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Introduction

I think it is a peculiarity of myself that I like to play about with equations, just looking for beautiful
mathematical relations which maybe don’t have any physical meaning at all. Sometimes they do.

— Paul A.M. Dirac (1902–1984) as quoted in Ref. [1]

The famous Dirac equation as published in 1928 has certainly a physical meaning, but still the above
statement of Paul A. M. Dirac applies to the formula due to its beautiful mathematical relations.
Moreover, at that time, it was surely not foreseen that the Dirac equation would become of such a high
importance in condensed matter physics and thus get a physical meaning in less than three dimensions.
The massless limit of the Dirac equation, the Weyl equation, proposed in 1929 to describe neutrinos
[2], had no physical realization until the discovery of the three dimensional (3D) Weyl semimetal
about 85 years later (since it was found that neutrinos have a mass) and still its nice mathematical
relations have been studied long before. Nowadays, Weyl and Dirac materials are studied due to their
extraordinary physical properties that offer a great potential for applications. Particular examples for
those applications will be discussed in this thesis. The present thesis is devoted to the analysis of the
properties of two Dirac systems hosting a huge magnetoresistance, 3D Weyl semimetals and carbon
nanotubes with side-attached single-molecule magnets (both systems are defined below). These systems
offer novel designs for magnetoresistance devices. Therefore, we demonstrate that equations without
a physical realization might play an important role in future and hence are worth to be studied.

Physical systems showing a magnetoresistance (MR) of a giant magnitude have a great potential
for different applications, for example, in sensors and magnetic memory. The MR is defined by the
ratio [G(B) − G(0)]/G(0), where G(B) and G(0) denote the conductance with and without magnetic
field, respectively. Apart from the magnitude of the MR, the size of the structure is another important
quantity to characterize its potential for applications since one aim in building modern technological
products is the device miniaturization.

A very prominent and recent experimental finding is the observation of the MR in transversal mag-
netic fields of three dimensional Weyl and Dirac semimetals [3–9]. With an extremely large magnitude
of 104−106%, the transversal magnetoresistance (TMR) of Weyl semimetals is the first observation of a
giant magnetoresistance in a homogeneous structure. Previously, such magnitudes were only observed
in complex structures. Furthermore, the non-saturating linear behavior of the TMR is extraordinary.
As it is clearly seen in Ref. [5], the TMR shows a linear behavior in both low but quantizing magnetic
fields and highest magnetic fields where only the lowest Landau level contributes, the so-called quan-
tum limit. In low magnetic fields, the TMR of Weyl and Dirac semimetals is superimposed by strong
Shubnikov-de Haas oscillations.

Weyl and Dirac semimetals have, however, much more spectacular properties than the TMR. In order
to discuss those properties, we first introduce both materials. The low energy quasiparticle spectrum
of Dirac semimetals is characterized by the 4 × 4 Dirac Hamiltonian which describes the crossing of
two twofold degenerate bands with linear dispersion. Known material realizations are Cd3As2 [10]
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and Na3Bi [11]. For broken inversion or time-reversal symmetry, the four component Dirac equation
splits into two independent two component Weyl fermions of opposite chirality. The crossing points
of the resulting non-degenerates bands, the so-called Weyl nodes, are located at distinct momenta.
For example, the materials TaAs [12, 13], NbAs [14], TaP [15], and NbP [5] are classified as Weyl
semimetals.

Close to the charge neutrality point, the transport properties of Weyl semimetals are highly pecu-
liar. One central aspect of this peculiarity is the appearance of a disorder critical point. This was
first pointed out within a mean field approach in Refs. [16, 17], later the fact was confirmed by a
renormalization group (RG) analysis in 2− ε dimensions [18–20], an effective field theory [21], and in
a numerical analysis [22]. For sufficiently weak disorder, meaning below the disorder critical point,
the density of states vanishes quadratically in energy around the Weyl point within the perturbation
theory. The effect of non-perturbative processes are currently under discussion. In several numerical
studies [23–26] and in analytical calculations [27, 28], it was concluded that rare-region effects would
produce an exponentially small density of states. However, most recent calculations claim that rare
regions do not provide a finite density of states [29]. In the strong disorder regime, the density of states
is finite at the Weyl point already without invoking exponentially small contributions.

The vanishing density of states for weak disorder manifests itself in a vanishing ac conductivity (∝ |ω|
with external frequency ω) in the zero temperature limit while the dc conductivity remains finite for
temperature going to zero [30]. In the strong disorder limit, the finite density of states ensures that
both dc and ac conductivity remain finite in the zero frequency and temperature limit.

In an external magnetic field, transport in Weyl semimetals reveals an interesting physics besides
the linear TMR. One reason for this is the unconventional Landau level quantization of Dirac fermions.
Further, a single species of Weyl fermions displays the chiral anomaly that gives rise to a possibility
of controlling the valley polarization. A strong anomalous Hall effect [1, 31, 32] and the negative
longitudinal magnetoresistivity [5, 33–41] in Weyl semimetals have been predicted to originate from
the chiral anomaly. Further properties as thermoelectrical effects [42] and induced superconductivity
[43] have been studied recently, both theoretically and experimentally. Moreover, Josephson currents
in different systems involving Weyl semimetals are recently studied theoretically where the chirality of
the system leads to interesting features [44–47].

Recently, a new class of Weyl semimetals, the so-called type II Weyl semimetals, was discovered in
the materials WP2 and MoP2 [48]. Those materials are characterized by a tilt in the dispersion relation.
This type of Weyl semimetals shows an even larger transversal MR (magnitude of 107%) compared
the Weyl semimetals described previously. Moreover, the dependence with respect to magnetic field of
the TMR in type II Weyl semimetals is quadratic. This emphasizes the great potential of the whole
class of Weyl semimetals for significantly easier designs for MR devices.

In order to further miniaturize the MR devices, “spin-valve” effects on a single-molecule level play
an important role [49]. The field of molecular spintronics [50–55] provides a way to built such devices
with the abilities to characterize, manipulate, and read out the molecular spin states of nanostructures
down to the single-molecule level. Not only size miniaturization is driving this field but also the need to
effectively interface organic and inorganic materials for biomedical and nanoelectronic applications [49].
By applying state-of-the-art optical and electronic techniques, single-molecule functionality on short
time scales can be realized [56–64].

Such nanometer-scale structures with a stable spin orientation find a promising realization in single-
molecule magnets (SMM) [54]. In general, SMMs consist of an inner magnetic core surrounded by a
shell of organic ligands [65, 66]. The structure of organic ligands can be designed to bind the molecular
magnets on surfaces or into molecular junctions [67–72]. To strengthen the magnetic interaction of the
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core ions, delocalized bonds in SMMs are utilized and can further enhance the conducting properties of
the molecule. The possibility of selective substitution of the ligands together with the variety of shapes
and sizes of the existing SMMs provide the possibility to adjust the SMMs for an ideal coupling to the
environment [73]. By exchanging the magnetic ions in the SMMs, the magnetic properties can be varied
without modifying the structure [74]. Although the deposition of SMMs on surfaces or between leads
may affect their magnetic properties [73, 75], SMMs with their low structural versatility prevail over
non-molecular nanosystems which typically show large size and anisotropy distributions. The essential
advantage of SMMs compared to magnetic nanoparticles is that they are extremely monodisperse and
can be investigated in molecular crystals.

In particular, the unification of the macroscale properties of a magnet with the quantum features
of a nanoscale object leads to an observation of an impressive variety of quantum effects in SMMs.
Ranging from Berry-phase interference and quantum coherence to quantum tunneling of magnetization,
the quantum effects are observable up to very high temperatures due to the progress in molecular
designs. The study of SMMs has already caused a strong impact on spintronics [52]. However, further
development of designs for devices based on individual SMMs promise even more striking results.

Transport in nanostructures is strongly modified by SMMs. Building blocks for such nanostructures
are, for example, graphene or carbon nanotubes (CNT). The ligands of the SMMs can be designed
such that they couple via supramolecular π − π interaction with the π electrons of graphene or of
the CNTs. Both graphene and CNTs are Dirac materials. Carbon nanotubes, as a rolled up sheet of
graphene, have either a gapped Dirac spectrum which provides a semiconducting system or a linear
spectrum with two crossing one dimensional modes which is a metallic system. If the system is metallic
or semiconducting as well as the size of the gap in the semiconducting system is dependent on the
diameter of the CNT and chiral angle defining the lattice sites of graphene which superpose in the
rolled up CNT [76]. Due to their spectrum, CNT represent an one dimensional Dirac system.

In a CNT with the side-attached TbPc2 SMMs, a remarkable giant magnetoresistance (GMR) and
“spin-valve” effect is observed [58, 77, 78]. With its possible applications to senors or magnetic memory,
the system of SMMs attached to CNTs marks the smallest realized “spin-valve” system. The GMR
manifests itself in the observation of reproducible sharp jumps of the conductance of the CNT tunnel-
coupled to the leads with a slow variation of magnetic field aligning the magnetic moments of the
molecules parallel to each other. By a variation of gate voltage, the GMR effect in nanotubes can
reach a magnitude of 103%. This spin-valve effect is by its manifestation similar to the prominent
phenomenon of GMR in thin metallic films with magnetic contacts which is one of the most widely
implemented phenomena in the field of spintronics. A similar spin-valve effect can be found in thin
graphene strips with SMMs [79] and in CNTs with permalloy contacts [80].

This thesis will be concerned with the following aspects of magnetotransport in Dirac systems. One
central aspect is the analysis of the TMR in Weyl semimetals involving the calculation of the effects
of disorder in presence of magnetic field. Certainly, disorder in Weyl semimetals in the absence of a
magnetic field is also quite peculiar and thus deserves a consideration in this thesis. Moreover, this
thesis aims to describe the GMR in the system of CNTs with side-attached SMMs of TbPc2. Since a
main ingredient of this model is the resonant scattering off Fano-resonances, a more detailed analysis
of transport with Fano-resonances is studied.

The appearance of a critical disorder strength in Weyl semimetals at the charge neutrality point was
discussed in several works [16–22]. However, the analysis of disorder away from the charge neutrality
includes the appearance of a “phase” of critical disorder. The behavior in this critical phase is however
not fully understood since the mean field approach [16, 17] provides strongly different result from the
RG in 2 − ε dimensions[18–20]. The consideration of the critical phase within self-consistent Born
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approximation performed in this thesis should provide a deeper understanding of the physics in the
phase of critical disorder. Moreover, it was shown for the dc conductivity in weak disorder that vertex
corrections to the conductivity are relevant already in the simplest disorder configuration [81]. With
the full incorporation of vertex corrections in the strong disorder regime, we uncover the interesting
effect of a saturating conductivity in dependence of an increasing disorder strength. The consideration
of disorder in Weyl semimetals will be completed by establishing a model for impurity scattering in
presence of magnetic field which is relevant to address the TMR.

One of the main goals of this thesis is to find a theoretical explanation for the huge linear TMR in
Weyl semimetals as observed in experiment. Theoretically, the TMR in the ultra quantum limit, where
only the zeroth Landau level contributes to transport, was considered in a model of strongly screened
Coulomb impurities in a seminal paper by Abrikosov [82]. Naturally, this theoretical analysis provokes
the following questions: (i) Does this model of the TMR provide a linear resistivity with respect to
magnetic field when the model is applied higher Landau levels where the experimentally observed
Shubnikov-de Haas oscillations can be studied? (ii) Does the theoretically obtained linear TMR in
the ultra quantum limit crucially depend on the model of screened Coulomb impurities? Moreover,
Ref. [82] addresses the TMR for finite chemical potential leading to a finite Hall conductivity. Thus,
another important question will be how the Hall conductivity affects the TMR away from the quantum
limit. These questions will be issued in the following thesis based on the works of Refs. [83] and [84].
In order to demonstrate the importance of this work, let us briefly comment on related works. The
TMR in a different regime of Coulomb impurities compared to our works was performed in Ref. [85].
A quite similar consideration of the TMR was performed in Ref. [86], however, in a less elaborated
model within simple Born approximation. A numerical confirmation of the results in the quantum
limit was recently performed in Ref. [87]. Moreover, a different approach involving classical memory
effects proposed a linear TMR in a smooth disorder potential [88].

Besides the investigation of Weyl semimetals, this thesis is further devoted to the magnetotransport
in nanostructures with SMMs. Specifically, we propose a theoretical model for a CNT with side-
attached TbPc2 molecules. Theoretically, molecular quantum dots coupled to metallic leads were
analyzed in a number of works. In particular, works devoted to a possible read-out for the local spin
orientation via the measurement of the spin current [89], asymmetries in the Coulomb diamonds and
Kondo peaks [90], and the spin-blockade effect associated with a change of magnetic anisotropy [91]
were addressed. For a single-wall CNT with a single side-attached molecule, a mechanism of the spin-
valve effect for (effectively infinite) CNTs with SMMs was proposed in Ref. [92]. Moreover, it has been
argued that the tunnel magnetoresistance may depend on the exchange interaction between the CNT
and the SMM [93]. However, the GMR and peculiar nonlinear transport observed experimentally
in tunnel-coupled CNTs with several SMMs is not comprehensively explained in those theoretical
descriptions. With the theoretical model presented in this thesis, we fill in this lack and provide a
comprehensive explanation for the GMR and spin-valve effect for CNTs with side-attached SMMs.
The model is based on our recent publication [94].

This thesis is structured as follows: Chapter 1 introduces the physics of Dirac materials with a
focus on the materials relevant to this thesis. Furthermore, we discuss the spectacular experimental
findings which we model theoretically in this thesis. In Chapter 2, we discuss the methods of transport
theory which are applied to the novel Dirac systems considered in this thesis. After those introductory
chapters, we start in Chapter 3 with the analysis of disorder in Weyl semimetals. In this part, we
discuss first the behavior in absence of magnetic field where we provide a fully self-consistent description
in the different regimes of disorder. The chapter continues with the analysis in the presence of magnetic
field, where we focus on the broadening of Landau levels with respect to disorder and magnetic field. In
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Chapter 4, we calculate the transversal magnetoresistance in presence of disorder for both pointlike
and Coulomb impurities. In particular, we analyze the magnetoresistance in different regimes of
temperature and chemical potential. Furthermore, we consider a model of Weyl nodes shifted in
energy with respect to each other as it is most relevant to experiment. In Chapter 5, we turn to
the system of a carbon nanotube with side-attached single-molecule magnets. In order to describe
this system, we first analyze Fano-resonances in a confined geometry and then apply these results to
a minimal model with two molecules attached to the nanotube to describe the magnetoresistance and
spin-valve effect. The model of Ch. 5 is enhanced in Chapter 6 by including Coulomb interaction. The
inclusion of Coulomb interaction provides then a giant magnetoresistance and explains the features of
the Coulomb map as obtained in experiment. Chapter 7 summarizes the main results of this thesis
and gives a prospect to further related research projects. Mathematical details of this thesis can be
found in the appendices. For convenience, a summary of used Notations and Conventions and a list of
Acronyms is provided on pages 161 and 163, respectively.
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1 Chapter 1

Dirac systems

This thesis is mainly devoted to magnetotransport studied in two different Dirac systems, Weyl
semimetals and a system of carbon nanotubes with side-attached single-molecule magnets. In this
chapter, we will present the historical journey of the research on Dirac systems which became a central
aspect of study in condensed matter physics in the last years.

There is a wide range of materials like graphene, topological insulators, d-wave superconductors, and
3D Weyl and Dirac semimetals sharing a fundamental property: the low energy spectrum is described
by the Dirac Hamiltonian1. This behavior defines the class of Dirac materials. The most prominent
Dirac material might be graphene [95], a two-dimensional material consisting of carbon atoms arranged
in a honeycomb lattice first synthesized in 2004. Graphene shows many remarkable properties. Among
those are the observation of a quantum Hall effect at nearly room-temperature [96] or the conductivity
close to quantum conductance e2/h at the Dirac point [97, 98]. In the last recent years however, the
center of attention shifted more to topological insulators and 3D Weyl semimetals. Weyl semimetals,
first discovered in the year 2015 [12], are the three-dimensional analogue of graphene and show also
highly peculiar properties such as chiral anomaly [99], strong transversal magnetoresistance [5], etc.
Material realizations are, for example, TaAs [12, 13], NbAs [14], TaP [15], and NbP [5]. Closely related
to Weyl semimetals are the 3D Dirac semimetals with the material realizations of Cd3As2 [10] and
Na3Bi [11]. There exist also examples where modes in one dimension disperse linearly in condensed
matter systems. Under certain conditions, single walled carbon nanotubes represent such systems.
Even before the synthesis of graphene, single walled carbon nanotubes being one rolled up sheet of
graphene, could be discovered in 1993 [100, 101]. Strictly speaking, carbon nanotubes are not a Dirac
material. In fact, the spectrum of low energy excitation depends on how the graphene sheet is rolled
up as discussed in detail later in this chapter. As in this thesis, carbon nanotubes are nowadays widely
used as building blocks of nanostructures.

In this chapter, we present a brief overview on Dirac systems, Sec. 1.1, to classify these materials
in general and motivate their realization in condensed matter systems. Then, we proceed with an
introduction into the physics of Weyl semimetals, Sec. 1.2 including a review of the most peculiar
properties as relevant to this thesis. Furthermore, we discuss the properties of 3D Dirac semimetals
to demarcate them from Weyl semimetals for certain signatures. In Section 1.3, we establish the
connection of Dirac materials with carbon nanotubes by calculating the band structure. Finally, the
considered model of the carbon nanotube system with single molecule magnets attached, Sec. 1.4 is

1In the case of topological insulators, only the surface states are described by Dirac Hamiltonian while the bulk has a
gapped spectrum
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introduced including a review of the properties in the single molecule magnets and a discussion of the
experimental results.

1.1 From Graphene to novel Dirac systems

In 1928, Paul Dirac published an equation to formulate a quantum theory which is compatible with
special relativity. The Dirac equation for a free particle is

i~
∂

∂t
ψ =

(
cα · p + βmc2

)
ψ, (1.1)

where α and β form an algebra of anti-commuting 4×4 matrices and ψ is a four component spinor.
There are several ways to express the parameters α and β, for example α = (τz ⊗ σx, τz ⊗ σy, τz ⊗ σz)
and β = −τx⊗ 1 as described in Ref. [1]. The equation was originally intended to describe an electron
in three spatial dimension, which is of course a massive particle with spin 1/2. In one or two spatial
dimensions, the right-hand-side of Eq. (1.1) reduces to a 2×2 Hamiltonian. As an example, in 2D the
Hamiltonian reads

H = c(σxpx + σypy) +mc2σz. (1.2)

In three spacial dimensions, the decoupling can only be achieved in the massless limit, reading

i~
∂

∂t
χ± = ±cσ · pχ±. (1.3)

The massless simplification of the Dirac equation was proposed by Hermann Weyl in 1929 [2] originally
to describe neutrinos. After a finite mass of neutrinos has been discovered, the condensed matter
realization was the first application of this Hamiltonian.

In the following, we will show that an emergence of a Dirac-like Hamiltonian can in general be
achieved in condensed matter systems and we will illustrate this statement by an particular example
in the proceeding section.

According to Bloch’s theorem, the eigenenergies εn(p) and the eigenstates |ψn,p〉 of a single band
Hamiltonian H0 in a crystal can be described by a discrete band index n and the continuous crystal
momentum k which can be constructed to the first Brillouin zone. We consider now two adjacent energy
bands εn,+(p) and εn,−(p) which approach each other for some momentum p and are well separated
from other bands. An effective Hamiltonian can be derived by considering two orthogonal Bloch states
|up〉 and |vp〉 consistent with the symmetries of the Hamiltonian H0. The effective Hamiltonian is
given by

Heff =
∑
p

ψ†pH(p)ψp (1.4)

where

H(p) =

(
〈up|H0|up〉 〈up|H0|vp〉
〈vp|H0|up〉 〈vp|H0|vp〉

)
= f(p)1 +

3∑
j=1

gj(p)σj , (1.5)
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1.1 From Graphene to novel Dirac systems

with the unit matrix 1 and the Pauli matrices σj . Correspondingly, the one-particle spectrum of the
effective Hamiltonian is

ε± = f(p)±

√√√√ 3∑
j=1

g2
j (p). (1.6)

The expression shows that the energy bands touch for gj(p0) = 0 for each j at some point p0, called
Dirac point. The Hamiltonian can be expanded near those Dirac points p0 as

H(p) = εp0
+ v0 · (p− p0)1 +

3∑
k=1

vk · (p− p0)σk. (1.7)

The effective Hamiltonian H(p) has the form of an anisotropic Weyl Hamiltonian for v0 = 0 and
mutually orthogonal vectors vk.

To show that the Dirac Hamiltonian can appear in real condensed matter systems, we discuss the
presumably most prominent example of a simple band structure resulting in the low energy Hamiltonian
of Eq. (1.7): the 2D Dirac semimetal graphene. Graphene consists of carbon atoms arranged in a two
dimensional honeycomb lattice as shown in Fig. 1.1, first synthesized in 2004 [95] and is a single layer
of graphite. The honeycomb lattice can be viewed as a triangular lattice in a basis that consists of two
atoms in each unit cell where the corresponding lattice vectors are

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3, −

√
3
)
. (1.8)

The parameter a is the distance between the carbon atoms. To calculate the band structure of this
lattice, we consider a tight-binding model as in Ref. [102], leading the the Hamiltonian

H = −t
∑
〈i,j〉,σ

(a†iσbj,σ + aiσb
†
j,σ). (1.9)

Here, the operator ai,σ (a†i,σ) annihilates (creates) an electron with spin σ at the position Ri on sub-

lattice A, with the corresponding definition for sublattice B with bi,σ (b†i,σ). The sum 〈i, j〉 means a
summation over pairs of nearest neighbors. Exploiting of the symmetries of the lattice the spectrum
can be found as

ε± = ±t
√

3 + 2 cos(
√

3kya) + 4 cos(
√

3kya/2) cos(3kxa/2), (1.10)

with the “+” sign corresponding to the upper and the “−” sign to the lower band. Close inspection
reveals that the spectrum is linear close the points K and K′ in the reciprocal lattice, cf. Fig. 1.1. The
points are given by

K =

(
2π

3a
,

2π

3
√

3a

)
, K′ =

(
2π

3a
,− 2π

3
√

3a

)
. (1.11)

Around those points the spectrum can be expanded as

ε± = ±vF |p|, (1.12)
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Figure 1.1: Honeycomb lattice and corresponding first Brillouin. The lattice vectors a1 and a2

are shown as well as the distances to the next nearest neighbors δ1, δ2, and δ3. Moreover, the
points K and K′ are depicted in the first Brillouin zone (green region on the right-hand-side). The
figure shows further the basis vectors of the reciprocal lattice b1 and b2.

where p is the momentum relative the Dirac point. The Fermi velocity is in this model given by
vF = 3ta/2. Thus, close to the points K and K′, the Hamiltonian can be written in the form of the
2D Dirac Hamiltonian, reading

H = vF (τpxσx + pyσy), (1.13)

with τ being the valley index. This example shows that relativistic physics can be studied in the energy
regime of a condensed matter system.

With similar considerations, one can derive the band structure of other Dirac materials, for example
topological insulators or d-wave superconductors. In the following chapter, we will show that tight-
binding models can also be applied to derive a Weyl Hamiltonian in 3D, Sec. 1.2. Furthermore, we
discuss the changes of the spectrum of graphene, when it is rolled up into a carbon nanotube, Sec. 1.3.

Let us further note, that recently materials with more exotic expansions of the Hamiltonian (1.7) have
been received more and more attention. For example, materials with finite velocity v0 in the Hamilto-
nian (1.7) have became a subject of consideration called type II Weyl semimetals. The additional term
in the anisotropic Weyl Hamiltonian leads to a ’tilt’ in the energy spectrum as theoretically addressed
in Ref. [104]. Material realizations are, for example, MoxW1xTe2 [105], MoP2, and WP2, receiving
much attention due to their high quadratic transversal magnetoresistance (up to 107%) [48] and due to
signatures of hydrodynamic transport in experiments[106]. However, the term Weyl semimetal as used
in the following thesis stands only for the untilted Weyl cone, the so-called type I Weyl semimetal.
Moreover, higher order expansions in the momentum in the effective Dirac Hamiltonian (1.7) are stud-
ied. They are called anisotropic Weyl semimetals or multiple Weyl semimetals and show also highly
peculiar properties as high viscosity [107]. Possible realizations for anisotropic Weyl semimetals are
proposed to emerge under pressure in α−(BEDT-TTF)2I3 [108]. The band structure calculations of
HgCr2Se4 show the signatures for multiple Weyl semimetals.

1.2 3D Weyl and Dirac semimetals

In the previous section, we outlined an example for the appearance of an Dirac-like dispersion in a
two-dimensional Dirac material. However, as has been known for a long time, band crossings are also
stable in three dimensions [109, 110]. Around those crossing points, the bands in first order disperse
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linearly. In order to get a three-dimensional Dirac-like crossing point, one needs to be able to tune
the chemical potential to or close to the crossing point. Furthermore, additional bands at this energy
need to be absent. If just two single bands without any additional degeneracy cross, the low energy
dispersion of the crossing point is mathematically described by the Weyl equation. Materials with no
degeneracy in the crossing points are thus referred to as Weyl semimetals with realizations like TaAs
[12, 13], NbAs [14], TaP [15], and NbP [5]. Individually non-degenerate bands require that either
time-reversal or inversion symmetry is broken. The current realizations of Weyl semimetals are all
determined by broken inversion symmetry. For both time-reversal and inversion symmetry, the bands
are two-fold degenerate and are described by the massless Dirac equation. The corresponding Dirac
semimetal is realized in the materials Cd3As2 [10] and Na3Bi [11]. Under the application of a finite
magnetic field, these materials resemble a Weyl semimetal with broken time-reversal symmetry.

The difference between 3D Weyl and Dirac semimetals as well as the difference between a Weyl
semimetal with broken time-reversal symmetry or broken inversion symmetry is manifested by the
fermion doubling theorem which states that two nodal points of opposite chirality are required in the
Brillouin zone (discussed in the following). The non-degeneracy of the bands in Weyl semimetals only
exists for broken time-reversal or broken inversion symmetry. If both symmetries are present as for
Dirac semimetals, the bands are degenerate. This is explained by the following argument: For a Weyl
point with chirality “+1” at point k, time-reversal symmetry requires another Weyl point with the
same chirality at point −k. Due to the fact that the net chirality is zero in the system, Weyl point
with opposite chirality are present at the points k′ and −k′. This system with a minimal model of
four Weyl nodes is the Weyl semimetal with broken inversion symmetry, [111]. However, inversion
symmetry requires that the Weyl points at k and −k have opposite chirality leading to a minimal
model of two Weyl nodes with opposite chirality for broken time-reversal symmetry [112]. If now both
time-reversal and inversion symmetry are present, it is dictated that k = k′. This means that the
minimal model for a Dirac semimetal has two nodal points where the doubly degenerate bands cross.
In the following, we will discuss the topological features of these two model and analyze the stability
of such materials related to their topological properties.

1.2.1 Weyl semimetals

Let us now review the properties of a Weyl semimetal. Similar to graphene, one can consider a tight-
binding model to obtain a 3D Weyl Hamiltonian. In particular, we will discuss a cubic lattice hosting
Weyl nodes under certain conditions as it is discussed in Ref. [1, 113, 114]. Considering a half-filled
two band model leads to the following tight-binding Hamiltonian

H(k) =
vF
a

[(
cos(kxa) +m

(
2− cos(kya)− cos(kza)

))
σx + sin(kya)σy + sin(kz)σz

]
. (1.14)

This model breaks time reversal symmetry. The Weyl nodes of this Hamiltonian are located at
k± = (±π/(2a), 0, 0). Expanding the Hamiltonian around those points leads to a simple low-energy
Hamiltonian consisting of two bands, yielding

H± = ±~vF (pxσx + pyσy + pzσz). (1.15)

Here, the Pauli matrices σi act in the space of the two energy bands. The two band touching points
are called Weyl nodes with the expansion p = (k − k±). As expected for Dirac materials, the energy
spectrum for both nodes is ε = ±vF |p|. As a general property of Weyl fermions, each node is associated
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[Reprinted with permission from Springer Nature: Nature Physics 11 (8), 645649, Extremely large magnetoresistance

and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Chandra Shekhar, Ajaya K. Nayak, Yan Sun,

Marcus Schmidt, Michael Nicklas et al., copyright 2015]

Figure 1.2: Band structure and first Brillouin zone of the Weyl semimetal NbP extracted from
Ref. [5]. Panel a) presents the band structure obtained in an ab initio calculation showing the
Weyl points close to the Σ and N points of the Brillouin zone. In the right of panel a), the band
structures of around the two pairs of Weyl points are depicted along the ky direction. In panel
b), the first Brillouin zone is shown with the twelve pairs of Weyl points W1 and W2 indicated.
Panel c) illustrates the Fermi surfaces where the blue parts correspond to the electron pockets of
the Weyl point and the red part to hole pockets.

with a chirality ±1 for the Hamiltonian H±. As discussed below, in band structures, the total chirality
of the system must vanish. Furthermore, it should be noted that the considered Hamiltonian is a
simplification of the general anisotropic Weyl Hamiltonian where the three velocities can be different
(but still mutually orthogonal). The anisotropic Weyl semimetal should be contrasted to the type II
Weyl semimetal where the cones are tilted as briefly discussed in Sec. 1.1.

As an example, the band structure of the Weyl semimetal NbP obtained by ab initio calculations
in Ref. [5] is presented in Fig. 1.2. The lattice structure of NbP is body-centered tetragonal with the
non-symmorphic space group I41md. The lack of inversion symmetry lifts the spin degeneracy in the
band structure. Thus, twelve non-degenerate pairs of Weyl points appear close to the Fermi energy in
the first Brillouin zone. The twelve pairs of Weyl points can be classified in two groups W1 and W2
where the four pairs of W1 point lie lower in energy than the eight pairs of W2 Weyl points.

An important property of Weyl fermions is that the nodal points are topological objects in mo-
mentum space. The Weyl points are monopoles of the Berry curvature or Berry flux B(p) with the
orientation depending on the chirality. Mathematically, the Berry curvature is defined via an effective
vector potential A(p), reading

A(p) = −i
∑
n,occ

〈un,p|∇p|un,p〉, (1.16)

B(p) = ∇p ×A(p), (1.17)

where the summation is carried out over occupied bands for the Bloch states |un,p〉. The integration
of the Berry curvature through a small surface enclosing a Weyl node results in ±2π with the sign
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[Reprinted figure with permission from X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Physical Review B,

83, 205101 (2011) Copyright 2015 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.83.205101]

Figure 1.3: Reprinted figure from [112] illustrating surface states of a Weyl semimetal forming a
Fermi arc. Fermi arcs connect two Weyl points (shown in blue and red) with the bulk dispersion
depicted in red and blue. Surface states (pink plane) cross the Fermi level (green, horizontal plane)
forming a Fermi arc.

determined by the chirality of the node. According to Gauss’ law, the Weyl point is thus a monopole
of the Berry flux. To obtain a net zero flux, the surface needs to enclose two Weyl nodes of opposite
chirality known as fermion doubling theorem [115] explaining why the Weyl points always appear in
pairs in the Brillouin zone.

Another interesting feature of Weyl semimetals is related to their surface states which form Fermi
arcs [112]. Fermi arcs are disconnected or disjoint segments of the 2D surface states terminating at
the nodal points. This is quite peculiar since Fermi surfaces are expected to form closed loops. The
appearance of Fermi arcs in Weyl semimetals can be understood as follows. We consider a thick film of
a Weyl semimetal in the minimal model of two Weyl cones with surfaces in the xy-plane. In the clean
case, we can use translation invariance to label the single electron states by the crystal momentum
in the plane. Away from the Weyl points, the surface states are well defined. However, at the nodal
points, bulk and surface states coincide leading to ill-defined surface state. Thus, the surface states
terminate and form an arc between the two Weyl points as illustrated in Fig. 1.3 when the pink plane
is cutting the green plane of the Fermi level. Considering both the top and the bottom surface arcs of
a Weyl semimetal in a thin slab, both arcs can be viewed to form a closed 2D Fermi surface. Increasing
the thickness of the film, the two halves of the Fermi surface get spatially separated.

In presence of finite magnetic field, Weyl semimetals also have highly peculiar properties. Let as
consider the Weyl Hamiltonian for chirality of +1 in the presence of a quantizing magnetic field in z
direction

H
(
p
)

=

∫
d3rΨ†(r)vσ

(
p− e

c
A

)
Ψ(r), (1.18)

with the vector potential in Landau gauge A(r) = (0, Hx, 0). The eigenstates of the system are split
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into zeroth and higher Landau levels, reading

ε0 =vpz, (1.19)

ε(±)
n =±

√
(vpz)2 + Ω2n, (1.20)

where Ω = v
√

2eH/c is the distance between the zeroth and first Landau level. The zeroth Landau
level is a chiral mode dispersing in the direction set by chirality.

Related to the chiral mode of the zeroth Landau level is the important property that Weyl semimetals
display chiral anomaly. Formally, the Hamiltonian (1.15) commutes with both the charge and the chiral
charge. Thus, due to the Heisenberg equation of motion, charge and chiral charge need to be constant.
Close inspection however reveals [99, 116] that an ultraviolet regularization is needed to obtain finite
results. As physically desirable, this regularization is chosen to maintain the conservation of charge
leading, however, to a non-conserved chiral charge in some configurations of the electromagnetic field.
Thus, the continuity equation for the chiral charge transforms to

∂N5

∂t
+∇ · j5 = ± e2

4π2c
E ·H, (1.21)

where N5 and j5 denote the chiral charge and the chiral current, respectively. The sign ± is determined
by the chirality of the node. The non-conservation of charged particles for the chiral mode is known
as chiral anomaly or Adler-Bell-Jackiw anomaly [99, 116]. Since the overall charge of a physical
system needs to be conserved, the chiral anomaly provides an additional explanation for Weyl points
appearing in pairs with opposite chirality. Physically, the chiral anomaly can be understood as follows:
We consider low temperatures such that only the zeroth Landau level is relevant. This case is usually
referred to as the ultra quantum limit. Furthermore, we apply an electric field E in the same direction
as the magnetic field H. Due to the semiclassical equations of motion, k̇ = −eE, the states will move
along the electric field meaning that electrons appear or disappear at the Weyl point depending on the
chirality.

Despite the total charge conservation, the chiral anomaly gives rise to several interesting effects.
As a direct consequence of the transformed continuity equation (1.21), the chiral anomaly leads to a
charge imbalance or valley polarization between the two nodal points, yielding

∂(n+ − n−)

∂t
=

e2

2π2c
E ·H. (1.22)

Another direct consequence of the chiral anomaly is the decreasing longitudinal magnetoresistance
[5, 40]. Furthermore, as reported in Ref. [117], the chiral anomaly provides a non-local dc current in
a finite slab geometry.

Since the Weyl points are topologically protected, Weyl semimetals are very stable. As (pseudo)-
magnetic monopoles, the 3D Weyl points cannot disappear by perturbations introducing a gap in the
spectrum. By studying the Hamiltonian (1.15), it can be directly noticed that there is no Pauli matrix
left to introduce a mass generating perturbation. Therefore, the nodal points can only be destroyed
(beyond superconductivity) by the annihilation of Dirac cones. Moreover, the topological features
require Weyl nodes separated in crystal momentum. Breaking translation symmetry by scattering
between the two nodes might break the separation in crystal momentum and thus the topological
properties. In fact, two Weyl nodes of opposite chirality moved together and merged in momentum
space annihilate each other resulting in a fully gapped insulator. However, perturbations like disorder
are normally not strong enough to merge or destroy two separated Weyl nodes.
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1.2.2 Dirac semimetals

Dirac semimetals are described by the 4×4 Dirac Hamiltonian

H = vF τzσ · k, (1.23)

which can be seen as two copies of the 2×2 Weyl Hamiltonian with opposite chiralities at the same
point in momentum space. As discussed for Weyl semimetals, two Weyl nodes annihilate each other
when they are moved together and merged in momentum space. Therefore, additional symmetries
are required to protect the Dirac point. In general, distinct two-dimensional representations for the
doubly degenerate bands lead to potential materials for Dirac semimetals [118]. As an example, the
material Cd3As2 [10] is protected by an additional fourfold rotational symmetry [118]. In the material
Na3Bi the two touching bands belong to different irreducible representations due to threefold rotational
symmetry [119].

While the single Weyl point cannot be gapped out perturbatively, Dirac semimetals are less robust
against perturbations since there are several 4×4 matrices which can produce a gap in the spectrum
Eq. (1.23).

Since the Weyl and Dirac semimetals share the 3D Dirac-like dispersion, they host naturally many
of the same characteristics. On surfaces, Dirac semimetals have Fermi arcs touching each other at
the Dirac points [118, 119] which is in contrast to the disconnected Fermi arcs in Weyl semimetals.
Specifically, the very peculiar features of Weyl semimetals in finite magnetic fields of course apply
all to Dirac semimetals due to the breaking of time-reversal symmetry. Therefore, the scaling of
the transversal magnetoresistance, as theoretically discussed in Ch. 4, hold also for Dirac semimetals
meaning that the term Weyl semimetal is used in a broader sense including also the degenerate case
of Dirac semimetals.

1.2.3 Experimentally observed transversal magnetoresistance

In this section, we report on the experimental findings of a huge positive linear transversal magne-
toresistance (TMR) in Dirac and Weyl semimetals as found in several experiments [3–9]. The term
transversal magnetoresistance in this context means that the magnetic field is applied perpendicular
to the applied electrical field. The linear and non-saturating TMR is one of the most spectacular
findings in Weyl and Dirac semimetals. With a magnitude of 104− 106%, the TMR in Weyl and Dirac
semimetals offers a new possibility to build magnetoresistance devices. A magnetoresistance of com-
parable magnitudes was previously only observed in complex structures.2 The experimental finding
of the TMR in the Weyl semimetal NbP [5] is shown in Fig. 1.4. In this figure, the non-saturating,
strong, and linear TMR is clearly seen. The figure highlights the appearance of Shubnikov-de Haas
oscillations in the limit of intermediate magnetic fields while above a magnetic field of around 30T, the
oscillations stop. Thus, this figure provides a nice read-out for the starting point of the ultra quantum
limit, which is present in strongest magnetic fields where only the zeroth Landau level contributes to
transport. Moreover, Fig. 1.4 illustrates the temperature dependence of the magnetoresistance showing
the expected decrease of the magnitude of the TMR with increasing temperature.

Another example for the strong linear magnetoresistance is given in Fig. 1.5 where the resistivity in
the Dirac semimetal Cd3As2 in transversal magnetic fields obtained in Ref. [3] is depicted. The figure

2An example for such a complex structure with an observed magnetoresistance of the order of 103% is also part of the
thesis (discussed in Sec. 1.4 and Chs. 5 and 6). The structure consists of a CNT with side-attached single-molecule
magnets.
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shows the linear evolving resistivity in dependence of magnetic field superimposed be Shubnikov-de
Haas oscillations. Moreover, it is shown that the linear resistivity persist up to room-temperature,
while the temperature dependence in zero field is clearly seen in this data.

We can conclude that both Weyl and Dirac semimetals show a strong linear TMR up to highest
magnetic fields superimposed by Shubnikov-de Haas oscillations in moderate fields.

Theoretically, a linear magnetoresistance was obtained in Ref. [82] for a 3D Weyl Hamiltonian in
the ultra quantum limit, where only the zeroth Landau level contributes to transport. The calculation
of this linear TMR is based on scattering off strongly screened Coulomb impurities. With the large
magnitude of the TMR in the model of Ref. [82], the model nicely explains the experimentally observed
TMR in Weyl semimetals in the ultra quantum limit. However, the linear TMR superimposed by
Shubnikov-de Haas oscillations in moderate magnetic fields is not covered in this model. Another
theoretical model of a linear TMR involves inhomogeneous semiconductors with macroscopic disorder
and relies therefore on a low mobility of the system, cf. Ref. [120]. This is in strong contrast to the
high mobility found experimentally for Weyl semimetals.

Motivated by the lack of a theoretical explanation for the strong, linear TMR away from the ultra
quantum limit, this thesis proposes a model for an increasing TMR superimposed by strong Shubnikov-
de Haas oscillations, Ch. 4. The model includes both pointlike impurities and strongly screened
Coulomb impurities emphasizing the importance of Coulomb impurities for the linear TMR in the
ultra quantum limit as obtained in Ref. [82].

1.3 Carbon nanotubes

Carbon nanotubes (CNT) are exceptional materials and of particular importance for the fabrication
of 1D quantum devices. In this section however, we focus on the structure of CNT and the related
band structures as discussed for example in Ref. [76]

First, we identify the different types of CNTs. Due to the infinite amount of ways to roll up the
graphene sheet, there are many different carbon nanotube structures. The chiral vector C defines
the lattice sites of the graphene sheet which superpose in the rolled up nanotube cf. Fig. 1.6. Thus,
the vector is constructed via the basis vectors of graphene a1, a2, reading C = na1 + ma2 where n
and m are integer numbers conventionally taken in the range −n/2 < m < n to avoid labeling one
structure in two different ways. Another way to identify the type of carbon nanotube is to consider
the chiral angle θ and the diameter D = a

√
m2 + n2 +mn/π. The structures are classified in three

different categories of carbon nanotubes: (i) the zig-zag structures for m = 0 or θ = 0, (ii) the armchair
structures for m = n or θ = π/6, and (iii) the chiral structures for all other combinations of n and
m or 0 < |θ| < π/6. The different types of carbon nanotubes are visualized in Fig. 1.6. The zig-zag
and the armchair structures are named due to the arrangement of atoms at the edge of the nanotube.
While zig-zag and armchair nanotubes are inversion symmetric, chiral CNTs lack inversion symmetry.

As build of a sheet of graphene, the band structure of CNT can be derived from the electronic band
structure of graphene. However, the effect of rolling up the graphene sheet on the band structure can
be drastic and might lead to the introduction of a band gap. This was first derived in Ref. [121, 122].
Mathematically, this is shown by transforming the Cartesian coordinates of momentum of graphene
into rotated coordinates of the CNT via(

px
py

)
=

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)(
p⊥
p‖

)
(1.24)

10



1.3 Carbon nanotubes

[Reprinted with permission from Springer Nature: Nature Physics 11 (8), 645649, Extremely large magnetoresistance

and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Chandra Shekhar, Ajaya K. Nayak, Yan Sun,

Marcus Schmidt, Michael Nicklas et al., copyright 2015]

Figure 1.4: Transversal magnetoresistance of the Weyl semimetal NbP as extracted from Ref. [5]
for different temperatures. The inset of the figure shows the magnetoresistance up to highest
magnetic fields at a temperature of 1.5K where the physics of the ultra quantum limit is clearly
seen for magnetic fields above 30T.
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[Reprinted with permission from Springer Nature: Nature Materials 14, 280284, Ultrahigh mobility and giant magne-

toresistance in the Dirac semimetal Cd3As2, Tian Liang, Quinn Gibson, Mazhar N. Ali, Minhao Liu, R. J. Cava, N. P.

Ong, copyright 2015]

Figure 1.5: Resistivity of the Dirac semimetal Cd3As2 as extracted from Ref. [3] in transversal
magnetic fields for different temperatures. The inset figure shows the magnetic field at which the
linear magnetoresistivity is observed in dependence of temperature.

Figure 1.6: Atomic structure of CNTs. In panel a) an example of an armchair nanotube is shown,
panel b) depicts a zig-zag nanotube and c) illustrates a chiral CNT. In all three cases, the chiral
vector C and the chiral angle θ are shown. The colored parts correspond the surface of the rolled
up nanotube. The basis vectors a1 and a2 defined in part b) apply to all panels. In panel a) and
b) the edge of the nanotube is marked explaining the names of the structures.
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with ϕ = π/6 − θ being the angle between C and x-direction. In these coordinates, the Hamiltonian
of graphene, Eq. (1.13) transforms into

HCNT = vF (τp⊥σx + p‖σy) (1.25)

for the CNT where τ is the valley index. The eigenstates of the Hamiltonian are ε(p⊥, p‖) = ±
√
p2
⊥ + p2

‖.

Clearly, the wave functions of the nanotube have to fulfill periodic boundary conditions, ΨK+p(r) =
ΨK+p(r + C), resulting in

ei(K+p)·C = 1. (1.26)

A gapless spectrum is present under the condition p⊥ = 0. The corresponding condition is K·C = 2πM
which is equivalent to n −m = 3M with M being an integer. Therefore, for arbitrary chiral indices,
one third of the nanotubes is metallic. In particular, all armchair CNT are metallic, while the chiral
and zig-zag CNT can show both types of the behavior.

The spectrum for the semiconducting CNTs is

ε±(p‖) = ±
√
v2
F p

2
‖ + E2

G/4, (1.27)

with a bandgap EG = 2vF |∆p⊥| = 4vF /(3D) dependent on the diameter. The spectra for both metallic
and semiconducting CNTs is illustrated in Fig. 1.6 showing also how the 1D mode disperses in the
Dirac cone.

The effective mass from the curvature of the spectrum for low energy (ε±(p‖) < EG) is

meff =

d2E

dp2
‖

−1

=
EG
2v2
F

. (1.28)

For a typical bandgap of 100meV and a Fermi velocity of 8 · 105 m/s, the effective mass is ∼ 0.014me

(me is electron mass) which is much smaller than in many conventional semiconductors. A small
effective mass leads to a large level spacing in quantum dots which is preferred in experiment.

Carbon nanotubes in rotated coordinates are described by the 2D massless Dirac Hamiltonian, cf.
Eq. (1.25). Due to the boundary conditions of the wave functions, the nanotubes are strictly speaking
not a Dirac material. However, the spectrum for the metallic tubes corresponds to the spectrum of the
1D massless Dirac equation while the semiconducting nanotube has the spectrum of the 1D massive
Dirac equation.

Due to their high mobility, large current carrying capacities, the dominance of interaction effects
over disorder effects, and the long mean-free path, CNTs are a perfect material to study the physics in
one spacial dimension, cf. several reviews [76, 123, 124]. Basic electronic devices in nanotechnology are
CNTs contacted to metallic leads. In addition to the natural 1D confinement of the electrons in the
nanotube, such quantum transport experiments add a further longitudinal confinement by introducing
tunnel barriers. The tunnel barriers can be introduced by the contact of the CNT with the leads.
Electrons trapped within the barriers build energy levels and form a so-called quantum dot (QD). The
properties of the 1D CNT are then reduced to a zero dimensional QD. In the following section, we will
consider such a QD system involving a CNT with side-attached single-molecule magnets where a huge
spin valve effect is experimentally observed.
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Figure 1.7: Spectrum of carbon nanotubes. Panel a) considers the metallic CNT while panel b)
is devoted to the semiconducting case. In both panels on the left, the modes of the wave functions
are shown schematically crossing the points K and K ′ in the metallic case. In the middle of both
panels the dispersion relation for a 1D mode (red line) on a Dirac cone is shown. On the right,
the resulting spectrum for the 1D mode is depicted for both panels.
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1.4 Carbon nanotubes with side-attached single-molecule magnets

Carbon nanotubes are a suitable material to build quantum dots (QDs). This allows to study the
electrical current applied to a single carbon nanotube. The QDs are built by contacting the CNT
to metallic source and drain electrodes leading to an additional longitudinal confinement of the 1D
electrons of the nanotube. The confinement manifest itself by the appearance of barriers introduced
by the contact between the metallic lead and the nanotube. The zero dimensional QD has energy
levels with a level spacing dependent on the length of the CNT. In such transport structures, a gate
is conveniently coupled capacitively to the CNT to allow the electrostatic potential to be tuned. An
essential part of this thesis is devoted to a theoretical model of such a QD device built with a single-
walled carbon nanotube where single-molecule magnets are side-attached. The CNT in that case
serves as a conducting channel. The model was designed to explain the spin-valve effect as observed
in experiment [58, 78]. In this section, we introduce the experimental setup, the structure of single-
molecule magnets (SMM), and the important features of this system as obtained in experiment.

1.4.1 Structure of single-molecule magnets

In general, single-molecule magnets (SMM) are composed by an inner magnetic core and a surround-
ing shell of organic ligands [50, 67]. The organic ligands can be designed to couple the SMMs into
junctions or on surfaces [68, 70–72]. Magnetic interactions of the core ions can be strengthened by
delocalized bonds which are often part of the structure in SMMs and enhance their conducting prop-
erties. The variety of shapes and sizes of SMMs allows to study and apply their features in various
setups. Furthermore, SMMs permit both a selective substitution of the ligands to change the coupling
to the environment [73] and an exchange of the magnetic ion to alter the magnetic properties [52].
These properties manifest their great potential for application in several magnetic devices.

The particular single-molecule magnet of consideration in the thesis is the TbPc2 double decker
schematically depicted in Fig. 1.8a). The magnetic features of the TbPc2 molecule appear with a
terbium (III) ion with 4f8 electrons in the inner shell in the center of the double decker structure. The
electrons have a total angular momentum 3 and a total spin 3 resulting in a total angular momentum
J = 6 due to strong spin-orbit coupling. The easy axis of the structure is determined by the organic
ligand. Due to the interaction [125] with the two phthalocyanine (Pc) ligands, a strong magnetic
anisotropy allows only two projections on the easy axis Jz = ±6 for the magnetic moment of terbium
at low temperatures, Fig. 1.8b).

Another property of terbium is that its nuclear spin is 3/2, leading to a hyperfine interaction with
electrons of the inner shell. The read-out of the nuclear spin of the SMM is effectively performed
by conductance measurements [125, 126] in structures with TbPc2 directly coupled to the leads. By
applying a gate voltage, the hyperfine interaction can be manipulated [127]. Furthermore, spin-phonon
coupling can change the protection of the terbium spin J [128]. Another magnetic property is that
these molecules show a quantum Einstein-de Haas effect [129]. The phthalocyanine ligands in TbPc2

have an electronic state with spin S = 1/2 [66]. Strong Coulomb interaction between particles with
opposite spins [62] allows only the occupation of one spin orientation [130]. The localized spin S is
coupled via exchange interaction [127] to the terbium spin J of 4f electrons.

It is relevant to the setup that the magnetic features of TbPc2 remain intact when the magnets are
in contact with the sp2 carbon materials as CNT [131] and graphene [132].
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[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 1.8: Schematic structure and energy dispersion of the single molecule magnet TbPc2.
Panel a) illustrates the schematic structure of the single molecule magnet TbPc2. The spins of
the ion (J = 6) and the “resident” electron on the ligands (S = 1/2) are shown by the pink and
black arrows. In panel b), the energy diagram of TbPc2 in external magnetic field applied in the
direction of the easy axis is shown. The ground state has two spin projections ±6.
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1.4 Carbon nanotubes with side-attached single-molecule magnets

Figure 1.9: Schematic experimental setup for a suspended carbon nanotube tunnel-coupled to
the leads with side-attached single molecule magnets in a minimal model of two molecules.

1.4.2 Experimental results

After the discussion of the features of SMMs, we outline how these properties manifest in transport
measurements through a CNT. In particular, we will report about a giant magnetoresistance effect
for linear transport through the CNT and discuss the differential conductance map in the regime of
Coulomb blockade based on the data presented in Ref. [94].

A schematic picture of the experimental setup is shown in Fig. 1.9 with a suspended CNT tunnel-
coupled to metallic leads. The carbon nanotube is diluted with a few SMMs. The average number
of SMMs was estimated as four [132] in the source drain segment of about 300 nm. However, the
theoretical model is designed for a minimal number of two molecules as explained in Ch. 5. The
electronic coupling of the terbium spin is mediated by the S = 1/2 state of the phthalocyanine ligands
via supramolecular π-π interaction with the unpaired π electrons of the nanotube.

A typical conductance measurement is performed by varying the magnetic field in time, as presented
in Fig. 1.10 where the gate voltage is fixed at Vg = −4.63 V and the source-drain voltage vanishes in
linear response, Vsd → 0. The magnetic field is swept with a rate of 70 mT·s−1. The blue and red
curve depict the conductance for increasing magnetic field B from negative to positive and vice versa,
respectively.

The asymmetry of the conductance jumps with respect to B → −B can be explained by the finite
sweep rate. As emphasized in Fig. 1.8b), the ground state of the Tb spin state at negative magnetic
fields is Jz = +6. The molecular spin resides in this on the branch of Jz = +6 also for positive
magnetic field until the spin flipping relaxation process takes place if the sweep of magnetic field is
sufficiently fast. The relaxation process mainly originates from the spin-phonon coupling in TbPc2

molecule [128]. A relatively low sweep rate however results in a quantum tunneling magnetization by
the Landau-Zener mechanism [77].

The maps of the differential conductance, obtained by changing the source-drain voltage Vsd at fixed
gate voltage Vg and then varying Vg, in units of conductance quantum G0 = e2/h as a function of source-
drain and gate voltage are presented for zero magnetic field and for the static magnetic field, B = 1T in
Fig. 1.11a) and b), respectively. The appearance of Coulomb diamonds in these maps are a signature
of Coulomb blockade caused by strong electron-electron interaction between electrons in CNT. The
charging energy in the CNT is estimated as EC ≈ 20 meV by extrapolating the Coulomb diamonds.
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[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 1.10: Linear-response conductance at fixed gate voltage Vg = −4.63 V in units of quantum
conductance G0 as a function of dynamically swept magnetic field (sweep rate: 0.07 T/s) with the
blue curve corresponding to forward sweep from −0.7 T to 0.7 T and the red curve to backward
sweep.

18

https://pubs.acs.org/doi/10.1021/acsnano.7b02014
https://pubs.acs.org/doi/10.1021/acsnano.7b02014


1.4 Carbon nanotubes with side-attached single-molecule magnets

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-8

-6

-4

-2

0

2

4

6

8

V
g

(V)

V
sd

(m
V

)

V
sd

(m
V

)
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-8

-6

-4

-2

0

2

4

6

8

> 0.035

V
g

(V)
V

sd
(m

V
)

0.00

0.01

0.02

0.03

[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 1.11: Experimentally obtained Coulomb blockade maps in the plane of source-drain volt-
age Vsd and gate voltage Vg a) for zero magnetic field and b) in a static magnetic field of B = 1T .
The differential conductance G = dI/dVsd is given in units of quantum conductance G0.
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Figure 1.12: Zoom into the experimentally obtained Coulomb blockade map around Vg = 1.25,
at zero magnetic field in panel a) and at B = 1 T in panel b). The differential conductance is given
in units of G0.
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Figure 1.13: Conductance as a function of the source-drain voltage Vsd at fixed gate voltage with
Vg = 1.27 V in panel a) and Vg = 0.335 V in panel b) in units of G0. In both panels, the blue curves
correspond to B = 0 and red curves to B = 1 T.

Importantly, the broadening of the single-particle levels in the CNT is relatively strong which indicates
the observation of a rather homogeneous conduction region. Typically, the conductance map of CNT
shows clearly resolved levels in the Coulomb diamonds, cf. Ref. [133].

In contrast to conventional Coulomb blockade maps in quantum dots [134], where the linear conduc-
tance is finite at resonant values of Vg for all values of Vsd, the conductance of the considered quantum
dot is suppressed at Vsd = 0 for all values of Vg at zero magnetic field, Fig. 1.11a). This transport
gap is estimated as δVsd ∼ 1 ÷ 2 meV and was first observed in Ref. [58]. For strong magnetic fields
however, the transport gap in the obtained Coulomb blockade map, cf. Fig. 1.11 b), is closed at certain
gate voltages. A zoom conductance map in the Coulomb blockade regime is shown at gate voltages
around Vg ∼ 1.25 V in Fig. 1.12a) and b) for zero magnetic field and B = 1 T, respectively, where this
feature can be seen pronounced.

To quantify the observed magnetoresistance effect, we present the conductance as a function of
the source-drain voltage at fixed gate voltage Vg = 1.27 V with and without static magnetic field in
Fig. 1.13 a). The GMR effect is of the order of 103%: the conductance drops from G(B = 1 T) = 0.14G0

to G(B = 0) = 0.006G0. Moreover, the low-conductance window is shifted from Vsd = 0 to the right
by 0.5÷ 1 meV.

Another important experimental feature is that away from the observed GMR for Vg = 1.25÷1.3 V,
there is a weaker spin-valve effect observed for other values of the gate voltage in Figs. 1.11a) and b).
Let us for example discuss the value Vg = 0.335 V. The corresponding conductance in dependence on
source-drain voltage is depicted in Fig. 1.13b) for zero magnetic field and B = 1T. Around zero Vsd,
the linear conductance is in the same order as the zero field conductance in Fig. 1.13a) for both zero
and finite magnetic field, but still with a lower zero field conductance than in finite field, cf. Fig. 1.13

20

https://pubs.acs.org/doi/10.1021/acsnano.7b02014
https://pubs.acs.org/doi/10.1021/acsnano.7b02014
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b). Let us further emphasize that the region of suppressed conductance in Fig. 1.13b) is narrower for
B = 1 T. Thus, we can conclude that the experimentally observed magnetoresistance is dependent on
the gate voltage and can be referred to as a gate-controlled supramolecular spin-valve effect.

This gate-controlled supramolecular spin-valve effect was already discussed in Ref. [58] where specif-
ically in the conductance map of Figs. 2a and 2b of Ref. [58], the gate dependence of the spin-valve
effect is clearly seen. At gate voltages Vg = −4.6 V and Vg = 2.6 V, the transport gap closes in strong
magnetic field, whereas for Vg = −4.4 V, a weak spin-valve effect was observed where the suppressed
conductance in the Coulomb blockade map apparently persists in strong B. In Ch. 6, an explanation
of the origin of GMR and the gate dependence of the molecular spin-valve effect, as established in
Ref. [94], will be presented.
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2 Chapter 2

Methods in transport theory

In this chapter, we discuss methods of transport theory which are relevant to this thesis. One important
concept is the consideration of disorder in a system. Disorder manifests itself in the scattering of
electrons off impurities which are considered to be randomly distributed and non-magnetic. An elegant
way to sum up the most important contributions is the self-consistent Born approximation (SCBA). We
will discuss this approach and its limitations in the following, Sec. 2.1. Disorder can be characterized by
a length scale that determines the average distance which an electron travel can without being scattered,
the so-called mean free path l. In transport theory, the response of a system to electrical fields, the
conductivity or conductance, is an often considered quantity. The difference between conductance
and conductivity is of particular importance. The intrinsic properties of a system are described by the
conductivity while the conductance is a sample specific quantity related to the size of the system. Thus,
an infinite or large system, compared to other length scales as for example the mean free path, can be
studied within Kubo formalism for the conductivity. Kubo formalism describes the linear-response of
the system to electrical fields and can be also applied to calculate the Hall conductivity as described
in Sec. 2.2. For materials with a homogeneous conductivity, the conductivity and the conductance
can be directly related to each other. However, in mesoscopic systems, the system size is typically
smaller than the length scale associated with the equilibration energy. Thus, the local description is
not applicable. For such finite systems, it is convenient to use the Landauer-Büttiker formalism to
calculate the conductance as explained in Sec. 2.3. The Landauer-Büttiker formalism is an application
of Kubo formalism and is tailored for mesoscopic systems.

We start now with a description of the theory of impurity scattering in electronic systems, Sec. 2.1.
Then, we discuss the Kubo formalism for the conductivity and the Kubo-Streda formula for the Hall
conductivity, Sec. 2.2. Finally, we consider the Landauer-Büttiker formalism for the conductance in
mesoscopic systems, Sec. 2.3.

2.1 Disorder

This section is devoted to a definition of disorder as it is considered in condensed matter physics.
Disorder manifests itself in the scattering of electrons off impurities. It is assumed that the different
non-magnetic and randomly distributed impurities share the same disorder potential resulting in the
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Figure 2.1: Perturbative expansion of the full Green’s function in a disorder potential up to
second order. Each dashed line corresponds to scattering of a single impurity. The last diagram
corresponds to double scattering on the same impurity.

following disorder potential for one particular configuration:

Vdis(r) =

Nimp∑
i=1

Vimp

(
r−Ri

)
. (2.1)

Here, the parameter Nimp is the number of impurities and the vectors Ri are the positions of the
impurities. We treat the Hamiltonian of disorder, defined via

Hdis =

∫
drΨ†(r)Vdis(r)Ψ(r), (2.2)

as a perturbation to the clean Hamiltonian H0. This diagrammatic approach is described for example
in Ref. [135]. In order to perform the perturbation theory, we use the Green’s function of the system.
The full Green’s function is defined as the resolvent operator(

ε− Ĥ0 − Ĥdis

)
Ĝ = 1̂. (2.3)

Within this perturbative approach, the full Green’s function is determined by the expansion of the
single particle Green’s function in powers of the impurity potential. The full Green’s function sums up
all possibilities for an electron to propagate through the system upon undergoing various scattering
processes. The perturbative approach leads to a full Green’s function which depends on the positions
of impurities. However, for a macroscopic sample, the specific microscopic distribution of impurities
will be usually irrelevant since the system shows self-averaging. This is valid if the dephasing length
is sufficiently short. The behavior of the system is characterized by an average over an ensemble
of macroscopically identical subsystems. The average over all possible impurity realizations of Nimp

randomly distributed impurities of a arbitrary function F is performed as

〈
F
〉

imp
=

1

V

∫ Nimp∏
i

dRiF (R1,R2, ...,RN ). (2.4)

Averaging over impurity configurations restores translation invariance and the Green’s function does
not depend on the position of the impurities.

We first consider the lowest order terms in momentum representation and transform the resulting
terms to position representation in the following. The lowest order expansions of the Green’s function
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are depicted in Fig. 2.1 and calculated in the following. The first-order term of the disorder-averaged
Green’s function (the second diagram in Fig. 2.1) in momentum representation reads〈

G1(p, ε)
〉

imp
= NimpVimp(p = 0)

[
G0(p, ε)

]2
, (2.5)

where Nimp is the concentration of impurities. The first-order term is constant and hence only shifts
the chemical potential. Correspondingly, all diagrams with only single scattering processes at each
impurity are proportional to (Vimp(p = 0))n, where n is the number of impurity lines corresponding
to single scattering off one impurity. Thus, all diagrams with only single scattering processes shift
the chemical potential. We can include this shift if we absorb NimpVimp and the corresponding higher
order single impurity lines in the renormalized chemical potential.

The first nontrivial diagram corresponds to double scattering off the same impurity which is the
fourth diagram in Fig. 2.1. The contribution to the Green’s function in momentum representation due
to scattering off the same impurity is〈

G2(p, ε)
〉i=j

imp
= Nimp

[
G0(p, ε)

]2 1

V

∑
p′

∣∣∣Vimp(p− p′)
∣∣∣2G0(p′, ε), (2.6)

the so-called Born diagram.
For the analysis in position representation, we neglect multiple scattering off one impurity as will

be justified later. Hence, for
〈
V (r)

〉
= 0, the impurity average corresponds to pairwise coupling of

the impurity potential. By pairwise coupling of the impurity potential, we mean that the impurity
correlator is considered to be Gaussian. All higher order diagrams decompose in fully contracted terms.
This is analogous to the Wick theorem for expectation values of operator products.

We introduce the impurity correlator in position representation, reading〈
V (r)V (r′)

〉
=
Nimp

V 2

∑
p

eip(r−r′)|Vimp(p)|2 = Nimp

∫
dxVi(r− x)Vi(r

′ − x), (2.7)

The correlator is proportional to the concentration of impurities Nimp. Hereinafter, we will denote the
impurity correlator by

W (r, r′) =
〈
V (r)V (r′)

〉
= W (r− r′). (2.8)

Since averaging over the impurity configurations restores translation invariance, the impurity correlator
can be written in terms of the difference of r and r′. Thus, we can write the Fourier transform as

W (q) =

∫
d3q

(2π)3
e−iq·(r−r

′)W (r− r′). (2.9)

With the defined correlators, we can take higher order diagrams into account.
An elegant way to do so is the self-consistent Born approximation (SCBA). In order to perform

the SCBA we introduce a self-energy Σ. The self-energy contains all one-particle-irreducible diagrams
without incoming and outgoing fermion lines. The full Green’s function can be then expressed via the
Dyson equation which reads

Ĝ(ε,p) = Ĝ0(ε,p) + Ĝ0(ε,p)Σ̂(ε,p)Ĝ(ε,p). (2.10)

In principle, the Dyson equation is so far exact and provides a summation of all possible diagrams.
However, in the self-consistent Born approximation, some diagrams are neglected. In the following, we
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Figure 2.2: Three types of Born diagrams. First non-vanishing order of Born approximation, the
so-called simple Born diagram is depicted in panel a), panel b) illustrates the diagram of multiple
scattering off one impurity, and c) shows the first order crossing diagram.

Figure 2.3: Expansion of the full Born diagram for the self-energy in self-consistent Born approx-
imation in lowest orders.

will justify this approximation. The diagrams are classified into three different types which are denoted
by: The Born diagrams, Fig. 2.2a), diagrams with multiple scattering off one impurity, Fig. 2.2b), and
diagrams with crossed impurity lines, Fig. 2.2c). Diagrams of higher order are taken into account due
to the self-consistency of the Dyson equation. In the SCBA approach, diagrams with crossed impurity
lines are neglected due to the smallness in the parameter 1/(pF l) (with l being the mean-free path)
originating from the following argument: Due to crossed impurity lines, the momentum integrations
cannot be performed independently. The relevant contribution stems from the propagations within a
thin shell 1/l around the Fermi surface pF . Thus, the diagram Fig. 2.2c) is by a factor 1/(pF l) smaller
then the Born type, Fig. 2.2. For Dirac-like systems, the diagram Fig. 2.2c) is by a factor 1/(pT l)
smaller then the Born type diagram Fig. 2.2 due to finite temperature. Therefore, for µ → 0, where
pF l . 1, we expect qualitative agreement of the Born approximation. Furthermore, the diagrams of
multiple scattering off one impurity are neglected for |Vimp| � εF p

−3
F , which is the so-called Born

criterion.

Within these assumptions, only the Born diagram, Fig. 2.2a), remains in the self-energy. Due to the
Dyson equation (2.10), higher-order diagrams are generated by reinserting the Born diagram into itself
as illustrated in Fig. 2.3. Therefore, all relevant diagrams are taken into account by substituting the
bare Green’s function in the simple Born diagram of Fig. 2.2 with the full Green’s function resulting
in the self-consistent description of the self-energy.

The mathematical description for the Born diagram, Fig. 2.2, is given by Eq. (2.6). The self-energy
in SCBA is obtained by the replacement of the bare Green’s function by the full Green’s function in
the Born diagram (2.6), reading

Σ(ε,p) = Nimp

∑
p′

1

V

∣∣∣Vimp(p− p′)
∣∣∣2G(p′, ε). (2.11)
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In position representation, the retarded self-energy according to [135] is formally expressed as

ΣR(r, r′, ε) =
〈
V (r)V (r′)

〉
GR(r, r′, ε). (2.12)

Most generally with the definition of the impurity correlator, Eq. (2.8), the self-energy is expressed in
operator language

Σ̂ =

∫
d3q

(2π)3
W (q)e+iq·r̂Ĝe−iq·r̂. (2.13)

With this definition, the density of states of a disordered system can be calculated as performed in
Ch. 3 for Weyl semimetals.

2.2 Kubo-Formalism for the conductivity

In this section, we discuss the Kubo formalism. Kubo formalism relates the linear response function
of a physical observable to a certain theoretical correlation function solely determining the equilib-
rium properties of the system. Thus, the approach is sufficient for the external perturbations of low
magnitude. In particular, we study the conductivity of a system meaning the linear response of an
electric current density to an applied electrical field and describing the intrinsic properties of a system.
In the following section, the term current is used for the current density j for brevity. Details of the
derivation can be found in Refs. [135, 136].

To determine the linear current response to an applied electric field E, we represent the applied
electric field by a time dependent vector potential A which yields

E = −∂A

∂t
. (2.14)

The linear response of the current is expressed in terms of the current-current response function
QRαβ(r, t, r′, t′) which yields

jα(r, t) = −
∫
d3r′

∫
dt′QRαβ(r, t, r′, t′)Aβ(r′, t′). (2.15)

The current-current response function is given by

QRαβ(r, t, r′, t′) =
i

c
Θ(t− t′)

〈[
jα(r, t), jβ(r′, t)

]〉
0

− e2ρ0(r, r′, t)

m
δαβδ(r− r′)δ(t− t′), (2.16)

where terms of quadratic order in the vector potential A are neglected within linear response.
The connection between the current-current response function and the conductivity is determined

with the help of the Fourier transform of Eqs. (2.14) and (2.15) and reads

σαβ(q, ω) =
Qαβ(q, ω)

iω
. (2.17)

In the following, we set q = 0.
Therefore, the current-current response function in energy and momentum space is given by

QRαβ = T
∑
m

Tr
[
jαG

(
p, εm + ω

)
jβG

(
p, εm

)]
, (2.18)
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2 Methods in transport theory

where εm = πT (2m+ 1) are the Matsubara energies. Hereinafter, with the trace Tr[...], we denote

Tr[...] =

∫
d3p

(2π)3
Tr[...] (2.19)

in this section.
After analytical continuation of Eq. (2.18) as explained in Ref. [137] and the use of Eq. (2.17), the

Kubo formula for the conductivity is given by

σαβ(ω, T ) = −
∫

dε

2π

fT (ε)

ω
Tr

[(
ĜR(ε,p)− ĜA(ε,p)

)
ĵαĜ

A(ε− ω,p)ĵβ

+ĜR(ε+ ω,p)ĵα

(
ĜR(ε,p)− ĜA(ε,p)

)
ĵβ

]
, (2.20)

where fT (ε) is the Fermi distribution function. Later in this thesis, we will apply this formula for
the calculation of the conductivity and the Hall conductivity. The effect of disorder is incorporated
via the disorder dressed Green’s function. In Dirac materials, in particular in graphene and Weyl
semimetals, vertex corrections in the conductivity become important already for the simplest case of
pointlike impurities [81]. The vertex corrections for Weyl semimetals are discussed in App. C.

However, for the calculation of the Hall conductivity, it is convenient to use the Kubo-Streda for-
mula [138]. In the following, we will derive the Kubo-Streda formula for the Hall conductivity with
the help of the Kubo formula (2.20).

In the limit ω → 0, Eq. (2.20) can be written as

σαβ =
i~e2

2π

∫
dεfT (ε)Tr

[
vα
dGR

dε
vβImG− vαImGvβ

dGA

dε

]
, (2.21)

where we used ĵα = ev̂α. This equation can be split into two terms corresponding to the normal and
the anomalous contribution to the Hall conductivity. The two terms are

σαβ =
i~e2

2π

∫
dεfT (ε)

d

dε
Tr
[
vαG

RvβImG− vαImGvβG
A
]

︸ ︷︷ ︸
σI
αβ

(2.22)

− i~e2

2π

∫
dεfT (ε)Tr

[
vαG

Rvβ
dImG

dε
− vα

dImG

dε
vβG

A

]
︸ ︷︷ ︸

σII
αβ

, (2.23)

where σI
αβ is the normal contribution to the Hall conductivity and σII

αβ the anomalous contribution.
The anomalous contribution can be written in a more compact form which will be derived in the
following. Using the commutator

vα =
1

i~
[
rα,H

]
, (2.24)

where rα is the position operator. By using cyclic permutation under the trace, the anomalous contri-
bution to the Hall conductivity is expressed as

σIIαβ =
e2

2π

∫
dεfT (ε)Tr

[
dImG

dε
(rαvβ − rβvα)

]
. (2.25)
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2.3 Landauer-Büttiker formalism for the conductance

It is obvious here that the diagonal components vanish. Furthermore, we can rewrite the derivative
into a derivative with respect to magnetic field H, yielding

dImG

dε
= −dH

dH
dImG

dH
. (2.26)

Among others, the Dirac-like Hamiltonian H in finite magnetic field fulfills the following relation for
the derivative with respect to magnetic field:

dH
dH

= − e

2c
vα

d

dH

∑
βγ

εαβγHβrγ

 = − e

2c
(rαvβ − rβvα), (2.27)

for magnetic field applied perpendicular to α and β. Thus, the anomalous contribution reads

σIIαβ =
ec

π

∫
dεfT (ε)Tr

[
dImG

dH

]
= ec

dN(µ,H)

dH
. (2.28)

Studying disordered systems, it is particularly convenient to separate the Hall conductivity in its
normal and anomalous contributions.

2.3 Landauer-Büttiker formalism for the conductance

To derive the Landauer formula, we first consider the scattering of electrons in a quantum dot, as
visualized in Fig. 2.4. Thus, we consider a Hamiltonian Hα, where α corresponds to L,R meaning the
left and right lead, respectively. The associated eigenstates with energy E are denoted by φ±α,n,E(x, r⊥).
We introduced the vector r⊥ perpendicular to the left and right lead which are parallel to the x-axis.
Furthermore, the quantum number ± represents left and right moving particles. The Hamiltonian
transverse to the direction of scattering has the eigenenergies εn with the corresponding eigenstates
denoted by n. For brevity, we introduce the quantum number λ = (α, n,E). As illustrated in Fig. 2.4,
we can write the eigenstates of the full system including the scattering on the mesoscopic sample with
the amplitudes of the eigenfunctions of the leads, reading

ψE(x, r⊥) =


∑

n b
+φ+

LnE(x, r⊥) +
∑

n b
−φ−LnE(x, r⊥) (x, r⊥) ∈ L,

ψM,E(x, r⊥) (x, r⊥) ∈M,∑
n d

+φ+
RnE(x, r⊥) +

∑
n d
−φ−RnE(x, r⊥) (x, r⊥) ∈ R.

(2.29)

Here, ψM,E(x, r⊥) is an unknown function in the mesoscopic sample. We can connect the incoming
and outgoing waves, cin and cout, with the scattering matrix S(E), yielding

cout =

(
b−

d+

)
=

(
r(E) t′(E)
t(E) r′(E)

)(
b+

d−

)
= Scin. (2.30)

In the transmission matrix t, the matrix elements tnn′ express the transmission amplitude for an
incoming wave from the left in state n′ being transmitted into an outgoing wave in the state n on the
right side. The transmission in the opposite direction is represented by the transmission element t′nn′ .
The same holds for the reflection matrix r.
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2 Methods in transport theory

Figure 2.4: Geometry of a mesoscopic system considered for the derivation of Landauer formula.
The system consists of a left and a right lead where the amplitudes of the wave functions are given
by b+,b− for the left and d+,d− for the right lead. These four states scatter at the sample.

We use these expressions now to determine the scattering states ψλ = ψαnE . These states refer to
the state n and the lead α where the incoming wave arrives. For the left lead α = L, the scattering
states read

ψLnE(x, r⊥) =


φ+
LnE(x, r⊥) +

∑
n′ rn′nφ

−
LnE(x, r⊥) (x, r⊥) ∈ L,

ψM,E(x, r⊥) (x, r⊥) ∈M,∑
n′ tn′nφ

+
RnE(x, r⊥) (x, r⊥) ∈ R,

(2.31)

and for the right lead α = R, the states are

ψRnE(x, r⊥) =


∑

n′ t
′
n′nφ

+
LnE(x, r⊥) (x, r⊥) ∈ L,

ψM,E(x, r⊥) (x, r⊥) ∈M,

φ+
RnE(x, r⊥) +

∑
n′ r
′
n′nφ

−
RnE(x, r⊥) (x, r⊥) ∈ R.

(2.32)

In general, the conductance of the geometry is determined by ψM,E(x, r⊥). However, we will see in
the following that it is possible to calculate the some general results with the S-matrix without knowl-
edge about the exact function ψM,E(x, r⊥). The corresponding approach is the Landauer-Büttiker
formalism. There are several ways to derive the so-called Landauer formula, we choose however the
derivation in linear response which closely resemblances the Kubo formalism.

For the derivation of Landauer formula, we start with the relation between the conductivity σ and
the conductance G, reading

G =
W

L
σ, (2.33)

where L is the length of the sample and W the area of the cross-section. However, for mesoscopic
systems, this local description is not applicable. To fully consider the geometry of the sample, the
conductance is expressed in terms of the current-current correlation function again in linear response,
yielding

G(ω) = −2e2

ω
Im

∫ ∞
−∞

dtei(ω+iη)t(−i)θ(t)
〈[
I(x, t), I(x, 0)

]〉
, (2.34)
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2.3 Landauer-Büttiker formalism for the conductance

where I(x) is the current passing through the system and θ(x) denotes the Heaviside theta function.
This current is equal to the current density integrated through the cross-section. The current in second
quantization can be written as

I(x) =
∑
λ,λ′

jλ,λ′(x)c†λcλ′ , (2.35)

jλ,λ′(x) =
1

2mi

∫
Ω
dr⊥

{
ψ∗λ(x, r⊥)[∂xψλ′(x, r⊥)]− [∂xψ

∗
λ(x, r⊥)]ψλ′(x, r⊥)

}
, (2.36)

where the functions ψλ(x, r⊥) are the scattering states, Eq. (2.31) and (2.32).
Evaluating the current-current correlator leads to

G(ω) = −2e2

ω
Im

∫ ∞
0

dtei(ω+iη)t(−i)
∑
λ,λ′

|jλ,λ′(x′)|2ei(Eλ−Eλ′ )t
(
fT (Eλ)− fT (Eλ′)

)
, (2.37)

Here, we used 〈c†λcλ′〉 = δλλ′fT (Eλ) with the Fermi distribution function fT (E). Further simplifying
the formula provides

G(ω) =
2e2

ω
Im
∑
λ,λ′

|jλ,λ′(x′)|2

(ω + iη + Eλ − Eλ′)
(
fT (Eλ)− fT (Eλ′)

)
. (2.38)

The consideration of the dc-limit ω → 0 leads to

G(0) = 2e2π
∑
λ,λ′

|jλ,λ′(x′)|2
(
− ∂fT
∂Eλ

)
δ(Eλ − Eλ′). (2.39)

We use now the eigenstates λ = (α, n,E) and rewrite the sum over the eigenstates into an integral
over energy ∑

λ

→
∑
αn

m

2π

∫
dE. (2.40)

Thus, the conductance becomes

G(0) = 2e2π

(
m

2π

)2 ∫ ∞
0

dE
∑

nn′,αα′

|jαnE,α′n′E |2
(
− ∂fT
∂Eλ

)
. (2.41)

Now, we apply the scattering states, Eqs. (2.31) and (2.32), to express the conductance in terms of
the S-matrix. This leads to

G(0) = e2m
2

2π

∫ ∞
0

dE
∑
nn′

[
|jLnE,Ln′E |2 + |jLnE,Rn′E |2 + |jRnE,Ln′E |2 + |jRnE,Rn′E |2

](
− ∂fT
∂Eλ

)

= e2 1

2π

∫ ∞
0

dE

(
− ∂fT
∂Eλ

)
Tr
[
(t†t)2 + (t′†t′)2 + t†r′r′†t + t′†rr†t′

]
. (2.42)

This results finally in the Landauer formula for the conductance, yielding

G(0) =
2e2

h

∫ ∞
0

dE

(
−∂fT
∂E

)
Tr
[
t†(E)t(E)

]
. (2.43)

The Landauer formula is applied to calculate the conductance of the carbon nanotube with side-
attached single-molecule magnets, cf. Chs. 5 and 6. The mechanism of scattering matrices, briefly
discussed in this section, is analyzed in detail for the case relevant to the CNT system in Ch. 5.
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3 Chapter 3

Disorder in Weyl semimetals

It was discussed in the last chapter that disorder, as present in condensed matter systems, affects the
transport properties. In this chapter, we discuss the effect of disorder on Weyl semimetals within self-
consistent Born approximation (SCBA) in three different models of disorder: (i) pointlike impurities,
(ii) within a smooth disorder potential, and (iii) for long-range Coulomb impurities which are strongly
screened.

The transport properties of Weyl semimetals are highly peculiar especially close to the charge neutral-
ity point. One central aspect of this peculiarity is the appearance of a disordered critical point within
the perturbative analysis. This was first pointed out within an mean field approach in Ref. [16, 17],
later the fact was confirmed by a renormalization group (RG) analysis in 2− ε dimensions [18, 19] and
in a numerical analysis [22]. For sufficiently weak disorder below the disorder critical point, the den-
sity of states vanishes quadratically in energy around the Weyl point within the perturbation theory.
This results in vanishing ac conductivity for zero temperature and external frequency going to zero,
while the dc conductivity in the zero temperature limit remains finite, cf. Ref. [30]. However, non-
perturbative effects are in discussion to an exponentially small density of states at the Weyl point. This
is numerically discussed in Ref. [23–26]. Analytical calculations of rare region effects were performed
in Refs. [27] and [28] for resonant scattering and in a T-matrix approach, respectively. However, a
recent work, Ref. [29] suggests that rare events do not produce a finite density of states in the weak
disorder limit. Instantons in the replica approach, which are known to produce Lifshitz tails Ref. [139],
are calculated in higher dimensions (d = 4) in Ref. [140]. In the strong disorder regime, the density of
states is finite at the Weyl point already without invoking exponentially small contributions.

While the behavior of the density of states in the weak and strong disorder phase seem to be well
known for pointlike impurities, the results of the density of states in the critical phase differ in the
mean field approach and in the RG analysis performed in 2− ε dimensions. The mean field approach
results in a density of states as ε1/2 (cf. [16, 17] and below in Sec. 3.1). However, in the RG approach
the density of states depends linearly on energy, see Refs. [18, 19].

Moreover, the results in SCBA for strong disorder are also very peculiar. Under an incorporation of
the full SCBA, one finds that the system tends to suppress backward scattering. This manifests in the
calculations of vertex corrections for the strong disorder regime. They lead to a diffusion dominated
conductivity saturating in dependence of disorder strength. To determine this behavior, it is required
to consider higher order corrections in energy (ε/Λ with Λ being the ultraviolet cutoff) to the density
of states and the real part self-energy in strong disorder compared to Refs. [16, 17]. To justify the
validity of SCBA for strong disorder, we consider a model of smooth disorder. In smooth disorder, we
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3 Disorder in Weyl semimetals

can go to the strong disorder regime within a relatively low impurities potential thus not destroying
the complete model. This model also shows the appearance of a disorder critical point and results in
the same self-energy of strong disorder than the pointlike model. The consideration of transport as
presented in the following is based on our work prepared for submission, Ref. [141].

Another important aspect of disorder in Weyl semimetals can be found in quantizing magnetic fields,
meaning in the presence of Landau levels (LL). Since already in the clean limit, the density of states
is finite in presence of magnetic field, the features of transport close to the charge neutrality point
are expected to be less spectacular. However, it turns out that the vanishing density of states at
the Weyl point in absence of magnetic field translates into some unusual behavior of the conductivity
and the magnetoresistance, as discussed in Ch. 4. Furthermore, we find by first considering pointlike
impurities that the appearance of the disorder critical point maintains for finite magnetic field. In the
following analysis of the density of states in presence of magnetic field and disorder, the broadening
of Landau levels with respect to disorder is also unusual. With increasing magnetic field, the Landau
level broadening occurs faster than the increase of the Landau level distance resulting in the tendency
of overlapping Landau levels. Moreover, the background density of states is larger than the density of
states of the particular Landau level even for well separated Landau level, as we point out below. Again,
these aspects will be crucial for the later calculated magnetoresistance, cf. Ch. 4. Furthermore, we
consider Coulomb impurities in presence of finite magnetic field where we find that Coulomb impurities
are strongly screened for a large fine structure constant. In 3D systems, Coulomb impurities are relevant
since scattering off donors and acceptors are important processes. Due to the linear magnetoresistance
in presence of strongly screened Coulomb impurities in the ultra quantum limit [82], the consideration
of Coulomb impurities seems to be relevant also in this context. The analysis of disorder in presence
of magnetic field, as presented here, is based on Ref. [83] where we established the effects of disorder
on LLs.

This chapter is structured as follows: In Sec. 3.1, we introduce self-consistent Born approximation
for Weyl semimetals. The chapter continues with an analysis of the full SCBA in the absence of
magnetic field, Sec. 3.2. In the resulting limits of weak, critical, and strong disorder, we analyze the
conductivity. Furthermore, we consider a model of smooth disorder to justify the SCBA in strongest
disorder. Section 3.4 is devoted to an analysis of disorder in presence of finite magnetic field where we
study the effect of Landau level broadening on the density of states. In the presence of finite magnetic
field, we also consider charged impurities, Sec. 3.5. Finally, we conclude the chapter with a summary
and discussion of the results, Sec. 3.6

3.1 Self-consistent Born approximation in Weyl semimetals

In this section, we discuss disorder in Weyl semimetals within the SCBA approach in general. In the
following sections, we will then solve the resulting equations both the absence and the presence of a
finite magnetic field. As discussed in Sec. 2.1, impurity scattering generates a self-energy Σ̂(p, ε) in
the (impurity-averaged) Green’s function. For finite magnetic field, the Green’s function reads

Ĝ(p, ε) =

〈
1

ε−H

〉
=

1

ε− vσ ·
(
p− e

cA
)
− Σ̂(p, ε)

, (3.1)

where the magnetic field is aligned in z-direction. Here, the matrix Green’s function operates in the
pseudospin space of the Pauli matrices σ. Introducing the disorder potential is now performed in the
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presence of magnetic field. The simplifications for the resulting Green’s functions in the zero-field limit
are discussed in the end of this section.

We consider a disorder potential which is diagonal in both spin and pseudospin indices. Further-
more, we neglect scattering between different Weyl nodes. The approximation and its limitations are
discussed in the end of this chapter, Sec. 3.6. Clearly, the absence of internode scattering ensures
that the structure in node space is trivial for all quantities. We do not show it explicitly below; the
calculated quantities (density of states and conductivity) are those per Weyl node.

Under these assumptions, we will first discuss a model of pointlike impurities and later analyze
generalization to the case of Coulomb impurities. The impurity potential for pointlike impurities is
written as

V̂dis(r) = u0

∑
i

δ(r− ri)1, (3.2)

where 1 is the unit matrix in the pseudospin space and u0 is strength of the disorder potential. In
view of the matrix structure of the impurity potential V̂dis(r), the impurity correlator Ŵ becomes a
rank-four tensor. The self-energy yields

Σαβ(r, r′) =

∫
d3q

(2π)3
Wαγβδ(q)eiq·(r−r

′)Gγδ(r, r
′). (3.3)

A diagonal impurity potential results in a diagonal impurity correlator as well, which reads

Wαγβδ(q) = γδαγδβδ, (3.4)

where γ = Nimpu
2
0. The self-energy is diagonal in the energy-band space. However, the presence of

magnetic field effectuates a self-energy being no longer proportional to the unit matrix:

Σ̂ = diag(Σ1,Σ2). (3.5)

This asymmetry has its origin in the asymmetry of states in the zeroth LL. In the clean case, the states
of the zeroth LL are chiral meaning they are only present in one energy band. Later, we will show
that a strong impurity scattering can eliminate this asymmetry.

Conveniently, we switch to LL representation so that Ĝ = Ĝ(ε, pz, n) and Σ̂ = Σ̂(ε, pz, n) with the LL
index n. The diagonal components of the matrix Green’s function (3.1) that determine the self-energy
are expressed as:

G11 =
ε− Σ2 + vpz

(ε− Σ1 − vpz)(ε− Σ2 + vpz)− Ω2n
, (3.6)

G22 =
ε− Σ1 − vpz

(ε− Σ1 − vpz)(ε− Σ2 + vpz)− Ω2(n+ 1)
.

(3.7)

In general, the self-energy depends on energy and on the LL index, Σ̂ = Σ̂(ε, pz, n). However, the
dependencies on n and pz drop out in the case of white-noise disorder.

In the absence of magnetic field, the asymmetry in energy band space is of course lifted resulting in
equal diagonal components of the Green’s function and thus of the self-energy. The Green’s function
in momentum representation reads

G =
ε− Σ

(ε− Σ)2 − v2|p|2
. (3.8)

These Green’s function will be used in the following to determine the transport properties in Weyl
semimetals.
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3.2 Critical phenomena in Weyl semimetals

3.2.1 SCBA for pointlike impurities

As shown by 1/N expansion [16, 17] or by renormalization group analysis [20], weak disorder is irrel-
evant in Weyl semimetals and disorder becomes relevant above a critical point. This implies that the
density of states remains vanishing at the Weyl point. In the zero magnetic field, the clean density of
states vanishes quadratically with energy, yielding

ν(ε) =
ε2

2π2v3
. (3.9)

Let us first consider Born approximation for the self-energy in absence of magnetic field. This means
that we neglect the self-energy in Eq. (3.8) as explained in Sec. 2.1. The self-energy is obtained by
applying Eq. (2.11) to the relevant model of disorder and reads

ΣR = γ

∫
dp

(2π)3

ε+ i0

(ε+ i0)2 − v2p2
= −i γε

2

2π2v3
. (3.10)

Since the density of in Born approximation is equal to the clean density of states, disorder in Born
approximation is irrelevant. Moreover, to determine the critical point, it es required to apply self-
consistent Born approximation.

To determine the density of states in SCBA, we calculate the self-energy. Using Eqs. (2.11) and
(3.8), the self-consistent equation for the self-energy in momentum space reads

ΣR(ε) = γ

∫
d3p

(2π)3

ε− ΣR(ε)

(ε− ΣR(ε))2 − v2p2
. (3.11)

Due to the divergence of the integral in the ultraviolet regime, we introduce the ultraviolet energy
cutoff Λ. The introduction of an ultraviolet cutoff Λ becomes necessary due to the approximation
of a true energy dispersion by the Dirac-fermion one, which is, in fact, valid for low-energies. The
integration over the radial momentum leads to

ΣR(ε) = β(ε− ΣR)

−1 +
(ε− ΣR)

2Λ
ln

(
ε− ΣR + Λ

ε− ΣR − Λ

) , (3.12)

where we introduced the dimensionless disorder strength

β =
γΛ

2π2v3
. (3.13)

A detailed analysis of Eq. (3.12) is performed in App. A.1. Let us here point out the most salient
results.

We first consider the case of ε = 0 under the assumption ReΣR(ε = 0) = 0 which will be later justified
by the numerical results. Under these assumptions, the broadening due to disorder Γ = −ImΣR is
described by the following equation:

β − 1

β
=

Γ

Λ
arctan

(
Λ

Γ

)
. (3.14)
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Figure 3.1: Numerical evaluation of the self-energy in dependence of dimensionless disorder
strength β. In panel a), equation (A.2) (real part of the self-energy) is depicted in dependence
of β for different values of energy. The blue, green, red, and darkblue curves correspond to
ε/Λ = 10−4, 10−3, 10−2, 5 · 10−2, respectively. Equation (A.3) (imaginary part of self-energy) is
numerically evaluated in panel b) for ε/Λ = 0, 10−3, 10−2 for green, darkblue, and red curve,
respectively. The ultra-violet cutoff in both panels is set to Λ = 100.

As a result, at β = 1, the left hand site of Eq. (3.14) exhibit a sign change. Since for β < 1 the allowed
values of the imaginary part are Γ = 0, a critical point strength is present at β = 1 marking the point
where a finite density of states is observed at the Weyl point. The appearance of the disorder critical
point is illustrated by a numerical analysis of Eq. (3.14). The numerical evaluation of the self-energy Γ
in the full range of disorder at zero energy in dependence of disorder strength is depicted in Fig. 3.1b)
by the green curve where the disorder critical point is clearly seen. An analytical solution of Eq. (3.14)
for β > 1 is approximated in the two certain regimes, yielding

Γ =


2Λ

π

(
1− 1

β

)
, Γ < Λ√

β

3
Λ Γ > Λ.

(3.15)

For finite energy ε, we determine the self-energy in the different regimes of disorder. As we learned
from the analysis at the Weyl node, there are the regimes of weak and strong disorder which are
separated by the critical point. For finite energy, however, the regimes of weak and strong disorder are
separated by a “phase” of critical disorder, cf. Fig. 3.2.

For weak disorder β < 1, the effect of disorder is irrelevant for the density of states. The self-energy
is obtained by an expansion with respect to finite energy of Eq. (3.12) up to the lowest order, leading
to

ReΣR ≈ − β

1− β
ε, Γ ≈ πβε2

2(1− β)3Λ
. (3.16)

For critical disorder β = 1, the self-energy can be written as

ReΣR ≈ ε−

√√√√∣∣∣∣∣2εΛπ
∣∣∣∣∣, Γ ≈ ε− ReΣR =

√√√√∣∣∣∣∣2εΛπ
∣∣∣∣∣. (3.17)
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Figure 3.2: Imaginary part of self-energy in the different regimes of disorder. We introduced
the parameter δ = 1− β. The diagram clearly shows the “phases” of weak (blue regime), critical
(green regime), and strong disorder (yellow regime). The boarders of the regimes are indicated in
red, the disorder critical point at zero energy is marked by a red dot.

Figure 3.3: Numerical solution of the self-energy in dependence of energy in the three different
regimes of disorder. The real part of self-energy is evaluated by Eq. (A.2) in panel a) with weak
disorder β = 0.1 corresponds to the red curve, critical disorder β = 1 to the darkblue, and strong
disorder β = 2.3 to the green curve. In panel b), the evaluation of Eq. (A.3) in weak disorder
(β = 0.1 and β = 0.5) is depicted by the blue and red curves, respectively, critical disorder β = 1
by darkblue, and strong disorder β = 2.3 by green curve. The ultraviolet cutoff is set to Λ = 100.
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Figure 3.4: Real part of self-energy in dependence of β for ε/Λ = 5·10−3. Panel a) corresponds to
the regime Γ/Λ < 1 with the green, dotted curve obtained by the numerical solution of Eq. (A.2),
the red, dashed curve depicts Eq. (A.8) for Γ at ε = 0, and the darkblue curve shows Eq. (A.8)
determined by the numerical solution of Eq. (A.3) for Γ at ε/Λ = 5 · 10−3. The divergence around
β = 1 in the red and darkblue curves originate from the application of Eq. (A.8) where formally
the critical phase is present. In panel b), the regime of Γ > Λ is illustrated where the darkblue
curve corresponds to the numerical solution of Eq. (A.2) and the red, dashed curve shows Eq. (A.8)
with the numerical solution of Γ given by Eq. (A.3). The ultraviolet cutoff in both panels is set
to Λ = 100.

Crucially, we find a linear behavior in energy for the disorder broadening under the assumption that
energy is redefined as ε̃ = ε−ReΣR. This assumption was applied in the RG approach [20], where they
obtained a linear behavior in energy for the imaginary part of self-energy. This result is valid in the
limit −

√
2πε/Λ < |β − 1| <

√
2πε/Λ which defines the boundaries of the critical regime, cf. Fig 3.2.

Finally, we discuss the case for strong disorder β > 1. Here, the density of states is mainly determined
by the zero energy result, Eq. (3.15). Higher order corrections to the imaginary part of the self-energy
are proportional to ε2. The real part is obtained by an expansion in low energies, as performed in
App. A.1, leading to

ReΣR ≈ (β̃ − 2)ε

β̃ − 1
, (3.18)

where the renormalized dimensionless disorder strength is defined as

β̃ = β

(
2

β
− 1

1 + (Γ/Λ)2

)
. (3.19)

This renormalization of the dimensionless disorder will become of particular importance for the con-
sideration of the conductivity. The renormalization ensures that the real part of self-energy saturates
at ReΣR/ε→ 1/2 for β →∞. This behavior is visualized in Fig. 3.4b).

The self-energy in the disorder-energy plane is visualized in Fig. 3.2, showing that for highest energies
the system is in the critical phase leading to a square root behavior in energy. Let us now compare
the analytically obtained results with the numerical evaluation of Eq. (3.12). The energy dependence
of the self-energy for the real and imaginary part is present in Figs. 3.3a) and b), respectively, in the
three different regimes of disorder. We see in both cases that the scaling in energy as shown in Fig. 3.3
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3 Disorder in Weyl semimetals

matches with the analytical results presented above. Furthermore, Figure 3.3 nicely illustrates the
crossover to the critical regime for increased energy in the regime of weak and strong disorder. The
crossover can be understood in the ”phase-diagram”, Fig. 3.2. The linear behavior in energy of the real
part of self-energy in the regime of weak and strong disorder is illustrated in Fig. 3.3a). Figure 3.4a)
emphasizes the divergent behavior for β → 1 of the weak and strong disorder energy renormalization
for low energy where the regime of critical disorder is small. The comparison of the analytical and
numerical results of the real part, Fig. 3.4a) and b), shows that the analytical nicely matches the
numerics away from the critical regime.

3.2.2 Conductivity within SCBA

In the model of pointlike disorder, we calculate now the conductivity σxx of a Weyl semimetal in weak,
strong and critical disorder. We use the Kubo formula for the real part of the conductivity, as discussed
in Sec. 2.2, reading

σxx(ω, T ) =

∫
dε

2π

fT (ε)

ω

∫
d3p

(2π)3
Tr

{[
ĜR(ε,p)− ĜA(ε,p)

]
ĵtr
x Ĝ

A(ε− ω,p)ĵx

+ĜR(ε+ ω,p)ĵtr
x

[
ĜR(ε,p)− ĜA(ε,p)

]
ĵx

}
, (3.20)

where ĵx = evσx is the bare current operator and ĵtr
x = V tr(ω)ĵx is the current vertex dressed by

disorder and dependent on the external frequency ω. The dressed vertex is discussed in App. C. The
importance of vertex corrections in Weyl semimetals in the dc limit and for weak disorder was first
pointed out in Ref. [81]. Here, we go beyond the limit of Ref. [81] and analyze the effect of vertex
correction in both the ac limit and in the full range of disorder. We show below that the vertex
corrections are of particular importance in the regimes of critical and strong disorder.

After performing the momentum integration, the conductivity reads

σxx(ω, T ) = −2e2v2

3γ

∫ ∞
−∞

dε

2π

fT (ε)− fT (ε+ ω)

ω

Re

 1

1− vRRx (ε,ω)
v

(
ΣR(ε+ ω)− ΣR(ε)

ΣR(ε+ ω)− ΣR(ε)− ω
+

ΣR(ε+ ω) + ΣR(ε)

(2ε+ ω)− (ΣR(ε+ ω) + ΣR(ε))

)

− 1

1− vRAx (ε,ω)
v

(
ΣR(ε+ ω)− ΣA(ε)

ΣR(ε+ ω)− ΣA(ε)− ω
+

ΣR(ε+ ω) + ΣA(ε)

(2ε+ ω)− (ΣR(ε+ ω) + ΣA(ε))

) ,
(3.21)

where v
RR/RA
x (ε, ω) are calculated in App. C and given by Eqs. (C.6) and (C.7), respectively.

Starting with the case of weak disorder β < 1, we simplify the expression for the conductivity under
the assumption ε > ΣR,ΣA. Using Eq. (3.16) for the self-energy, the conductivity is calculated in the
two most interesting limits T = 0 and ω = 0. We start with the dc limit, ω = 0. The conductivity is

σxx(T, ω = 0) =
e2v2

2πγ

1− β
1 + β

, (3.22)
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3.2 Critical phenomena in Weyl semimetals

constant in temperature and vanishes in the crossover to the regime of critical disorder. For finite ω
and T = 0, at the point ε = −ω/2 the conductivity show a singular behavior. We evaluate the integral
at this point. The result is

σxx(T = 0, ω) =
e2

3πv
|ω|. (3.23)

We see that the limit of ω = 0 and T = 0 are not interchangeable. Furthermore, we find that the
dc conductivity vanishes at the disorder critical point. The ac conductivity however also vanishes at
the disorder critical point which only exists for zero temperature and external frequency where the
ac conductivity is absent in the full regime of weak disorder. We should emphasize here, that the
vanishing ac conductivity as well as the vanishing dc conductivity at the critical point is related to the
vanishing density of states in the regime of weak disorder. Rare scattering events may produce a finite
density of states already for weak disorder [23, 27] which might eliminate these features and produce
a finite conductivity also at the critical point. However, due to recent results [29], it is not clear if
rare region effect would have an effect on the conductivity. In Ref. [29], it is shown that the average
density of states is not effected by rare events.

For the calculation of the conductivity for critical disorder, we use Eq. (3.17) to evaluate the con-
ductivity. For ω = 0, the result is

σxx(T ) =
e2v2

8γπ

√
πT

Λ
. (3.24)

In the opposite regime, T = 0, the result is

σxx(ω) =
e2v2

4γπ

√
ωπ√
2Λ

(
13

15
+

√
2

24

(
−6Arsinh(1) + ln(8)− 6 ln(2 +

√
2)
))

. (3.25)

We find that the conductivity in the dc limit for ω = 0 matches with the conductivity for weak disorder
for (1 − β)2 ∼ Tγ while the ac conductivity in critical disorder does not match due to the disorder
independent ac conductivity in the weak disorder limit.

The last remaining regime of strong disorder β > 1 is discussed in the following. We substitute the
result for the self-energy for strong disorder Eq. (3.15) and assume ReΣR = aε. For strong disorder,
it is important to consider the vertex correction. For ω → 0 and T → 0, the vertex corrections (C.6)
and (C.7) simplify for strong disorder to

vRRx = −v a− 2

3(a− 1)
, (3.26)

vRAx = −v a+ 1

3(a− 1)
. (3.27)

Vertex corrections need to fulfill vx/v < 1. For a < 1/2, this is fulfilled up to highest disorder strength
β →∞ as obtained in the numerical calculation in Fig. 3.4. For lowest temperatures and frequencies,
the conductivity in both regimes reads

σxx(T ∼ 0, ω ∼ 0) = −e
2v2

2πγ

(8a− 7)

(2a− 1)(4a− 5)
. (3.28)

We find that the condition a < 1/2 for the vertex corrections is manifested again in the calculation of the
conductivity, where a positive conductivity without any singularities is obtained under this restriction.
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3 Disorder in Weyl semimetals

Figure 3.5: Conductivity in the limit ω → 0 and then T → 0 with the numerically obtained self-
energies (real and imaginary part) in dependence of the dimensionless disorder strength β. The
dotted part corresponds to the region close to the disorder critical point which cannot be obtained
numerically at T = 0 due to the divergence of ReΣR in weak and strong disorder for β → 1.
The inset depicts the conductivity in units of the Drude limit of the conductivity emphasizing the
effects of vertex corrections. The ultraviolet cutoff in both plots is set to Λ = 100.

Furthermore, the conductivity vanishes at the disorder critical point with a = 1 − 1/(β − 1) → −∞.
The renormalization of dimensionless disorder strength β can be neglected around β = 1, but gets
important for stronger disorder ensuring that the parameter a < 1/2. Thus, under fully incorporating
the vertex corrections, it is crucial to consider higher orders in the SCBA analysis in particular for
strong disorder. This is demonstrated in Fig. 3.5 where the saturating conductivity in dependence of
disorder is shown. To justify the SCBA analysis in the regime of strongest disorder, we consider in the
following a model of smooth disorder.

3.3 SCBA in a smooth disorder potential

Considering the limit of large β for pointlike impurities on a lattice model corresponds to a large
potential on each lattice site which would destroy the model. We can consider a smooth disorder
potential where the limit of large β is realized by the correlation length instead of the large potential.
The chosen impurity potential should be smooth due to its finite range correction function. Under the
purpose to treat the disorder analytically, a rectangular impurity correlator in momentum space is a
possible choice.

Thus, we consider the disorder potential with the impurity correlator given by

Wαγβδ(q) = γθ(1− b|q|)δαγδβδ, (3.29)

where θ denotes the Heaviside step function and b defines the width of the potential. As for pointlike
impurities, we assume that the disorder potential is diagonal in both spin and pseudospin indices and
neglect internode scattering.

This impurity correlator relates the disorder strength γ to the disorder potential as

γ = Nimpu
2
0b

6, (3.30)

where Nimp is the impurity density and u0 the strength of the disorder potential.
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3.3 SCBA in a smooth disorder potential

Within this model of disorder, the self-energy in SCBA is defined as

Σ(p, ε) = γ

∫
d3q

(2π)3

θ(1− b|p− q|)(ε− Σ(q, ε))

(ε− Σ(q, ε))2 − v2q2
. (3.31)

We split the self-energy in terms of large and small momenta, meaning

Σ(p, ε) = Σ1(p, ε)θ(1− bp) + Σ2(p, ε)θ(bp− 1), (3.32)

where the self-energies Σ1 and Σ2 are given by Eqs. (A.14) and (A.15).
In the following, we consider ε = 0 since finite energy leads only to small corrections in the relevant

regime of strong disorder. As for pointlike impurities, the real part of self-energy depends linearly on
energy and is therefore absent in the considered limit. For the imaginary parts, ImΣR

1,2(p) = −Γ1,2(p),
we find the following self-consistent equation

Γ1 = βbΓ1

1− Γ1

Λb
arctan

(
Λb
Γ1

)+
3

4
bpΛb

√
2

3
βb − 1θ

(
2βb − 3

)
, (3.33)

in the limit bp� 1 and

Γ2 = θ

(
2

3
βbΛ

2
b − v2p2

)√
2

3
βbΛ

2
b − v2p2. (3.34)

for bp� 1. In both regimes, the parameters βb and Λb are given by

βb =
γ

(2π)2v2b
, Λb =

v

b
. (3.35)

To show that large values of βb can be realized for relatively low impurity potential, we rewrite the
dimensionless disorder strength by the band width Λ and the lattice constant a = v/Λ, reading

βb ∼
(
u0

Λ

)2
(
b

a

)2

. (3.36)

This shows that large βb is achieved for large b already for low impurity potentials.
For small momenta bp � 1 and −ImΣ = Γ = Γ1, we recover the SCBA equation for pointlike

impurities, Eq. (3.14) where the parameters β and Λ are replaced by the new parameters related to
disorder βb and Λb, respectively. The corrections due to finite momenta become apparent for bp ∼ 1
and β > 3/2. For large momenta bp � 1, the self-energy is fully determined by Γ2 resulting in a
momentum dependent critical disorder,

βb,crit = (3/2)(pb)2. (3.37)

In this regime, the density of states is only finite for large values of βb as illustrated in Fig. 3.7b).
In the limit bp ∼ 1, Eq. (A.14) and (A.15) straightforwardly show that Σ1 and Σ2 become equal.

The self-consistent equation in this limit Γ1 = Γ2 = Γ becomes

1 = βb

1− Γ

Λb
arctan

(
2Λb
Γ

)
+

Γ2

4Λb
ln

(
1 +

4Λ2
b

Γ2

) . (3.38)
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3 Disorder in Weyl semimetals

Figure 3.6: Imaginary part of self-energy for smooth disorder in different regimes for the ratio
bp in dependence of the dimensionless disorder strength βb. For bp < 1, the self-energy is fully
determined by Γ1 (red curve) obtained by a numerical solution of Eq. (3.33). For bp > 1, Γ2, given
by Eq. (3.34) and the green curve, determines the self-energy. The darkblue curve depicts Γ for
bp ∼ 1 given by the numerical solution of Eq. (3.38).

The self-energy in the three regimes is depicted in Fig. 3.6 in dependence of the dimensionless disorder
strength. An illustration of the self-energy in dependence of momentum for the to cases bp ≶ 1 is
presented in Figs. 3.7a) and b).

According to these results, the density of states is full determined by Γ1 since Γ2 is absent for large
momenta cf. Eq. (3.37). The density of states is thus given by

ν(ε = 0) =

∫ 1/b

0

d3q

(2π)3

Γ1

Γ2
1 + v2q2

=
2Γ1

πγ
. (3.39)

We find that the behavior of the density of states does not fundamentally change within the model
of smooth disorder. The density of states remains vanishing beyond βb < 1 for ε = 0 and becomes
finite above. In the limit of large β, the broadening can be approximated with Γsmooth ∼ Λb

√
βb again

in full analogy to the case of pointlike impurities fully justifying our results for the conductivity in the
limit of large β.

3.4 Disorder in presence of magnetic field

3.4.1 Clean case

Before we analyze disorder in presence of a finite magnetic field, we first discuss the effects of a magnetic
field on the density of states without disorder. We introduced the Hamiltonian with the corresponding
eigenstates of a single Weyl node in Sec. 1.2. For clarity, the Hamiltonian in the presence of a constant
homogeneous magnetic field H in z direction is again states here, reading

H
(
p
)

=

∫
d3rΨ†(r)vσ

(
p− e

c
A

)
Ψ(r), (3.40)
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3.4 Disorder in presence of magnetic field

Figure 3.7: Imaginary part of self-energy for smooth disorder in dependence of momentum p for
different disorder strengths. Panel a) shows the numerical evaluation of Eq. (3.33) for bp < 1 up
to bp = 0.5 and Eq. (3.34) in the opposite regime bp > 1 starting with bp = 2. The dotted lines
indicate the intermediate regime where the momentum dependence is not completely discussed.
Panel b) is devoted to bp > 1 and shows the vanishing self-energy for increasing momenta. In both
curves, the dimensionless disorder strength βb is chosen as follows: darkblue curve: βb = 4, green
curve: βb = 2, red curve: βb = 3/2. The width of the disorder potential in momentum space is set
to 1/b = 10 in both panels.

with the vector potential A(r) = (0, Hx, 0) in Landau gauge. Correspondingly, we reminded the reader
that positions of the Landau levels in a clean Weyl semimetal, as discussed in Sec. 1.2, are given by

ε0 =vpz, (3.41)

ε(±)
n =±

√
v2p2

z + Ω2n, (3.42)

where Ω = v
√

2eH/c is the distance between the zeroth and first LL. The eigenfunctions, which have
two components (α, β = 1, 2) in the space spanned by σ, are chosen such that the wave function of
the clean zeroth Landau level has only component 1 in the pseudospin space resulting in

Ψ
(±)
n1 (r) =

1√
2

(
1 +

vpz

ε±n

)1/2
ei(pyy+pzz)

L
φn(x− l2Hpy),

Ψ
(±)
n2 (r) = ∓ i√

2

(
1− vpz

ε±n

)1/2
ei(pyy+pzz)

L
φn−1(x− l2Hpy) (3.43)

for n > 0 and Ψ
(±)
01 = θ(±pz)φ0, Ψ

(±)
02 = 0 for n = 0. With φn, we denote the normalized eigenfunctions

of free electrons in magnetic field, θ is the Heaviside step function, and lH = (eH/c)−1/2.

In the clean system, the retarded bare Green’s function Ĝ0 is conveniently expressed as a matrix in
the pseudospin space of bands α, β = 1, 2:

G
(0)
αβ =

∑
n≥0,λ=±

Ψ
(λ)
nαΨ

(λ)
nβ

∗

ε+ i0− ελn
. (3.44)
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Figure 3.8: Density of states of a clean Weyl semimetal with the darkblue solid line illustrating
the density of states in a finite magnetic field, Eq. (3.45), while the red dashed line corresponds to
the zero magnetic field, Eq. (3.9).

We note that the summation over λ eliminates the theta-functions θ(±pz) in the n = 0 term in
Eq. (3.44). The integration over pz is always performed from −∞ to ∞ in what follows. However, the
absence of states in one energy band manifests itself in a factor 1/2 in the Green’s function and in the
density of states for zeroth Landau level compared to higher Landau levels.

In the presence of magnetic field, the density of states is singular at the points Ω
√
n for n > 0 which

have a square root tail originating from the one-dimensional (pz) dispersion of each Landau band (cf.
Ref. [142]) and reads

ν(ε) =
Ω2

8π2v3

1 + 2

ε2/Ω2∑
n=1

|ε|√
ε2 − Ω2n

 . (3.45)

We further find, that the density of states in presence of magnetic field is finite already in the clean
limit. The density of states is plotted in Fig. 3.8.

3.4.2 Born approximation

For finite magnetic field, we start the analysis of pointlike disorder with the Born approximation
meaning we neglect the self-energies in Green’s functions (3.6) and (3.7) for the calculation of self-
energies:

ΣR
1 (ε) =

γΩ2

4πv2

∑
n≥0

∫ ∞
−∞

dpz
2π

ε+ vpz
(ε+ i0)2 − Ω2n− v2p2

z

, (3.46)

ΣR
2 (ε) =

γΩ2

4πv2

∑
n≥0

∫ ∞
−∞

dpz
2π

ε− vpz
(ε+ i0)2 − Ω2(n+ 1)− v2p2

z

. (3.47)

As discussed below and similar to Sec. 3.2, the summation over n should, in fact, be restricted by
an upper cutoff Nmax. We shift the summation over n in Σ2 and find that the two self-energies only
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differ by the absence of the n = 0 term in Σ2:

Σ1 − Σ2 =
γΩ2

4πv2

∫ ∞
−∞

dpz
2π

ε+ vpz
(ε+ i0)2 − v2p2

z

' −iA+
2Aε

πΛ
. (3.48)

Here, we introduce the parameter

A =
γΩ2

8πv3
, (3.49)

and denote the bandwidth by Λ. The introduction of an ultraviolet cutoff Λ becomes necessary due
to the approximation of a true energy dispersion by the Dirac-fermion one, which is, in fact, valid for
low-energies. Our analysis is applicable for ε,Σ(ε)� Λ.

We learn from Eq. (3.48) that it is sufficient to calculate Σ1. We obtain Σ2 with the result of Σ1

and Eq. (3.48). The term Σ1 separated in real and imaginary part reads

ImΣ1(ε) = −A|ε|
Nε∑
n=0

1√
ε2 − Ω2n

, (3.50)

ReΣ1(ε) = −Aε
Nmax∑

n=Nε+1

1√
Ω2n− ε2

. (3.51)

The imaginary part of the self-energy under Born approximation is determined by the Landau levels
below ε, while the real part is provided by the contribution of the Landau levels above ε. In Eqs. (3.50)
and (3.51)

Nε =

[
ε2

Ω2

]
, (3.52)

denotes the Landau level index below energy ε, and the symbol [. . .] expresses the integer part of
a number. The summation in Eq. (3.51) is restricted by the upper cutoff Nmax determined by the
ultraviolet energy cutoff Λ as follows: Nmax = Λ2/Ω2. Thus, Nmax denotes the index of the highest
Landau level within the bandwidth Λ.

The sum in ReΣ1 is determined by the upper limit Nmax resulting in ReΣ1 ∼ ε(A/Ω)N
1/2
max. We

assume that due to LL broadening no Landau quantization is present at the ultraviolet energies ∼ Λ,
we can apply the zero-H result

ReΣ1(ε) ' −β
2
ε, (3.53)

with

β =
γΛ

2π2v3
. (3.54)

As in the absence of magnetic field, the parameter β quantifies the strength of disorder. Sufficiently
strong disorder produces a real part of Born self-energy larger than ε, which clearly signifies the
insufficiency of the simple Born approximation and is resolved by a full consideration of the self-
consistent Born approximation, cf. Sec. 3.2. Similar to the zero-field limit, the self-consistent treatment
of strong disorder dramatically changes the behavior of the density of states for strong disorder as we
will discuss in Sec. 3.4.5 below.

In what follows, however, we mostly focus on the limit of weak disorder, β � 1. We redefine the
energy ε with respect to ReΣ meaning ε → ε̃ = ε(1 + β/2), and neglect the difference between ε̃ and
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Figure 3.9: Disordered Weyl semimetal in Born approximation. ImΣ1(ε) in units of A. The blue
curve depicts Eq. (3.50), the darkblue, dashed curve Eq. (3.56), the green curve shows 2(ε/Ω)2 −
3ε/2Ω + 1/2 [minima in Eq. (3.56)], and the red illustrates, 2(ε/Ω)2, the result without magnetic
field.

ε in the calculation of the imaginary part of self-energy. For |ε| < Ω, the imaginary part of the Born
self-energy is expressed as

ImΣ1 = −A, ImΣ2 = 0. (3.55)

For higher energies, the Euler-Maclaurin formula is applied for the sum over n < Nε − 1. Thus, the
imaginary part of the Born self-energy yields

ImΣ1(ε) ' −A

 1√
ε2 − Ω2Nε

− 2|ε|
Ω2

√
ε2 − (Nε − 1)Ω2 +

1

2

(
1 +

|ε|√
ε2 − (Nε − 1)Ω2

)
+

2ε2

Ω2

 .
(3.56)

This result is depicted in Fig. 3.9. The terms in Eq. (3.56) resemble the different contributions to the
density of states. In particular, the first term yields the square-root divergence at the positions of LLs,
while the last term is responsible for the parabolic background similarly to the zero-H case.

Motivated by the square root singularities for LL broadening within the Born approximation (3.56),
we consider the Landau level broadening now with the self-consistent Born approximation (SCBA).
Introducing disorder-induced self-energies in the Green’s functions should resolve these divergences.

The SCBA equations (3.3), (3.6) and (3.7) with the disorder correlator (3.4) within white-noise
disorder have the form (below z = vpz):

Σ1(ε) = A
∑
n≥0

∫ ∞
−∞
dz

ε− Σ2 + z

(ε− Σ1 − z)(ε− Σ2 + z)− Ω2n
,

(3.57)

Σ2(ε) = A
∑
n≥1

∫ ∞
−∞
dz

ε− Σ1 − z
(ε− Σ1 − z)(ε− Σ2 + z)− Ω2n

.

(3.58)
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As above within the Born approach, the real parts of self-energies (determined by the ultraviolet cutoff
Λ) are absorbed into the shifts of energies ε→ ε̃.

The self-consistent equations for separated LLs (the corresponding conditions will be analyzed below)
are evaluated as follows. We assume that the energy is close to the bottom of the n0-th Landau level
meaning Nε ' n0. Thus, the term n = n0 provides the main contribution in the sum over n. This
term is therefore treated separately from the sum and we evaluate the sum of the remaining levels and
the term n = n0 differently.

3.4.3 Energies close to the lowest Landau level

Let us first consider the case of lowest energies, |ε| � Ω (i.e., Nε = 0) in the regime of weak disorder,
β � 1. This case is manifested by the asymmetry with respect to the zeroth LL resulting in a
strong difference in the two imaginary parts of the self-energy. For the lowest LL being well separated
from the others (ImΣ1,2 � Ω), higher Landau levels in the sum over n can be treated within the
Born approximation, while the term of n = 0 should be evaluated self-consistently. This procedure
immediately leads to ImΣ2 = 0 and

ImΣ1(ε) ' −A
∫ ∞
−∞

dz
ImΣ1(ε)

(ε− z)2 + [ImΣ1(ε)]2
= −A. (3.59)

This result is equivalent to the result of the non-self-consistent Born approximation, Sec. 3.4.2. The
condition for a well separated zeroth LL translates into the condition A < Ω. Compared to the absence
of magnetic field, the density of states for ε� Ω is finite and, to the leading order, energy-independent.

First order corrections to the term ImΣ2 can be found by using Eq. (3.59) for ε� Ω, resulting in

ImΣ2(ε) ' −πA
2

2

Nmax∑
n=1

Ω2n

(Ω2n− ε2)3/2
∼ −Aβ. (3.60)

Thus, in the limit of weak disorder, β � 1, ImΣ2 can be neglected for ε� Ω. In fact, ImΣ2 becomes
of the order of ImΣ1 only in the close vicinity of the first Landau level, |ε− Ω| ∼ A.

Let us emphasize that the self-consistent treatment of the LL broadening is fully justified for weak
disorder and ε� Ω. It was shown for 2D Dirac fermions in graphene [143] that all the renormalization
effects not captured by the SCBA affect the real part of the self-energy. In the 2D case, the effect
of the marginally relevant disorder could be incorporated through the renormalization of parameters
(induced by the contributions of higher LLs) entering the SCBA equations for a given Landau level.
The renormalization of ReΣ in the present 3D case can be neglected in the regime of weak disorder,
β � 1. Even in two dimensions for the lowest LL, the density of states within SCBA is parametrically
correct [143]. The exact shape can be calculated as performed in Refs. [144, 145]. The additional
integration over the momentum pz in 3D compared to 2D reduces the difference between the exact
and SCBA results further in the limit ε→ 0.

3.4.4 Energies at high Landau levels

We turn now to the consideration of high energies, ε� Ω. Already within the Born approximation, as
analyzed in Sec. 3.4.2, the average broadening of LL increases with ε parabolically. This is analogous
to the absence of magnetic field: ∝ A(ε/Ω)2 ∼ γε2/v3, see Fig. 3.9. Therefore, the difference between
ImΣ1 and ImΣ2 is manifested by the contribution of n = 0 and can be neglected for energies ε away
from the zeroth LL. In the following, we use Σ1 = Σ2 = Σ for ε� Ω.
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Figure 3.10: Disordered Weyl semimetal in the self-consistent Born approximation for ε � Ω:
Γ(ε) in units of A obtained by numerical solution of Eq. (3.62). Blue, red, and green curves
correspond to A/Ω = 10−4, 10−3, 10−2, respectively. For all curves, we choose Nmax = 100.

By introducing

Γ1,2(ε) = −ImΣ1,2(ε) (3.61)

and setting Γ1 = Γ2 = Γ, the self-consistent equation for Γ(ε� Ω) is given by

Γ =
∑
n=0

Γ(n)(ε), (3.62)

Γ(n)(ε) =
AΓ

π

∫ ∞
−∞

dz
ε2 + Ω2n+ Γ2

(ε2 − Ω2n− Γ2 − z2)2 + 4ε2Γ2

= A Re
iε+ Γ√

W 2
n − ε2 + 2iεΓ

. (3.63)

Here, we have introduced Γ(n)(ε) denoting the contribution of the nth Landau level to the total
broadening Γ(ε). Note that each term Γ(n)(ε) of Eq. (3.63) depends on the total broadening Γ rather
than the partial Γ(n). Furthermore, we find that the position of the nth Landau level is shifted by
disorder. This is manifested by the fact that Ω2n appears only in the combination

W 2
n = Ω2n+ Γ2. (3.64)

In the case of weak disorder, all energies Ω� ε� Λ fulfill the condition ε� Γ(ε), so that Eq. (3.63)
can be written as

Γ(n)(ε) ' Aε

√
ε2 −W 2

n +
√

(W 2
n − ε2)2 + 4ε2Γ2

√
2
√

(W 2
n − ε2)2 + 4ε2Γ2

. (3.65)

The limit ε→∞ yields Γ(n)(ε)→ A, while ε�Wn results in Γ(n)(ε)→ AΓ/Wn. Thus, the self-energy
Γ(ε) of the nth Landau level is increased by A when ε crosses Wn. This can be seen in Fig. 3.10 where
the solution of the self-consistent equation (3.62) is shown for A/Ω = 10−4, 10−3, 10−2.
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3.4 Disorder in presence of magnetic field

We fix now the Landau-level index n0 � 1 and consider the range of energies around Wn0 . Under
the assumption of well separated Landau levels below n0, we disregard Γ in all terms with n < n0:

n0−1∑
n=0

Γ(n)(ε) ' A
n0−1∑
n=0

ε√
ε2 −W 2

n

' 2An0. (3.66)

Landau levels with n > n0 + 1 contribute with the dominant term proportional to Nmax hence being
negligible for weak disorder:

∑
n=n0+1

Γ(n)(ε) ' A
Nmax∑

n=n0+1

W 2
nΓ

(W 2
n − ε2)3/2

∼ Γβ � Γ. (3.67)

Finally, we consider the contribution of the n0th Landau level (closest to the energy ε) to the self-energy.
For |ε−Wn0 | �Wn0 , this can be further simplified, reading

Γ(n0)(ε) '
A
√
Wn0

2

√
ε−Wn0 +

√
(Wn0 − ε)2 + Γ2√

(Wn0 − ε)2 + Γ2
. (3.68)

Exactly at ε = Wn0 , we particularly find

Γ(n0)(ε = Wn0) ' Aε1/2

2Γ1/2
. (3.69)

To determine the self-consistent equation, we use Eqs. (3.66) and (3.68). When ε is close to Wn0 ,
the self-consistency equation can be written as:

Γ(ε) ' 2Aε2

Ω2
+
A
√
ε

2

√
ε− wε +

√
(wε − ε)2 + Γ2(ε)√

(wε − ε)2 + Γ2(ε)
, (3.70)

where wε ' Ω
√
Nε ensures that the right hand side of Eq. (3.70) only depends explicitly on ε, as

required.

The self-consistency equation exactly at ε = Wn0 yields:

Γ =
2Aε2

Ω2
+
Aε1/2

2Γ1/2
. (3.71)

We observe that the broadening for sufficiently small energies is determined by the self-consistent
contribution of the particular Landau level of consideration, while the broadening for larger energies
is dominated by the zero-H result stemming from lower Landau levels. In formulas, this is expressed
as

Γ(ε = Wn0) '

(A/2)2/3ε1/3, Ω� ε� ε∗,

2A(ε/Ω)2, ε� ε∗,
(3.72)

where

ε∗ ∼ Ω(Ω/A)1/5 ∝ H2/5

γ1/5
. (3.73)
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3 Disorder in Weyl semimetals

Below ε∗, Landau levels are fully separated whereas above ε∗, the background density of states is large.
As inherited from the clean density of states, each peak in Γ(ε) is non-symmetric with respect to Wn0 .
This is discussed App. A.3, where shape of the LL broadening is analyzed in detail.

The broadening for high energies should show the same behavior as in absence of magnetic field.
Indeed, we recover the zero-H result for Γ(ε) in the limit ε > ε∗ expressed in terms of the energy:

Γ(ε) =
γ

4πv3
ε2. (3.74)

As expected, the magnetic field has dropped out from the result leading to a LL broadening dominated
by the H = 0 result for ε > ε∗. In fact, considering the corrections to the broadening at ε > ε∗, we
observe that the Landau level quantization of the density of states remains intact in a finite range
of energies above ε∗. This is analyzed in detail in Sec. 3.4.6. The appearance of the energy scale
ε∗ should be contrasted with the 2D case. In the 2D case of graphene, a single scale distinguishes
between the regimes of strong and weak Landau quantization. Finally, it should be emphasized that
magnetooscillations in Weyl semimetals were already addressed in Ref. [146] with phenomenological
energy-independent broadening. However, we could show, that the energy dependence of Γ is very
rich.

3.4.5 Strong Disorder

We discuss now briefly the effect of strong disorder, β & 1, in the presence of a finite magnetic field.
As it can be observed by the consideration of the weak-disorder case, cf. Eq. (3.60), the difference
between the two self-energies, Σ1 and Σ2, becomes subordinate even at ε = 0 for strong disorder. The
evaluation of the sum over n in Eqs. (3.57) and (3.58) leads to a qualitative change in the behavior
of the imaginary part of self-energy (and thus of the density of states) at 4A

√
Nmax = πΩ. Similar

as in absence of magnetic field, cf. Sec. 3.2, this implies the existence of a critical disorder strength,
γc,mag = 2π2v3/Λ separating the two regimes. Remarkably, the critical disorder strength γc,mag found
in a strong magnetic field proves to be equal to the zero-field value γc. As already discussed in Sec. 3.2,
the emergence of this critical disorder strength γc in zero-field was reported in Refs. [21, 22, 147, 148]
and [18].

The SCBA equation for strong disorder for ε� Ω is solved by

Γ ' 2Ω
√
Nmax

π
− Ω2

2A
= 4πv3

(
1

γc
− 1

γ

)
, (3.75)

which is equal to the zero-H result obtained in Ref. [147] and discussed in Sec. 3.2. When γ is
substantially larger than γc (i.e., γ − γc & γc), the broadening becomes of the order of the ultraviolet
cutoff,

Γ ∼ Λ, (3.76)

which ensures that all Landau levels overlap. A comparison to the results in absence of magnetic
field shows that the results matches for Γ < Λ, cf. Eq. (3.15). In the opposite regime, Γ > Λ, the
approximations performed within the calculations in presence of magnetic field are no longer valid.
Since the effect of magnetic field is already absent close to the disorder critical point, we expect that
in strongest disorder, the results of zero magnetic field apply. However, away from strongest disorder,
the results presented in this section apply. Further, at ε � Ω, the solution of the SCBA equations
yields for the LL broadening

ImΣ1 ' ImΣ2 ∼ −Ω
√
Nmax ∼ Λ. (3.77)
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Figure 3.11: Density of states, ν(ε), of a Weyl semimetal within self-consistent Born approxima-
tion in units of ν(0) ∝ H in presence of magnetic field [Eq. (3.83)], as obtained from Eq. (3.62)
for ε & Ω and Eq. (3.59) for ε < Ω. The curves corresponds to a) A/Ω = 10−4, b) A/Ω = 10−3,
and c) A/Ω = 10−2. The value Nmax = 100 was used.

Thus, when disorder is substantially stronger than the critical one, even the zeroth LL overlaps with
the rest of the spectrum.

The real part of the self energy for β = γ/γc � 1 is given by

ReΣ1 ' ReΣ2 '
β − 2

β − 1
ε, (3.78)

in full analogy to the absence of magnetic field, cf. Sec. 3.2, Eq. (3.18). Note, that in absence of
magnetic field the parameter β was replaced by β̃ where terms of the order of Γ/Λ become important
for Λ ∼ Γ. These effects are not considered in the presence of magnetic field. Therefore, Eq. (3.78),
is applicable close to the disorder order critical point. However, under the consideration of the full
SCBA formulas in the presence of magnetic field for strongest disorder, we would expect similar terms
providing a diffusion dominated conductivity.

In this thesis, we do not address the critical regime near the transition from weak to strong disorder
at β ∼ 1 in finite magnetic field. The effect of magnetic field near the transition remains a very
interesting question for future work.

3.4.6 Density of States

In this section, we address the density of states in finite magnetic field which is related to the self-energy
as follows:

ν(ε) = − 1

π
Tr ImG = − 1

πγ

(
ImΣ1 + ImΣ2

)
. (3.79)

We apply this formula by plotting the numerically obtained solutions of the SCBA equation in the
case of weak disorder in Fig. 3.11. The three figures illustrate the evolution of the density of states
for different parameters γΩ/v3 (proportional to the disorder strength and to the square root of the
magnetic field) increasing from Fig. 3.11a)–c).

Due to the integration over pz, the Landau levels are broadened even in the clean case, cf. Fig. 3.8,
resulting in divergent peaks at εn(pz) located on top of the background density of states. In the clean
limit, however, these peaks are well resolved for all energies. Finite disorder suppresses the peaks
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Figure 3.12: Relevant energy scales and dominant contributions to the density of states of a
disordered Weyl semimetal (for brevity, we have set v = 1).

with increasing energy such that the Landau levels eventually fully overlap at high energies. In the
following, we analyze the characteristic values of the Landau level index where the density of states
changes qualitatively.

For ε & ε∗, the broadening of Landau levels is dominated by the background (zero-H) contribution.
From Eq. (3.73), we find that the corresponding LL index N∗ = ε2

∗/Ω
2 decreases with increasing H:

N∗ ∼ (Ω/A)2/5 ∝ 1

γ2/5H1/5
. (3.80)

In order to determine if LLs are resolved, we need to check the corresponding condition εn+1(pz =
0) − εn(pz = 0) > Γ. For energies Ω � ε � Ω(Ω/A)1/5, this condition is fulfilled with the width of
high Landau levels being smaller than the distance Ω2/ε between them. As a consequence, at ε ∼ ε∗,
Landau levels are still resolved on top of the large background, but the height of the small peaks
A1/2Ω/ε1/2, Eq. (3.71), is lower than the height of the background. Thus, the latter then dominates
the broadening.

In the regime ε > ε∗∗ > ε∗, the neighboring peaks fully overlap and the broadening is given by the
zero-H result. The corresponding energy is given by

A
ε2

Ω2
∼ Ω2

ε
⇒ ε ∼ ε∗∗ = Ω

(
Ω

A

)1/3

, (3.81)

with the LL index associated with

N∗∗ =
ε2
∗∗

Ω2
=

(
Ω

A

)2/3

∝ 1

γ2/3H1/3
. (3.82)

Similarly to N∗, the LL index for overlapping LLs decreases with increasing magnetic field. We
emphasize that in contrast to conventional expectations, the number of separated LLs is decreasing
for increasing magnetic field.

For fixed disorder strength, the Landau level index N∗∗, corresponding to the starting point of
overlapping, becomes smaller with an increase of magnetic field. This behavior is very exceptional
since it is opposite to the case in conventional semiconductors. The energy ε∗∗ associated with the
start of overlapping of LL increases with H as H1/3. However, the behavior with disorder strength
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3.5 Coulomb impurities

qualitatively confirms with intuitive expectations. This means specifically that with increasing disorder
the number of separated Landau levels decreases corresponding to a decreasing energy range.

An important feature of the density of states in presence of magnetic field is that even in weak
disorder the density of states at the Weyl node (zero energy) is finite. Specifically, the density of states
at ε = 0 is linear in magnetic field:

ν(0) =
A

πγ
=

Ω2

8π2v3
∝ H. (3.83)

It is worth to stress that a finite value of the density of states at the degeneracy point will result in
a finite conductivity independently of the order of limits ω → 0 and T → 0. From this perspective, a
finite magnetic field has the same effect as a strong disorder.

All analytically obtained features of the density of states (cf. Fig. 3.12) are perfectly observed in
Figs. 3.11a)–c). First, it can be observed that for weak disorder and weak magnetic field many LLs are
separated. Furthermore, the number of separated Landau levels decreases with increasing magnetic
field or with increasing disorder. Second, in an intermediate range of energies, the density of states is
mainly determined by the background value but Landau levels are still well resolved. Third, one can
see that the background density of states is equal to that in the absence of magnetic field (quadratic
in energy). Finally, a finite density of states at the degeneracy point dependent on the magnetic field
is created by a finite magnetic field.

3.5 Coulomb impurities

In the previous section, we discussed the density of states in a model of white-noise disorder in finite
magnetic field. We are now going to introduce a model of the more realistic case of screened Coulomb
impurities. Coulomb impurities are relevant since scattering on donors and acceptors are important
processes in a 3D system. The model will be of particular importance in finite magnetic field for the
magnetoresistance where strongly screened Coulomb impurities provide a linear magnetoresistance in
the ultra quantum limit [82]. Thus, we focus on this case in the proceeding section. The potential of
charged (Coulomb) impurity is given by

U(k) =
4πe2

ε∞(k2 + κ2)
, (3.84)

where ε∞ is the background dielectric constant. The parameter κ denotes the inverse Debye screening
radius, defined via

κ2 =
4πe2

ε∞

∂N(Ω, µ, T )

∂µ
=

e2

πε∞v3


Ω2, Ω� T, µ,

π2T 2/3, T � Ω, µ,

µ2/2 µ� Ω, T.

(3.85)

Here, ∂N/∂µ is the fermion compressibility with the effect of disorder on the thermodynamic density
of states being neglected. However, in the limit T,H, µ→ 0, the impurity contribution can be included
in a self-consistent way, as we will discuss below.

Hereinafter, we shall assume that the “fine-structure” constant is relatively large,

e2/v & 1. (3.86)
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In a realistic situation, the fine-structure constant is of order of unity leading to κ being of the order
of characteristic values ktypical ∼ max(Ω, T )/v of the wave vector k. By applying condition (3.86), it
is possible to describe the screened Coulomb disorder by an effective pointlike correlator〈

U(r)U(r′)
〉
' γ(H,T )δ(r− r′) (3.87)

to govern the parametric dependence of the conductivity (without numerical prefactors).
Thus, the correlator (3.87) is associated with a white-noise disorder strength dependent on magnetic

field, temperature and chemical potential,

γ(H,T, µ) = Nimp

(
∂N(Ω, T, µ)

∂µ

)−2

∼ Nimpv
6


Ω−4, Ω� T, µ,

T−4, T � Ω, µ,

µ−4 µ� Ω, T.

(3.88)

The parameter Nimp denotes the density of impurities. The appearance of a divergent disorder strength
in the limit T,H, µ → 0 of Eq. (3.88) implies the necessity to treat the impurity screening self-
consistently. In particular, at

max(Ω, T, µ) ∼ εimp = N
1/3
impv, (3.89)

the quasiparticle broadening γ(H,T, µ)max(T 2,Ω2, µ2)/v3 becomes of the order of max(Ω, T, µ). Then,
the screening will be dominated by the impurity-induced density of states, yielding

γ(H,T, µ) ∼ γ0 = N
−1/3
imp v2 � γc. (3.90)

The comparison of the obtained disorder strength with γc emphasizes that for Coulomb impurities,
the density of states is always finite at zero energy. This result is in agreement with the numerically
obtained result in Ref. [149]. Note, that the weak-disorder approach is formally applicable under the
condition max(Ω, T, µ) & εimp.

The case of Coulomb impurities can be employed by replacing γ with γ(H,T, µ) in the results
of the previous section. Let us emphasize, however, that for screened Coulomb impurities Landau
quantization is favored for increasing magnetic field opposite to the case of white-noise disorder. We
underline this statement by using Eq. (3.88) and analyzing the condition for separation of the zeroth
LL, A < Ω, reading

Ω > v3/γ0 = εimp. (3.91)

Particularly, the zeroth LL is always separated in the limit H → ∞. This demonstrates the crucial
role of the H dependent screening. The results for Coulomb impurities are of particular importance for
the magnetoresistance. Hence, we apply the above discussed disorder strength γ(H,Tµ) in the final
steps in the calculations of the magnetoresistance in Ch. 4.

3.6 Summary of Chapter 3

To conclude this chapter, we summarize and discuss the results. In general, we discussed disorder in
Weyl semimetals within self-consistent Born approximations (SCBA) within three different models of
disorder: (i) point-like impurities, (ii) smooth disorder, and (iii) long-range Coulomb impurities. A
compact summary of the results in absence of magnetic field is provided in Tab. 3.1 where we compare
the three different models of disorder.
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3.6 Summary of Chapter 3

First, we calculated the density of states in absence of magnetic field within the SCBA in Sec. 3.2,
as performed in Refs. [18] for weak and strong disorder. Of particular importance for disorder in Weyl
semimetals is the appearance of a disorder critical point at charge neutrality, cf. Fig. 3.1. For finite
energies, weak and strong disorder are separated by a “phase” of critical disorder, cf. 3.2. In weak
and strong disorder, the results for the density of states are consistent with the results obtained in
Ref. [18]. This means that in the weak disorder limit, the clean density of states ∝ ε2 is applicable, cf.
Eq. (3.16) and for strong disorder, the density of states is energy independent, cf. Eq. (3.15). In the
regime of critical disorder, the obtained density of states ∝ ε1/2, cf. Eq. (3.17), is consistent with the
1/N expansion as obtained in Refs. [16, 17]. In the renormalization group (RG) analysis performed
in 2 − ε dimensions, cf. Refs. [18, 20], the regime of critical disorder shows a linear dependence on
energy in contrast to our results and those of the mean field analysis [16, 17]. However, we assume
that the SCBA approach is more reliable also in the regime of critical disorder since the RG analysis
is performed far from the critical dimension with ε = −1. The prove of this statement is delegated to
further work.

In the absence of magnetic field, we further evaluated the conductivity in the three regimes consid-
ering the dc limit and the ac conductivity at zero temperature. As already shown in Ref. [30], the
limits of temperature to zero and external frequency to zero do not interchange in the regime of weak
disorder, Eqs. (3.22) and (3.23), while for critical and strong disorder those limits are interchangeable,
Eq. (3.24), (3.25), and (3.28). In Weyl semimetals, it is crucial to include vertex corrections already
for pointlike impurities. This was shown in Ref. [81] for weak disorder in the dc limit. We discuss
vertex corrections in the full range of disorder and for the ac conductivity. As a result, we obtain
that the vertex corrections are of particular importance in the limit of strong disorder. In the limit
of strongest disorder, the conductivity saturates with disorder strength originating from a diffusion
dominated conductivity with a suppression of backscattering, cf. Fig. 3.5.

The limit for very strong disorder with the strongly diffusive conductivity is justified within a model
of smooth disorder where strong disorder is manifested by the correlation length instead of a rather
strong impurity potential. For smooth disorder, we find that the appearance of the disorder critical
point persists at the Weyl point cf. Fig. 3.6. The density of states is thus vanishing below βb ∼ 1
and can be approximated with Γsmooth ∼ Λb

√
βb for β � 1 in full analogy to the case of pointlike

impurities. The results in absence of magnetic field are prepared to be submitted for publication [141].
We further analyzed the density of states in pointlike impurities in the presence of a magnetic field,

Sec. 3.4. The analysis was performed in the Born approximation as well as in the SCBA. We find that
the broadening of Landau levels is not described in the Born approximation. To analyze the Landau
level broadening in dependence of disorder, magnetic field, and energy, it is required to consider self-
consistent Born approximation. This can be related to the absence of magnetic field, where the Born
limit does not lead to critical disorder. The appearance of critical disorder survives in the presence
of magnetic field. In the regime of strong disorder in presence of finite magnetic field, however, all
Landau levels overlap, Eq. (3.76). Moreover, it is important to emphasize that the density of states at
the Weyl point in presence of magnetic field is finite already without disorder, Eq. (3.83). This means
that finite magnetic field has a similar effect on the density of states as strong disorder. Another salient
aspect of Landau level broadening is that the magnetic field dependent broadening leads to an increase
of broadening for increasing magnetic field, Fig. 3.12, which stands in strong contrast to conventional
materials. Related to disorder, the Landau level broadening increases with increasing disorder strength
as expected. Moreover, we find that the background density of states becomes larger than the density
of states of the peaks of Landau levels before the Landau levels overlap, cf. Fig. 3.11, leading to a
interesting physics in the magnetoconductivity, cf. Ch. 4. We published the results for the density of
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3 Disorder in Weyl semimetals

Table 3.1: Disorder in Weyl semimetals in absence of magnetic field in the three different models
of disorder: (i) pointlike impurities, (ii) smooth disorder, and (iii) long-range Coulomb impurities.
The comparison is based on the differences and similarity in the density of states at the Weyl node
and in the conductivity.

Γ(ε = 0), Density of states conductivity

Coulomb finite at the Weyl node, Eq. (3.90) limits ω → 0 and T → 0 interchangeable
impurities

weak strong weak strong

pointlike, zero, finite, ω → 0 and T → 0 ω → 0 and T → 0
smooth Eqs. (3.14), (3.39), Eqs. (3.14), (3.39), non-interchangeable, interchangeable,
disorder and Figs. 3.1, 3.38 and Figs. 3.1, 3.38 Eqs. (3.22) and (3.23) Eq. (3.28)

states in the presence of magnetic field in Ref. [83].
In Sec. 3.5, we introduced a model of screened Coulomb impurities as relevant due to scattering

on donors and acceptors is important in 3D. We find that screening is dominant in the disorder
potential for “fine-structure” constants in the order of unity or larger. In addition, screening depends
on temperature, magnetic field and chemical potential. In particular, the magnetic field dependent
screening is present in the zeros Landau level and will play an important role in the consideration of
the magnetoresistance as discussed in Ch. 4.

In the presented analysis of disorder, internode scattering between the different Weyl nodes is ne-
glected. Internodal scattering is believed to be smaller than the intranode scattering as discussed here.
However, even weak internode scattering will become important for the effects as the chiral anomaly.
Since this thesis is restricted to the discussion of the transversal magnetoresistance where the chiral
anomaly does not play an important role, we assume that the obtained results will not be crucially
affected by internode scattering.
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4 Chapter 4

Magnetoresistance in Weyl semimetals

One of the main goals of the present thesis is to calculate the transversal magnetoresistance (TMR)
in Weyl semimetals as it was measured in several experiments [3–9]. Transversal magnetoresistance
in this case means that the magnetic field is perpendicular to the measured current and the applied
electric field. In experiment, a positive, linear magnetoresistance up to high magnetic fields is observed.
The linear behavior starts at very low magnetic field, where Shubnikov-de Haas oscillations (SdHO)
are observed, and persists in highest fields, where the system is in the ultra quantum limit meaning
only the zeroth Landau level contributes to transport. Of particular interest is also the magnitude of
the measured magnetoresistance ranging from 104 − 106%.

Theoretically, the quantum linear magnetoresistance was obtained by Abrikosov [82] for Dirac
semimetals when only the zeroth Landau level is filled. As we showed in Ref. [83], the magnetore-
sistance in the quantum limit strongly depends on the chosen model of disorder. This result will be
reviewed in the following chapter. The linear behavior in Ref. [82] originates from the magnetic field
dependent screening of Coulomb impurities which matches to our results. For pointlike impurities in
the quantum limit, the magnetoresistance vanishes with 1/H at the charge neutrality point as dis-
cussed in Ref. [83]. This result was recently confirmed by a numerical calculation in Ref. [87]. For
lower magnetic fields and at charge neutrality, the broadening of the Landau levels leads to a rich
structure of regimes in particular for finite temperature. The broadening due to finite temperature
was established in Ref. [83] and is presented in the proceeding chapter. Furthermore, we discuss the
effects of SdHO where we considered finite chemical potential. We analyze the magnetoresistance for
Coulomb impurities for a large fine structure constant, cf. Sec. 3.5. This should be contrasted to
Ref. [85], where the magnetoresistance is evaluated for small fine structure constant. However, the
results in Ref. [85] are consistent with our results.

Another important aspect of magnetotransport for Weyl semimetals is the chemical potential. As
we will discuss below in this chapter, a finite Hall conductivity cancels the magnetoresistance (except
at the peaks of the Landau levels). In real materials however, the different pairs of Weyl nodes are
shifted in energy with respect to each other. This means that the whole system is close to the charge
neutrality point while the different pairs of Weyl nodes can have a comparably large chemical potential.
Therefore, in Sec. 4.5 we consider a model of Weyl nodes shifted in energy such that the system is at the
complete charge neutrality point, cf. Fig. 4.12. The presented results for the magnetoresistance in the
case of finite chemical potential and for shifted nodes is based on Ref. [84]. There is a certain overlap
of our results with the results obtained in Ref. [86], where the magnetoresistance was calculated for
finite chemical potential and finite temperature in Born approximation. We however go beyond these
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4 Magnetoresistance in Weyl semimetals

results by using self-consistent Born approximation and consider both pointlike and charged impurities.
Moreover, we consider the magnetoresistance with fixed chemical potential and fixed particle density.
It is worth mentioning that the analysis is performed for non-interacting particles discarding possible
contributions to the magnetoresistance by the classical memory effect, cf. Ref [88], or interactions.

In this chapter, we present the calculation of the conductivity, Sec. 4.1, and the Hall conductivity,
Sec. 4.2, of a disordered Weyl semimetal. The conductivity is discussed for both finite temperature
and finite chemical potential. While the Hall conductivity is absent at the charge neutrality point, we
discuss the Hall conductivity for finite chemical potential and low temperature. With the results for the
conductivity and Hall conductivity, we determine the magnetoresistance and compare our results with
the experimental findings. The magnetoresistance is calculated within two different models of disorder:
(i) pointlike impurities and (ii) charged impurities. Furthermore, the calculation is performed in several
regimes of temperature and chemical potential: (i) finite temperature and zero chemical potential,
Sec. 4.3, (ii) finite chemical potential and zero temperature Sec. 4.4, and (iii) a model of shifted Weyl
nodes in energy corresponding to complete charge neutrality, Sec. 4.5. In each regime, we start with the
analysis of pointlike impurities and continue with charged impurities. In Sec. 4.5, we discuss the results
most relevant to experiment qualitatively according to the experimental observations. We summarize
our findings in the end of this chapter, Sec. 4.6.

4.1 Conductivity

Using the model of disorder for finite magnetic field as introduced in Sec. 3.4, we calculate now the
conductivity σxx of a Weyl semimetal within Kubo formalism, cf. Sec. 2.2. We concentrate on the case
of weak disorder, β � 1 and will briefly discuss the case of strong disorder in end of this section. The
real part of the conductivity within Kubo formalism reads

σxx(ω, T ) =

∫
dε

2π

fT (ε)

ω

∫
d3p

(2π)3
Tr

{[
ĜR(ε,p)− ĜA(ε,p)

]
ĵtr
x Ĝ

A(ε− ω,p)ĵx

+ĜR(ε+ ω,p)ĵtr
x

[
ĜR(ε,p)− ĜA(ε,p)

]
ĵx

}
, (4.1)

where ĵx = evσx is the bare current operator and ĵtr
x = V trĵx is the current vertex dressed by disorder

with

V tr ' Ω2 + 4iεΓ

Ω2 + 8
3 iεΓ

. (4.2)

Here, Ω is the distance between zeroth and first LL and Γ is the LL broadening, cf. App. C.2 for
the details of the calculation of the current vertex. The effect of disorder manifests itself in the use
of the impurity-averaged Green’s function and in the vertex corrections V tr. In Weyl semimetals, the
calculation of the conductivity requires to take vertex corrections into account already at the level
of pointlike impurities (similar to graphene) as already discussed in Ref. [81]. For weak disorder and
in the absence of magnetic field, the difference of transport scattering time and quantum scattering
time is marked by the inclusion of vertex corrections which is τ tr = 3/2τ q as calculated in Ref. [81].
Therefore, we can first calculate the conductivity and include the effect of vertex corrections in the
final steps of the calculation.
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4.1 Conductivity

For V tr = 1, the evaluation of the trace and the use of the orthogonality of the wave functions of
the different LLs transforms Eq. (4.1) into

σ(0)
xx

(
T
)

=
e2v2

T

∫
dε

2π

1

cosh2
(
ε−µ
2T

) ∑
n

eH

2πc

∫
dpz
2π

ImGR11(ε, n, pz) ImGR22(ε, n, pz), (4.3)

where the Green’s functions are written in the Landau level representation. Since the self-energy of the
zeroth Landau level differs from those of the other, the following calculations are performed separately
for the zeroth LL and higher LLs. For both regimes, zeroth LL and higher LLs, we derive the integral
over energy and then evaluate this integral first for µ = 0 and then for T = 0. For small chemical
potential, µ < Ω, and low temperatures, T < Ω, excitations to higher LLs are exponentially suppressed
and the conductivity is dominated by the contribution of the zeroth LL. For higher temperatures,
excitations to higher Landau levels are possible and therefore, the conductivity is determined by
contributions of zeroth LL, separated and overlapping LLs. For µ > Ω however, the conductivity is
determined by the position of the chemical potential with respect to separated and overlapping LLs.

4.1.1 Small chemical potential, µ < Ω, and low temperature, T < Ω: Zeroth Landau
level

We start with the consideration of the situation when the zeroth Landau level, broadened due to
disorder by the parameter A ∼ γΩ2, is the dominant contribution to the conductivity. This is realized
under the following assumptions: (i) the zeroth LL is separated from the first one, which is fulfilled
under the condition A � Ω; (iia) for zero chemical potential µ = 0, temperature must fulfill T < Ω;
(iib) the chemical potential satisfies µ < Ω, while the temperature is close to zero, T → 0. The current
vertex corrections are calculated in App. C.2 which are small under the conditions for transport
dominated by the zeroth LL with V tr(ε � Ω) ∼ A/Ω � 1 for energies close to the Weyl node. The
difference between quantum and transport scattering time in the regime of the dominant zeroth LL
contribution can be disregarded in the following calculations. With a negligible real part of self-energy
(ReΣ ∼ βε� ε, see Sec. 3.4, and the imaginary parts ImΣ1 ' A and ImΣ2 ' 0, the Green’s functions
read

GR11(ε, n, pz) '
ε+ vpz

(ε+ iA− vpz)(ε+ vpz)− Ω2n
, (4.4)

GR22(ε, n, pz) '
ε+ iA− vpz

(ε+ iA− vpz)(ε+ vpz)− Ω2(n+ 1)
.

(4.5)

Substituting Eqs. (4.4) and (4.5) in Eq. (4.3) and separating the n = 0 term in the sum over all LLs,
the conductivity is written as

σxx =
e2Ω4A2

(2π)2v

∫
dε
∂fT (ε)

∂ε

∫
dz

2π

 1[
(ε− z)2 +A2

] 1[
(ε2 − z2 − Ω2)2 +A2(ε+ z)2

]
+

Nmax∑
n=1

(ε+ z)2(n+ 1)[
(ε2 − z2 − Ω2n)2

] [
(ε2 − z2 − Ω2(n+ 1))2

]
 , (4.6)
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4 Magnetoresistance in Weyl semimetals

where Nmax is the number of LLs within the energy bandwidth Λ.
We consider first the case of zero chemical potential, µ = 0, and low temperature, T < Ω. Under

these assumptions, we can set ε = 0 and arrive at (z = vpz)

σxx =
e2Ω4A2

2π2v

∞∑
n=0

∫
dz

2π

 z2[
(z2 + Ω2n)2 +A2z2

] (n+ 1)[
(z2 + Ω2(n+ 1))2 +A2z2

]
 . (4.7)

Evaluating the remaining integral under the condition A < Ω (condition for separation of the zeroth
and first Landau level), we find that the sum for n > 0 converges and contributes as e2A2/(Ωv). The
terms for n = 0 provide however a contribution as e2A/v. Thus, the conductivity for µ = 0 and T < Ω
is dominated by the zeroth Landau level, yielding

σxx(T < Ω < v3/γ) ' e2A

(2π)2v
=

e2

16π3

γΩ2

v4
∝ γH. (4.8)

The resulting conductivity is proportional to both disorder strength and magnetic field.
For finite chemical potential, µ < Ω, the integration over ε is performed for T = 0. As for finite

temperature, we find that the contribution of non-zero Landau levels, n > 0 in the summation above,
is of the order e2A2/(Ωv). The dominant term is coming from the zeroth LL, reading

σxx =
e2Ω4A2

(2π)2v

∫
dz

2π

1[
(µ− z)2 +A2

] [
(z2 + Ω2)2

] ' e2A

(2π)2v
, (4.9)

which is equal to the result of µ = 0, see Eq. (4.8). The corrections to Eq. (4.9) for a finite but small
chemical potential, µ < Ω, are small in the parameter Aµ2/Ω3 and do not essentially affect σxx.

4.1.2 Large chemical potential, µ > Ω, and high temperature, T > Ω

For high temperatures, T > Ω or large chemical potentials, µ > Ω, the situation is more subtle. As
analyzed in Sec. 3.4, the spectrum is subdivided in three domains for a given magnetic field: (i) in the
spectrum of the low-energy part the Landau levels are separated, (ii) the intermediate region consists
of separated Landau levels, but the height of an individual LL is small compared to the background
density of states, and, finally, (iii) the LLs overlap for higher energies. For high temperatures, T > Ω,
energies ε > Ω are involved in thermal averaging such that these three domains will contribute to the
conductivity. At low temperatures, the three domains become apparent due to the position of the
chemical potential which will strongly affect the conductivity. The unusual broadening of LLs will lead
to an unconventional shape of the SdHO.

In the following, we will derive the general properties of the conductivity within Kubo formalism. In
view of this result, we will analyze the conductivity first for finite temperature and µ = 0 and second
for low temperature T ∼ 0 and finite chemical potential. In both regimes, the structure of the spectrum
leads to a distinction between the three different cases: (i) fully separated LLs, (ii) separated LLs, but
large background density of states, and (iii) fully overlapping LLs. For all three regimes, we can neglect
the energy band asymmetry and write the self-energy in terms of LL broadening: ImΣ1 = ImΣ2 = −iΓ.
The Green functions are of the form

GR11(ε, n, pz) '
ε+ vpz + iΓ

(ε+ iΓ)2 − v2p2
z − Ω2n

, (4.10)

GR22(ε, n, pz) '
ε+ vpz + iΓ

(ε+ iΓ)2 − v2p2
z − Ω2(n+ 1)

, (4.11)
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4.1 Conductivity

We substitute these Green functions into the formula for the conductivity (4.3) and perform the
summation over n and integration over pz. The details of the calculation can be found in App. B.1.
The result is given by

σxx =
e2Ω2

2π2v

∫
dε
dfT (ε)

dε

2Γε4

Ω2
[
Ω4 + (4εΓ)2

]
4

3
+

Ω2

ε

(
Γ

Aε
− 2ε

Ω2

) . (4.12)

The magnetoconductivity can be expressed by the semiclassical Drude formula in the three domains
of the spectrum of the density of states with an energy-dependent transport scattering time τ tr and
an effective cyclotron frequency ωc(ε), reading

σDxx =
e2v2

6π

∫
dε

4T cosh2
(
ε−µ
2T

) ν(ε)τtr(ε)

1 + ω2
c (ε)[τtr(ε)]2

. (4.13)

Here, the transport scattering time, τtr(ε), takes into account the current vertex corrections in jtr
x ,

calculated in App. C.2. The transport scattering time is related to the quantum time τq = (2Γ)−1 via
τtr = (3/2)τq.

The above statement, that the magnetoconductivity can be expressed by the semiclassical Drude
formula, can be understood by the following relations: the Landau level broadening for energies ε� ε∗,
which holds for overlapping Landau levels and for large background density of states compared to the
particular Landau levels, is given by

Γ(ε) = 2A
ε2

Ω2
=

3

4τtr(ε)
. (4.14)

The SCBA relation between the density of states and the scattering time is

ν(ε)τtr(ε) =
3

4πγ
, (4.15)

and the semiclassical expression for the cyclotron frequency in the linear spectrum yields

ωc(ε) =
v2

l2Hε
=

Ω2

2ε
. (4.16)

Using Eq. (4.14), we can express the conductivity for energies ε� ε∗ as:

σxx '
e2

π2

AΩ2

vT

∫
dε

cosh2
(
ε−µ
2T

) ε6

(8Aε3)2 + 9Ω8/4
. (4.17)

Now, we use Eq. (4.17) to evaluate the conductivity for µ = 0 and finite temperature.

For high temperatures, T > Ω, in the energy range Ω < ε < ε∗, where Landau levels are separated,
thermal averaging effectuates that the conductivity is still dominated by the low-lying LLs with n < Nε,
leading to Eq. (4.17) also in this regime. This argument is presented in App. B.1. Therefore, the
semiclassical Drude formula (4.13) can be applied for all temperatures T � Ω. For graphene, a similar
result was obtained at the charge neutrality point in Refs. [150] and [151].
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4 Magnetoresistance in Weyl semimetals

In the following, we analyze the magnetic-field dependence of the conductivity for T > Ω. For fully
separated Landau levels and separated Landau levels with large background, ε < ε∗∗ = Ω(Ω/A)1/3,
the denominator of the integrand in Eq. (4.17) is dominated by Ω8, leading to

σxx ' 4e2

9π2

AΩ2

vT

∫
dε

cosh2
(
ε

2T

) ε6

Ω8
=

62π3

189

e2γT 6

v4Ω4
∝ 1

H2
(4.18)

for Ω < T < ε∗∗. For higher temperatures, T > ε∗∗, the term proportional to Ω8 in the denominator
of the integrand is negligible in Eq. (4.17), which results in

σxx ' e2

π2

AΩ2

vT

∫
dε

cosh2
(
ε

2T

) ε6

(8Aε3)2
=
e2v2

2πγ
. (4.19)

Here, we obtained just the conductivity in the absence of magnetic field. The magnetic field dependent
correction to this result, determining the low-field magnetoresistance, yields

δσxx ' −
e2v3

4

(
π

18

)1/3 Ω2/3

γ4/3T
∝ − H1/3

γ4/3T
. (4.20)

This correction is non-analytic in H.
The behavior of all regimes in the temperature-magnetic field plane is visualized in Fig. 4.1 where

the scaling of the dominant contribution(s) to the conductivity is shown. We find that the conductivity
is dominated by the Drude formula (4.13) down to the lowest Landau level, T ∼ Ω. The conductivity
in the different regimes is summarized as

σxx ∼



e2γΩ2

v4
∝ H, T � Ω,

e2γT 6

v4Ω4
∝ 1

H2
, Ω� T � ε∗∗ =

vΩ2/3

γ1/3
,

e2v2

γ
, T � ε∗∗.

(4.21)

The magnetic field dependent correction to the conductivity in the last regime, T � ε∗∗, is described
by Eq. (4.20).

Figure 4.1 shows moreover that the limits H → 0 and T → 0 are not interchangeable for weak
disorder. Expressed in formulas, performing first the limit H → 0 and then T → 0 yields

lim
T→0

lim
H→0

σxx(H,T ) =
e2v2

2πγ
, (4.22)

while for setting first T → 0 and then H → 0, we obtain

lim
H→0

lim
T→0

σxx(H,T ) = 0. (4.23)

This emphasizes the peculiar transport properties at the Weyl point. As discussed in Sec. 3.2 and first
considered in Ref. [30], a similar behavior was also found in the absence of magnetic field. Specifically, in
absence of magnetic field, a distinction between the order of the limits T → 0 and ω → 0 was mandatory
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 92, 205113 (2015)

Copyright 2015 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.92.205113]

Figure 4.1: Dominant scaling behavior of the conductivity σxx in a Weyl semimetal for weak
white-noise disorder as a function of temperature and magnetic field in each of the parameter
regime is shown. Equations describing borderlines between the domains are also indicated.
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4 Magnetoresistance in Weyl semimetals

for weak disorder, while in the strong disorder regime, the order of the limits was interchangeable (cf.
Refs. [152] and [30] and Sec. 3.2 for details). Due to a finite density of states at the Weyl point
in the presence of magnetic field, the limits ω → 0 and T → 0 become interchangeable also for weak
disorder. The elimination of the non-interchangeability of two limits by magnetic field (for any disorder
strength) or by strong disorder is reasoned by the generation of a finite density of states at the Dirac
point (ε = 0).

Now, we turn to the consideration of finite, large chemical potential, µ > Ω and low temperature.
The definition of low temperature differs for the domains of fully separated and overlapping Landau
levels. We will discuss the exact condition in the corresponding paragraphs. As for finite temperature,
Eqs. (4.12) and (4.17) apply for the magnetoconductivity. First, let us consider the domain of fully
separated LLs. The relevant energies to ensure the separation of Landau levels satisfy Ω � ε �
Ω(Ω/A)1/5. Under the assumption that the chemical potential is located within one of the LLs and
the temperature is low (lower then Landau level width), the conductivity for a general LL broadening
is given by the second term in Eq. (4.12), reading

σxx '
e2Ω2

π2vA

∫ ∞
−∞

dεδ(ε− µ)
4Γ2ε2

9Ω4
' 4e2µ2Γ2

9π2vAΩ2
. (4.24)

The broadening of the LLs in Weyl semimetals in general is discussed in App. A.3. In the following,
we will however distinguish between the Landau levels broadening at the peak of the Landau level and
the background density of states. At the peak of one particular Landau level, the broadening is given
by Γ = (A/2)2/3ε1/3, which results in the conductivity in the center of LLs (in the following denoted

by σpeak
xx ) of

σpeak
xx ∼ γ1/3µ8/3

Ω4/3
. (4.25)

With a broadening of Γ ∼ γε2 of the background density of states, the conductivity of the background,
denoted by σbg

xx, reads

σbg
xx '

2e2γµ6

9π3v4Ω4
. (4.26)

For the location of the chemical potential of Ω(Ω/A)1/5 � ε � Ω(Ω/A)1/3, the Landau levels are
separated, but the background density of states is already large. Here, the Ω8-term in the denominator
of Eq. (4.17) dominates, leading to

σxx '
4e2AΩ2

9π2vT

∫
dε

cosh
(
ε−µ
2T

) ε6

Ω8
=

2e2γ

9π3v4Ω4

(
µ6 + 5π2µ4T 2 + 7π4µ2T 4 +

31

21
π6T 6

)
' 2e2γµ6

9π3v4Ω4
.

(4.27)

The last step in Eq. (4.27) corresponds to the low-temperature limit (here the condition T � µ is
sufficient).

Finally, in the regime of overlapping LLs valid for higher chemical potential, ε > Ω(Ω/A)1/3, we
neglect Ω8 in the denominator of Eq. (4.17), which leads to

σxx =
e2AΩ2

π2vT

∫
dε

cosh2
(
ε−µ
2T

) ε6

(8Aε3)2
=
e2v2

2πγ
. (4.28)
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4.1 Conductivity

Similar as for finite temperature, the conductivity of overlapping Landau levels and finite chemical
potential coincides with the conductivity σxx,0 in the absence of magnetic field and does not depend
on the chemical potential.

A summary of the results for the conductivity in the different regimes with respect to magnetic field,
chemical potential, and disorder strength are given by

σxx=
e2

π2v



v3π

2γ
, Ω� µ3/2γ1/2

2γµ6

9πv3Ω4
, µ3/2γ1/2 �Ω�µ5/4γ1/4,

32πv3µ2Γ2(µ)

9γΩ4
, µ5/4γ1/4 � Ω < µ,

γΩ2

32πv3
, µ < Ω� γ−1.

(4.29)

As usual, a comparison between the results for finite temperature, Eq. (4.21), and finite chemical poten-
tial, Eq. (4.29), shows that the differences are manifested in the thermal averaging. The consequences
of the thermal averaging for magnetotranstranport are discussed in more detail in Sec. 4.4.

This paragraph is concluded by a discussion of magnetooscillations for overlapping Landau levels.
Magnetooscillations of the conductivity are caused by the oscillations of the density of states ν(ε) and
of the transport scattering time τtr(ε), see Ref. [153]. The density of states with magnetooscillations
for Weyl semimetals is given by

ν(ε) = ν0

1 +
∞∑
k=1

√
ωc(ε)

2kε
δk

[
cos

πkε

ωc(ε)
+ sin

πkε

ωc(ε)

] , (4.30)

where

δ = exp

[
− π

ωc(ε)τq(ε)

]
is the Dingle factor determined by the quantum scattering time τq. Note that the frequency of the
oscillations for a conventional 3D material with parabolic dispersion (see Ref. [154]) is a factor of 2
larger then in the case of Weyl semimetals. In the 2D case of graphene [151], a similar behavior is
encountered in comparison to conventional 2D materials. Via the energy dependent cyclotron frequency
ωc, the non-equidistant behavior of the LLs for relativistic dispersion relations is expressed . The first
harmonics, k = 1 is the least damped term and therefore sufficient to consider for ωc(ε)τq(ε) � 1,
which corresponds exactly to the condition of overlapping LLs.

Using Eqs. (4.30) and (4.15), the oscillatory contribution to the conductivity (the SdHO) for the
case of overlapping LLs results in

σxx 'σxx,0

1 +
3γµ2

2πv3Ω
exp

(
− γµ3

v3Ω2

)cos

(
2πµ2

Ω2

)
+ sin

(
2πµ2

Ω2

)
 , (4.31)

where σxx,0 is the smooth part of the conductivity calculated above [Eq. (4.28)]. In contrast to the
case of separated LLs, the SdHO are exponentially damped in the regime of overlapping LLs as it is
the usual situation.
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4.1.3 Magnetoconductivity for strong disorder

We conclude this section by a brief discussion of the magnetoconductivity in the case of strong disorder,
β = γ/γc ∼ γΛ/v3 � 1. As discussed in Sec. 3.4.5, the strong broadening of all Landau levels
(broadening is in the order of the ultraviolet cutoff) leads to the fact that all Landau levels overlap. The
conductivity can be calculated under applying the semiclassical Drude formula (4.13) complemented
by Eqs. (3.76), (3.78), (4.15), and (4.16). The magnetic-field dependence of the conductivity is now
governed by the parameter

ωc(ε̃)τ(ε̃) ∼ Ω2

Γ2
∼ Ω2

Λ2
. (4.32)

Here, the energy ε̃ is replaced by the level broadening Γ ∼ Λ. The conductivity is mainly dominated
by a magnetic-field independent term with a weak quadratic-in-H correction for finite magnetic field
(here we do not write the numerical prefactor in the H-dependent correction)

σxx ∼ e2v2

γc

∫
dε

T

1

1 + Ω4/Λ4
∼ e2v2

γc

(
1− Ω4

Λ4

)
,

δσxx ∼ −e
2Ω4

vΛ3
∝ −H2. (4.33)

The quadratically in H vanishing correction to the conductivity in strong disorder should be contrasted
to the conductivity for weak disorder which vanishes non-analytically (proportional to H1/3).

4.2 Hall conductivity

This section is devoted to the analysis of the Hall conductivity. The Hall conductivity is described by
the Kubo-Streda formula [138], reading

σxy=
i

2π

∫
dεfT (ε)Tr

[
ĵtr
x

dGR

dε
ĵyImG− ĵtr

x ImGĵy
dGA

dε

]
, (4.34)

where ĵx = evσx and ĵy = evσy are the bare current operators. As for the calculation of the conduc-
tivity, ĵtr

x = V trĵx with V tr being the current vertex dressed by disorder. The vertex corrections are
given by Eq. (4.2) which will be included in the final steps of the calculation. The Hall conductivity is
split up into a normal, σI

xy, and an anomalous, σII
xy, contribution. This is particularly convenient for

the calculation with disorder. The normal contribution can be simplified by using the orthogonality
of the wave functions of different LLs, leading to

σI
xy =

e2Ω2

(2π)2

∫
dε
dfT (ε)

dε

∫
dpz
2π

∑
n

[
GR

22ImG11 −GR
11ImG22 − ImG22G

A
11 + ImG11G

A
22

]
. (4.35)

This contribution is determined by the states near the Fermi level. The anomalous contribution, as
discussed in Sec. 2.2, reflecting the thermodynamic properties of the system in the presence of magnetic
field, can be written as

σII
xy = e

∂N(H,µ)

∂H
. (4.36)
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Here, the electron density N is defined as

N(H,µ) =
1

V

∑
p

fT (εp) =

∫ ∞
−∞

dε
ν(ε)

exp
(
ε−µ
T

)
+ 1

. (4.37)

In the following, the Hall conductivity is first calculated in the clean case, and then disorder is incor-
porated via the density of states ν(ε) and the transport scattering time τ tr.

4.2.1 Clean case

As a first step, we calculate the Hall conductivity in the clean case and discuss in the proceeding
section how disorder affects the Hall conductivity. The Green’s functions in Landau level representation
without disorder can be expressed as

G11(ε, pz, n) =
∑
λ

(
1 +

λvpz
εn

)
1

ε− λεn + i0
, (4.38)

G22(ε, pz, n) =
∑
λ

(
1− λvpz

εn+1

)
1

ε− λεn+1 + i0
. (4.39)

First, we perform the calculation for the normal part of Hall conductivity and substitute the Green’s
function from Eqs. (4.38) and (4.39) in Eq. (4.35). Evaluating the integral over energy ε and the
summation over energy bands λ leads to the normal contribution to the Hall conductivity of

σI
xy = −e

2Ω2

4πT

∫
dpz
2π

∞∑
n=1

Re

 n

εn

 1

cosh2
(
εn+µ

2T

) − 1

cosh2
(
εn−µ

2T

)

 . (4.40)

For zero temperature, T = 0, the normal contribution is expressed as the following sum over Landau
levels:

σI
xy =

e2Ω2

2π2v

(µ/Ω)2∑
n=1

n√
µ2 − Ω2n

. (4.41)

For chemical potential located at the center of one particular LL, µ = Ω
√
n, the normal contribution

to the Hall conductivity shows singularities, cf. Fig. 4.2a).
To obtain the anomalous contribution to the Hall conductivity, we use Eq. (4.36) and the density

of states ν(ε) of a Weyl semimetal in the clean case, Eq. (3.45). The evaluation of the integral in
Eq. (4.37) for T = 0 and the calculation of the derivative of N with respect to magnetic field H results
in

σII
xy = −e

2Ω2

2π2v

µ2/Ω2∑
n=1

n√
µ2 − Ω2n

+
e2

4π2v

µ+ 2

µ2/Ω2∑
n=1

√
µ2 − Ω2n

 . (4.42)

The singularities of the first term of Eq. (4.42), when the chemical potential is at the center of one
particular LL, are opposite of those of the normal contribution from Eq. (4.41), cf. Fig. 4.2b). Thus, in
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.2: Normal part of the Hall conductivity a), anomalous part b), and the total Hall
conductivity c) of a clean Weyl semimetal. In all three panels, the curves correspond to fixed
chemical potential and are plotted as functions of magnetic field (Ω2 ∝ H). The Hall conductivity
for fixed particle density is visualized in the inset of panel c) The red dashed curve in panel c)
corresponds to the smoothened Hall conductivity (with SdHO subtracted).
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4.2 Hall conductivity

the total Hall conductivity, these singularities are exactly canceled. The cancellation of the singularities
is not a feature due to zero temperature, but occurs in the clean case for arbitrary T , as demonstrated
in App. B.3.

In leading order, the evaluation of the sum over LLs with Euler-Maclaurin formula results in

σxy '
e2

4π2v


µ, µ < Ω,

4µ3

3Ω2
, µ > Ω.

(4.43)

Equation (4.43) describes the smoothened part of the Hall conductivity in the limit µ > Ω. On top of
this background contribution, an oscillatory part is induced by the Landau quantization. In Fig. 4.2,
where the Hall conductivity (normal and anomalous part and the total Hall conductivity) without
disorder is presented, the oscillations induced by Landau quantization can be seen clearly in case of
fixed chemical potential. Already from the results in the clean case, one can expect that disorder
changes the total Hall conductivity only weakly since the disorder-induced broadening would only
smoothen the oscillatory part of the curve.

Further, the Hall conductivity can be expressed in terms of a fixed particle density N instead of
a fixed chemical potential, as relevant to experiments. We find that the magneto-oscillations in the
chemical potential are exactly canceled by the oscillations in the particle density:

σxy = 2e2v2 N

Ω2
, (4.44)

cf. inset in Fig. 4.2c). Here, the density N is chosen in such a way that N = 0 corresponds to the
chemical potential located at the Dirac point, µ = 0.

Before considering the effects of disorder on the Hall conductivity, we will briefly discuss the effect of
finite temperature on the Hall conductivity. For T < µ, the Hall conductivity is essentially unaffected
by temperature. However, for comparably large temperatures, µ < T , the Hall conductivity is given
by the Sommerfeld expansion. The Hall conductivity is given by

σxy '
e2

4π2v


µ T < Ω,

π2

3

µT 2

Ω2
T > Ω.

(4.45)

In contrast to the Hall conductivity for zero temperature, the oscillations in Landau levels for temper-
atures T > Ω are smeared due to temperature.

4.2.2 Normal part of the Hall conductivity in the presence of disorder

Now, we analyze the effects of disorder on the normal part of the Hall conductivity. As explained in
Sec. 3.4, it is relevant to distinguish again between the cases of chemical potential positioned below
the first zeroth LL or positioned at higher LLs. We consider low temperatures, T → 0, throughout the
whole section.

We start with the case of the Hall conductivity of the zeroth Landau level. The calculation is
performed under the following conditions: (i) the zeroth LL is separated from higher LLs, A� Ω; (ii)
excitations to higher LLs are suppressed, µ < Ω. Substituting the Green functions for energies close
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to the zeroth LL, Eqs. (4.4) and (4.5), into the normal part to the Hall conductivity, Eq. (4.35), the
equation transforms to

σI
xy =− e2Ω2A

(2π)2v

∫
dz

2π

∑
n

 A2(µ+ z)3 + (µ+ z)2(µ− z)[µ2 − z2 − Ω2(n+ 1)][
(µ2 − z2 − Ω2n)2 +A2(µ+ z)2

] [
(µ2 − z2 − Ω2(n+ 1))2 +A2(µ+ z)2

]
− (µ+ z)(µ2 − z2 − Ω2n)Ω2(n+ 1)[

(µ2 − z2 − Ω2n)2 +A2(µ+ z)2
] [

(µ2 − z2 − Ω2(n+ 1))2 +A2(µ+ z)2
]
 , (4.46)

where z = vpz.
As in the evaluation of the conductivity of the zeroth Landau level, Eq. (4.6), we will split the

summation over the LL index into the term with n = 0 and the terms with n > 0. In contrast to
Eq. (4.6), the terms with n > 0 and the term n = 0 are of the same order in σI

xy. Under the assumptions
A� Ω and µ < Ω, the leading order gives

σI
xy '

5e2Aµ

4(2π)2vΩ
∼ e2

v4
γµΩ. (4.47)

Compared to a clean system, where the normal part is absent for a chemical potential positioned in
the zeroth Landau level, this rather small result (linear in disorder) matches. It will turn out in the
proceeding section that the term (4.47) is negligible in comparison with the anomalous contribution
to the Hall conductivity.

Now, we proceed with higher chemical potential µ > Ω and analyze the contribution of higher LLs
to σI

xy. As already discussed for the conductivity, Sec. 4.1, the difference between the self-energies of
the two bands can be neglected for ε� Ω. Thus, the Green’s functions (4.10) and (4.11) are applicable
in Eq. (4.35). For the detailed calculation, we refer the reader to App. B.2. The normal part of the
Hall conductivity yields

σI
xy '

e2Ω2

2π2v

∫
dε
dfT (ε)

dε

ε3

Ω4 + (4εΓ)2

4

3
+

Ω2

ε

(
Γ

Aε
− 2ε

Ω2

) . (4.48)

In the limit of vanishing disorder, Γ → 0, the clean case is reproduced in Eq. (B.30) before the sum
of all Landau levels is evaluated. Similarly to σxx, we can express the normal contribution to the Hall
conductivity in the form of a semiclassical Drude formula:

σI,D
xy '

e2v2

6π

∫
dε

4T cosh2
(
ε−µ
2T

) ν(ε)τtr(ε)ωc(ε)[τtr(ε)]

1 + ω2
c (ε)[τtr(ε)]2

. (4.49)

For fully separated Landau levels, Ω� µ� Ω(Ω/A)1/5, Eq. (4.48) is dominated by the second term.
In the limit T → 0, the normal part reads

σI
xy =

e2Ω2

2π2v

∫
dεδ(ε− µ)

2Ω2ε2

Ω4 + (4εΓ)2

Γ

Aε
' e2µΓ(µ)

2π2vA
. (4.50)

We continue with the evaluation of the Hall conductivity for a larger chemical potential, i.e. in
the regime where the LLs are separated but the contribution of the background density of states
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dominates corresponding to Ω(Ω/A)1/5 � µ � Ω(Ω/A)1/3. In this case, the expressions for the
density of states, transport scattering time, and cyclotron frequency are given by Eqs. (4.14), (4.15),
and (4.16), respectively. Substituting these expressions in Eq. (4.48), we find

σI
xy =

e2

π2v

∫
dε

1

4T cosh2
(
ε−µ
2T

) ε3

Ω2
=

e2µ3

π2vΩ2

(
1 +

π2T 2

µ2

)
. (4.51)

For fully overlapping LLs, µ� Ω(Ω/A)1/3, the normal contribution to the Hall conductivity is

σI
xy '

3e2Ω2

2π2v

∫
dε

1

4T cosh2
(
ε−µ
2T

) π2v5

γ2ε3
=

3e2v5Ω2

2µ3γ2
, (4.52)

where Eq. (4.48) was evaluated under the condition Ω4 < (4εΓ)2 with the use of Eqs. (4.14), (4.15),
and (4.16).

4.2.3 Anomalous part of the Hall conductivity in the presence of disorder

In this Section, we discuss the anomalous contribution to the Hall conductivity in the presence of
disorder. The anomalous part to the Hall conductivity is calculated by Eqs. (4.36) and (4.37). In
order to apply this definition of the anomalous part, we subtract the contribution of states below the
charge neutrality point in the calculation of the particle density. These states do not contribute to the
Hall conductivity as it is shown explicitly in App. B.3 for the clean case. However, the statement holds
for finite but weak disorder under the condition, γΛ < 1, as considered here. The density of states of
a disordered Weyl semimetal can be expressed as

ν(ε) = − 1

πγ

(
ImΣ1 + ImΣ2

)
. (4.53)

As in the former parts of the chapter, we distinguish between the zeroth LL and higher LLs in the
self-energy. For the zeroth LL, the self-energy, as analyzed in Sec. 3.4, is

ImΣ1 = −A and ImΣ2 = 0, (4.54)

which is valid in the regime µ < Ω. In this regime and for weak disorder, γΛ� 1, the anomalous Hall
conductivity is disorder independent, yielding

σII
xy ' e

∂

∂H

∫ ∞
0

dε
1

exp
(
ε−µ
2T

)
+ 1

A

πγ
=

e2µ

4π2v
, (4.55)

The result for the ac anomalous Hall conductivity σxy(ω), obtained in Ref. [155], matches to the result
obtained here in the limit ω → 0.

For µ > Ω, we need to consider again the three domains of the density of states: (i) fully separated
Landau levels, (ii) separated Landau levels, but large background density of states compared to the
value of the particular Landau level, (iii) overlapping Landau levels. In particular for separated Landau
levels, µ < Ω(Ω/A)1/3, the density of states depends strongly on the actual position of the chemical
potential with respect to the center of a given LL. The shape of one Landau level consists of the peak
at the center of the LL, the tail of the LL, and the background, as visualized and discussed in App. A.3.
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In the case of separated LLs with large background and for overlapping LLs, the main contribution of
the density of states comes from the background. The anomalous Hall conductivity for µ > Ω in its
general form reads

σII
xy = e

∂

∂H

∫ µ

0
dε

2Γ(ε)

πγ
, (4.56)

where Γ(ε) is given by Eq. (3.65) and includes the complete shape of the density of states for µ > Ω.
Applying the same approximations as in the calculation of σI

xy, the anomalous Hall conductivity in
the disordered case results in

σII
xy '

∑
n

e2

2π2v

Aµ

Γn(µ)
− e2µΓ(µ)

2π2vA
=
∑
n

e2

2π2v

Aµ

Γn(µ)
− σI

xy, (4.57)

where Γn is defined in Eq. (3.65). The limit of vanishing disorder is reproduced by the limit Γ→ 0 in
Eq. (3.65). Moreover, for non-overlapping LLs, in the sum over all Landau levels, the broadening of
LLs in Eq. (4.57) is only important in the term of the particular LL where the chemical potential is
located; for all other n one can replace Aµ/Γn(µ) with

√
µ2 − Ω2n, as in Eq. (4.42). As in the limit

without disorder, the smoothened part of the Hall conductivity for separated LLs, µ3/2γ1/2 � Ω < µ,
reads

σxy '
e2

4π2v

4µ3

3Ω2
. (4.58)

We find that oscillations are minor compared to the smoothened Hall conductivity. Thus, in the
calculation of the magnetoresistance, we will neglect the effect of oscillations in the Hall conductivity
and use Eq. (4.58) in the following sections. The effects of disorder on the Hall conductivity is depicted
in Fig. 4.3, where the oscillatory part of the Hall conductivity is shown.

For overlapping LLs, the main term in the broadening, given by Γ = 2Aε2/Ω2, is independent of
magnetic field and results in an absent anomalous Hall conductivity in leading order. As described
above for the conductivity, corrections due to magnetic field for overlapping LLs are governed by the
Dingle factor. Therefore, the particle density for zero temperature reads

N(H,µ) =

∫ µ

0
dεν(ε)

1 +

√
ωc(ε)

2ε
δ

[
cos

πε

ωc(ε)
+ sin

πε

ωc(ε)

] . (4.59)

This results in an exponentially decaying anomalous contribution to the Hall conductivity due to the
exponentially small Dingle factor for overlapping Landau levels. The same applies to the transversal
magnetoresistance. The magnetoresistance will therefore always be dominated by effects of finite
temperature for overlapping Landau levels which is discussed in the following section.

4.3 Magnetoresistance at finite temperature

The magnetoresistance quantifies the difference between the resistivity ρxx(H) in a finite magnetic
field and the zero-field resistivity ρxx(0) and is defined as

∆ρ(H) =
ρxx(H)− ρxx(0)

ρxx(0)
. (4.60)
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.3: Numerically calculated oscillatory part of the anomalous part of the Hall conductivity
in presence of disorder obtained by the numerical solution of the equation for the self-energy,
Eq. (4.57). Blue, red, and green curves correspond to Aµ/Ω2 = 10−5, 10−4, 10−3, respectively. For
all three curves, the ultraviolet cutoff was set to Λ/Ω = 100.

The resistivity is given by ρxx = σxx/(σ
2
xx + σ2

xy). Thus, with the results of the previous sections,
it is straightforward to calculate the magnetoresistance. The transversal magnetoresistance (TMR),
expressed in terms of the conductivity and the Hall conductivity, reads

∆ρ(H) =
σxx(0)σxx(H)

σ2
xx(H) + σ2

xy(H)
− 1 (4.61)

In this section, we focus on the case of finite temperature with zero chemical potential µ = 0. Therefore,
the Hall conductivity is zero and the magnetoresistance simplifies to

∆ρ(H) =
σxx(0)

σxx(H)
− 1. (4.62)

In the following, this relative magnetoresistance is calculated for both models of disorder, pointlike
impurities and charged impurities.

4.3.1 Pointlike Impurities

For pointlike impurities, the conductivity is summarized in Eq. (4.21). We keep the value of Tγ
constant and analyze the evolution of the magnetoresistance with increasing magnetic field by the
use of Eq. (4.21). This corresponds to a vertical cross-section in Fig. 4.1. The magnetoresistance in
different regimes of Landau level broadening yields

∆ρ =



π4/3

122/3

vΩ2/3

γ1/3T
, Ω� γ1/2T 3/2

v3/2
,

189

124π4

v6Ω4

γ2T 6
− 1,

γ1/2T 3/2

v3/2
� Ω� T,

8π2 v6

γ2Ω2
− 1, T � Ω� v3

γ
.

(4.63)
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 92, 205113 (2015)

Copyright 2015 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.92.205113]

Figure 4.4: Schematic magnetoresistance for the case of white-noise disorder in the weak disorder
regime (the parameter Ω2 ∝ H shows the dependence on magnetic field). The range of magnetic
field for the depicted magnetoresistance is relatively weak, Ω � v3/γ. For larger fields, the mag-
netoresistivity would vanish. The dominant scaling of the magnetoresistance in different regimes,
boundaries of the regimes and the corresponding values of ∆ρ are indicated.

Increasing the magnetic field further than Ω > v3/γ, the Landau levels overlap again leading to a
vanishing magnetoresistance. A schematic plot of the magnetoresistance in different regimes is shown
in Fig. 4.4.

We should stress that the vanishing density of states of Weyl semimetals at ε = 0 in zero H translates
into the non-analytic, H1/3, behavior of the magnetoresistance for weak pointlike impurities, which
survives in the limit of H = 0. The non-analytic behavior in Weyl semimetals should be contrasted to
the case of graphene, where a H1/2-magnetoresistance was found in Ref. [150]. There, the square-root
magnetoresistance does not actually persist down to H → 0 due to the fact that even weak white-noise
scalar disorder is marginally relevant in graphene establishing a finite density of states at the Dirac
point. Although the H1/2 behavior of the magnetoresistance in graphene may persist to very weak
magnetic fields, the true H → 0 asymptotics of the magnetoresistance is parabolic. Weak white-noise
disorder in 3D systems with linear spectrum is by contrast irrelevant and cannot establish a finite
density of states at ε = 0 leading to the remarkable observation of the non-analyticity of the TMR.
This non-analyticity is another manifestation of the unconventional behavior at the Weyl node similar
to the non-commutativity of the limits T → 0 and ω → 0 in zero magnetic field. A non-analytic
behavior of the magnetoconductivity in Weyl semimetals is also found in Ref. [156]. The non-analytic
function of the magnetic field proportional to |H|3/2 in this work originates from a singularity of the
Berry curvature at small momenta.

It is worth emphasizing that in the limit of low temperatures T → 0, the TMR for pointlike impurities
is very sharp, cf. Fig. 4.4. The maximum of the magnetoresistance is at H ∝ T 2 with ∆ρ ∝ 1/T 2

resulting in an infinite magnetoresistance at zero magnetic field for T → 0. This manifests the non-
commutativity of the limits T → 0 and H → 0 discussed in Sec. 4.1.
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 92, 205113 (2015)

Copyright 2015 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.92.205113]

Figure 4.5: Conductivity σxx in a Weyl semimetal with Coulomb impurities in the temperature-
magnetic field-plane. Dominant scaling of conductivity in each parameter regime is shown (the
Fermi velocity v is set to unity). Equations describing borderlines between the regimes are also
indicated. Numerical coefficients are denoted by the symbol #.

4.3.2 Charged Impurities

In order to calculate the magnetoresistance of charged impurities, we need to consider first the conduc-
tivity for this model of disorder, discussed in Sec. 3.5. To find the conductivity, we should substitute
γ(H,T ) ∼ γ−3

0 [max(Ω, T )]−4 for γ in the results for the conductivity of a system with white-noise
disorder. Therefore, we first consider the conductivity for Coulomb impurities and then turn to the
magnetoresistance. As discussed in Sec. 3.5, we do not keep numerical factors and thus also disregard
the vertex corrections (they only modify these factors for weak disorder). We start the consideration
with the low-temperature regime, T � Ω, when the screening is controlled by the magnetic field. In
contrast to the conductivity of pointlike impurities, all LLs overlap for low magnetic field Ω < εimp,
and the conductivity is essentially equal to that at zero magnetic field, see below. For larger magnetic
fields, Ω > εimp, only the zeroth LL contributes. With A ∼ Nimpv

3/Ω2, the conductivity of the zeroth
Landau level yields

σxx ∼
e2A

v
∼
e2ε3

imp

vΩ2
∼ e2Nimpv

2

Ω2
∝ 1

H
. (4.64)

This result agrees with the result obtained by Abrikosov in Ref. [82]. We find that the magnetic
field dependence of the conductivity for Coulomb impurities differs strongly from that of white-noise
disorder.

For higher temperatures, T > Ω, the conductivity is characterized by a temperature-dependent
screening. For such temperatures, contributions of higher LLs become important. The conductivity
is evaluated by the use of the semiclassical expression (4.13), the cyclotron frequency (4.16) and the
scattering time due to temperature-dependent screening

1

τ(ε)
∼ γ(T )ε2

v3
∼
ε3

impε
2

T 4
. (4.65)
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A more detailed analysis reveals the necessity to distinguish between several regimes. The regime
of separated Landau levels (fully separated and separated with large background) translates into the
condition ε < Ω2/3T 4/3/εimp. In the Drude formula for the conductivity (4.13), one can neglect the
unity in the denominator of the integrand. Therefore, the conductivity of a system with screened
Coulomb impurities for T > ε3

imp/Ω
2 results in

σxx ∼
e2T 2ε3

imp

vΩ4
∼ e2T 2Nimpv

2

Ω4
∝ 1

H2
. (4.66)

For lower temperatures, T < ε3
imp/Ω

2, magnetic field can be neglected in the range of ε which
dominates the conductivity:

σxx ∼
e2v2

γ(T )
∼ e2T 4

vε3
imp

∼ e2T 4

v4Nimp
. (4.67)

The H-dependent correction to this result needs to be divided in two different subregimes. First, the

subregime defined by ε3
imp/T

2 < Ω < ε
3/2
imp/T

1/2 provides a result similar to Eq. (4.20):

δσxx ∼ −
e2v2

γ(T )

Ω2/3T 1/3

εimp
∼ −e

2T 13/3

v5N
4/3
imp

Ω2/3 ∝ −H1/3.

(4.68)

In weakest magnetic fields, Ω < ε3
imp/T

2, the parameter εimp is larger then the energies dominating the
magnetic-field dependence of the conductivity. Thus, ε needs to be replaced by εimp in the parameter
ωcτ :

ωcτ ∼
Ω4T 8

ε12
imp

. (4.69)

The correction to the conductivity caused by magnetic field in lowest magnetic field, Ω < ε
3/2
imp/T

1/2,
yields

δσxx ∼ −
e2Ω4T 11

vε14
imp

∝ −H2. (4.70)

As a consequence, we find that the non-analytic (H1/3) magnetoresistance does not persist in the limit
H → 0 for the case of charged impurities, in contrast to the case of white-noise disorder.

For low temperatures, T < εimp, and weak magnetic fields, Ω < εimp, all Landau levels overlap.
Thus, a zero-H calculation, as performed in Refs. [149] and [157], should be applicable. The result of
those papers, expressed in our notations, is

σxx ∼ e2N
1/3
imp ∼

e2εimp

v
. (4.71)

This regime corresponds to strong disorder meaning that the H-dependent correction to the conduc-
tivity can be calculated under the assumption that 1/τ ∼ Γ ∼ εimp and ωc ∼ Ω2/Γ as discussed in
Sec. 4.1.3. Therefore, similar to Eq. (4.33), the H-dependent correction to Eq. (4.71) for Ω� T � εimp

reads:

δσxx ∼ −
e2Ω4

vε3
imp

∝ −H2. (4.72)
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Finally, in the regime T � Ω � εimp an analogous consideration with 1/τ ∼ Ω2/εimp yields no H
dependent correction to the leading order.

The conductivity in all regimes is visualized in the temperature-magnetic field-plane in Fig. 4.5 where
the dominate scaling in each regime is shown. Furthermore, the results are summarized according to
the parameter T/εimp, yielding

σxx ∼


e2ε3

imp

vΩ2
∝ 1

H
, Ω� T,

e2εimp

v

(
1− Ω4

ε4
imp

)
, Ω� T

(4.73)

for T/εimp < 1. In the opposite limit for higher temperatures, more regimes are relevant

σxx∼



e2ε3
imp

vΩ2
∝ 1

H
, Ω� T,

e2ε3
impT

2

vΩ4
,

ε
3/2
imp

T 1/2
� Ω� T,

e2T 4

vε3
imp

(
1− #Ω2/3T 1/3

εimp

)
,

ε3
imp

T 2
� Ω�

ε
3/2
imp

T 1/2
,

e2T 4

vε3
imp

(
1− #Ω4T 7

ε11
imp

)
, Ω�

ε3
imp

T 2
.

(4.74)

The symbol # denotes numerical coefficients in these equations and in Fig. 4.5. In contrast to pointlike
impurities, the limits T → 0 and H → 0 are interchangeable for Coulomb impurities.

Now, we can use the obtained results for the conductivity to calculate the magnetoresistance, similar
to the calculation with white-noise disorder in Sec. 4.3.1. More specifically, we fix the parameter T/εimp

and then consider the magnetoresistivity for an increasing magnetic field.

For T/εimp < 1, the magnetoresistivity is obtained by using Eq. (4.73), leading to

∆ρ ∼


Ω4

εimp
, Ω� εimp,

Ω2

εimp
− 1, εimp � Ω.

(4.75)

The behavior in the high field limit obtained here was identified in an early work by Abrikosov,
Ref. [82]. For lower magnetic fields, the magnetoresistance is dominated by overlapping Landau levels.
This implies that the conductivity is in leading order given by the conductivity in the absence of
magnetic field resulting in a quadrically vanishing magnetoresistance. The magnetoresistance for low
temperatures and charged impurities is schematically visualized in Fig. 4.6.

79



4 Magnetoresistance in Weyl semimetals

[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 92, 205113 (2015)
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Figure 4.6: Schematic magnetoresistivity for a Weyl semimetal with Coulomb impurities in the
limit of low temperatures, T < εimp. The parameter Ω2 ∝ H shows the dependence on magnetic
field. The dominant scaling of the magnetoresistance in different regimes, boundaries of the regimes
and the corresponding values of ∆ρ are indicated.

[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 92, 205113 (2015)

Copyright 2015 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.92.205113]

Figure 4.7: Magnetoresistvity of a Weyl semimetal with Coulomb impurities in the temperature
limit, T > εimp, in the full range of magnetic fields a). Panel b) shows the magnified low-field
region. In both panels, the parameter Ω2 ∝ H shows the dependence on magnetic field. The
dominant scaling of the magnetoresistance in different regimes, boundaries of the regimes and the
corresponding values of ∆ρ are indicated.
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4.4 Magnetoresistance at finite chemical potential

For sufficiently high temperatures, T/εimp > 1, we find the magnetoresistivity by using Eq. (4.74)

∆ρ ∼



Ω4T 7

ε11
imp

, Ω�
ε3

imp

T 2
,

Ω2/3T 1/3

εimp
,

ε3
imp

T 2
� Ω�

ε
3/2
imp

T 1/2
,

T 2Ω4

ε6
imp

− 1,
ε

3/2
imp

T 1/2
� Ω� T,

Ω2T 4

ε6
imp

− 1, T � Ω.

(4.76)

The magnetoresistivity in highest magnetic fields shows again a linear behavior in magnetic field. In
the low-field limit, a quadratic dependence on magnetic field dominates the magnetoresistance. The
behavior in the full range of magnetic field is visualized in Fig. 4.7. We continue this section by an
analysis of the Shubnikov-de Haas oscillations in the magnetoresistance, which cannot be described in
the model with zero chemical potential as considered in this section since the zero chemical potential
already sits in the zeroth LL.

4.4 Magnetoresistance at finite chemical potential

The magnetoresistance is in general given by Eq. (4.61) which is stated again for clarity

∆ρ(H) =
σxx(H)σxx(0)

σ2
xx(H) + σ2

xy(H)
− 1.

Since we consider now finite chemical potential, we need to employ the results for the conductivity,
Sec.4.1, and the Hall conductivity, Sec. 4.2.

The magnetoresistance is either dominated by a large conductivity, σxx � σxy, resulting in

∆ρ(H) ' σxx(0)

σxx(H)
− 1 (4.77)

or dominated by a large Hall conductivity, σxy � σxx, leading to

∆ρ(H) ' σxx(H)σxx(0)

σ2
xy(H)

− 1. (4.78)

The proceeding section is divided in two parts, one considering pointlike impurities and another dis-
cussing charged impurities. In both parts, we will distinguish between fixed chemical potential and
fixed particle density. Let us start with pointlike impurities.

4.4.1 Pointlike impurities

We start this section with the analysis of the magnetoresistance for pointlike impurities and fixed
chemical potential. In this case, in lowest magnetic fields, Ω2 < µ3γ, all LLs overlap. In this regime,
Drude formula, Eqs. (4.28) and (4.52), determines the conductivity and the normal Hall conductivity,
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leading to a vanishing TMR. Corrections in this regime are given by the exponentially small anomalous
Hall conductivity, cf. Eq. (4.59). This means that effects of a finite temperature (as discussed in the
previous section) will dominate the magnetoresistance.

For larger magnetic fields, µ3γ < Ω2 < µ5/2γ1/2, the separated LLs are dominated by the large
background density of states compared to the peaks of the Landau levels. In this region, we find that
the conductivity, Eq. (4.27), is smaller than the Hall conductivity, Eq. (4.58). With Eq. (4.78), the
magnetoresistance remains zero.

In the range, µ5/2γ1/2 < Ω2 < µ2, of magnetic field, the Landau levels are pronounced. Still,
Eq. (4.78) applies for the magnetoresistance meaning that the conductivity is small compared to
the Hall conductivity. However, the oscillations in the conductivity are strong due to the strong
oscillations of the scattering rate while the Hall conductivity is nearly unaffected by the oscillations.
Using Eq. (4.24) for the conductivity and Eq. (4.58) for the Hall conductivity, the TMR is

∆ρ(H) ∼ Γ2(µ)

γ2µ4
− 1. (4.79)

This leads to

∆max
ρ (H) ∼ Ω8/3

µ10/3γ2/3
(4.80)

at the peak (with the conductivity at the peak given by Eq. (4.25)) and zero background TMR (as in
the previous region).

Stronger magnetic fields, µ < Ω < γ−1, result in a TMR determined by carriers at the zeroth LL. In
this domain, the TMR determined by the conductivity, Eq. (4.9), and the Hall conductivity, Eq. (4.55)
is split into two subregions. For magnetic fields up to Ω2 < µγ−1, σxy is larger than σxx, resulting in

∆ρ ∼
Ω2

µ2
− 1, (4.81)

where Eq. (4.78) is applied. For yet higher magnetic fields, µ1/2γ−1/2 < Ω < γ−1, the opposite limit
becomes valid. Using Eq. (4.77), we obtain

∆ρ ∼
v6

γ2Ω2
− 1. (4.82)

We summarize the results for the magnetoresistance for fixed values of µ and γ and increasing the
magnetic field:

∆ρ(H) ∼



Γ2(µ)

γ2µ4
− 1,

µ5/4γ1/4

v3/4
� Ω < µ,

Ω2

µ2
− 1, µ < Ω� µ1/2v3/2

γ1/2
,

v6

γ2Ω2
,

µ1/2v3/2

γ1/2
� Ω� v3

γ
.

(4.83)

In the first line, for µ > Ω� µ5/4γ1/4v−3/4, the function Γ(µ) is given by Eq. (3.65), determining the
oscillations in the TMR ranging from zero to a maximum value proportional to H4/3. This oscillatory
behavior is visualized in Fig. 4.8.
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Let us point out that the TMR is only sizable for the zeroth LL (for magnetic fields Ω > µ). In
lower magnetic fields, only the different shape of the oscillations in the conductivity and the Hall
conductivity provides a small magnetoresistance. In a smoothened curve, the TMR is absent. In the
regime of the zeroth LL, we find a linearly growing magnetoresistance as long as σxy is larger than
σxx, and then a decaying TMR (being proportional to H−1) for larger fields H, where σxx � σxy. The
TMR is schematically visualized in Fig. 4.9a).

The calculation of the TMR was so far limited to either zero temperature or zero chemical potential.
In the following, we will briefly analyze the effect of finite temperatures together with a finite chemical
potential. Landau levels are smeared for temperatures T > Ω/

√
n. We consider now fully separated

LLs in the regime of low chemical potential, Ω < µ < Ω(Ω/A)1/5, since the other regimes remain nearly
unaffected by temperatures T < µ. For temperatures T > µ, the scaling of the conductivity and the
Hall conductivity changes with respect to temperature and chemical potential while the scaling with
respect to magnetic field is not affected.

However, the contribution of the LLs in the vicinity of the chemical potential µ−T < Ω
√
n < µ+T

is affected by such temperatures and will be analyzed in the following. The corresponding contribution
to the conductivity is estimated by replacing the integral over energy by a sum over regions of width
Γ(n)(Wn) around Landau levels, and using for Γ(n)(ε) its maximal value Γ(n)(Wn) ≡ Γn ∼ A2/3Ω1/3n1/6,
resulting in

σ(n)
xx ∼ e2Ω2

ATv

µ(µ+T )/Ω2∑
n=µ(µ−T )/Ω2

Γn
Γ2
nW

2
n

(4WnΓn)2 + Ω4
∼ e2γµ4

Ω2v4
∝ γµ4

H
. (4.84)

Similar as in Sec. 4.3, the thermally averaged conductivity of separated Landau levels is smaller than
the background conductivity Eq. (4.27), but is important for the otherwise vanishing TMR.

For T < µ, the effect of finite temperature on the Hall conductivity is negligible, cf. Sec. 4.2. The
magnetoresistance is still determined by the Hall conductivity according to Eq. (4.78), yielding

∆ρ(H) ∼ Ω2

µ2
. (4.85)

The obtained linear magnetoresistance, valid for Ω < µ < Ω(Ω/A)1/5, is small and shows exponentially
suppressed SdHO.

In the limit T > µ, the Hall conductivity is given by Eq. (4.45). The magnetoresistance is either
determined by the Hall conductivity, Eq. (4.78), for Ω2 > γT 4/µ or by the conductivity, Eq. (4.77), in
the opposite limit. For Ω2 > γT 4/µ, the magnetoresistance reads

∆ρ(H) ∼ T 2

µ2
+

Ω2

µ2
. (4.86)

and for Ω2 < γT 4/µ, the magnetoresistance is determined by the result of finite temperature at charge
neutrality, Eq. (4.63).

We proceed this section with TMR for the experimentally more relevant situation of a fixed particle
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.8: Numerical evaluation of the TMR for pointlike impurities and fixed chemical potential
in the regime of separated LLs. The figure is based the numerical analysis of the density of states
in Eq. (4.79). Blue, red, and green curves correspond to Aµ/Ω2 = 5 · 10−5, 3 · 10−4, 1 · 10−3,
respectively. The ultraviolet cutoff is Λ/Ω2 = 100 for all curves.

 

[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.9: Schematic illustration of the TMR for pointlike impurities. Panel a) depicts the
magnetoresistance for fixed chemical potential as given in Eq. (4.83) where the shaded region
corresponds to oscillations of separated LLs described in Eq. (4.80) and plotted in Fig. 4.8. In panel
b), the magnetoresistance for fixed particle density is shown with the shaded region corresponding
to the oscillations of separated Landau levels as given by Eq. (4.90).
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4.4 Magnetoresistance at finite chemical potential

density N 1. The particle density was defined in Eq. (4.37) and is evaluated as

N(µ,Ω) =


µΩ2

4π2v3
Ω > µ,

µ3

12π2v3
Ω < µ.

(4.87)

for different relations between magnetic field and chemical potential. We directly observe that the
magnetic-field dependence of the resistivity is only changed for the zeroth LL (in both conductivity
and Hall conductivity) by the particle density. For completeness, we analyze the magnetoresistance
from the lowest relevant magnetic fields, N5/6γ1/2 > Ω2 (below no TMR emerges to the leading order
within the SCBA).

In magnetic fields N5/6γ1/2 < Ω2 < N2/3, the finite TMR at the center of the LLs, Eq. (4.80)
transforms with Eq. (4.87) to

∆max
ρ (H) ∼ Ω8/3

N10/9γ2/3
(4.88)

for a fixed particle density
For increasing magnetic fields, N1/3 < Ω < γ−1, Eq. (4.87) modifies the magnetic field dependence

of the conductivity, Eq. (4.9), and the Hall conductivity, Eq. (4.55), for the zeroth Landau level. The
Hall conductivity is larger than the conductivity up to magnetic fields of Ω < N1/4γ−1/4, resulting in

∆ρ ∼
Ω6

N2
− 1. (4.89)

for the TMR. For stronger magnetic fields, N1/4γ−1/4 < Ω < γ−1, Eq. (4.82) remains unaffected for a
fixed particle density.

The result for fixed N , fixed γ, and increasing magnetic field are summarized as

∆ρ(H) ∼



Γ2(N1/3)

γ2N4/3
− 1,

N5/12γ1/4

v3/4
� Ω <N1/3,

Ω6

N2
− 1, N1/3 <Ω� N1/4v3/4

γ1/4
,

v6

γ2Ω2
,

N1/4v3/4

γ1/4
� Ω� v3

γ
.

(4.90)

We find that the behavior of the TMR at the fixed particle density only changes in the zeroth LL while
for higher LLs, the particle density does not depend on magnetic field. In Fig. 4.9b), the schematic
behavior of the magnetoresistance is illustrated.

To conclude this subsection, we briefly discuss the Hall resistivity ρxy for fixed particle density,
reading

ρxy =
σxy

σ2
xx + σ2

xy

. (4.91)

1In some materials, the Fermi energy might cross additional bands. In this case, the total density is fixed rather than
the density in the Weyl bands. From the point of view of the Weyl bands, this is an intermediate situation between
fixed chemical potential and particle density, see, e.g., Ref. [8].
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We start with lowest magnetic fields, where the Landau levels overlap. In this regime, the anomalous
Hall conductivity is exponentially small, see Eq. (4.59). Thus, the conductivity, Eq. (4.28), and the
normal Hall conductivity, Eq. (4.52) give rise to

ρxy ∼
Ω2

e2v2N
. (4.92)

The Hall conductivity, Eq. (4.44), is larger than σxx for separated Landau levels and also for the zeroth
Landau level in magnetic fields up to Ω ∼ N1/4γ−1/4. This results again in Eq. (4.92) for the Hall
resistivity. For further increasing fields Ω > N1/4γ−1/4, the conductivity of the lowest LL, Eq. (4.9),
has a large contribution, leading to

ρxy ∼
γΩ6

e2v7N2
. (4.93)

Therefore, the Hall resistivity shows a linear behavior up to the highest fields where a rapid increase
as a third power of magnetic field is found.

4.4.2 Charged impurities

Similar as in Sec. 4.3.2, we substitute γ(H,µ) ∼ ε3
impv

3[max(Ω, µ)]−4 for γ in the conductivity and Hall
conductivity, in order to find the TMR. The detailed parameters for the substitution are discussed in
Sec. 3.5. Since we do not keep numerical coefficients, the vertex corrections can be neglected (since
they only change these coefficients). In the following, we will first discuss the modifications of the
conductivity due to charged impurities and then use these results to calculate the magnetoresistance.
Since the Hall conductivity does not depend on disorder in the full parameter regime, it remain
unaffected by these modifications.

Of particular importance for the magnetoresistance, is the substitution for the lowest LL, Ω > µ,
where the screening depends on magnetic field. With the replacement γ → ε3

impΩ−4, the conductivity
for the zeroth LL, Eq. (4.9), modifies to

σxx ∼
e2ε3

imp

vΩ2
. (4.94)

For higher LLs, µ > Ω, the dependence of the conductivity on disorder strength is dependent on
the shape of the Landau level (e.g. the peak, the tail, or the background), cf. App. A.3 for details.
Therefore, we transform the self-consistent equation for the LL broadening, Eq. (3.65), into the case
of Coulomb impurities γ → ε3

impµ
−4, reading

ΓC(µ,Ω) ∼
ε3

impΩ2

µ3

∑
n

√
µ2 −W 2

n +
√

(W 2
n − µ2)2 + 4µ2Γ2

C

√
2
√

(W 2
n − µ2)2 + 4µ2Γ2

C

(4.95)

As for pointlike impurities, the equation is solved in certain parameter regimes. Most important for
the amplitude of the later discussed Shubnikov-de Haas oscillation in TMR will be the value of ΓC at
the center of a particular LL and the background value of ΓC , which are given by

Γpeak
C ∼

ε2
impΩ4/3

µ8/3
ε1/3, Γbg

C ∼
ε3

imp

µ3
ε. (4.96)
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For separated Landau levels, we transform the conductivity for pointlike impurities in this regime,
Eq. (4.24), which is valid for µ3/2γ1/2 < Ω < µ into

σxx ∼
µ2Γ2

AΩ2
→ σxx ∼

µ6Γ2
C

ε3
impΩ4

. (4.97)

for charged impurities. Expressed in terms of chemical potential, magnetic field and disorder strength,
the conductivity at the background and at the peak, respectively, is

σbg
xx ∼

µ2ε3
imp

Ω4
, σpeak

xx ∼ µ4/3εimp

Ω4/3
. (4.98)

The background contribution is valid in the full regime of separated Landau levels, ε
3/2
impµ

−1/2 � Ω < µ

while the peaks apply only for µ1/4ε
3/4
imp < Ω < µ where pronounced Landau levels are present.

Equation (4.28) covers the conductivity for overlapping Landau levels in the model of pointlike
impurities. For Coulomb impurities, the regime of overlapping Landau levels is in a regime of high
chemical potential µ� εimp, where screening due to chemical potential leads to

σxx ∼
e2µ4

vε3
imp

, (4.99)

and in a regime of low chemical potential, µ < εimp, where the zero magnetic field calculations as
discussed in Sec. 4.3.2 apply,

σxx ∼
e2εimp

v
. (4.100)

We summarize the results for the conductivity in the case of charged impurities for increasing
magnetic field for low chemical potential µ� εimp

σxx ∼
e2

v


εimp, Ω� εimp,

ε3
imp

Ω2
, εimp � Ω,

(4.101)

and in the opposite regime of large chemical potential µ� εimp

σxx ∼
e2

v



µ4

ε3
imp

, Ω�
ε

3/2
imp

µ1/2
,

µ6Γ2
C(µ)

ε3
impΩ4

,
ε

3/2
imp

µ1/2
� Ω < µ,

ε3
imp

Ω2
, µ < Ω.

(4.102)

Now, we proceed with the calculation of the magnetoresistance which is dominated either by σxx
or σxy. We start with small chemical potential, µ < εimp, where the regimes of overlapping Landau
levels and of the lowest Landau level are present. As for pointlike impurities, the TMR is exponentially
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small for overlapping Landau levels, valid for magnetic field Ω � εimp. In strongest magnetic fields,
Ω � εimp, the behavior of the magnetoresistance is divided into two subregions: (i) the conductivity,

Eq. (4.94), is larger than the Hall conductivity Eq. (4.55), for Ω� ε
3/2
impµ

−1/2, leading to

∆ρ(H) ∼ Ω2

ε2
imp

− 1; (4.103)

and (ii) magnetic fields, Ω � ε
3/2
impµ

−1/2, result in a TMR determined by a large Hall conductivity,
yielding

∆ρ(H) ∼
ε4

imp

Ω2µ2
− 1. (4.104)

We summarize the results for the TMR of charged impurities for fixed µ and εimp in the parameter
regime µ < εimp. For increasing magnetic field, the TMR reads

∆ρ(H) ∼


ε4

imp

µ2Ω2
,

ε
3/2
imp

µ1/2
� Ω,

Ω2

ε2
imp

, εimp � Ω�
ε

3/2
imp

µ1/2
.

(4.105)

In contrast to the case of finite temperatures for Coulomb impurities, cf. Sec. 4.3.2, we find that
the linear magnetoresistance persist up to highest magnetic fields for fixed chemical potential in fields

smaller than ε
3/2
impµ

−1/2. In the opposite regime, the TMR at fixed chemical potential vanishes as H−1.
However, the behavior of the TMR in the ultra-quantum limit differs for the case of a fixed density,
where the TMR keeps growing linearly as discussed below.

In the opposite regime, µ > εimp, the TMR is finite for fields larger than µ1/4ε
3/4
imp. In lower fields,

the density of states is either dominated by overlapping Landau levels or the background of separated
Landau levels. Both cases lead to a negligible TMR for the reasons discussed in Sec. 4.4.1. For

µ1/4ε
3/4
imp � Ω� µ, the Landau levels are pronounced which gives rise to a finite TMR at the center of

Landau levels. Since the Hall conductivity, Eq. 4.58, is still larger than σxx, a finite TMR corresponds
to the peaks of the conductivity, Eq. (4.98):

∆ρ(H) ∼ Ω8/3

µ2/3ε2
imp

− 1. (4.106)

In high magnetic fields, Ω > µ, the TMR of the quantum limit is now fully determined by the Hall

conductivity. The parameters for the relation σxy > σxx are Ω > ε
3/2
impµ

−1/2 [cf. Eq. (4.94) and (4.55)]
which is valid in the complete domain of the zeroth Landau level. Thus, the TMR is given by (using
Eq. (4.78))

∆ρ(H) ∼ µ2

Ω2
− 1. (4.107)
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.10: Schematic illustration of TMR for Coulomb impurities. Panel a) visualizes the
magnetoresistance at a fixed chemical potential, µ � εimp. The dominant scaling of the mag-
netoresistance corresponds to Eq. (4.108). Panel b) illustrates the magnetoresistance for fixed
particle density, N � ε3

imp. The scaling of the different regimes is given by Eq. (4.112). In both
panels, the shaded regions corresponds to separated Landau levels and gives rise to the peaks of
the Shubnikov-de Haas oscillations.

The regimes of a sizable TMR for µ > εimp are summarized for fixed values of µ and εimp and
increasing magnetic field as

∆ρ(H) ∼


Γ2
Cµ

4

ε6
imp

− 1, µ1/4ε
3/4
imp � Ω < µ,

µ2

Ω2
− 1, µ < Ω,

(4.108)

where ΓC(µ,Ω) is defined in Eq. (4.95) defining the magnetooscillations of the conductivity. Compared
to pointlike impurities, the TMR changes essentially only for the lowest Landau level, Ω > µ, where the
screening is magnetic-field dependent. For higher LLs, the screening dominated by chemical potential
transforms only the dependence on chemical potential and disorder strength εimp in Fig. 4.8. The
schematic behavior of the TMR is illustrated in Fig. 4.10a). Moreover, the behavior of the TMR in
the chemical potential-magnetic field plane is presented in Fig. 4.11a).

We continue the discussion of the TMR for fixed particle density as relevant for experiments as
discussed in the previous section. The particle density is unaffected by the model of disorder and is
given by Eq. (4.87). For N1/3 � εimp, a non-negligible TMR is found for Ω � εimp where the zeroth
Landau level is important. The conductivity of the zeroth LL, Eq. (4.94), is larger than σxy, in the
full parameter regime. Therefore, the magnetic-field dependence of the resistivity of the zeroth LL is
modified due to the magnetic-field dependence of the particle density. The TMR for N1/3 < εimp reads

∆ρ(H) ∼
Ω2

ε2
imp

, Ω� εimp. (4.109)

This linear TMR in the limit of highest magnetic fields agrees with the results of Refs. [82] and our
findings in Sec. 4.3.2.
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.11: Behavior of the TMR ∆ρ(H) in a Weyl semimetal with Coulomb impurities for
fixed chemical potential a) and for fixed particle density b). Scaling of dominant contribution to
the TMR in each of the parameter regimes (the Fermi velocity v is set to unity) and equations for
borderlines between the regimes are indicated. The striped (filled) parts indicate the regions where
σxy (σxx) dominates the denominator in Eq. (4.61) for the TMR ∆ρ(H). The regions correspond
to the regimes as: blue – zeroth LL, yellow – separated LLs, and green – overlapping LLs. In
the yellow regions of panel a) and b), the contribution describes the magneto-oscillations of the
scattering rate ΓC defined in Eq. (4.95).

In the opposite limit of N1/3 � εimp, a finite TMR at the center of the particular LL is present for

fields larger then N1/12ε
3/4
imp, yielding at those peaks

∆ρ(H) ∼ Ω8/3

N2/9ε2
imp

− 1. (4.110)

In strongest magnetic fields Ω > N1/3, the comparison of the conductivity Eq. (4.94) and the Hall
conductivity, Eq. (4.55), reveals that this regime is dominated by the Hall conductivity (the exact

condition is Ω > ε
3/2
impN

−1/6). Applying Eq. (4.78), the TMR is

∆ρ(H) ∼ Ω2

N2/3
− 1. (4.111)

The results for N1/3 > εimp by increasing magnetic field, merge to

∆ρ(H) ∼


Γ2
CN

4/3

ε6
imp

− 1, N1/12ε
3/4
imp � Ω < N1/3,

Ω2

N2/3
− 1, N1/3 < Ω.

(4.112)

We find a linear TMR in highest magnetic fields in agreement with Eq. (4.109), the results of Sec. 4.3.2,
and with Refs. [82, 86]. Compared to Eq. (4.109), the difference is the replacement of the disorder
scale εimp in the slope of the TMR with N1/3. In lower fields, the TMR remains vanishing with small
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4.4 Magnetoresistance at finite chemical potential

oscillations, see Fig. 4.10b). As for fixed chemical potential, the resulting “phase diagram” for TMR
for fixed density is presented in Figs. 4.11b).

Furthermore, we briefly address finite temperature under the conditions T < µ and T > Ω/
√
n.

The magnetoresistance calculated for pointlike impurities in Sec. 4.4.1 applies here. For fixed particle

density and the regime of separated Landau levels N1/12ε
3/4
imp � Ω < N1/3, the magnetoresistance given

by Eq. (4.85) scales in the same way as the linear magnetoresistance for the zeroth LL [cf. second line
of Eq. (4.112)]:

∆ρ(H) ∼ Ω2

N2/3
. (4.113)

Finally, we consider the Hall resistivity, Eq. (4.91), for fixed particle density. Away from the quantum
limit, the conductivity and Hall conductivity combine into

ρxy ∼
Ω2

e2v2N
(4.114)

similar to the case of pointlike impurities. In the quantum limit, Ω > N1/3, the scaling of the conduc-
tivity, Eq. (4.94), and Hall conductivity, Eq. (4.44), with magnetic field is identical. Therefore, the
Hall resistivity is

ρxy ∼
NΩ2

e2v2ε4
imp

(4.115)

for εimp > N1/3 and

ρxy ∼
Ω2

e2v2N
(4.116)

for εimp < N1/3. When a finite particle density is induced by donors (charged impurities), εimp ∼ N1/3,
which is the physically most relevant situation, the Hall resistivity and the TMR are of the same order.

We conclude this section by outlining its main findings:

(i) For Coulomb impurities and fixed particle density, a linear TMR is present in the ultra-quantum
limit;

(ii) In the experimentally relevant case, εimp ∼ N1/3, the Hall resistivity is of the same order as the
TMR;

(iii) In moderate magnetic fields, strong Shubnikov-de Haas oscillations are observed together with a
negligible background TMR.

All presented findings agree with the numerical results of Ref. [86]. The experimental observations [5]
of a strong linear TMR in the order of the Hall resistivity is in agreement with the results (i) and (ii).
However, the above model treated within the SCBA does not elucidate the origin of the emergence of
the Shubnikov-de Haas oscillations on top of a strongly increasing background TMR as observed in
experiments, contrary to (iii). The next section is devoted to a model that can explain such a behavior.
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.12: Schematic energy band structure of the material with two pairs of Weyl nodes
shifted in energy with respect to each other. The carriers belonging to the two pairs of nodes have
a chemical potential (counted from the corresponding node) of ∆ (electron-type carriers) and −∆
(hole-type), respectively. Thus, the considered system is at the total charge compensation point.

4.5 Magnetoresistance and Shubnikov-de Haas oscillations for shifted
Weyl nodes

We discuss now the magnetoresistance and the Shubnikov-de Haas oscillations of a Weyl semimetal in
a third parameter regime namely a model with Weyl nodes shifted in energy, see Fig. 4.12. This model
applies to various experiments [5, 6], where the different pairs of Weyl nodes are shifted in energy
with respect to each other. In Sec. 1.2, the presented bandstructure of NbP, Fig. 1.2, as extracted
from Ref. [5] emphasizes the relevance of this model further. This shift occurs such that some pairs of
nodes are characterized by a positive chemical potential, whereas other nodes by a negative chemical
potential counted from the corresponding nodal points.

The conductivity, σxx, as an even function of chemical potential, does not depend on the sign of
the chemical potential in a particle-hole symmetric spectrum. Thus, the contributions of different
nodes to σxx can be summed up. The conductivity of each pair of nodes, even exactly at the total
charge compensation, is determined by a finite density of quasiparticles (electrons or holes, N+ and
N−, respectively). This is similar to the consideration of a single node in the previous sections. Let us
emphasize that away from charge neutrality the Shubnikov-de Haas oscillations show a superposition
of oscillations from the pairs of nodes characterized by the different chemical potentials. In contrast,
since the Hall conductivity is an odd function of chemical potential, the Hall conductivity vanishes
at charge neutrality. Thus, for the Hall response, the distance to the complete charge compensation
point is of crucial significance. In realistic cases, this distance is typically smaller than the chemical
potential of each pair of Weyl nodes (see discussion in Ref. [5]).

We essentially analyze a system characterized by a vanishing Hall conductivity, σxy = 0, meaning
the chemical potentials of the different nodes correspond to the total charge compensation point. The
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.13: Numerically obtained TMR as a function of Ω2/∆2 for pointlike impurities and
for Weyl nodes shifted in energy by 2∆. The enlarged panel shows the TMR for separated Lan-
dau levels and focuses on the Shubnikov-de Haas oscillations. The results are obtained by using
Eq. (4.9) for ∆ < Ω and Eq. (4.24) for ∆ > Ω. In both panels red, blue, and green lines correspond
to A∆/Ω2 = 5 · 10−3, 6 · 10−3, 7 · 10−3, respectively. For all curves Λ/Ω2 = 100.

magnetoresistance is then fully identified by the conductivity σxx,

∆ρ(H) =
σxx(0)

σxx(H)
− 1 (4.117)

In the considered model, the carriers in one pair of Weyl nodes have chemical potential ∆ while the
other pair is characterized by the chemical potential of −∆, cf. Fig 4.12, leading to the multiplication
with the number of Weyl nodes in the total TMR. In proceeding sections, we consider the limit of
lowest temperatures, T ∼ 0.

4.5.1 Pointlike impurities

The TMR for the case of zero Hall conductivity and lowest temperatures is evaluated by inverting the
conductivity, Eq. (4.29), in the different regimes. For fixed values of ∆ and γ, we analyze the evolution
of the TMR with increasing magnetic field, yielding

∆ρ ∼



v6Ω4

∆6γ2
− 1,

γ1/2∆3/2

v3/2
� Ω� γ1/4∆5/4

v3/4
,

Ω4

∆2Γ2(∆)
− 1,

γ1/4∆5/4

v3/4
� Ω < ∆,

v6

γ2Ω2
, ∆ < Ω� v3

γ
.

(4.118)

In the regime of separated LLs, γ1/4∆5/4v−3/4 � Ω � ∆, the minima of the Shubnikov-de Haas
oscillations show a sublinear (H2/3) behavior, while the maxima of the TMR scale quadratically with
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magnetic field. In lowest magnetic fields, the TMR vanishes quadratically. Obtained via a numerical
solution of the SCBA equations, we depict the Shubnikov-de Haas oscillations and the TMR in Fig. 4.13.
In highest magnetic fields, we find a TMR decaying as 1/H, similarly to the case of non-shifted Weyl
nodes.

4.5.2 Charged impurities

For charged impurities, the sample can be at the complete charge compensation point (N+ = N−)
for a finite concentration of Coulomb impurities when the concentration of positively and negatively
charged impurities is equal. The conductivity for Coulomb impurities, as analyzed in Sec. 4.4.2 for
finite chemical potential, is given by Eqs. (4.101) and (4.102). For fixed values of ∆ and εimp, we first
calculate the TMR for ∆ < εimp:

∆ρ ∼
Ω2

ε2
imp

, εimp � Ω. (4.119)

For ∆ > εimp, the evolution of the TMR with increasing magnetic field is described by

∆ρ ∼



Ω4∆2

ε6
imp

− 1,
ε

3/2
imp

∆1/2
� Ω� ∆1/4ε

3/4
imp,

Ω4

∆2Γ2
C(∆,Ω)

− 1, ∆1/4ε
3/4
imp � Ω < ∆,

Ω2∆4

ε6
imp

, ∆ < Ω.

(4.120)

In the quantum limit, where only the zeroth Landau level contributes to transport, the large TMR
shows a linear behavior in both limits. The linear TMR in highest magnetic fields is very robust and
is unaffected by the shift of Weyl nodes in energy compared to the case of a single node (cf. Secs. 4.3.2
and 4.4.2).

In lower magnetic fields, the results remain essentially unaffected by the model of disorder. As for
pointlike impurities, the minima of the TMR evolve as H2/3 and the maxima as H2 in magnetic field.
The numerically evaluated results of TMR are presented in Fig. 4.14 for both the regime of magneto-
oscillations and in the ultra-quantum limit of the TMR. Compared to experiments, the overall picture
of the TMR agrees by showing strong Shubnikov-de Haas oscillations on top of the rapidly increasing
background and crossing over into a purely linear TMR without magneto-oscillations in the limit of
highest magnetic field.

Close to the exact compensation point, the Hall resistivity is finite. However, the above picture
for the TMR with magneto-oscillations on top of strong TMR applies as long as σxx � σxy. We
denote by δµ ∝ (N+−N−)1/3 � ∆ the distance from the neutrality point. This translates into a Hall
conductivity of

σxy ∼
e2δµ

v


1, ∆ < Ω,

∆2

Ω2
, ∆ > Ω.

(4.121)

The condition σxx � σxy with the background conductivity given by Eq. (4.98) for ∆ > Ω converts
into

ε3
imp

Ω2
� δµ. (4.122)
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 96, 214209 (2017)

Copyright 2017 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.96.214209]

Figure 4.14: Numercially obtained TMR for Coulomb impurities and shifted Weyl nodes as a
function of Ω2/∆2. The results are obtained from Eq. (4.94) for Ω > ∆ and from Eq. (4.97) for
Ω < ∆. These results nicely match at the border of the regimes in the numerical evaluation. Red,
blue and green lines correspond to ε3

imp/∆
3 = 5 · 10−3, 6 · 10−3, 7 · 10−3, respectively. For all curves

Λ/Ω2 = 100.

For similar concentrations of positively and negatively charged impurities, this condition can be fulfilled
in a wide range of magnetic fields.

4.5.3 Shubnikov-de Haas oscillations and comparison to experiment

In contrast to the model of non-shifted Weyl nodes, the model of shifted Weyl nodes provides an
increasing TMR superimposed by strong Shubnikov-de Haas oscillations. The maxima of the mag-
netooscillations for shifted Weyl nodes correspond to H2 with respect to magnetic field. This is in
contrast to the model of non-shifted nodes where the vanishing TMR shows spikes corresponding to
the center of Landau levels in the density of states. The maxima of these spikes increase with magnetic
field as H4/3.

Before concluding this chapter, we quantitatively compare our results for the TMR for shifted nodes
to the data of the experiment on magnetotransport in NbP [5]. In this experiment, a strong TMR was
measured in a very wide range of magnetic fields up to highest fields where quantum oscillations were
no longer observed. We start with the comparison of the value of magnetic field where oscillations
disappear in the experimentally measured TMR curve, H ∼ 32T, with the value of magnetic field where
transport is manifested by the ultra-quantum limit in our calculation. The value of magnetic field is
determined by the distance between the zeroth and the first Landau level leading to the condition
Ω = ∆. The shift of chemical potential, as presented in the band structure calculations of Ref. [5],
is estimated by ∆ ∼ 0.1eV . As extracted from Ref. 4.14 by the analysis of the magnetooscillation,
the Fermi velocity is v ' 4.8 × 107cm/s. The Fermi velocity together with ∆ = 0.1eV , the condition
Ω = ∆ translates into a magnetic field of H ∼ 30T, which is in good agreement with the experimental
observation. Furthermore, the slope of the linear TMR in experiment [5] of 1.3 · 105% per 1T is again
in a good agreement with our result presented in Fig. 4.14. The magnitude in our calculation is
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determined by ∆/εimp, which is extracted from the zero-field resistivity in experiment: ∆/εimp ∼ 7.
The parameters in Fig. 4.14 are ∆/εimp ∼ 5.2− 5.8. Since the magnitude in Fig.4.14 is compatible to
the one in experiment, the parameter nicely compares. A similar slope of the TMR is found in Ref. [40]
where the range of magnetic field in measurement corresponds to the part of Fig. 4.14 where Ω < ∆.

4.6 Summary of Chapter 4

We conclude this chapter by a summary of the main results. We have studied the transversal mag-
netoresistivity (TMR) in two different models of disorder: (i) pointlike impurities and (ii) charged
impurities. We considered finite temperatures where, away from the lowest Landau level, even mod-
erate temperatures T > Ω/

√
n result in a broadening of Landau levels such that the conductivity is

described by the classical Drude formula. The analysis of magnetotransport away from the charge
neutrality point includes the calculation of the Hall conductivity and the consideration of Shubnikov-
de Haas oscillations. Furthermore, we discuss a realistic model of Weyl nodes shifted in energy (as
found in various Weyl and Dirac semimetals) with chemical potential corresponding to total charge
compensation. A compact summary of the most important results is provided in Tab. 4.1 where we
point out the differences and similarities within the two disorder models.

The behavior of the TMR in strongest magnetic field is very robust. In all considered cases, the
magnetoresistance vanishes as 1/H for pointlike impurities. For charged impurities, a magnetic field
dependent screening leads to a linearly evolving magnetoresistance in the ultra quantum limit for both
finite temperatures and for the model of shifted Weyl nodes. However, it should be noted that the
magnetoresistance for Coulomb impurities in the presence of a finite chemical potential for non-shifted
Weyl nodes is different for the cases of fixed chemical potential and fixed particle density. For fixed
chemical potential and Coulomb impurities, the magnetoresistance in strongest magnetic field vanishes
as 1/H due to the dominant Hall conductivity. The linear magnetoresistance for charged impurities is,
however, restored for the consideration of fixed particle density which is the relevant case in experiment.

In low magnetic fields and for finite temperature, we find a non-analytically ∼ H1/3 vanishing
magnetoresistance in lowest fields for pointlike impurities, Eq. (4.63), while for charged impurities the
TMR vanishes quadratically, Eq. (4.76). The non-analyticity gives rise to the unconventional behavior
of transport at the charge neutrality point.

Away from charge neutrality, we identify a rich variety of regimes related to a competition between
the conductivity and the Hall conductivity. In both models of disorder, this manifests in a negligible
magnetoresistance in lower magnetic fields (even for separated Landau levels) showing peaks at the
center of Landau levels.

In the most sophisticated model (but experimentally relevant) of pairs of Weyl nodes shifted in energy
with respect to each other, we find a huge TMR superimposed by strong magneto-oscillations away from
the lowest Landau level and for both models of disorder. This model is manifested by a fully or partly
compensated Hall conductivity while the conductivity corresponds to the finite particle density in each
pair of Weyl nodes. The strong background TMR evolves as H2/3 with Shubnikov-de Haas oscillations
increasing quadratically with magnetic field. Together with the linearly increasing high-field TMR
for the lowest Landau level in the model of Coulomb, we find an increasing magnetoresistance in a
wide range of magnetic field as observed in experiment. The results for shifted nodes are visualized in
Figs. 4.13 and 4.14. A qualitative comparison with experiment, cf. Sec 4.5.3, shows that the magnitude
of the calculated TMR within the model of shifted Weyl nodes nicely agrees with the magnitude
observed in experiment, cf. Sec. 1.2. It should be noted that we considered two idealized cases: (i) no
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charge compensation between the pair of Weyl nodes, (ii) full charge compensation between the nodes.
The intermediated case of partial compensation as present in experiment [5, 6] would show a variety of
regimes due to the competition between σxx and σxy. Furthermore, a superposition of Shubnikov-de
Haas oscillations from the different nodes would be present.

It should be noted that this chapter does not cover the calculations in the full range of tempera-
tures. We discuss either the case of high temperatures, where magneto-oscillations are exponentially
suppressed due to thermal smearing or the case of vanishing temperature, where thermal smearing
is neglected. Our results without thermal smearing are well applicable for temperatures smaller then
the distance between the Landau levels where strong Shubnikov-de Haas oscillations are observed.
However, thermal smearing leads to a finite magnetoresistance even in the model without shifted
nodes. For temperatures smaller than the chemical potential, we find a small linear magnetoresistance
(cf. Eqs. (4.85) and (4.113)), while the magnetoresistance is large for temperatures where the Hall
conductivity gets negligible.

Finally, we discuss briefly the limitations of the presented model. Effects in the TMR stemming from
mechanisms beyond SCBA were not considered here. The mechanism of classical memory effect was
recently addressed for Weyl semimetals [88] and obtained a magnetoresistance in the order of 1−2 orders
of magnitude compared to the the 5 orders of magnitude in experiment [5]. This mechanism requires
a large correlation radius of disorder which is realized in 3D by a small “fine-structure” constant,
Eq. (3.86) (assumed to be & 1 in the previously discussed case). Moreover, the classical memory effect is
assumed to be suppressed in the ultra-quantum limit compared to conventional materials [158]. In Weyl
semimetals, the chiral zeroth LL requires internodal scattering (inactive for Weyl semimetals) for finite
backscattering. However, a further interesting aspect would be to calculated these memory effects in the
presence of Coulomb impurities and compare the results with those presented here. Another interesting
aspect would be the consideration of interactions. In particular, possible Lutteringer liquid interactions
in the 1D channel in the ultra quantum-limit or the electron-hole recombination in compensated
systems with finite geometry, cf. Ref. [159]. These effects might be important in the regime where
no finite magnetoresistance was observed here, cf. Sec. 4.4, meaning specifically low temperatures
T < Ω/

√
n. However, we do not expect that these additional mechanisms change the overall picture

of the TMR presented here.
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Table 4.1: Summary of the most important results for the TMR in Weyl semimetals. We compare
the results for pointlike impurities and Coulomb impurities in the two columns. The results between
the two columns apply to both disorder models. Moreover, we compare the model of Weyl nodes
shifted in energy with respect to each other with the model of non-shifted nodes.

pointlike impurities Coulomb impurities

non-shifted • non-analytic lowest field TMR • lowest field TMR ∝ H2 at finite T ,

Weyl nodes ∝ H1/3 at finite T , Eq. (4.63) Eq. (4.76) and Fig. 4.7
and Fig. 4.4
• TMR vanishing as ∝ 1/H in • linear TMR ∝ H in the quantum
the quantum limit for fixed N , limit for fixed N , Eq. (4.112) and
Eq. (4.90) and Fig. 4.9 Fig. 4.10

• vanishing TMR in moderate fields
• peaks in the center of LLs for TMR
in moderate fields, Fig. 4.8

shifted • TMR vanishing as ∝ 1/H in • linear TMR ∝ H in the quantum
Weyl nodes the quantum limit, Eq. (4.118) limit, Eq. (4.120) and Fig. 4.14

and Fig. 4.13

• TMR evolving with H2/3

in moderate fields, Figs. 4.13 and 4.14
• strong Shubnikov-de Haas
oscillations in moderate fields,
Figs. 4.13 and 4.14
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5 Chapter 5

Magnetoresistance in carbon nanotubes
with SMMs

This chapter is devoted to a theoretical model for the magnetoresistance (MR) in carbon nanotubes
with the side-attached single-molecule magnets (SMM). As discussed in Sec. 1.4, a giant MR was
observed in these systems [58, 77, 78]. The MR is characterized by the ratio [G(B) − G(0)]/G(0),
where G(B) and G(0) denote the conductance with and without magnetic field, respectively. With a
slow variation of magnetic field, the magnetic moments of the molecules become parallel oriented to
each other resulting in the observation of reproducible sharp jumps for the conductance of the CNTs
tunnel-coupled to the leads. By varying the gate voltage, the MR effect in such nanotube systems
can reach 103%. This spin-valve effect can be by its manifestation compared with the most prominent
giant MR effect in thin metallic films with magnetic contract which is widely used in the field of
spintronics. Other examples for the observation of a similar spin-valve effect are thin graphene strips
with SMMs [79] and in CNTs with permalloy contacts [80].

Theoretically, nanostructures involving SMMs, such as molecular quantum dots coupled to metallic
leads, were discussed in several works. Specifically, the measurement of the spin current as a pos-
sible read-out for the local spin orientation [89], asymmetries in the Coulomb diamonds and Kondo
peaks [90], and the spin-blockade effect associated with a change of magnetic anisotropy [91] were
addressed. The analysis of the tunnel magnetoresistance for a single-walled CNT with side-attached
molecule in Ref. [93] led to the result that the tunneling magnetoresistance may depend on the ex-
change interaction between the CNT and the SMMs [93]. A proposal of a mechanism for the spin-valve
effect for (effectively infinite) CNTs with SMMs was performed in Ref. [92].

In this chapter, we analyze the MR for the CNT with side-attached SMMs tunnel-coupled to leads.
The proposed theoretical model is based on spin-dependent resonant scattering of conducting electrons
on the bound state inside a molecule (Fano resonance) [92, 160, 161]. In order to propose this model,
we first need to consider the effect of the leads on the transport through the Fano state. We proposed
this model of the spin-valve effect in Ref. [94]. There, scattering of electrons on Fano resonances was
addressed in the classical limit. The classical limit is sufficient to explain the spin-valve effect and
thus the MR since the important ingredient, the blocking of transport in the resonant energy region, is
fully described already in the classical limit. Moreover, the classical limit is fully justified in the case
of strong dephasing as discussed below. However, in this chapter, we go beyond the classical limit and
discuss also quantum effects of the leads on a Fano state. The quantum effects are addressed in the
three different approaches, two approaches, where the Fano states is treated perturbatively and the
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conventional scattering matrix approach. The results are in preparation to be published [162].
The chapter is structured as follows. First, we revise the transmission across a Fano state in an

infinite system, Sec. 5.1. Then, we continue the chapter with an analysis of a Fano state in a confined
geometry meaning within two barriers, Sec. 5.2, where we discuss the transmission amplitude in pres-
ence of strong dephasing, Sec. 5.2.1, and in the full quantum mechanical limit, Sec. 5.2.2. In Sec. 5.3,
we apply the consideration of Fano-resonances to SMMs attached to a CNT which is coupled to leads.
Section 5.3.1 explains then the origin of the MR within the model of Fano-resonances. Finally, the
results are summarized and discussed in Sec. 5.4.

5.1 Transmission across Fano state

Fano resonances originate from the quantum mechanical interference of a discrete state and a continuum
of states [160]. Specifically, the electronic wave scattered on the discrete state acquires a phase shift
compared to the waves that do not pass the discrete state. At the Fano resonance, the two waves
interfere destructively resulting in a zero transmission.

Let us start with the Hamiltonian of one-dimensional electrons which are tunnel coupled to a lo-
calized state. We will study the effect of transport in this system without Coulomb interaction. The
Hamiltonian of such a system reads:

Ĥ = E0|ϕ〉〈ϕ|+
∑
k

(
Ek|ψk〉〈ψk|+ tk|ϕ〉〈ψk|+ t∗k|ψk〉〈ϕ|

)
, (5.1)

where E0 denotes the energy of the localized state with the corresponding wave function ϕ, Ek =
~2k2/(2m) and ψk are energy and wave function of the state k in the one-dimensional channel, tk =
〈ϕ|T̂ |ψk〉 is the Bardeen tunneling matrix element [163]. The wave functions ϕ and ψk are assumed to
be orthogonal to each other.

In an infinite channel, the transmission (tM ) and reflection (rM ) amplitudes for the scattering off
the localized Fano state are given by [161] (the subscript “M” stand for the molecular state of the
single molecule magnets as required later in this chapter):

tM =
Ek − EM (k)

Ek − EM (k) + iΓM (k)
, (5.2)

rM =
−iΓM (k)

Ek − EM (k) + iΓM (k)
, (5.3)

where

EM (k) = E0 + P

∫ ∞
0

dp
|tp|2

Ek − Ep
, (5.4)

ΓM (k) = π

∫ ∞
0

dp δ(Ep − Ek)|tp|2. (5.5)

At the resonance point, k0 =
√

2mE0/~2, we denote E0 = EM (k0) and ΓM = ΓM (k0). For an
infinite channel, it is sufficient to take EM (k) and ΓM (k) at the resonant point. The energy scale ΓM
describes the broadening of the localized state originating from the coupling between the 1D channel
and localized state. At the resonance point, it is clearly seen that the Fano state suppresses the
transmission in the window of resonant energy Ek ∼ (E0 − ΓM , E0 + ΓM ). For a confined geometry,
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5.2 Fano-resonance in a double-barrier structure

[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 5.1: Schematic illustration of the origin of the Fano resonance in transmission though an
infinite one-dimensional channel tunnel-coupled with a discrete state (red level). The destructive
interference of waves passing the discrete level without visiting it (path 1) and the waves visiting
the Fano state (path 2) leads to a vanishing transmission for electrons with the resonant energy
(Ek = E0).

however, the broadening of the Fano-resonance is changed by the properties of the boundaries and
may also be momentum dependent, as we will discuss in the proceeding chapter.

A schematic illustration of the appearance of the Fano resonance is depicted in Fig. 5.1. It shows the
interference of the electronic wave that passes the 1D continuum directly without scattering and the
wave that passes via scattering on the discrete state (paths 1 and 2 in Fig. 5.1, respectively). Exactly
at the resonance Ek = E0, path 2 acquired a phase of π leading to zero transmission since the sum
of the two waves vanishes eikx + eikx+iπ = 0. Accordingly, the reflection coefficient reaches maximum
(unity) at the resonance. As a result, the discrete level acts as an effective barrier with a transparency
depending on the energy of scattered electrons.

5.2 Fano-resonance in a double-barrier structure

If the 1D channel is tunnel-coupled to external leads, the coupling to the leads is described by barriers.
The barriers are characterized by the transmission coefficient TL,R and the reflection coefficient RL,R.
Here, the index “L” stands for the left barrier and “R” for the right. If we consider just two equal
barriers, there are resonances in the transmission dependent on the momentum of the carriers of the
channel and length of the system. The resonances originate from destructive interference of the states
between the barriers and the reflected states. Those resonances form energy levels which are broadened
by the strength of the barriers and describe the level spacing in a 1D quantum dot. In the presence
of strong dephasing, the classical transmission and reflection amplitudes apply to the system. In the
following, we will analyze those aspects in the presence of a Fano state and define the conditions to
explain the magnetoresistance in the CNT with side-attached SMMs.

5.2.1 Role of dephasing for tunneling

In real structures, some dephasing is always present. In this section, we illustrate the effect of dephasing
on transport in a one-dimensional case for a simple model with two barriers characterized by the
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transmission/reflection amplitudes tL,R, rL,R. The transmission coefficients for two barriers can be
found by a summation over all paths with transmissions and reflections at the barriers:

t = tLe
ikLtR + tLe

ikLrRe
ikLrLe

ikLtR + . . . = tLtRe
ikL

∞∑
n=0

(
rLrRe

i2kL
)n

=
tLtRe

ikL

1− rLrRei2kL
. (5.6)

To model dephasing, we include a random potential Vr(t) in the Hamiltonian. Specifically, we include
dephasing for a particle moving from one barrier to another by replacing rLrRe

i2kL → rLrRe
i2kLeiφ.

The phase φ is random and has the distribution

P (φ) =
e
− φ2

4γφ

2
√
πγφ

. (5.7)

Within this simple model of dephasing the transmission amplitude for a given realization of phases φm
is given by

t({φ}) = tLtRe
ikL

∞∑
n=0

(
rLrRe

i2kL
)n
ei

∑n
m=0 φm . (5.8)

Now we calculate the transmission coefficient T = |t|2 for a double-barrier structure and average it
over the random phases:

〈T 〉 =

∫ ∏
i

dφiP (φi) t({φ})t∗({φ}) =
TLTR

(
1−RLRRe−2γφ

)
∣∣∣1− rLrRei2kL−γφ∣∣∣2 (1−RLRR) . (5.9)

Here, we denote RL,R = |rL,R|2, TL,R = |tL,R|2 = 1 −RL,R. Moreover, γφ characterize the dephasing
due to the accumulation of the random phase.

Without dephasing (γφ = 0), the transmission coefficients at resonances, Tres, and away from the
resonances, Tnon-res, strongly differ from each other for TL,R � 1:

Tres =
TLTR

(1−
√
RLRR)2

≈ 4TLTR
(TL + TR)2

, (5.10)

Tnon-res =
TLTR

(1 +
√
RLRR)2

≈ TLTR
4

. (5.11)

In the opposite case of strong dephasing, γφ � 1, one obtains the classical result 〈T 〉class which can be
calculated from the kinetic/rate equations [134]:

Tclass =
TLTR

1−RLRR
≈ TLTR
TL + TR

. (5.12)

This result can also be obtained by considering a classical particle propagating from one barrier to
another with a summation of all transmissions/reflections. The main effect of dephasing is the absence
of strong resonances. In particular, for equal strong barriers, TL = TR � 1, Eq. (5.10) yields ideal
transmission Tres = 1, whereas the classical result (5.12) gives Tclass � 1.

We apply now this concept to such a double barrier system in presence of a discrete state. The
transmission and reflection coefficients of this state are denoted by TM and RM which are given by
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5.2 Fano-resonance in a double-barrier structure

the absolute value of the amplitudes (5.2) and (5.3), respectively. It is assumed that the state is
located between barriers. We use classical expression (5.12) for the transmission through a double-
barrier structure and first replace the right barrier by the Fano state. The transmission and reflection
coefficient of the composite system consisting of the left barrier and the Fano state reads

TLM =
TLTM

1−RLRM
, (5.13)

RLM =
RM +RL(TM −RM )

1−RLRM
. (5.14)

Now, we calculate the transmission coefficient for the whole structure replacing TL and RL by TLM
and RLM in Eqs. (5.13) and (5.14) and find

TBMB =
TLMTR

1−RLMRR
=

TLTR(Ek − E0)2

(TL + TR − TLTR)(Ek − E0)2 + TLTRΓ2
M

. (5.15)

In addition, we can write the transmission coefficient in terms of the transmission coefficient of the
double barrier system TBB. The expression is given by

TBMB =
TBB(Ek − E0)2

(Ek − E0)2 + TBBΓ2
M

. (5.16)

Compared to the system with the infinite channel, the transmission coefficient is now multiplied by the
transmission coefficient of the double barrier system without molecule. Moreover, the region of reduced
transmission shrinks in the presence of the two barriers, Ek ∼ (E0 −

√
TBBΓM , E0 +

√
TBBΓM ). The

transmission amplitude in the case of strong dephasing is visualized by the lower panel of Fig. 5.2.

5.2.2 Quantum interference in a double barrier structure in presence of a Fano state

In order to discuss several methods to consider quantum interference in a double barrier structure
in presence of a Fano state, we briefly introduce the wave functions for the simple problem of two
δ-shaped barriers located at x = ±L and strength η in absence of the Fano state, cf. Fig. 5.3. We can
decompose the wave functions in symmetric and antisymmetric functions. The symmetric function
reads

Ψk+(x) =


cos(kx) + η

k cos(kL) sin(k(x− L)), x ≥ L
cos(kx), |x| ≤ L
cos(kx)− η

k cos(kL) sin(k(x+ L)) x ≤ −L
(5.17)

and the asymmetric is given by

Ψk−(x) =


sin(kx) + η

k sin(kL) sin(k(x− L)), x ≥ L
sin(kx), |x| ≤ L
sin(kx) + η

k sin(kL) sin(k(x+ L)) x ≤ −L
(5.18)

Thus, the right moving wave is described by

φRk(x) = a+(k)Ψk+(x) + a−(k)Ψk−(x), (5.19)
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[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 5.2: (Upper panel) Schematic illustration of the setup with an 1D channel coupled to the
leads by tunneling barriers in presence of a Fano state. (Lower panel) Transmission coefficient
for this setup as a function of the carrier energy Ek in the classical case (strong dephasing) with
symmetric barriers. The red curve shows the transmission TBMB for the structure with barriers
and one molecule, the black one shows the transmission for two barriers without the molecule
(TBB). The chosen parameters are as follows: the energy of the localized state is E0 = 50 meV;
the transmission coefficients across the contacts to the leads are TL = TR = 0.17; the hybridization
of conducting electrons with the Fano state is characterized by ΓM = 30 meV.
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5.2 Fano-resonance in a double-barrier structure

and the left moving wave is given by

φLk(x) = a+(k)Ψk+(x)− a−(k)Ψk−(x). (5.20)

Here, the prefactors denote

a+(k) =
ik

ik − η cos(kL) exp(ikL)
, a−(k) =

ik

k + η sin(kL) exp(ikL)
. (5.21)

Including the Fano state into the double barrier system, we can consider a Hamiltonian similar to
Eq. (5.1). We couple now the Fano state to the left and right moving waves of the double barrier
structure. Thus, the Hamiltonian reads

Ĥ = Ĥ0 + E0|ϕ〉〈ϕ|+
∫ ∞

0
dk
(
VLk|ψLk〉〈ϕ|+ V ∗Lk|ϕ〉〈ψLk|

)
+

∫ ∞
0

dk
(
VRk|ψRk〉〈ϕ|+ V ∗Rk|ϕ〉〈ψRk|

)
, (5.22)

where Ĥ0 is the Hamiltonian of a one dimensional wire within the two barriers with the corresponding
eigenfunctions ψLk,Rk(x, r⊥) = φRk,Lk(x)ξ(r⊥). Here, the functions φRk,Lk(x) are the right and right
moving waves of the double barrier structure, Eqs. (5.19) and (5.20), respectively. The function ξ(r⊥)
describes the eigenfunction transverse to the scattering. These functions are chosen similar to the
functions introduced in Sec. 2.3. The energy E0 is the energy of the discrete level located at position
x = a with the corresponding wave function ϕ(x, r⊥). The functions ψLk,Rk(x, r⊥) and ϕ(x, r⊥) are
assumed to be orthogonal to each other. The operator V describes the coupling to the wire where the
subscript “L” describes the coupling to left moving particles and “R” to right moving.

The equation for the eigenfunctions ΦRk of the full Hamiltonian, corresponding to electrons moving
through the system from left to right, can be written as

ΦRk(x, r⊥) = ψRk(x, r⊥) +

∫
Gk(x, r⊥;x′, r′⊥)V ΦRk(x

′, r′⊥)dx′dr′⊥. (5.23)

Here, the Green’s function of the operator H0 + E0|ϕ〉〈ϕ| is given by

Gk(x, r⊥;x′, r′⊥) =
ϕ(x, r⊥)ϕ(x′, r′⊥)

Ek − E0
+

∫ ∞
0

dk′
ψRk′(x, r⊥)ψ∗Rk′(x

′, r′⊥)

Ek − Ek′ + i0

+

∫ ∞
0

dk′
ψLk′(x, r⊥)ψ∗Lk′(x

′, r′⊥)

Ek − Ek′ + i0
. (5.24)

To solve the self-consistent equation for the right moving function Eq. (5.23), we expand the full
function of the system in terms of the eigenfunctions of the Hamiltonian without coupling. With
the orthogonality of the functions ψLk,Rk(x, r⊥) and ϕ(x, r⊥), we can then solve the self-consistent
equation and obtain

ΦRk(x, r⊥) = ψRk(x, r⊥) +
VLk

Ek − E0 − Σ(k)
ϕ(x, r⊥) +

VRk
Ek − E0 − Σ(k)

∫ ∞
0

dk′
VRk′ψRk′(x, r⊥)

Ek − Ek′ + i0

+
VRk

Ek − E0 − Σ(k)

∫ ∞
0

dk′
VLk′ψLk′(x, r⊥)

Ek − Ek′ + i0
(5.25)
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with

Σ(k) =

∫ ∞
0

dk′
|VRk′ |2 + |VLk′ |2

Ek − Ek′ + i0
= P

∫ ∞
0

dk′
|VRk′ |2 + |VLk′ |2

Ek − Ek′ + i0
+
iπm

k
(|VRk′ |2 + |VLk′ |2). (5.26)

For a symmetric operator V and the Fano state located at position x = a, the coupling to left and
right moving waves is given by

VRk = V (a+(k) cos(ka) + a−(k) sin(ka)), VLk = V (a+(k) cos(ka)− a−(k) sin(ka)) (5.27)

Here, a+(k) and a−(k) are again given by Eq. (5.21).
To calculate now the transmission amplitude tBMB, we evaluate the remaining integrals in Eq. (5.25)

at the pole of the denominator since the other contributions decrease strongly with x and determine
the coefficient of the outgoing wave. The coefficient of the outgoing wave is then the transmission
amplitude, reading

tBMB(k) =
Ek − E′0 + (iπm/k)(|VLk|2 − |VRk|2)

Ek − E′0 + (iπm/k)(|VLk|2 + |VRk|2)
tBB(k) +

(2iπm/k)|VLkV ∗Rk
Ek − E′0 + (iπm/k)(|VLk|2 + |VRk|2)

rBB(k),

(5.28)

where E′0 = E0 +ReΣ(k) and tBB and rBB are the transmission and reflection coefficients of the double
barrier structure given by

tBB(k) =
1

2

{
a+(k)

a∗+(k)
− a−(k)

a∗−(k)

}
, (5.29)

rBB(k) =
1

2

{
a+(k)

a∗+(k)
+
a−(k)

a∗−(k)

}
. (5.30)

The resulting transmission coefficient is illustrated in Fig. 5.4. Compared to the classical results,
Fig. 5.2, the features the molecule are quite similar in the region of reduced transmission. However,
away from the reduced transmission region the resonances of the double barrier structure are still
affected by the Fano state.

In a next step, we develop a quite similar approach involving Green’s functions. Instead of relating
the transmission amplitude to the prefactor of the right moving function, we related it to the matrix
Green’s functions. Green’s functions have the advantage that they can be used to describe interacting
systems.

We can relate the Green’s function of the clean system to the full Green’s function, where the
electrons scattered off the Fano resonance, by the Dyson equation, reading

Ĝ = Ĝ0 + Ĝ0Σ̂Ĝ. (5.31)

Here, Σ is the self-energy of perturbation. Note, that we can consider in principle any system which is
described by plain waves as the clean system even the system itself is scattered at some obstacle. The
matrix Green’s function is written in the space of left and right moving particles. In the clean system,
the Green’s function is diagonal in the space of left and right moving particles while scattering of the
Fano state introduces off-diagonal components, yielding

Ĝ0 =

(
G0,RR 0

0 G0,LL

)
and Ĝ =

(
GRR GRL

GLR GLL

)
. (5.32)
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5.2 Fano-resonance in a double-barrier structure

Figure 5.3: Scattering off a Fano state in a system of two symmetric barriers. The coefficients of
the wave functions are indicated. The barriers are of height η and located at ±L. The Fano state
has the energy E0 and is located at position a.

We solve the Dyson equation for a particle moving from x′ to x with the position of the Fano state at
a. Moreover, we assume that the scattering potential does not depend on the direction of the incoming
wave, meaning Σ11 = Σ12 = Σ21 = Σ22 = Σ. The Green’s functions can be thus written as

GRR(x′, x) = G0,RR(x′, x) +
G0,RR(x′, a)ΣG0,RR(a, x)

1−G0,LL(a, a)Σ−G0,RR(a, a)Σ
, (5.33)

GLL(x′, x) = G0,LL(x′, x) +
G0,LL(x′, a)ΣG0,LL(a, x)

1−G0,LL(a, a)Σ−G0,RR(a, a)Σ
, (5.34)

GLR(x′, x) =
G0,LL(x′, a)ΣG0,RR(a, x)

1−G0,LL(a, a)Σ−G0,RR(a, a)Σ
, (5.35)

GRL(x′, x) =
G0,RR(x′, a)ΣG0,LL(a, x)

1−G0,LL(a, a)Σ−G0,RR(a, a)Σ
. (5.36)

For a Fano state, the self-energy is given by

Σ =
|V |2

Ek − E0
. (5.37)

The Green’s function of the clean system are written in the spectral representation

G0,RR/LL(x′, x) =

∫ ∞
0

dk′
ΦR/Lk(x)Φ∗R/Lk(x

′)

Ek − k′2

2m + i0
. (5.38)

We consider now the system of the two barriers as the clean system and the Fano state as the
perturbation. For the two barrier located at ±L and height η, we use the functions of the right and
left moving particles given by Eqs. (5.19) and (5.20), respectively. These functions for right and left
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moving particles can be written in terms of plane waves with the information about the two barriers
stored in a prefactor which is related to the transmission and reflection amplitudes of the double
barrier system. The functions in the three sectors, in the left of the barrier, in the right of barriers,
and between the barriers, are given by

for x > L: ΦRk(x) = eikxtBB(k)
ΦLk(x) = e−ikx + eikxrBB(k)

for x < −L: ΦRk(x) = eikx + e−ikxrBB(k)
ΦLk(x) = e−ikxtBB(k)

for x = a: ΦRk(a) = a+(k) cos(ka) + a−(k) sin(ka)
ΦLk(a) = a+(k) cos(ka)− a−(k) sin(ka)

The transmission and reflection amplitudes for the double barrier structure in terms of the parameter
a+(k) and a−(k) are given by Eqs. (5.29) and (5.30).

To evaluate the Green’s functions in the corresponding sectors, we preform the integration in
Eq. (5.38). This integral has in general a real and an imaginary part. However, the real part can
be neglected in all integrals containing wave functions for x > L and x > −L. To show this, we
calculate the Green’s function of a plane wave in 1D and in energy-coordinate representation is for
x > L and x′ < −L, yielding

G0,RR(Ek, x
′, x) =

∫ ∞
0

dk′

2π

eik
′(x′−x)

Ek − k′2/(2m) + i0
= i

m

k
eik(x′−x) − im

π

∫ ∞
0

dκ
e−κ(x′−x)

k2 + κ2

=i
m

k
eik(x′−x) − im

kπ

(
2Ci(k(x′ − x)) sin(k(x′ − x))

+(π − 2Si(k(x′ − x)) cos(k(x′ − x))
)
, (5.39)

where Si(kx) and Ci(kx) are the sine respectively the cosine integral. The second term vanishes in
the limit x → ∞ and x′ → −∞ and can thus be neglected as a contribution to the transmission and
reflection coefficients.

Applying these assumptions, the relevant Green’s functions of the problem without perturbations
read

Gtrans
0,RR(x′, x) =

2πim

k

(
tBB(k)eik(x−x′) + tBB(k)r∗BB(k)eik(x+x′)

)
(5.40)

Gtrans
0,LL (x′, x) =

2πim

k

(
t∗BB(k)e−ik(x−x′) + t∗BB(k)rBB(k)e−ik(x+x′)

)
(5.41)

Gtrans
0,RR(0, x) =

2πim

k
(a∗+(k) cos(ka) + a∗−(k) sin(ka))tBB(k)eikx (5.42)

Gtrans
0,RR(x′, 0) =

2πim

k
(a+(k) cos(ka) + a−(k) sin(ka))

(
e−ikx

′
+ r∗BB(k)eikx

′
)

(5.43)

Gtrans
0,LL (0, x) =

2πim

k
(a∗+(k) cos(ka)− a∗−(k) sin(ka))

(
e−ikx + rBB(k)eikx

)
(5.44)

Gtrans
0,LL (x′, 0) =

2πim

k
(a+(k) cos(ka)− a−(k) sin(ka))t∗BB(k)eikx

′
. (5.45)

Here, the Green’s functions are all obtained for x > L and x′ < −L. These Green’s function can thus
be applied to the calculation of the transmission amplitude.
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For the reflection amplitude, however, the Green’s functions are evaluated for x < −L and x′ < −L.
Thus, the Greens functions are obtained by using ΦRk and ΦLk for x < −L for both x and x′. This
leads to the following relevant Green’s functions

Gref
0,RR(x′, x) =

2πim

k

(
eik(x−x′) + |rBB|2e−ik(x−x′) + r∗BB(k)eik(x+x′) + rBBe

−ik(x+x′)
)
, (5.46)

Gref
0,LL(x′, x) =

2πim

k
|tBB(k)|2e−ik(x−x′), (5.47)

Gref
0,RR(0, x) =

2πim

k
(a∗+(k) cos(ka)− a∗−(k) sin(ka))

(
eikx + rBB(k)e−ikx

)
, (5.48)

Gref
0,RR(x′, 0) =

2πim

k
(a+(k) cos(ka) + a−(k) sin(ka))

(
e−ikx

′
+ r∗BB(k)eikx

′
)
, (5.49)

Gref
0,LL(0, x) =

2πim

k
(a∗+(k) cos(ka)− a∗−(k) sin(ka))tBB(k)e−ikx, (5.50)

Gref
0,LL(x′, 0) =

2πim

k
(a+(k) cos(ka) + a−(k) sin(ka))t∗BB(k)eikx

′
. (5.51)

Here, the Green’s functions are valid for x, x′ < −L.

Using these introduced Green’s functions, we are now able to obtain the Green’s of the double barrier
structure with a molecule between the barriers. The Green’s functions provide also the transmission
and reflection amplitudes. We use now the perturbative Green’s function (5.33)-(5.36). As clean
Green’s functions, we use these obtained in the previous paragraph Eqs. (5.40)-(5.45). To show the
form of the obtained Green’s function, we state here the full Green’s function for a right moving particle
before and after the scattering. The other Green’s functions are given in App. D by Eqs. (D.7)-(D.10).
The Green’s function thus reads

Gtrans
RR (x′, x) =

Ek − E′0 − 4πim
k |V |

2Re(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka))

· 2πim

k

(
tBB(k)eik(x−x′) + tBB(k)r∗BB(k)eik(x+x′)

)
, (5.52)

The local Green’s function at the position of the Fano state has a non-negligible real part, which is
absorbed into the energy renormalization of the Fano state, reading

E′0 = E0 + P

∫ ∞
0

|V |2(|a+(k′)|2 cos2(ka) + |a−(k)|2 sin2(ka))

Ek − Ek′
dk′. (5.53)

To obtain the transmission amplitude from these Green’s functions, we need to take into account
all terms proportional to eik(x−x′). This results in the transmission amplitude for the double barrier
structure with a molecule at position a of

tBMB(k) =
Ek − E′0 −

4i|V |2πm
k Re(a+a

∗
−) cos(ka) sin(ka)

Ek − E′0 −
2i|V |2πm

k (|a+|2 cos2(ka) + |a−|2 sin2(ka))
tBB

−
2i|V |2πm

k (|a+|2 cos2(ka)− |a−|2 sin2(ka)− 2Im(a+a
∗
−) cos(ka) sin(ka))

Ek − E′0 −
2i|V |2πm

k (|a+|2 cos2(ka) + |a−|2 sin2(ka))
rBB. (5.54)

The corresponding result for the reflection amplitude is presented in App. D.

109



5 Magnetoresistance in carbon nanotubes with SMMs

We directly see that the resulting transmission amplitude coincides with the transmission amplitude
in Eq. (5.28). Moreover, we can write the transmission amplitude in a more compact form which
enables us to see the effect of the Fano state clearly in contrast to the classical approach. However,
comparing both results, Eqs. (5.28) and (5.54) to the conventional scattering matrix approach, it is
not obvious that both approaches provide the same result.

Let us briefly employ the scattering matrix approach and compare the results with the Green’s
function approach. This means, we determine the coupled equations for the probability of finding a
left or right moving wave in each sector as illustrated in Fig. 5.3. The matching of the probabilities at
each scatterer are

b exp(−ika)t = tBMB exp(−ikL), (5.55)

b · r = d exp(−ik(L− a)), (5.56)

t+ c exp(ik(a+ L))r = a exp(−ik(a+ L)), (5.57)

r + c exp(ik(a+ L))t = rBMB, (5.58)

a · tM + d · rM = b, (5.59)

a · rM + d · tM = c, (5.60)

where t = k/(k + iη)−1 and r = iη/(k + iη)−1 are the transmission and reflection amplitudes of the
barriers. The transmission and reflection amplitudes of the Fano state are given by Eqs. (5.2) and
(5.3).

Using the transmission and reflection amplitudes and the coupled equations, the solution for the
transmission amplitude yields

tBMB = exp(2ikL)k2(Ek − E0)
[
(Ek − E0)[k2 + (−1 + exp(4ikL))η2 + 2ikη]

+ ΓM [ik2 + kη(−2 + exp(2ik(L+ a)) + exp(2ik(L− a)))

+ iη2(−1− exp(4ikL) + exp(2ik(L+ a)) + exp(2ik(L− a))]
]−1

, (5.61)

and the solution for the reflection amplitude is

rBMB =
[
i exp(4ikL)(−iΓM + Ek − E0)(k − iη)η

+ (ΓM − i(Ek − E0))(k + iη)η − i exp(2ik(L− a))ΓMη
2

+ exp(2ik(L+ a))ΓM (k − iη)(−ik + η)
] [

(Ek − E0)[k2 + (−1 + exp(4ikL))η2 + 2ikη]

+ ΓM [ik2 + kη(−2 + exp(2ik(L+ a)) + exp(2ik(L− a)))

+ iη2(−1− exp(4ikL) + exp(2ik(L+ a)) + exp(2ik(L− a))]
]−1

. (5.62)

We will show now that the obtained transmission amplitude in the three different approaches are
equal. For that purpose, we write the transmission coefficient in a more compact form. Thus, we
define 2|V |2πm/k = ΓM . In the following, we will derive the connections between a+(k), a−(k) and
tBB, rBB. First of all, we use

rBB
tBB

=
Re(a+a

∗
−)

Im(a+a∗−)
(5.63)
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[Upper panel: Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W.

Wernsdorfer, and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society.

DOI: 10.1021/acsnano.7b02014]

Figure 5.4: (Upper panel) Schematic illustration of the setup with an 1D channel coupled to the
leads by tunneling barriers in presence of a Fano state. (Lower panel) Transmission coefficient for
this setup as a function of the carrier energy Ek in the quantum mechanical case with symmetric
barriers. The red curve shows the transmission TBMB for the structure with barriers and one
molecule, the black one shows the transmission for two barriers without the molecule (TBB).
The chosen parameters are as follows: the energy of the localized state is E0 = 50 meV; the
transmission coefficients across the contacts to the leads is characterized by the barrier strength
ηL = ηR = 3.16 meV; the hybridization of conducting electrons with the Fano state is characterized
by ΓM = 30 meV.
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to simplify Eq. (5.54), leading to

tBMB(k) =
Ek − E′0

Ek − E′0 + iΓM (|a+|2 cos2(ka) + |a−|2 sin2(ka))
tBB

− iΓM (|a+|2 cos2(ka)− |a−|2 sin2(ka))

Ek − E′0 + iΓM (|a+|2 cos2(ka) + |a−|2 sin2(ka))
rBB. (5.64)

To determine the renormalization of the energy of the Fano state, as defined in Eq. (5.53), we use
the following relations of the real and imaginary part of the fraction of a+(k) and a−(k), reading

Im

(
a+(k)

a−(k)

)
= −|a+(k)|2, Re

(
a+(k)

a−(k)

)
= −i|a+(k)|2 rBB

tBB
, (5.65)

Im

(
a−(k)

a+(k)

)
= −|a−(k)|2, Re

(
a−(k)

a+(k)

)
= i|a−(k)|2 rBB

tBB
. (5.66)

Therefore, we can directly evaluate the principle value integral (5.53) via the Kramers Kronig relation.
The definition of Kramer Kronig relation is given by

ReF (x) =
2

π
P

∫ ∞
0

tImF (t)

t2 − x2
dt (5.67)

Applying now the Kramers Kronig relation to the relevant terms in Eq. (5.53) results in

P

∫ ∞
0

dk′
|a+(k′)|2

Ek − E′k
= −P

∫ ∞
0

dk′
k′

Ek − E′k
Im

(
a+(k′)

k′a−(k′)

)
K.K.
= − πmRe

(
a+(k)

ka−(k)

)
= i

πm

k
|a+(k)|2 rBB

tBB
, (5.68)

and

P

∫ ∞
0

dk′
|a−(k′)|2

Ek − E′k
= −P

∫ ∞
0

dk′
k′

Ek − E′k
Im

(
a−(k′)

k′a+(k′)

)
K.K.
= − πmRe

(
a−(k)

ka+(k)

)
= −iπm

k
|a−(k)|2 rBB

tBB
. (5.69)

Thus, the transmission amplitude, Eq. (5.54), can be expressed in a very compact form, reading

tBMB(k) =
Ek − E0

Ek − E0 + ΓM

[
a+

a−
cos2(ka) + a−

a+
sin2(ka)

] tBB (5.70)

In this form, it is straightforward to show the transmission amplitude obtained by the scattering matrix
approach is equal to the obtained result by the Green’s functions. Applying the same relations to the
reflection amplitude (D.23), it is also straightforward to see that both approaches provide the same
results.

112



5.3 Fano-resonances with single-molecule magnets

We define

Σ(k) = ΓM

[
a+

a−
cos2(ka) +

a−
a+

sin2(ka)

]
, (5.71)

where the real part of Σ(k) shifts the resonant energy of the Fano state and the imaginary part broadens
the Fano state.

The transmission coefficient reads:

TBMB =
TBB (Ek − E0)2[

Ek − E0 + ReΣ(k)
]2

+
[
ImΣ(k)

]2 . (5.72)

In this notation, the transmission coefficient for the two barriers without the molecule reads:

TBB =
1

2
− 1

2
Re
a+a

∗
−

a−a∗+
. (5.73)

In this very compact, we can nicely see the features of the Fano state on the double barrier structure
as visualized in Fig. 5.4. In Fig. 5.4, we can see the shift of reduced transmission due to ReΣ(k)
and the momentum dependence of ImΣ(k) resulting in the affected resonances of the double barrier
transmission also away from the regime of reduced transmission. A comparison with the classical
result for strong barriers shows that the resonant energy E0 is shifted and the window of suppressed
transmission is changed. Due to quantum effects, the window of suppressed transmission is momentum
dependent and dependent on the position of the Fano state.

5.3 Fano-resonances with single-molecule magnets

As observed in Raman measurements [132] and found in various density-functional calculations [92,
130], for example, TbPc2 SMMs host a delocalized state on its ligands. For SMMs in contact with the
CNTs, tunneling between the electronic states of the CNT and the state localized on ligands occurs
and leads to a hybridization of these states. Due to the fact that the hybridization of the conduction
electrons with the localized states leads to a Fano resonance [92, 160, 161], transport through the CNT
is strongly affected with side-attached molecules.

It was pointed out in Ref. [92] that Fano resonances are particular important for transport through
a CNT with attached SMMs. However, the analysis in that paper was limited to infinite systems
without the consideration of coupling to leads. As we showed in Ref. [94] and present in Ch. 6,
the description of all experimentally observed features requires the consideration of Coulomb blockade.
Coulomb blockade is caused by charge quantization in a finite-length CNT with sufficiently high contact
resistance and is therefore absent in the infinite system.

In the next step, we will adept the transport properties of the system with Fano resonances, as
discussed the preliminary sections of this chapter, to the system of a CNT with side-attached SMMs.
Specifically, we consider the transmission coefficient of a nanotube of length L coupled to the leads
in the presence of a the localized state of SMMs, the Fano state (upper panel in Fig. 5.2). The two
barriers separate the nanotube from the leads and are characterized by the transmission and reflection
coefficients TL,R, RL,R = 1 − TL,R. The Fabry-Pérot-type interference inside the CNT results in
Breit-Wigner resonances in the transmission through the structure at energies corresponding to the
quantization energy for infinite barriers.
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5 Magnetoresistance in carbon nanotubes with SMMs

In the following, we will consider the physics of the double-barrier system in the presence of the
Fano state in the classical case. This is sufficient for strong dephasing such that the single-particle
levels inside the CNT overlap, cf. Sec. 5.2.1. At the same time, the typical time ~/ΓM that a particle
spends on the localized Fano state is assumed to be shorter than the dephasing time. Thus, the Fano
quantum interference is not destroyed. Motivated by the experimental results for the CNT system as
introduced in Sec. 1.4, we can conclude that the single-particle levels inside the dot overlap which fully
justifies the application of the classical results. The transmission coefficient TBMB for the structure
“barrier-molecule-barrier” (BMB) can be expressed in a classical manner by the quantum expression
for the transmission and reflection amplitudes of the Fano state on the molecule, cf. Sec. 5.2:

TBMB = TBB
(Ek − E0)2

(Ek − E0)2 + TBBΓ2
M

, (5.74)

TBB =
TLTR

1−RRRL
, (5.75)

with TBB describing the classical transmission coefficient for the two barriers without molecule. As
discussed in Ch. 5.2, in the presence of the leads compared to the infinite system the window of
suppressed transmission due to the Fano effect is reduced to Ek ∼ (E0−

√
TBBΓM , E0+

√
TBBΓM ), and

the transmission probability TM is also reduces by the multiplication with the transmission coefficient
for the two barriers, TBB. In the lower panel of Fig. 5.2, the classical transmission coefficient for the
CNT with one Fano center is shown.

In the general case of arbitrary dephasing (including the zero-dephasing case), the structure of
the total transmission probability TBMB is similar to Eq. (5.74) in the sense that the double-barrier
transmission coefficient is modulated by the Fano-resonance envelope. For the case of symmetric
barriers, the transmission coefficient of the whole structure is presented in Sec. 5.2.2. In the following,
the important feature is the suppressed transmission in the presence of the Fano state in the range of
energies Ek ∼ (E0 − Γ0, E0 + Γ0) around E0 of the width Γ0 controlled by both the strength of the
coupling ΓM and the transmission probability TBB for the two barriers which is nicely reflected in the
classical picture. In the presence of two and more molecules, the overall picture remains the same:
in the range of Fano-resonance energies, the transmission is strongly suppressed. In other words, the
molecules can be considered as strong barriers for electrons in this energy range. At the same time,
away from the Fano resonance, molecules do not essentially affect the transport.

5.3.1 Including spin: Splitting of Fano resonances

In this section, we analyze the role of the spins of the molecule and the electron for transport through
the CNT structure with attached SMMs. The ferromagnetic exchange interaction between the electrons
localized on the ligands and the 4f electrons of Tb [127] was discussed in Sec. 1.4 and is mathematically
described by

V̂ex = A(Ĵ · Ŝ), (5.76)

where J and S denote the spins of terbium and of localized electrons, respectively. The exchange inter-
action constant A is determined by a value of around -0.2 meV. Furthermore, localized electronic states
on Pc ligands of the SMM are characterized by a large Coulomb energy U0. With these conditions,
the energy of spin-up and spin-down electrons on Pc (E↑ and E↓, respectively) yields

E↑,↓ = E0 ±AJz/2 + U0n↓,↑. (5.77)
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Bad transmission 
energy band for 
spin-up electrons

Bad transmission 
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spin-down electrons 

Molecular spin

[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 5.5: Schematic diagram of electron scattering on SMMs. When a spin-down electron
occupies the localized state on the ligand, two regions of bad transmission for electrons are formed
due to exchange interaction with the molecular spin.

The strong repulsive Coulomb interaction U0 strongly prevents tunneling of an electron into TbPc2

if already an electron of opposite spin occupies the SMM. The exchange interaction determines the
orientation of the spin of the localized electron with respect to the Tb spin. The orientation of the
spin of terbium itself in the considered system is analyzed in Sec. 6.3. The magnetic moment of the
molecule is fix by magnetic anisotropy of the SMMs in one direction. The effect of electron scattering
on the molecule is analyzed in the following. A schematic illustration of this is depicted in Fig. 5.5.

For given molecular spin J, the transmission of an electron through the molecule depends on energy
and spin of the electron. Let us now introduce the relevant energy scales for a CNT of the length
L ∼ 300 nm. The level spacing for such a nanotube due to the confined geometry is about ∆ ∼
1 ÷ 2 meV. The energy of Coulomb interaction between the electrons in the CNT is also related to
the length of the nanotube via EC ∼ e2/L resulting in a numerical estimate of EC ∼ 15 ÷ 20 meV.
The conductance map of transport through a single molecule [127] allows to use for the Fano level
broadening Γ0 ∼ 10÷ 20 meV. The repulsive Coulomb energy on Pc ligands can be approximated as
U0 ∼ 100 meV, as calculated in Ref. [130]. According to these estimates, we assume the following
hierarchy of the energy scales in the proceeding section:

∆� EC . Γ0 � U0. (5.78)
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5 Magnetoresistance in carbon nanotubes with SMMs

The hierarchy of the energy scales means that a few levels of the size quantization of the CNT fall into
the regime of bad transmission caused by the molecular magnet.

In this parameter regime, the spin dependent scattering can be understood with the following ex-
ample. We consider the case of the Fermi level located in the energy band of poor transmission for
electrons with spin up orientation, cf. the left axis of Fig. 5.5. In this case, a single molecule magnet
serves as an effective barrier splitting the nanotube in two quantum dots for spin up electrons. Thus,
spin-up electrons are affected by three barriers, including the two tunneling barriers due to the con-
nection of the CNT with source and drain contact, while spin-down electrons remain unaffected by the
presence of the molecule and feel only the two outer barriers.

Hence, due to the spin dependent Fano resonances, a ”spin-valve-effect” emerges for the minimal
model of two molecules similar to the effect described in Ref. [92]. In particular, an anti-parallel
orientation of the two molecular spins results in a resonant backscattering of conduction electrons
with both spin projections and thus in suppressed transport for all electrons. Two parallel aligned
SMMs, however, block transport for electrons in one spin orientations while electrons with opposite
spin orientation are not affected by the molecules leading to a higher conductance of the system. This
means that in absence of magnetic field, where the spins can be aligned either parallel or anti-parallel
the conductance is reduced compared to the conductance in finite magnetic field, cf. Fig. 5.7a).
However, the resulting magnetoresistance of the reduced conductance is not giant. Moreover, the
observed plateaus of lower conductance in experiment, cf. Figs. 1.13 and 1.10, can only be explained
within a dynamically swept magnetic field. For a dynamically swept magnetic field, the plateaus in
the conductance appear due to the time it takes for the spin to feel the magnetic field. This retarded
process of spin relaxation is seen for a sufficiently fast sweeping rate. However, the conductance of the
plateaus is much larger than expected in experiment. A schematic illustration of the conductance in a
dynamically swept magnetic field can be found in Fig. 5.7b).

The present model differs from the model of Ref. [92] by the presence of strong tunneling barriers
separating the CNT and the leads. The tunneling barriers lead to the consideration of the CNT as a
sequence of quantum dots with number of dots depending on the spins of carriers and molecules. In
particular, two SMM with parallel aligned spin-up break the CNT into three quantum dots for spin-up
carriers while spin-down carriers behave as in a single quantum dot, cf. Fig. 5.5. Anti-parallel aligned
spins of SMMs break the CNT in both spin orientation of the carriers into two quantum dots, each
type of carriers blocked by one molecule.

The described splitting of the CNT into quantum dots is illustrated in Fig. 5.6. This theoretical
model relies on the assumption that the Fermi level is located in the lower energy band in Fig. 5.5,
such that carriers with spin parallel to the molecular spin show suppressed transmission. For different
capacitances of the CNT and the molecule, this assumption can be satisfied by varying the gate voltage.

However, the simple model of spin-dependent Fano resonances regulating the suppression of transmis-
sion as presented in this section and illustrated in Fig. 5.6 cannot explain all experimentally observed
phenomena without considering Coulomb interaction. Due to charging effects, the transport properties
are strongly affected by the presence of several quantum dots in the system showing the characteris-
tics of Coulomb blockade. In particular, the explanation of the spin-valve effect is manifested by the
magnetic ordering of the molecular spins in zero magnetic field which is governed by the Coulomb
interaction. The next chapter, Ch. 6, is devoted to the incorporation of these effects.
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CNT

CNT

[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 5.6: Scheme of quantum dots for electrons in the CNT with energies close to the Fermi
energy. The CNT effectively breaks into four quantum dots with the configuration depending
on spin orientation of the electrons and molecules. The Fermi level lies in the region of bad
transmission for the carriers electrons aligned in the direction of the parallel molecular spins.
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5 Magnetoresistance in carbon nanotubes with SMMs

Figure 5.7: Schematic diagram for the conductance of the CNT with two side-attached SMMs as
a function of magnetic field. Panel a) depicts the conductance as a function of static magnetic field
showing the reduced conductance. The red dots indicate conductance for parallel or anti-parallel
spin configurations. In panel b), the conductance as a function of a dynamically swept magnetic
field is schematically shown illustrating steps of lower conductance. The steps originate from the
retarded process of spin relaxation in a dynamically swept magnetic field.

5.4 Summary of Chapter 5

In this chapter, we discussed the origin of a magnetoresistance due to spin-dependent resonance scat-
tering on Fano states. For this purpose, we started to revise the appearance of Fano resonances in
an infinite system in Sec. 5.1. In Sec. 5.2, we considered a Fano state between two barriers. We first
calculated the transmission coefficient in presence of strong dephasing where the classical results can
be applied for the transmission coefficient. However, the quantum nature of the Fano state is not
destroyed. This means that the transmission is reduced in the energy region of the resonance of the
Fano state while for other energies the transmission remains energy independent. In Sec. 5.2.2, we
considered the quantum mechanical limit for a Fano state located between two barriers. In this case,
we apply three different approaches to determine the transmission amplitude. First, we determined
the wave function of the full system which is obtained by the coupling of the Fano state to the wave
functions of the double barrier system. Then, we developed a Green’s function approach. Within
the Green’s function approach, we can straightforwardly express the transmission amplitude by the
transmission amplitude of the double barrier system and a term related to the Fano state. Finally,
we compare the results to the conventional scattering matrix approach. We find that the region of
suppressed transmission due to the Fano resonance is shifted by the barriers. In the quantum me-
chanical consideration, the energy shift and the width of suppressed transmission is both momentum
dependent and dependent on the position of the Fano state while the classical consideration provides
only a region of suppressed transmission dependent on the barriers, cf. Figs. 5.3 and 5.4.

The results of reduced transmission can thus be applied to the CNT with side-attached molecules as
follows: The localized electronic states of phthalocyanine ligands in TbPc2 magnetic molecules near the
Fermi level (S = 1/2 state in Fig. 1.8), which are assumed to couple well to the electronic states of the
CNT, serve as a Fano state. These localized states for spin-up and spin-down carriers are split by both
exchange interaction between electrons localized on the molecule and the 4f electrons in the terbium
shell, cf. Fig. 5.5. The electrons, in the energy window depending on the relative orientation of the
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spins of the electron and the SMM, cf. Fig. 5.5, are strongly backscattered due to the Fano resonance
induced by the side-attached molecule, see Fig. 5.2. Under the consideration of a minimal model of two
SMMs attached to the CNT, backscattering due to the Fano-resonance breaks the nanotube into four
quantum dots. The four quantum dots correspond either to a single quantum dot for one spin species
and three quantum dots for the other spin species in the case of parallel aligned spins of the SMMs,
or to two quantum dots for each spin species of electrons for anti-parallel molecular spins, cf. Fig. 5.6.
Thus, for anti-parallel aligned molecular spins, transport is blocked for both spins of carrier electrons
while one spin species is not affected by the molecules on the case of parallel molecular spins. This
leads to a MR due to the fact that the spins can be either parallel or anti-parallel in the absence of
magnetic field while they are parallel aligned in the presence of magnetic field, cf. Fig. 5.7. In contrast
to the experimental findings for the carbon nanotube with side-attached TbPc2 molecules [58], the
MR is giant which is not the case in the present theoretical model. Moreover, the appearance of a
plateau of low conductance around zero magnetic field can only be explained for a dynamical sweep of
magnetic field, cf. Fig. 5.7b). In the next chapter, we will therefore include Coulomb interaction where
we can explain both the magnitude of the MR and the alignment of spins with respect to magnetic
field. Moreover, Coulomb interaction also provides an explanation for the appearance of the gaps in
the Coulomb map in the considered setup.
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6 Chapter 6

Coulomb blockade and Spin-Valve Effect
in Nanotubes with TbPc2 molecules

In the last chapter, Ch. 5, we have seen that the magnetoresistance (MR) and the spin-valve effect of
a nanotube with side-attached single-molecule magnets can be explained by spin-dependent resonant
scattering of conducting electrons on a Fano state. However, the described ingredients of the theory do
not provide a giant magnetoresistance (GMR) with a magnitude of 103% as obtained in the experiment
of Ref. [58] and discussed in Sec. 1.4 with TbPc2 molecules. Moreover, the obtained MR in the model
of Ch. 5 shows a lower conductance only in the absence of magnetic field. In the experiment, a plateau
of lower conductance around zero magnetic field is observed, Fig. 1.10. Certainly, the gaps in the
Coulomb map around zero source-drain voltage can also be not described by the proposed model
without including Coulomb interaction.

In this chapter, we extend to theoretical model proposed in Ch. 5 by the consideration of Coulomb
interaction. Of particular importance for the GMR, will be the effect of Coulomb blockade [164] inside
the nanotube. The Coulomb interaction between electrons inside the CNT gives rise to Coulomb
blockade with the linear transport blocked for the anti-parallel orientation of molecular spins at all
values of gate voltage. A long-range interaction between SMMs is responsible for a stable magnetic
ordering of the inner spins of the molecules as predicted by the presented theory. The magnetic ordering
explains the GMR of the considered device. We published the presented results in Ref. [94].

Remarkably, the gate voltage can manipulate both the sign and the strength of the molecular spin-
spin interaction. This implies that the arrangement of the spins of the SMMs can be varied by
external gate and explains the experimentally obtained gate-controlled spin-valve effect as presented
in Sec. 1.4. More generally speaking, the magnetic properties of the supramolecular nanostructures can
be effectively designed by external gates. These effects are expected to lead to further breakthroughs
in the field of quantum electronics and spintronics.

The chapter is structured as follows. In Sec. 6.1, we present the theoretical model to obtain the free
energy and the current through a multidot quantum system. This model is then applied to relevant
case of SMMs attached to a CNT where the system breaks into four quantum dots with different
configurations depending on the spin of the molecules, Sec. 6.2. Further, we continue with the analysis
of the effect of Coulomb interaction on the alignment of the molecular spin, Sec. 6.3. The results of
Ch. 5 combined with the incorporation of Coulomb interaction, Sec. 6.2 and 6.3 can be applied to
calculate the conductance and the GMR, Sec. 6.4. Finally, the results are summarized and discussed
in Sec. 6.5.
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6.1 Free energy and current in multidot systems

It has been discussed in the previous chapter that SMMs may split the CNT into several quantum dots
(QDs). Furthermore, Coulomb interaction, as well as charge quantization should become important for
the transport properties of the structure by the following arguments: Coulomb blockade was observed
in pure CNTs, cf. Ref. [165], and the conductance maps obtained in experiment for the CNT system
with side-attached CNT, cf. Fig. 1.11 and 1.12 of Sec. 1.4 also shows signatures of Coulomb blockade.
Coulomb blockade is identified by a strongly suppressed conductance for certain ranges of the gate
voltage Vg and of the source-drain voltage Vsd. In the following, we construct the conductance maps
including Coulomb blockade for the different configurations of QDs determined by the molecular spins.

Before we discuss the particular cases of Coulomb blockade in the system of CNTs with SMMs,
we consider the basic properties of a single dot system and multidot systems. In a finite electronic
system, Coulomb interaction leads to the emergence of the charging energy EC . For an electron
tunneling into a QD, energy conversation involves this interaction energy. Thus, an electron needs to
overcome the charging energy to pass through the QD, otherwise transport through the QD is blocked.
The phenomenon is described in terms of electrostatic scheme [164], where the charging energy is
represented by introducing the capacitors, as illustrated for a single QD in Fig. 6.1a).

By considering the free energy of a QD, the effects of Coulomb blockade are quantitatively charac-
terized by the free energy of the system [166]. For the zero source-drain voltage Vsd, the free energy of
a single quantum dot reads

F1(N,Vg) =

(
eN + CgVg

)2

2(Cg + CL + CR)
, (6.1)

where N is the number of electrons on the dot. The capacitance between the dot and the gate is
denoted by Cg and the capacitances between the dot and the leads are CL,R. For Vsd → 0, increasing
the number of electrons on the QD, increases in general the free energy,

F1(N) < F1(N + 1),

and tunneling through the quantum dot is avoided.

However, for certain “resonant” gate voltages V ∗g , the free energy remains unchanged for the addition
of an extra electron to the quantum dot, F (N,V ∗g ) = F (N + 1, V ∗g ), resulting in a finite, linear
conductance for those values of Vg. For a finite source-drain voltage, the resonant conditions for the
free energy of the system define the boundaries of the “Coulomb diamonds” in the Coulomb map,
with Coulomb-blocked regions shown in blue color in Fig. 6.1c). To obtain a finite current through
the system, corresponding to red regions in Fig. 6.1c), in general, the change of electrons in the course
of the complete tunneling process (to and from the dot) needs to decrease the free energy (with the
energy conservation maintained by inelastic scattering).

For transport through two or more QDs, there is a crucial difference compared to a single quantum
dot leading to the strong spin-valve effect in our system. The boundary conditions of Coulomb blockade
for a system more than one QD are rather sophisticated. As discussed in Refs. [166, 167], conductance
maps for a double dot system, with an equivalent scheme shown in Fig. 6.1b), show generically gaps in
the Coulomb diamond around zero source-drain voltage for all gate voltages Vg. Thus, there is a region
around Vsd = 0 where no current passes through the QD system as illustrated for a typical Coulomb
map with two quantum dots in Fig. 6.1d).
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[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:
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Figure 6.1: Illustration of equivalent schemes and Coulomb maps for single and double quantum
dot systems. a) Equivalent electrostatic scheme for a single quantum dot; b) Equivalent electro-
static scheme for a double quantum dot; c) and d) Typical Coulomb-blockade maps for the single
and double quantum dots, respectively, at T = 0. Blue and red regions correspond to the zero and
finite current, respectively.

123

https://pubs.acs.org/doi/10.1021/acsnano.7b02014
https://pubs.acs.org/doi/10.1021/acsnano.7b02014


6 Coulomb blockade and Spin-Valve Effect in Nanotubes with TbPc2 molecules

[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure 6.2: Equivalent scheme for quantum dots. The inner and outer regions labeled by “C”
and “V” correspond to the QDs and the “environment”, respectively.

For a double-dot system, the electron needs to first tunnel in the first dot, then in the second dot,
and finally to the lead to contribute to a finite conductance. As a result, the conditions account for the
energy difference for adding an electron in the first and in the second QD, as well as for the tunneling
between the two dots. Therefore, a finite conductance at Vsd → 0 requires equal free energies F2 for
QDs with initially different numbers of electrons:

F2(N1, N2, Vg) = F2(N1 + 1, N2, Vg) = F2(N1, N2 + 1, Vg). (6.2)

These conditions (6.2) can only be fulfilled in the fully symmetric double-dot system [166, 167] leading
to a gapless conductance map while any asymmetry (as in the generic case) fully blocks transport and
hence opens a transport gap at all gate voltages. By varying the gate voltages, the differences between
the free energies, Eq. (6.2), can be minimized by changing the gate voltage. Thus, the magnitude of
transport gaps e δVsd = ∆F2 dots is a function of Vg, see Fig. 6.1d).

To fully understand these features, we discuss a general approach to calculate the free energy of
an electrostatically coupled system of QDs in the following. It is important to emphasize that the
electrostatic energy of QDs (i.e., the sum of all capacitor’s energies in the equivalent electric scheme)
cannot be directly used for the analysis of the transport properties. This is caused by the changes
of the environment of the system when the number of electrons in QDs is varied due to the charge
transfer. This is associated with the processes in batteries (the sources of the gate and source-drain
voltages) where the charge of capacitors is changed when the current flows. To subtract the work
performed by voltage sources, we need to calculate the free energy of the QDs in terms of the numbers
of electrons on the QDs, Ni, gate voltage, and source-drain voltage.
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6.1 Free energy and current in multidot systems

We describe the system consisting of the QDs and the “environment” by an equivalent electrostatic
scheme in Fig. 6.2. The total electrostatic energy of the system is given by

E =
1

2

[
VcQc + VvQv

]
, (6.3)

where Vc and Qc are the voltage and the charge of the QDs, Vv and Qv the voltage and the charge
of the environment capacitors (gate and source-drain leads), cf. Fig. 6.2.

The voltages on QDs can be found from the relation

Qc = ĈccVc + ĈcvVv. (6.4)

The diagonal elements of Ĉcc are given by the sum of capacitances of all capacitors connected to the
particular node

(Ĉcc)ii =
∑
j

Cij , (6.5)

while the off-diagonal elements are given by the capacitance (taken with the minus sign) of the capacitor
that connects the two nodes,

(Ĉcc)ij = −Cij . (6.6)

The product ĈcvVv contains all voltages multiplied by the capacitances connecting the nodes with the
environment:

(ĈcvVv)i =
∑
j

CijV
j
v . (6.7)

The work of batteries is associated with the change of Qv for the process of the electron transfer across
the system, reading

dA = VvdQv, dQv = ĈvcdVc. (6.8)

The total differential of the free energy is then given by

dF = dE − dA =
1

2
d
[
VcQc + VvQv

]
−VvdQv. (6.9)

The free energy of the QD system is

F ({N}i, Vg, Vsd) =
1

2
VcĈccVc, (6.10)

Vc = Ĉ
−1
cc

(
Qc − ĈcvVv

)
. (6.11)

The calculation of the current through a system of QDs requires to solve the quantum tunneling
problem for a system with weak dephasing while a system with strong dephasing is treated via the
solution of the master equation. In general, this is a very challenging task. However, for low temper-
atures (smaller than the single-particle level spacing), the calculation is simplified. In this case, it is
sufficient to construct the Coulomb-blockade map by finding the number of open current channels as
a function of the gate and source-drain voltages.

We consider now a system of N QDs as presented in Fig. 6.3. We will operate in the space of the
numbers of electrons in the QDs

{
N
}
i

= (N1, N2, · · · , NN ), where i denotes the ith basic vector. First,

we obtain the conditions for the current flow for a fixed particle number
{
N
}
i

in QDs. In what follows,
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Figure 6.3: Illustration of transport in a structure withN QDs. Operators l̂±j denote the tunneling
of an electron from one dot to another.

the chemical potential of the left and right leads is chosen to be µL = eVL, µR = eVR, respectively.
The leads are symmetric with respect to adding and extracting particles. The transmission process of
an electron from left to right lead is required to be energetically favorable at each step of the process.
In the first step, the particle tunnels from the left lead to the first QD. Extracting a particle from the
left lead reduces the energy of the system in accordance to the definition of chemical potential. The
change in the occupation of the first QD is reflected by the change of the argument of the free energy
from

{
N
}
i

to
{
N
}
i
+ 11. Hereinafter, ±1j means an increase/decrease of the amount of electrons by

1 at the position j in the setup. For a flow of the current, the sum of these two contributions, ∆EL→1

being the variation of the energy of the system, has to be negative, cf. Eq. (6.12). In the next step,
the electron tunnels from the first to the second quantum dot. The energy change of this process for
the system is denoted by ∆E1→2 which is given by the difference of the free energies with

{
N
}
i
+ 12

and
{
N
}
i
+ 11, Eq. (6.13). This construction is repeated up to Nth QD. The last step of the process,

∆EN→R, is the tunneling of the particle from the Nth QD to the right lead. This step results in a
difference of free energy and an increase of the chemical potential of the right lead, µR, cf. Eq. (6.14).
Explicitly, the energy differences read:

∆EL→1(
{
N
}
i
) = −µL + F (

{
N
}
i
+ 11)− F (

{
N
}
i
) < 0, (6.12)

∆E1→2(
{
N
}
i
) = F (

{
N
}
i
+ 12)− F (

{
N
}
i
+ 11) < 0, (6.13)

· · ·
∆EN→R(

{
N
}
i
) = µR + F (

{
N
}
i
)− F (

{
N
}
i
+ 1N ) < 0. (6.14)

Hereinafter, we disregard the arguments Vg, VL, VR in the free energy to simplify the notation . The
sum of all energy differences ∆Ej→j+1 is equal to the energy difference of an electron transferred from
the left to the right lead, µR − µL.

We define the current channel in terms of the basic vector
{
N
}
i

consisting of the particle numbers
arranged consecutively from the left to right lead as:

JL→R(
{
N
}
i
) = Θ

(
∆EL→1

)
Θ
(
∆E1→2

)
· · ·Θ

(
∆EN→R

)
=
∏
j

Θ
(

∆Ej→j+1

)
,
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6.2 Coulomb blockade in the nanotube with SMMs

where Θ(x) = 1−θ(x) with θ(x) the Heaviside step function, and
{
j
}

= (L, 1, 2, · · · , N,R) enumerates
leads and QDs acting on the channel. The value of current channel JL→R(

{
N
}
i
) is equal to zero if the

current cannot flow from the
{
N
}
i

state and equal to unity in the opposite case. The tunneling of an

electron from the right to the left lead, as expressed by the current channel JR→L(
{
N
}
i
), contributes

to the total current. The tunneling process from the right to the left lead is described in the same
manner.

Now, we need to find the relevant states
{
N
}
i

which might produce a nonzero current. In order to

do so, we define the operators describing the evolution of the basis states
{
N
}
i
, reading

l̂j = 1 + Θ
(

∆Ej→j+1

)
P̂+
j+1P̂

−
j + Θ

(
∆Ej→j−1

)
P̂+
j−1P̂

−
j = 1 + l̂+j + l̂−j , (6.15)

P̂±j
{
N
}
i

=
{
N
}
i
± 1j , P̂±L,R = 1, l̂−L = l̂+R = 0. (6.16)

Here, the operator P̂±j changes the number of electrons in QD j by unity, the operators l̂±j describe
the tunneling of an electron from QD j to one of the adjacent QDs, and P{N} is a vector in the space

of electron numbers, i.e. P{N}(i) =
{
N
}
i
. The states, for which the current needs to be calculated,

P 0
{N}, are all possible variations of the state which minimizes the free energy of the configuration at

fixed gate and source-drain voltage and are given by

min
{N}

F (
{
N
}

) = F (Pmin
{N}(imin)),

L̂ =
∑
j

l̂j ,

lim
m→∞

L̂mPmin
{N} = P 0

{N}. (6.17)

Finally, the total current is expressed in terms of the different current channels, yielding

I(Vg, Vsd) =
∑
i

P 0
{N}(i)

[
JL→R(

{
N
}
i
) + JR→L(

{
N
}
i
)
]
. (6.18)

For low temperatures and positive source-drain bias, µL > µR, the current flows only from the left
to the right lead, JL→R. A generalization of this method for multiple channels in each direction of
tunneling is done by the summation over all channels in Eq. (6.18). This consideration is now applied
to the the minimal model of two SMMs side-attached to a nanotube.

6.2 Coulomb blockade in the nanotube with SMMs

In order to obtain the conductance maps for the CNT with two SMMs, we apply the formalism discussed
in the previous section to the calculation of the free energy [164, 166] with both parallel, ↑↑, and anti-
parallel, ↑↓ orientation of the molecular spin. In both cases, the full system of spin up and down
orientation of the carriers is split into four QDs, cf. Fig. 5.6. The free energy is therefore expressed as
function of the number of electrons in the different quantum dots, {N}i = {N1, N2, N3, N4}, the gate
and source-drain voltages, and the charging energy EC . Furthermore, we introduce a dimensionless
function φαβ with α =↑, ↓, β =↑, ↓ resulting in the following expression for the free energy:

Fαβ({N}i, Vg, Vsd) = EC φαβ

(
{N}i,

eVg
EC

,
eVsd
EC

)
= EC φαβ({N}i, Ug, Usd), (6.19)
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Figure 6.4: Calculated current map I(Vg, Vsd) a) at zero magnetic field and b) above the critical
fields Bc in terms of current channels. Positions of molecules: x1 = 0.2, x2 = 0.6; κ = 25.

where Ug and Usd are the dimensionless gate and source-drain voltages (measured in units of EC =
e2/L), respectively. The derivation and the explicit expressions for φ↑↑ and φ↑↓ are presented in
App. E. In the following, we normalize all the capacitances to the CNT length Ci → Ci/L and define
the positions of the two molecules, x1, x2, in the range (0, 1).

The capacitances between the gate and the QD are proportional to length of the particular quantum
dot, Cig ∼ li. The coupling to the leads is determined by the spatial overlap between the leads and
the quantum dot, CiR,L ∼ lR,L since in experiment, the metallic contacts cover the ends of the CNT.
Hereinafter, the parameter defining the capacitances between the leads and the QD is set to lL,R = 0.2.
However, it will turn out that the results are not too sensitive to this parameter. The different spin
channels are connected by capacitances determined by their spatial overlap. For the capacitances
between the QDs of the same spin channel of the electrons, we introduce a phenomenological parameter
κ that characterizes the electrostatic properties of the molecules. The parameter can be identified by
atomistic numerical simulations of a SMM attached to a CNT, but is in the following only applied as
a fitting parameter. Hence, the capacitances with the same electron spin yield Cij ' κlilj/(li + lj).

The parameter κ signifies the correlation between a single-dot and a double-dot system. In the
limit κ→∞, the double-dot free energy F2(N1, N2) reduces to the free energy of a single-dot system,
F1(N1 + N2) with Cg = C1g + C2g. This indicates the requirement of a large fitting parameter,
κ ∼ 20 ÷ 30 which is experimentally justified by small transport gaps δVsd ∼ 1 ÷ 2 meV � EC
compared to the charging energy. In this parameter regime, the calculation provides transport gaps of
δ(eVsd) = ECδUsd ∼ 1÷ 2 meV which is in a good agreement with the experimental observation.

The calculated transport maps for anti-parallel and parallel molecular spin orientation is presented
in Fig. 6.4 a) and b), respectively with the two molecules located at x1 = 0.2 and x2 = 0.6. The
current is obtained in terms of current channels which are discussed in App. E. There, we introduced
the function I(Vg, Vsd) which expresses the amount of distinct configurations {N}i of electron numbers
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6.3 Interaction between molecular spins

in the QDs participate in transport. For blocked transport, the absence of conducting states leads to
zero for the function I(Vg, Vsd) while in the conducting region, the function is finite, I = M ≥ 1,, and
equal to the integer number M , which counts the contributing configurations {N}i to the current (the
number of non-blocked current channels).

Figure 6.4 illustrates that the anti-parallel spin orientation of the SMMs leads to a gap around
Vsd = 0 for all gate voltages Vg. The appearance of the transport gap is analogous to that in double-
dot systems, cf. Fig. 6.1d), since for each spin orientation of the carrier electrons, the CNT is divided
into two quantum dots, as depicted in the lower panel of Fig. 5.6.

For parallel aligned molecular spins (upper panel in Fig. 5.6), the transport gaps around Vsd = 0
close at some values of Vg which is associated with the Coulomb map of the single-dot, Fig. 6.1c).
However, generically, the system of coupled quantum dots is more complex than a conventional single-
dot system. Electrostatic interaction between electrons tunneling through the single QD with electrons
tunneling through three quantum dots change the conditions for blocked transport in the single dot
depending on the population of the three other quantum dots where the carriers have opposite spin.
As a result, some transport gaps remain open in the Coulomb map although they decrease, as seen
in Fig. 6.4b). This is in contrast to the simplest single-dot case (Fig. 6.1c). At such gap closing gate
voltages, one encounters a strong spin-valve effect. The obtained conductance maps are consistent
with experiment as described in Fig. 1.11a) and b).

This feature originates from the change of the electron numbers in the non-conducting channel with
three quantum dots by varying the gate voltage. By varying the numbers of electrons N1, N2, or N3,
the free energy might be affected in such a way that the transport conditions for finite current for
the single dot channel are no longer fulfilled (the free energies at the degeneracy point for {N}i and
{N}i + 14 should be equal) and at Vsd → 0 opens a gap. The described feature is fully consistent with
the existence of weak and strong spin-valve effects observed at different values of Vg, as described in
Sec. 1.4 and shown Figs. 1.13a) and b).

6.3 Interaction between molecular spins

In the previous sections, we showed that different spin configurations of the SMMs result in different
quantum dot systems with different free energy and transport maps. This section is now devoted to
the orientation of the molecular spins determining the spin orientation of the localized electrons on
the ligands. In the following, the interaction energy between the spins of the electrons localized on the
ligands is defined as the free energy difference between anti-parallel and parallel spin orientation,

ESS(x1, x2, Vg) = F↑↓ − F↑↑, (6.20)

where x1 and x2 are again the positions of the two molecules. The interaction is caused by the repulsive
Coulomb interaction in the presence of the Fano scattering close to the energy region of the localized
state of the molecule and hence mediated by the conducting electrons of the CNT.

The interaction between localized spins is a non-monotonous function of the molecule positions. This
is demonstrated in Fig. 6.5a), where the dependence of interaction energy ESS (in units of the charging
energy EC) on the position of the second molecule x2 with the first molecule localized at x1 = 0.2
is plotted for two distinct values of the dimensionless gate voltages. For Ug = 1, we find an anti-
ferromagnetic type of interaction independently of the position of the second molecule corresponding
to the experimental observation of the low conductance in zero magnetic field around zero source drain
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Figure 6.5: Panel a) depicts the interaction energy between localized spins as a function of position
x2 with fixed x1 = 0.2 and κ = 25 for two values of the gate voltages. Negative (positive) values
correspond to the anti-ferromagnetic (ferromagnetic) interaction. Panel b) shows the interaction
energy (red curve) between localized spins as function of gate voltage Ug at fixed positions of the
molecules, x1 = 0.2 and x2 = 0.6, and κ = 25. Negative (positive) values correspond to the anti-
ferromagnetic (ferromagnetic) interaction. The dashed blue line corresponds to the interaction
energy estimated from experiment. Inset of panel b): Schematics of the gated CNT with two
TbPc2.

voltage. The anti-ferromagnetic ordering of the molecular spin is related to the appearance of two
quantum dots for both spin-up and spin-down electrons, lower panel of Fig. 5.6).

At the same time, for a gate voltage of Ug = 1.5, it depends on the position of the second molecule
if the effective spin-spin interaction between the SMM is anti-ferromagnetic or ferromagnetic, cf.
Fig. 6.5a). The dependence of the spin-spin interaction on gate voltage is depicted in Fig. 6.5b)
for molecules located at the fixed positions, x1 = 0.2 and x2 = 0.6. We find that almost all gate
voltages lead to an anti-ferromagnetic type of interaction which is in a good agreement with the exper-
imental value of ∼ 1 K indicated by the thin blue dashed line at Fig. 6.5b). In all regimes, the typical
interaction energy is of the order of ESS ∼ 0.1÷ 0.2 meV.

In finite magnetic fields, the effective spin Hamiltonian describing the CNT with two side-attached
SMMs yields

Ĥeff = −ESS
2S2

(
Ŝ1zŜ2z

)
+A

(
Ŝ1zĴ1z

)
+A

(
Ŝ2zĴ2z

)
+µB

(
gT Ĵ1 + gT Ĵ2 + gSŜ1 + gSŜ2

)
·B, (6.21)

with the g-factors of terbium and the localized electrons denoted by gT = 1.5 and gS , respectively.
Due to the small spin of the electrons localized on the Pc ligands compared to the terbium spin, we
can neglect the Zeeman terms of those electrons to simplify the model.

We set the easy axis of the molecules to the z direction in the Hamiltonian. Strong repulsive
Coulomb interaction U0 acting on the ligands of the molecule forces the spin of the localized electrons
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6.4 Conductance and GMR

S1,2 to align in z direction. The molecular spins become parallel for fields larger than the characteristic
magnetic field Bc which is related to the fact that the Zeeman energy exceeds the interaction energy
ESS . For an applied magnetic field in z direction, we use the effective Hamiltonian (6.21) to obtain
the critical field described by

Bc =
ESS
µBgTJ

∼ 0.2÷ 0.3 T. (6.22)

Compared to the experimental data of the jump in conductance when the magnetic field is swept from
−1 T to 1 T, cf. Fig. 1.10 of Sec. 1.4, the obtained critical field nicely matches.

6.4 Conductance and GMR

The conductance in the regime of Coulomb blockade can be calculated by the use of kinetic equations
for the distribution function of the quantum dot system [134, 167]. This powerful approach is, however,
not exactly solvable for case of finite source-drain voltage addressed here, in contrast to the linear regime
of Ref. [134]. As relevant to experiment, we focus on low temperatures T � ∆ where the tunneling
current can be calculated without solving kinetic equations. Instead the conductance is obtained by
calculating the current-channel function I(Vg, Vsd) as already performed in Figs. 6.4a) and b).

The explanation for the GMR effect summarizes the results obtained in the previous sections and
is manifested as follows: The spins of the SMMs are anti-parallel aligned for vanishing magnetic field,
while above a critical magnetic field B > Bc, the stable orientation of molecular spins is parallel. Due
to Coulomb blockade, the conductance around zero source-drain voltage is strongly suppressed for the
anti-parallel configurations of the spins of the SMMs. The gap in the transport map can be estimated
as δVsd ∼ 1 ÷ 2 meV in the absence of magnetic field for the locations of the molecules of x1 = 0.2,
x2 = 0.6 and the parameter κ = 25, as seen in Fig. 6.4a), in agreement with experimental observation,
Fig. 1.11a). For magnetic field above the critical field, however, the parallel aligned spins of the SMMs
lead to a closing of some transport gaps. For gate voltages where the transport gap closes, a strong
spin-valve effect and hence a GMR emerges, as in Fig. 1.13a). The transport gaps remaining above
the critical field are typically smaller than in vanishing magnetic field, cf. Figs. 6.4a) and b), resulting
in a weak spin-valve effect, as observed in Fig. 1.13b). Thus, the theoretical model explains the Vg
dependence on the strength of the spin-valve effect which relies crucially on the incorporation of the
effects of Coulomb blockade.

The value of conductance can be estimated in the case of a few open channels, I ∼ 1, which is
realized for a small source-drain voltage eVsd . 0.3EC . For the conductance, we use Landauer formula
as introduced in Sec. 2.3 with a transmission amplitude determined by the classical transmission in the
limit of strong dephasing, cf. Sec. 5.2.1. Under the assumption that the transparency of the molecule
TM is much larger than the transparency of the barriers TL,R (for energies not too close to the resonant
energy, see Figure 5.2), the conductance of the system is given by

G
G0
∼ TLTR
TL + TR

, (6.23)

where the conductance is related to the quantum conductance G0 = e2/h.
The conductance as a function of source-drain voltage is shown for a gate voltage of Ug = 1.33 in

Fig. 6.6 with the red curve corresponding to B = 0, meaning anti-parallel molecular spins and the
blue curve corresponding to magnetic field above the critical one Bc, meaning anti-parallel spins of
SMMs. The clearly seen GMR in Fig. 6.6 is manifested by the opening of the transport gap at zero
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Figure 6.6: Linear conductance at zero T as a function of source-drain voltage at Ug = 1.33. The
red dash curve corresponds to the absence of magnetic field (anti-parallel molecules spins), the
blue curve is associated with a finite magnetic field above the critical one, Bc (parallel molecules
spins). The molecules are located at x1 = 0.2, x2 = 0.6 and κ = 25.
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6.5 Summary of Chapter 6

Figure 6.7: Schematic illustration of the conductance of a nanotube with two side-attached
TbPc2 SMMs in dependence of magnetic field for a negative interaction energy Ess < 0 at zero
magnetic field. Panel a) depicts the conductance in dependence of a static magnetic field showing
the strongly reduced conductance for magnetic fields where the molecular spins are aligned anti-
parallel. In panel b), effect of a dynamical sweep of the magnetic field is schematically shown. The
retarded spin relaxation due to sufficiently fast sweeping is emphasized.

magnetic field, cf. Fig. 6.4a), caused by the anti-ferromagnetic arranged molecular spins. In both
experiment and theoretical model the low-conductance window is asymmetric around Vsd = 0 and
shifted to positive source-drain voltages by 0.5÷ 1mV, cf. Figs. 1.13a) and 6.6, respectively.

A schematic illustration of the magnetoconductance is presented in Fig. 6.7a). It is shown that the
conductance is strongly reduced in region of magnetic field, where the anti-parallel alignment of the
molecular spins is energetically more favorable. In a dynamically swept magnetic field, the region of
reduced conductance is dependent on the sweeping rate and direction of the magnetic field since the
process of spin relaxation is retarded, cf. Fig. 6.7. This means that the spins need some time to “feel”
the magnetic field as observed in experiment, Fig. 1.10.

6.5 Summary of Chapter 6

In conclusion, we have presented a theoretical model for the giant magnetoresistance effect (spin-valve
effect) and Coulomb blockade in nanotubes with side-attached molecular magnets based on Ref. [94].
The proposed theoretical model explains qualitatively the giant magnetoresistance (cf. Fig. 1.13, 6.6,
and 6.7) as well as the structure of Coulomb diamonds (cf. Fig. 1.11a),b) and 6.4a),b)) in the nonlinear
transport in CNTs with side-attached SMMs [58, 77, 78].

The following aspects account particularly for the developed model. The model relies on the splitting
of the spin-up and spin-down states for the transport of the carrier electrons and on the corresponding
breaking of the nanotube into four quantum dots as we discussed in Ch. 5. As a remainder, the
four quantum dots correspond either to a single quantum dot and three quantum dots for parallel
aligned spins of the SMMs for spin-up and spin-down carrier electrons, or to two quantum dots for
each spin species of electrons for anti-parallel molecular spins, cf. Fig. 5.6. The orientation of the
molecular spin with respect to each other is determined by an effective magnetic interaction between
the TbPc2 spins caused by different energies of the spin configuration of the molecules, cf. Fig. 6.5.
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6 Coulomb blockade and Spin-Valve Effect in Nanotubes with TbPc2 molecules

The sign of this interaction may depend on the positions of SMMs and can be tuned by the gate
voltage. In zero external magnetic fields, the most configurations and gate voltages provide an anti-
ferromagnetic ordering of the spins providing a spin-valve effect. In this configuration, both spin-up
and spin-down conduction electrons tunnel through a double quantum dot where the conductance is
strongly suppressed by Coulomb blockade at zero source-drain voltage for all gate voltages, Fig. 6.4a).
By applying an external magnetic field strong enough that the Zeeman energy overcomes the effective
anti-ferromagnetic coupling, the spins of the molecules become parallel. Thus, electrons with the spin
orientation of the molecules feel three quantum dots resulting in blocked transport. For electrons
of opposite spin, the system acts as a single quantum dot and the transport gap closes at certain
values of the gate voltage Vg, Fig. 6.4a). Thus, the parallel configuration of SMMs provides a higher
conductance, Fig. 6.6), leading to the spin-valve effect. The strength of the spin-valve effect depends
on and is controlled by the gate voltage due to the charging energy of the system and further depends
on the positions of the molecules. Certain “resonant” values of the gate voltage provide a particularly
strong the effect resulting in a giant magnetoresistance.

Importantly, the predicted existence of long-range interactions between SMMs mediated here by the
charging effects in a CNT can be applied to generalize the description to the spin-valve effect in other
nanostructures [79, 80]. We have shown that the sign and the magnitude of this effective spin-spin
interaction depends on the gate voltage and positions of SMMs, cf. Figs. 6.5a) and b). Furthermore,
due to the interaction of different spin channel of the conduction electrons in the CNT, the magnitude
of the magnetoresistance also depends on the value of the gate voltage (cf. Fig. 1.13a) and b)), thus
leading to a gate-controlled spin-valve effect. The explanation of this experimentally observed gate-
controlled spin-valve effect marks an important aspect of this theoretical model implying that such
supramolecular structures can be in general manipulated electrostatically by external gates. Thus,
the nanostructures can be engineered by multiple gates which would mark a further step to establish
SMMs for spintronic devices.
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7 Chapter 7

Summary and conclusion

In this thesis, we outlined the properties of magnetotransport in novel Dirac systems on the examples
of Weyl semimetals and carbon nanotubes with side-attached single-molecule magnets. This section
presents a brief summary of the results and provides a perspective to further research projects in this
context.

After reviewing the basic properties of the considered systems in Ch. 1 and the applied methods in
Ch. 2, we turned to the study of disorder in Weyl semimetals in Ch. 3. In different analytical and
numerical approaches, the appearance of a critical disorder strength was obtained [16–18, 22]. The
analysis of pointlike impurities within the self-consistent Born approximation (SCBA) in the absence
of magnetic field, as performed in Ch. 3, provides also a critical disorder strength, cf. Fig. 3.1. The
SCBA analysis for pointlike impurities was already performed in Ref. [18] in weak and strong disorder.
We go however beyond this limit and consider also the critical phase. As a result, we obtained a
density of states in the regime of critical disorder behaving as ε1/2, Eq. (3.17), consistent with the
1/N expansion [16, 17], in contrast to the linear behavior as obtained in the renormalization group
analysis (RG) in 2−ε dimensions [18, 19]. This indicates that the SCBA provides more accurate results
than the RG which is applied far from the critical dimension for ε = −1 in Weyl semimetals. The
prove of this statement is a project delegated to future work. Furthermore, we showed that the SCBA
analysis in strong disorder requires the incorporation of terms of the order of Γ/Λ for solving the self-
consistent equation, cf. Eq. (3.19). This manifests itself in particular under the consideration of vertex
corrections in the conductivity leading to a saturating conductivity in dependence of disorder in the
strong disorder limit, Fig. 3.5. The saturating conductivity marks the suppression of backscattering
in the strongly diffusive limit.

Performing the SCBA analysis in presence of a quantizing magnetic field for pointlike impurities,
cf. Sec. 3.4, we find that the appearance of the critical disorder strength persists. However, due to
broadening of Landau levels in the presence of disorder, all Landau levels overlap in the regime of
strong disorder resulting in a density of states as in the absence of magnetic field. For weak disorder,
the density of states consists of the zeroth Landau level, separated and overlapping Landau levels. The
two most crucial results for the density of states in presence of magnetic field are: (i) there is a certain
regime where Landau levels are still well quantized, but the background density of states is larger than
contribution of the Landau level peaks, cf. Fig. 3.11; (ii) for increasing magnetic field, the Landau
level broadening also increases in contrast to conventional semiconductors, cf. Fig. 3.12. However, with
respect to disorder, we find that Landau level broadening increases with increasing disorder strength
as expected.
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7 Summary and conclusion

One central aspect of this thesis concerns the evaluation of the transversal magnetoresistance (TMR)
in Weyl semimetals. The analysis of the TMR in several regimes of magnetic field in relation to
temperature and chemical potential was performed Ch. 4. A salient result of this calculation is that
the TMR in the ultra quantum limit, where only the zeroth Landau level determines the TMR, strongly
depends on the chosen model of disorder. We find that the linear TMR is determined by a model of
screened Coulomb impurities as proposed in the seminal work of Ref. [82]. However, for pointlike
disorder, the TMR vanishes as 1/H in the ultra quantum limit according to our theoretical model [83]
which was recently confirmed by a numerical analysis [87]. Away from the quantum limit, the highly
peculiar results are determined by an unusual broadening of Landau levels in presence of disorder
which was discussed in Ch. 3. For finite temperatures, we find a non-analytic magnetoresistance in the
low field limit proportional to H1/3 for pointlike impurities while for Coulomb impurities, the TMR
vanishes quadratically in the low field limit. The finite Hall conductivity for finite chemical potential
leads to a competition between the conductivity and the Hall conductivity in the TMR. The particular
large Hall conductivity leads to a vanishing magnetoresistance (except for the center of the Landau
levels) up to the ultra quantum limit for zero temperature, cf. Fig. 4.8. Finite temperature smears the
Landau levels and introduces a small correction to the vanishing TMR at zero temperature evolving
linearly with magnetic field. As found in various experiments [5, 6], we considered a model of two
pairs of Weyl nodes shifted in energy with respect to each other with the system being at complete
charge neutrality, cf. Fig. 4.12. In this model, we find a huge magnetoresistance ∝ H2/3 superimposed
by strong Shubnikov-de Haas oscillations. In the quantum limit of this model, the linear TMR for
Coulomb impurities remains intact. We could further show in Fig. 4.14 that the slope of the obtained
TMR is in agreement with the magnitude of the TMR obtained in experiment.

The huge TMR in Weyl semimetals offers new possible designs for magnetoresistance devices. Com-
pared to conventional magnetoresistance devices, which are designed in complex structures, Weyl
semimetals might lead to a significantly easier device fabrication. An even larger magnetoresistance
was observed in type-II Weyl semimetals [48] where the Weyl nodes are tilted compared to type-I Weyl
semimetals as considered in this thesis. The quadratic TMR in type-II Weyl semimetals still lacks a
theoretical explanation. The design of a theoretical model for these material would be an interesting
project for the future and would provide more insight in this class of materials. Moreover, the type-II
material shows signatures of a hydrodynamic behavior [106]. The development of a full hydrody-
namic description of both type-I and type-II Weyl semimetals would be a further step to uncover the
interesting physics of Weyl semimetals.

Chapter 5 is devoted to another Dirac system showing a large magnetoresistance. We consider a
carbon nanotube (CNT) with side-attached single-molecule magnets (SMM). To understand to physics
of such a system which is tunnel-coupled to external leads, we first analyze the effect of Fano-resonances
on transport within barriers. We analyzed the effect of a Fano state in a confined geometry in presence
of strong dephasing and in a fully quantum mechanical description. Most importantly, we developed
a Green’s function formalism for a Fano state in a system of two barriers providing the transmission
and reflection amplitudes in an elegant form allowing to directly read out the effect of the barriers on
the Fano state. In future, this Green’s function formalism can be developed further such that more
complex structures can be included in an effective way. A well established Green’s function formalism
can provide a treatment of interaction effects of such complex scattering structures.

The transport properties result now in a theoretical model for a magnetoresistance and spin-valve
effect of a carbon nanotube (CNT) tunnel-coupled to leads with side-attached single-molecule magnets
(SMM) of TbPc2 as experimentally realized in Ref. [58]. The model presented in Ch. 5 is based on the
fact that the phthalocyanine ligands of TbPc2 have a localized state near the Fermi surface coupling
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to electronic states of the CNT. The localized states for spin-up and spin-down carriers are split by
the exchange interaction between the localized electrons on the molecule and the 4f electrons of the
terbium shell. The energy range of backscattering by the Fano-resonance introduced by the localized
state is thus spin dependent. For a minimal model of two molecules, the backscattering on the Fano-
resonances breaks the nanotube into four quantum dots. For anti-parallel aligned molecules, both spin
channels for the carrier electrons are split into two dots while for parallel aligned molecules, a single
quantum dot for one spin species of carrier electrons and a triple quantum dot for the other appears,
cf. Fig. 5.6. The different scattering processes for parallel and anti-parallel aligned molecules account
for a magnetoresistance since the conductance in the absence of magnetic field is reduced due to the
possibility to have anti-parallel aligned SMMs, cf. Fig. 5.7a).

The obtained magnetoresistance and “spin-valve” effect of Ch. 5 are of a smaller magnitude than in
experiment. In Ch. 6, we included Coulomb interaction which provides a more accurate explanation.
An important feature of the Coulomb blockade map is that configurations of double or triple quantum
dots result in a transport gap around zero source-drain voltage. However, due to the coupling of the
single and triple quantum dot, the transport gap closes only at certain “resonant” values of gate volt-
age for parallel aligned molecules, cf. Fig. 6.4. The orientation of the molecules with respect to each
other is mediated by an effective magnetic interaction dependent on gate voltage and positions of the
molecules. For zero magnetic field, the most favorable orientation of the SMM spin is anti-parallel for
most gate voltages and molecular positions, cf. Fig. 6.5. Above a certain magnetic field, the parallel
configuration of molecular spin becomes favorable determining a giant magnetoresistance at the gate
voltages where the transport gap closes for parallel aligned molecules, cf. Fig. 6.7. Thus, we mod-
eled the origin of the gate-controlled spin-valve effect. Moreover, this effect is enhanced by the gate
voltage and position dependence of the molecular spin orientation which further allows to manipulate
nanostructures by multiple gates. To realize such multiple gate nanostructures with a controlled depo-
sition of SMMs experimentally would be an important step in the direction of establishing molecular
quantum spintronic devices in the community of nanoelectronics. A theoretical modeling of these
nanostructures can supply a guideline for the fabrication and improvement of the devices such that
in future supramolecular chemistry can provide powerful and affordable tools to tailor quite complex
molecular devices.

In conclusion, this thesis covers the theoretical description of two systems hosting a giant magnetore-
sistance, Weyl semimetals and CNTs with side-attached single-molecule magnets. In Weyl semimetals,
we discussed the effects of impurities on transport showing that in both in absence and in presence of a
finite magnetic field impurities can strongly affect the transport properties. Moreover, we showed that
the experimentally observed huge transversal magnetoresistance in Weyl semimetals can be explained
by a model of shifted Weyl nodes in energy with respect to each other in presence of Coulomb impu-
rities. Related to the CNT system, we provided a theoretical model to describe the gate-controlled
spin-valve effect and giant magnetoresistance. The important ingredients of the model are Coulomb
interaction and spin dependent resonant scattering on Fano resonances between barriers.

On a more general level, both considered systems offer a great potential in application for spintronic
and magnetoresistance devices. While the Weyl semimetal promises to significantly simplify the devices
fabrication, the carbon nanotube system has the potential to mark an important step in establishing
molecular spintronic devices and in further device minimization. Finding such promising applications
to an equation stated around 85 years earlier in a completely different context brings us back to the
statement of Paul A. M. Dirac with which the thesis started. It is not only a peculiarity of Paul A. M.
Dirac, but it is always worth to play with equations just looking for beautiful mathematical relations
which might not have any physical meaning. Because sometimes they do.
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Notations and Conventions

Here, we present a list of notations and conventions used throughout this thesis:

• Throughout the thesis, we set ~ = c = kB = 1, where ~ is the reduced Planck’s constant, kB the
Boltzmann constant, and c the velocity of light.

• If not indicated differently, the trace includes the integral over the three dimensional momenta
throughout the thesis:

Tr[...] =

∫
d3p

(2π)3
Tr[...]

• The Pauli matrices are defined as:

σx = τx =

(
0 1
1 0

)
, σy = τy =

(
0 −i
i 0

)
, σz = τz =

(
1 0
0 −1

)
,

where the symbol σ refers to the pseudospin of the system (e.g. energyband for Weyl semimetals)
and τ stands for the valley/Weyl node.

• Throughout this thesis, the term “magnetic field” is used for both the magnetic field H and the
magnetic flux density B. In vacuum, both quantities are proportional to each other related via
the vacuum permeability µ0, B = µ0H. To be consistent with the available experimental data,
cf. Ch. 1, we use the notation H in context of Weyl semimetals for magnetic and B in context
of the carbon nanotube with side-attached molecule magnets.

• The Fermi-Dirac distribution function is denote by

fT (ε) =
1

1 + exp
(
ε−µ
kBT

)
Next, we introduce the basic notations used throughout the thesis:

H Hamiltonian of the considered system

G Green’s function

Σ self-energy

Γ imaginary part of the retarded self-energy

e elementary charge

vF or v Fermi velocity

µ chemical potential

T temperature

ω external frequency
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List of Figures

l mean free path

lH magnetic length lH = (eH/c)−1/2

N particle density
Nimp impurity concentration

ν(ε) density of states

Ω distance between zeroth and first Landau level in Weyl semimetals Ω = v
√

2eH/c

Λ ultraviolet cutoff for Weyl semimetals

ωc(ε) cyclotron frequency of Weyl semimetals ωc(ε) = Ω2/(2ε)

σxx conductivity

σxy Hall conductivity

σI
xy normal part of the Hall conductivity

σII
xy anomalous part of the Hall conductivity

∆ρ magnetoresistivity

t transmission coefficient

r reflection coefficient

T transmission amplitude

R reflection amplitude

F free energy

G conductance

G0 conductance quantum G0 = e2/h

Vsd source-drain voltage

Vg gate voltage

EC charging energy

Usd dimensionless source-drain voltage Usd = eVsd/EC

Ug dimensionless source-drain voltage Ug = eVg/EC

Re real part

Im imaginary part

1 unity matrix

P principle value

δ(x) delta-function

θ(x) Heaviside theta-function
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Acronyms

1D one dimensional

2D two dimensional

3D three dimensional

SCBA self-consistent Born approximation

RG renormalization group

LL Landau level

MR magnetoresistance

TMR transversal magnetoresistance

SdHO Shubnikov-de Haas oscillations

GMR giant magnetoresistance

CNT carbon nanotube

SMM single-molecule magnet

QD quantum dot
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A Appendix A

Disorder in Weyl semimetals

In this appendix, we present the details for the calculation of disorder in Weyl semimetals. Specifically,
we present a detailed treatment of pointlike impurities in absence of magnetic field including higher
order corrections. Moreover, we perform the evaluation of of the self-energy in a smooth disorder
potential. In addition, we discuss the shape of the Landau level broadening due to disorder for
separated Landau levels.

A.1 Detailed calculation of self-energy for pointlike impurities

To introduce disorder, we calculate the disorder dressed Green’s function with the self-consistently
obtained self-energy. The self-consistent equation for the self-energy for arbitrary energy, ε, as obtained
under momentum integration as performed in the main text, Eq. (3.11), reads

ΣR(ε) = β(ε− ΣR)

−1 +
(ε− ΣR)

2Λ
ln

(
ε− ΣR + Λ

ε− ΣR − Λ

) . (A.1)

We split the self-consistent equation in real and imaginary part which leads to

ReΣR = −β(ε− ReΣR) + β
(ε− ReΣR)2 − Γ2

2Λ
ln

(√
((ε− ReΣR)2 − Λ2 + Γ2)2 + (2ΓΛ)2

(ε− ReΣR − Λ)2 + Γ2

)

+ β
2Γ(ε− ReΣR)

2Λ

arctan

(
2ΓΛ

(ε− ReΣR)2 − Λ2 + Γ2

)
+ π

 , (A.2)

Γ = βΓ− β 2Γ(ε− ReΣR))

2Λ
ln

(√
((ε− ReΣR)2 − Λ2 + Γ2)2 + (2ΓΛ)2

(ε− ReΣR − Λ)2 + Γ2

)

+ β
(ε− ReΣR))2 − Γ2

2Λ

arctan

(
2ΓΛ

(ε− ReΣR)2 − Λ2 + Γ2

)
+ π

 , (A.3)

where the solutions with +π correspond to (ε − ReΣR)2 − Λ2 + Γ2 < 0 while in the opposite limit
(ε−ReΣR)2 −Λ2 + Γ2 > 0 the equation is valid without any further terms. We expand the equations
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A Disorder in Weyl semimetals

now up to quadratic order in ε− ReΣR (under the assumption (ε− ReΣ)/|Γ2 − Λ2| < 1) to solve the
self-consistent equations. The expansion of the logarithm is

ln

(√
((ε− ReΣR)2 − Λ2 + Γ2)2 + (2ΓΛ)2

(ε− ReΣR − Λ)2 + Γ2

)
≈ 2Λ(ε− ReΣR)

Λ2 + Γ2
− (5Λ2 − Γ2)(ε− ReΣR)2

(Λ2 + Γ2)2
(A.4)

The expansion of the arctan leads to

arctan

(
2ΓΛ

(ε− ReΣR)2 − Λ2 + Γ2

)
+ π ≈ 2 arctan

(
Λ

Γ

)
− 2ΛΓ(ε− ReΣR)2

(Γ2 + Λ2)2
, (A.5)

where two branches of the arctan finite ε − ReΣR is fully incorporated in the limit ε − ReΣR =
0. Therefore, the expansion of the arctan holds for both cases (ε − ReΣR)2 − Λ2 + Γ2 > 0 and
(ε− ReΣR)2 − Λ2 + Γ2 < 0.

The Eqs. (A.2) and (A.3) up to second order in ε− ReΣR read

ReΣR = −β(ε− ReΣR)− β Γ2

Λ2 + Γ2
(ε− ReΣR) + β

2Γ

Λ
arctan(Λ/Γ)(ε− ReΣR)

− βΓ2(Γ2 − 5Λ2)

(Λ2 + Γ2)2
(ε− ReΣR)2 (A.6)

Γ = βΓ− β 2(ε− ReΣR)2Γ

Λ2 + Γ2
+ β

(ε− ReΣR)2

Λ
arctan(Λ/Γ)− βΓ2

Λ
arctan(Λ/Γ)

+ β
Γ2

2Λ

2ΓΛ(ε− ReΣR)2

(Γ2 + Λ2)2
. (A.7)

The results of the numerical evaluation of these equations for (ε−ReΣR)/Λ < 1 were shown in Fig. 3.1
of the main text for the imaginary part. We find that the imaginary part does not substantially
dependent on the quadratic corrections in energy away from the critical regime. The critical regime is
present in the region −

√
2πε/Λ < β <

√
2πε/Λ nicely matching with the deviation of energy in the

Fig. 3.1. Therefore, we neglect the energy dependence in the considered case of strong disorder and
solve Eq. (A.2) with neglecting the energy dependence of Γ, yielding

ReΣ = ε

(
1− 1

|β̄ − 1|

)
(A.8)

with the renormalization of the dimensionless disorder strength according to

β̄ = β

1− 2Γ

Λ
arctan

(
Λ

Γ

)
+

Γ2

Λ2 + Γ2

 = β

(
2

β
− 1

1 + Γ2/Λ2

)
. (A.9)

These results are used in the main text to analyze the density of states and the conductivity.

A.2 Evaluation of the self-energy for smooth disorder

With the definition of the impurity correlator for smooth disorder Eq. (3.29), we self-energy is defined
as

Σ(p, ε) = γ

∫
d3q

(2π)3

θ(1− b|p− q|)(ε− Σ(q, ε))

(ε− Σ(q, ε))2 − v2q2
. (A.10)

166



A.2 Evaluation of the self-energy for smooth disorder

The momentum integration of the angular momenta is performed by the integral

Σ(p, ε) = γ

∫
dq

(2π)2
q2

∫ b
√
p2+q2

b|p−q|
dyθ(1− y)

y

b2pq

(ε− Σ(q, ε))

(ε− Σ(q, ε))2 − v2q2
. (A.11)

The restrictions of the momenta due to the θ-function lead to the following result of the integral

Σ(p, ε) = γθ(1− bp)
∫ 1/b

0

dq

(2π)2
q2 (ε− Σ(q, ε))

(ε− Σ(q, ε))2 − v2q2

+ γθ(1− bp)
∫ 1/b

√
1/b2−p2

1− b2(p2 + q2)

2b2p

dq

(2π)2
q2 (ε− Σ(q, ε))

(ε− Σ(q, ε))2 − v2q2

+ γθ(bp− 1)

∫ p+1/b

p−1/b

1− b2(p− q)2

2b2p

dq

(2π)2
q2 (ε− Σ(q, ε))

(ε− Σ(q, ε))2 − v2q2
(A.12)

We separate now the terms for small and large momenta

Σ(p, ε) = Σ1(p, ε)θ(1− bp) + Σ2(p, ε)θ(bp− 1) (A.13)

The terms for small momenta bp� 1, Σ1, is given by

Σ1(p, ε) = γ

∫ 1/b

0

dq

(2π)2
q2 (ε− Σ1(q, ε))

(ε− Σ1(q, ε))2 − v2q2

+ γ

∫ 1/b

√
1/b2−p2

1− b2(p2 + q2)

2b2p

dq

(2π)2
q2 (ε− Σ1(q, ε))

(ε− Σ1(q, ε))2 − v2q2

+ γ

∫ 1/b+p

1/b

1− b2(p− q)2

2b2p

dq

(2π)2
q2 (ε− Σ2(q, ε))

(ε− Σ2(q, ε))2 − v2q2
, (A.14)

and correspondingly for large momenta bp� 1, Σ2 reads

Σ2(p, ε) = γ

∫ p+1/b

p−1/b

1− b2(p− q)2

2b2p

dq

(2π)2
q2 (ε− Σ2(q, ε))

(ε− Σ2(q, ε))2 − v2q2
. (A.15)

We first solve the equation of Σ2 and use the result to obtain Σ1. In the limit bp � 1 and for ε = 0,
we approximate the integral for ImΣ2 = −Γ2 as

Γ2 =
γ

2b2

∫ 1/b

−1/b

dk

(2π)2
(1− b2k2)

Γ2

Γ2
2 + v2p2

=
2

3
βbΛb

Γ2

Γ2
2 + v2p2

, (A.16)

where

βb =
γ

2π2bv2
, Λb =

v

b
. (A.17)

Solving the self-consistent equation leads to

Γ2(p) = θ

(
2

3
βbΛ

2
b − v2p2

)√
2

3
βbΛ

2
b − v2p2. (A.18)
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Applying this result to Eq. (A.14) provides

Γ1(p) = γ

∫ 1/b

0

dq

(2π)2

2Γ1

Γ2
1 + v2q2

+
3b3

2

∫ 1/b+p

1/b
dqq

1− b2(p− q)2

2b2p
Γ2(Λb)

= βbΓ1

1− Γ1

Λb
arctan

(
Λb
Γ1

)+
3

4
bpΛb

√
2

3
βb − 1θ

(
2βb − 3

)
, (A.19)

with Σ1 = −Γ1.

A.3 Shape of the disorder broadening of separated Landau levels

In this part of the appendix we analyze the shape of the LL broadening at ε < ε∗ = Ω(Ω/A)1/5 (when
LL are well separated). The maximum of Γ(ε) around ε ∼ Wn0 is located at ε ' Wn0 + Γ(Wn0)/22/3

and is given by Γtop = Γ(Wn0)31/2/22/3, where Γ(Wn0) = (A/2)2/3W
1/3
N . For brevity, we use the

abbreviation Γn0 = Γ(Wn0).
For ε > Wn0 + Γn0 , the peak in Γ(ε) decreases as

Γ(ε) ' Γn0

√
2Γn0

ε−Wn0

=
A√
2

√
Wn0

ε−Wn0

, (A.20)

and reaches the value of the background at ε ∼ Wn0 + Ω(Ω/ε)3. This value is always smaller than
Wn0+1 ' Wn0 + Ω2/(2ε). Thus, in the range Wn0 + Ω(Ω/ε)3 < ε < Wn0+1 − Γ(Wn0+1), the Landau
level broadening is of the order of A(ε/Ω)2 (zero-H result).

On the left side of the peak, for ε < Wn0 − Γn0 , the solution of the self-consistency equation (3.70)
yields

Γ(ε) ' 2A
ε2

Ω2

[
1 +

A
√
Wn0

[2(Wn0 − ε)]3/2 −A
√
Wn0

]
. (A.21)

which matches Γn0 at ε ∼Wn0 − Γn0 −Aε2/Ω2. The decrease of left side of the peak from Γ(ε) ∼ Γn0

to Γ(ε) ∼ Aε2/Ω2 is thus very sharp. The Landau-level broadening for the case of well separated levels
is shown schematically in Fig. A.1.
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[Reprinted figure with permission from J. Klier, I. V. Gornyi, A. D. Mirlin, Physical Review B, 92, 205113 (2015)

Copyright 2015 by the American Physical Society. http://dx.doi.org/10.1103/PhysRevB.92.205113]

Figure A.1: Schematic illustration of the Landau-level broadening. At energies ε < ε1, such
that |ε1 −Wn0 | ∼ Γn0 , the broadening is given by Eq. (A.21). The maximum of ImΣ is Γtop '
Γn031/2/22/3 ' 1.1Γn0 and is achieved at ε2 = Wn0 +Γn0/2

2/3 'Wn0 +0.63Γn0 . At ε3 ∼Wn0 +Γn0

the tail (A.20) develops. At ε4 ∼Wn0 + Ω(Ω/ε)3 this tail reaches the background 2A(n0 + 1).
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B Appendix B

Transport properties in Weyl semimetals

In this appendix, we show some details of the calculation of the transport properties in Weyl semimetals.
This includes the calculation of the conductivity and the normal part of the Hall conductivity away
from the zeroth Landau level as well as the anomalous part of the Hall conductivity without disorder.

B.1 Conductivity for high temperatures

Here, we present details of the evaluation of the conductivity in the regime of high temperatures when
many Landau levels contribute to the result. We first calculate the conductivity without current-vertex
corrections and include the vertex corrections in the end of the calculation. Using the Kubo formula
(4.1), the dc conductivity reads

σ(0)
xx =

e2Ω2

2π2v

∫ ∞
−∞

dε

4T cosh2
(
ε

2T

)∑
n=0

Qn(ε), (B.1)

Qn(ε) =

∫ ∞
−∞

dz

2π
ImGR11(ε, n, pz)ImG

R
22(ε, n, pz).

(B.2)

With the Green’s functions ImGR11 and ImGR22, Eqs. (4.10) and (4.11), respectively, Eq. (B.2) results
in

Qn(ε) = Γ2

∫ ∞
−∞

dz

2π

(ε2 + z2 + Ω2n+ Γ2 + 2εz)(ε2 + z2 + Ω2(n+ 1) + Γ2 + 2εz)− 4ε2z2

[(ε2 − z2 − Ω2n− Γ2)2 + 4ε2Γ2][(ε2 − z2 − Ω2(n+ 1)− Γ2)2 + 4ε2Γ2]

= Q(I)
n +Q(II)

n , (B.3)
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where (with W 2
n = Ω2n+ Γ2)

Q(I)
n = Γ

2Γ2[Ω2 − 4ε2(2n+ 1)] + [4Γ2 + Ω2(2n+ 1)]
[
ε2 −W 2

n +
√

(ε2 −W 2
n)2 + 4ε2Γ2

]
2[(4εΓ)2 + Ω4]

√
(ε2 −W 2

n)2 + 4ε2Γ2

√
ε2 −W 2

n +
√

(ε2 −W 2
n)2 + 4ε2Γ2

, (B.4)

Q(II)
n = Γ

−2Γ2[Ω2 − 4ε2(2n+ 1)] + [4Γ2 + Ω2(2n+ 1)]

[
ε2 −W 2

n+1 +
√

(ε2 −W 2
n+1)2 + 4ε2Γ2

]
2[(4εΓ)2 + Ω4]

√
(ε2 −W 2

n+1)2 + 4ε2Γ2

√
ε2 −W 2

n+1 +
√

(ε2 −W 2
n+1)2 + 4ε2Γ2

.

(B.5)

Since the term Q
(II)
n is dominated by ε ∼Wn+1, it is convenient to shift the summation over n for this

term. For definiteness, we use the hard cut-off for the summation over Landau levels, such that the
highest Landau level involved in the summation is (Nmax − 1) + 1 = Nmax from Q(II):

Nmax−1∑
n=0

Qn = Q
(I)
0 +

Nmax−1∑
n=1

[
Q(I)
n +Q

(II)
n−1

]
+Q

(II)
Nmax−1, (B.6)

where

Q
(I)
0 =

ΓΩ2

2[(4εΓ)2 + Ω4]
, (B.7)

Q
(II)
Nmax−1 ' 4ε2Γ2

√
Nmax

Ω[(4εΓ)2 + Ω4]
, (B.8)

and we write

Q(I)
n +Q

(II)
n−1 =

√
2Γε

(4εΓ)2 + Ω4
qn, (B.9)

qn = qn,1 − qn,2. (B.10)

Here we have split qn into two parts related to the asymmetry of each Landau level:

qn,1 = Ω2n

√
ε2 −W 2

n +
√

(ε2 −W 2
n)2 + 4ε2Γ2√

(ε2 −W 2
n)2 + 4ε2Γ2

, (B.11)

qn,2 =
Γ

ε

[
ε2 +W 2

n −
√

(ε2 −W 2
n)2 + 4ε2Γ2

] √W 2
n − ε2 +

√
(ε2 −W 2

n)2 + 4ε2Γ2√
(ε2 −W 2

n)2 + 4ε2Γ2
. (B.12)

For weak disorder, Γ(ε) � ε, and qn,1 � qn,2. We note that these functions have resonant structure
and take their maximal values when

ε2 ' Ω2n+
2√
3

ΓΩ
√
n. (B.13)

Comparing Eqs. (B.11) and (B.12) at resonances, we see that the maximal value of qn is dominated
by qn,1:

qn,1 '
ε3/2

√
2Γ1/2

, qn,2 '
√

2Γ1/2ε1/2 � qn,1. (B.14)
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One can check that qn,1 � qn,2 in the whole range of energies Wn < ε < Wn+1. Therefore, in what
follows we will disregard the contribution of qn,2, using qn ' qn,1. Comparing Eq. (B.11) and (3.63),
we find [see also Eq. (3.70)]:

qn ' Ω2n

√
2Γ(n)(ε)

Aε
= Ω2n

√
2

(
Γ

Aε
− 2ε

Ω2

)
(B.15)

Let us now consider energy ε located between the Landau levels n0 and n0 + 1. We split the sum
over Landau levels in Eq. (B.6) as follows:

Nmax−1∑
n=1

[
Q(I)
n +Q

(II)
n−1

]
=

√
2Γε

(4εΓ)2 + Ω4

Nmax−1∑
n=1

qn

=

√
2Γε

(4εΓ)2 + Ω4


n0−1∑
n=1

qn + qn0 + qn0+1 +

Nmax−1∑
n=n0+2

qn

 . (B.16)

When the Landau-level broadening is smaller than the distance between the neighboring levels,
Wn0 −Wn0+1 ∼ Ω2/ε � Γ(ε), i.e., ε � ε∗∗ = Ω(Ω/A)1/3, we can neglect Γ in the contributions of all
Landau levels with n < n0. Replacing the sums by integrals, we find

n0−1∑
n=1

qn '
n0−1∑
n=1

√
2Ω2n√

ε2 − Ω2n
' 4
√

2

3

ε3

Ω2
. (B.17)

This contribution to Eq. (B.6) is by a factor ε4/Ω4 larger than the n = 0 term, Eq. (B.7), so the latter
can be neglected. For n > n0 + 1 we expand qn in Γ and get

Nmax−1∑
n=n0+2

qn '
Nmax−1∑
n=n0+2

√
2Γ(2ε2 − Ω2n)

(Ω2n− ε2)3/2

' −2
√

2εΓ

Ω

√
Nmax +

2
√

2ε3Γ

Ω2
√

Ω2(n0 + 2)− ε2
. (B.18)

The term proportional to
√
Nmax exactly cancels the contribution of Eq. (B.8) in the sum over n,

Eq. (B.6). The second term here is of the order of Γ/Ω [remember that Ω2n0 < ε2 < Ω2(n0 + 1)] and
can be neglected for ε < Ω(Ω/A)1/2 compared to the contribution of n < n0. Then Eq. (B.6) takes the
form

∑
n=0

Qn ' 2Γε4

Ω2[(4εΓ)2 + Ω4]

[
4

3
+

Ω2

√
2ε3

(
qn0 + qn0+1

)]
.

(B.19)

According to Eq. (B.15), the second term in Eq. (B.19) is given by

Ω2

√
2ε3

(
qn0 + qn0+1

)
∼ Ω2

ε

(
Γ(ε)

Aε
− 2ε

Ω2

)
. (B.20)
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This term may dominate the sum in Eq. (B.19) only for ε < ε∗ ∼ Ω(Ω/A)1/5 and when ε is located
close to a Landau level center. We will return to this case later and first analyze the opposite (simpler)
regime of ε > ε∗.

For ε > ε∗∗ = Ω(Ω/A)1/3, the level broadening in qn is larger than the distance |ε−Wn| for Landau
levels sufficiently close to n0:

Γn0 > |ε−Wn| ∼ |Wn0 −Wn|

⇒ |n0 − n| < n0Γ ≡
√
n0Γn0

Ω
∼ A

Ω

(
ε

Ω

)3

. (B.21)

For such values of n we can neglect ε2 −W 2
n as compared to εΓ in Eq. (B.11):

qn =
Ω2n√
2εΓ

. (B.22)

In this case, the sum over n in Eq. (B.16) is written as

Nmax−1∑
n=1

qn =


N−n0Γ−1∑

n=1

+

n0+n0Γ∑
n=n0−n0Γ

+

Nmax−1∑
n=n0+n0Γ+1

 qn,

n0−n0Γ−1∑
n=1

qn ' 4
√

2

3

ε3

Ω2

[
1− 3

2

√
n0Γ

n0

]
, (B.23)

n0+n0Γ∑
n=n0−n0Γ

qn ' n2
0Γ

Ω2

√
2εΓ

=
ε3/2Γ3/2

Ω2
, (B.24)

Nmax−1∑
n=n0+n0Γ+1

qn ' −2
√

2εΓ

Ω

√
Nmax +

2
√

2ε2Γ

Ω2
. (B.25)

We see that for ε > ε∗∗ again the first term (n < n0 − n0Γ) dominates, yielding the same result as
for ε < ε∗∗ (clearly, n0Γ � n0, in view of Γ(ε) � ε). Including the vertex correction calculated in
Appendix C.2, we arrive at Eqs. (4.12) and (4.17) of the main text.

Let us now return to the case of lower temperatures, Ω < T < ε∗ ∼ Ω(Ω/A)1/5. In this case, the
contribution of the Landau level n0 closest to the energy ε in the sum in Eq. (B.19) should be analyzed.
In order to estimate this contribution, we replace the integral over energy in Eq. (B.1) by a sum over
regions of width Γn0 around Landau levels, use Eq. (B.15), replace ε by Wn0 , and replace Γ(n0)(ε) there

by its maximal value Γ(n0)(Wn0) ≡ Γn0 ∼ A2/3Ω1/3n
1/6
0 . As a result, we get

σ(n0)
xx ∼ e2Ω2

ATv

∑
n0<(T/Ω)2

Γn0

Γ2
n0
W 2
n0

(4Wn0Γn0)2 + Ω4
(B.26)

∼ e2γT 4

Ω2v4
∝ γT 4

H
(B.27)

In addition to this contribution, there is a contribution of the tail at Γn0 < ε−Wn0 < Ω(Ω/Wn0)3, see
Fig. A.1 and Eq. (A.20). The integral over |ε−Wn0 | is logarithmic since Γ2(ε) decays as (ε−Wn0)−1

in this range and thus enhances the result (B.27) by a logarithmic factor. We see that the contribution
to the conductivity of the Landau level n0 is smaller than the semiclassical contribution, Eq. (4.18),
by factor Ω2/T 2 � 1 (up to the logarithm) and can be neglected.
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B.2 Normal part of the Hall conductivity for large chemical potential

B.2 Normal part of the Hall conductivity for large chemical potential

In this part of the appendix, we present the details for the calculation of the normal contribution to
the Hall conductivity σI

xy for large chemical potential, µ � Ω. Starting from Eq. (4.35), we use the
Green’s functions for LLs with n > 0. The resulting formula is

σI
xy = − 2e2Ω2

(2π)2v

∫
dε
dfT (ε)

dε

∫
dz

2π

∑
n

εΓΩ2

(ε2 − z2 − Ω2n− Γ2)2 + 4ε2Γ2

× z2 − Γ2 − ε2

(ε2 − z2 − Ω2(n+ 1)− Γ2)2 + 4ε2Γ2
(B.28)

The evaluation of the integral over z = vpz leads to

σI
xy = − 2e2Ω2

(2π)2v

∫
dε
dfT (ε)

dε

∑
n

Re

 1

Ω2 + 4iεΓ

[
−Ω2n− 2Γ2 + 2iεΓ√
ε2 − Ω2n− Γ2 + 2iεΓ

+
−Ω2(n+ 1)− 2Γ2 + 2iεΓ√
ε2 − Ω2(n+ 1)− Γ2 + 2iεΓ

] . (B.29)

To simplify the equation, we can shift the sum over n for the terms containing n + 1 by −1 and
evaluate the real part of the equation. The Hall conductivity σI

xy can be then written as

σI
xy = − 2e2Ω2

(2π)2v

∫
dε
dfT (ε)

dε

[
−(2Ω2Γ2 − 8ε2Γ2)

Ω4(+4εΓ)2

ε− Γ

ε2 + Γ2

−
Nmax−1∑
n=1

Ω4n+ 2Ω2Γ2

Ω4 + (4εΓ)2

√
ε2 − Ω2n− Γ2 +

√
(ε2 − Ω2 − Γ2)2 + 4ε2Γ2

√
2
√

(ε2 − Ω2n− Γ2)2 + 4ε2Γ2
+

4εΓΩ
√
Nmax

Ω4 + (4εΓ)2

 . (B.30)

We can split the sum over n in three parts: n < n0, n0, n0 +1 and n > n0 +1, where n0 is the resonant
energy. For the part of n < n0, we can neglect Γ and for n > n0 + 1 we can expand in Γ. After some
algebra, the Hall conductivity reads

σI
xy =

2e2Ω2

(2π)2v

∫
dε
dfT (ε)

dε

[
(2Ω2Γ2 − 8ε2Γ2)

Ω4(+4εΓ)2

ε− Γ

ε2 + Γ2
+

2

Ω4 + (4εΓ)2

n0−1∑
n=1

n√
ε2 − Ω2n

+
2Ω4n0

Ω4 + (4εΓ)2

Γ(n0)

Aε
+

2Ω4(n0 + 1)

Ω4 + (4εΓ)2

Γ(n0+1)

Aε

+

Nmax−1∑
n=n0+2

2Ω4n

Ω4 + (4εΓ)2

2εΓ
√

Ω2n− ε23 −
4εΓΩ

√
Nmax

Ω4 + (4εΓ)2

 . (B.31)

Here Γ(n0) and Γ(n0+1) are defined via the self-consistent equation Γ =
∑

n Γn. By evaluating the
second sum, we see that term of the upper limit Nmax − 1 cancels with the last term of Eq.(B.31).
Furthermore, the contribution of the lower limit n0 + 2 of this sum and the term from the n = 0 are
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parametrically small and can be neglected. The normal contribution to the Hall conductivity then
reads

σI
xy =

2e2Ω2

(2π)2v

∫
dε
df(ε)

dε

4

3

ε3

Ω4 + (4εΓ)2
+

Ω2ε2

Ω4 + (4εΓ)2

(
Γ

Aε
− 2ε

Ω2

) . (B.32)

This expression is further evaluated in the main text, where we consider the different regimes of LL
broadening.

B.3 Anomalous part of the Hall conductivity

To evaluate the anomalous part of Hall conductivity, we calculate the particle density by integrating
the density of states up to the ultraviolet cutoff:

N(µ,H) =
Ω2

8π2v3

∫ Λ

0
dε
[
fT (ε− µ)− fT (ε+ µ) + 1

]1 + 2

ε2/Ω2∑
n=1

ε√
ε2 − Ω2n

 , (B.33)

where fT (ε± µ) = (exp((ε± µ)/2T ) + 1)−1 denotes the Fermi-Dirac distribution function. Taking the
derivative with respect to H leads to the following anomalous Hall conductivity:

σII
xy =

e2

4π2v


∫ ∞

0
dε
[
fT (ε− µ)− fT (ε+ µ) + 1

]1 + 2

ε2/Ω2∑
n=1

ε√
ε2 − Ω2n



+2

Λ2/Ω2∑
n=1

Ω2n√
Λ2 − Ω2n

− 2

∫ ∞
0

dε

[
dfT (ε− µ)

dε
− dfT (ε+ µ)

dε

]
ε2/Ω2∑
n=1

Ω2n√
ε2 − Ω2n

 . (B.34)

The last term of Eq. (B.34) differs from the normal Hall conductivity Eq. (4.40) only by the sign. The
anomalous Hall conductivity reads

σII
xy =

e2

4π2v

µ+ 2

µ2/Ω2∑
n=1

√
µ2 − Ω2n+ Λ + 2

Λ2/Ω2∑
n=1

√
Λ2 − Ω2n+ 2

Λ2/Ω2∑
n=1

Ω2n√
Λ2 − Ω2n

− σI
xy. (B.35)

Employing the Euler Maclaurin formula to Eq. (B.35) leads to a cancellation of the terms that depend
on the ultraviolet cutoff Λ. The remaining terms are

σII
xy =

e2

4π2v

µ+ 2

µ2/Ω2∑
n=1

√
µ2 − Ω2n

− σI
xy, (B.36)

which corresponds to Eq. (4.42).
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C Appendix C

Vertex corrections to the conductivity in
Weyl semimetals

This appendix is devoted to the calculation of the vertex corrections to the conductivity in Weyl
semimetals. The following diagram describes the dressing of a current vertex by disorder lines and is
mathematically expressed for pointlike impurities as:

=evγ

∫
dpx
2π

∫
dpy
2π

∫
dpz
2π

ĜA(ε+ ω; px, py, pz)σxĜ
R(ε; px, py, pz). (C.1)

This appendix is devoted to both the absence and the presence of a magnetic field. In absence of
magnetic field, we calculate the vertex corrections arbitrary disorder and for finite external frequency
in contrast to Ref. [81]. In the presence of magnetic field, we distinguish between the zeroth Landau
level and higher Landau levels in the limit of zero external frequency.

C.1 Vertex corrections in absence of magnetic field

In the absence of magnetic field, there exists in general also a contribution of the two retarded Green’s
functions in the conductivity and thus the corresponding vertex correction is required. Using the
Green’s function in absence of magnetic field, Eq. (3.8), the retarded-retarded correction to the velocity
for a single impurity line is given by

vRR
x (ε, ω) = vγ

∫
d3p

(2π)3
GR(ε+ ω,p)GR(ε,p)

= vγ

∫
d3p

(2π)3

ε+ ω − ΣR(ε+ ω)

(ε+ ω − ΣR(ε+ ω))2 + v2p2

ε− ΣR(ε)

(ε− ΣR(ε))2 + v2p2
. (C.2)
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Solving the integral, the retarded-retarded vertex correction can be expressed as

vRR
x = v


(
ε+ ω − ΣR(ε+ ω)

)(
ε− ΣR(ε)

)
(
ε− ΣR(ε)

)2
−
(
ε+ ω − ΣR(ε+ ω)

)2

(
ΣR(ε+ ω)

ε+ ω − ΣR(ε+ ω)
− ΣR(ε)

ε− ΣR(ε)

)

+
1

6

(
ΣR(ε+ ω)

ε+ ω − ΣR(ε+ ω)
+

ΣR(ε)

ε− ΣR(ε)

)

− 1

6

(
ε+ ω − ΣR(ε+ ω)

)2
+
(
ε− ΣR(ε)

)2

(
ε− ΣR(ε)

)2
−
(
ε+ ω − ΣR(ε+ ω)

)2

(
ΣR(ε+ ω)

ε+ ω − ΣR(ε+ ω)
− ΣR(ε)

ε− ΣR(ε)

) . (C.3)

The retarded-advanced correction to the velocity for a single impurity line is given by the following
integral:

vRA
x (ε, ω) = vγ

∫
d3p

(2π)3
GR(ε+ ω,p)GA(ε,p)

= vγ

∫
d3p

(2π)3

ε+ ω − ΣR(ε+ ω)

(ε+ ω − ΣR(ε+ ω))2 + v2p2

ε− ΣA(ε)

(ε− ΣA(ε))2 + v2p2
. (C.4)

In full analogy to the retarded-retarded correction, we obtain the retarded-advanced correction, reading

vRA
x = v


(
ε+ ω − ΣR(ε+ ω)

)(
ε− ΣA(ε)

)
(
ε− ΣA(ε)

)2
−
(
ε+ ω − ΣR(ε+ ω)

)2

(
ΣR(ε+ ω)

ε+ ω − ΣR(ε+ ω)
− ΣA(ε)

ε− ΣA(ε)

)

+
1

6

(
ΣR(ε+ ω)

ε+ ω − ΣR(ε+ ω)
+

ΣA(ε)

ε− ΣA(ε)

)

− 1

6

(
ε+ ω − ΣR(ε+ ω)

)2
+
(
ε− ΣA(ε)

)2

(
ε− ΣA(ε)

)2
−
(
ε+ ω − ΣR(ε+ ω)

)2

(
ΣR(ε+ ω)

ε+ ω − ΣR(ε+ ω)
− ΣA(ε)

ε− ΣA(ε)

) (C.5)

After some algebra the vertex corrections can be expressed as

vRR
x (ε, ω) = v

ΣR
ε+ω(ε− ΣR

ε )− ΣR
ε (ε+ ω − ΣR

ε+ω) + 1
3

[
(ε− ΣR

ε )ΣR
ε − (ε+ ω − ΣR

ε+ω)ΣR
ε+ω

]
(ε− ΣR

ε )2 − (ε+ ω − ΣR
ε+ω)2

, (C.6)

vRA
x (ε, ω) = v

ΣR
ε+ω(ε− ΣA

ε )− ΣA
ε (ε+ ω − ΣR

ε+ω) + 1
3

[
(ε− ΣA

ε )ΣA
ε − (ε+ ω − ΣR

ε+ω)ΣR
ε+ω

]
(ε− ΣA

ε )2 − (ε+ ω − ΣR
ε+ω)2

, (C.7)

where the subscript marks the dependence of external frequency and energy of the self-energy. In the
main text, we use these corrections to calculate the conductivity via the summation over the ladder of
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C.2 Vertex corrections in presence of magnetic field

impurity lines

V tr
0 (ε)

1− v
RR/RA
x

v

−1

. (C.8)

We can show that the above calculated vertex corrections are in full agreement with the vertex
corrections in the dc limit for weak disorder in Ref. [81]. For weak disorder, we use Eq. (3.16) for the
self-energy. In the dc limit, we obtain

vRR
x = −vβ

3
, (C.9)

vRA
x =

v(1− 2β)

3
. (C.10)

This corresponds to the result vRR
x = 0 and vRA

x = v/3 of Ref. [81], where the limit β → 0 was
discussed.

C.2 Vertex corrections in presence of magnetic field

In presence of a finite magnetic field, the diagonal elements for the resulting matrix of retarded and
advanced Green’s functions vanish after the integration over x, x′ and py because of the orthogonality
of the Hermite functions. The off-diagonal elements vx,12 are equal. They read

vRA
x = vγ

∫
dpy
2π

∫
dpz
2π

∫
dx

∫
dx′δ(x− x′)ĜA(ε, py, pz, x, x

′)σxĜ
R(ε, py, pz, x

′, x) (C.11)

= ev

∫
dpz
2π

γeH

2πc

Nmax∑
n=0

ε− ΣR
2 + vpz

(ε− ΣR
1 − vpz)(ε− ΣR

2 + vpz) + Ω2n

× ε− ΣA
1 − vpz

(ε− ΣA
1 − vpz)(ε− ΣA

2 + vpz) + Ω2(n+ 1)
. (C.12)

For energies away from the Weyl point, the difference between the two self-energies, Σ1 and Σ2, can
be neglected. Furthermore, for high Landau levels we can express the Landau level index n in terms
of the momenta in px and py direction. The correction to the current vertex then simplifies as follows

vRA
x =vγ

∫
dp3

(2π)3

(ε− ΣA)(ε− ΣR)− v2p2
z

((ε− ΣA)2 − v2p2)((ε− ΣR)2 − v2p2 − Ω2)
, (C.13)

which can be cast in the form:

vRA
x =

vγ

π

(ε− ΣA)(ε− ΣR)

(ε− ΣR)2 − (ε− ΣA)2 + Ω2

∫
dp

2π
p2

[
1

(ε− ΣA)2 − v2p2 − Ω2
− 1

(ε− ΣR)2 − v2p2

]

− evγ

6π

(ε− ΣA)2 + (ε− ΣR)2 − Ω2

(ε− ΣR)2 − (ε− ΣA)2 + Ω2

∫
dp

2π
p2

[
1

(ε− ΣA)2 − v2p2 − Ω2
− 1

(ε− ΣR)2 − v2p2

]

+
vγ

6π

∫
dp

2π
p2

[
1

(ε− ΣA)2 − v2p2 − Ω2
+

1

(ε− ΣR)2 − v2p2

]
. (C.14)
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C Vertex corrections to the conductivity in Weyl semimetals

The integrals over momenta here can be identified with those for the self-energy. The shift in the
denominator by Ω2 of the integrands is unimportant (similarly to the difference between Σ1 and Σ2)
and can be neglected; it is then sufficient to keep Ω2 in the prefactors of the integrals. The corrections
to the current in x-direction then reads

vRA
x =v

 (ε− ΣA)(ε− ΣR)

(ε− ΣR)2 − (ε− ΣA)2 + Ω2

[
ΣA

ε− ΣA
− ΣR

ε− ΣR

]
+

1

6

[
ΣA

ε− ΣA
+

ΣR

ε− ΣR

]

− 1

6

(ε− ΣA)2 + (ε− ΣR)2 − Ω2

(ε− ΣR)2 − (ε− ΣA)2 + Ω2

[
ΣA

ε− ΣA
− ΣR

ε− ΣR

] . (C.15)

For weak disorder, using ΣR,A � ε, after some algebra we arrive at:

vRA
x =

v

3

4iεΓ

4iεΓ + Ω2
. (C.16)

This result matches to the result in Ref. [81] for the case H = 0. The summation over the ladder of
impurity lines yields

V tr(ε) =

[
1− 1

3

4iεΓ(ε)

4iεΓ(ε) + Ω2

]−1

, (C.17)

leading to Eq. (4.2) and hence

τ tr(ε) =
3

2
τ q(ε) (C.18)

in the Drude formula for the conductivity (4.13) and for the Hall conductivity (4.49).
This result is not applicable at the Weyl point, where Σ1 6= Σ2. To simplify Eq. (C.11), we can use

Σ2 = 0 which is justified for weak disorder. Equation (C.11) simplifies then as follows

vRA
x =

γeHv

2πc

∫
dpz
2π

Nmax∑
n=0

ε+ vpz

(ε− ΣR
1 − vpz)(ε+ vpz) + Ω2n

× ε− ΣA
1 − vpz

(ε− ΣA
1 − vpz)(ε+ vpz) + Ω2(n+ 1)

. (C.19)

We find that this integral is proportional to A/Ω and hence the vertex corrections are small. This
is in agreement with the neglect of vertex corrections in the calculation of the strong-H conductivity
dominated by the lowest Landau level in Ref. [82].
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D Appendix D

Fano-resonances in a double barrier
system

In this appendix, we present the details of the developed Green’s function approach for a double barrier
structure with a Fano state between the barriers. In order to do this, we use now the Green’s function
(5.33)-(5.36) obtained in Sec. 5.2.2 where we treated the Fano state as a perturbation of the clean
system consisting in this case of the two barriers. The Green’s functions provide then the transmission
and reflection coefficient.

We use the Green’s functions of the double barrier system obtained in Sec. 5.2.2 and apply them to
obtain the Green’s of the double barrier structure with a molecule between the barriers. The Green’s
functions are given by Eqs. (5.40)-(5.45). For clarity, we provide these Green’s functions again, reading

Gtrans
0,RR(x′, x) =

2πim

k

(
tBB(k)eik(x−x′) + tBB(k)r∗BB(k)eik(x+x′)

)
(D.1)

Gtrans
0,LL (x′, x) =

2πim

k

(
t∗BB(k)e−ik(x−x′) + t∗BB(k)rBB(k)e−ik(x+x′)

)
(D.2)

Gtrans
0,RR(0, x) =

2πim

k
(a∗+(k) cos(ka) + a∗−(k) sin(ka))tBB(k)eikx (D.3)

Gtrans
0,RR(x′, 0) =

2πim

k
(a+(k) cos(ka) + a−(k) sin(ka))

(
e−ikx

′
+ r∗BB(k)eikx

′
)

(D.4)

Gtrans
0,LL (0, x) =

2πim

k
(a∗+(k) cos(ka)− a∗−(k) sin(ka))

(
e−ikx + rBB(k)eikx

)
(D.5)

Gtrans
0,LL (x′, 0) =

2πim

k
(a+(k) cos(ka)− a−(k) sin(ka))t∗BB(k)eikx

′
. (D.6)

The full Green’s functions with the Fano state located at position a thus read

Gtrans
RR (x′, x) =

Ek − E′0 − 4πim
k |V |

2Re(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka))

· 2πim

k

(
tBB(k)eik(x−x′) + tBB(k)r∗BB(k)eik(x+x′)

)
, (D.7)

Gtrans
RL (x′, x) =

2πim
k |V |

2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka)− 2Im(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2|a+(k)|2

· 2πim

k

(
|rBB(k)|2eik(x+x′) + e−ik(x+x′) + r∗BB(k)e−ik(x−x′) + rBB(k)eik(x−x′)

)
, (D.8)

181



D Fano-resonances in a double barrier system

Gtrans
LL (x′, x) =

Ek − E′0 − 4πim
k |V |

2Re(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka))

· 2πim

k

2πim

k

(
t∗BB(k)e−ik(x−x′) + t∗BB(k)rBB(k)eik(x+x′)

)
, (D.9)

Gtrans
LR (x′, x) =

2πim
k |V |

2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka)− 2Im(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2|a+(k)|2

· 2πim

k

(
|tBB(k)|2 2πim

k
eik(x+x′)

)
. (D.10)

The local Green’s function at the position of the Fano state has a non-negligible real part, which is
absorbed into the energy renormalization of the Fano state, reading

E′0 = E0 + P

∫ ∞
0

|V |2(|a+(k′)|2 cos2(ka) + |a−(k)|2 sin2(ka))

Ek − Ek′
dk′. (D.11)

To obtain from these Green’s functions now the transmission coefficient, we need to take into account
all terms proportional to eik(x−x′). This results in the transmission coefficient for the double barrier
structure with a molecule at position a of

tBMB(k) =
Ek − E′0 −

4i|V |2πm
k Re(a+a

∗
−) cos(ka) sin(ka)

Ek − E′0 −
2i|V |2πm

k (|a+|2 cos2(ka) + |a−|2 sin2(ka))
tBB

−
2i|V |2πm

k (|a+|2 cos2(ka)− |a−|2 sin2(ka)− 2Im(a+a
∗
−) cos(ka) sin(ka))

Ek − E′0 −
2i|V |2πm

k (|a+|2 cos2(ka) + |a−|2 sin2(ka))
rBB. (D.12)

For the reflection, we use the clean Green’s functions (5.46)-(5.51), reading for clarity

Gref
0,RR(x′, x) =

2πim

k

(
eik(x−x′) + |rBB|2e−ik(x−x′) + r∗BB(k)eik(x+x′) + rBBe

−ik(x+x′)
)
, (D.13)

Gref
0,LL(x′, x) =

2πim

k
|tBB(k)|2e−ik(x−x′), (D.14)

Gref
0,RR(0, x) =

2πim

k
(a∗+(k) cos(ka)− a∗−(k) sin(ka))

(
eikx + rBB(k)e−ikx

)
, (D.15)

Gref
0,RR(x′, 0) =

2πim

k
(a+(k) cos(ka) + a−(k) sin(ka))

(
e−ikx

′
+ r∗BB(k)eikx

′
)
, (D.16)

Gref
0,LL(0, x) =

2πim

k
(a∗+(k) cos(ka)− a∗−(k) sin(ka))tBB(k)e−ikx, (D.17)

Gref
0,LL(x′, 0) =

2πim

k
(a+(k) cos(ka) + a−(k) sin(ka))t∗BB(k)eikx

′
. (D.18)

With the definitions of the full Green’s function within the develop perturbative method (5.33)-(5.36),
we find the following full Green’s functions for the double barrier structure with one molecule relevant
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for the reflection coefficient

Gref
RR(x′, x) =

Ek − E′0 − 4πim
k |V |

2Re(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka))

· 2πim

k

(
eik(x−x′) + |rBB|2e−ik(x−x′) + r∗BB(k)eik(x+x′) + rBBe

−ik(x+x′)
)

(D.19)

Gref
RL(x′, x) =

2πim
k |V |

2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka)− 2Im(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2|a+(k)|2

· 2πim

k

(
e−ik(x+x′) + r∗BBe

−ik(x−x′)
)

(D.20)

Gref
LL(x′, x) =

Ek − E′0 − 4πim
k |V |

2Re(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka))

· 2πim

k
|tBB(k)|2e−ik(x−x′) (D.21)

Gref
LR(x′, x) =

2πim
k |V |

2(|a+(k)|2 cos2(ka) + |a−(k)|2 sin2(ka)− 2Im(a+(k)a−(k)) cos(ka) sin(ka))

Ek − E′0 − 2πim
k |V |2|a+(k)|2

· t∗BB
2πim

k

(
eik(x+x′) + rBBe

ik(x−x′)
)

(D.22)

Similar to the transmission coefficient, we can now determine the reflection coefficient which is given
by the terms proportional to e−ik(x+x′). The reflection coefficient reads

rBMB(k) =
Ek − E′0 −

4i|V |2πm
k Re(a+a

∗
−) cos(ka) sin(ka)

Ek − E′0 −
2i|V |2πm

k (|a+|2 cos2(ka) + |a−|2 sin2(ka))
rBB

−
2i|V |2πm

k (|a+|2 cos2(ka)− |a−|2 sin2(ka)− 2Im(a+a
∗
−) cos(ka) sin(ka))

Ek − E′0 −
2i|V |2πm

k (|a+|2 cos2(ka) + |a−|2 sin2(ka))
tBB. (D.23)

For the transmission and reflection coefficient of the full system with the Fano state written in terms of
the system with the two barriers, it is straightforward to show that the equations fulfill the conditions
|tBMB|2 + |rBMB|2 = 1 and tBMBr

∗
BMB + t∗BMBrBMB = 0.
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E Appendix E

Coulomb blockade in a nanotube with two
SMMs

In this appendix, we employ the formalism of transport in a multi-quantum dot system introduced
in Sec. 6.1 to the setup with four quantum dots in a CNT with SMMs, cf. Fig. 5.6. To calculate
the free energy, we represent our system by means of equivalent schemes [164, 166] for different spin
orientations of the molecules, see Figs. E.1 and E.2. We write the electrostatic energy in terms of a
dimensionless function φαβ, where α and β denote the spin projections of the two molecules.

The electrostatic energy for parallel molecular spin orientation (Fig. E.1) is given by

φ↑↑(Ni, Ug, Usd) =
1

2
Q
′T
↑↑

(
Ĉ−1
↑↑

)T
Q
′
↑↑, Q

′
↑↑ =


N1 + C1gUg + C1LUL

N2 + C2gUg
N3 + C3gUg + C3RUR

N4 + C4gUg + C4LUL + C4RUR

 , (E.1)

where the capacitance matrix is expressed as

Ĉ↑↑ =

 C1g+C1L+C14+C12 −C12 0 −C14

−C12 C2g+C12+C24+C23 −C23 −C24

0 −C23 C3g+C23+C34+C3R −C34

−C14 −C24 −C34 C4g+C4L+C4R+C14+C24+C34

 . (E.2)

The matrix elements are obtained by the capacitance of the different capacitors in the equivalent
scheme. They are obtained as discussed in Sec. 6.2 and are given by

C1g = x1, C2g = x2 − x1, C3g = 1− x2, C4g = 1, (E.3)

C14 = x1, C24 = x2 − x1, C34 = 1− x2,

C12 = κ
x1(x2 − x1)

x2
, C23 = κ

(x2 − x1)(1− x2)

1− x1
, C1L = C3R = C4L = C4R = lLR.

We assume that the source-drain voltage drops like VL = −Vsd, VR = 0, i.e., the voltage is applied to
the left lead.

For the anti-parallel molecular spin (Fig. E.2), the electrostatic energy reads

φ↑↓(Ni, Ug, Usd) =
1

2
Q
′T
↑↓

(
Ĉ−1
↑↓

)T
Q
′
↑↓, Q

′
↑↓ =


N1 + C1gUg + C1LUL
N2 + C2gUg + C2RUR
N3 + C3gUg + C3LUL
N4 + C4gUg + C4RUR

 , (E.4)
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[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure E.1: Equivalent scheme for carriers for the case of parallel molecular spins. The channels
4 and 1-2-3 are associated with different spin orientation of the carriers.

[Reprinted figure with permission from I. V. Krainov, J. Klier, A. P. Dmitriev, S. Klyatskaya, M. Ruben, W. Wernsdorfer,

and I. V. Gornyi, ACS Nano, 2017 11 (7), 6868-6880. Copyright 2017 by the American Chemical Society. DOI:

10.1021/acsnano.7b02014]

Figure E.2: Equivalent scheme for carriers for the case of anti-parallel molecular spins. The
channels 1-2 and 3-4 are associated with different spin orientation of the carriers.
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The capacitance matrix now is written as:

Ĉ↑↓ =

 C1g+C1L+C12+C13 −C12 −C13 0
−C12 C2g+C2R+C24+C12+C23 −C23 −C24

−C13 −C23 C3g+C3L+C34+C23+C13 −C34

0 −C24 −C34 C4g+C4R+C24+C34

 , (E.5)

with the matrix elements obtained similar as of the parallel aligned molecules. The capacitance is
given by

C1g = x1, C2g = 1− x1, C3g = x2, C4g = 1− x2, (E.6)

C13 = x1, C23 = x2 − x1, C24 = 1− x2,

C12 = κx1(1− x1), C34 = κx2(1− x2), C1L = C3L = C2R = C4R = lLR.

As explained in Sec. 6.1, we can write the current in terms of open channels. For the parallel
molecular spin configuration, equations for the currents in all channels with the set {N}i of electrons
are

J
(4)
L→R({N}i) = Θ

(
∆EL→4

)
Θ
(
∆E4→R

)
, (E.7)

J
(1−2−3)
L→R ({N}i) = Θ

(
∆EL→1

)
Θ
(
∆E1→2

)
Θ
(
∆E2→3

)
Θ
(
∆E3→R

)
,

where the upper index denotes the QDs acting in channel and ∆E is the dimensionless energy difference
given by ∆Ej→k in units EC . For electrons moving in the opposite direction R→ L, the currents can
be obtained in the same manner. The equation for the total current then reads:

I↑↑(Ug, Usd) =
∑
i

P
0(↑↑)
{N} (i)

[
J

(4)
L→R(

{
N
}
i
) + J

(1−2−3)
L→R (

{
N
}
i
)

+J
(4)
R→L(

{
N
}
i
) + J

(1−2−3)
R→L (

{
N
}
i
)

]
. (E.8)

For the anti-parallel molecular spin configuration, the equations for currents for electrons moving
from the left to the right lead L→ R are

J
(1−2)
L→R ({N}i) = Θ

(
∆EL→1

)
Θ
(
∆E1→2

)
Θ
(
∆E2→R

)
, (E.9)

J
(3−4)
L→R ({N}i) = Θ

(
∆EL→3

)
Θ
(
∆E3→4

)
Θ
(
∆E4→R

)
. (E.10)

The equation for the total current is:

I↑↓(Ug, Usd) =
∑
i

P
0(↑↓)
{N} (i)

[
J

(1−2)
L→R (

{
N
}
i
) + J

(3−4)
L→R (

{
N
}
i
) + J

(1−2)
R→L (

{
N
}
i
) + J

(3−4)
R→L (

{
N
}
i
)

]
.

The two equations for the total current are now used to calculate the Coulomb map for the parallel
and anti-parallel molecular spin orientation.
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