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ASYMPTOTIC PRESERVING TRIGONOMETRIC

INTEGRATORS FOR THE QUANTUM ZAKHAROV SYSTEM

SIMON BAUMSTARK AND KATHARINA SCHRATZ

Abstract. We present a new class of asymptotic preserving trigonometric

integrators for the quantum Zakharov system. Their convergence holds in
the strong quantum regime ϑ = 1 as well as in the classical regime ϑ →
0 without imposing any step size restrictions. Moreover, the new schemes

are asymptotic preserving and converge to the classical Zakharov system in
the limit ϑ → 0 uniformly in the time discretization parameter. Numerical

experiments underline the favorable error behavior of the new schemes with

first- and second-order time convergence uniformly in ϑ, first-order asymptotic
convergence in ϑ and long time structure preservation properties.

1. Introduction

We consider the quantum Zakharov system

i∂tE + ∆E − ϑ∆2E = Eu, E(0, x) = E0(x),

∂ttu−∆u+ ϑ∆2u = ∆|E|2, u(0, x) = u0(x), ∂tu(0, x) = u′
0
(x),

(1.1)

which describes the nonlinear interaction between quantum Langmuir waves and
quantum ion-acoustic waves in an electron-ion dense quantum plasma. In the above
model the quantum parameter ϑ > 0 expresses the ratio between the ion plasmon
energy and the electron thermal energy. We refer to [14, 17, 24, 37] and references
therein for its physical motivation and derivation by a quantum fluid approach.
Here, z(t, x) ∈ C denotes the varying envelope of the highly-oscillatory electric field
and n(t, x) ∈ R is proportional to the ion-density fluctuation. Setting ϑ = 0 in
(1.1) yields the classical Zakharov system which is described by a coupled system
of a Schrödinger equation for z and a wave equation for n, see [8, 9, 10, 22, 40] and
references therein.

The classical Zakharov system (that is ϑ = 0 in (1.1)) is numerically extensively
studied, see, e.g., [3, 4, 11, 12, 23, 18, 19, 27, 31, 36]. Various schemes have been
proposed in case of ϑ = 0 reaching from splitting methods up to trigonometric
integrators. In context of the Klein–Gordon–Zakharov system we also refer to
recent works [1, 2, 41]. However, up to our knowledge nothing is known so far in
numerical analysis for the quantum Zakharov system (1.1), where the oscillations
are driven by

e±it
√
−∆(1−ϑ∆) with 0 ≤ ϑ ≤ 1 (1.2)

instead of the classical case e±it|∇|. While classical methods allow convergence
bounds in the strong quantum regime ϑ = O(1) and the classical regime ϑ = 0,
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respectively, their error bounds do in general not hold uniformly with respect to
the quantum parameter ϑ. The latter is due to the fact that the highly oscillatory
phases (1.2) are in general not preserved uniformly in ϑ under the discretisation.
This phenomenon is illustrated in Figure 1, where soliton solutions ([39]) are simu-
lated with the splitting method [31] generalized to the quantum setting (1.1). The
simulation is carried out for different values of ϑ using the same time-step size:
In the “strong quantum regime” (left picture) the shape of the solition is nicely
preserved, whereas in the “classical regime” (right picture) the approximation fails.
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Figure 1. Contour plot: Simulation of soliton solution of the
quantum Zakharov system (1.1) set on T2 with a classical split-
ting method (cf. [31]) for two different values of the quantum
parameter ϑ using the same time-step size. Left picture: Strong
quantum regime ϑ = 1. Right picture: Classical regime ϑ = 0.01.

The aim of this paper lies in the construction of a new class of asymptotic pre-
serving integrators for the quantum Zakharov system (1.1) that

• converge in the strong quantum regime ϑ = O(1) as well as the classical
regime ϑ = 0 without any ϑ dependent step size restriction, and
• converge asymptotically from the quantum to the classical Zakharov system

without any step size restriction depending on the discretization parameter.

For the latter, note that on the continues level the quantum Zakharov system (1.1)
reduces to the classical Zakharov system

i∂tE + ∆E = Eu, ∂ttu−∆u = ∆|E|2 (1.3)

in the classical limit ϑ → 0. More precisely, solutions of the quantum Zakharov
system (1.1) are approximated by the classical Zakharov system (1.3) with conver-
gence rate O(ϑ), where the latter holds for sufficiently smooth solutions. The new
constructed trigonometric integrators are designed such that this approximative
property is inherited in the numerical discretization. In particular, convergence
of order O(ϑ) from the quantum to the classical Zakharov approximation holds
uniformly in the time-step size τ (see Section 4 for details). Our techniques allow
us to develop asymptotic preserving schemes of arbitrary order. We will give de-
tails on the construction of a first- and second-order scheme. For the development
and analysis of asymptotic preserving schemes in the context of highly oscillatory
Klein–Gordon type equations we also refer to [5, 13, 16].
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The main challenge in constructing such a robust method for system (1.1) origi-
nates from the presence of derivatives in the nonlinearity: Mild solutions are given
by

E(t) =e−itΩ
2
ϑE(0)− i

∫ t

0

e−i(t−ξ)Ω
2
ϑu(ξ)E(ξ)dξ,

u(t) = cos(tΩϑ)u(0) +
sin(tΩϑ)

Ωϑ
u′(0)−

∫ t

0

sin((t− ξ)Ωϑ)Ω−1
ϑ ∆|E(ξ)|2dξ,

(1.4)

where we define the operator

Ωϑ :=
√
−∆(1− ϑ∆). (1.5)

With the aid of the Fourier expansion f(x) =
∑
k∈Zd f̂keikx we can express the

action of (1.5) as follows

Ωϑf(x) =
∑
k∈Zd

√
|k|2(1 + ϑ|k|2)f̂keikx, (1.6)

where
|k|2 = k2

1 + . . . k2
d and kx = k1x1 + . . .+ kdxd.

Note that the coupling operator Ω−1
ϑ ∆ in (1.4) allows the following bounds:

There exists a c > 0 such that

∀ϑ > 0 : ‖Ω−1
ϑ ∆f‖s ≤ c inf

{
ϑ−1/2‖f‖s, ‖f‖s+1

}
. (1.7)

“Naively” estimating the solutions thus yields for s > d/2 and all ϑ > 0

‖E(t)‖s ≤ ‖E(0)‖s + c

∫ t

0

‖u(ξ)‖s‖E(ξ)‖sdξ,

‖u(t)‖s ≤ ‖u(0)‖s + ‖u′(0)‖s−1 + c

∫ t

0

‖E(ξ)‖2s+1dξ,

(1.8)

respectively,

‖E(t)‖s ≤ ‖E(0)‖s + c

∫ t

0

‖u(ξ)‖s‖E(ξ)‖sdξ,

‖u(t)‖s ≤ ‖u(0)‖s + ‖u′(0)‖s−1 + cϑ−1/2

∫ t

0

‖E(ξ)‖2sdξ.
(1.9)

The estimate (1.9) seems the preferable choice as (1.8) amounts in a loss of de-
rivative. However, the bound (1.9) yields an error constant involving the term
exp(ϑ−1/2T ) which explodes in the classical limit regime ϑ→ 0.

In order to avoid any CFL condition depending on ϑ nor the spatial discretiza-
tion paramter ∆x we follow the techniques developed in the analytical work [35] on
the well posedness analysis of the classical Zakharov system: We will reformulate
the quantum Zakharov system as a system in (E, ∂tE, u, ∂tu). This allows us to
overcome the loss of derivative and derive robust and uniformly accurate trigono-
metric integrators for the quantum Zakharov system (1.1) without imposing any
type of CFL condition – neither depending on the step size τ nor on ϑ. This idea
was recently applied to the classical Zakharov system (that is ϑ = 0 in (1.1)) where
a new stable class of trigonometric integrators were introduced, see [27]. This ap-
proach was recently also successfully applied in the context of splitting schemes
for the Zakharov system ([23]). In context of the quantum Zakharov system the
analysis is however more involved as our aim lies in asymptotic preserving schemes
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which converge in the limit ϑ → 0 to solutions of the classical Zakharov system
(1.3) without any step size restriction. In particular, and compared to the classical
case ϑ = 0 (see, e.g., [27]) the main task lies in establishing error bounds that hold
uniformly in the quantum parameter ϑ and the asymptotic analysis ϑ → 0 (see
Section 4). For further results on trigonometric (and exponential) integrators for
semilinear wave equations we refer to [20, 28, 29] and the references therein. For
practical implementation reasons we will impose periodic boundary conditions, i.e.,
x ∈ Td, hence both E and u are considered to be spatially periodic.

2. Trigonometric integrators for the quantum Zakharov system

Following the strategy in [27, 35] we reformulate the quantum Zakharov sys-
tem (1.1) as follows

i∂tF − Ω2
ϑF = uF + ∂tu

(
E(0) +

∫ t

0

F (ξ)dξ

)
,

∂ttu+ Ω2
ϑu = ∆|E|2,

E = (Ω2
ϑ + 1)−1

{
iF − (u− 1)

(
E(0) +

∫ t

0

F (ξ)dξ

)}
,

(2.1)

where F := ∂tE and

F (0) = −i
(
Ω2
ϑE(0) + u(0)E(0)

)
, u(0) = u0, ∂tu(0) = u′

0
, E(0) = E0. (2.2)

Let

IF (t) := E0 +

∫ t

0

F (λ)dλ.

Then the mild solutions of (2.1) at time tn+1 = tn + τ with t0 = 0 read

F (tn + τ) =e−iτΩ2
ϑF (tn)− i

∫ τ

0

e−i(τ−ξ)Ω
2
ϑ

(
(uF + u′IF )(tn + ξ)dξ

)
u(tn + τ) = cos(τΩϑ)u(tn) + Ω−1

ϑ sin(τΩϑ)u′(tn)

+

∫ τ

0

Ω−1
ϑ sin((τ − ξ)Ωϑ)∆|E(tn + ξ)|2dξ,

u′(tn + τ) =− Ωϑ sin(τΩϑ)u(tn) + cos(τΩϑ)u′(tn)

+

∫ τ

0

cos((τ − ξ)Ωϑ)∆|E(tn + ξ)|2dξ,

E(tn + τ) =(Ω2
ϑ + 1)−1

{
iF (tn + τ)− (u(tn + τ)− 1)IF (tn + τ)

}
.

(2.3)

In order to construct a numerical scheme which preserves the oscillation (1.2) in
the quantum parameter ϑ we approximate the exact solutions (u, u′, F, E)(tn + ξ)
appearing in the above integrals via Taylor series expansion. This allows us to

integrate the oscillatory terms e−iξΩ
2
ϑ , cos(ξΩϑ) and sin(ξΩϑ) exactly. Furthermore,

we use the following approximation for the integrals over F : For 0 ≤ ξ ≤ τ we
approximate ∫ tn+ξ

0

F (λ)dλ ≈ τ
n∑
k=0

F (tk).
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This yields for n ≥ 0 the trigonometric time integration scheme

Fn+1 = e−iτΩ2
ϑFn + iτ

1− e−iτΩ2
ϑ

−iτΩ2
ϑ

(
unFn + u′nE0 + u′n

(
τ

n∑
k=0

F k
))

,

un+1 = cos(τΩϑ)un + Ω−1
ϑ sin(τΩϑ)u′n + τΩ−1

ϑ

1− cos(τΩϑ)

τΩϑ
∆|En|2,

u′n+1 = −Ωϑ sin(τΩϑ)un + cos(τΩϑ)u′n + τ
sin(τΩϑ)

τΩϑ
∆|En|2,

En+1 = (Ω2
ϑ + 1)−1

{
iFn+1 − (un+1 − 1)

(
E0 + (τ

n∑
k=0

F k+1)
)}

(2.4)

equipped with the initial values (5). This scheme is an asymptotic preserving ex-
tension of the trigonometric integration scheme derived in [27] for the classical
Zakharov system (1.3). The new scheme (2.4) in particular respects the oscillatory
structure (1.2) which strongly depends on the quantum paramter ϑ. In particular,
in Section 4 below we will prove that in the limit ϑ → 0 it asymptotically con-
verges towards the classical integration scheme derived in [27] without any step size
restrictions (neither on τ nor on ϑ).

3. Error analysis

In the following we set for f(x) =
∑
k∈Zd f̂(k)eik·x and s ∈ R

〈∇〉sf(x) := |∇|sf(x) + f̂(0), 〈Ωϑ〉sf(x) := Ωsϑf(x) + f̂(0)

and define

‖f‖s := ‖〈∇〉sf‖L2(Td).

Furthermore, for α ∈ R we set

ms,α,ϑ(T ) := sup
0≤t≤T

{‖〈Ωϑ〉2α+2E(t)‖s + ‖〈Ωϑ〉α+1u(t)‖s + ‖〈Ωϑ〉αu′(t)‖s}. (3.1)

Theorem 3.1. Fix s > d/2 and ϑ ≥ 0. For any T > 0 suppose that

ms,1,ϑ(T ) = sup
0≤t≤T

{‖〈Ωϑ〉4E(t)‖s + ‖〈Ωϑ〉2u(t)‖s + ‖〈Ωϑ〉u′(t)‖s} <∞. (3.2)

Then there exists a τ0 > 0 such that for all 0 < τ ≤ τ0 and tn ≤ T
‖〈Ωϑ〉2(E(tn)− En)‖s + ‖〈Ωϑ〉(u(tn)− un)‖s + ‖u′(tn)− u′n‖s ≤ cτ, (3.3)

where c depends only on ms,1,ϑ(T ) as well as on T , s and d.

Remark 3.2. Local-wellposedness results for the quantum Zakharov system (1.1) are
given in [14]. For local-wellposedness of the classical Zakharov system in Sobolev
spaces of low regularity on Td we refer to [9, 38, 32]. Concerning the well-posedness
theory on Rd we refer to [35, 10, 22, 7, 6] and references therein.

Proof of Theorem 3.1. Compared to the classical case ϑ = 0 (see, e.g., [27]) the
main task lies in establishing error bounds that hold uniformly in the quantum
parameter ϑ.

Fix s > d/2 and ϑ ≥ 0. In the following let c denote a numerical constant that
does not depend on ϑ nor τ, n. Subtracting the numerical solutions (2.4) from the
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exact solutions (2.3) yields

F (tn+1)− Fn+1 = e−iτΩ2
ϑ(F (tn)− Fn)

+ iτ
1− e−iτΩ2

ϑ

−iτΩ2
ϑ

(
u(tn)(F (tn)− Fn) + (u(tn)− un)Fn

+ (u′(tn)− u′n)E(0) + u′(tn)
(
τ

n∑
k=0

(F (tk)− F k)
)

+ (u′(tn)− u′n)(τ

n∑
k=0

F k)
)

+ LnF ,

(3.4)

and

〈Ωϑ〉(u(tn+1)− un+1) = cos(τΩϑ)〈Ωϑ〉(u(tn)− un)

+ sin(τΩϑ)
〈Ωϑ〉
Ωϑ

(u′(tn)− u′n)

+ τ
1− cos(τΩϑ)

τΩϑ

〈Ωϑ〉
Ωϑ

∆
(
|E(tn)|2 − |En|2

)
+ 〈Ωϑ〉Lnu,

(3.5)

as well as

u′(tn+1)− u′n+1 = − sin(τΩϑ)
Ωϑ
〈Ωϑ〉

〈Ωϑ〉(u(tn)− un)

+ cos(τΩϑ)(u′(tn)− u′n)

+ τ
sin(τΩϑ)

τΩϑ
∆
(
|E(tn)|2 − |En|2

)
+ Lnu′ ,

(3.6)

and

E(tn+1)− En+1 = − (Ω2
ϑ + 1)−1

{
i(F (tn+1)− Fn+1)

− (u(tn+1)− un+1)
(
E(0) + τ

n∑
k=0

F k+1)
)

+ (1− u(tn+1))
(
τ

n∑
k=0

(F (tk+1)− F k+1)
)

+ 〈Ωϑ〉2LnE
}
.

(3.7)

The local errors at time tn satisfy

‖LnF ‖s =
∥∥∥∫ τ

0

e−i(τ−ξ)Ω
2
ϑ

(
u(tn + ξ)F (tn + ξ)− u(tn)F (tn)

+ u′(tn + ξ)IF (tn + ξ)− u′(tn)
(
E(0) + τ

n∑
k=0

F (tk)
))

dξ
∥∥∥
s
,

‖〈Ωϑ〉Lnu‖s =
∥∥∥ 〈Ωϑ〉

Ωϑ

∫ τ

0

sin((τ − ξ)Ωϑ)∆
(
|E(tn + ξ)|2 − |E(tn)|2

)
dξ
∥∥∥
s
,

‖Lnu′‖s =
∥∥∥∫ τ

0

cos((τ − ξ)Ωϑ)∆
(
|E(tn + ξ)|2 − |E(tn)|2

)
dξ
∥∥∥
s
,

‖〈Ωϑ〉2LnE‖s =
∥∥∥(1− u(tn+1))

(∫ tn+τ

0

F (λ)dλ− τ
n∑
k=0

F (tk+1)
)∥∥∥

s
.

(3.8)
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Set

mn
s,0,ϑ := max

0≤k≤n
{‖〈Ωϑ〉2En‖s + ‖Fn‖s + ‖〈Ωϑ〉un‖s + ‖u′n‖s}.

(i) Error in F : Note that for all τ ∈ R

‖eiτΩ2
ϑ‖s ≤ 1, ‖(iτΩ2

ϑ)−1(1− eiτΩ2
ϑ)‖s ≤ 2. (3.9)

Furthermore, for all δ, γ ≥ 0 we have

‖f‖s+δ =
∑
k∈Zd

|k|2s+2δ|f̂k|2 + |f̂0|2 ≤
∑
k∈Zd

|k|2s+2δ(1 + ϑ|k|)2δ|f̂k|2 + |f̂0|2

≤ ‖〈Ωϑ〉δf‖s ≤ ‖〈Ωϑ〉δ+γf‖s.
(3.10)

Thus, plugging the stability bound (3.9) into the error recursion (3.4) yields that

‖F (tn+1)− Fn+1‖s ≤
(
1 + τctnms,0,ϑ(tn)

)
max

0≤k≤n
‖F (tk)− F k‖s

+ cτ
(
ms,0,ϑ(0) + tnm

n
s,0,ϑ

)
(‖〈Ωϑ〉(u(tn)− un)‖s + ‖u′(tn)− u′n‖s) + ‖LnF ‖s.

(3.11)

(ii) Error in E: The error recursion (3.7) together with (3.10) implies that

‖〈Ωϑ〉2E(tn)− En‖s ≤ (1 + ctnms,0,ϑ(tn)) max
0≤k≤n

‖F (tk)− F k‖s

+ c
(
ms,0,ϑ(0) + tnm

n
s,0,ϑ

)
‖〈Ωϑ〉(u(tn)− un)‖s + ‖〈Ωϑ〉2Ln−1

E ‖s.
(3.12)

(iii) Error in (〈∇〉u, u′): Formula (3.6) and (3.5) imply that(
〈Ωϑ〉(u(tn+1)− un+1)

u′(tn+1)− u′n+1

)
= Oτ

(
〈Ωϑ〉(u(tn)− un)

u′(tn)− u′n

)

+ τ

(
1−cos(τΩϑ)

τΩϑ

〈Ωϑ〉
Ωϑ

sin(τΩϑ)
τΩϑ

)
∆
(
|E(tn)|2 − |En|2

)
+

(
〈Ωϑ〉Lnu
Lnu′

)
,

(3.13)

with the rotation matrix

Oτ =

(
cos(τΩϑ) sin(τΩϑ) 〈Ωϑ〉Ωϑ

− sin(τΩϑ) Ωϑ
〈Ωϑ〉 cos(τΩϑ)

)
. (3.14)

Note that the error recursion (3.12) together with (3.10) yields that

‖E(tn)− En‖s+2 ≤ (1 + ctnms,0,ϑ(tn)) max
0≤k≤n

‖F (tk)− F k‖s

+ c
(
ms,0,ϑ(0) + tnm

n
s,0,ϑ

)
‖〈Ωϑ〉(u(tn)− un)‖s + ‖〈Ωϑ〉2Ln−1

E ‖s.
(3.15)

Also note that the stability result [27, Lemma 3.5.] holds true as we have that

Oτ = V −1diag(eiτΩϑ , e−iτΩϑ)V + Zτ , (3.16)

where

V =
1√
2

(
1 i
i 1

)
, Zτ :=

(
0 τ sin(τΩϑ)

τΩϑ
(〈Ωϑ〉 − Ωϑ)

sin(τΩϑ)
τ〈∇〉 (〈Ωϑ〉 − Ωϑ) 0

)
sucht that the action of Zτ is nothing but multiplication by τ of the zero mode of

the second component weights with the sinc-like function sin(τΩϑ)
τ〈∇〉 . Using (3.15) as
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well as (3.16) in (3.13) thus yields that

‖〈Ωϑ〉(u(tn+1)− un+1)‖s + ‖u′(tn+1)− u′n+1‖s
≤
(
ctn
(
ms,0,ϑ(tn) +mn

s,0,ϑ

){
(1 + tnms,0,ϑ(tn)) max

0≤k≤n
‖F (tk)− F k‖s

+ max
0≤k≤n

‖〈Ωϑ〉2LkE‖s
}

+ 2n max
0≤k≤n

(‖〈Ωϑ〉Lku‖s + ‖Lku′‖s)
)

etn
(

1+qn

)
,

(3.17)

where qn ≤ c(1 + tn)(ms,0,ϑ(tn) +mn
s,0,ϑ)2.

Collecting the results in (3.11), (3.12) and (3.17) together with the local error
bounds given in Lemma 3.3 below yields the assertion by a bootstrap argument. �

Lemma 3.3. Let s > d/2. Assume that

ms,1,ϑ(tn+1) <∞.

Then the local errors defined in (3.8) satisfy

max
0≤k≤n

{‖LkF ‖s + ‖〈Ωϑ〉Lku‖s + ‖Lku′‖s + τ‖〈Ωϑ〉2LkE‖s} ≤ cτ2,

where c depends on ms,1,ϑ(tn+1).

Proof. The proof follows the line of argumentation to the proof of Lemma 3.4 in [27]
by replacing the operator (−∆)

α
2 by Ωαϑ in the local error analysis. �

Remark 3.4. The quantum Zakharov system (1.1) has a Hamiltonian structure and
if ∂tu(0, x) has mean zero,

d

dt
H(E, u)

=
d

dt

∫
Td
u|E|2 + ||∇|E|2 + ϑ|∆E|2 +

1

2

(
u2 + ϑ||∇|u|2 + ||∇|−1∂tu|2

)
dx = 0,

(3.18)
where |∇| :=

√
−∆. Theorem 3.1 implies first-order convergence of the trigono-

metric integrator (2.4) in the corresponding energy space for sufficiently smooth
data.

Furthermore, Theorem 3.1 together with the observation in (3.10) implies the
following uniform convergence bound:

Corollary 3.5. Fix s > d/2. For any T > 0 suppose that

ms,1,∗(T ) := sup
0≤ϑ≤1

ms,1,ϑ(T ) <∞. (3.19)

Then there exists a τ0 > 0 such that for all 0 < τ ≤ τ0, tn ≤ T and all 0 ≤ ϑ ≤ 1
we have

‖E(tn)− En‖s+2 + ‖u(tn)− un‖s+1 + ‖u′(tn)− u′n‖s ≤ cτ, (3.20)

where c depends only on ms,1,∗(T ) as well as on T , s and d, but can be chosen
uniformly with respect to ϑ.
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4. Asymptotic convergence in the limit ϑ→ 0

The classical Zakharov system (that is ϑ = 0 in (1.1)) is approximated by the
quantum Zakharov system for ϑ→ 0. More precisely, the approximation holds with
order O(ϑ) for sufficiently smooth solutions. Denote by (Eϑ, uϑ, u

′
ϑ) the solutions of

the quantum Zakharov system (1.1) and accordingly by (Enϑ , u
n
ϑ, u
′n
ϑ ) its numerical

approximation by the trigonometric integration scheme defined in (2.4). Thus,
in particular let (E0, u0, u

′
0) denote the exact solutions of the classical Zakharov

system (1.3) and (En0 , u
n
0 , u
′n
0 ) their numerical approximation defined in (2.4) by

setting ϑ = 0. Then, for s > d/2 and sufficiently smooth solutions the following
approximation holds

‖En0 − Enϑ‖s+2 + ‖un0 − unϑ‖s+1 + ‖u′n0 − u′
n
ϑ‖s

≤ ‖E0(tn)− En0 ‖s+2 + ‖u0(tn)− un0‖s+1 + ‖u′0(tn)− u′n0‖s
+ ‖Eϑ(tn)− Enϑ‖s+2 + ‖uϑ(tn)− unϑ‖s+1 + ‖u′ϑ(tn)− u′nϑ‖s
+ ‖E0(tn)− Eϑ(tn)‖s+2 + ‖u0(tn)− uϑ(tn)‖s+1 + ‖u′0(tn)− u′ϑ(tn)‖s
≤ c
(
τ + ϑ+ ‖E0(0)− Eϑ(0)‖s+2 + ‖u0(0)− uϑ(0)‖s+1 + ‖u′0(0)− u′ϑ(0)‖s

)
.

(4.1)
This naturally implies that for time steps τ ≤ ϑ the quantum approximation con-
vergences to the classical approximation with order O(ϑ). However, the even more
desirable property of asymptotic preservation holds true for the new schemes (2.4).

Theorem 4.1. Fix s > d/2. For any T > 0 and ε > 0 suppose that

Ms,∗(T ) = sup
0≤t≤T

{‖E(t)‖s+6+2ε + ‖u(t)‖s+5+ε + ‖u′(t)‖s+4+ε} <∞. (4.2)

Then there exists a τ0 > 0 such that for all 0 < τ ≤ τ0, tn ≤ T and all 0 ≤ ϑ ≤ 1

‖〈Ωϑ〉2(En0 − Enϑ )‖s + ‖〈Ωϑ〉(un0 − unϑ)‖s + ‖u′n0 − u′
n
ϑ‖s (4.3)

≤ c
(
ϑ+ ‖〈Ωϑ〉2(E0(0)− Eϑ(0))‖s + ‖〈Ωϑ〉(u0(0)− uϑ(0))‖s + ‖u′0(0)− u′ϑ(0)‖s

)
,

(4.4)

where c depends only on Ms,∗(T ) as well as on T, s and d.

Proof. First note that Theorem 3.1 together with the regularity assumptions (4.2)
imply that there exists a τ0 > 0 such that for all τ ≤ τ0 and tn ≤ T we have

mn
s := sup

0≤ϑ≤1
max

0≤k≤n

{
‖〈Ωϑ〉2Ekϑ‖s + ‖F kϑ‖s + ‖〈Ωϑ〉ukϑ‖s + ‖u′kϑ‖s

}
<∞, (4.5)

mn
s,∗ := max

0≤k≤n

{
‖Ek0 ‖s+6 + ‖F k0 ‖s+4 + ‖uk0‖s+5 + ‖u′k0‖s+4

}
<∞. (4.6)

Note that

sup
0≤ϑ≤1

‖Ω4
ϑf‖s ≤ 2‖f‖s+6.

Therefore the regularity assumptions (4.2) imply that ms,1,ϑ(T ) < ∞. Hence, the
first claim (4.5) follows by Theorem 3.1. The second claim (4.6) follows by replacing
s with s+ 4 in Theorem 3.1. in [27].
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(i) Error in Fn0 −Fnϑ : The definition of the numerical solutions in (2.4) together
with the stability bound (3.9) implies that

‖Fn+1
0 − Fn+1

ϑ ‖s
≤ (1 + τmn

s tnc) sup
0≤k≤n

‖F k0 − F kϑ‖s + τcmn
s

(
‖un0 − unϑ‖s + ‖u′n0 − u′nϑ ‖s

)
+ ‖

(
e−iτΩ2

ϑ − eiτ∆
)
Fn0 ‖s

+ ‖
(

1− e−iτΩ2
ϑ

−iτΩ2
ϑ

− 1− eiτ∆

iτ∆

)(
un0F

n
0 + u′n0 E

0
0 + u′n0

(
τ

n∑
k=0

F k0
))
‖s.

(4.7)

The definition of Ωϑ in (1.5) implies that

‖
(

e−iτΩ2
ϑ − eiτ∆

)
f‖s = ‖

(
1− eiτ(∆+Ω2

ϑ)
)
f‖s ≤ τ‖(∆ + Ω2

ϑ)f‖s ≤ τϑ‖f‖s+4.

(4.8)

Similarly, we have that

‖
(

1− e−iτΩ2
ϑ

−iτΩ2
ϑ

− 1− eiτ∆

iτ∆

)
f‖s ≤ τ‖(∆ + Ω2

ϑ)f‖s ≤ τϑ‖f‖s+4. (4.9)

Plugging (4.8) and (4.9) into (4.7) yields

‖Fn+1
0 − Fn+1

ϑ ‖s ≤ (1 + τmn
s tnc) sup

0≤k≤n
‖F k0 − F kϑ‖s

+ τcmn
s

(
‖un0 − unϑ‖s + ‖u′n0 − u′nϑ ‖s

)
+ cτϑmn

s,∗.
(4.10)

(ii) Error in En0 − Enϑ : By (2.4) we have that

Ω2
ϑE

n+1
ϑ = iFn+1

ϑ − un+1
ϑ

(
E0
ϑ + τ

n∑
k=0

F k+1
ϑ

)
,

−∆En+1
0 = iFn+1

0 − un+1
0

(
E0

0 + τ

n∑
k=0

F k+1
0

)
.

Using the bound

‖
(

Ω2
ϑ

∆
+ 1

)
f‖s = ‖

(
Ω2
ϑ + ∆

)
f‖s−2 ≤ ϑ‖f‖s+2

we therefore obtain that

‖〈Ωϑ〉2(En+1
0 − En+1

ϑ )‖s ≤ (1 + cmn
s tn) sup

0≤k≤n
‖F k+1

0 − F k+1
ϑ ‖s

+ c(m0
s +mn

s tn)‖un+1
0 − un+1

ϑ ‖s + cϑmn
s,∗.

(4.11)

(iii) Error in (un0 − unϑ, u′n0 − u′nϑ ): (2.4) implies that(
〈Ωϑ〉(un+1

0 − un+1
ϑ )

u′n+1
0 − u′n+1

ϑ

)
= Oτ

(
〈Ωϑ〉(un0 − unϑ)

u′n0 − u′nϑ

)

+ τ

(
1−cos(τΩϑ)

τΩϑ

〈Ωϑ〉
Ωϑ

sin(τΩϑ)
τΩϑ

)
∆
(
|En0 |2 − |Enϑ |2

)
+R(τ, ϑ,mn

s,∗),

(4.12)
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where

Oτ =

(
cos(τΩϑ) sin(τΩϑ) 〈Ωϑ〉Ωϑ

− sin(τΩϑ) Ωϑ
〈Ωϑ〉 cos(τΩϑ)

)
(4.13)

and the remainder satisfies

‖R(τ, ϑ,mn
s,∗)‖s

≤ ‖Ωϑ
(

cos(τΩϑ)− cos(τ |∇|)
)
un0‖s + ‖

(
Ωϑ sin(τ |∇|)− |∇| sin(τΩϑ)

)
un0‖s

+ ‖
(

sin(τΩϑ)− sin(τ |∇|)
)
u′n0 ‖s + ‖

(
cos(τΩϑ)− cos(τ |∇|)

)
u′n0 ‖s

+ τ‖
(

Ωϑ
|∇|

1− cos(τ |∇|)
τ |∇| − 1− cos(τΩϑ)

τΩϑ

)
∆|En0 |2‖s

+ τ‖
(

sin(τΩϑ)

τ〈Ωϑ〉
− sin(τ |∇|)

τ |∇|

)
∆|En0 |2‖s.

Note that for α = 1, 1
2 we have that

‖
(√

1− ϑ∆− 1
)
f‖s = ‖

(√
1− ϑ∆− 1

)(√
1− ϑ∆ + 1

)(√
1− ϑ∆ + 1

) f‖s ≤ ‖
ϑ∆(√

1− ϑ∆ + 1
)f‖s

≤ ϑα‖f‖s+2α,

which in particular implies that for α = 1, 1
2

‖
(
〈Ωϑ〉 − 〈∇〉

)
f‖s ≤ ϑα‖f‖s+1+2α, ‖sin

(
τ(Ωϑ − |∇|)

)
f‖s ≤ τϑα‖f‖s+1+2α.

With the aid of the relations

cos(τΩϑ)− cos(τ |∇|) = −2sin
(
τ/2(Ωϑ + |∇|)

)
sin
(
τ/2(Ωϑ − |∇|)

)
,

sin(τΩϑ)− sin(τ |∇|) = 2cos
(
τ/2(Ωϑ + |∇|)

)
sin
(
τ/2(Ωϑ − |∇|)

)
we thus obtain the following bound on the remainder

‖R(τ, ϑ,mn
s,∗)‖s

≤ 4‖
(
Ωϑ − |∇|

)
sin
(
τ/2(Ωϑ − |∇|)

)
un0‖s + 4‖|∇|sin

(
τ/2(Ωϑ − |∇|)

)
un0‖s

+ 4‖sin
(
τ/2(Ωϑ − |∇|)

)
u′n0 ‖s + 4τ‖

(
Ωϑ − |∇|

)
|En0 |2‖s+1

+ 2‖ 1

|∇|Ωϑ
((

Ωϑ − |∇|)(1− cos(τΩϑ)) + Ωϑ
(

cos(τΩϑ)− cos(τ |∇|)
))
|En0 |2‖s+2

+ 2‖ 1

|∇|Ωϑ
((
|∇| − Ωϑ

)
sin(τΩϑ) + |∇|

(
sin(τΩϑ)− sin(τ |∇|)

))
|En0 |2‖s+2

≤ cτϑ
(
‖un0‖s+4 + ‖u′n0 ‖s+3 + ‖En0 ‖s+4

)
≤ cτϑmn

s,∗.

(4.14)
Collecting the results in (4.10), (4.11), (4.13) and (4.14) yields the assertion by

an inductive argument. �

5. Second-order asymptotic preserving trigonometric integrators

Following the above approach we can also derive a second-order trigonometric
integration scheme for the quantum Zakharov system (1.1). To achieve an asymp-
totic preserving scheme we discretize the mild solution (2.3) thereby as follows: In
the approximation of F we employ the second-order Taylor series expansion

(uF + u′IF )(tn + ξ) = (uF + u′IF )(tn) + ξ(uF + u′IF )′(tn) +O(ξ2)
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while integrating the appearing oscillatory phases (cf. (1.2)) exactly by using that∫ τ

0

e−i(τ−ξ)Ω
2
ϑdξ =

1

iΩ2
ϑ

(
e−iτΩ2

ϑ − 1
)

∫ τ

0

e−i(τ−ξ)Ω
2
ϑξdξ =

1

iΩ2
ϑ

(
τ − 1

iΩ2
ϑ

(
1− e−iτΩ2

ϑ

))
.

For the approximation of the wave part (u, u′) we apply the trapezoidal rules∫ τ

0

Ω−1
ϑ sin((τ − ξ)Ωϑ)∆|E(tn + ξ)|2dξ =

τ

2
Ω−1
ϑ sin(τΩϑ)∆|E(tn)|2 +O(τ3)∫ τ

0

cos((τ − ξ)Ωϑ)∆|E(tn + ξ)|2dξ =
τ

2
∆
(
|E(tn + τ)|2 + cos(τΩϑ)|E(tn)|2

)
+O(τ3).

This motivates us to define the following second-order trigonometric integration
scheme

Fn+1 = e−iτΩ2
ϑFn + iτD1(−iτΩ2

ϑ)
(
unFn + u′nInF ) + τD2(−iτΩ2

ϑ)(
2u′nFn + iun(−Ω2

ϑF
n − unFn − u′nInF ) + InF (−Ω2

ϑu
n + ∆|En|2)

)
,

un+1 = cos(τΩϑ)un + Ω−1
ϑ sin(τΩϑ)u′n +

τ

2
Ω−1
ϑ sin(τΩϑ)∆|En|2,

Mn+1 = Mn + unFn + u′n(E0 + SnF ),

In+1
F = E0 −D1(−iτΩ2

ϑ)SnF + τD2(−iτΩ2
ϑ)Mn+1,

En+1 = (Ω2
ϑ + 1)−1

(
iFn+1 − (un+1 − 1)In+1

F

)
,

u′n+1 = −Ωϑ sin(τΩϑ)un + cos(τΩϑ)u′n +
τ

2

(
∆|En+1|2 + cos(τΩϑ)∆|En|2

)
,

Sn+1
F = SnF + τFn+1

(5.1)
with Ωϑ defined in (1.5), the operators

D1(−iτΩ2
ϑ) =

1

−iτΩ2
ϑ

(
1− e−iτΩ2

ϑ

)
, D2(−iτΩ2

ϑ) =
1

−Ω2
ϑ

(
1 +D1(−iτΩ2

ϑ)
)
(5.2)

and initial conditions (cf. (5))

F 0 = −i
(
Ω2
ϑE(0) + u(0)E(0)

)
, u0 = u(0), u′

0
= ∂tu(0), E0 = E(0),

M0 = 0, S0
F = τF 0, I0

F = E0.

The scheme (5.1) is second-order convergent in time without any ϑ− dependent
step size restriction. In addition, it asymptotically converges to the the classical
Zakharov system (1.3) in the limit ϑ → 0. The analysis follows the line of ar-
gumentation to the first order scheme and will therefore be neglected here. The
convergence properties are underlined in the numerical experiments, see Section 6.

6. Numerical experiments

In this section we numerically underline the theoretical convergence results de-
rived in the previous sections. For the spatial discretization we use a pseudo spectral
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method in which we choose the highest Fourier mode K = 28. This corresponds to
a spatial mesh-size ∆x = 0.0245. Furthermore, we chose the initial values

E(0, x) = (2− cos(x) sin(2x))−1 sin(2x) cos(4x) + i sin(2x) cos(x),

u(0, x) = (2− sin(2x)2)−1 sin(x) cos(2x), ∂tu(0, x) = (2− cos(2x)2)−1 sin(x).

(6.1)

Example 6.1 (First-order convergence rate in time). We numerically test the first-
order convergence rate in time of the trigonometric integrator (2.4) towards the
exact solutions of the (quantum) Zakharov system (1.1). The convergence rate
holds uniformly with respect to the quantum parameter ϑ, i.e., for sufficiently
smooth solutions (such that ms,1,ϑ(T ) < ∞ cf. (3.2)) there exist C > 0 such that
for all tn ≤ T
‖〈Ωϑ〉2(Eϑ(tn)− Enϑ )‖s + ‖〈Ωϑ〉(uϑ(tn)− unϑ)‖s + ‖u′ϑ(tn)− u′nϑ ‖s ≤ C2τ, (6.2)

see Theorem 3.1. The convergence bound (6.2) is numerically confirmed in Figure 2
with the initial values (6.1) normalized in ‖〈Ωϑ〉4 · ‖0, ‖〈Ωϑ〉2 · ‖0 and ‖〈Ωϑ〉 · ‖0,
respectively.

τ
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ϑ
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n
)
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E
n ϑ
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ϑ = 1
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ϑ = 1/43

ϑ = 1/44

ϑ = 0

τ

10
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‖〈
Ω

ϑ
〉(
u
ϑ
(t

n
)
−

u
n ϑ
)‖

L
2
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-11

10
-9

10
-6

ϑ = 1
ϑ = 1/4
ϑ = 1/42

ϑ = 1/43

ϑ = 1/44

ϑ = 0

τ

10
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10
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‖u
ϑ
(t

n
)
−

u
n ϑ
‖ L

2

10
-11

10
-9

10
-6

ϑ = 1
ϑ = 1/4
ϑ = 1/42

ϑ = 1/43

ϑ = 1/44

ϑ = 0

Figure 2. Orderplot (double logarithmic). Convergence rate of
the first-order trigonometric integrator (2.4) towards the exact so-
lutions of the quantum Zakharov system (1.1) for different values
of ϑ.

Example 6.2 (Second-order convergence rate in time). In Figure 3 we illustrate the
uniform convergence in ϑ of the second-order scheme (5.1) with initial values (6.1).
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ϑ = 1
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ϑ = 0.125
ϑ = 0.0625
ϑ = 0
O(τ2)

Figure 3. Orderplot (double logarithmic). Convergence rate of
the second-order integrator (5.1) for different values of ϑ.

Example 6.3 (From the quantum to the classical approximation). We numerically
test the convergence rate from the quantum to the classical approximation of the
trigonometric integrator of first order (2.4) and second order (5.1) for ϑ→ 0 using
the initial values (6.1) normalized in H2, H1 and L2, respectively. The first- and
second-order trigonometric integrators allow a convergence rate of order ϑ indepen-
dently of the time-step size, see Figure 4 and Theorem 4.1.

ϑ
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y
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-5

10
0

y = ‖〈Ωϑ〉
2(En

0 − En
ϑ)‖L2

y = ‖〈Ωϑ〉(u
n
0 − un

ϑ)‖L2

y = ‖u′n
0 − u′n

ϑ‖L2

ϑ
10

-14
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10

-2

y

10
-10

10
-5

10
0

y = ‖〈Ωϑ〉
2(En

0 − En
ϑ)‖L2

y = ‖〈Ωϑ〉(u
n
0 − un

ϑ)‖L2

y = ‖u′n
0 − u′n

ϑ‖L2

Figure 4. Orderplot (double logarithmic). Convergence rate from
the quantum to the classical approximation of the trigonometric
integrator (2.4) for ϑ → 0. Left picture: time step-size τ = 10−2

Right picture: time step-size τ = 10−3. The slope of the dashed
line is one.

Example 6.4 (Energy conservation). In Figure 6, 7 and 8 we simulate the numerical

energy H(Enϑ , u
n
ϑ, u

′n
v ) (with H defined in (3.18)) as well as the L2−norm of Enϑ
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‖u′n
0 − u′n
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Figure 5. Orderplot (double logarithmic). Convergence rate from
the quantum to the classical approximation for ϑ → 0 with the
second-order trigonometric integration scheme (5.1). All errors
are measured in L2. Time step-size τ = 1.191 · 10−6. Slope of the
dashed line is one

in the quantum regime ϑ = O(1) as well as in the classical regime ϑ = 0 for the
trigonometric integrator of first order (2.4) and second order (5.1).

t
0 2.5 5

y

×10
-3

-2

0

3
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n
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Figure 6. Energy conservation of the first-order scheme (2.4) for
ϑ = 1. Initial values (6.1) normalized in ‖〈Ωϑ〉4 · ‖0, ‖〈Ωϑ〉2 · ‖0 and
‖〈Ωϑ〉 · ‖0, respectively. Time-step size: τ = 0.025. Left picture:
Time-scale [0, 5]. Right picture: Time-scale [0, 500].
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Upper row: ϑ = 0. Lower row: ϑ = 1. Initial values (6.1) normal-
ized in ‖·‖4, ‖·‖2 and ‖·‖1, respectively. Time-step size: τ = 0.025.
Left picture: Time-scale [0, 5]. Right picture: Time-scale [0, 500].
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