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Abstract We compare the decay of the heavy Higgs boson
into two SM-like Higgs bosons, H → hh, calculated in a
Feynman-diagrammatic approach at the one-loop level based
on the one hand on the full effective potential involving the
top quark and stops in the Minimal Supersymmetric Stan-
dard Model (MSSM) accompanied by the matched Two-
Higgs-Doublet Model (2HDM) as its low-energy limit and
on the other hand on the hMSSM approximation. We iden-
tify missing contributions due to the top quark in the Higgs
self-couplings of the hMSSM, that – when taken into account
– lead to a good agreement between the hMSSM and a full
MSSM calculation, at least in the limit of the Higgsino mass
parameter μ being small compared to the stop spectrum. We
also thoroughly analyze momentum-dependent and kinetic
corrections intrinsic to the Feynman-diagrammatic approach
and the matching to the effective Lagrangian, respectively,
for both our calculation in the MSSM and the hMSSM and
for the latter suggest to include additional corrections from
the top quark, which are independent of the unknown super-
symmetric spectrum.

1 Introduction

The discovery of the Higgs boson with a mass of (125.09 ±
0.24) GeV [1] in 2012 by the LHC experiments ATLAS [2]
and CMS [3] has marked a milestone for particle physics.
While this structurally completes the Standard Model (SM)
the SM itself leaves open many questions that require exten-
sions of the model. The SM is therefore considered as an
effective low-energy description of a more complete model
valid at high-energy scales. Since the discovered Higgs boson
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behaves very SM-like any such beyond-the-SM theory has to
contain a SM-like Higgs boson with a mass of about 125 GeV.

The Higgs sector of the Minimal Supersymmetric exten-
sion of the SM (MSSM) [4–16] consists of two complex
Higgs doublets to ensure supersymmetry and the cancella-
tion of anomalies. After electroweak symmetry breaking its
Higgs sector contains five physical Higgs bosons, two neu-
tral CP-even bosons, h, H , one neutral CP-odd boson, A,
and a charged Higgs pair, H±. The tree-level Higgs sector
can be described by two parameters, usually chosen to be
the mass of the CP-odd Higgs boson, MA, and the ratio of
the two vacuum expectation values of the two Higgs dou-
blets, tan β = v2/v1, in the case of real supersymmetric
parameters. Supersymmetry restricts the tree-level mass of
the lightest CP-even scalar h to values below the Z boson
mass MZ . This constraint is relaxed by the inclusion of radia-
tive corrections in the Higgs sector that can shift its value to
the measured 125 GeV. The dominant corrections originate
from third generation quark/squark loops. Depending on the
parameter choices, the squark masses must be quite large in
order to match the observed Higgs mass value for small val-
ues of tan β. Moreover, in a significant part of the MSSM
parameter space the limits on the squark masses are pushed
into the TeV range by the unsuccessful LHC searches for
supersymmetric (SUSY) particles so far. The loop-corrected
Higgs sector depends on many SUSY parameters so that the
investigation of the MSSM parameter space becomes a com-
plicated task. This triggered the introduction of benchmark
scenarios that are used by the experimental collaborations for
the interpretation of their results. Among these, the hMSSM
presented in Refs. [17–20] exploits the fact that the dominant
corrections to the lightest CP-even Higgs mass and the mix-
ing parameters that enter the Higgs couplings have a common
origin and that the dominant corrections stem from the top-
quark and its supersymmetric partners, the stops.

In the hMSSM the measured Higgs mass value Mh is
taken as an input parameter in addition to MA and tan β.
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This removes the explicit dependence of the Higgs sector
on other SUSY parameters through the radiative corrections.
In its region of applicability, the hMSSM approach has been
shown to describe the MSSM Higgs mass spectrum and mix-
ing angle α of the CP-even sector very well [20–22]. In par-
ticular, it allows to probe the low tan β regime where a very
high SUSY scale is required for the radiative corrections to be
large enough to achieve 125 GeV for the light CP-even Higgs
mass. The Higgs self-couplings that are related to the Higgs
masses through the Higgs potential are also affected by large
radiative corrections. In order to make reliable predictions,
the large logarithms that appear in the corrections in case of
very large SUSYmasses have to be resummed using effective
field theory (EFT) methods. In physical processes contain-
ing the trilinear Higgs self-couplings, like Higgs decays into
a pair of lighter Higgs bosons, momentum-dependent cor-
rections to the vertex and to the kinetic factors can become
important. These are not taken into account in the EFT
approach, however, and have to be computed through a dia-
grammatic fixed-order calculation.

In this paper, we revisit the hMSSM approach with focus
on the Higgs-to-Higgs decay of the heavier H into two SM-
like Higgs bosons, H → hh. We compute the decay at
next-to-leading order (NLO) taking into account the dom-
inant radiative corrections from the top-quark and stop sec-
tor. The calculation is performed in an effective low-energy
2HDM with MSSM-like quartic couplings that are properly
matched to the MSSM and in the MSSM itself. In both cases
the calculation is performed in the Feynman-diagrammatic
approach thus including momentum-dependent corrections.
Moreover, radiative corrections to the Higgs self-couplings
from the top-quark contributions in the 2HDM, and the top-
quark and stop contributions in the MSSM, are taken into
account through effective couplings. By choosing appropri-
ate counterterms according to the low-energy limit, double
counting is avoided when including the diagrammatic NLO
corrections. By plugging in the effective trilinear Higgs self-
coupling of the hMSSM and comparing with the full MSSM
result, we are able to disentangle the deviations due to the
hMSSM approximation of the coupling from those originat-
ing from momentum-dependent contributions. In this way,
we are able to properly dissect the Higgs self-coupling of the
effective hMSSM approximation and to propose improve-
ments that allow to better approximate the full result. It turns
out that the bulk of the improvement does not introduce addi-
tional parameters so that it is appropriate to dub it “improved
hMSSM”.

The outline of the paper is as follows. In Sect. 2 we intro-
duce the MSSM, the 2HDM and the hMSSM approach and
define our notation. In particular in Sect. 2.4 we discuss
the effective potential as part of the low-energy effective
Lagrangian, while Sect. 2.8 presents our proposed improve-
ment of the hMSSM approach. Section 3 contains the explicit

computation of the NLO decay width for the decay H → hh
with effective couplings. Section 4 is dedicated to the pre-
sentation of our numerical results. Our conclusions are given
in Sect. 5.

2 The MSSM Higgs sector as an effective 2HDM

In this section we first introduce our notation of the MSSM
Higgs sector. If the supersymmetric spectrum is heavy,
the MSSM Higgs sector can be understood as an effec-
tive (properly matched) low-energy 2HDM, where all heavy
(s)particles are integrated out. This approach allows to resum
logarithms as they appear e.g. in the derivation of the Higgs
masses at loop-level. In this section we use the Effective
Potential Approach (EPA) [23,24] for the matching, define
the relevant effective potential, kinetic corrections in the
effective Lagrangian and provide results for loop corrections
to the Higgs masses and the Higgs self-couplings at order
O(αt ), where αt = y2

t /(4π) with the top-Yukawa coupling
yt = √

2mt/v (v ≈ 246.22 GeV is the SM vacuum expec-
tation value and mt the top-quark mass.). We explain the
hMSSM approach and identify terms that are missing in the
Higgs self-couplings of the hMSSM approach.

2.1 The MSSM Higgs and squark sectors at tree-level

Supersymmetry requires the introduction of at least two
complex Higgs doublets, which is realized in the minimal
SUSY version, the MSSM. In addition, the Adler–Bell–
Jackiw anomaly contributions [25,26] due to the Higgsino
doublet states cancel each other thanks to their opposite
hypercharges. The two doublets Hu and Hd with hypercharge
Y = 1 and −1, respectively, can be expressed in terms of the
charged and neutral components φ±

i and φ0
i (i = u, d), as

Hd =
(

φ0∗
d−φ−
d

)
and Hu =

(
φ+
u

φ0
u

)
. (1)

The tree-level potential for the MSSMHiggs fields is derived
from the F- and D-term contributions and the soft-SUSY
breaking Lagrangian. The most general supersymmetric
potential for two Higgs doublets at tree level reads

V LO
MSSM =

(
m2

Hd
+ μ2

)
|Hd |2 +

(
m2

Hu
+ μ2

)
|Hu |2

− Bμεi j

(
Hi
d H

j
u + h.c.

)

+ g2 + g′2

8

(
|Hd |2 − |Hu |2

)2 + g2

2
|H∗

d Hu |2,
(2)

where ε12 = −ε21 = 1 and m2
Hd

, m2
Hu

and Bμ denote the
corresponding soft-SUSY breaking mass parameters. The
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SU(2)L and U(1)Y gauge couplings are given by g and
g′, respectively. After electroweak symmetry breaking we
expand the neutral fields around the vacuum expectation val-
ues (VEVs) according to

φ0
d = 1√

2
(vd + σd + iξd) , φ0

u = 1√
2

(vu + σu + iξu) .

(3)

The ratio of the VEVs vu and vd is defined as tan β = vu
vd

while obeying the sum rule v2
u + v2

d = v2. Throughout our
work we fix m2

Hd
and m2

Hu
through the radiatively corrected

tadpole equations. Rotating from the gauge eigenstates ξd
and ξu to the mass eigenstates by the mixing angle β in the
CP-odd sector yields a massless Goldstone boson G0 and
the CP-odd Higgs boson A with mass

M2
A = 2Bμ

sin 2β
. (4)

We define the Z boson mass MZ = 1
2

√
g2 + g′2 v, such that

the tree-level mass matrix of the CP-even sector in the gauge
eigenstates σd and σu takes the form

M2
tree =

(M2
dd M2

du
M2

du M2
uu

)

=
(

M2
As

2
β + M2

Zc
2
β −(M2

A + M2
Z )sβcβ

−(M2
A + M2

Z )sβcβ M2
Ac

2
β + M2

Z s
2
β

)
. (5)

where appropriate we use sx , cx and tx as abbreviations for
sin(x), cos(x) and tan(x), respectively. The matrix is diago-
nalized through a rotation by the CP-even mixing angle α,
which is given by

tan 2α = − 2M2
du

M2
uu − M2

dd

. (6)

This rotation results in two mass eigenstates, the CP-even
Higgs bosons h and H , with an upper bound of

M2
h ≤ M2

Z cos2 2β (7)

on the tree-level mass of the lightest CP-even Higgs boson.
The dominant radiative corrections to the Higgs mass orig-
inate from the top-quark and stop loops, which we subse-
quently discuss in the effective potential approach. The Higgs
self-couplings in the mass eigenstates are given by the rela-
tions

λhhh = 3
M2

Z

v
c2αsα+β,

λHhh = M2
Z

v
(2s2αsα+β − c2αcα+β),

λhAA = M2
Z

v
c2βsα+β,

λHHH = 3
M2

Z

v
c2αcα+β,

λHHh = M2
Z

v
(−2s2αcα+β − c2αsα+β),

λH AA = −M2
Z

v
c2βcα+β. (8)

The mass matrix of the stop sector using left- and right-
handed stops t̃L and t̃R is given by

M2
t̃ =

(
M2

t̃L
+ m2

t mt Xt

mt Xt M2
t̃R

+ m2
t

)
, (9)

where Mt̃L and Mt̃R are the left- and right-handed soft-
SUSY breaking mass terms, respectively. Mt̃L equals the
soft-SUSY breaking mass term MQ̃L

of the doublet of the
third generation squarks. The stop-mixing parameter Xt is
defined through Xt = At −μ/tβ involving the trilinear soft-
SUSY breaking stop parameter At and the μ-term, which
has already been part of the tree-level potential in Eq. (2).
In the subsequent derivation of the effective potential we
work in the gaugeless limit, which is why we also omit D-
terms proportional to M2

Z in the stop mass matrix. Its diag-
onalization yields the stop masses mt̃1 and mt̃2 , which for
MS := Mt̃L = Mt̃R are given by m2

t̃1
= M2

S + m2
t − mt |Xt |

and m2
t̃2

= M2
S + m2

t + mt |Xt |.

2.2 The 2HDM Higgs sector at tree-level

Being the low-energy limit of theMSSM, we work only in the
type-II 2HDM, where H1 and H2 couple to down-type and
up-type quarks, respectively. The tree-level Higgs potential
including only terms that arise in the MSSM at tree-level
takes the form

V LO
2HDM = m2

1|H1|2 + m2
2|H2|2 − m2

3

(
H†

1 H2 + h.c.
)

+ λ1

2
|H1|4 + λ2

2
|H2|4

+ λ3|H1|2|H2|2 + λ4|H†
1 H2|2 . (10)

We label the fields H1 and H2 instead of Hd and Hu to fol-
low the standard notation. Both field conventions follow the
MSSM field Hu , i.e. Hi = (φ+

i , φ0
i )

T (i = 1, 2). For the rela-
tion between the Higgs fields in the MSSM and the 2HDM
we also refer to Ref. [27]. The parameters m2

1 and m2
2 can

again be fixed through the tadpole equations, such that in a
generic 2HDM the potential has six free parameters, which in
the above λ-basis are m2

3, λ1 − λ4 and the ratio of the VEVs,
tan β. The trilinear Higgs self-couplings within the λ-basis
are given by
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λhhh = 3v
(
−λ1s

3
αcβ + λ2c

3
αsβ − 1

2 λ34s2αcα+β

)
,

λHhh = v
[
3λ1s

2
αcαcβ + 3λ2sαc

2
αsβ

+ λ34

(
c2αcα+β − 1

2 s2αsα+β

)]
,

λHHh = v
[
−3λ1sαc

2
αcβ + 3λ2s

2
αcαsβ

+ λ34

(
c2αsα+β + 1

2 s2αcα+β

)]
,

λHHH = 3v
(
λ1c

3
αcβ + λ2s

3
αsβ + λ34

1
2 s2αsα+β

)
,

λhAA = v
[
−λ1sαs

2
βcβ + λ2cαsβc

2
β + λ34

(
cαs

3
β − sαc

3
β

)]
,

λH AA = v
[
λ1cαs

2
βcβ + λ2sαsβc

2
β + λ34

(
cαc

3
β + sαs

3
β

)]
.

(11)

In the MSSM at tree level the couplings λi are given by

λ1 = λ2 = g2 + g′2

4
, λ3 = g2 − g′2

4
,

λ4 = −g2

2
, so that λ34 ≡ λ3 + λ4 = −λ1 = −λ2 (12)

and m2
3 = Bμ which is thus related to M2

A, see Eq. (4).

2.3 The effective 2HDM Higgs sector beyond tree-level

Beyond tree level the masses and couplings of the 2HDM
discussed in the previous section receive quantum correc-
tions from heavier (s)particles1 and thus form an effective
low-energy 2HDM. This effective model is obtained through
a proper matching at the scale, where the heavier (s)particles
are integrated out. Practically, this matching can be per-
formed by a Feynman-diagrammatic calculation, in which
all squared external momenta p2 are strictly set to zero. This
limit of vanishing momenta defines the EPA [23,24]. This
approach includes all one-particle irreducible diagrams and
allows to define an effective 2HDM as the low-energy limit
of the MSSM. Within the rest of this section we will define
the effective 2HDM relevant for our purposes and later sup-
plement it with a Feynman-diagrammatic calculation of the
decay H → hh.

The EPA allows to calculate the corrections to the poten-
tial V LO

2HDM(= V LO
MSSM) in Eq. (10) and thus defines the effec-

tive potential V eff
2HDM.2 A detailed discussion follows in the

next section. However, also the kinetic term of the effective
Lagrangian receives corrections, such that we can decompose

1 We refer to the top quark as a heavy particle, since the leading term
in a large top-mass expansion yields reliable approximations for the
whole low-energy 2HDM sector, i.e. external momentum-dependent
corrections are numerically subleading.
2 We name it 2HDM effective potential, since the 2HDM is the low-
energy theory and we want to separate quark from squark contributions.
If both quarks and squarks are included it is commonly named MSSM
effective potential.

the effective low-energy 2HDM Lagrangian as

Leff
2HDM =

∑
i, j∈{1,2}

Z eff
i j (DμHi )

†DμHj − V eff
2HDM, (13)

which involves an additional kinetic matrix Z eff. The matrix
Z eff can be obtained, as in Ref. [27], by an expansion of
the (off-)diagonal Hi Hj (i, j = 1, 2) two-point functions
in their external momenta. In our Feynman diagrammatic
calculation Z eff appears as an effective wave-function renor-
malization and is named kinetic correction. We will present
its detailed form in Sect. 3.1.

We note that beyond tree level also couplings λ5 to λ7 are
generated, see e.g. in Ref. [27]. Their generation is connected
to a non-vanishing value of μ [28]. However, since we work
with physical quantities as the Higgs self-couplings, masses
and mixings derived from the full effective Higgs potential
we do not need their explicit form in this work since they are
taken into account intrinsically. The MSSM Higgs masses in
the EPA were first calculated at order O(αt ) in Refs. [29–
32], followed by calculations including O(αb) and elec-
troweak corrections in Refs. [33–36]. In this approach also
the large radiative corrections to the Higgs self-interactions
are known at one-loop order O(αt,b) [37–39] and two-loop
order O(αtαs) [40]. In the hMSSM approach, which is any-
how agnostic to the exact form of the higher-order correc-
tions, the corrections to the Higgs masses and the Higgs self-
couplings are reexpressed in terms of the light Higgs mass
Mh only, see Sect. 2.7. In both cases, the proper calculation
of the 2HDM effective potential and the hMSSM approach,
we work with an effective 2HDM.

2.4 The 2HDM effective potential

As we argued beforehand the application of the EPA defines
the Higgs potential of an effective low-energy 2HDM, which
we provide explicitly in this section. We consistently distin-
guish quark from squark contributions, in order to later omit
the effect of stops.

We are only interested in the O(αt ) corrections to the
effective potential of the 2HDM in view of the correc-
tions that are implicitly taken into account in the hMSSM
approach. To stay strictly at O(αt ) in perturbation theory, we
are working in the gaugeless limit and thus drop supersym-
metric D-term contributions beyond tree-level. This limit
captures the dominant corrections and has the advantage that
our discussion of H → hh remains independent of the renor-
malization of electroweak parameters, in particular the vac-
uum expectation value(s), see Sect. 3.1. We also omit cor-
rections from the bottom and sbottom sector. We split the
O(αt ) corrections to the effective potential in top- and stop
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contributions as follows:

VNLO(t) = 3

(4π)2Cε

{
m4

t

[
1

ε
+ 3

2
− log

m2
t

Q2

]}
,

VNLO(t̃) = − 3

(4π)2

1

2
Cε

{
m4

t̃1

[
1

ε
+ 3

2
− log

m2
t̃1

Q2

]

+m4
t̃2

[
1

ε
+ 3

2
− log

m2
t̃2

Q2

]}
. (14)

The effective potential of the 2HDM is then given by

V eff
2HDM(t, t̃) = V LO

2HDM + VNLO(t) + VNLO(t̃) + O
(
α2

)
.

(15)

The field-dependent mass parameters are defined as

m2
t = |X |2,

m2
t̃1,2

= 1

2

(
M2
t̃R

+ M2
t̃L

+ 2m2
t ∓

√
(M2

t̃L
− M2

t̃R
)2 + 4|X̃ |2

)
,

X = htφ
0
u , X̃ = ht

[
Atφ

0
u − μφ0∗

d

]
. (16)

Therein ht denotes the top-Yukawa coupling ht = √
2mt/vu .

If not mentioned otherwise all parameters are running param-
eters evaluated at the scale Q. The coefficient Cε = �(1 +
ε)(4π)ε expands to 1 + (−γE + log(4π))ε for small ε and
results in the ultraviolet divergent term 
ε = 1

ε
− γE +

log(4π). The renormalization scale Q is a priori not fixed
but should be of O(MS). It should be noted that the scale Q
represents the matching scale between the full MSSM and
the low-energy 2HDM. Below this scale the top quark and
the stop states are integrated out and thus do not contribute
to the low-energy running of the Higgs self-interactions, i.e.
they are decoupled. On the other hand the low-energy self-
couplings λi jk develop a residual scale dependence due to
the light particles still present in the low-energy 2HDM spec-
trum.

We are interested both in the corrections to the Higgs
masses and to the triple Higgs self-couplings in order to com-
pare differences directly. Some of our subsequent discussion
is a historical review, but allows to understand the underly-
ing basis of the additional terms that we add to the hMSSM
approach.

2.5 Corrections to the Higgs masses

In this section we discuss the corrections to the Higgs masses
obtained from the 2HDM effective potential. Within the dis-
cussion we keep top-quark and stop contributions separated.
In order to obtain the CP-even Higgs masses, the 2HDM
effective potential is expanded in the CP-even and CP-odd

components of the neutral fields φ0
d and φ0

u , see Eq. (3).3 The
mass corrections are then obtained as second derivatives with
respect to these components. A nice explanation of this pro-
cedure is given in Ref. [41], which reproduces the corrections
presented in the original publications [29–32]. The symmet-
ric mass corrections 
M2

i j in gauge eigenstates are added

to the tree-level mass matrix M2
tree in Eq. (5). We split them

according to


M2
i j = 
M2

i j (t) + 
M2
i j (t̃) (17)

in top-quark and stop-induced corrections originating from
VNLO(t) and VNLO(t̃), respectively. The top-induced correc-
tion contributes only to 
M2

uu(t). The corrections are given
by


M2
uu(t) = 12

(4π)2v2s2
β

m4
t

[
2
ε + 2 log

(
Q2

m2
t

)]
,


M2
uu(t̃) = 12

(4π)2v2s2
β

m4
t

[
− 2
ε + A2

t C
2
t gt

+ 2AtCt log

(
m2

t̃1

m2
t̃2

)
+ 2 log

(
mt̃1mt̃2

Q2

) ]
,


M2
dd(t̃) = 12

(4π)2v2s2
β

m4
t C

2
t μ

2gt ,


M2
du(t̃) = − 12

(4π)2v2s2
β

m4
t Ctμ

[
AtCt gt + log

(
m2

t̃1

m2
t̃2

)]
,

(18)

where we have used the abbreviations

Ct = Xt

m2
t̃1

− m2
t̃2

, gt = 2 −
m2

t̃1
+ m2

t̃2

m2
t̃1

− m2
t̃2

log
m2

t̃1

m2
t̃2

. (19)

Two remarks are in order: Only through a non-vanishing μ-
term also the corrections 
M2

dd and 
M2
du are non-zero.

The ultraviolet divergent terms and the renormalization scale
dependence cancel in the sum of top-quark and stop-induced
corrections:


M2
uu = 12

(4π)2v2s2
β

m4
t

[
A2
t C

2
t gt + 2AtCt log

(
m2

t̃1

m2
t̃2

)

+ 2 log

(
mt̃1mt̃2

m2
t

)]
. (20)

It is therefore obvious that an effective 2HDM, where both
the top quark and stops are taken into account in the effec-
tive potential, yields finite corrections at NLO. In contrast in
an effective 2HDM, which only involves tops, also ultravi-
olet divergences appear, which can only be cured through a

3 Our calculation is based on the field definition of the full MSSM, the
difference to the fields of the effective low-energy 2HDM is given by
the kinetic mixing described in Sect. 2.3.
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proper renormalization. We will discuss this when we will
later calculate our partial decay width.

2.6 The ε approximation for the light Higgs mass

Our previous discussion of the loop corrections was carried
out in gauge eigenstates. We can rotate to mass eigenstates to
obtain the correction to the light Higgs mass, 
Mh . We now
consider the case where left- and right-handed soft-SUSY
breaking mass parameters MS = Mt̃L = Mt̃R are identical.
We expand the mass corrections in inverse powers of MS and
subsequently present the result for 
M2

uu and the total mass
correction 
M2

h :


M2
uu = 3GF√

2π2s2
β

m4
t

[
log

(
M2

S

m2
t

)
+ Xt At

M2
S

(
1 − Xt At

12M2
S

)]
,


M2
h = 3GF√

2π2
m4
t

[
log

(
M2

S

m2
t

)
+ X2

t

M2
S

(
1 − X2

t

12M2
S

)]
. (21)

Therein, we expressed the SM VEV through the Fermi con-
stant GF . Moreover for 
M2

h we employed the decoupling
limit α → β − π/2, which is associated with MA � MZ .
The last well-known relation in Eq. (21), see Refs. [29–32]
and later updates in Refs. [42,43], shows that the light Higgs
mass grows with the fourth power of the top-quark mass
and logarithmically with the stop masses associated with the
SUSY scale MS . We define the parameter ε = 
M2

uu . Set-
ting μ = 0 and thus Xt = At we see that ε exactly corre-
sponds to the correction 
M2

h/s
2
β in accordance with the fact

that all other elements of 
M2
i j in gauge eigenstates vanish.

The ε correction increases the upper mass bound to

M2
h ≤ M2

Z cos2 2β + ε sin2 β. (22)

The mass of the lightest Higgs boson is explicitly given by

M2
h = 1

2

[
M2

A + M2
Z + ε

−
√

(M2
A + M2

Z + ε)2 − 4M2
AM

2
Z c

2
2β − 4ε(M2

As
2
β + M2

Z c
2
β)

]
.

(23)

Within this approximation the masses of the heavy neutral
and charged Higgs bosons are obtained by sum rules,

M2
H = M2

A + M2
Z − M2

h + ε,

M2
H± = M2

A + M2
W , (24)

and the effective mixing parameter α between the CP-even
scalars is given by

tan 2α = tan 2β
M2

A + M2
Z

M2
A − M2

Z + ε/ cos 2β
. (25)

We will later come back to the ε approximation also for
the Higgs self-couplings, but before introduce the hMSSM
approach.

2.7 The hMSSM approach

As argued before, in the limit of aμ-term, which is small com-
pared to the stop spectrum, the corrections ε and 
M2

h/s
2
β

in Eq. (21) are identical. Then, the complete correction to
the light Higgs mass originating from the top-quark and
stop sector only enters the element 
M2

uu . The hMSSM
approach [17–20] assumes all supersymmetric particles to
be heavy and is agnostic for what concerns the origin of the
mass corrections. Instead in the hMSSM one obtains 
M2

uu
by inverting Eq. (23) using Mh as an input parameter, which
yields

ε = 
M2
uu = M2

h (M
2
A + M2

Z − M2
h ) − M2

AM
2
Zc

2
2β

M2
Zc

2
β + M2

As
2
β − M2

h

. (26)

The heavy Higgs mass MH and the mixing angle α are then in
turn also fixed to the values in Eqs. (24) and (25), respectively.
The limitations of this procedure are rather obvious: First, the
corrections of the top-quark and stop sector are assumed to be
dominant, which is true at low values of tan β, while at larger
values of tan β also corrections from the bottom and sbottom
sector provide a potentially relevant (subleading) contribu-
tion. Second, neglecting the corrections 
M2

dd and 
M2
du

is only compatible with a μ-term, which is small compared to
the stop spectrum and thus implies relatively light Higgsinos.
This means not all supersymmetric particles are necessar-
ily heavy. They can influence Higgs physics mainly through
decays, either by allowing for additional decay channels for
heavy Higgs bosons or through contributions to loop-induced
decays of the Higgs bosons.

2.8 The improved hMSSM for Higgs self-couplings

We are interested in the corrections to the triple Higgs self-
couplings presented in Eq. (8) that emerge from the effective
potential in Eq. (14). Corrections are obtained by perform-
ing the third derivatives with respect to the corresponding
Higgs fields. Again, we only focus on corrections from the
top-quark and stop sector and thus split the individual con-
tributions as follows


λi jk = 
λi jk(t) + 
λi jk(t̃), (27)

both in gauge eigenstates {i, j, k} ∈ {d, u} and in mass eigen-
states {i, j, k} ∈ {h, H}. We present them subsequently in
gauge eigenstates. The top-quark contribution enters 
λuuu ,
while for a non-vanishing μ-term the stop contributions yield
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a correction to all couplings in accordance with the original
results in Ref. [37]:


λuuu(t) = 72

(4π)2v3s3
β

m4
t

[

ε − 2

3
+ log

(
Q2

m2
t

)]
,


λuuu(t̃) = − 72

(4π)2v3s3
β

m4
t

[

ε + log

(
Q2

m2
t̃2

)]

+ 12

(4π)2v3s3
β

m4
t

×
{

2A3
t C

3
t m

2
t

[
6

gt
m2

t̃2
− m2

t̃1

+
m2

t̃2
− m2

t̃1

m2
t̃1
m2

t̃2

]

− 3
A3
t Ct gt

m2
t̃2

− m2
t̃1

+ 3
A2
t (2 − gt )

m2
t̃1

+ m2
t̃2

+ 6
A2
t C

2
t m

2
t

m2
t̃1

+ m2
t̃2

[
2gt +

(m2
t̃2

− m2
t̃1
)2

m2
t̃1
m2

t̃2

]

− 3
m2

t̃2
− m2

t̃1

m2
t̃1

+ m2
t̃2

(2 − gt )

− 3AtCt (m
2
t̃2

− m2
t̃1
)

[
2 − gt

m2
t̃1

+ m2
t̃2

− 2
m2

t

m2
t̃1
m2

t̃2

]

+ 2m2
t

m2
t̃1

+ m2
t̃2

m2
t̃1
m2

t̃2

}
,


λddd(t̃) = − 12

(4π)2v3s3
β

m4
t Ctμ

3(m2
t̃2

− m2
t̃1
)

{
2
C2
t m

2
t

m2
t̃1
m2

t̃2

+ 3
4C2

t m
2
t − 1

(m2
t̃2

− m2
t̃1
)2
gt

}
,


λddu(t̃) = 12

(4π)2v3s3
β

m4
t μ

2

{
2AtC

3
t m

2
t

[
6

gt
m2

t̃2
− m2

t̃1

+
m2

t̃2
− m2

t̃1

m2
t̃1
m2

t̃2

]

− 3
AtCt gt

m2
t̃2

− m2
t̃1

+ 2
C2
t m

2
t

m2
t̃1

+ m2
t̃2

[2gt

+
(m2

t̃2
− m2

t̃1
)2

m2
t̃1
m2

t̃2

]
+ 2 − gt

m2
t̃1

+ m2
t̃2

}
,


λduu(t̃) = − 12

(4π)2v3s3
β

m4
t μ

{
2A2

t C
3
t m

2
t

[
6

gt
m2

t̃2
− m2

t̃1

+
m2

t̃2
− m2

t̃1

m2
t̃1
m2

t̃2

]

− 3A2
t Ct

gt
m2

t̃2
− m2

t̃1

+ 4AtC
2
t m

2
t

m2
t̃2

− m2
t̃1

m2
t̃1

+ m2
t̃2

[
2

gt
m2

t̃2
− m2

t̃1

+
m2

t̃2
− m2

t̃1

m2
t̃1
m2

t̃2

]

+ 2At
2 − gt

m2
t̃1

+ m2
t̃2

+ Ct (m
2
t̃2

− m2
t̃1
)

[
2

m2
t

m2
t̃1
m2

t̃2

− 2 − gt
m2

t̃1
+ m2

t̃2

]}
. (28)

The ultraviolet divergences, which are only part of 
λuuu ,
cancel between the top-quark and stop contributions

λuuu(t) and 
λuuu(t̃), respectively. So does the renormal-
ization scale dependence related to the top-quark and stop
contributions. It is apparent that in contrast to the calculation
of the Higgs mass terms the top-quark induced correction
develops an additional constant factor (− 2

3 ) at the one-loop
level.

Since we are interested in the decay H → hh we combine
the results above to obtain 
λHhh by rotating with the CP-
even mixing angle α. This yields


λHhh = −sαc
2
α
λuuu − cα(c2

α − 2s2
α)
λduu

+ sα(2c2
α − s2

α)
λddu − s2
αcα
λddd

= 12

(4π)2v3s3
β

m4
t sαc

2
α

{
−4 + 6 log

(
mt̃1mt̃2

m2
t

)

+ (m2
t̃1

− m2
t̃2
)Ct (Et + 2Ft ) log

(
m2

t̃1

m2
t̃2

)

+ Ft (m
2
t̃1

− m2
t̃2
)(1 − 4m2

t C
2
t )

[
3Ct Et Ft gt (m

2
t̃1

−m2
t̃2
) + (2Et + Ft ) log

(
m2

t̃1

m2
t̃2

)]

+ 2

[
m2

t

m2
t̃1

[
1 + (m2

t̃1
− m2

t̃2
)Ct Et

]

[
1 + (m2

t̃1
− m2

t̃2
)Ct Ft

]2
]

+ 2

[
m2

t

m2
t̃2

[
1 − (m2

t̃1
− m2

t̃2
)Ct Et

]

[
1 − (m2

t̃1
− m2

t̃2
)Ct Ft

]2
]}

. (29)

Therein we introduced the additional abbreviations

Et = At − μ cot α

m2
t̃1

− m2
t̃2

, Ft = At + μ tan α

m2
t̃1

− m2
t̃2

. (30)
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For degenerate soft-SUSY breaking masses MS = Mt̃L =
Mt̃R and in the limit μ � MS the expansion in inverse powers
of the SUSY scale MS implies


λHhh = 72sαc2
α

(4π)2v3s3
β

m4
t

[
log

(
M2

S

m2
t

)
+ A2

t

M2
S

(
1 − A2

t

12M2
S

)

− 2

3
+ 5m2

t

3M2
S

− 5A2
t m

2
t

2M4
S

+ 5A4
t m

2
t

6M6
S

− A6
t m

2
t

12M8
S

]
. (31)

Here our expansion in inverse powers of MS adds terms pro-
portional to m6

t and all relevant terms that are of order 1/M2
S

for At ∼ MS . If we perform a similar expansion in M2
uu in

Eq. (20), we obtain

ε = 3GF√
2π2s2

β

m4
t

[
log

(
M2

S

m2
t

)
+ A2

t

M2
S

(
1 − A2

t

12M2
S

)

+ m2
t

M2
S

− 3m2
t A

2
t

2M4
S

+ m2
t A

4
t

2M6
S

− m2
t A

6
t

20M8
S

]
. (32)

In 
λHhh we can identify the corrections that are part of ε

in Eq. (32), and therefore write


λHhh = 3sαc2
α

vsβ

[
ε + 24

(4π)2v2s2
β

m4
t

(
−2

3
+ 2m2

t

3M2
S

− m2
t A

2
t

M4
S

+ m2
t A

4
t

3M6
S

− m2
t A

6
t

30M8
S

)]
. (33)

The hMSSM approach advocates to just use the first term ε

in Eq. (33) as a correction not only for the Higgs masses, but
also for the Higgs self-couplings and thus misses the second
bracket. However, the second bracket includes a purely top-
induced contribution, which originates from the top-quark
correction to 
λuuu(t) and should not be missed in the Higgs
self-couplings, neither in the ε approximation nor in the
hMSSM approach. The other terms of the second bracket
are instead well suppressed for heavy squark masses and in
the spirit of the hMSSM approach can be neglected. This con-
stant correction beyond the terms comprised in the ε approx-
imation also appears in all other Higgs self-couplings. We
therefore define

ε = ε − 24m4
t

(4π)2v2s2
β

2

3
(34)

and obtain effective couplings of the form

λε
hhh = λhhh + 3c3

α

vsβ
ε, λε

Hhh = λHhh + 3sαc2
α

vsβ
ε,

λε
HHh = λHHh + 3s2

αcα

vsβ
ε, λε

HHH = λHHH + 3s3
α

vsβ
ε,

λε
hAA = λhAA + cαc2

β

vsβ
ε, λε

H AA = λH AA + sαc2
β

vsβ
ε,

(35)

where the tree-level couplings are taken from Eq. (8). The
usage of the effective couplings λε

i jk can be considered an
improvement of the original hMSSM approach, which is why
we dub it “improved hMSSM”. Additionally, we will later use
the couplings λε

i jk , which are defined as in Eq. (35), but with
ε instead of ε. Thus, they correspond to the original hMSSM
approach. Note that ε and therefore also ε can be calculated
either from the actual correction ε = 
M2

uu , which equals
the ε approximation, or according to the hMSSM approach.
We follow the hMSSM approach and thus obtain ε from the
right-hand side of Eq. (26) and ε from Eq. (34).

We summarize that in our subsequent calculation of the
partial decay width H → hh we work with effective low-
energy 2HDM couplings and mixing angles and thus do not
only employ the tree-level couplingλHhh in the leading-order
amplitude. We instead use the effective couplings λε

Hhh and
λε
Hhh of the original and the improved hMSSM approach,

respectively, and, moreover, make use of the complete cor-
rection in the effective potential given by

λeff
Hhh(t, t̃) = λHhh + 
λHhh(t, t̃) [Eq. (29)] (36)

that corresponds to the proper matching of the low-energy
2HDM to the MSSM. We add the arguments (t, t̃) to λeff

Hhh ,
which have to be understood as flags, i.e. we allow to
add the top- and stop-induced contribution to 
λHhh sep-
arately. In practice at LO in the decay width we will always
use λeff

Hhh(1, 1), which is ultraviolet finite in contrast to
λeff
Hhh(1, 0).

3 The partial decay width H → hh

For now we have discussed both the MSSM and its approx-
imation, the hMSSM, in the effective potential approach,
which allows us to match them to an effective 2HDM. In
our subsequent discussion the couplings and masses of the
2HDM include the previously mentioned one-loop correc-
tions. We explicitly provided formulas for the corrected
Higgs self-couplings and note that the Higgs masses are
obtained by diagonalizing the one-loop corrected mass matri-
ces in the EPA, see also Ref. [40]. For the scope of this work
we neglect the contributions of other particles than the top
quark and squarks that, however, could be taken into account
in a full diagrammatic calculation in a straightforward man-
ner. In the same context we will also neglect the residual
RGE-evolution of the Higgs self-couplings λi jk within the
low-energy 2HDM in the following, i.e. work with the val-
ues obtained at the matching scale. In a full calculation the
running due to the light degrees of freedom would have
to be taken into account for consistency. Since the domi-
nant radiative corrections to the decay H → hh are known
to emerge from top-quark and stop loops, these neglected
effects are only subleading and do not contribute to the mis-
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match between the full MSSM and the 2HDM as the low-
energy limit.

In this section we calculate the partial decay width H →
hh. We perform a Feynman-diagrammatic calculation at the
one-loop level including the full momentum-dependent cor-
rections. We denote the momentum of the incoming Higgs
boson by qH and the momenta of the outgoing Higgs bosons
by q1 and q2. Ultimately, we perform an on-shell calculation
and thus set q2

H = M2
H and q2

1 = q2
2 = M2

h . In the Feynman-
diagrammatic approach we obtain the partial decay width
�(H → hh) according to

�(H → hh) = |A|2
32πMH

√
1 − 4M2

h

M2
H

, (37)

whereA = ALO+ANLO denotes the amplitude. At pure tree-
level the contribution ALO equals the Higgs self-coupling
λHhh as given in Eq. (8). The corresponding Feynman dia-
gram is shown in Fig. 1a. However, we want to work in the
effective 2HDM, i.e. we employ the effective couplings λeff

Hhh
and λε

Hhh and thus incorporate higher-order effects already in
ALO. We also apply the previously discussed one-loop cor-
rections in the EPA, see also Ref. [40], to obtain the external
Higgs masses.

The loop-corrected amplitude ANLO can be split into the
following pieces

ANLO(t, t̃) = Avirt(t, t̃) + Aext(t, t̃)

+Aext,eff(t, t̃) + Aδλ(t, t̃), (38)

where Avirt(t, t̃) denotes the momentum-dependent one-
particle irreducible Feynman diagrams. They are depicted
in Fig. 1b–f. Aext(t, t̃) are external self-energy corrections
adjusted to the amputated Green’s functions including a
mixing between H and h, see Fig. 1g–i. The contribution
Aext,eff(t, t̃) originates from the kinetic mixing Z eff already
discussed in Sect. 2.3 and thus provides the proper normaliza-
tion of the (effective) Higgs fields in the effective low-energy
2HDM. Finally Aδλ(t, t̃) comprises additional counterterms
induced by the effective couplings of the EPA and is generi-
cally depicted in Fig. 1j.Avirt can be easily expressed in terms
of Passarino-Veltman integrals [44,45]. We present the cor-
responding analytic expression in Appendix A. On the other
hand we have to define a renormalization scheme to fix all
the remaining counterterms. By adding the arguments (t, t̃),
which have to be understood as a flag to include or to dis-
regard top-quark and stop contributions, we emphasize that
we can add both contributions separately to all individual
ingredients of the one-loop amplitude, see Appendix A for
an explanation.

3.1 Self-energy corrections and renormalization

We employ effective couplings and effective masses in an
effective 2HDM at tree-level and also use them in our one-
loop Feynman-diagrammatic calculation. This implies that
beyond the corrections already implemented through the
effective potential, we add only momentum-dependent terms.
First we discuss the external self-energies, which boil down
to the following contributions

δZH = �′
HH

(
M2

H

)
, δZh = �′

hh

(
M2

h

)
,

δZHh

(
p2

)
= �Hh

(
p2

)
M2

H − M2
h

, (39)

where �i j (p2) is the self-energy involving the two mass
eigenstates i, j ∈ {h, H} and �′

i j (p
2) is its derivative with

respect to the squared external momentum p2. The self-
energy corrections δZ all enter Aext. Again these corrections
can be expressed in terms of Passarino-Veltman integrals and
can be split into top-quark and stop-induced corrections, see
Appendix A. The self-energy corrections enter the amplitude
as follows:

Aext (t, t̃) = λHhh
( 1

2δZH + δZh
)

+ λhhhδZHh

(
M2

H

)
− 2λHHhδZHh

(
M2

h

)
(40)

Additionally we have to take into account the kinetic correc-
tions explained in Sect. 2.3. They imply an additional con-
tribution at the one-loop level

Aext,eff(t, t̃) = λHhh

(
− 1

2δZ eff
H − δZ eff

h

)

− λhhhδZ
eff
Hh(M

2
H ) + 2λHHhδZ

eff
Hh(M

2
h )

(41)

that corresponds to the matching of the kinetic term of the
full theory to the kinetic term of the effective low-energy
2HDM after integrating out the top-quark (stops). Since our
calculation is based on the field definition of the full MSSM
we have to divide through Z eff to obtain the field normaliza-
tion in the effective low-energy 2HDM, which explains the
subtraction of the corresponding terms δZ eff. The effective
Z eff matrix is given by

δZ eff
H = �′

HH (0), δZ eff
h = �′

hh(0),

δZ eff
Hh(p

2) = p2�′
Hh(0)

M2
H − M2

h

. (42)

Also for the self-energies presented here, we can take into
account top-quark and stop contributions separately.

The mixing angle α is renormalized by promoting the tree-
level relation for α0 = α + δα, see Eq. (6), to the one-loop
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H

h

h

λHhh H

h

h

t H

h

h

t̃ H

h

h

t̃ H

h

h

t̃

H

h

h

t̃
H

h

h

H

h

h

H

h

h

H

h

h

= t
t̃

t̃
−δZ eff

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

δλ

Fig. 1 Feynman diagrams for H → hh: a Tree-level diagram; b–f virtual one-loop corrections; g–j external self-energy corrections and countert-
erm; k generic self-energy that comprises the self-energy corrections and the kinetic counterterm depicted in l–o

level, which results in

δα = − s4α

4

(

M2

du

M2
du

− 
M2
uu − 
M2

dd

M2
uu − M2

dd

)
. (43)

Using the explicit expressions for the mass corrections in the
EPA, see Eq. (17), implies that the mixing angle is renormal-
ized for vanishing external momenta in accordance with the
consistent definition of effective low-energy parameters.

The tree-level coupling λHhh in Eq. (8) suggests that we
need to renormalize not only the mixing angle α, but also
the angle β as well as the electroweak sector, i.e. MZ and
v. However, since we are working with effective parameters
defined by the radiatively corrected EPA in our one-loop cor-
rections, the renormalization of the parameters β, MZ and v

is already part of the renormalization of the effective poten-
tial intrinsically, since the full counterterm δλHhh is defined
by the EPA that determines the full mismatch between the
MSSM and the low-energy 2HDM. This is different for the
mixing angle α that enters as the external rotation of the cur-
rent eigenstates to the mass eigenstates applied to the fully
corrected and renormalized effective potential in the current-
eigenstate basis. We can therefore write

Aδλ(t, t̃) = ∂λHhh

∂α
δα + Aeff

= λhhhδα − 2λHHhδα + Aeff. (44)

The renormalization of the mixing angle α is formally part
of Aδλ, but adds to the non-diagonal renormalization factor
δZHh , which is obvious from the relation ∂λHhh

∂α
= λhhh −

2λHHh . Since we employ an effective coupling in the tree-
level amplitude ALO, we need to adjust the counterterm Aeff

accordingly to avoid double-counting. We obtain

Aeff(t, t̃) = −
λHhh(t, t̃) = − Avirt(t, t̃)
∣∣∣
q2
i =0

. (45)

We explicitly checked the last relation, which is in accor-
dance with Ref. [46]. Again all these relations hold for top-
quark and stop contributions separately. It is obvious that the
combination of the self-energy corrections Aext and Aext,eff

and the counterterm Aδλ only leaves momentum-dependent
corrections in the amplitude ANLO.

3.2 Combining the results

We have now presented all relevant ingredients for the cal-
culation of the partial decay width H → hh at the one-loop
level within the effective 2HDM. In the following we will
present our numerical results for different combinations of
the effective or tree-level couplings and including top-quark
and squark contributions separately. We emphasize that also
just taking the top-quark contribution into account leads to
an ultraviolet finite result in accordance with the Appelquist-
Carazzone decoupling theorem [47]. According to Eq. (45)
the contribution Aeff(t, t̃) cancels all divergences of the ver-
tex corrections of Fig. 1b–f. The contributions of the coun-
terterm δα and the counterterms δZ eff

i j together cancel the
divergences of the external self-energies of Fig. 1g–i. All
these cancellations emerge for the top-quark and stop con-
tributions separately. On the other hand the sum of the top-
quark and stop contributions leads to finite vertex corrections
already before renormalization and in the same way to a finite
counterterm Aeff.

We summarize the options for our numerical analysis in
Table 1. Option 1 is the MSSM calculation involving top-
quark (and stop) loops without the use of the effective Higgs
self-coupling λeff

Hhh , but employing the tree-level values at
LO and NLO. We name the corresponding decay widths �LO

and �NLO(t, t̃). Through the arguments (t, t̃) we indicate
whether only top quarks (1, 0) or additionally stops (1, 1)

are included in the Feynman-diagrammatic calculation at
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Table 1 Different width calculations employed in our numerical anal-
ysis

Option ALO Aeff

1 �LO λHhh �NLO(t, t̃) 0

2 �LO
ε λε

Hhh �NLO
ε (t, t̃) −
λHhh(t, t̃)

3 �LO
eff λeff

Hhh(1, 1) �NLO
eff (t, t̃) −
λHhh(t, t̃)

the one-loop level. Option 2 is the same calculation using
the effective Higgs self-couplings λε

Hhh and λε
Hhh within the

original and our improved hMSSM approach, respectively.
We make use of these effective couplings both at LO and
NLO, which results in �LO

ε/ε and �NLO
ε/ε (t, t̃), respectively. For

the latter to avoid double-counting of contributions, we sub-
tract the vertex correction using the exact value of λeff

Hhh(t, t̃)
in Aeff in Eq. (45). This can be understood from the fact that
the Feynman-diagrammatic calculation of the partial decay
width H → hh adds the exact corrections due to the top
quark and the stops. Lastly, in option 3 the calculation is per-
formed in a consistently matched 2HDM to the MSSM with
effective Higgs self-couplings and subleading terms in the
matching beyond the hMSSM approach. This results in �LO

eff
and �NLO

eff (t, t̃). Both for option 2 and option 3 we use λε
i jk ,

λε
i jk and λeff

i jk(1, 1), respectively, in all occurrences of Higgs
self-couplings in Eqs. (40) and (41). This choice is taking
finite higher-order effects into account and does not harm
the cancellation of ultraviolet divergences.

3.3 Comparison with earlier work

Our method of calculating the decay width for H → hh devi-
ates from Ref. [46], since the latter performed a DR renor-
malization of all parameters involved, i.e. did not include an
explicit decoupling of the heavy top-quark and stop states
involving a proper matching to the full MSSM. In this way

the work of Ref. [46] could not isolate the pure momentum-
dependent contributions beyond the effective parameters rig-
orously.

The work of Ref. [48] presented the full NLO results
within the complex MSSM with conventional SUSY-elec-
troweak renormalization, i.e. without the introduction of
effective Higgs self-couplings and mixing angles. This work
finds large radiative corrections that, however, should be
explainable as the missing contributions to the effective
parameters at LO to a large extent. We will demonstrate this
effect in our subsequent numerical analysis. Our approach
can be extended to the full calculation within the MSSM.
This, however, is beyond the scope of our work.

The recent work of Ref. [49] renormalized the Higgs self-
coupling in the MS-scheme so that also this work did not
perform an explicit matching of the low-energy 2HDM to the
full MSSM. On the other hand the authors used the hMSSM
approach to approximate the dominant radiative corrections
within the MSSM Higgs sector. The residual effects beyond
the use of their “effective” parameters, however, range at the
same level as the consistent momentum-dependent contribu-
tions beyond the effective couplings and mixing angles as
obtained in this work.

4 Numerical results

We perform our comparisons in one benchmark scenario, in
which we allow for different values of the Higgsino mass
parameter μ. We will use the results of the work performed
in Ref. [40] for the effective Higgs self-couplings and masses
at the one-loop level. The most important parameter settings
are as follows,

MS = 1500 GeV,

Xt =
{

2950 GeV for tan β ≤ 4
(2950 − 400

3 (tan β − 4)) GeV for tan β > 4
, (46)

ta
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Fig. 2 Light Higgs mass Mh in GeV as a function of MA in GeV and tan β for a μ = 0 GeV, b μ = 400 GeV and c μ = 1000 GeV

123



   65 Page 12 of 18 Eur. Phys. J. C            (2019) 79:65 

Fig. 3 Difference in the
predictions of (a, b) the heavy
Higgs-boson mass MH in % and
(c, d) the Higgs-boson mixing
angle α in % between the
predictions of the hMSSM
obtained through Eqs. (24) and
(25) and denoted Mε

H and αε

with the exact values denoted
Meff

H and αeff at NLO,
respectively, as a function of
MA in GeV and tan β for (a, c)
μ = 400 GeV, b, d
μ = 1000 GeV. For μ = 0 GeV
such differences vanish
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where MS is the soft-SUSY breaking mass used for all
left- and right-handed squarks. We set αs(MZ ) = 0.118,
MZ = 91.15449 GeV, mt = 173.2 GeV and GF =
1.166378 · 10−5 GeV−2. The latter fixes the vacuum expec-
tation value v. The top-quark mass is understood to be on-
shell and internally transformed into a DR top-quark mass
at NLO evaluated at Q = MS . This transformation as well
as the running and matching of αs , see Ref. [40] for details,
induces a dependence on the gluino mass and the other squark
masses, which are fixed by the choices M3 = 2500 GeV,
mb = 4.84 GeV and Ab = At . The quark masses of the first
two generations are set to zero. In the calculation of the Higgs
masses and the effective Higgs self-couplingsλeff

i jk(1, 1) at the
one-loop level we also incorporate subleading D-terms in the
squark masses to match the results of Ref. [40]. The determi-
nation of the D-terms also need the weak mixing angle, fixed
through MZ above and MW = 80.36951 GeV. We checked
that the inclusion of D-terms in the squark masses has almost
no impact on our findings due to the relatively heavy SUSY
scale, i.e. MZ � MS .

The choice of Xt allows to keep the light CP-even Higgs
mass close to 125 GeV at least for values of tan β > 4. A

Higgs mass of 125 GeV can also be reached for lower val-
ues of tan β, but only in combination with larger values of
MS . Larger values motivate an RGE-running of the effective
couplings. Since such a discussion is beyond our scope, we
stick to MS = 1500 GeV and emphasize that our findings can
be considered quite general, despite the fact that we “under-
shoot” the experimental value of 125 GeV significantly at low
values of tan β. For a suitable and conclusive comparison we
use the light CP-even Higgs mass Mh obtained in the EPA
at the one-loop level as input to the hMSSM approach, see
Eq. (26). This implies that our values of ε and ε are based
on a value of Mh that differs from 125 GeV for low val-
ues of MA or tan β. In the following we choose three dif-
ferent values of μ. Our first choice is μ = 0 GeV, since
only a Higgsino mass, which is small compared to the stop
masses, allows the hMSSM approximation to be valid. We
are aware that μ = 0 GeV results in very light Higgsinos,
which are not compatible with chargino mass bounds [50].
Thus, the scenario with μ = 0 GeV is considered pedagogi-
cal to set up the consistency of our analysis with the hMSSM
approach. The second and third choice are μ = 400 GeV
and μ = 1000 GeV. For the latter choice, due to μ and MS
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Fig. 4 a, b, c λε
Hhh and d, e, f λε

Hhh relative to the exact value λeff
Hhh(1, 1) as a function of MA in GeV and tan β for a, d μ = 0 GeV, b, e

μ = 400 GeV and c, f μ = 1000 GeV

being rather close, we will see remaining differences between
the hMSSM approximation and the exact one-loop results
in the Higgs masses, self-couplings and the partial decay
width H → hh. They arise, since we intrinsically violate an
assumption of the hMSSM, being μ � MS .

4.1 Light Higgs mass and improved Higgs self-couplings

We display the value of the light Higgs mass Mh in Fig. 2
for three values of μ = 0 GeV, 400 GeV and 1000 GeV. The
Higgs mass is calculated at NLO taking into account the cor-
rections described in Sect. 2.5. Since the value of Xt is equal
in all scenarios and thus are the stop masses, the light Higgs
mass is almost identical in the three scenarios. We emphasize
that for μ = 0 GeV the exact values of the heavy Higgs mass
mH and the Higgs mixing angle α can be obtained through
Eqs. (24) and (25). For μ = 400 GeV and μ = 1000 GeV we
depict the differences between the predictions of the hMSSM
approach through Eqs. (24) and (25) and their exact deter-
mination at NLO in Fig. 3. For the heavy Higgs mass such
differences are mostly below 1% throughout the parameter
plane. For the Higgs mixing angle α instead differences rise
to a couple of percent, in particular for a very large value

of μ = 1000 GeV, which is close to the soft-SUSY break-
ing mass MS = 1500 GeV in our example. Reference [21]
showed partially smaller discrepancies for the Higgs mixing
angle α due to the smaller ratio μ/MS � 1. We empha-
size again that for μ = 0 GeV we find perfect agreement
between the two approaches. Thus, we note that such discrep-
ancies inmH and α are not the dominant source of differences
observed in the partial decay width of H → hh in previous
studies. On the other hand, as for the subsequently discussed
Higgs self-couplings, the differences in α for larger μ/MS

point towards the limitations of the hMSSM approach, see
below.

We show the Higgs self-coupling λHhh in Fig. 4 again for
μ = 0 GeV, 400 GeV and 1000 GeV. While the Higgs self-
coupling obtained in the standard hMSSM approach λε

Hhh
shows large deviations from the exact value λeff

Hhh(1, 1), the
improved version λε

Hhh , performs significantly better, com-
pare Fig. 4a, d. The kinks at tan β = 4 in Fig. 4d are induced
by our choice of Xt , which is constant for tan β ≤ 4 and
rescaled for tan β > 4. For non-vanishing μ the improved
coupling shows remaining differences of a few percent, see
Fig. 4e, f. This is not surprising, since a non-vanishing μ vio-
lates an assumption of the hMSSM approach: For μ �= 0 GeV
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Fig. 6 a, b, c�NLO
ε (1, 1) and (d, e, f) �NLO

ε (1, 1) relative to �NLO
eff (1, 1) as a function of MA in GeV and tan β for a, dμ = 0 GeV, b, eμ = 400 GeV

and c, f μ = 1000 GeV

all entries in the correction of theCP-even Higgs mass matrix
in Eq. (17) receive corrections. Still, we conclude that the
improved couplings λε

Hhh compared to λε
Hhh show a milder

spread when compared to the exact coupling λNLOHhh (1, 1)

throughout the MA-tan β-plane for all values of μ.

4.2 Momentum-dependent and kinetic corrections to
H → hh

Before we discuss the quality of the hMSSM approximation
for what concerns H → hh we focus on the relevance of
momentum-dependent and kinetic corrections for the par-
tial decay width H → hh in the benchmark scenario with
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Fig. 7 a, b, c �NLO
ε (1, 0) relative to �NLO

eff (1, 1) as a function of MA in GeV and tan β for a μ = 0 GeV, b μ = 400 GeV and c μ = 1000 GeV

μ = 0 GeV. They arise from our Feynman-diagrammatic cal-
culation with non-zero external momenta and the kinetic mix-
ing discussed in Sect. 2.3, respectively. The total partial decay
width for H → hh, �NLO

eff (1, 1), including all top-quark and
stop corrections is depicted in Fig. 5a. First it is apparent that
for low values of MA the heavy Higgs boson H is too light
to decay into a pair of two CP-even light Higgs bosons hh,
such that the on-shell decay is kinematically closed. Only
for low values of tan β, where Mh is decreasing rapidly, this
decay mode is again of relevance. In all subsequent figures the
region, where the on-shell decay H → hh is kinematically
closed, is shown in white. We show the NLO partial decay
width �NLO

eff relative to the pure tree-level partial width �LO

including the tree-level Higgs self-coupling λHhh in Fig. 5b.
We observe large corrections in accordance with the litera-
ture, see e.g. Ref. [48]. However, we point out that using the
effective coupling λeff

Hhh(1, 1) in the tree-level decay width
�LO

eff diminishes the one-loop corrections substantially, see
Fig. 5c. Accordingly, Fig. 5c demonstrates the relevance of
the remaining momentum-dependent and kinetic corrections,
which we incorporated through a Feynman-diagrammatic
calculation and through the inclusion of the external kinetic
mixing described in Sect. 2.3, respectively. Exactly such
momentum-dependent and kinetic contributions were miss-
ing in the comparison of H → hh decay widths performed
in Ref. [21]: Therein the partial decay width �LO

ε was com-
pared against a full Feynman-diagrammatic one-loop cal-
culation including an additional resummation of large log-
arithms. The discrepancies found at the level of the partial
decay width in Ref. [21] were between 15 and 25% in a large
part of the MA-tan β-plane and thus in the same ballpark
as the missing momentum-dependent and kinetic contribu-
tions. Keep in mind that the partial decay width �LO

ε and thus
the comparison in Ref. [21] missed also the constant factor
between ε and ε. We leave a detailed comparison employ-
ing the newest predictions for a future study. We emphasize

that the momentum-dependent and kinetic corrections in our
benchmark scenario are mostly induced by the top-quark con-
tribution, whereas the stops only yield a tiny fraction due to
the relatively large stop masses. Given that in Fig. 5 we are
not yet applying the hMSSM approximation similar results
are obtained for larger values of μ. We therefore refrain
from showing the corresponding results for μ = 400 GeV
or μ = 1000 GeV.

4.3 H → hh in the hMSSM

We finally focus on the performance of the hMSSM approxi-
mation in the description of the partial decay width H → hh.
In Fig. 6 we compare the partial decay widths �NLO

ε (1, 1)

and �NLO
ε (1, 1), both named option 2, against the full result

�NLO
eff (1, 1), named option 3 in Sect. 3.2. In a first com-

parison we keep both top-quark and stop corrections in our
calculation. For μ = 0 GeV it is apparent, see Fig. 6a, that
�NLO

ε (1, 1) deviates from the exact result by more than 20%
for small values of tan β. Using instead the improved Higgs
self-coupling λε

Hhh in �NLO
ε̄ (1, 1) results in almost perfect

agreement, see Fig. 6d with tiny deviations of only maxi-
mally 0.1%.

Choosing a non-vanishing value of μ, see Fig. 6b, c for
μ = 400 GeV and μ = 1000 GeV, respectively, leads to
deviations between the hMSSM prediction �NLO

ε (1, 1) and
the exact result �NLO

eff . Such deviations increase with the value
of μ and follow a similar pattern as observed for λε

Hhh when
compared against λeff

Hhh , see Fig. 4. Keep in mind, that the
squared value of λ enters the LO partial decay width. Again
the usage of λε

Hhh , depicted in Fig. 6e, f, makes the overall
spread of the discrepancies between the hMSSM prediction
and the exact result smaller, but in particular for larger values
of tan β they can still exceed 10 %.

Lastly, we suggest to calculate �NLO
ε (1, 0) in the hMSSM

approach, since this calculation of the decay width incor-
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porates the most dominant one-loop corrections from top
quarks, but on the other hand is not sensitive to the actual
supersymmetric spectrum and is thus in the spirit of the
hMSSM approach. This decay width is compared against
the exact result including top-quark and stop corrections in
Fig. 7. From the fact that for small μ values there is only a
small difference to the results including one-loop stop cor-
rections �NLO

ε (1, 1), compare e.g. Fig. 6d against Fig. 7a, we
again conclude that momentum-dependent stop corrections
are subdominant, at least for our benchmark scenario with
stop masses above 1 TeV and a heavy Higgs mass mH well
below the TeV scale. The comparison of Fig. 6e, f against
Fig. 7b, c, respectively, shows that also for larger μ the
momentum-dependent corrections from the stop sector can
well be neglected.

5 Conclusions

We revisited the calculation of the decay of the heavy Higgs
boson H into two SM-like Higgs bosons h in the hMSSM
approach. For this purpose we considered the full effective
potential, in which the top quark and stops are integrated out,
allowing to match the MSSM on a 2HDM as its low-energy
limit. By carefully integrating out the top quark and stops
separately, we identified missing contributions in the Higgs
self-couplings of the hMSSM approach and suggested the
definition of improved Higgs self-couplings for the hMSSM
approximation. In particular in the limit of a small Higgsino
mass parameter μ � MS , which is an intrinsic assumption of
the hMSSM approach, these improved Higgs self-couplings
yield an excellent approximation for the actual Higgs self-
couplings calculated in our effective potential approach. In
this context the hMSSM approach can and has to be under-
stood as an approximation to a full effective low-energy
2HDM matched to the MSSM. Since the effective potential
is evaluated for zero external momenta, we included kinetic
corrections at the level of the effective Lagrangian of the
2HDM involving dimension-4 operators. These corrections
allow us to perform a one-loop Feynman-diagrammatic cal-
culation of H → hh in the 2HDM-setup, where again we
can consider the top quark and stops separately. By this pro-
cedure we discussed the relevance of momentum-dependent
and kinetic corrections to the decay H → hh at the one-loop
level, that were missing in previous comparisons. As for the
Higgs self-couplings themselves using our improved Higgs
self-couplings for the decay H → hh leads to a much better
agreement between the calculation performed in the 2HDM-
setup and the hMSSM approximation, in particular for small
μ � MS . We advocate to supplement the calculation of
H → hh with momentum-dependent and kinetic corrections
from the top quark to obtain a reliable prediction at one-loop
level without introducing a dependence on the actual super-

symmetric particle spectrum. Our study misses an inclusion
of RGE effects, such that also heavier supersymmetric spec-
tra can be investigated. We leave such comparisons to future
work.
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Appendix

A Analytical results

We subsequently present the relevant analytical results, being
the self-energies of the Higgs bosons and the virtual correc-
tions to the Hhh vertex. We make use of Passarino-Veltman
integrals [44,45] to simplify our notation. For their presen-
tation we need the Feynman rules for squark to Higgs-boson
couplings, which we depict in Fig. 8. Note again that we work
in the gaugeless limit, such that D-term contributions to these
couplings are neglected consistently. The couplings for the
three-point interaction in Fig. 8 are given by (φ ∈ {h, H})

Gφ
11/22 = m2

t g
φ
t ± gφ

LRs2ϑ ,

Gφ
12 = gφ

LRc2ϑ , (47)

ghLR = mt

2

(
At g

h
t + μgHt

)
,

gHLR = mt

2

(
At g

H
t − μght

)
, (48)

ght = cα

sβ
,

gHt = sα
sβ

, (49)

and for the four-point interaction by (φ1,2 ∈ {h, H})

Fφ1φ2
ab = m2

t g
φ1
t gφ2

t δab. (50)

Therein ϑ denotes the squark-mixing angle that diagonalizes
the squark mass matrix in Eq. (9). Using Ct from Eq. (19) the
mixing angle can also be reexpressed as c2

2ϑ = 1 − 4m2
t C

2
t .
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Fig. 8 Feynman rules for
interactions of squarks and
Higgs bosons. The indices i and
j refer to color, the indices a
and b to mass eigenstates

φ
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t̃b

= −i2Gφ
ab

v
δij
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t̃a
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= −i2F
φ1φ2
ab
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δij

A.1 Vertex corrections

For the Feynman diagram involving the top-quark correction
to H → hh, depicted in Fig. 1b, we obtain

A1 = − i
m4

t

v3 gHt (ght )2 8Nc

(4π)2

[
B0(q

2
H ;m2

t ,m
2
t )

+ B0(q
2
1 ;m2

t ,m
2
t ) + B0(q

2
2 ;m2

t ,m
2
t )

+
(

4m2
t − q2

H + q2
1 + q2

2

2

)
C0(q

2
H , q2

1 , q2
2 ;m2

t ,m
2
t ,m

2
t )

]
,

(51)

where Nc = 3 and we fix external momenta to the on-shell
masses, i.e. q2

H = M2
H , q2

1 = q2
2 = M2

h . For the squark
contributions we split the contribution from the Feynman
diagram in Fig. 1c from the sum of the contributions from
the diagrams in Fig. 1d–f. For the former we obtain

A2 = i
∑
a,b,c

16Nc

(4π)2v3 G
H
abG

h
acG

h
bcC0(q2

H , q2
1 , q2

2 ;m2
t̃a

,m2
t̃b

,m2
t̃c
),

(52)

and the sum of the diagrams in Fig. 1d–f yields

A3 =i
∑
a,b

4Nc

(4π)2v3

[
GH

abF
hh
ab B0(q

2
H ;m2

t̃a
,m2

t̃b
)

+ 2Gh
abF

hH
ab B0(q

2
1 ;m2

t̃a
,m2

t̃b
)
]
, (53)

where again external momenta are set on-shell. It is clear
that Avirt(1, 1) is obtained by summing

∑
i=1,2,3 Ai , while

Avirt(1, 0) only consists of A1.

A.2 Self-energy corrections

Again we start with the top-quark contribution, which is
depicted in Fig. 1l and is given by

�t
φiφ j

(p2) =m2
t

v2 gφi
t g

φ j
t

2Nc

(4π)2

[
2A0(m

2
t )

+ (4m2
t − p2)B0(p

2;m2
t ,m

2
t )

]
, (54)

�′t
φiφi

(p2) =m2
t

v2 (gφi
t )2 2Nc

(4π)2

[
−B0(p

2;m2
t ,m

2
t )

+ (4m2
t − p2)B ′

0(p
2;m2

t ,m
2
t )

]
, (55)

where we attach two Higgs bosons φi , φ j ∈ {h, H} exter-
nally. Finally for the sum of all stop contributions, shown in
Fig. 1m, n, we obtain

� t̃
φiφ j

(p2) = − 2Nc

(4π)2v2

[∑
a

F
φiφ j
aa A0(m

2
t̃a
)

+ 2
∑
a,b

Gφi
abG

φ j
ab B0(p

2;m2
t̃a
,m2

t̃b
)

⎤
⎦ , (56)

�′t̃
φiφ j

(p2) = − 4Nc

(4π)2v2

∑
a,b

Gφi
abG

φ j
ab B

′
0(p

2;m2
t̃a
,m2

t̃b
).

(57)

Again, Aext(t, t̃) and Aext,eff(t, t̃) defined in Eqs. (40) and
(41), respectively, contain for (t, t̃) = (1, 0) only contribu-
tions from �t and �′t and for (t, t̃) = (1, 1) in addition from
� t̃ and �′t̃ .
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