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Effects of local activation times on the 
tension development of human 
cardiomyocytes in a computational model 

1 Introduction 

Studying the human heart and its potential diseases as well as 
possible therapeutic approaches are challenging tasks which 
often require high-precision computational models. From 
these simulations, valuable information can be gathered for 
developing new treatment options. Simulations of high-
precision computational models are very complex and 
therefore require a lot of computing power. Adding a new 
feature to such a computational model, which improves the 
simulation’s precision, might result in higher complexity. For 
this study a new feature was added to involve the local 
activation times of human cardiomyocytes. Without this, all 
cardiomyocytes contract homogeneously resulting in a larger 
tension development. By applying local activation times to the 
model, we create an inhomogeneous and thus physiologically 
more correct excitation that increases the precision of the 
simulation results at the expense of computational complexity. 

2 Methods 

2.1 Tension models 

The passive material properties of the atria were provided by 
the model described by Mooney and Rivlin [1]. For the passive 
material properties of the ventricles the model proposed by 
Guccione was applied [2]. 

To simulate the active myocardial tension during the 
contraction of the heart, two different tension models were 
combined with local activation times (LAT). The first model 
is the double Hill model (DHM) which uses a function to 
define the active tension as proposed by Stergiopulos et al. [3]: 

𝐄𝐄(𝐭𝐭) = 𝑷𝑷(𝒕𝒕)
𝑽𝑽(𝒕𝒕)−𝑽𝑽𝒅𝒅

(1) 

𝒆𝒆(𝐭𝐭) = 𝑬𝑬(𝒕𝒕)− 𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎
𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎−𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎

= 𝟏𝟏
𝒌𝒌 ⋅ ( 𝒈𝒈𝒄𝒄

𝟏𝟏𝟏𝟏𝟏𝒄𝒄
) ⋅ ( 𝟏𝟏

𝟏𝟏𝟏𝟏𝟏𝒓𝒓
) , (2) 
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with 𝑔𝑔𝑐𝑐 = (𝑡𝑡′/𝜏𝜏𝑐𝑐)𝑚𝑚𝑐𝑐, 𝑔𝑔𝑟𝑟 = (𝑡𝑡′/𝜏𝜏𝑟𝑟)𝑚𝑚𝑟𝑟, 𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 − 𝑡𝑡0, 𝑇𝑇) 
and 𝑘𝑘 = max {𝑘𝑘, 𝑒𝑒(𝑡𝑡)}. 

The time course of the active stress is assumed to be equal 
to the chamber elasticity 𝑬𝑬(𝒕𝒕), 𝑽𝑽(𝒕𝒕) is the ventricular volume 
and 𝑽𝑽𝒅𝒅 is the unloaded (unpressurized) ventricular volume. 
𝑬𝑬(𝒕𝒕) can also be approximated by Eq. 2 as proposed by 
Stergiopulos et al. [3]. The parameters 𝒎𝒎𝒄𝒄, 𝒎𝒎𝒓𝒓, 𝝉𝝉𝒄𝒄 and 𝝉𝝉𝒓𝒓 
represent contraction rate, relaxation rate, contraction time 
offset and relaxation time offset respectively in accordance to 
measurements from Mynard and Senzaki [4, 5]. The time 𝑻𝑻 
equals the length of the heartbeat. The atria’s active tension 
was simulated with the DHM. 

The second model is the Lumens model (LM) which uses 
the myofiber mechanics proposed by Lumens et al. [6]. There 
the active tension is calculated using two differential 
equations: 

𝒅𝒅𝑳𝑳𝒔𝒔𝒄𝒄
𝒅𝒅𝒅𝒅 = (𝑳𝑳𝒔𝒔−𝑳𝑳𝒔𝒔𝒔𝒔

𝑳𝑳𝒔𝒔𝒔𝒔,𝒊𝒊𝒊𝒊𝒊𝒊
− 𝟏𝟏) ⋅ 𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎 ,  (3) 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅 = 𝟏𝟏

𝝉𝝉𝑹𝑹
⋅ 𝑪𝑪𝑳𝑳(𝑳𝑳𝒔𝒔𝒔𝒔) ⋅ 𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒕𝒕) + 𝟏𝟏

𝝉𝝉𝑫𝑫
⋅ 𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓−𝑪𝑪

𝟏𝟏+𝒆𝒆(𝑻𝑻(𝑳𝑳𝒔𝒔𝒔𝒔)−𝒕𝒕)/𝝉𝝉𝑫𝑫
 , (4) 

𝝈𝝈𝒇𝒇,𝒂𝒂𝒂𝒂𝒂𝒂 = 𝝈𝝈𝒂𝒂𝒂𝒂𝒂𝒂 ⋅ 𝑪𝑪 ⋅ (𝑳𝑳𝒔𝒔𝒔𝒔 − 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔) ⋅ 𝑳𝑳𝒔𝒔−𝑳𝑳𝒔𝒔𝒔𝒔
𝑳𝑳𝒔𝒔𝒔𝒔,𝒊𝒊𝒊𝒊𝒊𝒊

 .  (5) 

𝑳𝑳𝒔𝒔𝒔𝒔 is the length of the contractile cardiomyocyte part,  is the 
sarcomere length, 𝑳𝑳𝒔𝒔𝒔𝒔,𝒊𝒊𝒊𝒊𝒊𝒊 is the length of the isometric stressed 
elastic cardiomyocyte part, 𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎 is the sarcomere shortening 
velocity with zero load, 𝑪𝑪 describes the time course of 
mechanical activation, parameters 𝝉𝝉𝑹𝑹 and 𝝉𝝉𝑫𝑫 are scaling the 
rise and decay time,  is the time and 𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 is the diastolic 
resting level of the activation. Functions 𝑪𝑪𝑳𝑳, 𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 and 𝑻𝑻 
describe the increase of activation with sarcomere length, the 
rise of mechanical activation, and the decrease of activation 
duration with the decrease of sarcomere length respectively 
and were defined according to [3]. 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 is the length of the 
contractile cardiomyocyte part without load and 𝝈𝝈𝒂𝒂𝒄𝒄𝒄𝒄 is a 
scaling factor. 

In contrast to DHM, the LM uses an ODE-based 
formulation and is able to dynamically react on pre-stretch and 
a changing fiber length. It respects the physiologically 
imposed maximum sarcomere shortening length, which is at 
84% of the sarcomere resting length [7, 8]. This length 
dependency results in a spatially heterogeneous tension 
distribution, whereas the DHM a uniform tension distribution 
provides. 

2.2 Computational model 

The heart geometry was created from MRI data of a healthy 
28 year old volunteer and was kindly provided by the 
Universitätsklinik Heidelberg. The resulting mesh consists of 

39 k nodes and 61 k tetrahedral ten-node-cells and contains the 
left and right ventricles (LV, RV) as well as the left and right 
atria (LA, RA), the left and right atrioventricular rings and the 
left and right atrioventricular planes. 

2.3 Simulation settings 

To evaluate the effects of the LAT on the active tension, four 
simulation settings were created. The first two settings used 
the DHM. One was activated homogeneously, the other 
heterogeneously. The two settings using the LM were created 
analogously. 

Figure 1: The used LATs from 0 ms (blue, at the hearts apex) to 
120 ms (red, at the hearts base). 
 
In Figure 1 the activation time for each cell is visualized. These 
were obtained with the fast marching method. The excitation 
starts at the apex and moves upwards to the base over a time 
of 120 ms, resembling the QRS-Complex length. 

To create an additional average pre-stretch of about 15% 
of the sarcomere resting length, both ventricles were inflated 
to their end-diastolic pressures before the contraction began. 

3 Results 

Each setting was simulated for the duration of five heartbeats 
à 800 ms. The atrial contraction reached a maximum tension 
of 35 kPa. 

The simulations with the DHM resulted in a maximum 
tension of 80 kPa in the left ventricle, with and without using 
LAT. The values were reached every 800 ms due to the 
periodicity of the DHM. 

Since the right ventricle has a physiologically imposed 
lower tension development than the left ventricle and therefore 
a lower maximum tension, different scalings for the ventricles 
were used. Thus the right ventricular tension reached only 60 
kPa. This resulted in the tension distribution seen in Figure 2. 
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The simulations with the Lumens model without LATs 
reached a maximum active tension of 104.3 kPa in the left 
ventricle. Using LATs, the maximum tension of the left 
ventricle dropped by 0.5% to 103.8 kPa in the first heartbeat. 

Figure 2: Changes of the active tension for the DHM. In the first 
and third column with, in the second and fourth column without 
LATs. The active tension ranged between 0 Pa (dark blue) and 80 
kPa (red). 

Figure 3: Changes of the active tension for the LM In the first and 
third column with, in the second and fourth column without LATs.  
The active tension ranged between 0 Pa (dark blue) and 100 kPa 
(red). 

In Figure 3 we can also clearly see the spatially heterogeneous 
distributed tension of the LM. 
 
The blood volumes and the pressures generated from the 
different settings can be seen in Table 1. 
 

  

DHM 
without local 

activation 
time 

DHM 
with local 
activation 

time 

LM 
without local 

activation 
time 

LM 
with local  
activation 

time 

LV Stroke Volume 76.98 74.44 59.88 55.75 

LV Ejection Fraction 21.01% 21.21% 16.80% 16.02% 

RV Stroke Volume 65.81 59.91 50.01 45.21 

RV Ejection Fraction 33.96% 32.11% 18.25% 16.77% 

Total Stroke Volume 142.79 134.36 109.89 100.96 

Total Ejection Fraction 25.49% 24.99% 17.43% 16.65% 

Maximum LV Pressure 133.97 130.86 100.69 95.27 

Minimum LV Pressure 2.69 2.46 2.92 2.87 

Maximum RV Pressure 23.96 23.25 19.80 19.25 

Minimum RV Pressure -0.19 -0.18 0.71 0.73 

 
Table 1: Pressure and volume data. The values were extracted 
from each simulation’s last heartbeat. Pressures are given in mmHg 
and volumes are given in ml. 

4 Discussion and Outlook 

When using cell activation delayed by a local activation time, 
the cells reached their tension maximum one after another and 
not simultaneously, which led to a drop in the maximum 
pressure in the ventricles for both tension models. The 
pressure drop in the left ventricle was 2.3% for the DHM and 
5.4% for the LM compared to the homogeneous case. The right 
ventricle maximum pressure dropped by 3% and 2.8% 
respectively. Also the volumes decreased in both ventricles 
using LATs. 

Due to the lower volumes the overall ejection fraction was 
also decreased and dropped to 16.7% when the more precise 
LM was used. This is well below the physiological values for 
the ejection fraction, however ejection volumes are normal or 
even slightly above the normal range. One problem might be 
the limited resolution of the mesh, which allows only a coarse 
representation of the real geometry. For instance the papillary 
muscles and the trabeculae weren’t modelled. Their volume 
contributes to the blood volume instead, which reduces the 
computed ejection fractions. 

We also inflated our mesh for the initial tension 
calculation to a better a pre-stretch. Therefore the volume of 
the whole heart is expanded which additionally decreases the 
ejection fractions. 
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Since the drop in maximum pressure is not particularly high, 
LATs might be neglected in favor of a simpler model. 

The DHM is not capable of respecting the limits of 
physiological myocardial fibers or incorporating effects like 
an increased tension due to pre-stretch. A tension model like 
the LM might be more suitable to reproduce not only a correct 
global ventricular elasticity, but also respect the tension-
length-dependency. 

For more sophisticated modeling one can consider using 
other models such as the model proposed by Sander Land in 
2017 [9]. The measurements of the cardiomyocytes used to 
create this model were made at body temperature rather than 
at the often used room temperature. Additionally the created 
model is designed for a four chamber model. A simulation of 
an inhomogeneous activation while using the Land model 
could show the effects of local activation times more precisely. 
Then it might be possible to obtain a different result regarding 
the importance of inhomogeneous activation times. 
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