F (0, 0)]

〉
− 1

ω

∫ ∞
0

dt eiωt
〈
[F (x, t), F (0, 0)]

〉]
, (1.76)

where we integrated by parts once again. We define yet another function for convenience,

C(ω) =

∫
dx

∫ ∞
0

dt eiωt
〈[
F (x, t), F (0, 0)

]〉
. (1.77)

Demanding χ(ω = 0) to be finite (already assumed above), we find

C(ω = 0) = i

∫
dx
〈
[je(x, 0), F (0, 0)]

〉
, (1.78)

and finally arrive at the expression

M(ω) ' 1

−χ(0)

C(ω)− C(0)

ω
=

π

4e2uK

C(ω)− C(0)

ω
. (1.79)

for the memory function. The average in Eq. (1.77) can be done with respect to the Gaussian theory
in the lowest order of perturbation theory since the function F (x, t) is proportional to the coupling
constant of the perturbation. In Secs. 3.2.2 and 3.3.2, we employ this formalism to extract the tem-
perature dependence of the DC conductivity. To this end we combine the RG and the perturbative
evaluation of the memory function.

After the discussion of the theoretical concepts employed in the description of JJ chains, we discuss
in the next two sections experiments on the transport characteristics (Sec. 1.4) and the damping of
plasmonic waves (Sec. 1.5) in these systems.
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1 Fundamentals on Josephson-junction chains

[Reprinted figure with permission from A. Ergül, J. Lidmar, J. Johansson, Y. Azizoğlu, D. Schaeffer, and
D. B. Haviland, New J. Phys. 15, 095014 (2013), DOI: 10.1088/1367-2630/15/9/095014, cf. Ref. [50]. Copyright 2013

by IOP Publishing Ltd and Deutsche Physikalische Gesellschaft, link to license:
https://creativecommons.org/licenses/by/3.0/.]

Figure 1.6: Scanning electron microscope image of a JJ chain in a SQUID geometry which was
used in Ref. [50]. The superconducting islands (gray) are connected by two tunnel barriers (pink)
in parallel. A magnetic flux through the holes of the SQUIDs enables the tuning of the effective
Josepohson coupling.

1.4 Transport measurements

This section is devoted to the discussion of experiments on Josephson junction chains with a focus on
the transport characteristics and the SIT. The first experiment investigating the SIT in 1D JJ chains
is reported in Ref. [39] (see also Refs. [40, 45]). In the following we review the main aspects of this
experiment that are relevant for this thesis. The superconducting islands are made of aluminum (bulk
transition temperature Tc ≈ 1.2K) and the tunnel barriers of Al2O3. In this experiment, a SQUID
geometry is used where the superconducting islands are connected via two junctions in parallel. Figure
1.6 shows a scanning electron microscope image of a chain used in a later experiment [50] which is
very similar to the device of Ref. [39]. As described in Sec. 1.1, applying a magnetic flux Φ, affects the
Josephson energy

EJ = EJ0| cos(πΦ/Φ0)| (1.80)

of the SQUID. Here, EJ0 is the Josephson energy in the absence of magnetic field. Increasing the flux
from zero to half a flux quantum, suppresses the effective Josephson energy down to zero. This setup
has the great advantage that the SIT can be observed in a single device. Only one parameter is varied
in a controlled way. The Josephson energy in the absence of magnetic field is calculated using the
Ambegaokar-Baratoff formula [125, 126],

EJ0 =
Φ0

2πc
Ic0, Ic0 =

π∆0

2eRT
, (1.81)

where ∆0 is the superconducting gap and RT the normal tunnel resistance. The normal resistance
of the whole array can be measured by applying a large voltage, V > N(2∆0/e), where N is the
number of junctions. Alternatively, a low voltage can be used in combination with a strong magnetic
field that completely suppresses superconductivity. Both methods yield almost the same result. The
tunnel resistance RT is now found by dividing the normal resistance of the whole chain by the number
of SQUIDs. The capacitance of the junction (C1 in our notations) can be estimated by measuring
the junction area A (from electron microscope image), and making use of the specific capacitance
cs = 45 fF/µm2, C1 = csA. A gold ground plane which is 1.5 µm below the chain and a rather
small spacing between the islands (0.2 µm) results in a small capacitance to the ground (C0). The
electrostatic screening length Λ =

√
C1/C0 of these devices is approximately 10. The sample is placed
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1.4 Transport measurements

[Reprinted figure with permission from E. Chow, P. Delsing, and D. B. Haviland, Phys. Rev. Lett. 81, 204 (1998),
DOI: 10.1103/PhysRevLett.81.204, cf. Ref. [39]. Copyright 1998 by the American Physical Society.]

Figure 1.7: Experimental result of Ref. [39] for the zero-bias resistance as a function of tempera-
ture for two JJ chains with N = 255 (solid lines) and N = 63 (dashed lines). Curves from bottom
to top correpsond to magnetic fields from zero to 64 G. The circles mark the crossing point of the
two chains with the same magnetic field. The crossing point moves to zero temperature as the
critical magnetic field is approached (marked by J∗).

in a dilution refrigerator which made it possible to cool the chain down to 50 mK. The I-V curves
in zero magnetic field show Josephson-like behavior with a finite slope at low bias. In the insulating
regime, a zero-current state below a threshold voltage is observed. Furthermore, the temperature
dependence of the resistance for two chains of length N = 255 and N = 63 are measured for various
values of the magnetic flux. Fig. 1.7 shows the result of the zero-bias resistance measurement as a
function of temperature. Solid and dashed curves correspond to the chains with N = 255 and N = 63,
respectively. The magnetic field is increased form zero to 64 G from bottom to top. For weak magnetic
fields (superconducting regime) the resistance decreases when the array is cooled and saturates at lowest
temperatures probably because of finite-size effects. At high magnetic fields (insulating regime) the
resistance is a non-monotonic function. In the high-temperature regime, the resistance increases as we
lower T at first up to a temperature of about 400 mK for the longer chain, then decreases until it reaches
a minimum at 100 mK and shoots up at lower temperatures. The upturn at lowest temperatures is
clearly seen only in the longer chain. The circles in Fig. 1.7 show the crossing point of the resistance
curves with the same effective EJ (magnetic field) but different length. As the Josephson coupling is
reduced towards the critical value, the crossing point moves towards zero temperature. At this point,
the quantum critical point, the resistance seems to be independent of length. This critical point is,
however, located at an unexpectedly low value of the Josephson coupling [44, 45].

After this first experiment that investigated the SIT in JJ chains, several further experimental works
on the transport characteristics of JJ chains appeared. In Ref. [41], a scaling analysis in chains up the to
length of N = 100 is performed. The dynamical exponent as well as the exponent for the scaling of the
correlation length are found. The effect of dissipation is studied experimentally in Ref. [42]. Shunting
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1 Fundamentals on Josephson-junction chains

each junction by a resistor leads to the damping of phase fluctuations, which favors superconducting
correlations. Takahide et al. studied the dimensional crossover from 2D to 1D [43]. It is observed that
reducing the width of the array, changes the behavior from superconducting to insulating. This can
be explained by the stronger quantum fluctuations in 1D compared to 2D.

Notably longer chains are studied in Ref. [50] with a length up to N = 2888. In this paper, it is
confirmed that QPS are responsible for the resistance at low temperatures. Indeed, as expected from
the theory, the resistance is proportional to exp{−α

√
EJ/E1}, where α is a numerical coefficient. In

contrast to the observations in the earlier experiment of the same group for shorter chains [39], no
strong length dependence of the resistance is found.

Besides these experiments that mainly focused on the zero-bias properties, experiments on insulating
chains were performed that aimed to understand the threshold voltage above which the chain becomes
conducting [52, 53]. In the experiment of Ref. [53], chains with a maximal length of N = 5000 were
studied. The properties of the threshold voltage could be well explained by depinning physics. In
the theoretical models of Refs. [52, 53], charge disorder is the source of the pinning. This observation
leads to the conclusion that random stray charges play an important role in JJ chains. Furthermore,
the authors of Ref. [53] make another important statement. Their measurements are performed with
single-junction chains (no SQUID geometry). However, they report that additional measurements with
chains of a SQUID geometry showed strongly reduced threshold voltages. This statement raises some
doubts about the reliability of the data from SQUID chains also used in Ref. [39] where the SIT was
located at an anomalously low value of the Josephson coupling. The authors of Ref. [53] conjecture
that low-frequency flux noise or an interplay of charge and flux may affect the measurements in chains
with a SQUID geometry. This shows that the investigation of the transport properties of JJ chains is
still an active field of research, and further work is required to reach a consensus on the position of the
SIT and related issues.

The SIT in 1D is not only observed in JJ chains but also in MoGe nanowires [64–66]. In the
experiments of Refs. [64, 65], the wires were relatively short (up to 0.5µm) while in a more recent
experiment [66], wires with a maximal length of 25µm were studied. The SIT in these semiconducting
nanowires can be induced by reducing the cross section of the wire or by increasing a perpendicular
magnetic field. The critical curve of the resistance as a function of temperature in Ref. [66] is essentially
constant. In this experiment, the temperature range covers roughly one order of magnitude (from 2-
4 K down to 0.4 K). The results of Ref. [66] are largely inconsistent with the theory of the phase-slip
induced SIT in nanowires developed in Refs. [67, 68]. Moreover, there is also no consensus on the
parameter controlling the transition in experimental works. This shows that many aspects of the SIT
in nanowires are still under debate.

1.5 Spectroscopic measurements

Spectroscopic measurements constitute a complementary approach to experimentally probe the SIT. A
recent experiment in which such measurements were performed is reported in Ref. [73]. This experiment
measures the quality factor of a JJ chain device. In the following, we review important aspects of the
experiment reported in Ref. [73]. The authors of Ref. [73] study two parallel chains of Al/AlOx/Al
tunnel junctions on an insulating silicon substrate (see Fig. 1 a) of Ref. [73]). The 1 cm large devices
consist of up to 33, 000 junctions. Both chains are separated by a distance of about 10 µm. The whole
device is placed in a copper waveguide box with a distance of at least 5 mm between the chain and
the metallic walls. One end of the device is connected to a dipole antenna, while the other one is
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Table 1.1: Comparision between the notations of Ref. [73] and this thesis. Note that the value
of the plasma frequency is same in both definitions since the factor of

√
8 is compensated by the

different definition of the junction charging energy.

quantity Ref. [73] this thesis

interchain capacitance C0 C0

junction capacitance CJ C1

interchain charging energy E0 = e2/2C0 E0 = (2e)2/C0

junction charging energy EC = e2/2CJ E1 = (2e)2/C1

Josephson energy EJ EJ

plasma frequency ωp =
√

8EJEC ωp =
√
EJE1

short-circuited. Electromagnetic waves can be coupled to the device through a coaxial-to-waveguide
transition launcher, which allows a good transmission in the frequency range of 7–12 GHz. In order
to measure the standing wave modes in a wider frequency range, the standard two-tone dispersive
reflectometry is used. This method makes use of the weak Kerr non-linearity leading to shifts of
the resonance frequencies in dependence of the occupation of other modes. In this way, the authors
can reconstruct the energy dispersion of the plasmonic waves, which is linear at low momenta with a
velocity of about 1.9 ·106 m/s and flattens towards higher momenta approaching the plasma frequency
ωp/2π ' 25 GHz. The device is held at a temperature of 10 mK.

In order to measure the internal damping of the collective modes, the real and imaginary part of
the reflection coefficient is measured at single-photon power. This is done via one-tone spectroscopy
in a frequency range of 4–12 GHz. A dimensionless measure for the damping of the modes is the
quality factor that is defined as the ratio of the mode frequency to its linewidth. By fitting their
data to a model of a dissipative LC oscillator, the authors were able to separate the external from
the internal damping. The external quality factor is related to losses due to the leakiness of the
device. The experimental result for the internal quality factor for a few devices is shown in Fig. 3 of
Ref. [73]. In the left panel, the individual modes are clearly visible as resonances in the magnitude
of the reflection coefficient. The extracted internal quality factor is depicted in the right panel as a
function of frequency normalized by the plasma frequency. The authors of Ref. [73] use the impedance
Z and the ratio EJ/EC to characterize their devices. The impedance Z is related to the Luttinger
liquid parameter K0 that we use in our theoretical model (see Sec. 4.1). The connection is given by

πK0 =
RQ
2Z

, (1.82)

where RQ = 2π~/(2e)2 ' 6.5 kΩ is the superconducting resistance quantum. In Ref. [73], a slightly
different notation compared to this thesis is used. A comparison of the notations of both works is
presented in Tab. 1.1. The quality factors of devices “a” and “b” shown in Fig. 3 b) of Ref. [73] increase
when the frequency is lowered. These devices are characterized by a large ratio EJ/EC . Reducing
this ratio leads first to an almost flat frequency dependence of the quality factor (device “c”), and for
even weaker junctions (“d”, “e” and “f”) a tendency to drop at low frequencies is observed. At this
point, we note that on the basis of the values of the impedance Z, even the devices “a” and “b” are
expected to be deeply in the insulating regime. Consequently, a vanishing of the quality factor at zero
frequency is expected. However, in the range of measured frequencies in Fig. 3 b) of Ref. [73], such a
tendency is not observed for these devices. Moreover, the authors of Ref. [73] observe a much stronger
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dependence of the quality factor on the ratio EJ/EC than on the impedance Z in weak junctions. We
offer an explanation for this behavior in Chap. 4.

In order to further confirm their findings, the authors of Ref. [73] demonstrated the apparent transi-
tion from an increasing to a decreasing behavior of the quality factor in a single device. To this end, a
device with the ratio EJ/EC ' 11 was used which showed a growing quality factor when lowering the
frequency. After aging the device under ambient conditions for about 1000 hours, the quality factor
showed now a decreasing behavior. During the aging, the Josephson energy was reduced by about
25% due to oxidation. Annealing the device on a hot plate, almost restored the original parameters of
the device, resulting again in an increasing behavior of the quality factor (see Fig. 4 of Ref. [73]). The
same procedure with devices with parameters EJ/EC & 70 showed no effect.

A final remark on this experiment concerns the behavior of the low-impedance chains with a large
ratio EJ/EC , depicted in Fig. S 4 of the Supplementary Material of Ref. [73]. Among these samples,
the variation of the charging energy E0 is quite appreciable (up to a factor of ' 75) while the variation
of all other parameters is much smaller. Nevertheless, when the quality factor is plotted as a function
of the normalized frequency ω/ωp, all curves seem to collapse.

The theoretical investigation of the damping of the collective modes in JJ chains is presented in
Chap. 4. In Sec. 4.3, we compare our theory to the observations of the experiment described in this
section.
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2 Chapter 2

Fundamentals on relaxation in fermionic
systems

After the introduction to Josephson junction chains, which are one-dimensional (1D) bosonic sys-
tems, we discuss in this chapter interacting fermionic systems with a focus on relaxation phenomena.
Interaction-induced relaxation is a basic phenomenon that determines the dynamics of many-body
systems at long time scales and is responsible for thermalization and ergodization.

The fact that the relaxation times can be long was found in Fermi liquids for low-energy excitations.
The lifetime τ of a fermionic quasiparticle in a Fermi liquid with an excess energy ε above the Fermi
sea behaves as τ ∼ εF/ε

2 [127]. Excitations close to the Fermi surface become well defined long-lived
quasiparticles — a key ingredient for Landau’s Fermi-liquid theory. In two spatial dimensions, this
result acquires logarithmic corrections [128, 129] but otherwise the result stays intact. As we will see
in this chapter and in Chap. 5, 1D systems are special. The universality found in higher dimensions
is absent in 1D. The low-energy behavior of the lifetime depends, e. g., on the energy dispersion, the
presence of spin and the form of the interaction potential [18, 130–132].

In this chapter, we introduce the fundamental concepts that are used in this thesis to compute the
relaxation rate of excitations. Section 2.1 presents the basic formalism to perturbatively compute
transition rates. The (generalized) golden rule introduced in this section forms the basis for the
calculation of relaxation rates. In Sec. 2.2, we use the lowest order golden rule to compute the two-
particle collision integral. This enables us to derive the Fermi-liquid result for the lifetime of low-energy
excitations in three dimensional systems. Moreover, at the end of this section, we briefly discuss
the bosonic case which will be used in Chap. 4 for the computation of the lifetime of plasmons in
Josephson junction (JJ) chains. Since in 1D systems with quadratic spectrum the collision integral for
two-particle scattering vanishes, we study in Sec. 2.3 the collision integral for three-particle collisions.
Finally, Sec. 2.4 presents a few experimental studies on relaxation in fermionic systems with a focus
on the experiment reported in Ref. [98], which studied the relaxation in nanowires.

2.1 Fermi’s golden rule

Fermi’s golden rule is a powerful expression to calculate transition rates between states in perturbation
theory. We present here a brief introduction to the important result for the transition rate, which is
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2 Fundamentals on relaxation in fermionic systems

well described in the standard literature on quantum mechanics. Let us consider a physical system
described by the Hamiltonian

Ĥ = Ĥ0 + V̂ (2.1)

consisting of a part Ĥ0 that is assumed to be solvable in the sense that the eigenenergies and eigenstates
are known, and a perturbation (interaction) V̂ . A specific example that is of particular importance for
this thesis is the case of interacting fermions. Here, the quadratic Hamiltonian

Ĥ0 =
∑
p,σ

ε(p) a†p,σap,σ (2.2)

describes non-interacting fermions with energy spectrum ε(p). The fermionic creation and annihila-

tion operators of the state with momentum p and spin projection σ are denoted by a†p,σ and ap,σ,
respectively. They obey the standard anti-commutation relations,

a†p,σa
†
p′,σ′ + a†p′,σ′a

†
p,σ = ap,σap′,σ′ + ap′,σ′ap,σ = 0, a†p,σap′,σ′ + ap′,σ′a

†
p,σ = δp,p′δσ,σ′ . (2.3)

The two-body interaction of fermions via the potential V (q) is of the form

V̂ =
1

2V
∑

k,p,q,σ1,σ2

V (q) a†k+q,σ1
a†p−q,σ2

ap,σ2ak,σ1 , (2.4)

where V is the volume of the system.
The aim is to calculate the transition rate between eigenstates of the free Hamiltonian Ĥ0. Denoting

the initial and finial states by |i〉 and |f〉, respectively, the transition rate to the lowest order in the
interaction in the long-time limit is given by (see e. g. Ref. [133])

Γfi = 2π|〈f |V̂ |i〉|2δ(Ei − Ef ), (2.5)

where Ei, Ef are the energies of the initial and final states, respectively. This expression is known as
Fermi’s golden rule. The delta function expresses the energy conservation in the process valid in the
“long-time” limit.

Higher order terms can be conveniently taken into account by the T-matrix formalism (see e. g. Ref.
[134]). The T-matrix is governed by the self-consistency equation

T̂ = V̂ + V̂
1

Ei − Ĥ0 + i0
T̂ . (2.6)

By iteration, we obtain the expansion of the T-matrix in powers of the interaction V̂ :

T̂ = V̂ + V̂
1

Ei − Ĥ0 + i0
V̂ + V̂

1

Ei − Ĥ0 + i0
V̂

1

Ei − Ĥ0 + i0
V̂ + .... (2.7)

The “generalized” golden rule including higher-order processes is given by [134]

Γfi = 2π|〈f |T̂ |i〉|2δ(Ei − Ef ). (2.8)

In the first order approximation of T̂ , we recover the “standard” golden rule expression, Eq. (2.5).
Including higher-order processes, the energy in the overall process is still conserved. From the form of
the T-matrix in Eq. (2.7), we see that the intermediate (virtual) transitions in higher-order terms do
not conserve energy. In strictly 1D systems with quadratic spectrum, the first order processes do not
contribute to relaxation. We thus need to go to the second order and discuss three-particle collisions.
A deeper discussion of these processes is presented in Sec. 2.3. In the next section, we analyze the
simpler case of two-particle collisions in fermionic systems in three dimensions.

22



2.2 Two-particle collisions

2.2 Two-particle collisions

We start with the discussion of two-particle collisions in fermionic systems and analyze the relaxation
rate of a fermion in the low-energy regime. In our discussion, we follow the argumentation presented
in Ref. [135]. The goal of this section is to compute the relaxation rate of an additional particle with
quantum numbers λ1 above a filled Fermi sea. The collision integral [136, 137]

I[nλ] =
1

2!

∑
λ2,λ′1,λ

′
2

W
λ′1,λ

′
2

λ1,λ2
[(1− nλ1)(1− nλ2)nλ′1nλ′2 − nλ1nλ2(1− nλ′1)(1− nλ′2)] (2.9)

describes the change of the occupation of the state with quantum numbers λ1 as a consequence of
collisions with other particles. Here, εi denotes the energy of the state with quantum numbers λi
(determined by the free Hamiltonian Ĥ0), nλ the fermionic distribution function, the factor 1/2!
reflects the indistinguishability of the final fermions, and the transition probability

W
λ′1,λ

′
2

λ1,λ2
= 2π|〈1′, 2′|V̂ |1, 2〉|2δ(ε1 + ε2 − ε′1 − ε′2) (2.10)

is determined by Fermi’s golden rule, Eq. (2.5). The first term in the square brackets is associated
with the scattering into, and the second one out of the state with quantum numbers λ1. The matrix
element is given by

〈1′, 2′|V̂ |1, 2〉 = 〈0|aλ′1aλ′2 V̂ a
†
λ1
a†λ2
|0〉 (2.11)

with |0〉 being the empty state. In thermal equilibrium, the distribution function is given by the
Fermi-Dirac distribution,

nλ = nF(ελ) ≡ 1

exp
(
ελ−µ
T

)
+ 1

, (2.12)

where µ is the chemical potential (Fermi energy at zero temperature). The collision integral Eq. (2.9)
vanishes in equilibrium. We consider the situation, in which on top of a fermionic system at equilibrium,
an additional fermion is present. In order to compute the relaxation rate 1/τ , we linearize the collision
integral by expanding in the small deviation from equilibrium, δnλ = nλ − nF(ελ), and reading off the
“diagonal” coefficient,

I[nλ] = −1

τ
δnλ1 + ... (2.13)

The omitted terms in the above equation are of higher order in the deviation δnλ or “off-diagonal”
(∝ δnλi 6=1

). This leads to the expression

1

τ
= π

∑
λ2,λ′1,λ

′
2

|〈1′, 2′|V̂ |1, 2〉|2δ(ε1 +ε2−ε′1−ε′2)
[
[1−nF(ε2)]nF(ε′1)nF(ε′2)+nF(ε2)[1−nF(ε′1)][1−nF(ε′2)]

]
.

(2.14)
In the following, the Fermi-liquid result for the relaxation rate of a particle at low energies above the
Fermi sea, 0 < ε1 � εF, is derived. From now on, we measure all energies εi relative to the Fermi
energy εF. We focus on the case of zero temperature, in which the Fermi function is a step function,
nF(ε) = Θ(−ε). The first term in the square bracket of Eq. (2.14), associated with the in-scattering
rate, vanishes at zero temperature. For our purposes the spin is unimportant; we omit it in the
following. The precise form of the matrix element is of minor importance as well. We only need the
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2 Fundamentals on relaxation in fermionic systems

scaling with the volume V and the fact that the interaction (2.4) conserves the total momentum in the
collision,

〈1′, 2′|V̂ |1, 2〉 ≡ 1

V
δp1+p2,p′1+p′2

M
p′1,p

′
2

p1,p2 . (2.15)

In the considered regime, 0 < ε1 � εF, all other energies are also small, |ε2|,|ε′1|,|ε′2| � εF. We write
the summation over the momentum as an integration over the directions of the momentum and the
energy,

1

V
∑
p

→ νF

∫
dΩp

4π

∫
dε, (2.16)

where νF is the density of states at the Fermi energy. In this way, the integrations over the energies
and directions of the momenta decouple approximately,

1

τ
= 2π〈|V |2〉Ω

∫
dε2

∫
dε′1

∫
dε′2 δ(ε1 + ε2 − ε′1 − ε′2)nF(ε2)[1− nF(ε′1)][1− nF(ε′2)] (2.17)

with the modulus squared matrix element averaged over the directions

〈|V |2〉Ω '
1

2
(2π)3ν3

F

∫
dΩ2

4π

∫
dΩ′1
4π

∫
dΩ′2
4π

∣∣∣Mp′1,p
′
2

p1,p2

∣∣∣2δ(pF(n1 + n2 − n′1 − n′2)), (2.18)

where pF is the Fermi momentum, and ni is a unit vector pointing in the direction of pi. Evaluating
the integrations over the energies, we find

1

τ(ε1)
= π〈|V |2〉Ω ε21 (2.19)

reflecting the available phase space for the collision processes. The angular average of the squared
matrix element, Eq. (2.18), depends on the low-momentum behavior of the interaction potential and
the presence of spin. It is, however, independent of the energy ε1. Under the assumption V (−q) = V (q)
on the interaction potential in momentum space, the matrix element is given by

〈1′, 2′|V̂ |1, 2〉 =
1

V

[
δσ1,σ′1

δσ2,σ′2
V (p1 − p′1)− δσ1,σ′2

δσ2,σ′1
V (p1 − p′2)

]
δp1+p2,p′1+p′2

(2.20)

in the spinful and by

〈1′, 2′|V̂ |1, 2〉 =
1

V

[
V (p1 − p′1)− V (p1 − p′2)

]
δp1+p2,p′1+p′2

(2.21)

in the spin-polarized case. The first term in each case is called direct term while the second one is
called exchange term.

We compute the angular average of the squared matrix element for a specific form of the interaction
explicitly in Sec. 5.1. In the low-energy regime, we obtain the results (5.18) and (5.19) for spinful and
spin-polarized fermions, respectively. Moreover, the above described procedure is used in Secs. 5.1 and
5.2 to compute the relaxation rate at high energies, ε � εF, in D ≥ 2 dimensional systems as well in
quasi-1D wires.

We remark that an alternative approach to calculate the relaxation rate is via the imaginary part
of the self-energy (see e. g. Ref. [138]). We make use of this procedure in Sec. 4.2.1 when we discuss
the lifetime of plasmons in Josephson junction chains induced by quantum phase slips. In Sec. 4.2.2,
where we analyze the damping of plasmons due to gradient nonlinearities, we employ the same approach
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2.3 1D geometry: three-particle collisions

with the collision integral as above. However, since we deal with bosonic particles, the structure of the
collision integral (2.9) is different. It reads in the bosonic case (see e. g. Ref. [137])

I[nλ] =
2π

2!

∑
λ2,λ′1,λ

′
2

|〈1′, 2′|V̂ |1, 2〉|2δ(ε1 +ε2−ε′1−ε′2)[(nλ1 +1)(nλ2 +1)nλ′1nλ′2−nλ1nλ2(nλ′1 +1)(nλ′2 +1)],

(2.22)
where in this case nλ is the distribution function of bosons. The first term in the square brackets
corresponds again to the in-scattering and the second one to the out-scattering rate. In order to study
the relaxation of an additional boson on top of the equilibrium distribution

nB(ε) =
1

exp
(
ε−µ
T

)
− 1

, (2.23)

we linearize again the collision integral, nλ = nB(ελ) + δnλ. As in the fermionic case discussed above,
the relaxation rate is read off from the “diagonal” term of the collision integral. We then finally arrive
at the expression for the relaxation rate

1

τ
= π

∑
λ2,λ′1,λ

′
2

|〈1′, 2′|V̂ |1, 2〉|2δ(ε1 + ε2 − ε′1 − ε′2)
{
nB(ε2)[1 + nB(ε′1) + nB(ε′2)]− nB(ε′1)nB(ε′2)

}
. (2.24)

of a bosonic excitation with energy ε1. In the next section, we discuss three-particle collisions that
govern the relaxation in 1D systems with parabolic dispersion.

2.3 1D geometry: three-particle collisions

Pair collisions do not lead to relaxation in one dimension for particles with a dispersion with positive
curvature because energy and momentum conservation allow only for permutations of the particles
[130]. Therefore, three-particle collisions need to be taken into account. We follow Ref. [130] for an
introduction to this topic. Making use of the “generalized” golden rule, Eq. (2.8), we can write down
the collision integral for three-particle collisions of fermions

I[nλ] =
2π

2!3!

∑
λ2,λ3,λ′1,λ

′
2,λ
′
3

|〈1′, 2′, 3′|V̂ Ĝ0V̂ |1, 2, 3〉|2δ(Ei − Ef )

× [(1− nλ1)(1− nλ2)(1− nλ3)nλ′1nλ′2nλ′3 − nλ1nλ2nλ3(1− nλ′1)(1− nλ′2)(1− nλ′3)],

(2.25)

where λi = (pi, σi), and Ei = ε1 + ε2 + ε3 and Ef = ε′1 + ε′2 + ε′3 are the total energies before and after
the collision, respectively. The Green’s function operator reads explicitly

Ĝ0 =
1

Ei − Ĥ0 + i0
. (2.26)

The prefactor 1/2!3! takes care of the indistinguishability of incoming and outgoing particles. The first
term in the square bracket of Eq. (2.25) corresponds to the rate for the scattering into and the second
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2 Fundamentals on relaxation in fermionic systems

Figure 2.1: Visualization of the basic process for three-particle scattering. The total matrix
element consists of all processes where the legs of incoming as well as the legs ouf outgoing particles
are interchanged.

one out of the state with quantum number λ1. Analogous to the two-particle case, we linearize the
collision integral and read off the relaxation rate 1/τ from the “diagonal” part,

1

τ
=

2π

2!3!

∑
λ2,λ3,λ′1,λ

′
2,λ
′
3

|〈1′, 2′, 3′|V̂ Ĝ0V̂ |1, 2, 3〉|2δ(Ei − Ef )

×
{

[1− nF(ε2)][1− nF(ε3)]nF(ε′1)nF(ε′2)nF(ε′3) + nF(ε2)nF(ε3)[1− nF(ε′1)][1− nF(ε′2)][1− nF(ε′3)]
}
.

(2.27)

At zero temperature, the first term in the curly brackets which is related to the in-scattering rate,
vanishes. Let us now analyze the matrix element

〈1′, 2′, 3′|V̂ Ĝ0V̂ |1, 2, 3〉 = 〈0|ap′1,σ′1ap′2,σ′2ap′3,σ′3 V̂ Ĝ0V̂ a
†
p1,σ1

a†p2,σ2
a†p3,σ3

|0〉 (2.28)

for three-particle collisions. For the two-body interaction (2.4), the matrix element can be written as
[130]

〈1′, 2′, 3′|V̂ Ĝ0V̂ |1, 2, 3〉 =
1

4L2

∑
(abc)∈P(123)

sign(abc)
∑

(a′b′c′)∈P(1′2′3′)

sign(a′b′c′)

×
V (p′a − pa)V (p′c − pc)δpa+pb+pc,p′a+p′b+p

′
c

εb + εc − εc′ − εb+c−c′ + i0
δσa,σa′ δσb,σb′ δσc,σc′ ,

(2.29)

where L is the system size, P(123) = {(123)+, (231)+, (312)+, (132)−, (213)−, (321)−} is the set of
permutations of (1, 2, 3), and the superscript of each element indicates its sign, sign(abc). The scattering
amplitude for the three-particle matrix element is visualized in Fig. 2.1. Overall there are 36 terms in
the matrix element. For a quadratic energy spectrum, εp = p2/2m, the denominator can be rewritten
as

εb + εc − εc′ − εb+c−c′ = − 1

m
(pb − p′c)(pc − p′c)

=
(pa − p′c)(pb − p′c)(pc − p′c)

m(p′c − pa)
.

(2.30)
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2.4 Measurement of the relaxation rate in nanowires

The energy and momentum conservation can be conveniently taken into account by parametrizing the
momenta according to

pk =
P

3
+ q cos

[
ϕ+

2π(k − 1)

3

]
, k = 1, 2, 3, (2.31)

p′k =
P

3
+ q cos

[
ϕ′ +

2π(k − 1)

3

]
, k = 1, 2, 3. (2.32)

Here, P has the meaning of the total momentum and q ≥ 0 is defined by

Ei = Ef =
P 2

6m
+

3q2

4m
. (2.33)

With this parametrization, the numerator in Eq. (2.30) can be written on the mass-shell as

(pa − p′c)(pb − p′c)(pc − p′c) =
q3

4
(cos 3ϕ− cos 3ϕ′), (2.34)

which is invariant under the exchange of incoming and the exchange of outgoing particles. This leads
to a great simplification since all terms in the matrix element have a common denominator,

〈1′, 2′, 3′|V̂ Ĝ0V̂ |1, 2, 3〉 =
m

L3q3(cos 3ϕ− cos 3ϕ′)

∑
(abc)∈P(123)

(a′b′c′)∈P(1′2′3′)

sign(abc) sign(a′b′c′) qc′,aV (qa′,a)V (qc′,c)

× δpa+pb+pc,p′a+p′b+p
′
c
δσa,σa′ δσb,σb′ δσc,σc′

(2.35)

with the short-hand notation qa′,b = p′a − pb. In the spin-polarized case, the spin indices need to be
omitted. As we show in Sec. 5.3, the matrix element (2.35) does not contain a pole in the spin-polarized
situation because of cancellations between different processes (see Eq. (5.45) and the discussion below
this equation). In the spinful case, there is, however, a pole that emerges from two consecutive two-
particle scattering processes separated by an infinite time. In order to subtract those doubly counted
processes, a regularization procedure is discussed in Ref. [139]. As we show in Sec. 5.3, at zero
temperature such a regularization is not necessary since the Fermi functions restrict the phase space
to a region that does not contain the poles.

In the next section, we discuss experiments studying the relaxation of electrons.

2.4 Measurement of the relaxation rate in nanowires

The relaxation rate of electrons in normal metals was measured by means of the time-resolved two-
photon photoemission [80, 81]. This technique, consists of two steps. A first laser pulse excites an
electron of the surface of the metal. A second pulse, delayed in time, emits the electron whose kinetic
energy is measured. Monitoring the number of electrons for a given energy as a function of the delay
time enables the measurement of the relaxation time. In these experiments qualitative agreement with
the Fermi-liquid result (2.19) is found.

More relevant for this thesis is a recent experiment [98] that studied the relaxation of electrons in InAs
nanowires. We summarize in the following the main aspects of this experiment that are important for
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this thesis. The nanowires were grown by molecular-beam epitaxy using the gold-assisted vapor-liquid-
solid technique and have a diameter of about 70 nm. They are placed on top of a gold substrate, which
has a surface roughness of the order of 60 nm partially suspending the nanowires. Measurements are
performed in ultra-high vacuum at a temperature of 4.2 K. The electron density is about 100 electrons
per micron leading to the occupation of 3-4 1D subbands.

By means of scanning tunneling microscopy (STM), the local density of states is extracted from the
measurement of the differential conductance using the lock-in technique. The differential conductance
reveals interference patterns emerging from the scattering off crystallographic irregularities. The peri-
odicity of the patterns is determined by the momentum transfer q between the incident and scattered
states. In order to study relaxation effects, the authors of Ref. [98] used two different approaches: (i)
the investigation of the scattering from the nanowire’s end, and (ii) the investigation of the interference
pattern in Fabry-Pérot resonators.

Using the first approach, the coherence length Lϕ is determined. Electrons are injected via the
STM tip in the vicinity of the end of the nanowire and the local differential conductance as a function
of energy and the distance to the end is measured. The differential conductance shows pronounced
dispersing interference patterns. A spatial Fourier transform of the data reveals the 1D subbands with
a dominant mode associated with the lowest subband. The dominant visibility of the lowest subband is
attributed to the enhanced phase coherence of the lowest subband in comparison to higher subbands.
Figure 2.2 a) shows the differential conductance as a function of the distance to the end of the nanowire
for a few energies. These curves are extracted from the raw data after filtering out all non-dispersing
effects. The curves are fitted by A| sin(qx+ϕ)| exp(−2x/Lϕ) where q is determined from the measured
energy dispersion of the lowest subband. At the highest measured energies, the decay of the standing
wave is too slow to be resolved within the measured distance of 40 nm. The maximal distance is
limited by surface impurities disturbing the interference patterns. The extracted energy dependence
of the phase coherence length Lϕ is shown in Fig. 2.2 b). Close to the Fermi-energy, the coherence
length is of the order of 70 nm and shortens rapidly when increasing the energy. This behavior is in
accordance with the growth of the available phase space. However, at around 80 meV, the coherence
length reaches a minimum and starts to grow again at higher energies. This behavior is at variance
with the expectation from the Fermi-liquid result, Eq. 2.19, valid at low energies.

The second approach utilizes a Fabry-Pérot resonator that is formed by adjacent stacking faults.
Measuring the differential conductance inside a resonator away from the end of the nanowire reveals
resonances with a finite width [see Fig. 2.3 a)]. The width of the resonances Γ as a function of the peak
energy is depicted in Fig. 2.3 b). On top of the relaxation due to electron-electron interaction, there
are several additional sources contributing to the broadening. At the Fermi energy, the relaxation rate
due to electron-electron interaction should vanish. The additional broadening of the resonance at the
Fermi energy is caused by the leakiness of the resonator as well as instrumental contributions from
finite temperature (1 meV) and finite AC probing amplitude (3 meV). Subtracting the width at the
Fermi energy yields the relaxation rate due to internal damping, Γ̃(E) = Γ(E)−Γ(EF). Again, a non-
monotonic dependence of the rate as a function of energy is found. At low energies, the rate increases
first until a maximum around 80 meV is reached, and decreases at higher energies. Both approaches,
the investigation of the scattering from the end of the nanowire and the measurement of the width
of the resonances in a Fabry-Pérot resonator agree on the non-monotonic dependence as well as on
the energy position of the maximum. The first approach directly yields the phase coherence length
Lϕ, while in the second approach the phase coherence time τϕ is extracted via τϕ ∼ ~/2Γ̃. Both data
can be related through the velocity v determined from the energy dispersion of the lowest subband,
Lϕ = vτϕ. The difference in the overall magnitude of the relaxation rate extracted from both methods
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[Reprinted figure with permission from J. Reiner, A. K. Nayak, N. Avraham, A. Norris, B. Yan, I. C. Fulga,
J.-H. Kang, T. Karzig, H. Shtrikman, and H. Beidenkopf, Phys. Rev. X 7, 021016 (2017), DOI:

10.1103/PhysRevX.7.021016, cf. Ref. [98]. Copyright 2017 by the American Physical Society, link to license:
https://creativecommons.org/licenses/by/4.0/.]

Figure 2.2: Measurement of the coherence length in a multi-channel wire (taken from Ref. [98]).
a) Decay profiles of the differential conductance as a function of the distance to the nanowire’s end
for several energies. The data is represented by the dots, the fit to A| sin(qx + ϕ) exp(−2x/Lϕ)
is visualized by the gray lines. At high energies, the decay is too slow to be resolved within the
measured distance. b) Energy dependence of the coherence length Lϕ (open circles) as extracted
from a). In the low-energy regime, the coherence length shortens when incereasing the energy.
The thick dashed line shows the E−2 behavior expected at low energies. Beyond the minimum of
Lϕ around 80 meV, the coherence length increases again.

is explained by the variation in the suspension of the wire leading to different dielectric constants at
the end of the wire and at the position of the resonator. In conclusion, both methods demonstrate
that the relaxation rate of electrons in multi-channel quantum wires shows a non-monotonic behavior
as a function of energy. Electrons regain their coherence at high energies.

In Chap. 5, we study theoretically the relaxation of fermions in quasi-1D multi-channel and 1D
single-channel wires. We show that under quite generic circumstances, the relaxation rate shows non-
monotonic behavior with a power-law decay at high energies.
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[Reprinted figure with permission from J. Reiner, A. K. Nayak, N. Avraham, A. Norris, B. Yan, I. C. Fulga,
J.-H. Kang, T. Karzig, H. Shtrikman, and H. Beidenkopf, Phys. Rev. X 7, 021016 (2017), DOI:

10.1103/PhysRevX.7.021016, cf. Ref. [98]. Copyright 2017 by the American Physical Society, link to license:
https://creativecommons.org/licenses/by/4.0/.]

Figure 2.3: Measurement of the relaxation rate from Fabry-Pérot resonances (taken from
Ref. [98]). a) Differential conductance inside a Fabry-Pérot resonator that is formed by two adja-
cent stacking faults. Quantized resonances (red areas) with a finite width are visible. b) Width Γ
of the resonances as a function of the peak energy E (black dots). The finite width at the Fermi
energy originates from the finite temperature and AC probing amplitude, σ0 = 3.9 meV (up to the
dotted line inside the gray area). Additionally, the leakiness of the resonator introduces a width of
about 1.1 meV. The excess energy dependent broadening (above the gray region, σtot) is related to
the finite coherence time τϕ. The data from Fig. 2.2 b) (open circles) agrees with this data (black
dots) on the non-monotonic dependence and the position of the maximum.
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3 Chapter 3

Superconductor-insulator transition in
disordered Josephson-junction chains

One of the main goals of this thesis is the analysis of the transport properties of 1D Josephson junction
(JJ) chains. There are primarily two energy scales that control the properties of these systems, the
charging energy and the Josephson energy. Depending on the ratio of these energies, different properties
can be observed. If the charging energy is much larger than the Josephson energy, the Cooper-pair
tunneling is suppressed, and the current-voltage characteristics show the Coulomb blockade [38]. At
finite temperature and in the low-bias response, an activated behavior for the Cooper-pair tunneling
is found [51]. In addition, if strong charge disorder is present, the critical voltage at which the chain
becomes conducting, is controlled by depinning effects [52, 53]. If the Josephson energy is the largest
energy scale, superconducting current-voltage characteristics are found [46, 50]. The superconductor-
insulator transition (SIT) between both regimes occurs when the charging and Josephson energy are
of the same order [14, 39–44, 49, 53]. This transition is driven by the proliferation of quantum phase
slips (QPS) [14, 47–50]. These fluctuations correspond to 2π windings of the phase difference across
one of the junctions.

Experimentally, the SIT in JJ chains can be conveniently investigated by using devices in a super-
conducting quantum interference device (SQUID) geometry [39–43]. In these devices, the Josephson
energy can be varied in situ by means of a perpendicular magnetic field. There are also a large number
of theoretical works on 1D JJ chains. Bradley and Doniach [14] showed that for a model with a capac-
itive coupling to the ground a mapping onto the 2D XY model exists. The phase transition of such a
model belongs to the Berezinskii-Kosterlitz-Thouless (BKT) universality class. In later works, effects
of dissipation [57–59] and a finite capacitive coupling between the islands [44, 47, 49] were studied. The
relation to the physics of Luttinger liquids (LLs) was established in Refs. [60–62]. The role of disorder
was examined in connection with the persistent current in closed rings [47, 140]. There, random stray
charges lead to a weaker decay of the amplitude of the persistent current with the system size. In a
recent work [63], the impact of disorder on the QPS amplitude was studied.

Besides the experiments on JJ chains mentioned above, the SIT was investigated in MoGe nanowires
[64–66]. The theoretical description of QPS in 1D wires was introduced in Refs. [67, 68], see also [141]
for a review. Qualitatively, the experimental results in 1D structures are in accordance with the
theoretical predictions. However, questions on the parameter controlling the transition as well as on
the scaling properties near the SIT are still not answered satisfactorily.
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In this chapter, we review our results on the SIT in JJ chains published in Ref. [107]. We study
the impact of disorder on the SIT and establish the phase diagram. Furthermore, the behavior of
the conductivity as a function of temperature and system size is computed in the vicinity of the SIT.
Although we consider a model for JJ chains, we expect that our findings should be largely applicable
to 1D superconducting nanowires as well.

Starting from the lattice model for JJ chains introduced in Sec. 1.2, we derive the effective low-energy
field theory that is of sine-Gordon type. Additionally, two types of disorder are considered: random
stray charges and random fluctuations of the QPS fugacity. Making use of the renormalization group
(RG), the phase diagram is obtained. We find that the random stray charges reduce the impact of
QPS, thus widening the regime of superconducting correlations. On the contrary, the second type of
disorder, phase slips with a random amplitude, enlarge the insulating regime. Employing the memory-
function formalism, the resistivity is calculated as a function of temperature for an infinite chain.
Moreover, the resistance as function of system size at zero temperature is discussed. Near the SIT,
both quantities are characterized by a strongly non-monotonic behavior.

This chapter is structured as follows. In Sec. 3.1, the field theory corresponding to the lattice
model introduced in Sec. 1.2 is derived. Sections 3.2 and 3.3 account for this field theory in the local
(C0 � C1) and non-local (C0 � C1) limit of the Coulomb interaction, respectively. In both sections,
we start first with the discussion of the RG and analyze then the transport properties in the second
part. Our theory is compared to experiments on the SIT in 1D in Sec. 3.4 before we summarize the
main results of this chapter in Sec. 3.5.

This chapter is based on our work in Ref. [107] and in part also on our results of Ref. [142].

3.1 Field theory

The lattice model for JJ chains is introduced in Sec. 1.2. In the following, we discuss the effective
low-energy theory of this model, Eq. (1.25), as well as generalizations thereof including disorder. We
study the low-energy modes with momenta q . 1 and frequencies ω . Ω0, where

Ω0 =

√
EJE1E0

E1 + E0
(3.1)

is the plasmonic bandwidth. If not stated explicitly, all distances are measured in units of the lattice
spacing. Changing the screening length Λ from zero to infinity, the frequency cutoff Ω0 ranges from the
frequency u0 =

√
EJE0 for phase oscillations of a single island to the plasma frequency ωp =

√
EJE0

related to a single junction.
A convenient description of the field theory of our model is given by the formulation in terms of the

operator φ(x), which is related to the Cooper-pair density by πN (x) = −∂xφ(x). The commutation
relation between the operator φ(x) and the superconducting phase θ(x),[

−∂xφ(x), θ(x′)
]

= iπδ(x− x′), (3.2)

is inherited from the canonical commutation relation (1.26) in the lattice model. The quadratic
(imaginary-time) action in the continuum limit has the form

S0 =
Ω0

2π2K

∫
dq

2π

dω

2π

ω2

Ω2
0

+

(
1 + 1/Λ2

)
q2

q2 + 1/Λ2

 ∣∣φ(q, ω)
∣∣2 , (3.3)
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3.1 Field theory

Figure 3.1: Energy dispersion of plasmonic waves in JJ chains. For momenta below 1/Λ, the
spectrum is approximately linear, while above this crossover scale it saturates to Ω0.

and corresponds to plasmonic waves with the energy spectrum

ε(q) =
ωp|q|√
q2 + 1/Λ2

, (3.4)

which is depicted in Fig. 3.1. At momenta below the inverse screening length, the dispersion is nearly
linear and crosses over to a flat spectrum for higher momenta. In Eq. (3.3), the dimensionless constant

K =

√
EJ

E0
+
EJ

E1
= K0

√
1 + Λ2 = K1

√
1 +

1

Λ2
(3.5)

is introduced, which smoothly connects K0 in the local limit (Λ→ 0) and K1 for Λ→∞.
The Gaussian action (3.3) corresponds to small long-wavelength fluctuations of the superconducting

phases θi around the classical ground state in the superconducting regime, θi ≡ θ(x) = const. This
action yields an accurate description of the JJ chain at low temperatures and in the regime where
the Josephson energy EJ is the largest energy scale. The destruction of the superconducting phase by
effects related to the charging energy is connected to the 2π windings of the phase difference across one
of the junctions. These tunneling events are called quantum phase slips (QPS), which correspond to
vortices in the superconducting phase θ(x, τ) in the imaginary-time path-integral representation. For
an analogy of QPS to the vortices in the 2D XY model see Sec. 1.2. These topological excitations can
be taken into account by adding the term

Sps =
yΩ0√
2π3

∫
dx dτ cos

[
2φ(x, τ)

]
, (3.6)

to the Gaussian action (3.3). Here, y is the dimensionless fugacity (amplitude) of the phase slip. In
App. A.1 a detailed derivation of Eq. (3.6) starting from the lattice model is presented. On the phe-
nomenological level, the QPS-action can be motivated in the following way [17, 109]. From the analogy
to elementary quantum mechanics, we observe that the operator e2iφ(x0,τ0) behaves as a translation
operator that shifts all superconducting phases θ(x, τ) after the time τ0 and to the left of x0 by 2π.
Thus, this operator creates a phase slip in the chain (see also Fig. 1.3).

In the regime EJ � min(E1, E0), superconducting correlations are at least locally well established.
QPS can then be thought of as tunneling processes with an exponentially small amplitude

y ∝ e−ζK , (3.7)
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where ζ is a numerical coefficient that depends on Λ and in principle also on the details of the ultraviolet
(UV) cutoff procedure. Estimates for ζ in several parameter regimes can be found in Refs. [14, 44, 47,
49] and in App. A.2. In the following, we regard the fugacity y as a phenomenological parameter that
is small for K & 1, and we concentrate on the consequences of QPS on the low-energy properties of
the JJ chain.

An important aspect of this work is the understanding of the influence of disorder on the transport
properties of JJ chains. There are many sources for disorder in these systems. Among them, random
stray charges are of particular importance. They lead to the “frustration” of the charging part of the
Hamiltonian:

E1

2

∑
i,j

S−1
ij NiNj →

E1

2

∑
i,j

S−1
ij (Ni −Qi)(Nj −Qj), (3.8)

where Qi denote the random charges. The QPS are influenced by the random charges through the
Aharonov-Casher effect [143]. When the phase difference between the grains i and i+ 1 winds by 2π,
the wave function of the system acquires the phase factor

eiQi with Qi = 2π
∑
k≤i

Qk. (3.9)

Hence, in the presence of random stray charges, the QPS action (3.6) needs to be replaced by

Sps,Q =
yΩ0√
2π3

∫
dx dτ cos

[
2φ(x, τ)−Q(x)

]
. (3.10)

Another formal way to derive the phase slip action with a random phase in the continuum field theory
is to perform the gauge transformation

φ(x, τ)→ φ(x, τ)−Q(x)/2, Q(x) = 2π

∫ x

−∞
dx′Q(x′) , (3.11)

which eliminates the random charges from the quadratic part of the action, and leads to the form
(3.10) for the phase-slip action. In principle, the statistical characteristics of the random stray charges
Q might be material-dependent. For simplicity, we assume a Gaussian distribution function and short-
range correlations,

〈Q(x)〉 = 0, and 〈Q(x)Q(x′)〉 =
DQ

2π2
δ(x− x′). (3.12)

Fluctuations in the charging and Josephson energies from junction to junction represent a further
source of quenched disorder. Imperfections in the manufacturing process leading to fluctuations of the
width of the tunnel barriers or the area of the loops of the SQUIDs in the case of chain in a SQUID
geometry might be possible sources. These variations result in spatial fluctuations of the parameters
of the Gaussian part of the action (3.3). However, since the charge transport is not directly affected
by those fluctuations, we skip them in the following. More importantly, the local value of the QPS
fugacity y is influenced which is of central importance for transport characteristics. In combination
with random stray charges that provide a random phase, we consider the term

Sξ =

∫
dx dτ

[
ξ(x)e2iφ(x,τ) + h.c.

]
(3.13)
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3.2 Local Coulomb interaction

with a random complex amplitude ξ taking into account the fluctuations of the parameters of the
junctions. As in the case of random stray charges, we assume that ξ has a Gaussian distribution
function with short-range correlations 1,

〈ξ(x)〉 = 0, 〈ξ(x)ξ∗(x′)〉 =
u2

0Dξ

(2π)2
δ(x− x′). (3.14)

We end this section by stating the action of our complete model,

S = S0 + Sps,Q + Sξ, (3.15)

where S0, Sps,Q, and Sξ are defined in Eqs. (3.3), (3.10), and (3.13), respectively. In the following we
analyze the action (3.15) with regard to the transport properties in Secs. 3.2 and 3.3 for the cases of
local and non-local Coulomb interaction, respectively.

3.2 Local Coulomb interaction

In the regime C1 � C0, the interaction between charges is local in space. The energy spectrum for the
plasmonic waves is completely linear, and the Gaussian part of the action is of Luttinger liquid (LL)
type,

S0 =
1

2π2u0K0

∫
dx dτ

[
u2

0

(
∂xφ

)2
+
(
∂τφ

)2]
, (3.16)

with the LL parameter K0 =
√
EJ/E0 and the plasmon velocity u0 =

√
EJE0. (The dimensions of

energy and velocity coincide in this formulation since we measure all distances in units of the lattice
spacing.)

Comparing our low-energy theory given by Eqs. (3.15), (3.16), (3.10), and (3.13) for a JJ chain with
local charge interaction to the work performed for a disordered interacting wire by Giamarchi and
Schulz [144], we observe many similarities. In particular, the term with random fugacity, Eq. (3.13),
corresponds to the disorder-induced backscattering term in the case of a fermionic 1D system. More-
over, the phase-slip term with a uniform fugacity y translates into an umklapp term that arises as a
consequence of a commensurate periodic potential. The random stray charges can be identified with
the random forward scattering in the case of a 1D wire. We take advantage of these similarities to
derive the RG equations in the following. In this way, we obtain the phase diagram as well as the
transport properties at low temperatures of a disordered JJ chain with local Coulomb interaction.

3.2.1 RG equations

The RG equations for the action (3.15), where the quadratic action S0 is given by Eq. (3.16), are
obtained by following to a large extent the procedure outlined in Ref. [144]. The disorder average over
the random phase-slip amplitude ξ is performed with the help of the replica trick [17, 145]. However,

1To facilitate the analysis, we consider only Gaussian fluctuations of ξ, which are completely determined by the second
moment in (3.14). Under this assumption, the correlations between ξ and Q are absent. Deviations coming from the
fluctuations beyond the Gaussian approximation are expected to be of minor importance.
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3 Superconductor-insulator transition in disordered Josephson-junction chains

the average over the stray charges is not yet performed. The replicated action that is already averaged
over the realizations of ξ is given by

S =
n∑
i=1

(
S0[φi] + Sps,Q[φi]

)
+

n∑
i,j=1

Sξ[φ
i, φj ], (3.17)

S0[φi] =
1

2π2u0K0

∫
dxdτ

[
u2

0(∂xφ
i)2 + (∂τφ

i)2
]
, (3.18)

Sps,Q[φi] =
yu0√
2π3

∫
dxdτ cos

[
2φi − 2π

∫ x

−∞
dx′Q(x′)

]
, (3.19)

Sξ[φ
i, φj ] = −

u2
0Dξ

(2π)2

∫
dxdτdτ ′ cos

[
2
(
φi(x, τ)− φj(x, τ ′)

)]
. (3.20)

We denote by i = 1, 2, . . . , n the replica index, and at the end of the calculation the limit n→ 0 should
be performed.

The RG equations are obtained by studying the correlation function

R(x1 − x2, τ1 − τ2) =
〈

ei2φ
j(x1,τ1)e−i2φ

j(x2,τ2)
〉
. (3.21)

Here, the angular brackets indicate the average over the random variable Q(x) besides the average
with respect to the action (3.17). This correlator is computed perturbatively up to second order in the
QPS fugacity y, and up to first order in the disorder strength Dξ. The RG equations can be extracted
from the perturbative corrections. The details of this derivation can be found in App. A.3. We obtain:

dK0

dl
= −1

2
y2K2

0

[
I0(DQ)− L0(DQ)

]
− 1

2
K2

0Dξ, (3.22)

dy

dl
= (2− πK0)y, (3.23)

dDξ

dl
= (3− 2πK0)Dξ, (3.24)

dDQ

dl
= DQ, (3.25)

du0

dl
= −1

2
u0K0y

2

[
L2(DQ)− I2(DQ) +

2

3π
DQ

]
− 1

2
u0K0Dξ. (3.26)

The logarithm of the running scale is denoted by l, the n-th modified Bessel function of the first kind
by In, and the n-th modified Struve function by Ln. It should be emphasized that these equations are
perturbative in y (2nd order) and Dξ (1st order), while they are exact in K0 and DQ.

In the clean limit, DQ = Dξ = 0, the equations for y and K0 coincide with the standard BKT
equations,

dK0

dl
= −1

2
y2K2

0 , (3.27)

dy

dl
= (2− πK0)y, (3.28)

which describe a quantum superconductor-insulator transition with the critical value πKc
0 = 2 for an

infinitesimally small phase-slip amplitude y. Due to the isotropy of the space-time in the clean limit,
the flow for the velocity u0 is absent.
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3.2 Local Coulomb interaction

We turn now to the discussion of the RG flow of the disordered system. In the regime πK0 > 2, the
superconducting state is not destroyed by a small phase-slip amplitude y or a small disorder strength
Dξ. On the other hand, for πK0 < 2, QPS might proliferate. The perturbation with random fugacity
ξ is irrelevant in the regime πK0 > 3/2. We therefore ignore this term for a moment, and come back
to it in the next paragraph. For any πK0 < 2, the phase-slip fugacity y grows under the RG. However,
its influence on the properties of the system is controlled by the random stray charges. If the disorder
strength DQ at the UV scale is sufficiently small, it might still be small (despite its growth under
the RG) at the scale where the fugacity y becomes of order unity. In this case, localization effects
are expected to develop, leading to insulating behavior. On the contrary, inspecting Eq. (3.22) in
the limit DQ � 1 reveals that the correction to K0 originating from QPS is proportional to y2/DQ.
Correspondingly, we find a competition between the homogeneous fugacity y and the disorder strength
DQ of stray charges. It is expected that for DQ � 1, localization effects become important only if the
combination y2/DQ becomes of order unity. This statement is further supported in Sec. 3.2.2, where it
is demonstrated that the same parameter appears in the perturbative corrections to the conductivity.

From the scales where DQ � 1, the RG equations can be replaced by the simplified version,

dK0

dl
= −1

2
K2

0Dξ,y, (3.29)

dDξ,y

dl
= (3− 2πK0)Dξ,y, (3.30)

du0

dl
= −1

2
u0K0Dξ,y, (3.31)

where the effective disorder strength is given by Dξ,y = Dξ + 2y2/πDQ. The equations (3.29)–(3.31)
translate into the equations for a 1D system of spinless fermions with disorder-induced backscattering
derived by Giamarchi and Schulz [144], by identifying our parameter πK0 with K of Ref. [144]. We
observe that strong random charges render the QPS with a homogeneous fugacity, Eq. (3.10), indistin-
guishable from the one with a random amplitude, Eq. (3.13). Moreover, this consideration shows that
the RG equations (3.22), (3.23), (3.25), and (3.26), which are formally derived under the assumption
y � 1, have in fact at DQ � 1 the much wider range of applicability y2/DQ � 1. Stray charges shift
the critical value of K0 (for infinitesimal y), at which the transition to the insulating state occurs,
from 2/π to 3/2π. The physical reason for the suppression of the effect of QPS on the characteristics
of the JJ chain in the presence of strong random stray charges is related to the interference of QPS.
In the clean case, phase slips add up coherently, while random stray charges provide a random phase
resulting in destructive interference of QPS.

By solving the RG equations (3.22)–(3.25) numerically, we deduce the phase diagram of the disor-
dered JJ chain. The phase diagram in the πK0-y plane is depicted in Fig. 3.2. We treat here πK0 and
y as independent variables [see the discussion below Eq. (3.7)]. The insulating regime is located to the
left of each transition line, whereas the area to the right is characterized by strong superconducting
correlations. The transition line in the clean system corresponds to the black solid line ending at
πK0 = 2. The effect of QPS with random fugacity is illustrated by the other solid lines (red: Dξ = 0.1
and blue: Dξ = 0.2). It can be clearly seen that this type of disorder reduces the parameter regime in
which superconducting correlations dominate. On the other hand, random stray charges lead to the
opposite behavior. As can be seen from the dashed lines, the transition line is shifted in favor of the
superconducting regime if a small amount of stray-charge disorder is present.
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Figure 3.2: Phase diagram in the case of local Coulomb interaction in the πK0-y plane. To
the left of each phase boundary, the JJ chain is in the insulating (I) phase, while to the right it
is characterized by strong superconducting correlations (S). The transition line in the clean case
corresponds to the black solid line. The red and blue solid lines show the effect of QPS with
random fugacity. They correspond to a chain without stray charges but with Dξ = 0.1 (red) and
Dξ = 0.2 (blue). The dashed curves illustrate the effect of random stray charges (DQ = 10−12);
the value of Dξ is the same as the one for the solid curve with the same color.

3.2.2 Transport

Let us now study the low-temperature transport properties of a JJ chain in the regime of local Coulomb
interaction, Λ � 1. The conductivity is obtained within the memory-function formalism that is
introduced in Sec. 1.3.3. The perturbative calculation of the memory function to the lowest order in y
and Dξ can be performed following the procedure outlined in Refs. [122, 124]. We present the details
of the computation of the memory function in App. A.4. A combination of the RG, which enables us
to renormalize the model up to the infrared (IR) cutoff given by the temperature or the system length,
and the perturbative evaluation of the memory function leads to the result for the conductivity of the
system.

Clean limit

In the clean limit, Dξ = DQ = 0, our model, given by Eqs. (3.16) and (3.6), is known to be equivalent
to the theory of one-dimensional fermions in a periodic potential. In this context, the action (3.6)
describes umklapp scattering. In Ref. [123], it is shown that for incommensurate filling, the umklapp
processes are very inefficient resulting in an exponentially large conductivity. Since the potential in
this work is commensurate, the arguments of Ref. [123] do not apply. We obtain for the conductivity
in the DC limit

σ(T ) =
8e2a

y2h

Γ2(πK0)

Γ4(πK0/2)

(
2πaT

u0

)3−2πK0

, (3.32)

where the lattice spacing a is reintroduced explicitly. Including renormalization effects modifies the
simple power-law behavior of the temperature dependence of the conductivity, Eq. (3.32). We incor-
porate the effects from the RG by renormalizing the theory from the initial UV cutoff a down to the
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Figure 3.3: a) Temperature-dependent resistivity without impurities for local charge interaction.
The value of πK0 is indicated by the number close to the curve. The phase-slip amplitude is
chosen to be y = 0.1 for every curve. Inset: Phase diagram in the πK0-y plane. The position of
the system in the phase diagram is marked by a star with the same color as the corresponding
resistivity curve. In the blueish region, the chain is in the insulating phase (I), while in the reddish
part, it is in the superconducting regime (S). Dashed curves represent qualitative extrapolations
sketching the tendency of the flow towards the insulating fixed point. b) Behavior of the resistance
as a function of the chain length N at T = 0 for the same parameters as in a).

thermal length Nth(T ) = u0/T . At this scale, the RG described by Eqs. (3.27) and (3.28) is stopped.
In the general disordered case, the velocity u0 is renormalized as well leading to the equation for the
RG scale l∗(T )

el
∗

=
u0(l∗)

T
(3.33)

at which the RG is terminated. Renormalizing the cutoff a in Eq. (3.32) to the thermal length leads
to the scaling

σ(T ) ∼ e2

h

u0[l∗(T )]

Ty2[l∗(T )]
(3.34)

of the conductivity with temperature. In Eq. (3.34) and in analogous equations, the symbol “∼” has
the meaning “up to a numerical factor of order unity”. Since the velocity u0 is not renormalized in the
clean limit, the RG scale at which the RG is stopped is given by l∗(T ) = ln

(
u0/T

)
. A dimensionless

quantity can be obtained by normalizing the conductivity by its value σ(0) = σ(T = u0) at the UV
scale. In Fig. 3.3 a), the temperature dependence of the normalized resistivity ρ/ρ(0), with ρ = 1/σ
and ρ(0) = 1/σ(0) is depicted. In the superconducting phase (red, πK0 = 2.2), the resistivity decreases
when lowering the temperature. The curves belonging to the insulating regime (green and blue,
πK0 = 1.9 and πK0 = 1.8) are characterized by a strongly non-monotonic behavior. Similar to the
superconducting curves, the resistivity decreases at high temperatures because the fugacity y needs to
grow fast enough to overcome the additional factor 1/T in Eq. (3.34). Hence, the upturn of ρ(T ) shows
up only at lower T , where K0 is renormalized below 3/2π. Our method is perturbative in the fugacity y,
which means that we need to stop the RG when y ∼ 1. Due to the aforementioned relation of the sine-
Gordon theory to a fermionic theory with umklapp scattering, the RG is expected to flow towards the
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Mott-insulator fixed point whenever the umklapp term is relevant. In order to illustrate the qualitative
tendency at low temperatures, we plot the extrapolation of the RG flow beyond the perturbatively
accessible regime as dashed lines. The black curve (πK0 = 2.082) corresponds to parameters on the
phase boundary. With the help of the BKT equations, we obtain the behavior

ρcrit(T )/ρ(0) =
T/u0[

1 + (πK0 − 2) ln(u0/T )
]2 (3.35)

of the resistivity on the critical line, where we assumed that K0 is close to the critical value Kc
0 = 2/π.

The temperature-dependent resistivity ρ(T ) is the appropriate quantity in the thermodynamic limit
N →∞, i. e., in the regime where the system size N is much larger than the thermal length N(T ). In
this case, the RG is stopped by the thermal length Nth(T ), i. e., by the temperature, and the resistance
depends linearly on the system size N (Ohmic behavior). In the opposite limit, N � Nth(T ), the
proper quantity is the length-dependent resistance R(N) at zero temperature. This quantity can be
found by renormalizing our theory up to the point where the cutoff a hits the system size N . The
scaling of the resistance is found to be

R(N) ∼ h

e2
y2[l = lnN ]. (3.36)

Figure 3.3 b) shows the behavior of R(N) normalized by the bare resistance R(0) = R(N = 1). The
bare values for y and K0 are the same as for the resistivity plot shown in Fig 3.3 a). The curves
belonging to the insulating phase (green and blue, πK0 = 1.9 and 1.8) show an increasing behavior
with the system size. On the other hand, the curves in the superconducting regime (red, πK0 = 2.2) as
well as on the critical curve (black, πK0 = 2.082) decrease as a function of N . The analytical behavior
on the phase boundary is given by [cf. Eq. (3.35)]

Rcrit(N)/R(0) =
1[

1 + (πK0 − 2) ln(N)
]2 . (3.37)

The critical curve is almost constant with logarithmic corrections that lead to a slow decrease. As a
consequence, there are insulating curves very close to the transition line with a weakly non-monotonic
dependence [not shown in Fig. 3.3 b)]. At short system sizes, the resistance drops first and starts to
increase only at larger N . This happens for systems with K0 > Kc

0 = 2/π and large enough fugacity
y such that it is in the insulating regime. The non-monotonicity of the ρ(T ) curves in Fig. 3.3 a) is,
however, much more pronounced than in the corresponding R(N) curves. This can be explained by
the additional factor of T in the temperature dependence in Eq. (3.35) compared to the system-size
dependence in Eq. (3.37).

Disordered system: Random stray charges

After the discussion of the clean system, we analyze the effect of random stray charges in this sec-
tion. The perturbative calculation of the conductivity in the presence of stray charges is presented in
App. A.4. The result reads

σ(T ) ∼



e2a

hy2

(
2πaT

u0

)3−2πK0

, DQu0/aT � 1,

e2

h
a
DQ

y2

(
2πaT

u0

)2−2πK0

, DQu0/aT � 1.

(3.38)
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Figure 3.4: a) Behavior of the resistivity as a function of temperature in the presence of random
offset charges for local charge interaction. The value of πK0 is indicated by the numbers close
to the curves. The values of the other parameters (DQ = 10−3 and y = 6 · 10−3) are the same
among all curves. The regime where stray charges are weak is indicated by the gray region (the
boundary is at TQ). Although the phase-slip fugacity is relevant for the red curve (πK0 = 1.65),
it is located in the superconducting phase. Examples for systems in the insulating phase are given
by the green and blue curve (πK0 = 1.5 and πK0 = 1.4). The dashed lines show extrapolations
below the temperature Tps to illustrate the tendency at very low temperatures (infinite resistivity).
Inset: Stars indicate the position of the system in the phase diagram in the πK0-y plane. To the
right of the black line, the system shows superconducting correlations (S), while to the left the
system is in the insulating phase (I). b) Behavior of the resistance with system size at T = 0 for
the same parameters as for the resistivity curves. The boundary of the gray region is given by the
mean free path NQ and the beginning of the dashed line occurs at Nps.

Here, we can already see that in the case of strong stray charges, the power of T is reduced by one
in comparison to the weakly disordered regime. From Eq. (3.38), it can be seen that the perturbative
parameter in the regime of strong stray charges, DQ(T )� 1, is y2(T )/DQ(T ) rather than y2(T ). This
is the same parameter that is identified in Sec. 3.2.1 when studying the RG equations in the strongly
disordered regime. Since this parameter controls the conductivity, we can support the statement made
in Sec. 3.2.1 that random stray charges stabilize the superconducting phase. We thus find a competition
between random stray charges and QPS. Renormalizing the UV cutoff a to the thermal length, leads
to the scaling

σ(T )

σ(0)
∼


y2

0

y2(T )

u0(T )

T
, DQ(T )� 1,

y2
0DQ(T )

y2(T )

u0(T )

T
, DQ(T )� 1 ,

(3.39)

with temperature T , where y0 is the value of the fugacity at the UV scale. In contrast to the clean case,
the velocity is renormalized. This makes it necessary to solve the equation el

∗
= u0(l∗)/T numerically

to obtain the RG scale l∗(T ). The temperature dependence of the resistivity ρ = 1/σ in the presence
of random stray charges is illustrated in Fig. 3.4 a). At high temperatures, where stray charges are
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weak (gray region), the behavior is similar to the clean situation, Fig. 3.3 for the same value of the
LL parameter K0. Here, the values of K0 are notably smaller compared to the clean case shown in
Fig. 3.3 since the transition line is shifted quite appreciably in the presence of stray charges.

At the boundary of the gray region, the renormalized value of DQ(l) becomes of order unity. The

corresponding crossover temperature is TQ = u0D
(0)
Q . If the phase-slip fugacity y is still small at this

scale, the resistivity gets suppressed at lower temperatures by an additional factor of 1/DQ(T ) ∝ T
[cf. second line of Eq. (3.39)]. In order to obtain a smooth crossover between the two regimes of strong
and weak random stray charges in Eq. (3.39), we interpolated between both limits in Fig. 3.4 in the
crossover region.

The red curve (πK0 = 1.65), which belongs to the superconducting regime, shows that for sufficiently
strong random stray charges, the effect of QPS are suppressed. In the insulating regime, random stray
charges are too weak to win over the phase slips. This is illustrated by the green and blue curves
(πK0 = 1.5 and πK0 = 1.4). At low temperatures an upturn of the resistivity is observed. It is
expected that for even lower temperatures the resistivity continues to increase since the proliferation
of QPS will destroy the superconducting phase and localization effects become important. The dashed
lines show this tendency obtained by an extrapolation of the RG equations beyond the perturbative
regime.

From the above analysis it is evident that the temperature dependence of the resistivity in the
insulating regime is strongly non-monotonic. In total, up to three different regions with alternating
signs of the slope of ρ(T ) can be found. This behavior can be seen for the blue curve (πK0 = 1.4). At
high temperatures T & TQ (gray region), where the stray charges are still weak, the resistivity increases
for decreasing temperature. When lowering the temperature, the stray charges become strong and try
to suppress the influence of QPS leading to a decrease of ρ(T ). At even lower temperatures, however,
the phase-slip amplitude grows strongly enough to win over the stray charges. The upturn is visible
only at very low temperatures where the renormalized value of K0 is below 1/π because the additional
factor of T in Eq. (3.38) needs to be overcome. This happens around the temperature Tps where the
perturbative treatment breaks down. This temperature can be estimated assuming πK0 is not too
close to 3/2,

Tps ∼ u0

(
y(0)
) 2

3−2πK0

(
u0

TQ

) 1
3−2πK0

. (3.40)

If y(0) � 1, the two temperature scales TQ and Tps are different, Tps � TQ.

The parameters of the black curve (πK0 = 1.565) lie on the phase boundary. At sufficiently low
temperatures, T . TQ, where the random stray charges are strong, the analytical behavior of the
resistivity on the SIT phase boundary can be found. This can be done by solving the RG Eqs. (3.29)-
(3.31). Close to the critical point Kc

0 = 3/2π, the renormalization of the velocity is unimportant. We
obtain

ρcrit(T ) ∼ T/u0

[1 + (πKQ
0 − 3/2) ln(TQ/T )]2

, (3.41)

for the behavior of the resistivity at the critical line. Here, KQ
0 = K0[l = lnNQ] denotes the value of

K0 renormalized to the mean free path NQ = 1/D
(0)
Q . On the critical line the resistivity vanishes as a

function of temperature almost linearly with logarithmic corrections.
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In order to obtain the length-dependence of the resistance R for system sizes smaller than the thermal
length, we stop the RG by the system size N . We find the scaling

R(N)

R(0)
∼


y2[ln(N)]

y2
0

, N � 1/D
(0)
Q ,

y2[ln(N)]

y2
0D

(0)
Q N

, N � 1/D
(0)
Q .

(3.42)

The behavior of R(N) is presented in Fig. 3.4 b). The parameters for the resistance curves are the
same as for the resistivity curves shown in Fig. 3.4 a) with the same color. Similar to the resistivity
plot, in the crossover regime at DQ ∼ 1 both limits of Eq. (3.42) are connected by means of an
interpolation. The green (πK0 = 1.5) and blue (πK0 = 1.4) curves belong to the insulating phase, and
show a monotonic increase of the resistance. At the mean free path NQ, the coherence of phase slips
is weakened, which results in a weaker growth at an intermediate range of N . At larger system sizes
beyond Nps ∼ u0/Tps, which has the meaning of the correlation length, the growth of the resistance
starts to accelerate again. At this correlation length, the system enters the strong-coupling regime that
we indicate by the dashed line. Superconducting curves close to the transition show a non-monotonic
behavior. As can be seen from the red curve (πK0 = 1.65), the resistance grows for small system sizes
below the mean free path (gray region). This behavior could lead to the wrong conclusion that the
system with such parameters is in the insulating regime. However, increasing the systems size beyond
NQ, the resistance starts to drop. In the thermodynamic limit and at zero temperature the resistance
will vanish. This is in accordance with the position in the phase diagram shown in inset of Fig. 3.4a).
The behavior for systems on the phase boundary (red curve, πK0 = 1.565) is qualitatively similar to
the black curve. At large system sizes the decay is, however, much weaker. For chains that are larger
than the mean free path NQ, we obtain

Rcrit(N) ∼ 1

[1 + (πKQ
0 − 3/2) ln(N/NQ)]2

(3.43)

for the behavior of the resistance on the critical line. On the phase boundary the resistance decays as
a function of the system size in a logarithmically slow fashion.

Disordered system: Random stray charges and random fugacity

After the discussion of the influences of random stray charges, the effects from the disorder which
leads to phase slips with a random fugacity are studied. As opposed to random stray charges, this
type of disorder leads to a reduction of the conductivity. The total memory function consist now of
two parts: the contributions from QPS with a homogeneous and a random amplitude. The details of
the calculation of both parts are presented in App. A.4. The conductivity of the whole system can be
obtained from

σ =
1

σ−1
ps + σ−1

ξ

, (3.44)

where σps comes from QPS with a homogeneous fugacity and can be obtained from Eq. (3.38). The
quantity σξ originates from QPS with a random amplitude. It is given by (see App. A.4)

σξ(T ) ∼ e2a

hDξ

(
2πaT

u0

)2−2πK0

. (3.45)
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Figure 3.5: Behavior of the temperature-dependent resistivity contributions coming from phase
slips with homogeneous fugacity (a) and from phase slips with random fugacity (b). The value
of πK0 is marked by the number close to the curve. All further parameters are the same among
all curves: y = 10−2, DQ = 10−3 and Dξ = 10−4. The tendency of the flow towards the strong-
coupling fixed point (infinite resistivity) is indicated by dashed lines, which show the extrapolation
of the RG flow beyond the perturbative regime. The position of the systems in the phase diagram
is displayed in the inset in a). The superconducting phase (S) is located to the right of the black
line, while the insulating regime (I) is to the left.

In this section, we use σ0 = e2/h to normalize the conductivity. Renormalizing the theory to the
thermal length Nth, we get

σξ(T )

σ0
∼ u0(T )

TDξ(T )
(3.46)

and

σps(T )

σ0
∼


1

y2(T )

u0(T )

T
, DQ(T )� 1,

DQ(T )

y2(T )

u0(T )

T
, DQ(T )� 1.

(3.47)

Figure 3.5 visualizes the contributions to the resistivity originating from QPS with homogeneous
and random amplitude, ρps = 1/σps and ρξ = 1/σξ. The sum of both contributions, ρ = ρps + ρξ,
yields the total resistivity of the system. The green and blue curves (πK0 = 1.5 and πK0 = 1.43) are
in the insulating regime. Both contributions display a non-monotonic temperature dependence. The
contribution from QPS with a random fugacity, depicted in Fig. 3.5 b), does not grow fast enough at
large temperatures resulting in a decreasing behavior. These random phase slips correspond to disorder-
induced backscattering processes in 1D fermionic systems. Localization effects become important only
at lower temperatures. The flow to the insulating strong-coupling fixed point is illustrated by dashed
lines. The temperature dependence of the contribution from homogeneous phase slips is shown in
Fig. 3.5 a). Its behavior is quite similar to the case without QPS with random fugacity (Dξ = 0)
discussed in the previous section. This similarity can be explained by the fact that at large scales
the phase-slip term with random fugacity is generated by random stray charges and QPS with a
homogeneous amplitude. The behavior of ρps in the insulating regime is more involved than that
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of ρξ. For example, the blue curve (πK0 = 1.43), which is in the insulating regime, shows three
regions with alternating signs of the slope of the resistivity. At high temperatures above TQ (gray
region), the resistivity grows with decreasing temperature. Below the temperature TQ, random stray
charges become strong enough to suppress the resistivity at intermediate temperatures. Finally, at low
temperatures, the resistivity increases again since phase slips take over.

The contribution from homogeneous phase slips ρps typically dominates the resistivity because the
fluctuations of the bare fugacity are expected to be smaller than the average value of the bare fugacity.
Furthermore, as can be seen from Eqs. (3.23) and (3.24), this inequality increases under renormaliza-
tion.

3.3 Non-local Coulomb interaction

After the discussion of the transport characteristics of disordered JJ chains with local Coulomb in-
teraction, we analyze the case of non-local Coulomb interaction, Λ � 1, in this section. This regime
is relevant to many experimental realizations of 1D JJ chains. In Sec. 3.2, we have shown that the
term with a random phase-slip amplitude is generated in the course of the RG when both, random
stray charges and QPS with a homogeneous fugacity are present. In this respect and to simplify the
presentation, we skip this term in this section, Dξ = 0.

In the RG analysis, it proves advantageous to parametrize the action (3.3) in a different form (see
App. A.1):

S0 =
1

2π2K

∫ 1

−1

dq

2π

∫ Ω0

−Ω0

dω

2π

[
ω2

Ω0
+

Ω0q
2

q2(1− ug) + ug

]∣∣φ(q, ω)
∣∣2 . (3.48)

Here,

K =

√
EJ(E1 + E0)

E1E0
(3.49)

is the effective LL parameter (the phase stiffness) at the cutoff, and ug = 1/(1 + Λ2) is the group
velocity of the plasmonic waves measured in units of Ω0 at the cutoff.

3.3.1 RG treatment

In this section, we present the RG equations that are valid for any value of the screening length
Λ. Details of the derivation of the RG equations can be found in App. A.5. The main steps of the
derivation are sketched below.

The first step in our RG procedure is the elimination of the modes φ(ω, q) with

1− dl < q < 1 or (1− ugdl)Ω0 < ω < Ω0. (3.50)

This region is depicted in Fig. 3.6 as a shaded region. The modes are eliminated in accordance
with the spectrum. If we fix the width in momentum direction to dl, the corresponding width in
frequency direction is ugΩ0dl. In the non-local regime, Λ � 1, this means that in the first steps of
the renormalization procedure, the width in frequency direction is much smaller than the width in
momentum direction. In the IR limit, at momentum scales much smaller than 1/Λ, the modes are
integrated out isotropically in both directions (as in the local case, Sec. 3.2). After each elimination
process, momentum and frequency are both rescaled to restore the initial cutoffs. A peculiar feature
of the Gaussian action (3.48) is that it contains irrelevant perturbations (curvature of the spectrum).
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Figure 3.6: Elimination of modes in the RG procedure. If the momentum shell has width dl, the
shell in frequency direction has width ugΩ0dl. If Λ� 1, in the initial steps the width in frequency
direction is much smaller than the width in momentum direction.

This means that even without any QPS, y = 0, its parameters ug and K are renormalized. At y = 0,
we obtain the RG equations

dK

dl
= −K

(
1− ug

)
, (3.51)

dug

dl
= 2ug

(
1− ug

)
. (3.52)

These equations are characterized by a line of stable fixed points with ug = 1 and K = const. corre-
sponding to a JJ chain with finite Λ in the infrared. Additionally, an unstable fixed point K = ug = 0
exists describing a system with infinite-range Coulomb interaction.

The equation governing the evolution of the phase-slip amplitude reads (see App. A.5.1)

dy

dl
=

1 + ug

2

(
2− πK

)
y. (3.53)

We recognize that K can indeed be viewed as the phase stiffness at the cutoff. Furthermore, due to
the anisotropic elimination procedure in the momentum-frequency plane, the engineering dimension
of y is 1 + ug. The equations (3.51), (3.52) and (3.53) describe the renormalization of the parameters
K, ug and y to the first order in the fugacity. The second order corrections are derived in App. A.5.2.
Including also the effects of random stray charges, we obtain

dK

dl
= −(1− ug)K − 1

2
y2K2(1 + ug)

I1(DQ)− L1(DQ)

DQ
, (3.54)

dug

dl
= 2ug(1− ug) +

y2

2
K(1 + ug)ug

[
(1 + ug)

I1(DQ)− L1(DQ)

DQ
− ug

[
I0(DQ)− L0(DQ)

]]
. (3.55)

Equations (3.53), (3.54), and (3.55) describe the renormalization of the parameters to second order
in the QPS fugacity and in the presence of random stray charges. We exploit them in Sec. 3.3.2 to
investigate the transport characteristics of JJ chains in the case of non-local charge interaction. In the
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Figure 3.7: Behavior of the resistivity as a function of temperature [panel a)] and resistance a
function of the system size [panel b)]. The bare fugacity is y = 0.1, and the screening length is
Λ = 10. The value of πK0 that governs the infrared behavior of the fugacity is indicated by the
numbers close to the curves. Dashed lines represent extrapolations beyond the perturbative regime
suggesting the flow towards the insulating fixed point. In the inset, stars mark the position of the
systems in the phase diagram.

IR limit, we obtain from Eq. (3.55) 1 − ug ∝ y2K. In this limit, the RG equations can simplified to
the form

dy

dl
=
(
2− πK

)
y, (3.56)

dK

dl
= −(1− ug)K − y2K2 I1(DQ)− L1(DQ)

DQ
, (3.57)

dug

dl
= 2(1− ug) + y2K

[
2

I1(DQ)− L1(DQ)

DQ
− I0(DQ) + L0(DQ)

]
. (3.58)

At this point we want to stress that the Eqs. (3.56) and (3.57) are equivalent to Eqs. (3.23) and (3.22),
respectively, by identifying K0 = K

√
ug. Setting u0 = Ω0/

√
ug, Eq. 3.26 can be recovered from (3.58)

up to the additional term −u0(1− Ω2
0/u

2
0) on the right hand side that is related to a slight difference

in the renormalization schemes in the local and non-local case. This means that the Eqs. (3.53),
(3.54) and (3.55) correctly reproduce the long-distance behavior analyzed in Sec. 3.2. However, at
intermediate length scales, 1� N � K, new physics is predicted. As can be seen from Eq. (3.53), the
QPS amplitude y is strongly reduced at those initial steps of the RG. This behavior was previously
mentioned in Ref. [44]. After establishing the RG equations in this section, we turn to the discussion
of the low-temperature transport properties of JJ chains in the regime of non-local charge interaction.
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Figure 3.8: Panel a) shows the temperature dependence of the resistivity, panel b) the length-
dependence of the resistance at zero temperature. The chain parameters are: screening length
Λ = 10, strength of random stray charges DQ = 10−3, and bare phase-slip fugacity y = 0.1 in both
panels. The value of πK0 governing the behavior of the fugacity at large scales is indicated by the
numbers close to the curves. Dashed lines represent extrapolations sketching the tendency of the
flow towards the insulating fixed point characterized by an infinite resistivity. The position of the
system in the phase diagram is marked by the star in the inset of panel a).

3.3.2 Transport in a JJ chain with non-local interaction

Analogous to the limit of local Coulomb interaction discussed in Sec. 3.2.2, we combine the results of
the conductivity derived in the memory-function formalism,

σ(T )

σ(0)
∼


y2

0Nth(T )

y2(T )
, DQ(T )� 1,

y2
0DQ(T )Nth(T )

y2(T )
, DQ(T )� 1 ,

(3.59)

with the RG equations (3.53), (3.54), and (3.55). In Eq. (3.59), Nth(T ) denotes the thermal length at
which the renormalization is terminated by finite temperature. In the crossover regime, DQ(T ) ∼ 1,
we interpolate between both limits to obtain a smooth matching. Since in our RG treatment, the
frequency cutoff Ω0 is preserved, the temperature flows according to

dT (l)

dl
= ugT (l). (3.60)

The thermal length, Nth(T ), is then given by the scale at which the renormalized temperature T (l)
is equal to the cutoff Ω0. To avoid misunderstandings, we stress that the results for the temperature
dependence of the resistivity, ρ(T ), are given as a function of the physical temperature T . This
temperature is the initial condition for the flow of T (l), T (l = 0) = T .

The behavior of the resistivity as a function of temperature of a clean system (DQ = 0) for Λ = 10
and several values of K0 is depicted in Fig. 3.7 a). All curves in the insulating as well as in the super-
conducting regime show a rapid drop at temperatures close to the cutoff Ω0. This can be explained

48

http://dx.doi.org/10.1103/PhysRevB.96.064514


3.4 Comparison to experiment

by the large value of K at these scales that leads to the proliferation of local superconducting correla-
tions. At lower temperatures, the system reaches the local regime where the behavior of the phase-slip
amplitude is determined by the IR stiffness K0. For superconducting curves (red, πK0 = 2.157) as
well as for the critical curve (black, πK0 = 2.001) the decrease continues at lower temperatures. The
behavior of the critical line at low temperatures is of the form (3.35). Even in the insulating regime not
too far away from the transition (green, πK0 = 1.529), the resistivity drop continues at intermediate
temperatures due to the factor Nth(T ) in Eq. (3.59). At low temperatures, the resistivity starts to
increase for the curves in the insulating regime (green, πK0 = 1.529, and blue, πK0 = 1.372). We
plot as dashed lines qualitative extrapolations to illustrate the tendency of the system to flow to the
localized fixed point. Fig. 3.7 b) shows the system size dependence of the resistance at T = 0. Since
the curve on the phase boundary is almost constant [cf. Eq. (3.37)], the investigation of the length
dependence of the resistance allows to locate the SIT in a more direct way.

The effects of random stray charges lead to an even more complex behavior of the resistivity and
resistance, see Fig. 3.8. The stray charges can be neglected at short scales (gray region). There, the
behavior of the transport characteristics is quite similar to the clean case. Reducing the temperature
or increasing the system size, a strongly non-monotonic behavior of ρ(T ) and R(N) can be observed.
The origin of this behavior is the interplay of phase slips and stray charges that we have discussed
already in Sec. 3.2.2 for the case of local Coulomb interaction (see also Fig. 3.4). For the resistivity
curves in Fig. 3.8 a), up to four different regions with alternating signs of the slope of ρ(T ) can be
found. At high temperatures, due to the scale dependence of the phase stiffness K, the resistivity
experiences a fast drop. For the insulating curves (blue, πK0 = 1.186, and purple, πK0 = 1.091),
phase slips become important at lower temperatures but still above TQ (gray region) because stray
charges are still weak. As can be clearly seen for the blue curve (πK0 = 1.186), at temperatures below
TQ, the stray charges are at first strong enough to lead to a decreasing resistivity. However, at even
lower temperatures, QPS take over and drive the system to the insulating fixed point. The system-size
dependence of the resistance shows strongly non-monotonic behavior for insulating systems very close
to the transition and for superconducting curves. After the initial drop at very short system sizes, the
resistance of the superconducting curve (red, πK0 = 1.563) increases at first for system sizes below
the mean free path NQ (gray region) since the effect of stray charges is negligible. Increasing the chain
length above the mean free path, random stray charges become strong enough to overcome the growth
of the phase-slip fugacity, resulting in a decreasing resistance. The intricate, strongly non-monotonic
dependence of ρ(T ) and R(N) makes it very hard to locate the SIT based on experimental data that
cover only a limited range of temperatures and system sizes.

3.4 Comparison to experiment

Let us now compare our findings to relevant experimental studies. The experiment described in Ref. [39]
studied the SIT in JJ chains of two different lengths, N = 63 and N = 255, in a temperature interval
from 1 K down to 50 mK. More details on this experiment can be found in Sec. 1.4. The observed
curves of the resistance as a function of temperature (see Fig. 1.7 or Fig. 3 of Ref. [39]) show quite
similar behavior to our findings (Figs. 3.4 and 3.8). In the insulating regime, the resistance in the
experiment increases at high temperatures when lowering the temperature, decreases at intermediate
temperatures, and increases again at low T . One is tempted to relate the positions of the minimum
and maximum of R(T ) at approximately 100 mK and 400 mK with our temperature scales Tps and TQ,
respectively. A more quantitative comparison would necessitate the knowledge of the bare values of y
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and DQ. For shorter chains (N = 63), the minimum at low temperatures is absent, which probably
means that they are not long enough to observe the ultimate large-N asymptotics. In Ref. [39], a
wrong parameter was used to characterize the transition. As shown in the theoretical work by Choi
et al. [44], the correct parameter is K0 =

√
EJ/E0. In our theory, we obtain the same parameter

governing the SIT. A subsequent publication [45] from the same group that performed the experiment
in Ref. [39] provides experimental evidence that this parameter is correct. Indeed, when the resistance
at lowest measured temperatures is plotted versus K0, the curves of the chains with the system sizes
N = 63, 127 and 255 intersect in one point with a good accuracy. The extracted crossing point, the
critical point, is located at πK0 ' 0.1. Our theory presented in this thesis, however, predicts the
transition point to be at πK0 = 3/2 in a strongly disordered system.

A recent experiment [53] that measured the critical voltage for the onset of transport in the insulating
regime is consistent with the location of the transition at πK0 = 3/2. The experiment of Ref. [53] was
performed with single-junction chains, while the one of Ref. [39] used chains in the SQUID geometry.
The authors of Ref. [53] performed measurements on chains in a SQUID geometry as well, and found
significantly reduced critical voltages. The mechanism underlying the discrepancy between single-
junction chains and SQUID chains, which could have also played a role in the experiment of Ref. [39],
is currently unknown. The authors of Ref. [53] conjecture that low-frequency flux noise or some kind
of interplay between charge and flux affect the measurements in chains with a SQUID geometry.

As mentioned in the introduction to this chapter, our results are expected to apply to superconduct-
ing nanowires as well. In App. A.6, we briefly outline the mapping of the parameters of our theory
to the parameters of the theory for superconducting wires [67, 68]. Experimentally, MoGe nanowires
were used to investigate the SIT [64, 65]. In these experiments, the wires were rather short (up to
0.5µm). In a more recent experiment [66], longer wires up to 25µm were used. There, a transition was
observed if the cross section of the wire is reduced or the external magnetic field perpendicular to the
wire is increased. Qualitatively, the resistivity curves as a function of temperature are in agreement
with theoretical predictions. On the other hand, the critical curve in Ref. [66] is basically constant.
Our theory, however, predicts the resistance to vanish linearly (with logarithmic corrections) as a func-
tion of temperature. A possible explanation for this disagreement is the limited temperature range
in the experiment (from 2-4 K down to 0.4 K). The lowest accessible temperature might be still too
high to extract the correct IR behavior. Another possible explanation is that some coupling to the
environment could have stabilized the metallic character of wires that are actually in the insulating
regime.

This concise discussion of experiments on JJ chains and semiconductor nanowires demonstrates that
both types of systems offer great opportunities to investigate the SIT in one dimension. Up to the
current date, there is clearly more experimental work required to observe the various scaling regimes
of the resistance, as obtained in our theory, and to locate the actual position of the SIT.

3.5 Summary of chapter 3

In this chapter, we have discussed the transport properties of disordered JJ chains. Starting from the
lattice model that is introduced in Sec. 1.2, we derived the corresponding low-energy field theory which
is of the sine-Gordon type. Our theory contains the effects from quantum phase slips and two kinds
of disorder: random stray charges and a random phase-slip fugacity. We have analyzed the regime of
local Coulomb interaction where the ground capacitance dominates (C0 � C1) as well as the regime of
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non-local Coulomb interaction where the junction capacitance dominates (C1 � C0). The transport
characteristics are obtained by combining the memory-function formalism with the RG.

The critical point is of BKT type. In the clean case, it is located at πK0 = 2 for vanishing fugacity
y. In the strongly disordered regime, it is shifted to πK0 = 3/2 for vanishing effective strength of
random phase slips Dξ,y. In Fig. 3.2, we demonstrate that even a tiny disorder strength of random
stray charges shifts the transition line quite considerably in favor of the superconducting phase. This
counterintuitive behavior can be explained by the destructive interference of QPS due to the random
phase induced by the stray-charge disorder. The other kind of disorder, which originates from junction-
to-junction fluctuations and leads to QPS with a random fugacity, shifts the phase boundary in the
opposite direction, see Fig. 3.2.

On the phase boundary the resistivity as a function of temperature goes to zero linearly with loga-
rithmic corrections, Eq. (3.41), while the zero-temperature resistance as a function of the system size
vanishes in a logarithmically slow fashion, Eq. (3.43). Away from criticality, the complete behavior
is significantly more involved. In the regime of local Coulomb interaction, curves in the insulating
regime show up to three different regions of behavior, see Figs. 3.4 and 3.5. At high temperatures,
QPS lead to an increasing behavior of the resistivity when decreasing the temperature. At intermedi-
ate temperatures, the resistivity drops because random stray charges suppress the influence of phase
slips. Upon further lowering of the temperature, the resistivity shows an upturn since QPS take over,
and drive the system into the insulating fixed point. A similar behavior can be observed in the length
dependence of the resistance for systems in the insulating regime very close to the critical curve. In the
superconducting phase, the resistance as a function of the system size shows the first two regimes. For
non-local Coulomb interaction, an additional regime at high temperatures (small system sizes) occurs,
where the resistivity ρ(T ) (resistance R(N)) experiences a quick drop, see Fig. 3.8.

In essence, the behavior of ρ(T ) and R(N) at intermediate scales is substantially different from the
behavior at low temperatures or large system sizes. Consequently, identifying the location of the SIT
based on experimental data in a limited range of N and T constitutes a hard problem. Comparing our
findings with the experiment reported in Ref. [39] that performed transport measurements in SQUID
chains, we find qualitative agreement on the behavior of the resistance as a function of temperature.
Nevertheless, the experimentally found transition point of the SIT is inconsistent with our prediction.
This discrepancy could be related to fact that the relatively small system sizes (up to N = 255) and
the lowest accessible temperature of 50 mK are insufficient to probe the ultimate infrared behavior. As
discussed above, the behavior of transport quantities is strongly non-monotonic leading to a behavior
at intermediate scales that is completely different from the one at large scales. Another possible
explanation for the unexpected location of the SIT in Ref. [39] was pointed out in Ref. [53], where it
was noted that the measurements in SQUID chains could be affected by external noise or an interplay
of charge and flux. The measurements reported in Ref. [53] on single-junction chains in the insulating
regime are consistent with the location of the SIT predicted by theory presented in this thesis.

Before closing this chapter, we mention two possible directions for future projects. Spatial fluctua-
tions of the LL constant K0 are not considered here. Fluctuations of the parameters from junction to
junction lead to this kind of disorder as well (besides the random QPS amplitude). Despite the fact
that such fluctuations are of minor importance for the charge transport, it is expected [146] that this
kind of disorder has a strong impact on the energy transport. Furthermore, the precise behavior of
the insulating curves in the strong-coupling regime (dashed lines in our figures) could be analyzed. It
is expected that effects of many-body localization [147, 148] become important in this regime.
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4 Chapter 4

Relaxation of plasmonic waves in
Josephson-junction chains

In the previous chapter we have studied the transport properties of Josephson junction (JJ) chains.
Another important goal of this thesis is the analysis of the relaxation of excitations in 1D interacting
systems. In this chapter, we investigate the relaxation of plasmonic waves in JJ chains. Plasmonic
waves are the collective fluctuations of the superconducting phases above the superconducting ground
state of the chain.

We are also motivated by a recent experiment [73] which measured the reflection coefficient in a JJ
double chain under microwave irradiation. Their devices consist of two capacitively coupled chains
which are short-circuited at one end, and connected to a dipole antenna at the other end. In this way,
antisymmetric plasma waves (i. e., those with opposite amplitudes in both chains) can be excited via
microwave radiation. The individual plasmonic modes are clearly visible as resonances in the reflection
coefficient. Thereby, the energy dispersion of the plasmonic waves can be reconstructed. Due to the
finite damping, the resonances of the reflection coefficient are broadened. Combining the information
about the modulus and the phase of the reflection coefficient enables them to separate the internal
damping from external losses related to, e. g., the damping of the connected transmission line or the
leakage of the waveguide. Setups with a large Josephson energy showed a growth of the quality factor
upon lowering the frequency. In samples with a lower value of the Josephson energy, the quality
factor became almost independent of frequency and ultimately showed a tendency to decrease at low
frequencies. The authors of Ref. [73] regard this behavior as a manifestation of the superconductor-
insulator transition (SIT). At variance with theoretical predictions, it is claimed in Ref. [73] that the SIT
is governed by the short-wavelength rather than the long-wavelength part of the Coulomb interaction.
Specifically, the growth of the quality factor at low frequencies (“superconducting” behavior) was
observed for setups that are expected to be in the insulating regime.

We analyzed theoretically the internal damping of plasmonic waves in JJ chains in Ref. [149]. Our
results are reviewed in the current chapter. Two models are studied: (i) a single chain and (ii) a
double chain of JJs to make closer contact to the experiment of Ref. [73]. We demonstrate that the
effective theory for the antisymmetric mode of the two-chain setup is equivalent to a theory for a
single chain provided that the ground capacitance can be neglected. Two sources for the relaxation
of plasmonic excitations are considered: (i) the scattering of plasmonic waves from quantum phase
slips (QPS) and (ii) the interaction of plasmons induced by “gradient” anharmonicities. We obtain the
contribution to the decay rate of plasmonic waves for both types of decay channels. Since the gradient
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 98,
224513 (2018), DOI: 10.1103/PhysRevB.98.224513, cf. Ref. [149]. Copyright 2018 by the American Physical Society.]

Figure 4.1: Schematic representation of two capacitively coupled JJ chains. We denote by C1 the
junction capacitance, by Cg the capacitance to the ground, and by C0 the interchain capacitance.
The number of Cooper pairs Ni,σ and the superconducting phase θi,σ on the i-th island in the
chain with index σ =↑, ↓ represent the canonically conjugate variables in the system.

nonlinearities are irrelevant from the point of view of the renormalization group (RG), its contribution
to the decay rate vanishes in the low-frequency limit. We obtain the universal ω4 scaling for this
contribution to the relaxation rate. This behavior can be regarded as “superconducting”. On the
contrary, depending on the parameters of the system, the mechanism related to QPS can lead to both
“superconducting” and “insulating” behavior. However, if the Josephson energy is much larger than
the charging energy corresponding to the junction capacitance which controls the short-wavelength
behavior of the Coulomb interaction, the contribution from QPS is strongly suppressed. The interplay
of both channels (gradient anharmonicities and QPS) can thus result in a change of the behavior from
“superconducting” to “insulating” at intermediate frequencies. Despite the fact that the system is
deep in the insulating regime, the SIT can be imitated via this mechanism at intermediate frequencies.

This chapter is structured as follows. In Sec. 4.1, we briefly recall the description of a single JJ
chain already outlined in Secs. 1.2 and 3.1. Moreover, we introduce the lattice model for the two-chain
device and derive its field-theory description. Section 4.2 is devoted to the discussion of two decay
channels for the plasmonic waves. The relaxation due to QPS is analyzed in Sec. 4.2.1, and the one
related to the gradient anharmonicities in Sec. 4.2.2. The interplay of both mechanisms is studied in
Sec. 4.2.3. We compare our results to the experimental findings of Ref. [73] in Sec. 4.3. Finally, we
summarize our main results in Sec. 4.4. Technical details of the derivation of the field theory in the
case of the double chain are presented in App. B.

This chapter is based on our work in Ref. [149].

4.1 Lattice models and low-energy theory

In this chapter, we study two similar systems: a linear JJ chain shown in Fig. 1.2 and a double chain
composed of two capacitively coupled chains depicted in Fig. 4.1. The lattice model of a single chain
is introduced already in Sec. 1.2. Its effective low-energy theory in terms of a sine-Gordon theory
is derived in Sec. 3.1. We recall here only the results. The low-energy theory for a linear chain of
Josephson junctions is of the form

S = S0 + Sps, (4.1)
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4.1 Lattice models and low-energy theory

where the imaginary-time quadratic action (at temperature T with bosonic Matsubara frequency ωn)
can be written in the form (u0K0 = EJ = Ω0K)

S0 =
1

2π2u0K0
T
∑
ωn

∫
dq

2π

[
ω2
n + ε2(q)

]
|φ(q, ωn)|2, (4.2)

that describes plasmonic waves with the energy dispersion

ε(q) =
ωp|q|√
q2 + α/Λ2

, ωp =
√
EJE1. (4.3)

In order to facilitate the discussion of the low-energy theory of the two-chain setup of Fig. 4.1, we have
introduced the number α. In the case of a single chain, it holds α ≡ 1. The Luttinger parameter K0

and the plasmon velocity at low momenta u0 are given by

u0 =

√
EJE0

α
, K0 =

√
EJ

αE0
. (4.4)

The effect of QPS is taken into account by

Sps = yu0

∫
dxdτ cos

[
2φ(x, τ)

]
(4.5)

in the absence of random offset charges. Here, τ denotes the imaginary time and y the (ultraviolet)
value of the phase-slip amplitude. In the regime EJ � min(E1, E0), the superconducting correlations
are (at least locally) well established leading to an exponentially small QPS amplitude,

y ∝ e−ζK , K =

√
EJ

αE0
+

EJ

α2E1
. (4.6)

The parameter K is the Luttinger constant for the ultraviolet plasmons (with q ∼ 1), and ζ is a
numerical coefficient which depends on the screening length Λ as well as on the ultraviolet cutoff
procedure. References [14, 44, 47, 49, 63] provide estimates for ζ in various limiting cases. As in
Chap. 3, we include random stray charges that provide a random phase to the QPS action, (4.5). In
the presence of stray charges Q(x), the phase-slip action reads

Sps = yu0

∫
dxdτ cos

[
2φ(x, τ)−Q(x)

]
with Q(x) = 2π

∫ x

−∞
dx′Q(x′). (4.7)

For the sake of simplicity, we assume Gaussian white noise disorder,〈
Q(x)

〉
Q

= 0,
〈
Q(x)Q(x′)

〉
Q

=
DQ

2π2
δ(x− x′). (4.8)

The Hamiltonian associated with the action (4.1) reads

H = H0 +Hps, (4.9)

where the quadratic part is given by

H0 =
1

2π2

∫
dq

2π

[
ε2(q)

u0K0
|φ(q)|2 + u0K0q

2|πθ(q)|2
]
, (4.10)
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and the phase-slip term is of the form

Hps = yu0

∫
dx cos[2φ(x)−Q(x)]. (4.11)

As derived in Sec. 3.1, the Eqs. (4.1), (4.2) and (4.7) describe the low-energy theory of a JJ chain.
We make two remarks. First, in this chapter we are interested in the effects at moderate momenta
q . 1/Λ. For this reason we replace the energy spectrum (4.3) by its low-momentum expansion

ε(q) ' u0(1− q2l2c )|q|, lc = Λ/
√

2α, (4.12)

where the length lc (which up to a numerical factor equals the screening length Λ) determines the scale
for the bending of the plasmonic energy spectrum.

Second, the only nonlinear term so far is the one describing the effects due to QPS. In the limit of
low momenta, q � 1/Λ, the effective theory given by Eqs. (4.1), (4.2) and (4.5) is of the standard
sine-Gordon form describing the SIT occuring at πK0 = 2 [44] (see also Sec. 3.2). This phase transition
is governed by the proliferation of QPS. In this sense, the term (4.5) is the most important nonlinearity
of the system. There are of course other nonlinear terms possible. As an example, we consider the
expansion of the Josephson potential in Eq. (1.25) to the fourth order leading to the nonlinearity in
the effective Hamiltonian

Hnl = − EJ

α3 4!

∫
dx
(
∂xθ
)4
, (4.13)

which corresponds to the term

Snl = − α

4!π4E3
J

∫
dxdτ

(
∂τφ

)4
. (4.14)

in the effective action. As opposed to the phase-slip term (4.5), the non-linearity (4.13) and all further
nonlinear terms that can be added to the effective Hamiltonian are constructed from the local charge
(N ∝ ∂xφ) and current densities (∝ ∂xθ). Hence, they contain a high power of gradients making them
irrelevant in the renormalization group sense. This is the reason why we did not consider them in
Chap. 3. In the following, we call those nonlinearities “gradient” anharmonicities to distinguish them
from the nonlinearity arising from QPS. Despite the unimportance of the gradient anharmonicities,
they can dominate the decay of plasmonic waves at high frequencies provided that the bare amplitude
of phase slips is small. This point is discussed in more details in Sec. 4.2.3.

In summary, the effective action for a linear JJ chain is of the form

S = S0 + Sps + Snl, (4.15)

where S0 and Sps are given by Eqs. (4.2) and (4.7), respectively. For the gradient anharmonicities
described by Snl, we take Eq. (4.13) as a particular example. In the end of Sec. 4.2.2, we argue that
our main statements do not rely on this specific choice.

We turn now to the analysis of the two-chain system depicted in Fig. 4.1. Here, C0 and Cg denote
the interchain capacitance and the capacitance to the ground, respectively. The Hamiltonian of the
lattice model for this system is given by

H =
E1

2

∑
i,j

∑
σ,σ′=↑,↓

[S−1]σ,σ′(i, j)Ni,σNj,σ′ + EJ

∑
i,σ=↑,↓

[1− cos(θi+1,σ − θi,σ)], (4.16)
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with

S(i, j) = s̃i,j

(
1 0
0 1

)
+
C0

C1
δi,j

(
1 −1
−1 1

)
(4.17)

and
s̃i,j = (2 + Cg/C1)δi,j − δi,j+1 − δi,j−1. (4.18)

The indices ↑, ↓ are associated with the two chains.
On the Gaussian level, the Hamiltonian (4.16) contains two modes, symmetric and antisymmetric.

The analog of these modes in a spinful Luttinger liquid are the charge and spin modes. We focus
here on the properties of the antisymmetric mode which can be excited through a coupling to a dipole
antenna [73]. For the sake of simplicity, we assume further that Cg � C0. We are not completely sure
how well this assumption holds in the experiment of Ref. [73]. On the other hand, we think that this
assumption is not very important for our main conclusions. More precisely, in the case of Cg ∼ C0, our
analysis should stay valid, apart from some modifications of numerical factors of order unity. In the
regime Cg . C0, both chains are well coupled, and the splitting between symmetric and antisymmetric
modes is large.1

Completely analogous to the spin-charge separation in quantum wires, the velocity (at small mo-
menta) of the symmetric (“charge”) mode, uch = 2

√
e2EJ/Cg is, in the limit Cg � C0, much larger

than the velocity of the antisymmetric (“spin”) mode, us =
√

2e2EJ/C0. As a result, the symmetric
mode can be integrated out leading to an effective theory for the antisymmetric mode. The details
of the derivation can be found in App. B. The resulting theory is of the same form as for the single
chain. The same action given by Eqs. (4.15), (4.2), (4.7) and (4.13), including the parameters defined
in Eqs. (4.12) and (4.4), describes the antisymmetric mode of the double chain. But in this case, the
value of the numerical coefficient α is 2.

Starting from Eqs. (4.15), (4.2), (4.7) and (4.13), we carry out the analysis of the decay of plasmonic
waves in the setups depicted in Figs. 1.2 and 4.1 in the next section.

4.2 Relaxation of plasmonic waves

Due to the interaction among plasmonic waves, those collective long-wavelength excitations above
the superconducting ground state are not stable. After the excitation of a plasmon mode, e. g., by
a microwave, it can decay into several plasma waves of lower energy. We consider two different
mechanisms for the decay of plasmons, which are associated with the two nonlinearities in the action
(4.15): the scattering off QPS and gradient anharmonicities. Both channels of the plasmon decay are
discussed separately in Secs. 4.2.1 and 4.2.2, respectively. Their interplay is analyzed in Sec. 4.2.3.

4.2.1 Relaxation due to phase slips

In this section, we analyze the decay processes due to the scattering off QPS. In our computation of
the lifetime, we follow closely the approaches of Refs. [119, 120]. For the purpose of this section, the
curvature of the plasmonic spectrum is of minor importance. We approximate it here by the linear
spectrum

ε(q) = u0|q|. (4.19)

1In the opposite limit C0 � Cg, both chains are nearly decoupled. Here, instead of describing the system in terms of
symmetric and antisymmetric modes, it is more natural to work in the basis of individual chains. If C0 = 0, both
chains are fully decoupled, and can be described within the single-chain theory with the replacement C0 → Cg.

57



4 Relaxation of plasmonic waves in Josephson-junction chains

Accordingly, the quadratic part of the action is given by

S0 =
1

2π2u0K0

∫
dxdτ

[
u2

0(∂xφ)2 + (∂τφ)2
]
. (4.20)

Expanding the phase-slip action, Eq. (4.5), in powers of φ reveals that the plasmonic mode is able to
decay into an arbitrary large number of low-energy modes. In our approach, we obtain directly the
sum of all these contributions. A convenient way to extract the relaxation rate is via the computation
of the imaginary part of the self-energy (of the Fourier transform) of the correlation function

G(r) =
〈〈
φ(r)φ(0)

〉
S

〉
Q
, (4.21)

where r = (x, τ), and we denote by 〈·〉S the average with respect to the full action, S = S0 + Sps. In
the absence of QPS, y = 0, the imaginary-time Green function is given by

G0(q) =
π2u0K0

ω2
n + u2

0q
2
, q = (q, ωn) (4.22)

with ωn being the (bosonic) Matsubara frequency. Introducing the self-energy Σ, we can express the
full Green function as

G(q) =
1

G−1
0 (q)− Σ(q)

=
π2u0K0

ω2
n + u2

0q
2 − π2u0K0Σ(q)

. (4.23)

The inverse lifetime of a plasmonic wave can be extracted by means of the imaginary part of the
retarded self-energy on the mass shell,

1

τ(ω)
=
π2K0u0

2ω
Im ΣR(q = ω/u0, ω). (4.24)

The self-energy is computed perturbatively in the phase-slip amplitude y. In imaginary time, the Mat-
subara self-energy Σ(r) is obtained from the perturbative expansion of the Green function, Eq. (4.21),

G(r) = G0(r) +

∫
d2r1d2r2G0(r− r1)Σ(r1 − r2)G0(r2), (4.25)

where

Σ(r) = 2y2u2
0

[
e−2C0(r)−DQ|x| − δ(r)

∫
d2r0e−2C0(r0)−DQ|x0|

]
+O(y4). (4.26)

The correlation function C0 in the exponential is given by

C0(r) =
2

βN

∑
q

(1− cosqr)G0(q) (4.27)

=
πK0

2
ln

u2
0β

2

π2
sinh

(
π

u0β
(x+ iu0τ)

)
sinh

(
π

u0β
(x− iu0τ)

) , (4.28)

where N is the number of junctions per chain, and β = 1/T . It is convenient to analytically continue
the imaginary-time result (4.26) first to real time t before Fourier transforming it. The dependence
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4.2 Relaxation of plasmonic waves

of the first term in Eq. (4.26) on the imaginary time τ is governed by the Matsubara time-ordered
function

χT (x, τ) = e−2C0(x,τ). (4.29)

The corresponding retarded function can be found following the standard route [17],

χR(x, t) =
2Θ(t)Θ

(
u0t− |x|

)
sin
(
π2K0

)(
π
βu0

)2πK0

∣∣∣sinh π
u0β

(x+ u0t) sinh π
u0β

(x− u0t)
∣∣∣πK0

, (4.30)

where Θ is the Heaviside step function. According to Eq. (4.24), the lifetime is related to the Fourier
transform of the self-energy. Since the second term in Eq. (4.26) does not contribute to the imaginary
part of the self-energy, we find

Im ΣR(q, ω) = 2u2
0y

2 Im

∫
dxdt e−i(qx−ωt)χR(x, t)e−DQ|x|. (4.31)

In order to proceed, we switch to the light-cone variables z± = π(u0t± x)/(u0β):

Im ΣR(q, ω) = 2u0y
2 sin(π2K0)

(
π

u0β

)2πK0−2

Im

∫ ∞
0

dz+

∫ ∞
0

dz−
exp{i β2π (ω − u0q)z+}(

sinh z+

)πK0

×
exp{i β2π (ω + u0q)z−}(

sinh z−
)πK0

e−
DQu0β

2π
|z+−z−|.

(4.32)

The relaxation rate due to QPS is given by Eqs. (4.24) and (4.32). In the following, we analyze them
in several limiting cases.

Clean case

In the limit of weak disorder, DQ � min(q, T/u0), it is justified to set DQ = 0 leading to the decoupling
of the integrations. In this case, the imaginary part of the self-energy is given by

Im ΣR(q, ω) = 2u0y
2 sin(π2K0)

(
2π

u0β

)2πK0−2

Im

B

(
1− πK0,

πK0

2
− i β

4π
(ω + u0q)

)

× B

(
1− πK0,

πK0

2
− i β

4π
(ω − u0q)

),
(4.33)

where B(x, y) is the Euler Beta function. With the help of Eq. (4.24), the decay rate is found in the
clean limit. It is given by

1

τ(ω)
∼ u0y

2


(

2πT
u0

)2πK0−3
, ω � T,

T
u0

(
2πωT
u2

0

)πK0−2

, ω � T.
(4.34)
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 98,
224513 (2018), DOI: 10.1103/PhysRevB.98.224513, cf. Ref. [149]. Copyright 2018 by the American Physical Society.]

Figure 4.2: Dependence of the decay rate of plasmonic waves due the scattering off QPS in
different regimes in the frequency-temperature plane. The dependence of 1/(τu0y

2) is indicated
in each regime.

Disordered case

In the regime of strong disorder, DQ � max(q, T/u0), the most important contribution of the integra-
tions in Eq. (4.32) originates from the region where z+ and z− are close to each other. The result for
the imaginary part of the self-energy reads

Im ΣR(q, ω) ' 8u0
y2

DQ
sin(π2K0)

(
2π

u0β

)2πK0−1

Im B

(
1− 2πK0, πK0 − i

βω

2π

)
, (4.35)

which is independent of momentum. Correspondingly, the decay rate in the limit of strong disorder,
DQ � max(q, T/u0), is given by

1

τ(ω)
∼ u0

y2

DQ


(

2πT
u0

)2πK0−2
, ω � T,(

ω
u0

)2πK0−2
, ω � T.

(4.36)

In the moderately disordered regime, two cases need to be considered. If q � DQ � T/u0, the result
for the clean case, the first line of Eq. (4.34), is still applicable. In the regime T/u0 � DQ � q, the
integration over z− in Eq. (4.32) is effectively limited by πT/u0q � 1 at the upper limit. Moreover,
the dependence on z− in the exponential function associated with DQ can be neglected. In this way,
we obtain the relaxation rate

1

τ(ω)
∼ u0y

2 DQ

(
DQω

u0

)πK0−2

, T � u0DQ � ω. (4.37)

Equations (4.34), (4.36) and (4.37) constitute the main result of this section. They determine the
decay rate of plasmonic waves due to QPS in different regimes. Figure 4.2 summarizes the behavior
in the frequency-temperature plane. The decay rate scales with frequency, temperature and disorder
strength as a power-law with non-universal exponents that are determined by the Luttinger parameter
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K0. If the system is deep in the superconducting regime, K0 � 1, the decay rate vanishes in the
zero-frequency limit. On the other hand, in the insulating regime with sufficiently small K0, the rate
grows when lowering the frequency.

4.2.2 Relaxation due to gradient nonlinearities

We discuss now the impact of the gradient nonlinearities associated with the term Hnl in the effective
Hamiltonian. Although being irrelevant in the renormalization group sense, at intermediate scales,
these terms yield similar contributions to the relaxation of plasmonic waves as QPS. We analyze the
nonlinearity (4.13) originating from the quartic term of the expansion of the Josephson potential.

The perturbative analysis of the relaxation of plasmonic waves due to gradient nonlinearities was per-
formed in other contexts in Refs. [150–152]. We use the energy spectrum (4.12) since the perturbation
theory for a linear spectrum is ill-defined.

To compute the matrix element associated with the decay process, we decompose the superconduct-
ing phase θ into usual bosonic creation (b†q) and annihilation operators (bq). The connection is given
by [17]

θ(x) = i

√
π

2N

∑
q 6=0

sign(q)√
|q|

e−a|q|/2eiqx(b†q − b−q), (4.38)

where N denotes the number of junctions per chain, and a is the ultraviolet cutoff which can be sent
to zero here. The calculation of the relaxation rate outlined below follows the procedure of Ref. [152].
Making use of the methods described in Sec. 2.2, we can express the relaxation rate via the collision
integral [cf. Eq. (2.24)],

1

τ(q1)
=

2π

2

∑
q2,q′1,q

′
2

∣∣∣M q′1,q
′
2

q1,q2

∣∣∣2δ(Ei − Ef )

{
nB(εq2)[1 + nB(εq′1) + nB(εq′2)]− nB(εq′1)nB(εq′2)

}
, (4.39)

where the matrix element

M
q′1,q
′
2

q1,q2 = 〈0|bq′2bq′1Hnlb
†
q1b
†
q2 |0〉, (4.40)

and Ei(f) is the total energy of the initial (final) plasmons. We obtain

M
q′1,q
′
2

q1,q2 = − π
2EJ

4α3N
sign(q1q2q

′
1q
′
2)
√
|q1q2q′1q

′
2| δq1+q2,q′1+q′2

(4.41)

for the matrix element. A plasmonic wave with q1 > 0 (moving to the right) can decay via this
nonlinearity by scattering off a thermal plasmon with momentum q2 < 0 (moving to the left). This
process is illustrated in Fig. 4.3. The conservation laws dictate the momentum of the left moving
plasmon

q2 = −3

2
q1q
′
1q
′
2l

2
c +O(q5

1l
4
c ) (4.42)

to be much smaller than the momentum q1. The sum over q′2 in Eq. 4.39 can be performed with the
help of the momentum conservation. We can rewrite the delta function associated with the energy
conservation as

δ(Ei − Ef ) =
2

3u0(q1 + q2)|q′1,+ − q′1,−|l2c
δ(q′1 − q′1,+), (4.43)
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 98,
224513 (2018), DOI: 10.1103/PhysRevB.98.224513, cf. Ref. [149]. Copyright 2018 by the American Physical Society.]

Figure 4.3: Dominant decay process induced by nonlinearities for a right moving plasmonic wave
with momentum q1.

where

q′1,± '
q1

2
±

√
q2

1

4
+

2q2

3q1l2c
. (4.44)

The requirement that q′1,± is real limits q2 to lie inside the interval

q∗ < q2 < 0, q∗ = −3

8
q3

1l
2
c . (4.45)

Performing the continuum limit, N →∞, we go over from summations to integrations over momenta,
N−2

∑
q2,q′1
→
∫

dq2dq′1/(2π)2. After the integration over q′1, we obtain

1

τ(q1)
=
π3E2

Jq1

96α6

∫ 0

q∗

dq2

q′1,+q
′
1,−|q2|

u0(q1 + q2)|q′1,+ − q′1,−|l2c

×
{
nB(εq2)[1 + nB(εq′1,+) + nB(εq′1,−)]− nB(εq′1,+)nB(εq′1,−)

}
.

(4.46)

As can be seen from Eq. (4.42), we can neglect the q2-dependence in the denominator compared
to q1. In the following we focus on the regime where the momentum q1 is much larger than the
thermal momentum T/u0 but not too large, such that βu0q

3
1l

2
c � 1. In this regime, the bosonic

distribution function related to the plasmon with momentum q2 can be replaced by 1/βu0|q2|, and
the distribution function associated with the plasmon with momentum q′1,+ can be neglected. In the

regime −3q2
1l

2
c/2βu0 < q2 < 0, we can replace the Bose function associated with the plasmon with

momentum q′1,− by 1/βu0q
′
1,−, while we neglect it for q∗ < q2 < −3q2

1l
2
c/2βu0. The latter regime of q2

yields the main contribution to the integral in Eq. (4.46). After the evaluation of the integration, we
obtain

1

τ(q1)
'
π3E2

JTq
4
1

768α6u2
0

=
π3

768α5

EJ

E0
Tq4

1 (4.47)

for the behavior of the relaxation rate (under the assumption βu0q1 � 1, q2
1l

2
c � 1, and βu0q

3
1l

2
c � 1).

The scaling of the relaxation rate due to gradient nonlinearities, Eq. (4.47), constitutes the main
result of this section. As a function of frequency the decay rate scales as ω4. It vanishes in the limit
of low frequencies as expected from the irrelevance of the term (4.13) in the RG sense.
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4.3 Comparison to experiment

The result (4.47) is obtained for the particular anharmonic form (4.13). How universal is this
result? Phenomenologically, various terms of the kind (∂xφ)n(∂xθ)

m can be present in an effective
theory. Terms with n + m > 4 are less relevant than the (∂xθ)

4 term studied here. They yield a
smaller contribution to the decay rate of plasmons, and can thus be neglected. On the contrary, a
term that is cubic in the density, ∝ (∂xφ)3, is more relevant in the RG sense. Since the conservation
laws do not allow the decay of a single plasmon into two particles, the second order perturbation theory
is necessary to yield a finite relaxation rate. The corresponding process is the same one as depicted in
Fig. 4.3 leading to the identical ω4 scaling of the decay rate [150–152].

4.2.3 Interplay of QPS and gradient nonlinearities

In Secs. 4.2.1 and 4.2.2, we have studied the relaxation of plasmonic waves due to QPS and gradient
nonlinearities, respectively. The latter mechanism results in a universal ω4 scaling, while the decay
rate due to QPS is characterized by a non-universal exponent reflecting the SIT controlled by the value
of K0. In the following we analyze the interplay of both mechanisms. For definiteness, we assume that
the considered frequencies are larger than temperature.

We analyze the plasmon decay by means of the dimensionless parameter ωτ which we expect to
be proportional to the quality factor examined in Ref. [73]. Deep inside the superconducting phase,
πK0 � 1, the decay of plasmonic waves is dominated by the gradient anharmonicities leading to the
ω−3 scaling of the quality factor [cf. Eqs. (4.34), (4.36), (4.37) and (4.47)]. The contribution from
QPS becomes visible only for small enough values of the Luttinger parameter K0. In the case of weak
disorder, phase slips dominate the low-frequency behavior of the quality factor if πK0 < 6 leading to
the ω3−πK0 scaling. If the random offset charges are strong, QPS dominate only for πK0 < 3 resulting
in the ω3−2πK0 behavior of the quality factor. Moreover, as consequence of QPS, for sufficiently
small values of K0 (πK0 < 3 for weak and πK0 < 3/2 for strong charge disorder), the quality factor
decreases when lowering the frequency. The overall frequency behavior for ωτ is then non-monotonic.
The maximum of the quality factor occurs around the crossover frequency at which the QPS become
important. The overall behavior of the quality factor in the regime πK0 � 1 is illustrated in Fig. 4.4.

Another important point that should be emphasized here is the exponential smallness of the phase-
slip amplitude y, Eq. (4.6). As result, the crossover frequency where QPS set in and dominate over
the gradient anharmonicities is exponentially small for EJ � E1. Thus, even deep in the insulating
phase, πK0 � 1, the quality factor is governed by the gradient anharmonicities leading to a growing
behavior of the quality factor with lowering the frequency in a wide range of frequencies if EJ � E1. A
downturn of the quality factor indicating insulating behavior of the system in the infrared limit occurs
only at exponentially small frequencies.

We compare our findings to the experimental results of Ref. [73] in the next section.

4.3 Comparison to experiment

A comparison of our results for the quality factor to the experiment of Ref. [73] reveals qualitative
agreement. A detailed description of the experiment is presented in Sec. 1.5. For a comparison of
the notation used in this thesis and the one of Ref. [73] see Tab. 1.1. The internal quality factor for
several samples is shown in Fig. 3 b) of Ref. [73]. From the measured values of the impedance Z,
which is proportional to 1/K0 [see Eq. (1.82)], it is expected that all of the devices shown in this figure
are nominally in the insulating phase. However, the quality factors of the samples with a large ratio
of EJ/E1 grow when the frequency is lowered suggesting the systems to be in the superconducting
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4 Relaxation of plasmonic waves in Josephson-junction chains

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 98,
224513 (2018), DOI: 10.1103/PhysRevB.98.224513, cf. Ref. [149]. Copyright 2018 by the American Physical Society.]

Figure 4.4: Schematic frequency dependence of the quality factor in a double-log scale in the
insulating regime, E0 � EJ. The change under an increase of EJ is indicated by the arrows
(thick lines correspond to a lower value of EJ). The crossover frequency below which the QPS
contribution (red lines) dominates over the contribution from gradient nonlinearities (blue lines)
is exponentially small in the parameter

√
EJ/E1. Increasing EJ further into the superconducting

regime would lead to a monotonic dependence of ωτ (not shown here). The formulas near the curves
indicate the scaling of the QPS and gradient anharmonicity contributions in the regime ω � T ,
and are based on Eqs. (4.34) and (4.47), respectively. The formula for the QPS contribution is
the one for a clean system. In the presence of disorder, the behavior of the phase-slip contribution
can be deduced from Eqs. (4.36) and (4.37), which does not modify the qualitative appearance of
the plot.
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4.4 Summary of chapter 4

regime. This seemingly contradictory behavior can be explained with the smallness of the crossover
scale at which effects due to QPS set in. This frequency scale is exponentially small in the parameter√
EJ/E1. The downturn of the quality factor signaling the insulating character of the system can thus

not be observed in their range of measured frequencies.

The quality factors of samples with reduced values of both K0 and EJ/E1 show a more or less flat
behavior at intermediate frequencies and a tendency to decrease towards lower frequencies. Our theory
is qualitatively consistent with the observed behavior in those devices: the phase-slip contribution
dominates the frequency dependence of the quality factor in the insulating regime at low frequencies.
It would be beneficial if the measurement method of Ref. [73] could be extended to lower frequencies.

The change of the behavior of the quality factor from increasing to decreasing as K0 and EJ/E1 are
reduced is interpreted as a transition by the authors of Ref. [73]. Based on our theory presented in
this thesis, we firmly believe that the observed change of the behavior is not related to the SIT. All
samples are in the insulating regime and should show a decreasing quality factor at low frequencies. As
mentioned above, the downturn of the quality factor occurs only at exponentially small frequencies in
the regime EJ � E1, which is below the lowest measured frequencies for the apparent superconducting
samples.

We can further analyze the experimental results of the quality factor with regard to various input
parameters. Let us first look at the more insulating chains. The experiment reports that the quality
factor for their weakest junctions (low EJ/E1 and large Z) is more sensitive to the parameter EJ/E1

than to the parameter Z ∝ 1/K0. We can explain this observation in the following way. In these
samples, the parameter K0 determining the exponent of the power law of the QPS contribution is very
small. As a result, even large changes of the order of 20% (as in the experiment) modify the exponent
only marginally since the value of K0 remains still small. On the contrary, the QPS amplitude depends
exponentially on the square root of EJ/E1 leading to a strong dependence of the quality factor with
respect to this parameter.

Moreover, we compare our theory to the experimental results in low-impedance chains showing
apparently superconducting behavior. Several curves of this kind are depicted in Fig. S 4 in the Sup-
plementary Material of Ref. [73]. Due to the large value of EJ/E1 for all devices, effects originating
from QPS should be negligible in the range of measured frequencies. As expected, the quality factors
of all samples grow upon lowering the frequency. Moreover, the frequency dependence of the quality
factor is in accordance with our theoretical prediction (∝ ω−3) related to the gradient nonlinearities.
Analyzing the dependence of the prefactor, we remark that the charging energy E0 is varied particularly
strongly in the experiment (factor of ∼ 75), while other parameters are varied less strongly. Never-
theless, all experimental curves seem to collapse if plotted as a function of the normalized frequency
ω/ωp. Our theory, however, predicts a strong power-law dependence (E3

0) on the charging energy E0

for the quality factor. We propose that a different type of nonlinearity might be the origin for this
behavior. Some kind of nonlinear capacitances could lead to another contribution to the quality factor
with a prefactor that has a weaker dependence on the charging energy E0. Identifying and analyzing
further types of nonlinearities remains an interesting prospect for future research.

4.4 Summary of chapter 4

To conclude, we have analyzed the relaxation of plasmonic waves in JJ chains. Besides a single linear
chain, we have studied two capacitively coupled chains to make contact to a recent experiment [73].
We have demonstrated that in the parameter regime where the capacitance to the ground (Cg) can
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4 Relaxation of plasmonic waves in Josephson-junction chains

be neglected, the theory for the antisymmetric mode in the double chain is equivalent to a theory for
a single chain. Such a mapping was possible since the symmetric mode is characterized by a large
velocity as a consequence of the strong Coulomb interaction in this regime.

We have studied two decay mechanisms for plasmonic waves: the scattering from QPS and the
interaction due to gradient nonlinearities. The former leads to a relaxation rate that scales with
frequency as a power law with a non-universal exponent that is governed by the Luttinger parameter
K0 =

√
EJ/E0. The results for the relaxation rate due to the scattering off QPS in different parameter

regimes are given by Eqs. (4.34), (4.36) and (4.37). These results are also summarized in Fig. 4.2. It
is important to note here the exponential dependence of the phase-slip amplitude on the parameter√
EJ/E1 leading to a strong sensitivity of the decay rate on this parameter.
The second source for the decay of plasmonic waves is the interaction of them induced by other

nonlinear terms (gradient nonlinearities). As a particular example, we have studied the lowest-order
anharmonicity originating from the Josephson potential. This nonlinear term yields a contribution to
the relaxation rate which scales as the fourth power of frequency. As expected from the irrelevance
of this nonlinearity in the renormalization group sense, this contribution to the decay rate vanishes
in the zero-frequency limit. However, if the bare QPS amplitude is small, the phase-slip contribution
may be subleading compared to the one from this nonlinearity in a wide frequency range.

In order to study the interplay of both decay channels, we have analyzed the product of mode
frequency and lifetime, a dimensionless quantity that is expected to be proportional to the quality
factor studied in the experiment of Ref. [73]. The schematic behavior of this quantity is illustrated
in Fig. 4.4 in the insulating regime, K0 � 1. Due to the exponentially small QPS amplitude in the
parameter

√
EJ/E1, the phase-slip contribution becomes important only at very low frequencies in the

regime EJ � E1. It is characterized by a non-universal power law leading to a decrease of the quality
factor upon lowering the frequency. The high-frequency behavior is dominated by other nonlinear terms
such as the one originating from the expansion of the Josephson potential leading to the universal
ω−3 scaling of the quality factor. Combining both behaviors results in a non-monotonic frequency
dependence of the quality factor. This behavior is qualitatively consistent with the observations in
Ref. [73]. In particular, we can explain the apparent “superconducting” behavior of samples that are
nominally in the insulating regime. According to our predictions, the downturn of the quality factor
is visible only at lower frequencies outside the range of measured frequencies. Our theory strongly
suggests that the change in the behavior of the quality factor observed in Ref. [73] is not related to
the SIT. Concerning the dependence of the prefactor of the contribution from gradient nonlinearities
there is a discrepancy between our prediction and the experimental results of Ref. [73]. When plotted
as a function of the rescaled frequency ω/ωp, the experimental low-impedance curves (with a large
value of EJ/E1) show a very weak dependence on the charging energy E0. We predict, however, for
the specific example of the lowest-order nonlinearity originating from the expansion of the Josephson
potential, a strong dependence proportional to E3

0 . This disagreement might be explained by another
type of nonlinearity with a weaker dependence on E0. To elucidate this point, further nonlinear terms
need to be identified and analyzed in a future research project.
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5 Chapter 5

Relaxation of high-energy fermions in
quantum wires

After the discussion of the relaxation of bosonic excitations in Josephson junction (JJ) chains in the
previous chapter, we turn now to the analysis of the relaxation of fermionic excitations in quantum
wires. It has been known for a long time that fermionic excitations at low energies are characterized
by a large relaxation time in comparison to other microscopic time scales. This fact is at the heart of
Landau’s Fermi-liquid theory [74–76]. A Landau quasiparticle with energy ε above the Fermi sea has
the relaxation rate (inverse lifetime) 1/τ(ε) ∝ ε2/εF � ε [127]. The slow relaxation of quasiparticles at
low energies leads to a plenty of quantum phenomena observed in experiments on electronic systems
at low temperatures, such as quantum corrections to the conductivity [77–79] and quantum Hall
interferometry [22, 23].

Considering the significance of relaxation processes, they were studied in several solid state systems.
As a brief selection, we mention here electrons in normal metals [80–82], Bogolyubov quasiparticles in
superconductors [89] and Bose gases [83–88], electrons in 1D quantum wires [90, 91] and quantum Hall
edge channels [92–97]. Most of these works concentrated on the excitations at low energies, where the
relaxation is expected to be slow.

Recently, it was pointed out in Ref. [98] that the relaxation rate of electrons in a semiconductor
nanowire becomes small again at energies much larger than the Fermi energy. By means of scanning
tunneling microscopy, the decoherence rate of injected electrons was measured. In accordance with the
Fermi-liquid theory, a growth of the relaxation rate at low energies was observed. However, above a
certain threshold at energies much larger than the Fermi energy, the relaxation rate starts to decrease
again. This means that the electrons experience a revival of their coherence at high energies. This
effect was explained in Ref. [98] by the properties of the relaxation of electrons in the lowest subband
of transverse quantization.

Based on the findings of Ref. [98], we can ask the questions: Is the non-monotonicity of the decay
rate and the revival of the coherence a universal phenomenon? What happens if the high-energy
electron is not in the lowest subband of transverse quantization? Can we find a similar behavior in
higher-dimensional systems as well?

We answered these questions in Ref. [153]. In this chapter, we review these results. It is demonstrated
that the non-monotonic behavior of the relaxation rate as well as the revival of the coherence of hot
electrons is quite generic. To this end, we investigate various models of interacting fermions in quasi-1D
multi-channel and strictly 1D wires. In order to study quasi-1D systems, it turns out to be useful to
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5 Relaxation of high-energy fermions in quantum wires

Figure 5.1: Relaxation process in higher dimensions (D ≥ 2). A fermion with momentum p1

relaxes by scattering off a particle inside the isotropic Fermi sea with momentum p2. The momenta
after the collision are denoted by p′1 and p′2.

first examine isotropic 2D and 3D systems. Under the assumption of an interaction potential decaying
sufficiently fast as a function of momentum, it is shown that, regardless of the model, the relaxation
rate decays in a power-law fashion as a function of the momentum p1 of the hot electron. The rate
decays as 1/p1 in 2D, 3D and quasi-1D systems. In strictly 1D wires, the decay is particularly strong:
it scales as 1/p5

1. In our analysis, we concentrate on interaction potentials V (q) that are characterized
by a single momentum scale q0 below which the interaction can be expanded, V (q) = V0(1 − q2/q2

0),
and above which it is suppressed sufficiently strongly. Furthermore, we show that the non-monotonic
behavior of the relaxation rate is found in the case of Coulomb interaction as well.

This chapter is structured as follows. We start in Sec. 5.1 with the discussion of interacting fermions
with parabolic spectrum in 2D and 3D systems. Section 5.2 is devoted to the quasi-1D multi-channel
wires with parabolic dispersion. In the first part, Sec. 5.2.1, we introduce the model of multi-channel
wires, and in the subsequent Secs. 5.2.2 and 5.2.3, we analyze the cases of one and two lateral di-
mensions, respectively. In Sec. 5.3, we consider fermions with parabolic dispersion in a 1D wire. We
compare our findings to the experiment of Ref. [98] in Sec. 5.4 before summarizing our main results in
Sec. 5.5.

This chapter is based on our work in Ref. [153].

5.1 Isotropic 3D and 2D cases

Before studying the one-dimensional case, we consider the higher dimensional situation. Specifically,
we investigate the decay of high-energy fermions with parabolic spectrum in D ≥ 2 spatial dimensions.
On top of a filled D-dimensional isotropic Fermi sea with Fermi momentum pF, a fermion occupies a
state with momentum p1 = |p1| � pF. The interaction potential is assumed to be characterized by
a single momentum scale q0. At small momenta, q . q0, the interaction potential can be expanded,
V (q) ∼ V0(1− q2/q2

0), while at high momenta, q � q0, it is sufficiently strongly suppressed. A possible
model interaction is given by an exponential decay, e. g., V (q) = V0 exp{−(q/q0)2}. Such a strong
decay is, however, not necessary. We explicitly demonstrate in the end of this section that our results
are valid in the case of screened Coulomb interaction in 2D and 3D as well (only power-law decay).
Throughout this section we assume q0 & pF, whereas the ratio of p1 and q0 can be arbitrary. An
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5.1 Isotropic 3D and 2D cases

introduction to two-particle collisions and the relaxation of fermions can be found in Sec. 2.2. The
relaxation rate (inverse lifetime) of the hot fermion can be computed by means of Fermi’s golden rule
[cf. Sec. 2.2 and in particular Eq. (2.14)],

1

τp1

=
1

2!

∫
dp2dp′1dp′2 δ

(
Ei − Ef

)
δ
(
Pi −Pf

)
nF(ε2)[1− nF(ε′1)][1− nF(ε′2)]

∣∣∣Mp′1,p
′
2

p1,p2

∣∣∣2. (5.1)

We take into account only the out-scattering rate here because we assume the additional fermion to
be at high energies above the filled Fermi sea. We denote by p1 and p2 (p′1 and p′2) the momenta
before (after) the collision, see Fig. 5.1. Furthermore, Ei and Pi (Ef and Pf ) are the total energy and
total momentum before (after) the scattering. The conservation of the total energy and momentum
are taken into account by the delta functions, and we use the short-hand notation εi ≡ εpi = p2

i /2m.

The matrix element M
p′1,p

′
2

p1,p2 is composed of a direct and an exchange term. For spin-polarized fermions
[cf. Eq. (2.21)], ∣∣∣Mp′1,p

′
2

p1,p2

∣∣∣2 =
[
V (|p1 − p′1|)− V (|p1 − p′2|)

]2
, (5.2)

while for fermions with spin, we obtain after the spin summation [cf. Eq. (2.20)]∣∣∣Mp′1,p
′
2

p1,p2

∣∣∣2 =
[
V (|p1 − p′1|)

]2
+
[
V (|p1 − p′2|)

]2
− V (|p1 − p′1|)V (|p1 − p′2|). (5.3)

Making use of the rotational invariance, we can rewrite Eq. (5.1) as (see App. C.1)

1

τp1

=
SD−2

2pD−2
1

∫ ∞
0

dPPD−1

∫ P/2+p1

|P/2−p1|
q2D−3dq

∫ π

0
dϕdϕ′

(
sinϕ sinϕ′

)D−2
δ

(
ε1 −

p2
1

2m

)
×nF(ε2)[1− nF(ε′1)][1− nF(ε′2)]wq(ϕ,ϕ

′).

(5.4)

We denote by SD the volume of the D-dimensional sphere (SD=0 = 2). The physical meaning of P
and q in Eq. (5.4) are the total and relative momentum of the particles, P =

∣∣p1 + p2

∣∣ = |p′1 + p′2|
and 2q =

∣∣p1 − p2

∣∣ = |p′1 − p′2|. The angle ϕ (ϕ′) denotes the angle between the total and relative
momentum before (after) the scattering. The energies εi and εi′ are now expressed in terms of the
integration variables,

2mε1,2 =
P 2

4
+ q2 ± Pq cosϕ, (5.5)

2mε′1,2 =
P 2

4
+ q2 ± Pq cosϕ′. (5.6)

The delta function in Eq. (5.4) guarantees that the momentum of the incoming high-energy fermion
is p1, leading to

ϕ = ϕ0 := arccos
p2

1 − q2 − P 2/4

Pq
. (5.7)

The limits of the integration over q ensure that 0 < ϕ0 < π. The properly angle-averaged squared
matrix element is given by

wq(ϕ,ϕ
′) = SD−3

∫ π

0
dγ
(
sin γ

)D−3 [
V+ − V−

]2
(5.8)
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5 Relaxation of high-energy fermions in quantum wires

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.2: Phase space restriction in D ≥ 2 at high energies (p1 � pF). The distribution
function nF(p2) restricts the contribution of the integrations over q and P to a small vicinity
of the point (p1/2, p1). This region is located between the line P/2 + q = p1 and the ellipse
P 2/2 + 2q2 − p2

1 − p2
F = 0 (shaded area).

and

wq(ϕ,ϕ
′) = SD−3

∫ π

0
dγ
(
sin γ

)D−3
[
V 2

+ + V 2
− − V+V−

]
(5.9)

in the spin-polarized and spinful cases, respectively, with

V± = V

[
q
√

2
(
1± cosϕ cosϕ′ ± cos γ sinϕ sinϕ′

)]
. (5.10)

For D = 2, the integration over γ in Eqs. (5.8) and (5.9) should be regarded as a summation,

S−1

∫
dγ

sin γ
−→

∑
γ=0,π

. (5.11)

Equation (5.4) can be used to compute the relaxation rate at arbitrary temperature and momentum
p1. It can be significantly simplified if T = 0 and p1 � pF. In this case, the distribution function
nF(ε2) restricts the contribution of the integration to the region close to the point P = p1, q = p1/2
(cf. Fig. 5.2). In the whole integration domain, the angle ϕ0 is small,

ϕ0 ' 2

√
P + 2q − 2p1√

p1
.
pF

p1
� 1. (5.12)

Contrary to the situation at low-energies, the distribution functions of the outgoing fermions are unim-
portant here since the typical momenta after the collision are large compared to the Fermi momentum.
At high energies, they merely exclude almost forward scattering processes that are characterized by

min(ϕ′, π − ϕ′) < ϕ′0 = arccos
p2/4 + q2 − p2

F

pq
.
pF

p1
. (5.13)
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5.1 Isotropic 3D and 2D cases

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.3: Schematic plot (on log-log scale) of the relaxation rate in 3D as a function of mo-
mentum. At large momenta, p1 � q0, the rate decays as 1/p1 [cf. Eq. (5.17)] independent of
the presence of spin. In the intermediate regime, pF � p1 � q0, the decay rate for spinful (spin-
polarized) fermions behaves as p1 (p5

1) [cf. Eqs. (5.15) and (5.16), respectively]. In the low-energy
regime (Fermi-liquid), p1 − pF � pF, the rate scales as (p1 − pF)2. Due to the Hartree-Fock
cancellation, the prefactor is smaller for spinless fermions, see Eqs. (5.18) and (5.19).

Assuming q0 & pF, the smallness of ϕ0 and ϕ′0 justifies the decoupling of the integration over ϕ′ in
Eq. (5.4). We find

1

τp1

∼ mpD−2
1 pDF

∫ π

0
dϕ′

(
sinϕ′

)D−2
wp1/2(0, ϕ′). (5.14)

We used here the typical value of ϕ0 ∼ pF/p1 and the available area in the q-P plane, ∼ p3
F/p1. The

symbol “∼” in Eq. (5.14) and in analogous equations below has the meaning “up to a number of order
order unity”. The precise value of this number is non-universal; it depends on the specific form of the
interaction.

The relaxation rate depends on the relation between p1 and q0 as well as on the presence of spin. In
the regime pF � p1 � q0, it is possible to expand the function wp1/2 in powers of p−1

1 . In the presence
of spin, the function wp1/2 is given by Eq. (5.9), leading to the estimate wp1/2 ∼ V 2

0 , and resulting in
the relaxation rate

1

τp1

∼ mV 2
0 p

D
F p

D−2
1 , pF � p1 � q0. (5.15)

In this case, the rate is fully determined by the available phase space. In contrast, for spin-polarized
fermions in the same regime, the Hartree-Fock cancellation leads to the vanishing of the leading
contribution, cf. Eq. (5.8). Hence, the relaxation rate is suppressed compared to the spinful case. We
obtain

1

τp1

∼ mV 2
0

pDF p
D+2
1

q4
0

, pF � p1 � q0. (5.16)

In the regime pF . q0 � p1 (containing the physically most relevant case q0 ∼ pF), the presence of
spin is irrelevant. The squared matrix element wp1/2(0, ϕ′) is of the order of V0 at ϕ′ = 0. However, it
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.4: Numerical evaluation of the relaxation rate in D = 3, as given by Eq (5.4) with
the model interaction V (q) = V0 exp{−q2/2p2

F}. The decay rate shows a non-monotonic behavior
with a maximum around p1 ' 4pF. The rate is normalized by its maximal value τ−1

max. Inset: The
same plot in the double-log scale. The analytical results 1/τp1 ∝ (p1 − pF)2 and 1/τp1 ∝ 1/p1 at
p1 − pF � pF and p1 � pF, respectively, are shown by dashed lines.

decays very quickly above ϕ′ ∼ q0/p1. Hence, the integration over ϕ′ is limited by q0/p1 � 1, leading
to

1

τp1

∼ mV 2
0

pDF q
D−1
0

p1
, pF . q0 � p1. (5.17)

This important result demonstrates that the decay rate of hot fermions scales in a universal fashion
as 1/p1 in any dimension D ≥ 2.

In the low-energy limit, the decay rate scales as 1/τp1 ∝ (pF − p1)2 [127] (up to logarithmic factors
in D = 2 [128, 129]), which is the Fermi-liquid result. For fermions with spin, we obtain

1

τp1

∼ mV 2
0 p

2D−4
F (p1 − pF)2, p1 − pF � pF . q0, (5.18)

whereas for spin-polarized particles the Hartree-Fock cancellation leads to a smaller prefactor,

1

τp1

∼ mV 2
0

p2D
F

q4
0

(p1 − pF)2, p1 − pF � pF . q0. (5.19)

The Eqs. (5.15) - (5.19) predict a non-monotonic dependence of the relaxation rate. Figure 5.3 illus-
trates the behavior for D = 3. At low momenta, p1 − pF � pF, the rate increases according to the
Fermi-liquid result with different prefactors for spinless and spinful particles. Beyond the intermediate
regime, pF � p1 � q0, the decay rate decreases as 1/p1 irrespective of the dimensionality and the
presence of spin.

The numerical evaluation of the integrations in Eq. (5.4) confirms our analytical predictions. Figure
5.4 illustrates the numerical result for the model interaction V (q) = V0 exp{−q2/2p2

F}.
Let us now ask the question whether our results remain applicable in the case of Coulomb interaction.

We emphasize again that the behavior (5.17) results from the kinematics of the scattering process and
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the inability of the interaction to transfer momenta larger than q0 [see discussion before Eq. (5.17)].
Although the decay of the screened Coulomb interaction

V2D(q) =
2πe2

κ+ q
, V3D(q) =

4πe2

κ2 + q2
, (5.20)

is rather weak, our result (5.17) is still valid. Here, κ is the inverse screening length. Even interaction
potentials V (q) which behave at large momenta as 1/qα with α > (D − 1)/2 decay strongly enough
for the result (5.17) to apply. This can be seen from looking at Eqs. (5.9) and (5.10). We observe that
wq(0, ϕ

′) ∼ q−2α sin−2α(ϕ′/2), such that the integration in Eq. (5.14) is dominated by small ϕ′ ∼ q0/p1

if α > (D − 1)/2. Thus, we find the behavior (5.17) even for the rather weak power-law decay. With
the help of V0 ∼ e2/κ in 2D, V0 ∼ e2/κ2 in 3D, and q0 ∼ κ, the decay rate of high-energy fermions
interacting via the screened Coulomb interaction (5.20) with κ & pF is of the form

1

τp1

∼ me4

p1
×


p2

F

κ
, D = 2,

p3
F

κ2
, D = 3.

(5.21)

To conclude this section, we qualitatively explain the 1/p1 scaling of the relaxation rate of hot fermions
in (5.17) and (5.21). Due to the suppression of the interaction potential at momentum transfers larger
than q0, the energy gain of the cold particle coming from the Fermi sea can be at most of the order
q2

0/2m. This energy transfer is associated with a momentum transfer which is almost perpendicular to
p1. The momentum transfer in the direction of p1 is of the order of q2

0/p1. At this point, the velocity
p1/m of the hot particle entered. Consequently, the phase space is reduced by the factor q0/p1 � 1,
giving rise to the 1/p1 decay of the relaxation rate. It should be noted that the specific decay as 1/p1

relies on the parabolic dispersion relation. However, the decay of 1/τ at high energies is more general,
and survives for any dispersion relation with a velocity that increases as a function of momentum.

5.2 Multi-channel quantum wires

After the detailed discussion of the relaxation processes for particles with isotropic parabolic energy
dispersion in D ≥ 2 in the previous section, we now study the relaxation in quasi-one-dimensional
multi-channel quantum wires. It is shown that the non-monotonic behavior of the decay rate obtained
in Sec. 5.1 is found in quasi-1D wires as well.

5.2.1 Setup

We start by introducing our model, which describes multi-channel quantum wires with 1D parabolic
energy bands that are labeled by an index n associated with the transverse quantization,

εn(p) =
p2

2m
+ ∆n. (5.22)

We denote by p the longitudinal momentum along the wire axis (z-axis), and ∆n determines the
bottom of the n-th band. The Fermi sea occupies one or more low-lying bands. The Fermi momentum
in the lowest band is denoted by pF. An illustration of the band structure can be found in Fig. 5.5.
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.5: Band structure of a multi-channel wire with parabolic bands labeled by an index n
of transverse quantization. The bold lines correspond to the occupied parts of the band structure
(Fermi sea). We denote by p the longitudinal momentum and by pF the Fermi momentum of the
lowest band.

The electrons inside the wire interact via the potential V (|r|) = V (|r⊥|, z), which assumes the form

Vn1,n2;n′1,n
′
2
(q) ≡

∫
dr⊥1 dr

⊥
2 V (|r⊥1 − r⊥2 |, q)ψ∗n1

(r⊥1 )ψ∗n2
(r⊥2 )ψn′1

(r⊥1 )ψn′2
(r⊥2 ) (5.23)

in the band representation. The wave functions of transverse quantization are denoted by ψn(r⊥), and
the integration domain is the cross section of the wire.

We aim to investigate the relaxation of a hot fermion injected with some longitudinal momentum
p1 into a band with index n1 such that its energy is much larger than the Fermi energy, εn1(p1)� εF.
To achieve this goal, we need to know the wave functions ψn(r⊥) and the positions ∆n of the energy
bands. As we demonstrate below, the collision processes at high energies generate excitations of
electrons into high energy bands. For this reason, the microscopic details of the wave functions of
transverse quantization are of minor importance. They can be approximated by plane waves with
e. g. periodic boundary conditions. In this case, the index n corresponds to the transverse momentum.
Figure 5.6 shows two relevant setups: a 2D electron gas with finite width d (strip), where the index is
an integer, n = 0,±1, . . ., and a wire with 2D cross section (characteristic size d), where n = (nx, ny)
is a 2D vector of integers.

Due to the correspondence between the band index and the transverse quantization, it follows that

∆n = ∆0|n|2 , ∆0 ∼
1

md2
. (5.24)

Furthermore, we demand the conservation of transverse momentum in the matrix element of the
interaction (“selection rule”),

Vn1,n2;n′1n
′
2
(q) =

1

dD⊥
Vn1−n′1(q)δn1+n2−n′1−n′2 , (5.25)
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.6: Geometry of a quasi-1D wire. a) A wire with 2D cross section of characteristic size d
to investigate the crossover to 3D. b) 2D strip of finite width d to investigate the crossover to 2D.

where D⊥ = 1, 2 is the transverse dimensionality of the wire. Analogous to Sec. 5.1, the interaction
potential is assumed to be approximately isotropic,

Vn(q) ' V
(
Q ≡

√
q2 + 4π2|n|2/d2

)
. (5.26)

Furthermore, we assume that it can be expanded at small momenta,

V (Q) ' V0

(
1−Q2/q2

0

)
, Q� q0, (5.27)

and is suppressed sufficiently strongly at Q � q0. This means that the decay rate is governed by
momentum transfers up to the order of q0.

5.2.2 Quasi-1D setup with one lateral dimension

We begin with the analysis of quasi-1D wires with a strip geometry of width d, see Fig. 5.6 b). Within
this model we can study the crossover to two spatial dimensions. We assume weak interactions and
make use of Fermi’s golden rule to compute the relaxation rate,

1

τ
=

1

2!

∫
dp2 dp′1 dp′2

∑
n2,n1′ ,n2′

δ(p1 + p2 − p′1 − p′2) δn1+n2,n1′+n2′ δ(ε1 + ε2 − ε1′ − ε2′)

× F (λ1, λ2;λ1′ , λ2′).

(5.28)

We use here the shorthand notation λi = (ni, pi), and εi ≡ εni(pi) is defined in Eq. (5.22). The
conservation of transverse momentum is taken into account by the Kronecker delta restricting the
summation over band indices. The function F in Eq. (5.28) contains the distribution functions as well
as the squared matrix element,

F (λ1, λ2;λ1′ , λ2′) = nF(ε2)[1− nF(ε1′)][1− nF(ε2′)]
∣∣∣Mλ1′ ,λ2′

λ1,λ2

∣∣∣2. (5.29)

In the spin-polarized case, the modulus square of the matrix element reads∣∣∣Mλ1′ ,λ2′
λ1,λ2

∣∣∣2=
1

d2

[
Vn1−n1′ (p1 − p′1)− Vn1−n2′ (p1 − p′2)

]2
, (5.30)
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while it is given by∣∣∣Mλ1′ ,λ2′
λ1,λ2

∣∣∣2 =
1

d2

[[
Vn1−n1′ (p1 − p′1)

]2
+
[
Vn1−n2′ (p1 − p′2)

]2
−Vn1−n1′ (p1−p′1)Vn1−n2′ (p1−p′2)

]
(5.31)

in the spinful case. It turns out to be useful to introduce the longitudinal momentum transfer q = p1−p′1
as an integration variable instead of p′1. The integrations over p2 and p′2 can be performed by exploiting
the delta functions corresponding to the conservation of energy and longitudinal momentum. We find

1

τ
=
m

2

∑
{ni}

∫
dq

|q|
F{ni}

(
p1, p1 − q +

m∆eff

q
; p1 − q, p1 +

m∆eff

q

)
, (5.32)

where the energy ∆eff is defined as

∆eff = ∆0(n2
1 + n2

2 − n2
1′ − n2

2′). (5.33)

The details of the calculation of the relaxation rate can be found in App. C.2.1. We obtain the following

behavior of the relaxation rate of a high-energy electron with total momentum ptot
1 =

√
p2

1 + p2
1⊥ � pF

in a multi-channel wire with a 2D strip geometry:

1

τε
∼



mV 2
0 p

2
F, pF � ptot

1 � q0, spinful,

m3V 2
0

p2
F

q4
0

ε2, pF � ptot
1 � q0, spinless,

√
mV 2

0 p
2
F

q0√
ε
, pF . q0 � ptot

1 ; (p1⊥, p1) 6∈ A,

(5.34)

where the transverse momentum p1⊥ = n1/d is introduced. This result coincides to a large extent with
the findings of an isotropic 2D system analyzed in Sec. 5.1. Both results differ when the momentum
is large and points almost in the transverse direction. More precisely, if the momentum (p1, p1⊥) is
contained in the region

A =

{
(p1, p1⊥) : p1⊥ > q2

0d and
p1

p1⊥
<

1

q0d

}
, (5.35)

which is depicted in Fig. 5.7, the decay rate is suppressed more strongly compared to the isotropic
2D result. This difference is a consequence of the transverse quantization. In order to explain this
effect, we consider the case in which the momentum of the initial hot electron points exactly in the
transverse direction, p1 = 0. This means that the electron sits at the bottom of a high-energy band. A
relaxation process is thus inevitably accompanied by a transition to a lower band with a momentum
transfer & 1/d in the direction of the initial momentum. In case of this momentum transfer exceeding
q2

0/p1⊥, the corresponding process is strongly suppressed (see explanation in the end of Sec. 5.1). From
this consideration, the first condition in (5.35) can be inferred. In App. C.2.1, we show that the decay
rate is suppressed for a small finite momentum component in the longitudinal direction as well [second
condition in (5.35)]. In region A, the relaxation rate is governed by the behavior of the interaction at
large momenta, leading to a decay faster than 1/

√
ε. Since it depends on the large-momentum tail of

V (q), the behavior is non-universal. The continuum limit can be performed by fixing the momenta pF,
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.7: Non-universal regime (5.35) for the relaxation rate in quasi-1D wires in the plane
spanned by the longitudinal (p1) and transverse (p1⊥) momentum. In the shaded region, the decay
rate decreases as a function of energy ε faster than 1/

√
ε. The actual behavior is non-universal

because it is determined by the large-momentum tail of V (q).

q0, p1, p1⊥ and sending d to infinity. In this limit, the regime (5.35) disappears and the usual behavior
for a 2D isotropic Fermi sea is recovered.

Completely analogous to the case of an isotropic system in 2D, our results are valid as well for
interaction potentials decaying at large q as 1/qα with α > 1/2. In particular, the decay of the
screened Coulomb interaction, Eq. (5.20), is fast enough to belong to this class.

5.2.3 Quasi-1D setup with two lateral dimensions

After the analysis of the geometry with one lateral dimension in the previous section, we discuss now
a quasi-1D wire with two lateral dimensions depicted in Fig. 5.6 a). In contrast to the situation in
Sec. 5.2.2, each electron now has two discrete indices: ni → ni = (ni,x, ni,y). Moreover, according to

Eq. (5.25), the replacement V
(2)
n (p)/d→ V

(3)
n (p)/d2 should be performed in the matrix element.

There is one further complication here compared to the case with only one lateral dimension. When-
ever the integer vectors (n1′ − n1) and (n1′ − n2) are perpendicular to each other, a “vertical” relax-
ation process with zero longitudinal momentum transfer is possible. As can be seen from Eq. (5.32),
these processes yield a formally (logarithmically) diverging contribution to the relaxation rate. The
broadening of the delta function related to the energy conservation by other processes regularizes the
logarithmic singularity. As a consequence, the contribution from these processes acquires a logarith-
mic factor ∼ ln(p1⊥/pF) compared to “non-singular” processes. Apart from that, due to the above
mentioned orthogonality condition of the vectors (n1′ − n1) and (n1′ − n2), only few processes belong
to the “singular” class. This leads to the additional factor (pFq0d

2)−1 � 1 suppressing the contribu-
tion of singular processes. This power-law suppression dominates over the logarithmic enhancement
in a parametrically broad regime of momenta p1⊥ of the hot particle, where the singular processes
are subleading. The contribution from singular processes is dominating only at very large p1⊥ (under
the assumption that our model is still valid at such high energies). In this regime, the 1/ptot

1 decay
of the relaxation rate is modified, however, only by a logarithmic factor slightly enhancing the rate.
Moreover, these singular processes are not allowed in more realistic models without a perfect parabolic
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dispersion relation. A slight anisotropy in the energy spectrum is enough to forbid such processes. In
what follows, we consider only the subclass of non-singular processes.

The details of the derivation of the relaxation rate of a high-energy electron with total momentum

ptot
1 =

√
p2

1 + p2
1⊥ � pF in a multi-channel wire with two lateral dimensions can be found in App. C.2.2.

We state here the result:

1

τε
∼



m3/2V 2
0 p

3
F

√
ε, pF � ptot

1 � q0, spinful,

m7/2V 2
0

p3
F

q4
0

ε5/2, pF � ptot
1 � q0, spinless,

√
mV 2

0 p
3
F

q2
0√
ε
, pF . q0 � ptot

1 , (p1⊥, p1) 6∈ A,

(5.36)

which is consistent with the corresponding findings for a 3D system with an isotropic Fermi sea, Sec. 5.1.
As in the situation of a wire with one transverse direction (2D strip, Sec. 5.2.2), there is a region A,
Eq. (5.35), where the relaxation rate is further suppressed due to the discreteness of the spectrum.

Similar to the 3D system with an isotropic Fermi sea, our results are valid as well for interaction
potentials V (q) with the power-law behavior 1/qα, α > 1, at large q. In particular, the case of the
screened Coulomb interaction V3D(q), Eq. (5.20), is contained in this class of potentials.

5.3 One-dimensional wires and triple collisions

In Secs. 5.1 and 5.2, we have demonstrated that the non-monotonic behavior of the relaxation rate as
a function of energy is a generic property in D ≥ 2 dimensions as well as in multi-channel wires with
many bands (quasi-1D). Here, we study a single-channel 1D wire with quadratic energy dispersion.

Energy and momentum conservation allow in 1D only permutations of the particles via two-particle
collisions. Thus, in contrast to the situation in Secs. 5.1 and 5.2, two-particle collisions do not lead to
relaxation, and one has to consider three-particle collisions. An introduction to three-particle collisions
is presented in Sec. 2.3. In a number of works [18, 130, 131, 139, 150–152, 154–163], the effect of three-
particle collisions was studied in the regime where the energy is much smaller than the Fermi energy.
However, not much is known about the high-energy limit, ε� εF. Recently, we investigated this case
in Ref. [153]. In the following, we review these results.

Fermi’s golden rule assumes the form

1

τp1

=
1

2!3!

∫
dp2dp3dp′1dp′2dp′3 δ

(
Ei − Ef

)
δ
(
Pi − Pf

)
nF(ε2)nF(ε3)

× [1− nF(ε′1)][1− nF(ε′2)][1− nF(ε′3)]
∣∣∣Mp′1,p

′
2,p
′
3

p1,p2,p3

∣∣∣2 (5.37)

in the case of three-particle collisions [see also Eq. (5.1) and notations therein]. We denote by M
p′1,p

′
2,p
′
3

p1,p2,p3

the matrix element for triple collisions. For spinful fermions, the spin summation in the symbol∣∣∣Mp′1,p
′
2,p
′
3

p1,p2,p3

∣∣∣2 is implied implicitly. The actual form of the matrix element is discussed below.

78



5.3 One-dimensional wires and triple collisions

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.8: Kinematics of 1D triple collisions in the q-P plane. The Fermi functions nF(ε2) and
nF(ε3) restrict the contribution of the integrations over q and P to the close vicinity of the point
(2p1/3, p1) for large momenta p1 � pF. This region is illustrated by the shaded area between the
two hyperbolas and the line P/3 + q = p1.

We can conveniently take into account the momentum and energy conservation by the parametriza-
tion

pk =
P

3
+ q cos

[
ϕ+

2π(k − 1)

3

]
, k = 1, 2, 3, (5.38)

p′k =
P

3
+ q cos

[
ϕ′ +

2π(k − 1)

3

]
, k = 1, 2, 3, (5.39)

of the momenta [152, 157]. Here, −∞ < P < ∞ has the meaning of the total momentum of the
particles, whereas q ≥ 0 corresponds to the relative momentum in the case of two-particle processes,
and is related to the total energy via

Ei = Ef =
P 2

6m
+

3q2

4m
. (5.40)

In terms of these variables, we can recast the relaxation rate in the form [see also Eq. (5.4) of Sec. 5.1]

1

τp1

=
m

2

∫ ∞
−∞

dP

∫ ∞
|P/3−p1|

q dq

∫ π

−π
dϕdϕ′ δ

[
p1 − p1(P, q, ϕ)

]
nF(ε2)nF(ε3)

× [1− nF(ε′1)][1− nF(ε′2)][1− nF(ε′3)]wq(ϕ,ϕ
′).

(5.41)

The function wq(ϕ,ϕ
′) is the modulus squared of the three-particle matrix element,

∣∣∣Mp′1,p
′
2,p
′
3

p1,p2,p3

∣∣∣2, eval-

uated on the mass shell, and p1(P, q, ϕ) is defined by Eq. (5.38).

In the analysis of Eq. (5.41), we can largely follow the similar procedure described in Sec. 5.1.
As illustrated in Fig. 5.8, the Fermi distributions nF(ε2) and nF(ε3) only yield a contribution in the
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integrations over P and q in the vicinity of the point (q = 2p1/3, P = p1) provided that p1 � pF. The
angle ϕ is fixed by the delta function to

ϕ0 = ± arccos
p1 − P/3

q
, |ϕ0| .

pF

p1
. (5.42)

In contrast to the low-energy regime, the Fermi functions corresponding to the outgoing particles are
irrelevant. This is completely analogous to the higher-dimensional cases and assumes only that the
interaction potential is able to transfer momenta of the order of pF. Therefore, Eq. (5.41) can be
simplified to

1

τp1

∼ mp2
F

∫ π

−π
dϕ′w2p1/3

(
ϕ ∼ pF

p1
, ϕ′

)
. (5.43)

So far we took into account only the kinematics of the triple-collision processes. In order to proceed,

we need to analyze the matrix element M
p′1,p

′
2,p
′
3

p1,p2,p3 . The matrix element for three-particle processes can
be derived in the second-order perturbation theory of the two-body interaction [131, 139, 157, 158].
For spin-polarized particles it can be obtained from the vacuum expectation value

M
p′1,p

′
2,p
′
3

p1,p2,p3 =
〈
ap3ap2ap1

∣∣∣ V̂ 1

E − Ĥ0 + i0
V̂
∣∣∣a†p1

a†p2
a†p3

〉
, (5.44)

where Ĥ0 and V̂ denote the free and interaction parts of the Hamiltonian, respectively. In Sec. 2.3, we
have demonstrated that Eq. (5.44) can be recast in the form

M
p′1,p

′
2,p
′
3

p1,p2,p3 = Mq(ϕ,ϕ
′) =

4m

3q2

∑2
j,k=0 Γq

(
ϕ+ 2πk

3 , ϕ′ + 2πj
3

)[
cos
(
ϕ+ 2πk

3

)
− cos

(
ϕ′ + 2πj

3

)]
cos 3ϕ− cos 3ϕ′

, (5.45)

with

Γq(ϕ,ϕ
′) = [V (q10)− V (q20)][V (q01)− V (q02)]− 2V (q12)V (q21) + 2V (q11)V (q22). (5.46)

Here, we use the shorthand notation

qkj = q

cos

(
ϕ+

2πk

3

)
− cos

(
ϕ′ +

2πj

3

) . (5.47)

for the individual momentum transfers in the collision. Due to the indistinguishability of the fermions,
the matrix element Mq(ϕ,ϕ

′) is an antiperiodic function of both angles with period 2π/3. The typical
scaling of the energy denominators in Eq. (5.44) leads to the factor 1/q2, whereas the denominator
cos 3ϕ− cos 3ϕ′ reflects the fact that the energy denominators become small for special constellations
with ϕ = ϕ′ mod 2π/3. However, exploiting the symmetry of the function Γq(ϕ,ϕ

′) under the ex-
change of ϕ and ϕ′, it can be shown that the zero of the denominator in Eq. (5.45) does not introduce
a pole, and the matrix element Mq(ϕ,ϕ

′) is an analytic function of the angles ϕ and ϕ′.
A detailed analysis of Eq. (5.45) reveals that for q � q0 & pF, the function Mq(ϕ ∼ pF/q, ϕ

′) is
of the order of mpFV

2
0 /q0q

2 for ϕ′ . q0/q, while it is strongly suppressed for ϕ′ > q0/q (up to the
periodicity mentioned above). More precisely, for fixed ϕ̃ and ϕ̃′ and q � q0, the matrix element scales
according to

Mq

(
q0ϕ̃/q, q0ϕ̃

′/q
)

=
4m

9q2

[
V 2(q−) + V (0)(V (q−)− q−V ′(q−))

]
− 〈q− → q+〉, (5.48)
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where q± =
√

3q0(ϕ̃± ϕ̃′)/2 and V ′ denotes the derivative of the interaction potential with respect to
momentum. In the derivation of Eq. (5.48), we do not take into account the terms with a momentum
transfer of the order of q since they are strongly suppressed. As can be seen from Eq. (5.48), the 1/q2

behavior of the matrix element which is already there in Eq. (5.45) for generic values of the angles
ϕ and ϕ′ is still present in the regime ϕ, ϕ′ . q0/q, where the energy denominators are of the order
of q2

0/m only. This can be explained by the involved cancellations of different collision processes in
Eq. (5.45).

In the regime ϕ̃, ϕ̃′ . 1, the matrix element in Eq.(5.48) possesses the scaling

Mq

(
q0ϕ̃/q, q0ϕ̃

′/q
)
∼ mV 2

0

q2
ϕ̃ϕ̃′ =

mV 2
0

q2
0

ϕϕ′. (5.49)

Using ϕ̃ ∼ pF/q0 . 1 in Eq. (5.49) and inserting this estimate into Eq. (5.43), we find

1

τp1

∼
m3p4

FV
4

0

q0p5
1

, p1 � q0 & pF (spinless). (5.50)

Equation (5.50) is one of the main results of the present section. We find that the relaxation rate
for spinless fermions at large momenta, p1 � q0, scales as a power-law, 1/τp1 ∝ p−5

1 . We assumed
here that the characteristic momentum scale of the interaction potential is larger than the Fermi
momentum, q0 & pF. This scaling can be compared to the higher-dimensional result, Eq. (5.17). As
in the higher-dimensional case, the reduction of the phase space by the inability of the interaction to
transfer momenta larger than q0 leads to the factor 1/p1. On top of that, in the 1D single-channel
case, the partial cancellations between direct and exchange terms in the three-particle matrix element
result in an additional factor 1/p4

1.
Let us now study the intermediate regime, where the momentum of the hot fermion (p1) is larger

than the Fermi momentum but smaller than the characteristic momentum scale q0. In this regime, the
interaction potential V (q) can be expanded to fourth order leading to the squared matrix element

wq(ϕ,ϕ
′) ∼ m2V 4

0 q
12 sin2(3ϕ) sin2(3ϕ′)

q16
0

. (5.51)

Performing the integration over ϕ′ in Eq. (5.43) and employing the estimates q ∼ 2p1/3 and ϕ ∼ pF/p1,
we arrive at

1

τp1

∼
m3p4

FV
4

0

q16
0

p10
1 , pF � p1 � q0 (spinless). (5.52)

The regime at energies much smaller than the Fermi energy is analyzed in App. C.3. We obtain the
scaling

1

τp1

∼
m3p6

FV
4

0

q16
0

(p1 − pF)8, p1 − pF � pF � q0, (spinless), (5.53)

which reproduces the result found in Ref. [131] in the situation in which the Fermi momentum is of
the same order as the characteristic momentum of the interaction q0.

In the case of spinful fermions, the matrix element is given by the generalization of Eq. (5.44), cf.
Sec. 2.3. Performing the spin summation and parametrizing the momenta according to Eqs. (5.38) and
(5.39), the modulus squared matrix element is of a similar form as Eq. (5.45). Unlike the situation in
the spinless case, non-integrable poles emerge in the squared matrix element at ϕ′ = ϕ mod 2π/3. At
zero temperature, however, the Fermi distributions of the outgoing particles exclude the region close
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5 Relaxation of high-energy fermions in quantum wires

to these singularities with a characteristic width of the order of pF/p1. At finite temperature, the
naive expression for the matrix element needs to be regularized. In Ref. [139] it is demonstrated that
the singularity emerges as a consequence of two consecutive two-particle collisions which are separated
by an infinite time. The authors of Ref. [139] demonstrate that a proper subtraction of these double-
counted two-particle processes yields a finite relaxation rate. For our purposes, such a regularization
scheme is not needed since we limit ourselves to zero temperature.

In the high-energy limit, p1 � q0, all the terms in the transition probability wq with momentum
transfers q that are of the order of p1 can be omitted. In the range of small angles, ϕ < pF/p1 and
ϕ′ < q0/p1, the transition amplitude can be brought to the simplified form

wq(ϕ,ϕ
′) ' 2m2V 2

0

(
V ′′0

)2
[
ϕ4 + 14ϕ2

(
ϕ′
)2

+
(
ϕ′
)4
]
. (5.54)

Here, the singularity at ϕ = ϕ′ does not show up since all singular terms contain the interaction
potential with a large momentum transfer of the order of p1. The omitted terms yield only a small
correction because we assume the potential to decay sufficiently fast at large momentum transfers, and
the singular points are outside the integration domain (see above). Hence, it is justified to neglect them
in Eq. (5.54). The squared matrix element is strongly suppressed for values of the angle ϕ′ beyond
q0/p1 (modulo 2π/3). A comparison of Eqs. (5.54) and (5.49) shows that the presence of spin solely
leads to the additional factor (ϕ′/ϕ)2 ∼ (q0/pF)2. The scaling with the momentum p1 is not modified.
Correspondingly, the relaxation rate is enhanced compared to the spin-polarized case but possesses
the same scaling with p1,

1

τp1

∼
m3p2

Fq0V
4

0

p5
1

, p1 � q0 � pF (spinful). (5.55)

In the intermediate regime, where the momentum p1 is much larger than the Fermi momentum pF

but smaller than the momentum scale q0 of the interaction potential, all momentum transfers are small
compared to q0. It is thus legitimate to expand the interaction potential V (q) to second order leading
to the squared matrix element

wq(ϕ,ϕ
′) ∼ m2V 4

0

q4
0

f(ϕ,ϕ′) (5.56)

with a function f(ϕ,ϕ′) that does not depend on q and has second order poles at ϕ = ϕ′ mod 2π/3.
As discussed above [see paragraph below Eq. (5.53)], those poles are not contained in the integration
domain of ϕ′ at zero temperature. The Fermi functions of the outgoing particles exclude the singular
points with a typical distance of the order of pF/p1. With these ingredients we find

1

τp1

∼ m3pFV
4

0

q4
0

p1, pF � p1 � q0 (spinful). (5.57)

The fact that the scalings (5.55) and (5.57) do not match at p1 = q0 is related to the neglect of the
terms with poles in ϕ′ and a large momentum transfer in the interaction potential in the derivation of
Eq. (5.55) [cf. discussion below Eq. (5.54)]. As a consequence, there is another intermediate regime
connecting the scalings (5.55) and (5.57). The boundaries of this regime are non-universal since they
depend on the large-momentum tail of V (q).

The analysis of the low-energy limit for spinful fermions is presented in App. C.3. The result reads

1

τp1

∼ m3V 4
0

q4
0

(p1 − pF)2, p1 − pF � pF � q0 (spinful). (5.58)
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.9: Schematic illustration of the relaxation rate in 1D on the double-log scale for spinless
and spinful fermions. In the low-energy regime, the relaxation rate is given by Eqs. (5.58) and (5.53)
for spinful and spinless fermions, respectively. In the latter case, the rate is strongly suppressed
due to the Hartree-Fock cancellation. At intermediate momenta, pF � p1 � q0, the rate increases
as p1 [cf. Eq. (5.57)] for spinful and as p10

1 [cf. Eq. (5.52)] for spin-polarized fermions. In the
high-energy regime, p1 � q0, the relaxation rate behaves as 1/p5

1 in both cases. The prefactor
for spin-polarized fermions is, however, reduced by the factor p2

F/q
2
0 compared to spinful case, cf.

Eqs. (5.50) and (5.55), respectively. For spinful fermions there is a narrow non-universal regime
near p1 ∼ q0 (dashed line).

We can compare this result to the one of Ref. [132] for the case of unscreened Coulomb interaction.
The scaling law found in Ref. [132] agrees with our result (5.58) besides logarithmic factors that are
related to the Coulomb interaction. We discuss the effect of Coulomb interaction below. Note that
the energy scaling of the relaxation rate is the same as for a standard Fermi liquid. Of course, for a
weak interaction V0, the prefactor is strongly reduced compared to the Fermi-liquid result since in 1D
two-particle processes do not contribute to relaxation.

Figure 5.9 illustrates the momentum dependence of the relaxation rate in 1D for spinful and spin-
polarized fermions. It shows that the non-monotonicity of the relaxation rate as well as the regain
of coherence at high energies is not only found in higher dimensions but survives also in strictly 1D
systems.

Figure 5.10 presents the results of the numerical evaluation of the integrations in Eq. (5.41) for
spin-polarized fermions in 1D. The model interaction V (q) = exp(−q2/p2

F) with a characteristic scale
q0 equal to the Fermi momentum pF was used. Our analytical results predict in the low-energy regime,
p1 − pF � pF, the (p1 − pF)8 scaling, and at p1 � pF the p−5

1 scaling of the relaxation rate [see
Eqs. (5.53) and (5.50), respectively]. Our analytical predictions agree very well with these numerical
results. It is interesting to note that the relaxation rate possesses a local minimum in the crossover
regime around p1 = 3pF.

Coulomb interaction Let us now turn to the discussion of the Coulomb interaction in 1D. Sur-
prisingly, the three-particle matrix element (5.45) for spinless fermions vanishes for pure Coulomb
interaction, V (q) = e2 ln 1/a|q| [157]. This result is unexpected since the model of spinless fermions in-
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[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure 5.10: Relaxation rate 1/τp1 for spinless fermions in 1D on the log-log scale. The result was
obtained by a numerical evaluation of Eq. (5.41) using the model interaction V (q) = exp(−q2/p2

F),
which corresponds to q0 = pF. Introducing a small temperature, T/εF = 0.01, smeared the Fermi-
distributions. The low- and high-energy asymptotes, Eqs. (5.53) and (5.50), are plotted as straight
lines.

teracting via the 1D Coulomb interaction is not integrable [157]. Hence, we introduce a short-distance
cutoff for the 1D Coulomb interaction, d ≡ 1/q0, which corresponds to the finite width of the 1D
channel, resulting in the form

V1D(q) = e2

∫
dx eiqx

1√
x2 + 1/q2

0

= 2e2K0(|q|/q0) (5.59)

for the Coulomb interaction in momentum space. Here, K0 denotes the modified Bessel function of the
second kind. In the limit q � q0, the interaction potential (5.59) decays exponentially. In this respect,
it belongs to the class of interactions studied in the rest of this section. However, the low-momentum
behavior is different. Nevertheless, for spinless fermions, the form of the three-particle matrix element,
Eq. (5.48), stays the same apart from the replacement of the divergent constant V (0) by

V

[
q2

0

2q

(
ϕ̃2 − (ϕ̃′)2

)]
' −2e2 ln

q0

∣∣∣ϕ̃2 − (ϕ̃′)2
∣∣∣

q
. (5.60)

In the regime ϕ̃, ϕ̃′ . 1, we obtain

Mq

(
q0ϕ̃/q, q0ϕ̃

′/q
)
∼ me4

q2
ln

q

q0
ln

∣∣∣∣∣ ϕ̃− ϕ̃′ϕ̃+ ϕ̃′

∣∣∣∣∣ , q � q0. (5.61)

Using the expression (5.43), we find the scaling of the relaxation rate at high energies,

1

τp1

∼
m3p3

Fe
8 ln2 p1/q0

p5
1

, p1 � q0 & pF (spinless). (5.62)
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As a result, we observe that the singular behavior of the Coulomb interaction potential enhances the
scattering rate in this regime compared to the previous result, Eq. (5.50), by the factor (q0/pF) ln2 p1/q0.
The power-law scaling as 1/p5

1 is, however, unchanged.

If the momentum of the incident particle is smaller than the momentum scale of the interaction,
p1 . q0, the Coulomb potential (5.59) can be approximated by

V1D(q) ' e2

(
1 +

q2

4q2
0

)
ln
q0

|q|
. (5.63)

The dominant behavior of the matrix element for triple collisions, Eq. (5.45), is given by [157]

Mq(ϕ,ϕ
′) ∼ me4 ln q/q0

q2
0

3∑
k=1

ln
∣∣∣sin ϕ−ϕ′+2πk/3

2

∣∣∣
1 + 2 cos

(
ϕ− ϕ′ + 2πk/3

) − 〈ϕ′ → −ϕ′〉 . (5.64)

The main contribution to the decay rate at p1 � q0 still originates from the regime of small angles ϕ′

in the integration in Eq. (5.43). The expression for the matrix element (5.64) can be simplified in this
regime to the form [see also Eq. (5.61)]

Mq

(
ϕ,ϕ′

)
∼ me4

q2
0

ln
q

q0
ln

∣∣∣∣∣ϕ− ϕ′ϕ+ ϕ′

∣∣∣∣∣ , q � q0. (5.65)

This leads to the behavior

1

τp1

∼
m3p3

Fe
8 ln2 p1/q0

q4
0p1

, pF � p1 � q0 (spinless) (5.66)

of the decay rate.

In the low-energy regime, we translate the result of Ref. [157] to our notations:

1

τp1

∼ m3e8 ln2 pF/q0

q4
0p

2
F

(p1 − pF)4, p1 − pF � pF � q0, (spinless). (5.67)

Compared to the corresponding result for a short-range interaction, Eq. (5.53), a power-law with a
smaller power is found.

After the analysis of the relaxation of spinless fermions interacting via Coulomb interaction, we
now discuss spinful fermions with Coulomb interaction. Completely analogous to the situation of a
short-range potential, in the regime p1 � q0 � pF, the main contribution comes from small angles,
ϕ,ϕ′ . q0/q. Moreover, terms in the squared matrix element wq(ϕ,ϕ

′) containing the interaction
potential with a large momentum transfer of the order of p1 can be omitted. We can thus approximate
the squared matrix element by

wq

(
q0ϕ̃/q, q0ϕ̃

′/q
)
∼ m2e8 ln2 q/q0

q4

{[
V1D(q+)− q+V

′
1D(q+)− V1D(q−) + q−V

′
1D(q−)

]2

+
[
V1D(q+)− q+V

′
1D(q+)

] [
V1D(q−)− q−V ′1D(q−)

]}
, (5.68)
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where q± =
√

3q0(ϕ̃ ± ϕ̃′)/2 and the interaction potential V1D is given by Eq. (5.59). Just as for a
short-range interaction, the squared matrix element (5.68) does not possess any poles. Making use of
ϕ̃ ∼ pF/q0 � 1 in Eq. (5.68) and employing Eq. 5.43, we obtain

1

τp1

∼
m3p2

Fq0e
8 ln2 p1/q0

p5
1

, p1 � q0 & pF (spinful). (5.69)

At lower momenta of the incident particle, pF � p1 � q0, the Coulomb interaction (5.59) can be
approximated by

V1D(q) ' e2 ln
q0

|q|
, (5.70)

leading to

wq(ϕ,ϕ
′) ∼ m2e8 ln2 q/q0

q4(cos 3ϕ− cos 3ϕ′)2

 2∑
j=0

sin

(
ϕ+ ϕ′

2
+

2πj

3

)
ln

∣∣∣∣∣∣sin
(
ϕ+ ϕ′

2
+

2πj

3

)∣∣∣∣∣∣


2

+
〈
ϕ′ → −ϕ′

〉
.

(5.71)
We keep here only the leading behavior of the squared matrix element given by the large factor ln q0/q.
In the regime of small ϕ and ϕ′, the expression in Eq. (5.71) can be simplified,

wq(ϕ,ϕ
′) ∼ m2e8 ln2 q/q0

q4

[
ln2 |ϕ− ϕ′|
(ϕ+ ϕ′)2

+
〈
ϕ′ → −ϕ′

〉]
. (5.72)

The divergence at ϕ′ = ϕ in the integration in Eq. (5.43) is cut off at ϕ′−ϕ ∼ pF/p1 [see the discussion
in the paragraph below Eq. (5.53)]. Evaluating the integral, we find

1

τp1

∼ m3e8pF

p3
1

ln2 p1

q0
ln2 pF

p1
, pF � p1 � q0, (spinful). (5.73)

The limit of low energies for spinful fermions interacting via unscreened Coulomb interaction,
Eq. (5.70), is analyzed in Ref. [132]. Adapted to our notations, the result is

1

τp1

∼
m3e8 ln2 q0

pF
ln2 p1−pF

pF

p4
F

(p1 − pF)2, p1 − pF � pF � q0 (spinful). (5.74)

Compared to the case of a short-range interaction potential, Eq. (5.58), we find the same leading
behavior ∼ (p1−pF)2. This scaling originates from the phase space contribution ∼ (p1−pF)4 together
with the strongly enhanced transition probability which yields a factor (p1 − pF)−2 (see App. C.3).

Looking at Eqs. (5.62), (5.66) and (5.67) for spinless, and at Eqs. (5.69), (5.73) and (5.74) for
spinful fermions, we observe that the relaxation rate shows non-monotonic behavior for the case of the
Coulomb interaction (5.59) in 1D systems as well. In the case of spin-polarized fermions, the relaxation
rate grows as (p1 − pF)4 in the low-energy regime but then decays as 1/p1, and eventually as 1/p5

1

at high energies. For spinful fermions, 1/τ grows at low momenta as (p1 − pF)2, then decays as 1/p3
1

and ultimately as 1/p5
1. Certainly, in a real physical wire, the strictly 1D behavior is found only for

energies of the hot fermion that are below the bottom of the second subband.
Completely analogous to the higher dimensional case (see a discussion in the end of Sec. 5.1), the

actual 1/p5
1 behavior of the relaxation rate is related to the specific form of the energy spectrum.

However, the decay of the relaxation rate at high energies is a general feature of all dispersion relations
with a velocity that is increasing with momentum.
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5.4 Comparison to experiment

We can compare our results to the experimental findings of Ref. [98]. By means of scanning tunneling
microscopy (STM), the authors of Ref. [98] measured the phase coherence length Lϕ as well as the phase
coherence time as a function of energy for a multi-band wire. Details of the experiment are discussed in
Sec. 2.4. In this paper, it is found (see Fig. 2.2 of this thesis or Fig. 2 of Ref. [98]) that near the Fermi
energy the phase coherence length is about 70 nm, then decreases rapidly to a minimum of roughly
20 nm at around 80 meV above the Fermi energy. Upon further increasing the energy, the coherence
length grows again. At the highest measured energy of 330 meV, shown in Fig. 2.2 a) (Fig. 2 (b) of
Ref. [98]), the decay of the oscillations is not visible on the length scale of 40 nm, hence implying a
coherence length Lϕ & 100 nm. This data point is not shown in Fig. 2.2 b) (Fig. 2 (c) of Ref. [98]).
Taking into account this data point would suggest an even stronger decay of Lϕ at high energies.

Within our theory, we find a 1/p scaling of the decay rate 1/τ in the large-momentum limit for multi-
channel wires with parabolic dispersion. The associated mean free path is l = vτ , where the velocity is
v = p/m. As a result, we find that the mean free path induced by electron-electron interaction behaves
linearly as a function of energy ε for hot electrons in a multi-channel wire. Under the assumption that
the leading contribution to the decay of the coherent oscillations measured via STM is determined by
the relaxation due to electron-electron interaction, we get the same behavior for the coherence length,
Lϕ ∝ ε. This result agrees well with the observations of Ref. [98]. As discussed above, the coherence
length increases from ' 20 nm to ' 100 nm when the energy is increased from 80 meV to 330 meV. On
the other hand, we should note that our model does not incorporate the specific dispersion of the InAs
nanowire. Ab initio calculations as well as STM measurements in Ref. [98] suggest an energy dispersion
of the subbands of this wire that is quadratic only at low momenta and rather linear at high momenta.
Our aim was not to explain this specific experiment quantitatively, but rather to demonstrate that the
non-monotonic behavior of the relaxation rate is a general phenomenon. We hope that our work will
stimulate future experiments with different setups which could verify our general predictions about
the regain of coherence at high energies.

5.5 Summary of chapter 5

In summary, we have investigated the interaction-induced relaxation rate of hot fermions in quantum
wires as a function of energy. We have demonstrated that under quite general circumstances, the
relaxation rate 1/τ decays as a power-law at high energies. Together with the increase of the collision
rate in the low-energy regime, a non-monotonic behavior is found. This means that electrons with
energies much larger than the Fermi energy regain their coherence with increasing energy.

As a starting point, we considered systems in D ≥ 2 dimensions, where the relaxation rate decays
according to Eq. (5.17) as 1/p at large momenta. We derived this result under the assumption of a
parabolic dispersion and a sufficiently fast decaying interaction potential at large momenta. It should
be emphasized here that the Coulomb interaction is contained in this class of interactions, so that
our results are valid in this case as well, see Eq. (5.21). The decay of the relaxation rates as 1/p can
be explained by the increase of the velocity of the hot fermion compared to the velocity of the cold
particles inside the Fermi sea. Due to the suppression of the interaction potential beyond momentum
transfers of the order of q0, the momentum transfer of the hot particle is almost perpendicular to
the direction of its initial momentum, with a deviation of the order of q0/p. Figure 5.3 illustrates
schematically the momentum dependence of the relaxation rate for spinless and spinful particles in
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a 3D system from the Fermi-liquid to the ultra-hot regime. The numerical result for 1/τ shown in
Fig. 5.4 verifies our analytical predictions.

We were particularly interested in the relaxation of fermions in quasi-1D wires. Such systems host
multiple subbands of transverse quantization and were studied experimentally with regard to the re-
laxation at high energies in Ref. [98]. In essence, we obtain the same results as in bulk systems, see
Eqs. (5.34) and (5.36) for multi-channel wires with one and two lateral dimensions, respectively. How-
ever, at very high energies, there is a non-universal regime in which the discreteness of the transverse
energy spectrum is important. This regime exists for ultra-hot particles whose momenta point nearly
perpendicular to the wire axis, see Fig. 5.7. Here, the relaxation rate decays faster than 1/p. The
actual behavior is non-universal since it depends on the specific form of the large-momentum tail of
the interaction.

Another central goal was the investigation of the relaxation rate in 1D single-channel wires. We have
shown that the non-monotonicity of 1/τ is present in strictly 1D systems as well. In contrast to higher
dimensions and multi-channel wires, the relaxation rate is determined by three-particle collisions. Here,
we obtain a much stronger decay of the relaxation rate at high energies, 1/τ ∝ 1/p5, see Eq. (5.50).
The origin for this strong decay is twofold: (i) as in higher dimensions, a factor 1/p originates from
the velocity mismatch and the limitation on the possible momentum transfer, and (ii) a factor 1/p4

emerges from partial cancellations in the three-particle matrix element. The behavior of the relaxation
rate over the whole range of momenta for spinless as well as spinful fermions in a 1D system is depicted
schematically in Fig. 5.9. The numerical evaluation of 1/τ , shown in Fig. 5.10, verifies our analytical
predictions. The analysis of the Coulomb interaction in single-channel wires has shown that the decay
of the relaxation rate in the high-energy limit persists in this case as well. Due to the singular behavior
of the Coulomb interaction at low momenta, the scaling of 1/τ as a function of momentum is enhanced
by logarithmic factors in the ultra-hot regime, see Eqs. (5.62) and (5.69).

In conclusion, we have shown that the revival of coherence at high energies is a quite generic feature
which might be employed in quantum-technology applications. Independent of the dimensionality of
the system, in single-channel and multi-channel wires as well as in 2D and 3D systems, a regain of the
phase coherence is found. Besides this general observation, we want to emphasize that the decay of
the relaxation rate at high energies is particularly strong in strictly 1D single-channel wires.

Before closing this chapter, we remark a possible extension of this work. In this chapter, we neglected
the influence of disorder on the scattering. We can ask the question about the fate of our results in
the presence of disorder. We expect that generally two cases should be distinguished. In the first
scenario, the electrons in the Fermi sea behave diffusively on the times scales relevant for the collision
process. Due to the diffusive motion, the inelastic scattering rate in the low-energy limit is strongly
enhanced [164]. At high energies, however, the relevant time scale determined by the typical energy
transfer is shorter such that a ballistic motion is possible at large enough energies. The enhancement
of the scattering rate is thus presumably weaker at high energies. This means that the non-monotonic
behavior of the relaxation rate should survive in this kind of disordered system. The second scenario
is that of strong disorder leading to localization [147, 148]. In such a situation, the inelastic scattering
rate vanishes at low energies. However, at sufficiently high energies, the relaxation rate becomes finite
[165]. A deeper analysis of the relaxation rate in disordered systems poses an interesting research
project for the future.
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In this thesis, we have studied the transport properties and relaxation phenomena in 1D interacting
systems. The electrical transport has been investigated in Josephson junction (JJ) chains which show
the remarkable phenomenon of a superconductor-insulator transition (SIT). These systems also offer
the possibility to examine relaxation phenomena: we have considered the decay of excited plasmonic
waves in such devices. In addition to the relaxation of bosonic excitations in JJ chains, we have dis-
cussed the relaxation of high-energy fermions in quantum wires. In the following, we summarize the
main results of this thesis and present a prospect for future research projects.

After the introductory Chaps. 1 and 2, we turned in Chap. 3 to the discussion of the transport
characteristics of JJ chains. In these systems, a quantum phase transition can be observed [39–43] which
connects the superconducting and insulating phases characterized by infinite and zero conductivity,
respectively. Starting from a lattice model that contains capacitive couplings to the ground (C0) as
well as between the superconducting grains (C1), a low-energy theory in terms of a sine-Gordon model
was derived. The SIT is driven by the proliferation of quantum phase slips (QPS) — 2π windings
of the phase difference across one of the junctions. In contrast to previous theoretical studies of the
phase transition in JJ chains [14, 44, 49, 57], our model incorporates disorder effects. Two sources
of disorder are considered: random offset charges as well as a random QPS amplitude arising from
the interplay of fluctuations of the Josephson energy and random stray charges. The phase diagram
is obtained by means of the renormalization group (RG) which predicts a quantum phase transition
in the Berezinskii-Kosterlitz-Thouless (BKT) universality class. The ultimate low-energy behavior
is governed by the ratio of the Josephson energy EJ to the charging energy E0 associated with the
ground capacitance C0. In a clean system, the critical point is located at K0 =

√
EJ/E0 = 2/π for

an infinitesimal value of the QPS amplitude, while in the strongly disordered case, the critical value
is reduced to K0 = 3/2π. As can be seen from Fig. 3.2, even a small amount of random offset charges
shifts the phase boundary quite appreciably in favor of the superconducting phase. This at first glance
surprising effect can be explained by the destructive interference of QPS. Phase slips acquire a random
phase via the Aharonov-Casher effect due to the charge disorder. The second type of disorder, arising
from spatial variations of the junction parameters and leading to QPS with a fluctuating amplitude,
shifts the transition line in the opposite direction, cf. Fig. 3.2.

The transport properties were obtained within the memory-function formalism. The behavior of
electrical transport quantities at the phase boundary constitutes a central result of this thesis. At
the transition line, the resistivity ρ vanishes linearly with a logarithmic correction as a function of
temperature T , see Eq. (3.41). We further studied the length dependence of the resistance R at
zero temperature. At the critical line, this quantity vanishes logarithmically as the system size N is
increased, see Eq. (3.43). The overall behavior of ρ(T ) and R(N) is strongly non-monotonic. In the
case of local Coulomb interaction, C1 � C0, the resistivity in the insulating regime shows up to three
different regimes, cf. Figs. 3.4 and 3.5. At relatively high temperatures, where by assumption the
offset charges are weak, QPS lead to a growth of the resistivity. Upon lowering T , the random offset
charges become stronger and suppress the influence of QPS resulting in a decreasing behavior of the
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resistivity. However, at low temperatures, phase slips ultimately take over driving the system into
the insulating fixed point. The same behavior is found for resistance curves in the insulating regime
close to criticality upon increasing the system size. In the superconducting phase only the first two
regimes emerge in the length dependence of R. Random offset charges are in this case strong enough
to win over the QPS. In the regime of non-local Coulomb interaction, C0 � C1, an additional regime
at high T (small N) shows up, where the resistivity (resistance) exhibits a fast drop upon lowering T
(increasing N). Accordingly, up to four different regimes can be observed, see Fig. 3.8.

Comparing our results to the experiment reported in Ref. [39], where the temperature dependent
resistance of JJ chains with a SQUID geometry was measured, yields qualitative agreement. The exper-
imental resistance curves as a function of temperature show three different regimes in the insulating
phase: upon lowering the temperature, the resistance first increases, then decreases and eventually
shoots up at low T , similar to Fig. 3.4 a). However, there is disagreement between our prediction
and the experimental result of Ref. [39] concerning the location of the SIT. There are several possible
reasons for this discrepancy. The chains in the experiment of Ref. [39] might be too short (up to
N = 255) or the temperature too high (50 mK) to probe the ultimate infrared behavior. Indeed, our
work clearly demonstrates that the overall dependences of ρ(T ) and R(N) are strongly non-monotonic,
making it difficult to extract the position of the phase boundary based on experimental data available
in a limited range of T and N . Moreover, it was pointed out in Ref. [53] that the measurements in
SQUID chains might be affected by an external noise or an interplay of charge and flux. Our prediction
of the location of the SIT is consistent with the observations made in Ref. [53], where the threshold
voltages for the onset of transport in the insulating regime were measured in single-junction chains.

A few issues have been left out in our theory on the SIT. We mention two possible directions for
the extension of the work presented in Chap. 3. Firstly, the random spatial variations of the Luttinger
constant K0 were not included into our theory. Such fluctuations are of course also present as a result
of the spatial variations of the junction parameters. Assuming their strength to be small, they are
expected to be of minor significance for the charge transport. However, from a related work on quan-
tum wires [146] we can anticipate that the thermal transport should be affected since such fluctuations
can localize the bosonic modes. Secondly, it would be interesting to study the fate of the insulating
resistivity curves inside the strong-coupling regime. We expect a transition to a many-body localized
phase [147, 148] characterized by infinite resistivity. Experimentally, localization effects were observed
in 2D disordered systems close to the SIT [166]. We think that similar effects should be observable in
1D as well.

Josephson-junction chains allow not only for the investigation of interesting transport properties but
also offer the opportunity to study the relaxation of excitations in 1D systems. This was demonstrated
recently in an experiment [73] which analyzed the quality factor of plasmonic waves in a double chain
of JJs. We studied the decay of plasmonic waves in JJ chains in Chap. 4. Motivated by the experiment,
we analyzed two capacitively coupled chains as well as a single linear chain. It was shown that in the
parameter regime where the ground capacitance (Cg) can be neglected, the theory for the antisymmetric
mode in the double chain can be mapped onto a theory for a single chain. Two mechanisms contributing
to the relaxation of plasmonic waves are considered: the scattering off QPS and the interaction of the
plasma waves due to gradient anharmonicities. The contribution originating from QPS leads to a
power-law scaling of the relaxation rate with a non-universal exponent that depends on K0. Figure 4.2
shows its scaling in different parameter regimes. It should be further emphasized that the phase-slip
contribution is exponentially small in the parameter

√
EJ/E1, where E1 is the charging energy related

to the junction capacitance.
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The second contribution to the decay of plasmons emerges from the gradient nonlinearities. As
an example, we analyzed the quartic term arising in the expansion of the Josephson potential. Its
contribution leads to the universal ω4 scaling of the relaxation rate. As expected from the irrelevance
of this term in the RG, it vanishes in the zero-frequency limit. Nevertheless, this contribution dominates
the relaxation rate in a wide range of frequencies if the bare QPS amplitude is small.

The interplay of both channels is studied by means of the product of mode frequency and lifetime, a
dimensionless quantity expected to be proportional to the quality factor which is studied experimen-
tally in Ref. [73]. We find that in the insulating regime, K0 � 1, the quality factor is a non-monotonic
function of frequency, see Fig. 4.4. Our main result in this context is that the quality factor is domi-
nated by the gradient-anharmonicity contribution, which scales as ω−3, down to a crossover frequency
that is exponentially small in the parameter

√
EJ/E1. Only at even lower frequencies, the quality

factor decreases with frequency. This explains the apparent superconducting behavior of the quality
factor observed in the experiment for devices that are expected to be in the insulating regime. The
insulating behavior would show up only at lower frequencies outside the range of measured frequencies.
Accordingly, we stress that the observed change in the behavior of the quality factor from increasing to
decreasing in Ref. [73] is not related to the SIT. Our prediction of the ω−3 scaling of the quality factor
at high frequencies for devices with a large value of EJ/E1 is in accordance with the data of Ref. [73].
However, the experimental data suggests a very weak dependence of the quality factor of these devices
with respect to the charging energy E0. Our theory, however, predicts a strong dependence scaling as
E3

0 . This result is obtained for the particular example of the quartic nonlinearity originating from the
Josephson potential. We suppose that a different type of nonlinearity is responsible for this behavior.
It would be interesting to search for other types of nonlinearities which result in a weaker dependence
on E0 and lead to a quantitative agreement with the experiment.

Relaxation plays a central role in fermionic systems as well. Therefore, besides the decay of bosonic
excitations in JJ chains, we studied the relaxation of fermionic excitations in quantum wires. Motivated
by a recent experiment [98], we focused in Chap. 5 on the decay at high energies larger than the Fermi
energy. We investigated the decay of fermions in quasi-1D wires with several channels of transverse
quantization as well as in single-channel wires. To better understand the quasi-1D case, we also
considered isotropic 2D and 3D systems. Our main result is the power-law decay of the relaxation rate
1/τ at high energies in all these systems and under quite general circumstances. Accordingly, fermions
regain their coherence at high energies larger than the Fermi energy.

As a starting point we considered the case of higher dimensions D ≥ 2 and obtained 1/τ ∝ p−1 in the
regime where the momentum p of the hot particle is larger than the Fermi momentum, cf. Eq. (5.17).
This specific form rests on the assumption of a parabolic energy dispersion and the interaction potential
decaying sufficiently fast at high momenta. It should be stressed that the screened Coulomb interaction
belongs to this class of interactions so that our results remain valid for this case, see Eq. (5.21). The
decay of the relaxation rate at high momenta is related to the velocity mismatch between the high-
energy fermion and the ones occupying the Fermi sea as well as the limited possible momentum transfer
by the interaction. For a non-parabolic energy spectrum, the decay of the relaxation rate persists
provided that the velocity is an increasing function of momentum. The non-monotonic behavior of the
relaxation rate for spinful and spin-polarized fermions in three dimensions is depicted schematically in
Fig. 5.3.

In quasi-1D setups, i. e., in wires with multiple subbands, we obtained to a large extent the same
results as in higher-dimensional systems, as can be seen from Eqs. (5.34) and (5.36) for multi-channel
systems with one and two lateral dimensions, respectively. The only difference is a non-universal
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regime, depicted in Fig. 5.7, where the discreteness of the spectrum is important leading to a decay of
1/τ at high energies which is faster than 1/p.

In the case of strictly 1D wires with a parabolic spectrum, two-particle collisions do not lead to
relaxation, and one has to consider three-particle scattering processes. Here, we obtain a particularly
strong decay of the relaxation rate at high momenta proportional to 1/p5, see Eq. (5.50). A factor
of 1/p emerges due to the same reasons as in the higher-dimensional cases while the additional factor
1/p4 is related to partial cancellations in the three-particle matrix element. The schematic behavior
of the non-monotonic decay rate from low to large momenta is illustrated in Fig. 5.9. An analysis of
the Coulomb interaction in 1D wires has shown that, up to logarithmic factors related to the singular
behavior of the Coulomb potential at low momenta, the relaxation rate decays as the same power-law
at high momenta, see Eqs. (5.62) and (5.69).

Comparing our results of the decay rate to the findings of the experiment of Ref. [98], we obtain
qualitative agreement although the energy spectrum of the nanowires analyzed in the experiment is
not parabolic. We hope that our quite general result, the revival of the coherence of fermions at high
energies, initiates further experimental studies of the decay rate in various setups.

In our calculation of the relaxation rate we assumed clean systems. It would be interesting to ana-
lyze the influence of disorder on the relaxation rate. Preliminary considerations show that one should
distinguish two cases. If the electrons in the Fermi sea behave diffusively on the time scales relevant for
the scattering process, it is known that the inelastic scattering rate at low energies is enhanced [164].
At high energies, the relevant time scale, which is determined by the typical energy transfer, is smaller.
Accordingly, the motion might remain ballistic leading to a weaker enhancement. As a consequence,
the non-monotonic behavior of the relaxation rate persists. If the disorder is strong enough to cause
localization [147, 148], the relaxation rate vanishes at low energies. On the other hand, at higher
energies, the relaxation rate is finite [165]. A detailed analysis of the decay rate as a function of energy
is missing up to the present date.

In conclusion, we have shown that the transport and the relaxation in 1D interacting systems are
characterized by many fascinating effects. After a long time of intensive research on the physics of 1D
systems that started many decades ago, this field is still very active today. We can expect that further
technological improvements will offer many opportunities for applications based on the fundamental
properties of 1D systems. Moreover, there are still many aspects in the field of 1D physics that are
waiting to be discovered.
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Notations and Conventions

We present here a compilation of notations and conventions used throughout this thesis:

• Apart from a few occasions, where we explicitly reintroduce ~, we use units, in which ~ = c =
kB = 1. Here, ~ denotes the reduced Planck’s constant, kB Boltzmann’s constant, and c the
velocity of light.

• Integral signs without specified limits should be understood to run over the whole real line:∫
dx ... ≡

∫ ∞
−∞

dx ...

• The Fermi-Dirac distribution function is denoted by

nF(ε) =
1

exp
(
ε−µ
T

)
+ 1

,

where µ is the chemical potential (Fermi energy at zero temperature).

• The Bose-Einstein distribution function is denoted by

nB(ε) =
1

exp
(
ε−µ
T

)
− 1

,

where the chemical potential is zero for the bosons considered in this thesis, µ = 0.

• Bold symbols denote two- or three-component vectors in two or three dimensions, respectively.
Occasionally, one component of a two-dimensional vector is given by the imaginary time.

Next, we introduce the basic notations used throughout the thesis:

a lattice spacing (ultraviolet cutoff)

C1 junction capacitance

C0 ground capacitance (single chain), interchain capacitance (double chain)

Cg ground capacitance (double chain)

E1 charging energy related to C1: E1 = (2e)2/C1

E0 charging energy related to C0: E0 = (2e)2/C0

Eg charging energy related to Cg: Eg = (2e)2/Cg

EJ Josephson energy

e elementary charge (italic ’e’)

e Euler’s number (upright ’e’)
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Notations and Conventions

t (real) time

τ imaginary time

τp relaxation time as a function of momentum p

τ(ω) relaxation time as a function of frequency ω

N number of junctions (per chain)

N number of (excess) Cooper pairs

θ superconducting phase

K Luttinger parameter (phase stiffness) at the cutoff (q ∼ 1)

K0 Luttinger parameter in the case of local Coulomb interaction

Λ screening length of 1D Coulomb interaction

Ω0 plasmonic bandwidth in Josephson junction chain

ωp plasma frequency of Josephson junction

ug group velocity at the cutoff normalized by Ω0

u0 velocity of plasmons in Josephson junction chains with local Coulomb interaction

DQ disorder strength of random stray charges

Dξ disorder strength of phase slips with a random amplitude (variation of device parameters)

Dξ,y effective disorder strength (combination of phase slips with regular and random amplitude)

y fugacity (amplitude) of a phase slip

φ bosonic field related to density of Cooper pairs

Φ magnetic flux

Φ0 (superconducting) magnetic flux quantum

l logarithm of running RG scale

lc length scale related to the curvature of the energy spectrum

T temperature

β inverse temperature, β = 1/T

Nth thermal length

M memory function

σ conductivity

R resistance

d width of lateral dimension

D (spatial) dimension

∆n spacing of subbands

m mass

pF Fermi momentum

εF Fermi energy

V interaction

V0 zero-momentum component of interaction potential

q0 characteristic momentum scale of interaction
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p (fermionic) momentum

q (bosonic) momentum

ε energy

ω (angular) frequency

M
p′1,p

′
2

p1,p2 two-particle matrix element

M
p′1,p

′
2,p
′
3

p1,p2,p3 three-particle matrix element

wq transition probability (modulus squared matrix element)

B(x, y) Euler Beta function, B(x, y) = Γ(x)Γ(y)/Γ(x+ y)

Γ(x) Gamma function

Im imaginary part

P principal value

δ(x) delta function

δi,j Kronecker delta

Θ(x) Heaviside step function

sign(x) signum function

In(x) modified Bessel function of the first kind

Kn(x) modified Bessel function of the second kind

Ln(x) modified Struve function
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Acronyms

1D one-dimensional iii–vi, 1, 5, 9, 13, 16–18, 21, 22, 24, 25, 28, 29, 31, 32, 35, 37, 44, 45, 53, 67, 68,
73, 78–80, 82, 84, 86–92, 123, 124, 129, 131, 132, 137, 139, 141, 142

2D two-dimensional iii, iv, vi, 1, 5–8, 12, 17, 31, 33, 68, 74, 76, 77, 88, 90, 91, 135, 137

3D three-dimensional vi, 68, 77, 87, 88, 91, 138, 140

BKT Berezinskii-Kosterlitz-Thouless iv, 7, 12, 31, 36, 40, 50, 89

IR infrared 38, 45, 47, 48, 50, 115, 125

JJ Josephson junction iii–vi, 1, 5, 7–10, 13, 15–18, 20, 21, 31–35, 37, 38, 45–47, 49, 50, 53, 54, 56, 65,
67, 89–91, 107, 115, 118, 119, 125, 129, 143, 148

LL Luttinger liquid 9, 10, 12, 14, 31, 35, 41, 45, 51

QPS quantum phase slips iii–vi, 6, 18, 31–34, 36–38, 41–47, 49–51, 53–61, 63–65, 89–91, 118, 120,
125, 128, 144, 145, 150

RG renormalization group 10–12, 15, 32, 35–48, 50, 54, 62, 89, 91, 115, 118, 120, 125–128, 145, 150

SIT superconductor-insulator transition iii–vi, 1, 8, 16–18, 31, 32, 42, 48–51, 53, 54, 56, 63, 64, 66,
89–91, 128

SQUID superconducting quantum interference device iii, 1, 2, 4, 5, 16, 18, 31, 34, 50, 51, 90

STM scanning tunneling microscopy 28, 86, 87

UV ultraviolet 10, 11, 34, 37–39, 41, 129
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A Appendix A

SIT in JJ chains

This appendix provides a few further details to the superconductor-insulator transition in Josephson
junction chains discussed in Chap. 3. In the first part, Sec. A.1, a detailed derivation of the field theory
for Josephson junction chains is given. Section A.2 discusses the field theory in the limit Λ→ 0 (local
Coulomb interaction). The RG equations in the case of local charge interaction are derived in A.3,
and the memory functions needed for the transport properties are computed in A.4. Section A.5 is
devoted to the derivation of the RG equations in the non-local case. Finally, in Sec. A.6 we provide a
mapping of the parameters of our theory on JJ chains to the parameters of the theory of Ref. [67] on
superconducting wires. The whole appendix A is based on the appendix of Ref. [107].

A.1 Derivation of the field theory in the non-local case

Starting from the lattice model introduced in Sec. 1.2, we derive here the low-energy field theory in
a more rigorous way compared to Sec. 3.1. Our procedure follows the standard route outlined in the
literature [14, 44, 58, 109, 110, 112]. In order to avoid infrared (IR) divergences, we assume a finite
system of Nx junctions and islands in a ring geometry. We assume a clean system and aim to derive
the Eqs. (3.3) and (3.6). Disorder can be included straightforwardly.

[Reprinted figure with permission from M. Bard, I. V. Protopopov, I. V. Gornyi, A. Shnirman, and A. D. Mirlin,
Phys. Rev. B 96, 064514 (2017), DOI: 10.1103/PhysRevB.96.064514, cf. Ref. [107].

Copyright 2017 by the American Physical Society.]

Figure A.1: Variables in the space-time lattice before (left) and after (right) the Villain approx-
imation and Poisson resummation over charges.
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A SIT in JJ chains

Our goal is to derive a path-integral formulation of the partition function. We start by discretizing
the imaginary time into Nτ steps of size ∆τ . We chose the step width to be of the order of the
characteristic time for the local dynamics of the system,

∆τ =

√
E1 + E0

EJE1E0
=

1

Ω0
, (A.1)

which interpolates between 1/
√
EJE0 in the local regime (Λ→ 0) and 1/

√
EJE1 in the case of infinite-

range Coulomb interaction (Λ → ∞). At each lattice point in the space-time lattice a resolution of
identity,

1 =
∑
N

∫ π

−π

dθ

2π

∣∣N 〉 〈θ∣∣ e−iθN , (A.2)

is introduced. Here, N is the charge and θ the phase of the superconducting island. The phases θni
are attributed tot the lattice sites (x, τ) = (i, n) and the island charges N n

i to the vertical links of
the lattice. The discrete partial derivatives of θ are denoted by ∂xθ and ∂τθ, and are attributed to
the horizontal and vertical links, respectively. See the left panel of Fig. A.1 for a summary of our
notations.

The action in these variables reads

S = −i
∑

vert.links

N n
i

(
∂τθ
)n
i

+
E1∆τ

2

∑
vert.links

S−1
ij N

n
i N n

j + EJ∆τ
∑

hor.links

(
1− cos

[(
∂xθ
)n
i

])
. (A.3)

After a Poisson resummation over the charges {N}ni in favor of a new integer-valued variable vni that
is defined on vertical links, and making use of the Villain approximation

exp[−EJ∆τ(1− cos γ)] ≈
∑
h

exp

[
−EJ∆τ

2
(γ + 2πh)2

]
, (A.4)

we find

S =
K2

1

2K

∑
vert.links

Sij

[ (
∂τθ
)n
i
− 2πvni

] [(
∂τθ
)n
j
− 2πvnj

]
+
K

2

∑
hor.links

[(
∂xθ
)n
i
− 2πhni

]2
. (A.5)

Here, we defined K =
√
EJ(E1 + E0)/E1E0 and introduced the integer-valued variable hni that we

attribute to the horizontal links. The partition function can be computed by

Z =

∫ 2π

0
Dθ

∑
{v},{h}

e−S , (A.6)

where the integration over all phase variables is limited to the interval (0, 2π). Performing the sum-
mation over the longitudinal part (“zero curl”) of the vector field (hni , v

n
i ) extends the integration over

the superconducting phases to the whole real line (ordinary Gaussian integral). After the summation
over the longitudinal part of (hni , v

n
i ) and integration over the phases, we obtain an action for the

“vorticity” of the vector field (hni , v
n
i ). It contains the circulation of (hni , v

n
i ) around each elementary

plaquette of the lattice (cf. right panel of Fig. A.1),

pni = hni + vni+1 − hn+1
i − vni , (A.7)
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A.1 Derivation of the field theory in the non-local case

and the two circulations over the “global loops” of the lattice,

H0 =
∑
i

h0
i and V0 =

∑
n

vn0 . (A.8)

The action assumes now the form in Fourier space (with dimensionless frequency ω)

S =
2π2

NxNτE0∆τ
V̄ 2

0 +
2π2EJ∆τ

NxNτ
H̄2

0 +
2π2K

NxNτ

∑
(q,ω)6=0

U−1(ω, q)|p(ω, q)|2, (A.9)

where

U(ω, q) = ∆(ω) +
∆(q)

(1− ug)∆(q) + ug
, (A.10)

∆(ξ) = 2(1− cos ξ) , ug =
1

1 + Λ2
, (A.11)

and

V̄0 = NxV0 +

Nx−1∑
i=1

i
∑
n

pni , H̄0 = NτH0 −
Nτ−1∑
n=1

n
∑
i

pni . (A.12)

Performing Poisson resummation over V0, it can be seen that this summation is equivalent to the
summation over the sectors with different total charge. We therefore drop it. It is easy to show that
the action (A.9) can be recast in the form

S =
2π2EJ∆τ

Nx

Nτ−1∑
n=0

H2
n +

2π2K

NxNτ

∑
q 6=0,ω

U−1(ω, q)|p(ω, q)|2, (A.13)

where in the second sum all the terms with q = 0 are excluded and [cf. definition (A.8)]

Hn =
∑
i

hni . (A.14)

We proceed by introducing the field φ̃ through a Hubbard-Stratonovich transformation that decouples
the vortex interaction term in Eq. (A.13):

exp

− 2π2K

NxNτ

∑
q 6=0,ω

U−1(ω, q)|p(ω, q)|2

 ∝
∫
Dφ̃ exp

− 1

2π2KNxNτ

∑
q 6=0,ω

U(ω, q)|φ̃(ω, q)|2 +
2i

NxNτ

∑
q 6=0,ω

φ̃(ω, q)p∗(ω, q)

 .

(A.15)

The way the field φ̃(x, τ) introduced, it has no q = 0 Fourier components. But, the fields Hn in Eq.
(A.13) are related to the local circulations pni by the equation Hn −Hn+1 =

∑
i p
n
i . The sum over Hn

is thus constrained. The constraint can be taken into account by introducing a field φ0(τ):

δ

Hn −Hn+1 −
∑
i

pni

 =

∫ π

0

dφ0(n)

π
exp

−2iφ0(n)

Hn −Hn+1 −
∑
i

pni


 . (A.16)
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A SIT in JJ chains

After performing the summation over Hn, the action reads

S =
1

2π2KNxNτ

∑
q,ω

U(ω, q)|φ(ω, q)|2 + 2i
∑
x,τ

φ(x, τ)p(x, τ), (A.17)

where the field φ is compact in time direction (compactification radius π) and has the mode expansion

φ(x, τ) = φ0(τ) +
πmτ

Nτ
+

1

Nx

∑
q 6=0

φ̃q(τ), m ∈ Z. (A.18)

Apart from the Villain transformation, all transformations in the lattice model so far were exact.
Nevertheless, because of the discretization of time, our procedure does not capture the physics at time
scales shorter than ∆τ which is the characteristic time for a phase slip. It is expected that a finite
action cost for phase slips, which are related to the vorticities p(x, τ), originates from those times
scales. Hence the action (A.17) needs to be corrected by adding the term

δS = Sshort

∑
x,τ

p2(x, τ). (A.19)

In the case when the superconducting correlations are (locally) well established, Sshort � 1, the
summation over p(x, τ) can be performed to lowest order in the amplitude y = exp{−Sshort} for QPS.
The action

S =
1

2π2KNxNτ

∑
q,ω

U(ω, q)|φ(ω, q)|2 + 2y
∑
x,τ

cos 2φ(x, τ) (A.20)

is of sine-Gordon type. The function U(ω, q) is defined in Eqs. (A.10) and (A.11). Taking the continuum
limit (|ω|, |q| � 1), we obtain

S =
1

2π2K

∫ 1

−1

dq

2π

∫ Ω0

−Ω0

dω

2π
U(ω, q)|φ(ω, q)|2 + 2yΩ0

∫
dxdτ cos 2φ(x, τ) , (A.21)

where the dimension of frequency is reintroduced and

U(ω, q) =
ω2

Ω0
+

q2Ω0

(1− ug)q2 + ug
, ug =

1

1 + Λ2
, (A.22)

K =

√
EJ(E1 + E0)

E1E0
, Ω0 =

√
EJE1E0

E1 + E0
. (A.23)

At this point we have reproduced Eqs. (3.3) and (3.6) of the main text.
We can give another justification for the transition form Eq. (A.17) to Eq. (A.21). Looking at

Eq. (A.21) with y ∼ 1, we recognize that this action can be understood as an expansion in harmonics
cosnφ. From the RG equations of the action (A.17) discussed in the main text, we know that the
phase-slip amplitude y is strongly reduced in the first few steps of the RG in the case when the system
has strong local superconducting correlations (K � 1 at short scales). It is easy to see that the
amplitudes for higher harmonics renormalize to zero even faster. Conclusively, we can state that the
action (A.21) yields a proper description of JJ chains if length scales larger than the lattice spacing
and time scales larger than ∆τ are considered. The next section (App. A.2) yields further insights on
this point by discussing the action (A.17) in the infinite-range limit, Λ→∞.
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A.2 Infinite-range interaction

A.2 Infinite-range interaction

This appendix is devoted to the discussion of the theory of JJ chains in the infinite-range limit, Λ→∞.
We draw here another connection between the lattice model and the sine-Gordon theory. In this way
we further support the results of App. A.1, obtain an estimate for the fugacity, Eq. (3.7), and compare
our findings to previous works.

We start from Eq. (A.13). In the limit Λ→∞, where the interaction between vorticities U−1(ω, q)
is gapped and momentum independent, we can approximate

1

V

∑
q 6=0,ω

U−1(ω, q)|p(ω, q)|2 ' 1

V

∑
q 6=0,ω

|p(ω, q)|2 =
∑
n,i

(
pni
)2 1

Nx

∑
n

∑
i

pni

2

.

Now the summation over vorticities {p} can be performed. Here, because of the constraintHn−Hn+1 =∑
i p
n
i an auxiliary field φn ∈ (0, π) can be introduced [cf. Eq. (A.16)]. This leads to the action

S =
(2π)2K1

2Nx

∑
n

(Hn)2 + 2i
∑
n

φn
(
Hn+1 −Hn

)
−∆τ

∑
n

U(φn), (A.24)

where

e
− U(φ)√

EJE1 =
∑
z

e2iφz exp
[
−f(z)

]
,

f(z) = −(2π)2K1

2Nx
z2 − ln

∫ π

0

dω

π
e2iωz(g(ω))Nx ,

g(ω) =
∑
p

exp

[
−K1(2π)2p2

2
− 2iωp

]
.

(A.25)

The action (A.24) corresponds to a particle on a ring with momentum H and coordinate φ that moves
in the periodic potential U(φ). Exploiting the periodicity of f(z) (period Nx), we find

e
− U(φ)√

EJE1 =

Nx−1∑
z0=0

e2iφz0 exp[−f(z0)]
∑
z1

e2iNxz1φ =
π

Nx

Nx−1∑
z0=1

e2iφz0 exp[−f(z0)]
∑
k

δ

(
φ− πk

Nx

)
.

(A.26)

As a result U(φ) is not a smooth function, but for Nx � 1 the exponential exp
[
−U(φ)/

√
EJE1

]
converges in the distributional sense to the discrete Fourier transform

1

π
exp

[
− U(φ)√

EJE1

]
→

Nx−1∑
z0=0

e2iφz0 exp[−f(z0)]. (A.27)

It turns out that in the regime Nx � 1 and K1 � 1, we approximately find

U(φ) ' 2y(Nx)[1− cos 2φ] + const , (A.28)

where

y(Nx) =
√
EJE1Nx exp

[
−2π2K1

(
1− 1

Nx

)]
. (A.29)
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A SIT in JJ chains

This means that we obtain in this limit again a (zero-dimensional) sine-Gordon model. The QPS
amplitude at scale Nx for an infinite-range interaction is given by Eq. (A.29). We can compare those
findings with the results of Refs. [47, 49]. There, the effective QPS amplitude at scale Nx reads (in
our notations)

y(Nx) ∝ E3/4
J E

1/4
1 Nxe−8K1(1−γ/Nx) , (A.30)

with γ = 1/2 +π2/8. Our result (A.29) has the same form in its dependence on K1 and Nx. However,
the numerical coefficient in the exponent of (A.29) deviates from the one in (A.30). This discrepancy
in the numerical coefficient is related to the inaccuracy of our theory at the scale of the ultraviolet
cutoff Nx = 1.

A.3 Derivation of RG equations for local interaction

Here, we briefly discuss the derivation of the RG equations in the regime of local Coulomb interaction,
Eqs. (3.22)–(3.26) of Sec. 3.2.1. An introduction to the RG and a detailed derivation of the RG
equations of a sine-Gordon theory can be found in Sec. 1.3.2. The correlation function (3.21) is
computed perturbatively to second order in y and first order in Dξ. Up to this order, phase slips
with homogeneous and random fugacity do not mix. The correction due to QPS with random fugacity
(∝ Dξ) can be read off directly from Ref. [144]. The zeroth order result is

R(0)(r) = e−2πK0F1(r), (A.31)

where

F1(x, τ) =
1

2
ln

(
x2 + (u0|τ |+ a)2

a2

)
. (A.32)

Since during the RG an anisotropy between space and time is generated, the slightly generalized
function

R(r) = e−2πK0F̃1(r),

F̃1(x, τ) = F1(x, τ) +
d

K0
cos
(
2θr
) (A.33)

needs to be considered. Here θr is the angle between the vector (x, u0τ) and the x-axis. The anisotropy
parameter d vanishes initially but gets generated in the course of the RG [144]. It proves convenient to
reintroduce the lattice spacing a. The second-order correction can be extracted by using the equality
for the average with respect to the Gaussian action (3.16).

lim
n→0

n∑
a=1

〈
e2i[φj(r1)−φj(r2)] cos

[
2φa(r1)

]
cos
[
2φa(r2)

]〉
0

=
1

4
e−2πK0[F1(r1−r2)+F1(r3−r4)]

∑
σ=±

[
e2πK0σ[F1(r1−r3)+F1(r2−r4)−F1(r1−r4)−F1(r2−r3)] − 1

]
.

(A.34)

Assuming the Gaussian distribution function

P [Q] = exp

{
− π2

DQa

∫
dxQ2(x)

}
(A.35)

120
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for the random stray charges, we obtain

〈
cos[Q(x3)] cos[Q(x4)] + sin[Q(x3)] sin[Q(x4)]

〉
Q

= exp

{
−DQ

|x3 − x4|
a

}
. (A.36)

Thus, the second order correction reads [here ri = (xi, u0τi)]:

y2

16π3a4
e−2πK0F1(r1−r2)

∫
d2r3d2r4e−2πK0F1(r3−r4)e−DQ

|x3−x4|
a

×
∑
σ=±

[
e2πK0σ[F1(r1−r3)+F1(r2−r4)−F1(r1−r4)−F1(r2−r3)] − 1

]
.

(A.37)

Since the first exponential function in the integrand of the above expression is a power-law of r =
|r3 − r4|, the square bracket can be expanded in small r and the integration over the polar angle of
r can be performed. For the integration over the center-of-mass coordinates R = (r3 + r4)/2, the
identities∫

d2R [F1(R− r1)− F1(R− r2)]
(
∂2
X + ∂2

Y

)
[F1(R− r1)− F1(R− r2)] = −4πF1(r1 − r2), (A.38)∫

d2R [F1(R− r1)− F1(R− r2)]
(
∂2
X − ∂2

Y

)
[F1(R− r1)− F1(R− r2)] = −2π cos 2θr1−r2 . (A.39)

are useful. Finally, we arrive at the second order correction

2π
y2

2
K2

0

∫ ∞
a

dr

a

(
r

a

)3−2πK0

F1(r1 − r2)

[
I0

(
DQ

r

a

)
− L0

(
DQ

r

a

)]

+
1

2
cos 2θr1−r2

[
I2

(
DQ

r

a

)
− L2

(
DQ

r

a

)
− 2

3π
DQ

r

a

],
(A.40)

where In and Ln are modified Bessel functions of the first kind and modified Struve functions, respec-
tively. Combining this result with the zeroth order term, we can reexponentiate to obtain the form

exp
[
−2πKeff

0 F̃1(r1 − r2)
]

with

Keff
0 = K0 −

y2

2
K2

0

∫ ∞
a

dr

a

(
r

a

)3−2πK0
[

I0

(
DQ

r

a

)
− L0

(
DQ

r

a

)]
, (A.41)

deff = d− y2

4
K2

0

∫ ∞
a

dr

a

(
r

a

)3−2πK0
[

I2

(
DQ

r

a

)
− L2

(
DQ

r

a

)
− 2

3π
DQ

r

a

]
, (A.42)

and

F̃1(r) = F1(r) +
deff

Keff
0

cos
(
2θr
)
. (A.43)
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A SIT in JJ chains

The effective constants Keff
0 and deff govern the low-energy properties of the correlation function R. A

variation of the cutoff a→ a+ da should not affect them. Hence, we obtain

K0(a+ da) = K0(a)− y2

2
K2

0

[
I0

(
DQ

)
− L0

(
DQ

)] da

a
, (A.44)

d(a+ da) = d(a)− y2

4
K2

0

[
I2

(
DQ

r

a

)
− L2

(
DQ

r

a

)
− 2

3π
DQ

r

a

]
da

a
, (A.45)

y2(a+ da) = y2(a)

(
a+ da

a

)4−2πK0

, (A.46)

DQ(a+ da) = DQ(a)
a+ da

a
. (A.47)

After parametrizing a(l) = el, we arrive at the equations for K0, y and DQ [cf. Eqs. (3.22)–(3.25)].
The renormalization of u0 can be inferred from the renormalization of d by [144]

du0

dl
= −2

u0

K0

dd

dl
. (A.48)

The renormalization due to Sξ up to the first order in Dξ is the same as in Ref. [144].

A.4 Memory function

Here the details of the computation of the memory function in regime of local charge interaction
are presented. The results are used in Sec. 3.2.2 to study the transport characteristics in the local
limit. An introduction to the memory-function formalism can be found in Sec. 1.3.3. The Hamiltonian
corresponding to the action (3.15) in the limit Λ→ 0 reads

H = H0 +Hps +Hξ, (A.49)

H0 =
1

2

∫
dx

[
u0K0

(
∂xθ
)2

+
u0

π2K0

(
∂xφ

)2]
, (A.50)

Hps,Q =
yu0√
2π3a2

∫
dx cos

[
2φ(x)−Q(x)

]
, (A.51)

Hξ =

∫
dx

[
ξ(x)

a3/2
e2iφ(x) + h.c.

]
. (A.52)

For convenience, we reintroduced explicitly the lattice spacing a; the parameter u0 is also rescaled by a
such that it has the dimension length divided by time. The commutator of H and the current operator
can be separated into the two parts F = Fps + Fξ, where

Fps = −2

√
2

π
ieu2

0K0
y

a2

[
sin 2φ(x) cosQ(x) + cos 2φ(x) sinQ(x)

]
, (A.53)

Fξ = −4πe
u0

a3/2
K0

[
ξ(x)e2iφ(x) − ξ∗(x)e−2iφ(x)

]
. (A.54)

As a next step we calculate the correlation function

C(ω) =

∫
dx

∫ ∞
0

dt eiωt
〈
[F (x, t), F (0, 0)]

〉
, (A.55)
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A.4 Memory function

where the angular brackets compromise the averaging with respect to H as well as over disorder. The
averaging can be performed with respect to H0 instead of H if one is interested only in the lowest
order result in y and Dξ. Moreover, up to this order, the correlator C(ω) can be separated into two
independent parts, C = Cps + Cξ. The next two sections present the calculation of each of them.

A.4.1 Random fugacity part

The computation of the memory function of a disordered 1D system can be found in Ref. [167]. In order
to provide a complete presentation, we present the main steps here as well. We start by computing
the (time-ordered) correlator

Cξ(x, τ) =
〈
TτFξ(x, τ)Fξ(0, 0)

〉
(A.56)

in imaginary time τ . The average over the quadratic Hamiltonian yields〈
e2iφ(x,τ)e−2iφ(0,0)

〉
0

= e−2πK0F1(x,τ), (A.57)

where at finite temperature 1/β

F1(x, τ) =
1

2
ln

β2u2
0

π2a2
sinh

(
π

u0β
x+

)
sinh

(
π

u0β
x−

) (A.58)

and x± = x± iu0τ . Performing the disorder average, we find

Cξ(x, τ) = −8e2u
4
0

a3
K2

0Dξδ(x)e−2πK0F1(x,τ). (A.59)

In order to find the retarded correlation function, this result should be analytically continued (cf.
Ref. [17]),

Cξ(t > 0) = A

(
πa

u0β

)2πK0
sinh

(
πt

β

)−2πK0

, (A.60)

where A = 16e2(u4
0/a

3)K2
0Dξ sin(π2K0). Fourier transforming the result to real frequency results in

Cξ(ω) =

∫ ∞
0

dt eiωtCξ(t) =
Aa

u0

(
2πa

βu0

)2πK0−1

B

(
1− 2πK0, πK0 −

iωβ

2π

)
, (A.61)

where B(x, y) is Euler’s Beta function. Strictly speaking, the integral in Eq. (A.61) does not converge
for 2πK0 > 1. However, the result can be analytically continued. In the DC limit, ω → 0, the memory
function reads

Mξ(T ) =
2πiΓ2(πK0)u0K0

Γ(2πK0)a
Dξ

(
2πaT

u0

)2πK0−2

, (A.62)

and leads to Eq. (3.45) of the main text.
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A.4.2 Phase-slip part

The calculation of the phase-slip part goes completely analogous. The correlation function Cps has the
form

Cps(x, τ) =
〈
TτFps(x, τ)Fps(0, 0)

〉
= − 4

π
e2(u0/a)4K2

0y
2e−2πK0F1(x,τ)e−DQ|x|/a (A.63)

in imaginary time. The analytic continuation to real time reads

Cps(ω) = γ

(
πa

u0β

)2πK0 ∫ ∞
0

dt

∫ u0t

−u0t
dx

eiωte−DQ|x|/a[
sinh

(
π
u0β

(u0t− x)
)

sinh
(

π
u0β

(u0t+ x)
)]πK0

(A.64)

with γ = (8/π)e2(u0/a)4K2
0y

2 sin(π2K0). Introducing the light-cone variables z = π/(u0β) (u0t + x)
and z̄ = π/(u0β) (u0t− x) yields

Cps(ω) = γ
u0β

2

2π2

(
πa

u0β

)2πK0 ∫ ∞
0

dz

∫ ∞
0

dz̄
ei
βω
2π

(z+z̄)e−
DQu0β

2πa
|z−z̄|[

sinh (z) sinh (z̄)
]πK0

. (A.65)

Outside the region 0 < K0 < 1/π, the integrals are divergent. However, analytic continuation can be
employed to extend the result for all K0 > 0. In the following we analyze the integrals in the limit of
weak and strong disorder. In the case of weak disorder, DQu0β/a� 1, we obtain in the zeroth order

C(0)
ps (ω) =

γ

4

u0β
2

2π2

(
2πa

u0β

)2πK0

B2

(
1− πK0,

πK0

2
− iβω

4π

)
. (A.66)

The first order correction in the limit ω → 0 is of the form

C(1)
ps (ω)

ω→0→ −
DQu0β

2πa
γ
u0β

2

2π2

(
πa

u0β

)2πK0
(
A1(K0) +

iβω

2π
A2(K0)

)
, (A.67)

with the dimensionless functions A1 and A2 that are defined as

A1(K0) =

∫ ∞
0

dz

∫ ∞
0

dz̄
|z − z̄|(

sinh z sinh z̄
)πK0

, A2(K0) =

∫ ∞
0

dz

∫ ∞
0

dz̄
(z + z̄)|z − z̄|(

sinh z sinh z̄
)πK0

.

(A.68)
In the zero-frequency limit, the memory function is given by

Mps(T ) =
iu0K0

2a
y2

Γ4(πK0/2)

Γ2(πK0)

(
2πaT

u0

)2πK0−3

− 23−2πK0
1

π
sin
(
π2K0

)
A2(K0)DQ

(
2πaT

u0

)2πK0−4
 .

(A.69)
In the clean limit, DQ = 0, a similar result was found in Ref. [122] in the context of umklapp scattering
in 1D systems. In the opposite limit of strong disorder, DQu0β/a � 1, the main contribution to the
integrals comes from the region close to the diagonal z = z̄. The result reads

Cps(ω) ≈ γ u0β
2

2π2

(
πa

u0β

)2πK0 ∫ ∞
0

dz
ei
βω
π
z[

sinh (z)
]2πK0

∫ ∞
0

dz̄ e−
DQu0β

2πa
|z−z̄| (A.70)

≈ γ 2a2

u0DQ

(
2πa

u0β

)2πK0−1

B

(
1− 2πK0, πK0 −

iβω

2π

)
. (A.71)
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In the DC limit, the memory function is given by

Mps(T ) =
2iu0K0

a

Γ2(πK0)

Γ(2πK0)

y2

DQ

(
2πaT

u0

)2πK0−2

. (A.72)

The equations (A.69) and (A.72) lead to Eq. (3.38) in Sec. 3.2.2.

A.5 Non-local Coulomb interaction: RG analysis

This section in the appendix is devoted to the details of the derivation of the RG equations for JJ
chains with non-local Coulomb interaction. In the main text those equations are discussed in Sec. 3.3.1.
We start from Eqs. (3.48) and (3.10).

A.5.1 Lowest-order scaling

The RG equations to zeroth order in the fugacity for K and ug, Eqs. (3.51) and (3.52), can be obtained
by straightforward dimensional analysis. The equation for the phase-slip amplitude is found following
the standard procedure [17]. In a Wilsonian type of the RG we average the QPS action over the fast
modes. Using the cutoff procedure stated in the main text (Sec. 3.3.1), we get

dy(l)

dl
=

1 + ug

2
y(l)

[
2− πKε

(
ug

)]
, (A.73)

where

ε(ug) =
4

π(1 + ug)

∫ 1

0
dq

(
1

q2 + 1
+ ug

q2 + ug(1− q2)

2q2 + ug(1− q2)

)
. (A.74)

For 0 ≤ ug ≤ 1, the function ε(ug) is smooth. At ug = 1 the function assumes the universal value
ε(1) = 1, which leads to the correct scaling of y at the IR fixed point ug = 1. However, at ug = 0 the
function is non-universal; it depends on the precise cutoff procedure. Using our cutoff procedure, we
find ε(0) = 1. Furthermore, the maximal variation of ε(ug) on the interval 0 ≤ ug ≤ 1 is of the order
of 2%. As a result we set ε(ug) ≡ 1 which yields Eq. (3.53).

A.5.2 Correlation functions and second-order correction

In order to derive the RG equations to second order in the fugacity y, we study the behavior of the
vertex function

R(r1) =
〈

e2iφ(r1)e−2iφ(0)
〉

(A.75)

under the variation of the cutoff. From the requirement

Rdl(x1(1 + dl), τ1(1 + ugdl), ug(0),K(0)) = Rl=0(x1, τ1, ug(dl),K(dl)). (A.76)

the scaling equations can be extracted. We denote by Rdl the correlation function in the theory with
momentum cutoff |q| ≤ 1 − dl whereas Rl=0 denotes for the correlation function with initial cutoff
|q| ≤ 1. The zeroth-order correlation function reads

R(0)(r1) = e−2KF (r1) (A.77)
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with

F (r) = π2

∫
|q|<1

dq

2π

∫
|ω|<Ω0

dω

2π

2− 2 cos qx cosωτ
ω2

Ω0
+ Ω0q2

(1−ug)q2+ug

. (A.78)

The equations (3.51) and (3.52) can be straightforwardly obtained with the help of the condition
(A.76). The second order correction reads (cf. similar discussion in App. A.3)

δR =
y2

4π3
K2e−2KF (r1)

∫
d2r e−2KF (r)e−2π2DQ|x|

∫
d2R

[
r · ∇R

(
F (R− r1)− F (R)

)]2
. (A.79)

Here, the time is made dimensionless by rescaling it with Ω0. Cross terms of the form x · τ vanish
because the function F (r) is even in x and τ . Rewriting the integrations over the center-of-mass
coordinates in Fourier space yields

δR =
y2

4π3
K2e−2KF (r1)

∫
d2q

(2π)2

[
Ixq

2 + Iτω
2
] (

2− 2 cosqr1

)
F 2(q), (A.80)

where

Iζ =

∫
d2r ζ2 e−2KF (r)e−DQ|x|, ζ = x, τ , (A.81)

and

F (q) = − 2π2

ω2 + q2

(1−ug)q2+ug

. (A.82)

After the first step of RG, we find

δRdl(x̃1, τ̃1) =
y2(0)

4π3
K2(0)e−2K(0)Fdl(x̃1,τ̃1,ug(0))

∫
|q|<1−dl

dq

2π

∫
|ω|<1−ugdl

dω

2π

(
2− 2 cosqr̃1

)
× F 2(q, ug(0))

[
q2 Ix,dl(K(0), ug(0), DQ(0)) + ω2 Iτ,dl(K(0), ug(0), DQ(0))

]
.

(A.83)

From the zeroth-order result (see above) it holds

K(0)Fdl(x̃1, τ̃1, ug(0)) = K(0)(dl)F0(x1, τ1, u
(0)
g (dl)), (A.84)

x1(1 + dl) = x̃1, τ1(1 + ugdl) = τ̃1. (A.85)

The superscript (0) indicates that only corrections for y = 0 are taken into account. A straightforward
calculation shows that

Ix,dl(K(0), ug(0), DQ(0)) = (1 + dl)3(1 + ugdl) Ix,0(K(0)(dl), u(0)
g (dl), DQ(dl)),

Iτ,dl(K(0), ug(0), DQ(0)) = (1 + dl)(1 + ugdl)3 Iτ,0(K(0)(dl), u(0)
g (dl), DQ(dl)).

(A.86)

The disorder strength of stray charges is renormalized according to DQ(dl) = (1 + dl)DQ(0). The
integrals in Eq. (A.83) over momentum and frequency are rescaled as q̃ = (1+dl)q and ω̃ = (1+ugdl)ω.
Moreover, we make use of

K2(0)F 2
dl(q, ug(0)) = (1 + dl)2(1 + ugdl)2

(
K(0)(dl)

)2
F 2

0 (q̃, u(0)
g (dl)). (A.87)
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Now, we obtain

δRdl(r̃1, ug(0),K(0), DQ(0)) =
y2(0)

4π3
(1 + dl)2(1 + ugdl)2

(
K(0)(dl)

)2
e−2K(0)(dl)F0(r1,u

(0)
g (dl))

×
∫
|q|<1

d2q̃

(2π)2

[
q̃2Ix,0(K(0)(dl), u(0)

g (dl), DQ(dl)) + ω̃2Iτ,0(K(0)(dl), u(0)
g (dl), DQ(dl)

]
×
[
2− 2 cos q̃r1

]
F 2

0 (q̃, u(0)
g (dl)).

(A.88)

The correlation function R (up to second order) can now be written as

Rdl(r1) = e−2KF (r1)

{
1 +

y2(dl)

4π3
K2

∫
d2q

(2π)2

[
q2Ix,0 + ω2Iτ,0

]
(2− 2 cosqr1)F 2

0 (q)

}

×

{
1 +

π

2
(1 + ug)y2(0)K3dl

∫
d2q

(2π)2

[
q2Ix,0 + ω2Iτ,0

]
(2− 2 cosqr1)F 2

0 (q)

}
,

(A.89)

where we suppressed the superscript (0) to make the equation better readable. Furthermore, the
scaling law for the fugacity

y(dl) =

[
1 +

(
1 + ug −

π

2
(1 + ug)K

)
dl

]
y(0). (A.90)

is used. The correlation function (A.89) should be compared to the correlation function calculated
with the original cutoff but with rescaled couplings,

Rl=0 = e−2K(0)F0(r1,ug(0))

{
1− 2 δK F0(r1)− 2K

∂F0

∂ug
δug

}

×

{
1 +

y2(dl)

4π3
K2

∫
d2q

(2π)2

[
q2Ix,0 + ω2Iτ,0

]
(2− 2 cosqr1)F 2

0 (q)

}
,

(A.91)

where the corrections δK = K(dl)−K(0) and δug = ug(dl)−ug(0) are introduced. The renormalization
of the quadratic action at all momenta q can be done only in the framework of a functional RG. Instead
of a functional RG we limit ourselves to the renormalization of the long-wavelength limit of F0(q):

F0(q) ' −2π2

ω2 + q2/ug
. (A.92)

In this way we find

δK = −1

2
(1 + ug)y2K3Iτ,0 dl,

δug =
1

2
(1 + ug)y2K2ug(Iτ,0 − ugIx,0) dl.

(A.93)

This approximation is justified since at the initial stage of the RG the dominant effect on the renor-
malization of K and ug originates from the zeroth order in the fugacity y. Furthermore, at large
scales where the local limit is reached, our approximation yields the asymptotically correct form for
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the renormalization to second order in y. To the level of our accuracy, we can compute the functions
Ix,0 and Iτ,0 in the local limit:

Ix ' C
1

K

[
I0(DQ)− L0(DQ)−

I1(DQ)− L1(DQ)

DQ

]
, (A.94)

Iτ ' C
1

K

I1(DQ)− L1(DQ)

DQ
, (A.95)

where C is a number that is set to unity, and In and Ln denote modified Bessel functions of the first
kind and modified Struve functions, respectively. Finally, we can state the RG equations up to second
order in the QPS amplitude:

dK

dl
= −(1− ug)K − 1

2
y2K2(1 + ug)

I1(DQ)− L1(DQ)

DQ
, (A.96)

dy

dl
=

1 + ug

2

[
2− πK

]
y, (A.97)

dug

dl
= 2ug(1− ug) +

y2

2
K(1 + ug)ug

[
(1 + ug)

I1(DQ)− L1(DQ)

DQ
− ug

(
I0(DQ)− L0(DQ)

)]
, (A.98)

dDQ

dl
= DQ. (A.99)

Those equations lead to Eqs. (3.56)–(3.58) of Sec. 3.3.1 in the main text. The Bessel and Struve
functions have the following asymptotic behavior:

I0(x)− L0(x) ∼

1− 2
πx, x→ 0,

2
πx , x→∞,

(A.100)

1

x

[
I1(x)− L1(x)

]
∼

1
2 −

3
2πx, x→ 0,

2
πx , x→∞.

(A.101)

The scaling equation for the temperature can be inferred from the rescaling of frequencies as ω̃ =
(1 + ugdl)ω. The result is stated in Eq. (3.60).

A.6 Gaussian phase fluctuations: Comparison of JJ chains with
superconducting nanowires

We expect that a model similar to the one introduced in Sec. 3.1 should also describe the properties
of multi-channel disordered superconducting wires close to the SIT and deeply in the superconducting
and insulating phases [47, 67, 68]. By comparing our action to the one derived in Ref. [67, 68] in the
context of a dirty multi-channel wire, the following correspondence of parameters is found:

1

aE0
↔ C̃

e2
,

a

E1
↔ s σ

e2∆
, aEJ ↔ s σ∆/e2. (A.102)

Here C̃ is the capacitance per unit length, σ the conductance in the normal state, s the cross section
of the wire, and ∆ is the modulus of the superconducting order parameter. Further, a is the lattice
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spacing of JJ chain that we reintroduced into our action. The behavior of the capacitance per unit
length of the wire in 1D is

C̃−1 ∼ ln(d/R), (A.103)

where the radius of the wire is denoted by R and the distance to a nearby metallic plate by d. With
the help of the RHS of Eq. (A.102) we can calculate the (dimensionless) parameter K0 as well as the
screening length Ls ≡ aΛ. We find

K0 ∼

√
C̃

rs
Nch

l

ξ
, Ls ∼ ξ

√
Nchrs

C̃
. (A.104)

The parameter rs ≡ e2/vF is the ratio of the interparticle spacing to the Bohr radius, Nch the number
of channels, l the mean free path and ξ the coherence length of the superconductor in the dirty limit.
The theory for the wire has continuous character but the bare coherence length ξ has the meaning of
the ultraviolet (UV) cutoff. An effective dimensionless screening parameter Λ is given by the ratio of
Ls and ξ:

Λ ∼
√
Nchrs

C̃
. (A.105)

Depending on the number of channels, Λ can large or of the order of unity.
Random stray charges are not included in the theory of Ref. [67]. In order to find its strength an

additional analysis is necessary. It is expected that the bare value of DQ decreases with the number
of channels. The value of the bare phase-slip fugacity was obtained in Ref. [67]. However, it analysis
seems to require further work.
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B Appendix B

Derivation of the effective theory for the
antisymmetric mode

In this part of the appendix, we present the details of the derivation of the low-energy field theory for
the antisymmetric mode of the two-chain device depicted in Fig. 4.1. We start from the lattice model
given by Eq. (4.16). The charging energies related to the capacitances Cg, C0, and C1 are denoted by
Eg, E0, and E1, respectively. We choose the convention Ei = (2e)2/Ci.

The main idea behind the derivation is that in the limit of a small capacitance Cg, the large charging
energy Eg leads to the suppression of the fluctuations of the symmetric mode, at least at large scales. As
a result, we are left with a dynamical theory for the antisymmetric mode only. This type of reasoning
was previously exploited in the literature to derive the an effective theory of the antisymmetric mode,
see Refs. [168, 169]. We generalize the results of Refs. [168, 169] to the case of long-range Coulomb
interaction, C1 � C0, and include stray-charge disorder. It is shown that the low-energy theory for
the antisymmetric mode is of the form of the sine-Gordon model, Eqs. (4.1), (4.2) and (4.7), with the
additional nonlinearity (4.14).

We use in the following two different approaches to derive the effective theory. In Sec. B.1, we
outline a semi-quantitative approach starting from the field-theory description of the symmetric and
antisymmetric modes. We present a more microscopic derivation at the level of the initial lattice
model in Secs. B.2 and B.3 for the cases of short-range (C1 = 0) and long-range (C1 � C0) Coulomb
interaction, respectively. Both approaches lead to the same results.

B.1 Heuristic derivation from the continuum field theory

In this section, we outline the main steps of the derivation of the effective theory for the antisymmetric
mode on the basis of the field theory corresponding to the lattice Hamiltonian (4.16). It is obtained
in the same way as in the case of a single JJ chain. The fields φ↑ and φ↓ which are related to the
charge density in the two chains are defined by ∂xφσ = −πNσ. We also introduce their symmetric and
antisymmetric combinations, (

φs
φa

)
=

1

2

(
1 1
1 −1

)(
φ↑
φ↓

)
. (B.1)
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Using these fields, the Gaussian part of the action is of the form

S0 =
1

π2

∫
dq

2π

dω

2π


[

(2e)2q2

Cg + C1q2
+
ω2

EJ

]
|φs(q)|2 +

[
(2e)2q2

2C0 + Cg + C1q2
+
ω2

EJ

]
|φa(q)|2

. (B.2)

We can take into account the QPS by adding the term

Sps = yu0

∫
dxdτ

{
cos
[
2φ↑ +Q↑(x)

]
+ cos

[
2φ↓ +Q↓(x)

]}
, (B.3)

where

Qσ(x) = 2π

∫ x

−∞
dx′Qσ(x′), (B.4)

and Q↑(↓)(x) denotes the random stray charge in the two chains. We consider here QPS as independent
processes in the two chains. This assumption is justified if E1 � Eg, E0. The phase-slip amplitude y
is exponentially small in the parameter

√
EJ/E1 in this regime.

In the limit of low momenta, q �
√
Cg/C1 �

√
C0/C1, the Gaussian part of the action, Eq. (B.2),

is of the form of a Luttinger liquid,

S0 =
∑
ρ=s,a

1

2π2u0,ρK0,ρ

∫
dxdτ [u2

0,ρ(∂xφρ)
2 + (∂τφρ)

2], (B.5)

with

u0,s =
√
EJEg,

K0,s =
1

2

√
EJ

Eg
,

u0,a =
√
EJE0/2,

K0,a =

√
EJ

2E0
.

(B.6)

We analyze in the following the perturbative expansion of the partition function Z in the small pa-
rameter y. The lowest order correction to the partition function is of second order in y,

δZ =
y2u2

0

4

∫
d2r1d2r2

1

|r1 − r2|2πK0,s

×
〈

cos[2(φa(r1)− φa(r2)) +Q↑(x1)−Q↑(x2)] + cos[2(φa(r1) + φa(r2)) +Q↑(x1)−Q↓(x2)]

+ cos[2(φa(r1) + φa(r2))−Q↓(x1) +Q↑(x2)] + cos[2(φa(r1)− φa(r2))−Q↓(x1) +Q↓(x2)]

〉
0,a

,

(B.7)

where we introduced the short-hand notation r = (x, u0,aτ). Here, the average over the symmetric
mode is performed explicitly; the average over the antisymmetric modes is kept unevaluated. After
introducing symmetric and antisymmetric combinations of the random charges,

Qs(x) = Q↑(x) +Q↓(x) , Qa(x) = Q↑(x)−Q↓(x), (B.8)

we arrive at

δZ = y2u2
0

∫
d2r1d2r2

cos[Qs(x1)−Qs(x2)]

|r1 − r2|2πK0,s

〈
cos[2φa(r1) +Qa(x1)] cos[2φa(r2) +Qa(x2)]

〉
0,a
. (B.9)
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Under the assumption, K0,s � 1, it is possible to approximate |r1 − r2|2πK0,s by one. Provided that
the charge disorder is weak, it is justified to approximate cos[Qs(x1)−Qs(x2)] by unity. In this limit,
the integrations over r1 and r2 are decoupled. Moreover, we note that the correction (B.9) can be
understood as originating from the effective action

Seff = Seff
0 + Seff

ps , (B.10)

Seff
0 =

1

π2

∫
dq

2π

dω

2π

[
(2e)2q2

2C0 + C1q2
+
ω2

EJ

]
|φa(q)|2, (B.11)

Seff
ps =

√
2yu0

∫
d2r cos[2φa(r) +Qa(x)], (B.12)

which (up to a rescaling of the amplitude y by an unimportant numerical factor) is equivalent to
Eqs. (4.1), (4.2) and (4.7) stated in the main text with α = 2. Here we took into account the
assumption Cg � C0 [see also Eq. (B.2)].

In the case of strong charge disorder, the cosine in Eq. (B.9) can be rewritten in the form

cos[Qs(x1)−Qs(x2)] = cos[Qs(x1)] cos[Qs(x2)] + sin[Qs(x1)] sin[Qs(x2)]. (B.13)

If the disorder is strong, both terms in Eq. (B.13) yield equivalent contributions in the partition function
(B.9). For weak disorder (small Qs), the second term is less important than the first one. Accordingly,
we obtain a result that is correct up to a numerical factor of order unity if we keep only the first term.
Hence, we again obtain an effective action for QPS which is of first order in the amplitude y [see also
the analysis of the weakly disordered situation above],

Seff
ps =

√
2yu0

∫
d2r cos[Qs(x)] cos[2φa(r) +Qa(x)]. (B.14)

As a result, we obtain in the case of strong charge disorder, apart from the random phase, also a random
amplitude in the phase-slip action. As demonstrated in Chap. 3, in the course of the RG, the QPS
action without a random amplitude, Eq. (4.7), generates a phase-slip term with a random amplitude
provided that the charge disorder is strong. Hence, the QPS action (4.7) adequately captures the
effects of QPS on the antisymmetric mode in the disordered double chain.

We now turn to the discussion of the gradient anharmonicity emerging in the effective theory for
the antisymmetric mode. Based on the gradient nonlinearities originating from the quartic expansion
of the Josephson potential in each of the two chains, we obtain

Snl =
−1

12π4E3
J

∫
dx
[
(∂τφa)

4+(∂τφs)
4+6(∂τφs)

2(∂τφa)
2
]
. (B.15)

Averaging (B.15) over φs leads to a trivial constant as a result of the first term in Eq. (B.15) and a
renormalization of EJ in Eq. (B.11) due to the last term. We omit both of these effects and obtain

Seff
nl = − 1

12π4E3
J

∫
dxdτ (∂τφa)

4. (B.16)

As a result, we find the same form as in Eq. (4.14) with α = 2.
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B Derivation of the effective theory for the antisymmetric mode

B.2 Elimination of the symmetric mode at the level of the lattice model:
the case of local Coulomb interaction

After the elimination of the symmetric mode on the level of the field theory in the previous section,
we integrate out the symmetric mode here directly in the lattice model (4.16). Our derivation closely
follows the one for the effective action of a single chain presented in App. A.1. Within this section, we
assume local Coulomb interaction (C1 = 0). In Sec. B.3, we generalize this derivation to the long-range
case, C1 � C0.

We begin with the derivation of the path-integral formulation of the partition function of the double-
chain device. For this purpose, the imaginary time τ ∈ [0, β) is discretized into Nτ steps with spacing
∆τ (its precise value is discussed below). Along the space direction we assume periodic boundary
conditions with Nx grains in each of the chains. We denote by n and i the indices of the lattice in τ
and x direction, respectively. The index σ =↑, ↓ refers to the two chains. We introduce a resolution of
unity of the form

1 =
∑
N↑,N↓

∫ 2π

0

dθ↑
2π

∫ 2π

0

dθ↓
2π

∣∣∣N↑,N↓〉〈θ↑, θ↓∣∣∣ e−iθ↑N↑ e−iθ↓N↓ (B.17)

at each point in the space-time lattice (n, i, σ). This leads to the action

S = −i
∑
n,i,σ

N n
i,σ(∂τθ)

n
i,σ + EJ∆τ

∑
n,i,σ

(1− cos[(∂xθ)
n
i,σ])

+
(2e)2∆τ

2

∑
n,i,σ,σ′

(C−1)σ,σ′
(
N n
i,σ −Qi,σ

)(
N n
i,σ′ −Qi,σ′

)
,

(B.18)

where the lattice derivatives

(∂xθ)
n
i,σ = θni+1,σ − θni,σ and (∂τθ)

n
i,σ = θn+1

i,σ − θ
n
i,σ (B.19)

are introduced. We denote by Qi,σ the stray charges and the inverse capacitance matrix in the case
local Coulomb interaction (C1 = 0) is of the form

C−1 =
1

Cg(Cg + 2C0)

(
Cg + C0 C0

C0 Cg + C0

)
. (B.20)

In order to evaluate the summation over the charges N n
i,σ, it is beneficial to define symmetric and

antisymmetric combinations of charges and phases

N n
i,s =

N n
i,↑ +N n

i,↓
2

, N n
i,a =

N n
i,↑ −N n

i,↓
2

, (B.21)

Qi,s =
Qi,↑ +Qi,↓

2
, Qi,a =

Qi,↑ −Qi,↓
2

, (B.22)

θni,s =
θni,↑ + θni,↓

2
, θni,a = θni,↑ − θni,↓. (B.23)

It is important to stress that the charge variables N n
i,s and N n

i,a are either both integer or both half-
integer. In terms of the new variables, the partition function assumes the form

Z =
∑

{Nni,s,Nni,a}

∫ 2π

0
Dθ↑Dθ↓e−

∑
i,n S

n
i , (B.24)
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B.2 Elimination of the symmetric mode at the level of the lattice model: the case of local Coulomb
interaction

with

Sni = −2iN n
i,s(∂τθ)

n
i,s − iN n

i,a(∂τθ)
n
i,a + (2e)2∆τ

[
(N n

i,s −Qi,s)2

Cg
+

(N n
i,a −Qi,a)2

2C0 + Cg

]
+ EJ∆τ

∑
σ

(1− cos[(∂xθ)
n
i,σ]).

(B.25)

It can now be easily seen that in the limit of a small ground capacitance, (2e)2/Cg � EJ, E0, the
charges Ni,s are frozen. They are essentially pinned to the background charges Qi,s

1

N n
i,s =

1

2
b2Qi,sc, (B.26)

where b·c denotes the integer part. We can drop the first term in Eq. (B.25) since it has the form of a
total derivative and the boundary conditions are periodic in imaginary time. Furthermore, we observe
that a proper redefinition of the random charges Qi,a allows the summation over N n

i,a to run over all
integers independent of the (integer or half-integer) value of Ni,s. Accordingly, if the dynamics of the
charges Ni,s is frozen, the systems is described by the action

S =
∑
n,i

{
−iN n

i,a(∂τθ)
n
i,a + (2e)2∆τ

(N n
i,a −Qi,a)2

Cg + 2C0
+ 2EJ∆τ

(
1− cos[(∂xθ)

n
i,s] cos[(∂xθ)

n
i,a/2]

)}
.

(B.27)

In order to derive the effective action for the antisymmetric mode, we still need to integrate over the
phases θni,s. Assuming open boundary conditions in the space direction (we are ultimately interested
in the thermodynamic limit where the precise form of the boundary conditions should not matter),
and introducing the new integration variables

θ̃ni = θni,s − θni−1,s, i ≥ 2, (B.28)

allows us to decouple the integrations. The factor in the partition function which is relevant for the
integration reads

Nx−1∏
i=1

Nτ∏
n=1

(∫ 2π

0
dθ̃ni+1,s exp

{
−2EJ∆τ(1− cos[(∂xθ)

n
i,a/2] cos[θ̃ni+1,s])

})

∝ exp

−∆τ

Nx−1∑
i=1

Nτ∑
n=1

g
[
(∂xθ)

n
i,a

] .

(B.29)

We omit here an unimportant normalization factor. The function g(γ) is given by

g(γ) = − 1

∆τ
ln I0

(
2EJ∆τ cos

γ

2

)
, (B.30)

where I0 is a modified Bessel function of the first kind. We note that the function g(γ) is 2π periodic.
Hence, we can view the effective action

S =
∑
n,i

{
−iN n

i,a(∂τθ)
n
i,a + (2e)2∆τ

(N n
i,a −Qi,a)2

Cg + 2C0
+ ∆τ g[(∂xθ)

n
i,a]

}
(B.31)

1If the stray charge disorder is strong, we neglect here the rare sites where 2Qi,s is half-integer.
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B Derivation of the effective theory for the antisymmetric mode

of the antisymmetric mode as an action for a single chain of JJs with the effective Josephson potential
given by g(∂xθ). From this stage, we can follow the steps outlined in App. A.1 for the derivation of
the low-energy theory of a single chain. Our theory is developed from the superconducting side. As
we show below, this means that we are in the parameter regime EJ∆τ � 1. In this regime, the main
contribution originates from the close vicinity of ∂xθa = 0 (mod 2π). Hence, we can make use of the
Villain approximation which is given by

exp
[
−∆τ g(∂xθa)

]
∝
∑
h

e−
EJ∆τ

4
(∂xθa−2πh)2

. (B.32)

We fix the time step ∆τ to

∆τ =

√
2

EJE0
=

√
2C0

(2e)2EJ
, (B.33)

which is the characteristic time scale of the local dynamics, and the numerical factor is chosen such
that the model is isotropic in space-time. Proceeding along the lines of the derivation presented in
App. A.1, we obtain (omitting the index “a”)

S =
1

2π2K0

∫
dxdτ [u2

0(∂xφ)2 + (∂τφ)2] + yu0

∫
dxdτ cos[2φ(x, τ) +Qa], (B.34)

where

K0 =

√
EJ

2E0
, u0 =

√
EJE0/2. (B.35)

We observe that Eq. (B.34) is equivalent to Eqs. (4.1), (4.2) and (4.7) if we consider the limit Λ→∞
(local Coulomb interaction). In order to extract the gradient anharmonicity, we expand the effective
Josephson coupling (B.30) to the quartic order. We find

Hnl = − EJ

192

∫
dx
(
∂xθa

)4
. (B.36)

This contribution to the effective Hamiltonian is identical to the nonlinear term (4.13) with α = 2.

B.3 Elimination of the symmetric mode at the level of the lattice model:
the case of long-range Coulomb interaction

We turn now to the analysis of the effective theory in the regime of long-range Coulomb interaction,
C0 � C1. In this section, we set Cg = 0.

It is suitable to rewrite the partition function in terms of a path integral over the phases θi,σ(τ)

Z =

∫ ∏
i,σ

Dθi,σ(τ)e−S (B.37)

with

S =

∫
dτ


∑
i,σ


[
(∂xθ̇)i,σ

]2

2E1
− EJ cos

[
(∂xθ)i,σ

]
+ iθ̇i,σQi,σ

+
∑
i

(
θ̇i,↑ − θ̇i,↓

)2

2E0

 . (B.38)
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B.3 Elimination of the symmetric mode at the level of the lattice model: the case of long-range
Coulomb interaction

The action (B.38) corresponds to the Hamiltonian (4.16) with Cg = 0. The third term in Eq. (B.38)
takes into account the effect of charge disorder. We impose the boundary condition

θi,σ(β) = θi,σ(0) + 2πni,σ (B.39)

along the imaginary time, where β is the inverse temperature and ni,σ are integers. This condition is
a consequence of the quantization of the grain charges Ni,σ.

As a result of the considered limit Cg = 0, the action depends on the symmetric combination of the
phases θi,s ≡ (θi,↑ + θi,↓)/2 via its spatial derivative only. It is thus convenient to introduce

Θi,s =
(∂xθ)i,↑ + ∂x(θ)i,↓

2
, θi,a = θi,↑ − θi,↓ (B.40)

as new integration variables and find

S =

∫
dτ
∑
i

Θ̇2
is

E1
+

[
(∂xθ̇)i,a

]2

4E1
+ 2iΘ̇i,sQi,s + iθ̇i,aQi,a − 2EJ cos

[
Θi,s

]
cos

[
(∂xθ)i,a

2

]
+
θ̇2
i,a

2E0

.
(B.41)

We introduced here
Qi,s =

∑
j<i

Qj,s, (B.42)

where the symmetric and antisymmetric combinations of the random charges, Qi,s and Qi,a, are defined
in Eq. (B.22). We impose the boundary conditions in the imaginary time direction

θi,a(β) = θi,a(0) + 2πni,a , (B.43)

Θi,s(β) = Θi,s(0) + 2πni,s + πδi , (B.44)

where ni,s(a) are integers and δi = (ni+1,a − ni,a) mod 2.
Now we are in a position to perform the functional integration over the symmetric mode by exploiting

the fact that the integrations at different points in space are decoupled. The result of the integration
over Θi,s(τ) can be written in the form

∫
DΘi,s(τ) exp

−
∫

dτ

Θ̇2
is

E1
+ 2iΘ̇i,sQi,s − 2EJ cos

[
Θi,s

]
cos

[
(∂xθ)i,a

2

]


= TrU(β) ≡ e−δS[∂xθi,a(τ)].

(B.45)

Here, U(τ) is the evolution operator in imaginary time determined by

dU

dτ
= −H[θi,a(τ)− θi+1,a(τ)]U(τ), (B.46)

and the time dependent Hamiltonian

H = E1

(
N − 2Qi,s −

δi
2

)2

− 2EJ cos

(
Θ + πδi

τ

β

)
cos

θi+1,a(τ)− θi,a(τ)

2
, (B.47)
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B Derivation of the effective theory for the antisymmetric mode

where N is the (integer-valued) momentum canonically conjugate to the coordinate Θ.
In general, the contribution δS[∂xθi,a(τ)] to the effective action of the antisymmetric mode given by

Eqs. (B.45), (B.46) and (B.47) is a complicated functional of the phase difference ∂xθi,a(τ). However,
since we are primarily interested in the low-energy modes of the field θi,a (energies much lower than
the plasma frequency

√
E1EJ), we can make use of the adiabatic approximation for the calculation

of the time evolution operator. Furthermore, at low temperatures and in the limit E1 � EJ, we can
infer the dynamics of Θ by minimizing the potential energy in the Hamiltonian (B.47). Following this
route, we find

δS = −2EJ

∫
dτ
∣∣∣cos[(∂xθ)i,a/2]

∣∣∣ . (B.48)

Combining Eqs. (B.41) and (B.48) leads to the effective action

S =

∫
dτ
∑
i


[
(∂xθ̇)i,a

]2

4E1
− 2EJ

∣∣∣∣cos
[
(∂xθ)i,a/2

]∣∣∣∣+ θ̇i,aQi,a +
θ̇2
i,a

2E0

 . (B.49)

for the antisymmetric mode. The remaining steps in the derivation of the effective theory in terms of
a sine-Gordon theory are completely analogous to the steps outlined in App. A.1. We finally obtain
Eqs. (4.1), (4.2) and (4.7) with α = 2. The gradient anharmonicity (4.13) is obtained by expanding
the effective Josephson potential, Eq. (B.48), to the fourth order.

We make a final remark concerning the relation of this derivation to the heuristic derivation outlined
in App. B.1. In both derivations we obtain the effective low-energy theory for the antisymmetric mode
in terms of a sine-Gordon theory. We obtained in App. B.1 a spatially fluctuating QPS amplitude as
a consequence of the random stray charges, cf. Eq. (B.14). This type of fluctuations is not explicitly
seen in Eq. (B.49). It is expected that a more accurate analysis of QPS on the basis of Eqs. (B.46) and
(B.47) will lead to a QPS amplitude which depends explicitly on the stray-charge configuration Qi,s.
Moreover, as we demonstrated in Chap. 3, the randomness in the phase-slip amplitude is automatically
generated in the course of the RG. Accordingly, both derivations are equivalent.
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C Appendix C

Relaxation of fermions

In this part of the appendix, we present some details of the derivation of the relaxation rate in fermionic
systems discussed in Chap. 5. We start in Sec. C.1 with the analysis of isotropic higher-dimensional
systems (D ≥ 2). In the subsequent section, Sec. C.2, we discuss the relaxation in quasi-1D wires.
Finally, Sec. C.3 is devoted to the analysis of the strictly 1D case at low energies.

C.1 Relaxation at ultra high energies: isotropic case

Here, we outline some details of the derivation of the relaxation rate of a high-energy particle in an
isotropic Fermi sea in D ≥ 2 dimensions. We derive Eqs. (5.4), (5.8), and (5.10) of Sec. 5.1 of the main
text.

Starting from the expression (5.1) for the relaxation rate and exploiting the rotational symmetry,
we recast the golden-rule expression (5.1) in the form

1

τk
=

1

mkD−2SD−1

∫
dp1dp2dp′1dp′2 δ

(
p2

1

2m
− k2

2m

)
δ
(
Ei − Ef

)
δ
(
Pi −Pf

)
× nF(ε2)[1− nF(ε′1)][1− nF(ε′2)]

∣∣∣Mp′1,p
′
2

p1,p2

∣∣∣2. (C.1)

It turns out to be useful to switch to the integrations variables to

P = p1 + p2 = p′1 + p′2 , q =
p1 − p2

2
, q′ =

p′1 − p′2
2

, (C.2)

which have the meaning of the center-of-mass momentum (P) and the relative momenta before and
after the collision (q and q′, respectively). This leads to the expression

1

τk
=

1

2kD−2SD−1

∫
dPdqdq′

q
δ

(
ε1 −

k2

2m

)
δ
(
q − q′

)
nF(ε2)[1− nF(ε′1)][1− nF(ε′2)]

∣∣∣Mp′1,p
′
2

p1,p2

∣∣∣2 (C.3)

for the relaxation rate. Here, the momenta pi and p′i are functions of the integration variables P, q
and q′ [see Eq. (C.2)]. For example, for spinless particles, we have∣∣∣Mp′1,p

′
2

p1,p2

∣∣∣2 =
[
V (|q− q′|)− V (|q + q′|)

]2
. (C.4)
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C Relaxation of fermions

The rotational invariance allows to fix the direction of P parallel to the x-axis. The integration over
the direction of P yields only the factor SD−1. We now parametrize the relative momenta q and q′

according to

q = q
(
cosϕ,n sinϕ

)
, q′ = q

(
cosϕ′,n′ sinϕ′

)
, (C.5)

where n and n′ are (D − 1)-dimensional unit vectors (perpendicular to P). The expression for the
relaxation rate reads now

1

τk
=

1

2kD−2

∫ ∞
0

dPdq PD−1q2D−3

∫ π

0
dϕdϕ′

(
sinϕ sinϕ′

)D−2
δ

(
ε1 −

k2

2m

)

× nF(ε2)[1− nF(ε′1)][1− nF(ε′2)]

∫
dndn′

∣∣∣Mp′1,p
′
2

p1,p2

∣∣∣2, (C.6)

where ∫
dndn′

∣∣∣Mp′1,p
′
2

p1,p2

∣∣∣2 =

∫
dndn′

(
V+ − V−

)2
(C.7)

with

V± = V
(
q
√

2(1± cosϕ cosϕ′ ± n · n′ sinϕ sinϕ′)
)
. (C.8)

We observe now that the Eqs. (C.6), (C.7) and (C.8) are equivalent to the Eqs. (5.4), (5.8), and (5.10)
stated in the main text.

C.2 Relaxation rate in quasi-1D wires

In this part of the appendix, we outline the details of the calculation of the decay rate in multi-channel
quantum wires with one (App. C.2.1) and two lateral dimensions (App. C.2.2), which are analyzed in
Sec. 5.2.

C.2.1 Quasi-1D: one lateral dimension

We begin with the discussion of the of the quasi-1D case with one lateral dimension. The details of
the calculation leading to the results in Eq. (5.34) in Sec. 5.2.2 are presented here. Let us first look
at the contribution of a specific process (fixed band indices ni) to the decay rate given by Eq. (5.32).
Figure C.1 shows an example of a particular process.

Since we assume a large number of available bands between the Fermi energy and the energy of the
injected particle, the sum in Eq. (5.28) is dominated by the terms where the final particles 1′ and 2′

reside in otherwise empty bands. Accordingly, we need to consider only one Fermi function restricting
(at T = 0) the initial cold particle 2 to be within the Fermi sea. Hence, the range of the integration
over the momentum transfer q is restricted by the inequality

1

2m

(
p1 − q +

m∆eff

q

)2

+ ∆0n
2
2 < εF, (C.9)

where ∆eff is defined in Eq. (5.33). It should be emphasized here that Eq. (C.9) limiting the possible
values of q at the same time restricts the “transverse energy transfer” ∆eff by |∆eff | . (p2

1 − p2
F)/2m.
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C.2 Relaxation rate in quasi-1D wires

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure C.1: A particular example of a process 12→ 1′2′ in a multi-channel wire contributing to
the relaxation of electron 1.

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure C.2: Kinematic constraint (in the plane spanned by the initial longitudinal momentum p1

and the longitudinal momentum transfer q = p1− p′1) for the decay of a hot electron in a quasi-1D
setup. In this process, a hole is created in the lowest band of transverse quantization (n2 = 0), and
the “transverse energy transfer” ∆eff = 2εF is considered. At large p1 � pF, two distinct regions
contribute: (i) q ' p1, Eq. (C.10), and (ii) small negative q, Eq.(C.11).
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C Relaxation of fermions

Due to the anisotropy in our model, it is not immediately obvious whether the relaxation rate of
a hot electron with energy ε � εF depends on the direction of the momentum or only on its energy.
In order to investigate this issue, we study two different limiting cases. The first one assumes the
injected particle 1 to be in one of the lowest subbands, meaning that its energy is dominated by the
longitudinal motions. Thus, the longitudinal momentum satisfies the condition p1 � |n1|/d, which
means p1 � pF as well. In the opposite case, the particle resides in a highly excited band of transverse
quantization with p1 � |n1|/d. Below we demonstrate that the dependence of the relaxation rate of
an ultra-hot fermion is almost identical in both cases. Only at very high energies the discreteness of
the energy spectrum becomes important for electrons moving in the transverse direction leading to
deviations between both cases.

We start with case where the injected particle resides in one of the lowest bands and the longitudinal
momentum is large, p1 � pF. In this situation, momentum transfers close to zero and close to p1

contribute to the relaxation rate, cf. Fig. C.2. More precisely, the possible momentum transfer is
limited to the regions

p1 − p̃F(n2) < q < p1 + p̃F(n2) (C.10)

and

− m∆eff

p1

(
1 +

sign(∆eff)

p1
p̃F(n2)

)
< q < −m∆eff

p1

(
1− sign(∆eff)

p1
p̃F(n2)

)
, (C.11)

where

p̃F(n2) =
√
p2

F − 2m∆0n2
2 (C.12)

is the (positive) momentum at which the Fermi energy intersects the band n2. We begin with case
where the characteristic momentum scale of the interaction is the largest momentum scale, p1 � q0.
For spinful fermions, we can set the matrix element constant. Both regions (q ' −m∆eff/p1 and
q ' p1) lead to the same scaling

1

τ{ni}
∼ m|M |2

√
p2

F − 2m∆0n2
2

p1
, pF � p1 � q0. (C.13)

This result yields the contribution from one particular process (with given band indices). The total
relaxation rate is given by the sum over all possible processes,

1

τ
=

∑
n2,n1′ ,n2′

1

τ{ni}
δn1+n2,n1′+n2′ . (C.14)

Here, we sum n2 over all occupied bands, |n2| <
√
εF/∆0 = pFd/2π. Estimating this sum yields

pFd/2π∑
n2=0

√
p2

F −
4π2

d2
n2

2 '
p2

Fd

8
(C.15)

for pFd � 1. The summation over n′2 can be evaluated exploiting the conservation of the trans-
verse momentum. Moreover, the maximum value of the remaining band index n′1 is obtained from
energy considerations: nmax

1′ ' n1/2 +
√
n2

1/4 + p2
1/4m∆0. Since we assume here that the longitudinal

momentum dominates over the transverse one, p1 �
√

2m∆0n1 = 2πn1/d, we find

1

τ
∼ mp2

Fd
2|M |2 ∼ mV 2

0 p
2
F, pF � p1 � q0 (C.16)
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C.2 Relaxation rate in quasi-1D wires

for the relaxation rate. As can be seen, the decay rate does not depend on the momentum p1 of the
injected hot electron, and it coincides with the result (5.15) (with D = 2) found in the same regime of
p1 for an isotropic 2D system.

For spin-polarized fermions, the specific form of the interaction, Eq. (5.27), needs to be analyzed
due to the Hartree-Fock cancellation. The momentum transfers read

q2
dir = q2 +

4π2

d2
(n1 − n1′)

2, (C.17)

q2
ex =

16π4

q2d4
[(n1 − n1′)(n1′ − n2)]2 +

4π2

d2
(n1′ − n2)2, (C.18)

for the direct and exchange terms, respectively. We need to integrate the momentum q over the
two regions given by Eqs. (C.10) and (C.11). The summation over n1′ is cut at the upper limit by
nmax

1′ ≈ p1d/2
√

2π. For the majority of processes, we have n1′ � n2′ . Performing the summation over
all processes, we obtain the scaling

1

τε
∼ mV 2

0 p
2
F

p4
1

q4
0

∼ m3V 2
0

p2
F

q4
0

ε2, pF � p1 � q0, (C.19)

which is again identical to the scaling (5.16) for an isotropic system in two dimensions. Here the energy
ε is introduced which facilitates the comparison of the cases in which the incident momentum of particle
1 is in the transverse and longitudinal direction, respectively. The two regions defined in Eqs. (C.10)
and (C.11) in the integration over q contribute the same amount of the order of Eq. (C.19) to the
relaxation rate. Let us briefly explain the origin of each of the factors using the example of the region
given by Eq. (C.10). The integral in Eq. (5.32) can be estimated by setting q = p1 and multiplying
by the factor p̃F(n2) corresponding to the width of the integration domain. The n2 dependence of the
matrix element can be neglected for the majority of processes. The summation over n2 brings a factor
of p2

Fd, see Eq. (C.15). The final summation over n1′ of the squared matrix element yields the factor
(V 2

0 /q
4
0d

2) · p5
1d. The combination of all those factors leads to the scaling (C.19).

In the case of the longitudinal momentum exceeding the momentum scale of the interaction, p1 �
q0 & pF, the square bracket in Eq.(5.30) is dominated by one of the terms. Accordingly, the Hartree-
Fock cancellation does not occur leading to essentially identical results for spinful and spinless fermions.
Moreover, only band indices n1′ smaller than nmax

1′ ≈ q0d/2π contribute. Higher bands would involve
a transverse momentum transfer that is larger than q0. Hence, the contribution from those bands is
small. As a consequence, we obtain the scaling

1

τε
∼ mV 2

0 p
2
F

q0

p1
∼
√
mV 2

0 p
2
F

q0√
ε
, pF . q0 � p1, (C.20)

for the relaxation rate in this case. It coincides with the behavior for an isotropic 2D system in the
corresponding regime, Eq. (5.17). We get the result (C.20) from (C.13) and (C.14). A factor p2

Fd is
obtained from the summation over n2, and the summation of the squared matrix element over n1′

contributes the factor (V 2
0 /d

2) · q0d.
Let us now discuss the case when the transverse momentum of the injected particle is much larger

than its longitudinal momentum. Such a case is realized when the hot electron occupies the close
vicinity of the bottom of a high band, p1 ' 0, ∆0n

2
1 � εF. We analyze this case with the help of the

general result Eq. (5.32) for p1 = 0. As has been mentioned above, the most important contribution is
related to processes in which the final particles 1′ and 2′ occupy otherwise empty bands, n′1, n

′
2 > nmax

2 .
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C Relaxation of fermions

Hence, we need to take into account only one Fermi function which restricts the initial cold particle to
occupy the Fermi sea. At zero temperature, the integration over q is thus restricted to the two regions

− p̃F

2
−
√
p̃2

F

4
+m∆eff <q <

p̃F

2
−
√
p̃2

F

4
+m∆eff ,

− p̃F

2
+

√
p̃2

F

4
+m∆eff <q <

p̃F

2
+

√
p̃2

F

4
+m∆eff ,

(C.21)

where p̃F depends on n2, cf. Eq. (C.12). It holds that m∆eff & p̃2
F for the dominant processes leading

to the relaxation of a hot particle. Therefore, we can approximate the two integration regions (C.21)
by

−
√
m∆eff − p̃F(n2)/2 < q < −

√
m∆eff + p̃F(n2)/2

and √
m∆eff − p̃F(n2)/2 < q <

√
m∆eff + p̃F(n2)/2.

Again, we begin with the case when the momentum q0 is the largest scale, pF � 2πn1/d� q0. For
spinful fermions, the matrix element can be replaced by a constant. The contribution from a particular
process with given band indices reads then

1

τ{ni}
' |M |2p̃F

√
m

∆eff
= |M |2p̃F

√
m

2∆0(n1 − n1′)(n1′ − n2)
. (C.22)

We can omit the n2 dependence of ∆eff because for the dominant processes n1, n
′
1 � n2. According to

Eq. (C.15), the summation over n2 yields the factor p2
Fd. The summation over n1′ can be performed

with the help of the Euler-Maclaurin formula:

1

τ
= p2

Fd|M |2
√

m

2∆0

n1−1∑
n1′=1

1√
n1′(n1 − n1′)

' p2
Fd|M |2

√
m

2∆0

∫ n1−1

1

dx√
x(n1 − x)

+O(n
−1/2
1 )

∼ mp2
Fd

2|M |2 ∼ mV 2
0 p

2
F, pF �

2πn1

d
� q0. (C.23)

This result coincides with the relaxation rate (C.16) for the corresponding regime in the case where
the momentum of the hot particle points in the longitudinal direction. Hence, we observe that the
relaxation rate essentially does not depend on the direction of the momentum of the injected hot
particle. We show below that this is valid also in the other regimes.

For spinless particles, the above mentioned contribution (where the matrix element is replaced by
a constant) vanishes as a consequence of the Hatree-Fock cancellation. Hence, we take into account
the behavior of the matrix element as function of the relevant momentum transfers which are given
by (C.17) and (C.18). Since we consider the limit where the initial momentum is smaller than q0, the
momentum transfer is always smaller than q0. This means that the interaction potential does lead to
further constraints on the relevant phase space. The total relaxation rate assumes thus the form

1

τ
∼ mp2

Fd
V 2

0

q4
0d

5
n2

1

n1−1∑
n1′=1

(n1 − 2n1′)
2√

n1′(n1 − n1′)
. (C.24)
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C.2 Relaxation rate in quasi-1D wires

The remaining sum can be estimated, which yields the scaling

1

τε
∼ mV 2

0

p2
F

q4
0

(
2πn1

d

)4

∼ m3V 2
0

p2
F

q4
0

· ε2, pF �
2πn1

d
� q0. (C.25)

This result is identical to the rate for the case when the momentum p1 is along the longitudinal
direction, Eq. (C.19).

If the transverse momentum is larger than the momentum scale of the interaction, 2πn1/d � q0 &
pF, some processes are suppressed by the matrix element. The direct term yields a contribution if
n1′ > n1 − q2

0d
2/4π2n1, whereas the exchange term contributes if n1′ < q2

0d
2/4π2n1. Hence, the

Hartree-Fock cancellation is not effective in the spin-polarized case, which means that we get the same
scaling behavior as in the spinful situation. Since again for the majority of processes n1′ � n2, the n2

dependence can be neglected. We need to impose the constraint q2
0d

2/4π2n1 > 1 for the summation
over n1′ to be finite. This condition can be recast in the form p1⊥ < q2

0d/2π with the definition
of the transverse momentum p1⊥ = 2πn1/d. This constraint guarantees that the typical transverse
momentum transfer q2

0/p1⊥ (see the discussion in the end of Sec. 5.1) is larger than the quantization
step 2π/d. If this condition is not satisfied, the decay rate is strongly suppressed because only the
large-momentum behavior of the interaction potential V (q) contributes. Accordingly, in the regime
p1⊥ > q2

0d, the discreteness of the energy spectrum becomes important giving rise to an additional
suppression for a quasi-1D setup compared to the an isotropic 2D system. The actual form of the
decay is non-universal, and we do not further analyze it here.

Under the assumption that the condition p1⊥ < q2
0d is satisfied, the decay rate is estimated in the

following. According to Eq. (C.15), the summation over n2 leads to a factor ∼ p2
Fd. Since the direct and

exchange contribute the same amount, it is sufficient to estimate the contribution from the exchange
term. It is of the form

1

τ
∼ mp2

Fd
V 2

0

d2

q20d

2πp1⊥∑
n1′=1

d√
n1′(n1 − n1′)

. (C.26)

After replacing the sum by an integral, we obtain

1
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∼ mV 2

0 p
2
F

q0

p1⊥
∼
√
mV 2

0 p
2
F

q0√
ε
, pF . q0 � p1⊥ � q2

0d, (C.27)

which coincides with the scaling of the relaxation rate for electrons moving in the longitudinal direction,
Eq. (C.20).

As discussed above, when the momentum of the injected hot fermion is parallel to the transverse
direction, the decay rate is additionally suppressed at p1⊥ � q2

0d because of the discreteness of the
spectrum. However, if the momentum points in the longitudinal direction, the only necessary condition
to recover the isotropic 2D result at high momenta p1 is q0d > 1. To study the crossover between both
limits, we analyze the minimal momentum transfer in the case when the initial hot particle is in a high
band, n1 � p2

Fd
2, but has also a finite longitudinal momentum component p1. We can estimate the

longitudinal momentum transfer q = p1 − p′1 in this regime from the equation

− p1q + q2 =
n1′(n1 − n1′)

d2
. (C.28)

If p1 = 0, we find for the minimal longitudinal momentum transfer qmin =
√
n1/d =

√
p1⊥/d. As

a consequence, the condition for the universal regime of the scattering rate (decay as 1/p−1
1⊥) reads

145



C Relaxation of fermions

qmin < q0. This yields the last condition in the last line of Eq. (C.27) limiting p1⊥ from above.
However, increasing the momentum component in the longitudinal direction p1 above q0 changes the
behavior. Now, the condition for this regime is governed by the first term on the LHS of Eq. (C.28).
Hence, we obtain the condition p1/p1⊥ > 1/q0d for the universal regime. Consequently, we obtain a
non-universal regime, where the relaxation rate vanishes faster than 1/

√
ε if the longitudinal (p1) and

transverse (p1⊥) momentum components of the injected particle 1 fulfill the conditions

p1⊥ > q2
0d and

p1

p1⊥
<

1

q0d
. (C.29)

We summarize all results for multi-channel wires with one lateral dimension in Eq. (5.34).

C.2.2 Quasi-1D: two lateral dimensions

In this section, we outline the steps leading to the scalings summarized in Eq. (5.36) in Sec. 5.2.3. The
derivation is very similar to the one for one lateral dimension discussed in App. C.2.1 above.

We start from Eq. (5.32) and analyze at first the case where the longitudinal momentum dominates
over the transverse one, p1 � 2π|n1|/d. We begin with the case when the characteristic momentum
of the interaction is the largest scale, p1 < q0. For spinful fermions, the contribution from a specific
process can be obtained from Eq. (C.13) with the replacement n2 → n2. Here, the summation over of
n2 over the occupied bands gives rise to the factor ∼ pF(pFd)2, and the summation over n1′ is cut off
at the upper limit by |n1′ | < p1d/2

√
2π due to the energy conservation. Hence, we obtain the factor

∼ (p1d)2 from the summation over n1′ . In total, we obtain for spinful fermions the scaling

1

τε
∼ mV 2

0 p
3
Fp1 ∼ m3/2V 2

0 p
3
F

√
ε, pF � p1 � q0 (C.30)

of the relaxation rate. Thus, we obtain full agreement with the behavior of the decay rate in the
corresponding regime of an isotropic 3D system, Eq. (5.15).

For spin-polarized particles and for large q0, the precise behavior of the interaction, Eq. (5.27),
at the relevant momentum transfers is important (Hartree-Fock cancellation). The corresponding
momentum transfers of the direct and exchange term are obtained from Eqs. (C.17) and (C.18) by
replacing ni → ni. The dependencies on n1 and n2 can be neglected for the dominant processes.

The integration over q over the regions (C.10) and (C.11) leads to a factor ∼ m/p1 ·
√
p2

F − 2m∆0n2
2.

Evaluating the summation of the squared matrix element over n1′ results in a factor ∼ V 2
0 /(q

4
0d

4) ·p6
1d

2.
We finally obtain
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∼ m7/2V 2
0

p3
F

q4
0

ε5/2, pF � p1 � q0 (C.31)

for the relaxation rate, which coincides with the bulk 3D result, Eq. (5.16).
In the regime p1 � q0 & pF, the summation over n1′ is restricted to the unit disk with radius q0d/2π

due to the matrix element (interaction potential). We obtain for spinless and spinful fermions the same
scaling,

1
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0 p
3
F

q2
0

p1
∼
√
mV 2

0 p
3
F

q2
0√
ε
, pF . q0 � p1. (C.32)

The integration over q and the summation over n2 yields the factor m/p1 · pF(pFd)2. Performing the
summation of the squared matrix element over n1′ gives rise to the factor V 2

0 /d
4 · (q0d)2. The scaling

(C.32) fully agrees with the corresponding behavior in the 3D case, Eq. (5.17).
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C.2 Relaxation rate in quasi-1D wires

We turn now to the discussion of the case when the momentum of the injected hot electron is parallel
to the transverse direction. In other words, it occupies the bottom of a high band, ∆0n

2
1 � εF. We

begin with case of spinless fermions. Under the assumption that the transverse momentum is in the
regime pF � 2π|n1|/d� q0, we make use of Eq. (C.22) with the replacement ni → ni, which yields the
contribution from a particular process. Analogous to the previous cases, the dominant contribution is
given by processes with ∆eff > 0.

It is important to note a subtlety that emerges in quasi-1D wires with two lateral dimensions and
was absent for only one lateral dimension. Here, ∆eff has the trivial zeros n1′ = n1 and n1′ = n2 and
additionally zeros which occur if the vector n1−n1′ is orthogonal to n1′ −n2. These zeros give rise to
logarithmic singularities [cf. Eq. (5.32)]. A proper treatment regularizes these singularities. It turns
out that these terms are of minor importance for our analysis. For a more detailed discussion of this
issue, see Sec. 5.2.3. We thus omit these processes below.

The summation over n2 over the occupied bands gives again rise to the factor ∼ pF(pFd)2. In the
summation over n1′ , the n2 dependence can be omitted since for the majority of processes it holds
|n1′ | � |n2|. The summation over n1′ is restricted by |n1| which follows from energy considerations.
Instead of the summation over n1′ , we can go over to an integration. Moreover, we parametrize the
denominator in Eq. (C.22) as

1√
(n1 − n1′)n1′

=
1√

|n1||n1′ | cosϕ− |n1′ |2
, (C.33)

where cosϕ > |n1′ |/|n1| which ensures the condition ∆eff > 0. Performing the integral over |n1′ | and
the angle ϕ yields the factor n1. In total, we arrive at
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2π|n1|
d

� q0. (C.34)

This result for the relaxation rate, which corresponds to the case where the momentum p1 points in
the transverse direction, coincides with the behavior when the momentum is parallel to the wire axis,
Eq. (C.30).

In the same regime of the momentum scales but for spin-polarized fermions, the form of the inter-
action is import due to the Hartree-Fock cancellation. The expressions for the momentum transfers
of the direct and exchange term for a particular process are given by Eqs. (C.17) and (C.18) and the
replacement ni → ni. The integration over q runs over the two regions specified in Eq. (C.21). Again,
we can omit the dependence on n2 everywhere except for the width of the integration over q. In this
way, we get the factor ∼ pF(pFd)2 from the evaluation of the sum over n2.

All momentum transfers allowed by the conservation laws are smaller than q0 in the considered
regime, 2π|n1|/d < q0. There is the constraint |n1′ | < |n1| on the sum over n1 which follows from
energetic considerations. Moreover, the condition n1′(n1−n1′) > 0 ensures ∆eff > 0, which selects the
most important processes. The sum over n1′ scales as |n1|5. In total we obtain
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(
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)5

∼ m7/2V 2
0

p3
F
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ε5/2, pF �
2π|n1|
d

� q0 (C.35)

for the relaxation rate. This result coincides with rate obtained for the situation in which the momen-
tum of the hot particle points along the axis of the wire, Eq. (C.31).

We now turn to the case when the transverse momentum of the hot electron is the largest scale,
2π|n1|/d� q0 & pF. Here, the direct term yields a contribution if (2π/d)2(n2

1−n1n1′) < q2
0, while the
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C Relaxation of fermions

exchange term contributes if (2π/d)2n1n1′ < q2
0. Both regions restricting the summation over the n1′

do not overlap in this regime. Accordingly, we obtain the same scaling for the decay rate in the cases
of spinful and spin-polarized fermions. The additional condition n1′(n1 − n1′) > 0 ensures ∆eff > 0
valid for the dominant processes. After replacing the sum by an integral, we arrive at

1
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0 p
3
Fq

2
0

(
2π|n1|
d

)−1

∼
√
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0 p
3
F

q0√
ε
, pF . q0 �

2π|n1|
d

� q2
0d (C.36)

in accordance with the situation when the momentum of the injected hot electron is parallel to the
wire axis, Eq. (C.32). Completely analogous to the case with only one lateral dimension, the result
for an isotropic 3D system is recovered if the condition q2

0d
2/|n1| > 1 is satisfied. If this condition is

not valid, the relaxation rate is characterized by an even stronger decay because only the tail of the
interaction potential at large momenta contributes. As in the case of only one lateral dimension (cf.
discussion in the end of App. C.2.1), this non-universal regime is given by the conditions

|n1|
d

> q2
0d and

p1

|n1|/d
<

1

q0d
, (C.37)

where p1 denotes the longitudinal component of the momentum of the injected particle.

A summary of all results for a multi-channel wire with two lateral dimensions is presented in
Eq. (5.36).

C.3 Low-energy regime in 1D

In this part of the appendix we outline the derivation of the relaxation rate of fermions interacting via
a short-range interaction potential in one dimension in the low energy limit, p1 − pF � pF. The main
steps leading to Eqs. (5.53) and (5.58) are presented here. We start with the expression for the decay
rate given by Eq. (5.41). The Fermi functions nF(ε2) and nF(ε3) associated with the initial states
restrict the area of integration in the q-P plane, see Fig. C.3.

In contrast to the case of high energies, p1 � pF, where the outgoing particles (1′, 2′, and 3′) are
typically scattered into states well above the Fermi sea, in the low-energy limit, the Fermi functions
related to these particles further restrict the integration region in the q-P plane. Due to the symmetry
ϕ′ → ϕ′ + 2π/3 (interchange of particles), it is sufficient to consider the interval 0 < ϕ′ < 2π/3. At
low energies, δ = (p1 − pF)/pF � 1, only the narrow region

π

3
−
√

3

4
δ < ϕ′ <

π

3
+

√
3

4
δ (C.38)

contributes. Moreover, the integration region in the q-P plane is drastically reduced. Figure C.4 shows
the integration domain taking into account all kinematic constraints. We observe that only the vicinity
of the point (q = 4pF/3, P = p1 ∼ pF) yields a contribution. The area of the contributing region is
proportional to (p1 − pF)3/pF. According to Eq. 5.42, the angle ϕ is fixed to ϕ0 = ±π/3 +O(δ). All
involved particles occupy states close to the Fermi points; one of them is a left mover while the other
two are right movers. Apart from these phase-space considerations, we need to take into account the
behavior of the squared matrix element. We assume again the characteristic momentum scale of the
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C.3 Low-energy regime in 1D

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure C.3: Integration region in the q-P -plane for three-particle collisions at low energies in 1D,
which is restricted by the Fermi functions related to the initial states. The additional constraints
from the outgoing particles are illustrated in Fig. C.4.

[Reprinted figure with permission from M. Bard, I. V. Protopopov, and A. D. Mirlin, Phys. Rev. B 97,
195147 (2018), DOI: 10.1103/PhysRevB.97.195147, cf. Ref. [153]. Copyright 2018 by the American Physical Society.]

Figure C.4: Kinematic constraints for three-particle collisions in 1D in the low-energy regime.
Due to the restrictions originating from the Fermi functions of the outgoing particles, only the
vicinity of the upper right corner in the region in Fig. C.3 contributes.
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C Relaxation of fermions

interaction potential to be larger than the Fermi momentum, q0 � pF. In the case of spin-polarized
particles, Eq. (5.51) can be used leading to the behavior

1
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∼
m3p6

FV
4

0

q16
0

(p1 − pF)8, p1 − pF �pF � q0

(spinless)

(C.39)

for the relaxation rate, which is identical to Eq. (5.53) of the main text.
For spinful fermions, the squared matrix element scales as

wq(ϕ,ϕ
′) ∼ m2V 4

0

q4
0δ

2
∼

m2V 4
0 p

2
F

q4
0(p1 − pF)2

(C.40)

for ϕ ≈ π/3 and ϕ′ ≈ π/3, with a typical distance between ϕ and ϕ′ that is of the order of δ =
(p1 − pF)/pF. Due to the energy denominators and the absence of the Hartree-Fock cancellation, the
matrix element is drastically enhanced in the low-energy limit. In total, we arrive at the relaxation
rate

1

τp1

∼ m3V 4
0

q4
0

(p1 − pF)2, p1 − pF � pF � q0 (spinful), (C.41)

for fermions with spin in a 1D system at low energies. This result is identical to Eq. (5.58) in the main
text.
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