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1 Introduction

Higgs boson pair production is a promising channel to investigate the self interaction of

the Higgs boson. Although it is very challenging from the experimental point of view it

is expected that after the high-luminosity upgrade of the LHC constraints on the Higgs

boson tri-linear coupling will be able to be obtained. In order to determine whether or

not the Higgs sector is Standard Model-like it is therefore important to have the higher

order corrections to double Higgs boson production under control. A further building

block towards this goal is considered in this paper by providing analytic results in the

high-energy limit.

Higgs boson pairs are predominantly produced by the gluon-fusion channel and in the

recent years a number of higher order corrections have been computed to gg → HH, both

for the total cross section and for differential distributions. We refrain from providing a de-

tailed review but refer to ref. [1] where several recent results are combined and approximate

next-to-next-to-leading order (NNLO) expressions are constructed.

From the technical side the main new ingredients from this paper are analytic results

for the two-loop non-planar master integrals for gg → HH which, in combination with the

findings of ref. [2], allows one to obtain the next-to-leading order (NLO) amplitude for this
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process in the high-energy limit. This complements the NLO results obtained from the large

top quark-mass expansion [3–5], from the threshold expansion [6] and from an expansion for

small Higgs transverse momentum [7]. Furthermore, it provides an important cross check

and eventually an alternative approach to the exact result obtained in refs. [8–10] using a

numerical approach. Recently it has been suggested to expand the gg → HH amplitude

only in the Higgs boson mass but keep the dependence on the kinematic invariants and the

top quark mass [11]. This also leads to simpler expressions, however, one still has to solve

integrals involving three scales.

To describe the amplitude g(q1)g(q2) → H(q3)H(q4), with all momenta qi defined to

be incoming, we introduce the Mandelstam variables as follows

s̃ = (q1 + q2)
2 , t̃ = (q1 + q3)

2 , ũ = (q2 + q3)
2 , (1.1)

with

q21 = q22 = 0 , q23 = q24 = m2
H , s̃+ t̃+ ũ = 2m2

H . (1.2)

As described in more detail in subsection 2.3 we perform an expansion in the Higgs boson

mass. This means that we use the kinematics defined in eqs. (1.1) and (1.2) when evaluating

the amplitude, but before evaluating the Feynman integrals we set mH = 0 and obtain the

following variables which are relevant for the computation of the integrals1

s = 2q1 · q2 , t = 2q1 · q3 , u = 2q2 · q3 = −s− t . (1.3)

Thus the integrals will only depend on the variables s, t and m2
t , and when computing them

we further assume that m2
t � s, |t|. It is convenient to introduce the scattering angle θ of

the Higgs boson in the center-of-mass frame which leads to the following relation in terms

of these variables,

t = −s
2

(1− cos θ) . (1.4)

Due to Lorentz and gauge invariance it is possible to define two scalar matrix elements

M1 and M2 as

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδ
ab (M1A

µν
1 +M2A

µν
2 ) , (1.5)

where a and b are adjoint colour indices and the two Lorentz structures are given by

Aµν1 = gµν − 1

q12
qν1q

µ
2 ,

Aµν2 = gµν +
1

q2T q12
(q33q

ν
1q
µ
2 − 2q23q

ν
1q
µ
3 − 2q13q

ν
3q
µ
2 + 2q12q

µ
3 q

ν
3 ) , (1.6)

with

qij = qi · qj , q 2
T =

2q13q23
q12

− q33 . (1.7)

1In the limit mH = 0 we drop the tilde from the Mandelstam variables.
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The Feynman diagrams involving the triple Higgs boson coupling only contribute to Aµν1
and, thus, it is convenient to decomposeM1 andM2 into “triangle” and “box” form factors

M1 = X0 s

(
3m2

H

s−m2
H

Ftri + Fbox1

)
,

M2 = X0 s Fbox2 , (1.8)

with

X0 =
GF√

2

αs(µ)

2π
T , (1.9)

where T = 1/2 and µ is the renormalization scale. We furthermore define the expansion

in αs of the form factors as

F = F (0) +
αs(µ)

π
F (1) + · · · , (1.10)

and similarly for Mi. Throughout this paper the strong coupling constant is defined with

six active quark flavours. Note that the form factors are defined such that the one-loop

colour factor T is contained in the prefactor X0.

The main results of this paper can be summarized as follows:

• We compute all planar (see ref. [2]) and non-planar master integrals for gg → HH

in the limit m2
t � s, |t| and mH = 0.

• We obtain analytic results for the NLO form factors which are used to parametrize

the process gg → HH. These results can be used to construct the partonic cross

section in the high-energy limit.

• We perform an expansion in the Higgs boson mass which converges very quickly in

the region in which our result is valid. Here the relevant expansion parameter is

m2
H/(2mt)

2 ≈ 0.13. In fact, at LO very good agreement with the exact result is

obtained after including only the quadratic term.

• We provide input for the Padé method suggested in ref. [6] for the process gg → HH.

The remainder of the paper is organized as follows: in section 2 we describe the method

we used to compute the amplitude and master integrals and discuss the ultraviolet and

infra-red structure of the amplitude. Additionally, we explain our approach to obtain an

expansion of the amplitude in the Higgs boson mass. Afterwards, in section 3 we discuss

our results for the form factors and present both analytic and numerical results. Our

conclusions are presented in section 4. In appendix A we define our non-planar master

integrals and provide graphical representations, and in appendix B we describe the basis

change which facilitates the computation of the boundary conditions.
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2 Calculation and renormalization

2.1 Non-planar master integrals

Details on the calculation of the NLO amplitude gg → HH and in particular on the

reduction to master integrals can be found in ref. [2]. An algorithm is provided which

minimizes the number of families and yields 10 one-loop and 161 two-loop master integrals.

At one-loop order all integrals are planar. At two-loop order we obtain 131 planar integrals,

which are discussed in detail in [2], and 30 non-planar master integrals. The computation of

the latter, which is based on differential equations, is described in the following. A detailed

description of the computation of the boundary conditions can be found in ref. [12].

Graphical representations of the non-planar master integrals can be found in ap-

pendix A, see figure 10. Note that the 30 non-planar master integrals can be divided

into two sets; 16 integrals for which actual calculation (i.e. solving the differential equa-

tions) is needed, and 14 integrals which can be obtained with the help of crossing relations.

Among the 16 integrals there are 9 seven-line and 7 six-line master integrals (cf. figure 10).

We have computed all 30 integrals directly, however, and use the crossing relations as a

cross check.

The main idea to obtain the high-energy expansion is the same as for the planar inte-

grals; for each integral we make an ansatz which reflects the expected functional form of the

expansion. This ansatz is inserted into the differential equation obtained by differentiating

the master integrals with respect to mt. It is a new feature of the non-planar integrals

that the ansatz requires both odd and even powers in mt (see, e.g., ref. [13]) whereas for

the planar integrals just even powers were sufficient. Note that due to the structure of the

differential equations w.r.t. mt the even- and odd-power ansatz terms decouple and can be

treated independently.

For the computation of the planar master integrals in ref. [2] we followed two ap-

proaches. In the first we computed the boundary integrals in the limit mt → 0 for a fixed

values of s and t and used differential equations in t to reconstruct the t-dependence (still

in the limit mt → 0). The differential equations in mt were then used to construct the

expansion terms in the high-energy limit. In the second approach t-dependent boundary

conditions were computed using asymptotic expansion and Mellin-Barnes techniques. For

the non-planar master integrals we follow only this second approach, which can be used

largely without modification. There are a few peculiarities, however, mainly connected to

the presence of additional regions in the asymptotic expansion. This requires an exten-

sion of the method, which is described in detail in ref. [12]. We note that this method

has many algorithmic elements, which are certainly more generally applicable beyond the

computation of the amplitude described in this paper.

For the computation of the non-planar master integrals (at least for those with seven

lines) it is crucial to choose a basis in which the master integrals do not contain ε

poles in their prefactor in the amplitude. This guarantees that only the constant (ε0)

terms of the master integrals are required, which contain objects with transcendental

weight of at most four. We obtain such a basis by replacing dotted propagators, which

are present in the original basis chosen by FIRE [14], with numerator scalar products.
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We find a basis which satisfies the criterion of finite prefactors by testing all combi-

nations of Gj(1, 1, 1, 1, 1, 1, 1, 0,−1), Gj(1, 1, 1, 1, 1, 1, 1,−1, 0), Gj(1, 1, 1, 1, 1, 1, 1,−1,−1),

Gj(1, 1, 1, 1, 1, 1, 1, 0,−2) and Gj(1, 1, 1, 1, 1, 1, 1,−2, 0), see appendix B for more details.

It turns out that there is only one such basis within the above candidates. Our choice of

basis for the 4× 4 and 5× 5 coupled blocks are given in appendix A.

An important cross check of our results is provided by the explicit expressions from

ref. [13] where NLO corrections to Higgs plus jet were considered in the high-energy limit.

Unfortunately, it is not possible to simply take over the results from [13] since our amplitude

has single poles in ε in the master integral coefficients if we use their integral basis. This

means that we would require O(ε) terms of these master integrals, which are not known.

We nonetheless compare our results to those of [13], to the ε orders possible, and they agree.

Note that the results of [13] are given in terms of kinematics where t > 0, s < 0, u < 0, so re-

quire analytic continuation to our physical kinematics. We have also successfully compared

our “triangle” master integrals to ref. [15]. All of our non-planar results could additionally

be cross checked numerically using both FIESTA [16] and pySecDec [17]. Analytic results

for the master integrals can be found in the ancillary file to this paper [18].

In order to illustrate the structure of our results we present the explicit expression for

the pole part of G51(1, 1, 1, 1, 1, 1, 1, 0,−2) (see appendix A for the definition of this integral)

in the limit mt → 0. We include the first and second terms of the small-mt expansion, and

set s = 1. The s dependence can easily be restored by making the replacements t → t/s,

mt → mt/
√
s and multiplying by an overall factor of (−µ2/s)2ε/s to fix the mass dimension

of the integral. Our result reads

G51(1,1,1,1,1,1,1,0,−2) =

1

ε

{
− 1

mt

2iπ3
√−t

t
√

1+t
+

32iπ−iπ3t(1−t)−4t(2+t)ζ3
2t(1+t)

+
(8(iπ(1+t)−2t)

t(1+t)

+
8−iπ(4+6t+t2)

t(1+t)
H0(1+t)+

4+2t+t2

2t(1+t)
[H0(1+t)]2− 2(2+t)2

t(1+t)
H2(−t)

)
H0(−t)

+
48(1+t)−π2(6+t)−24iπt

3t(1+t)
H0(1+t)+

iπ(−2+t)

2(1+t)
[H0(1+t)]2

+
( iπ(2+t)2

2t(1+t)
− (2+t)2

2t(1+t)
H0(1+t)

)
[H0(−t)]2−

2iπ(2+3t)

t(1+t)
H2(−t)

− t

6(1+t)
[H0(−t)]3−

(2+t)2

6t(1+t)
[H0(1+t)]3− 2(2+t+t2)

t(1+t)
H2,1(−t)+

2(2+t)2

t(1+t)
H3(−t)

+

[
t

1+t
[H0(1+t)]2+

(
16

1+t
−2iπ

(2+t)2

t(1+t)
− 2(2+t)2

t(1+t)
H0(1+t)

)
H0(−t)

]
log (mt)

+

[
2iπ

4+5t

t(1+t)
− 2t

1+t
H0(−t)+

2(4+4t−t2)
t(1+t)

H0(1+t)

]
log2 (mt)

+

[
4(1+2t)

3(1+t)

]
log3 (mt)+O(mt)

}
+O(ε0) , (2.1)

where H~a(x) denote Harmonic Polylogarithms as defined in [19]. Note that here one

observes that the leading term is proportional to 1/mt; as explained above, these odd
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Figure 1. Real and imaginary part of the ε0 term of the master integral G59(1, 1, 1, 1, 1, 1, 1, 0, 0).

For clarity we rescale by m2
t s

2.

powers of mt are particular to the non-planar master integrals and do not appear in the

planar results of ref. [2].

For illustration we show in figure 1 the real and imaginary part of the ε0 term of

G59(1, 1, 1, 1, 1, 1, 1, 0, 0) as a function of
√
s for θ = π/2. We include successively higher

orders in the mt expansion, which improves the agreement with the exact result shown

as dots (pySecDec) and crosses (FIESTA). We want to stress that the odd mt terms are

numerically significant and are needed to reach the agreement. It is, furthermore, interest-

ing to mention that after including an odd expansion term the agreement gets worse and

improves only after adding also the next even mt term. Thus, if the combination of the

m2n−1
t and m2n

t terms are considered a steady improvement is observed. We have obtained

similar plots for all 30 non-planar master integrals.
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2.2 Ultraviolet and infrared divergences

The bare two-loop expressions for the form factors are both ultraviolet and infrared di-

vergent. We take care of the ultraviolet poles by renormalizing the top quark mass in

the on-shell scheme and the strong coupling constant in the MS scheme using standard

one-loop counterterms. Since we consider the high-energy region we renormalize αs with

six active quark flavours.

Note that after top quark-mass renormalization the CF colour factor of the two-loop

form factors are finite. However, there are still infrared divergences in the CA colour factor.

We have checked that they agree with the poles predicted in ref. [20]. We thus construct

the (infrared finite) soft-virtual corrections as

F (1) = F (1),IR −K(1)
g F (0) (2.2)

where F (1),IR is one of the ultraviolet-renormalized, but still infrared divergent, form factors

introduced in eq. (1.8). K
(1)
g can be found in ref. [20]. For the normalization introduced

in eq. (1.10) it is given by

K(1)
g = −

(
µ2

−s− iδ

)ε
eεγE

2Γ(1− ε)

[
CA
ε2

+
1

ε

(
11

6
CA −

1

3
nf

)]
, (2.3)

where γE is Euler’s constant. Note that since infrared and ultraviolet divergences are

regulated with the same parameter ε and since scaleless integrals are set to zero, the poles

in the terms proportional to nf from eq. (2.3) cancel against the counterterm contribution

induced by the αs renormalization. However, finite terms proportional to log(µ2/(−s−iδ))
and the LO result remain. We thus cast F (1) in the form

F (1) = F (1),CF + F (1),CA + β0 log

(
µ2

−s− iδ

)
F (0) , (2.4)

with β0 = 11CA/12 − Tnf/3. Only F (1),CF and F (1),CA contain new information and

thus only these will be discussed in the following. Note that F (1),CF and F (1),CA are

independent of µ.

2.3 Expansion in mH

In ref. [2] the calculation has been performed for a massless Higgs boson which constitutes

a good approximation since the relevant expansion parameter m2
H/(2mt)

2 ≈ 0.13 is suf-

ficiently small. In the present calculation we incorporate finite Higgs mass effects via an

expansion in m2
H/m

2
t . For our process the dependence on the Higgs boson mass is analytic,

i.e., there are no log(mH) terms in the limit mH → 0 since the Higgs boson couples only

to the massive top quark. It is thus possible to perform a simple Taylor expansion (in

contrast to a more involved asymptotic expansion) which we have implemented as follows:

• We generate the amplitude using the kinematics for a finite Higgs boson mass as given

in eq. (1.2). In particular, we use mH 6= 0 in the projectors onto the individual tensor

structures and express the amplitude as a linear combination of scalar integrals, which

depend on s̃, t̃,mt and mH .

– 7 –
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• Next, the pre-factors of the scalar integrals are expanded about m2
H = 0. Expressions

for the Taylor expansion of the scalar integrals themselves are constructed using

LiteRed’s [21, 22] derivative function Dinv.

• At this point the amplitude is expressed as a linear combination of scalar integrals

which only depend on s, t and mt; mH only appears in their prefactors. All scalar

integrals can be mapped to one of the families defined in ref. [2]. We can thus use

the same procedure to obtain the reduction tables with the help of FIRE 5.2 [14]

and FIRE 5.7.2 Note, however, that the number of scalar integrals is significantly

increased; at two-loop order one has about 25,000 scalar integrals to reduce to mas-

ter integrals, for the m0
H contribution. A further 70,000 integrals were reduced in

order to produce differential equations for the master integrals. For the m2
H and m4

H

contributions, one must reduce an additional 123,000 and then 457,000 integrals re-

spectively.

At one-loop order we performed an expansion up to O(m4
H). We show below that the

contribution from the m4
H terms is very small in the kinematic region where the small-mt

expansion is valid (see the discussion regarding figure 4). For this reason, at two loops

we consider only the m2
H terms of the expansion, and do not perform the computationally

expensive reduction of the above-mentioned additional 457,000 scalar integrals to masters.

The maximum complexities [(number of lines + dots, number of numerators)] of the

integrals appearing in the m0
H amplitude and differential equations, in the m2

H amplitude,

and in the m4
H amplitude are (10,−4), (9,−5) and (10,−6) respectively.

3 Results

3.1 Analytic results for the form factors

In the following we present the leading terms for the three form factors both in the large-mt

and high-energy limit. We take the large-mt term up to order 1/m12
t from ref. [4].

Using the normalization introduced in section 1 our one-loop results in the small-mt

limit (showing also the next-to-leading term in the mH expansion) is given by

F
(0)
tri =

2m2
t

s

[
4− l2ms

]
+O

(
m4
t

s2

)
,

F
(0)
box1 =

4m2
t

s

[
2 +

m2
H

s

(
(l1ts − lts)2 + π2

)]
+O

(
m4
t

s2
,
m4
H

s2

)
,

F
(0)
box2 =

2m2
t

st(s+ t)

[
−l21ts(s+ t)2 − l2tst2 − π2

(
s2 + 2st+ 2t2

)
+

2m2
H

s(s+ t)

(
l21tss(s+ t)2

+ π2s3 + 2s2t
(
−2lms + lts + π2 − 4

)
− st2 (8lms + (lts − 2)lts + 16)

− 4(lms + 2)t3
)]

+O
(
m4
t

s2
,
m4
H

s2

)
, (3.1)

2We thank Alexander Smirnov for providing us with unpublished versions of FIRE which we could use

to help optimize our reduction.
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where

lms = log

(
m2
t

s

)
+ iπ , lts = log

(
− t
s

)
+ iπ , l1ts = log

(
1 +

t

s

)
+ iπ . (3.2)

For the two-loop form factors we show the coefficients of the CF and CA colour factors

separately, only to leading order in mH . In the following, all symbols H2, H3, H2,1,

H4, H2,2, H2,1,1 denote Harmonic Polylogarithms with argument −t/s such that H2,1,1 =

H2,1,1(−t/s) etc.

F
(1),CF

tri = CF
m2

t

60s

[
5
(
l4ms − 12l3ms + 144lms + 240

)
+ 240(4lms − 1)ζ3

+ 40π2lms(lms + 1) + 12π4
]

+O
(

m4
t

s2
,
m2

tm
2
H

s2

)
,

F
(1),CF

box1 = CF
m2

t

s3t(s+ t)

[
s2t2

(
12lms + lts(7lts + 12) + 8π2 + 20

)
+ 2

(
6lms + π2 + 10

)
s3t

+ l21ts(s+ t)2
(
s2 + 6t2

)
− 12l1tst(s+ t)2(ltst+ s) + 12

(
l2ts + lts + π2

)
st3

+ 6
(
l2ts + π2

)
t4 + π2s4

]
+O

(
m4

t

s2
,
m2

tm
2
H

s2

)
,

F
(1),CF

box2 = CF
m2

t

90s3t(s+ t)

[
30iπs2

{
6H2(s+ t) (s(2l1ts + 2lts − 1) + 2t(l1ts + lts) + t)

+ 24H2,1(s+ t)2 − 12H3s(s+ 2t) + 2l1ts
(
3l2ts + 2π2

)
(s+ t)2

+ l2tst ((2lts + 3)t+ 6s) + π2
(
(1− 2lts)s

2 + 2(3− 2lts)st+ 2t2
)

− 12ζ3
(
s2 + 2st+ 2t2

)}
+ 60H2s

2
(
−6l1tslts(s+ t)2 − 3ltst(2s+ t)

+π2
(
5s2 + 10st+ 6t2

))
− 180H2,1s

2(s+ t) (s(2l1ts + 2lts − 1)

+2t(l1ts + lts) + t)− 720H2,1,1s
2(s+ t)2 − 180H2,2s

3(s+ 2t)

+ 180H3s
2
(
2l1ts(s+ t)2 + t(−2ltst+ 2s+ t)

)
+ 720H4s

2t2

+ 90l21ts(s+ t)2
(
s2
(
−3lms − l2ts − π2 − 7

)
− 3t2

)
− 30π2

(
3s4
(
3lms − l2ts + 7

)

+ s3t (18lms − 2lts(3lts + 1) + 31) + s2t2(18lms − (lts + 5)(3lts − 8)) + 18st3

+ 9t4
)
− 30ltst

2
(
s2(lts(9lms + (lts − 6)lts + 30) + 18) + 18(lts + 1)st+ 9ltst

2
)

− 30l41tss
2(s+ t)2 + 60l31ts(lts + 3)s2(s+ t)2 + 30l1ts

(
π2s2

(
(4lts + 5)s2

+2(4lts + 3)st+ 4(lts + 1)t2
)

+ 3t
(
(6− 2(lts − 3)lts)s

3

+(12− (lts − 12)lts)s
2t+ 6(2lts + 1)st2 + 6ltst

3
)

+12s2ζ3(s+ t)2
)

− 180s2tζ3(−2ltst+ 2s+ t) + π4s2
(
60s2 + 120st+ 73t2

)
+ 90H2

2s
3(s+ 2t)

]

+O
(

m4
t

s2
,
m2

tm
2
H

s2

)
,
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F
(1),CA

tri = CA
m2

t

180s

[
2160− 15l4ms − 60

(
3 + π2

)
l2ms − 2160(lms + 1)ζ3 − 32π4

]

+O
(

m4
t

s2
,
m2

tm
2
H

s2

)
,

F
(1),CA

box1 = CA
m2

t

s3t(s+ t)

[
−l21ts(s+ t)2

(
s2 + 3t2

)
+ 6l1tst(s+ t)2(ltst+ s)

−
(
4l2ts + 6lts + 5π2 − 12

)
s2t2 − 6

(
l2ts + lts + π2

)
st3 − 3

(
l2ts + π2

)
t4 − π2s4

− 2
(
π2 − 6

)
s3t

]
+O

(
m4

t

s2
,
m2

tm
2
H

s2

)
,

F
(1),CA

box2 = CA
m2

t

60s3t(s+ t)

[
−10iπs

{
6H2(s+ t)

(
s2(4l1ts + 14lts − 7)

+st(4l1ts + 14lts − 17)− 4t2
)

+ 48H2,1s(s+ t)2 − 84H3s
2(s+ 2t)

+ 2l1ts
(
21l2ts + 19π2

)
s(s+ t)2 + l2tst

(
(4lts − 27)st− 18s2 + 12t2

)

− π2
(
7(2lts − 1)s3 + 2(14lts − 3)s2t+ 2(5lts + 3)st2 − 16t3

)

+ 12sζ3
(
3s2 + 6st− 4t2

)}
− 60H2s

(
−14l1tsltss(s+ t)2

+ltst
(
6s2 + 9st− 4t2

)
+ π2s

(
5s2 + 10st+ 4t2

))

− 60H2,1s(s+ t)
(
s2(−4l1ts − 14lts + 7) + st(−4l1ts − 14lts + 17) + 4t2

)

+ 480H2,1,1s
2(s+ t)2 + 420H2,2s

3(s+ 2t)− 60H3s
(
14l1tss(s+ t)2

+t
(
−(4lts + 9)st− 6s2 + 4t2

))
− 480H4s

2t2 + 5l41tss
2(s+ t)2

− 40l31tsltss
2(s+ t)2 − 10l21ts(s+ t)

(
−3
(
(lts(7lts + 5) + 6)s3

+(7lts(lts + 1) + 6)s2t+ (4lts + 3)st2 + 3t3
)
− 19π2s2(s+ t)

)

− 10l1ts
(
π2s

(
(18lts − 7)s3 + 36ltss

2t+ 9(2lts + 1)st2 − 4t3
)

+6t
(
(lts(4lts + 3) + 3)s3 + (lts(5lts + 6) + 6)s2t+ 3(2lts + 1)st2 + 3ltst

3
)

−36s2ζ3(s+ t)2
)

+ 5ltst
2
((
l3ts + 54lts + 36

)
s2 + 36(lts + 1)st+ 18ltst

2
)

− 60stζ3
(
(4lts + 9)st+ 6s2 − 4t2

)
− 10π2

(
3(lts(7lts − 5)− 6)s4

+(42(lts − 1)lts − 23)s3t+ (lts(23lts − 42)− 32)s2t2 − 2(4lts + 9)st3 − 9t4
)

− π4s2
(
195s2 + 390st+ 227t2

)
− 210H2

2s
3(s+ 2t)

]
+O

(
m4

t

s2
,
m2

tm
2
H

s2

)
. (3.3)

It is interesting to mention that most of the odd mt terms, which are present in the

non-planar master integrals, cancel in the amplitude. However, at higher orders in the mt

expansion there remain odd mt terms in the imaginary part of F
(1),CA

box1 and F
(1),CA

box2 starting

at m3
t .
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For completeness we also show the leading terms of the large-mt expansion which at

one-loop order are given by

F
(0)
tri =

4

3
+O(1/m2

t ) ,

F
(0)
box1 = −4

3
+O(1/m2

t ) ,

F
(0)
box2 = −11

45

p2T
m2
t

+O(1/m4
t ) , (3.4)

where

p2T =
t̃ũ−m4

H

s̃
, (3.5)

is the (partonic) transverse momentum of the Higgs boson. At two loops we have

F
(1),CF

tri = −CF +O(1/m2
t ) ,

F
(1),CF

box1 = CF +O(1/m2
t ) ,

F
(1),CF

box2 = −131

810

p2T
m2
t

CF +O(1/m4
t ) ,

F
(1),CA

tri =
5

3
CA +O(1/m2

t ) ,

F
(1),CA

box1 = −5

3
CA +O(1/m2

t ) ,

F
(1),CA

box2 =

[
308

675
− 121

540
log

(−s− iδ
m2
t

)]
p2T
m2
t

CA +O(1/m4
t ) . (3.6)

3.2 Numerical results for the form factors

In the following we discuss the
√
s dependence of the form factors at one- and two-loop

order. If not stated otherwise we use mt = 173 GeV and mH = 0 or mH = 125 GeV for

the top quark and Higgs boson masses, respectively.

3.2.1 One-loop form factors

In figures 2 and 3 we show the one-loop results where the exact expressions are known and

shown as solid curves. Our high-energy expansions are shown as dashed curves. Both the

real and imaginary parts are plotted. Note that the imaginary part is zero below
√
s = 2mt.

The large-mt result is shown as dotted curve. For the plots we have chosen mH = 0 and

t = −s/2 which corresponds to a scattering angle θ = π/2 (see eq. (1.4)).

The triangle form factor (figure 2) is approximated very well by the asymptotic results.

The solid and dashed curves lie on top of each other for the entire
√
s region above the

threshold 2mt. In figure 3 one observes that for F
(0)
box1 and F

(0)
box2, the approximations to

orders m14
t and m16

t agree with each other, and with the exact result, for values as small

as
√
s ≈ 800 GeV and

√
s ≈ 500 GeV for the real and imaginary parts, respectively. Below

these energies the curves diverge from each other. In general, one can trust the expan-

sions in the regions where successive approximation orders agree with each other. Due to
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Im(exact , mH = 0)

Figure 2. The one-loop triangle form factor as a function of the partonic center-of-mass energy√
s for θ = π/2. Exact results are shown as solid purple and blue curves. The large-mt expression,

which includes terms to 1/m12
t , is the black dotted line. The small-mt expansions are the dashed

lines; we show approximations including terms to m14
t and m16

t .

the very marginal improvement of the m16
t approximation relative to the m14

t approxima-

tion, we expect that computing higher order terms of the expansion will not improve the

approximation, and that the small-mt expansion has a finite radius of convergence.

In figure 4 we consider the mH dependence of the partonic cross section for θ = π/2.

Since this quantity is non-zero for the whole
√
s range we can consider the ratio of our

approximations to the exact result, evaluated for mH = 125 GeV. For
√
s = 1000 GeV one

observes that the m0
H approximation (purple dashed curve) reproduces the mH = 0 exact

curve well, and that these curves deviate from the mH = 125 GeV exact curve by about

2%. Including m2
H terms in the approximation is sufficient to describe the mH = 125 GeV

exact curve very well. Including also m4
H terms provides a very small correction. Based on

this observation, we compute m2
H contributions to NLO quantities but not contributions

proportional to m4
H . We want to remark that the numerical values for figure 4 have been

obtained by using the relation

t→ m2
H −

s̃

2

(
1− cos θ

√
1− 4m2

H

s̃

)
(3.7)

and performing a consistent expansion in mH . In this way we obtain the form factors as a

function of s, θ and mH .

3.2.2 Two-loop form factors

For simplicity we set mH = 0 in the following discussion of the two-loop corrections.

The two-loop form factors F (1),CF and F (1),CA are shown in figures 5, 6 and 7, where

approximations including terms up to m14
t and m16

t are shown. For the triangle form
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Figure 3. The one-loop box form factors as a function of the partonic center-of-mass energy
√
s

for θ = π/2. The notation is the same as in figure 2.

factor (figure 5) the approximations can be compared to the exact result from ref. [23] and,

as at one-loop order, good agreement is found down to
√
s ≈ 2mt. For the box form factors

no exact results are available. For the CF contribution we observe a similar behaviour as

at one-loop order; the two highest expansion terms agree down to
√
s ≈ 800 GeV and√

s ≈ 500 GeV for real and imaginary parts respectively, and diverge for smaller
√
s values.

For the CA contribution the convergence properties for real and imaginary part are reversed;

we find agreement of the highest expansion terms down to values
√
s ≈ 750 GeV and√

s ≈ 800 GeV for the real and imaginary parts respectively.

In order to illustrate the size of the m2
H terms we show in table 1 for two values of√

s the relative corrections for the real part of the NLO box form factors3 as compared to

3Note that the triangle form factors have no non-trivial dependence on mH .
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Figure 4. Our approximations to the one loop differential cross section. Here we show curves for

expansion depths m0
H , m2

H and m4
H . All curves are normalized to the exact result, evaluated at

mH = 125 GeV (red dotted curve).

F
(1),CF

box1 F
(1),CA

box1 F
(1),CF

box2 F
(1),CA

box2√
s = 1000 GeV, θ = π/2 3.48 −0.30 −5.20 1.78
√
s = 2000 GeV, θ = π/2 1.67 1.26 −0.33 0.73
√
s = 1000 GeV, θ = π/3 4.42 4.26 5.48 −0.45
√
s = 2000 GeV, θ = π/3 2.05 1.11 0.55 0.33

Table 1. Correction in percent to the real part of the two-loop form factors induced by m2
H terms.

To obtain the numbers we include the expansion in the top quark mass up to m16
t .

the mH = 0 result. One observes corrections up to a few percent, in agreement with the

one-loop results discussed in figure 4.

3.2.3 θ dependence of the form factors

In the previous subsection we have chosen θ = π/2 where t = −s/2, i.e., the absolute value

of t is maximal and our approximation works best. In figure 8 we show the “box1” form

factors as a function θ with 0 ≤ θ ≤ π/2. Symmetric results are obtained for π/2 ≤ θ ≤ π.

The form factors F
(0)
box1, F

(1),CF

box1 and F
(1),CA

box1 are shown in the three columns and the rows

correspond to three different choices of
√
s: 800 GeV, 1000 GeV and 1500 GeV. We show

both the real and imaginary part for expansion depths m14
t and m16

t and assume that our

approximation is good if the two curves agree. At one-loop order we can compare to the

exact result.

In the case of F
(0)
box1 we observe that for

√
s = 800 GeV our approximation works for

values of θ as low as 0.4π and 0.25π for the real and imaginary part, respectively. As
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Figure 5. The two-loop triangle form factor F
(1),CF
tri as a function of the partonic center-of-mass

energy for θ = π/2. The same notation as in figure 2 is adopted. We show our approximations

(dashed curves) for expansion depths m14
t and m16

t .

expected, for larger values of
√
s the θ range is significantly increased; for

√
s = 1500 GeV

good results are obtained almost down to 0.1π.

The form factor F
(1),CF

box1 shows a similar behaviour as F
(0)
box1. On the other hand,

for F
(1),CA

box1 the θ range where our approximation works well is significantly smaller for√
s = 800 GeV. However, for

√
s = 1000 GeV and

√
s = 1500 GeV similar results are

obtained as for F
(0)
box1 and F

(1),CF

box1 .

Figure 9 shows analogous results to figure 8 for the “box2” for factors. We observe

very similar convergence properties.
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Figure 6. The two-loop box form factors F
(1),CF
box1 and F

(1),CF
box2 as a function of the partonic center-

of-mass energy for θ = π/2. The same notation as in figure 2 is adopted. In these plots the exact

curves are not known.
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curves are not known.
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box1 and F

(1),CA
box1 (from left to right)

as a function of θ for three different choices of
√
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Figure 9. As figure 8, but for “box2” form factors.
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4 Conclusions

We consider Higgs boson pair production in gluon fusion at NLO and compute analytic

results in the high-energy limit where the squared top quark mass is much smaller than s

and |t|. We compute analytic results in this limit for all non-planar master integrals, which

complement the results for the planar integrals, already presented in ref. [2]. Analytic

expressions for the master integrals are provided in an ancillary file to this paper [18].

The results are used to obtain analytic expressions for the form factors of the gg → HH

amplitude, including expansion terms up to m16
t . For large scattering angles (which means

large |t|) we show that our calculation provides good approximations for
√
s values down

to about 700 to 800 GeV. Finite Higgs boson mass corrections are incorporated as an

expansion in m2
H/m

2
t , which converge quickly in the regions where we have m2

t � s, |t|.
Our expressions allow for a fast numerical evaluation of the form factors and thus

provide an alternative to the exact, numerically expensive calculation of ref. [9] in the

high-energy region of the phase-space. It is in particular tempting to combine our results

with other approximations [4–7] to cover the full phase space. Such investigations are the

subject of ongoing research.
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A Non-planar master integrals at two loops

Altogether we encounter 10 one-loop and 161 two-loop master integrals; 30 of the latter

are non-planar. The definitions of all one- and two-loop integrals and the graphical repre-

sentations of the one- and planar two-loop master integrals can be found in ref. [2]. In the

following we provide the complementary information for the 30 non-planar integrals.

It is easy to see that two-loop integrals with five lines or fewer are all planar and thus

the two-loop non-planar integrals have either six or seven lines. Due to crossing symmetries

it is sufficient to solve the differential equations only for the 16 integrals shown in figure 10;

the analytic results for the remaining 14 integrals can be obtained by applying the crossing

relations s↔ t, s↔ u or t↔ u.

Altogether we use five integral families to accommodate all 30 integrals. They are

defined in the following way,

D33(q1, q2, q3, q4) =
{
−l21,m2

t−l22,m2
t−(l2+q4)

2,−(l1+q3+q4)
2,−(l1−q1)2,

m2
t−(l1−l2+q3)

2,m2
t−(l1−l2)2,−(l1+q4)

2,−(l2+q1)
2
}
,
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G33(1, 1, 1, 1, 0, 1, 1, 0, 0) G33(1, 1, 1, 1, 0, 2, 1, 0, 0) G51(1, 1, 0, 1, 1, 1, 1, 0, 0)

l2 − l1

l2 − l1 − q3

l1

l2 − q2 − q3

l1 − q2

l2 + q4

G59(1, 0, 1, 1, 1, 1, 1, 0, 0)

G47(1, 1, 1, 0, 1, 2, 1, 0, 0)

l2

l2 + q3l1 + l2 − q1 − q4

l1

l1 + l2 − q4

l1 + q2

G91(1, 1, 1, 1, 0, 1, 1, 0, 0)

l2 + q4

l2 − q1 − q2

l1 − l2

l1 − q1

l1 − l2 + q2

l1

G47(1, 0, 1, 1, 2, 1, 1, 0, 0)

l1 − q1

l1

l1 + q3 + q4

l1 − l2

l2 + q4

l1 − l2 + q3

l2

G33(1, 1, 1, 1, 1, 1, 1, 0, 0)

−(l1 + q4)2

G33(1, 1, 1, 1, 1, 1, 1,−1, 0)

((l1 + q4)2)2

G33(1, 1, 1, 1, 1, 1, 1,−2, 0)

((l2 + q1)2)2

G33(1, 1, 1, 1, 1, 1, 1, 0,−2)

l2 + q4

l2 − q1 − q2

l2

l1 − l2 + q1

l1

l1 − l2

l1 − q2

G51(1, 1, 1, 1, 1, 1, 1, 0, 0)

−(l1 + q4)2

G51(1, 1, 1, 1, 1, 1, 1,−1, 0)

−(l2 + q2)2

G51(1, 1, 1, 1, 1, 1, 1, 0,−1)

((l1 + q4)2)2

G51(1, 1, 1, 1, 1, 1, 1,−2, 0)

((l2 + q2)2)2

G51(1, 1, 1, 1, 1, 1, 1, 0,−2)

2

Figure 10. Sixteen two-loop non-planar master integrals. Solid and dashed lines represent massive

and massless scalar propagators, respectively. The external (thin) lines are massless. Squared

propagators are marked by a dot and numerators are explicitly given above the diagrams (see also

the definitions of the families in eq. (A.1)). The remaining 14 non-planar master integrals, which

are not shown, are obtained by crossing.

D47(q1, q2, q3, q4) =
{
−l21,m2

t−l22,m2
t−(l2+q4)

2,m2
t−(l2−q1−q2)2,

m2
t−(l1−l2+q2)

2,m2
t−(l1−l2)2,−(l1−q1)2,−(l1+q4)

2,

−(l2+q1)
2
}
,

D51(q1, q2, q3, q4) =D47(q2, q1, q3, q4) ,

D59(q1, q2, q3, q4) =D47(q2, q3, q1, q4) ,

D91(q1, q2, q3, q4) =
{
m2
t−l21,m2

t−(l1+q2)
2,−(l1+l2−q4−q1)2,−(l1+l2−q4)2,

m2
t−(l1−q4)2,m2

t−(l2+q3)
2,m2

t−l22,−(l2+q2)
2,−(l2+q4)

2
}
, (A.1)

where l1 and l2 are the loop momenta. The complete set of two-loop non-planar master
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integrals is then given by

G33(1, 1, 1, 1, 0, 1, 1, 0, 0), G33(1, 1, 1, 1, 0, 2, 1, 0, 0), G33(1, 1, 1, 1, 1, 1, 1, 0, 0), G33(1, 1, 1, 1, 1, 1, 1,−1, 0),

G33(1, 1, 1, 1, 1, 1, 1,−2, 0), G33(1, 1, 1, 1, 1, 1, 1, 0,−2), G47(1, 0, 1, 1, 2, 1, 1, 0, 0), G47(1, 1, 1, 0, 1, 2, 1, 0, 0),

G51(1, 1, 0, 1, 1, 1, 1, 0, 0), G51(1, 1, 1, 1, 1, 1, 1, 0, 0), G51(1, 1, 1, 1, 1, 1, 1,−1, 0), G51(1, 1, 1, 1, 1, 1, 1, 0,−1),

G51(1, 1, 1, 1, 1, 1, 1,−2, 0), G51(1, 1, 1, 1, 1, 1, 1, 0,−2), G59(1, 0, 1, 1, 1, 1, 1, 0, 0), G59(1, 1, 0, 1, 1, 1, 1, 0, 0),

G59(1, 1, 1, 1, 1, 1, 1, 0, 0), G59(1, 1, 1, 1, 1, 1, 1,−1, 0), G59(1, 1, 1, 1, 1, 1, 1, 0,−1), G59(1, 1, 1, 1, 1, 1, 1,−2, 0),

G59(1, 1, 1, 1, 1, 1, 1, 0,−2), G91(0, 1, 1, 1, 1, 1, 1, 0, 0), G91(1, 0, 1, 1, 1, 1, 1, 0, 0), G91(1, 0, 1, 1, 1, 1, 2, 0, 0),

G91(1, 1, 1, 1, 0, 1, 1, 0, 0), G91(1, 1, 1, 1, 1, 1, 1, 0, 0), G91(1, 1, 1, 1, 1, 1, 1,−1, 0), G91(1, 1, 1, 1, 1, 1, 1, 0,−1),

G91(1, 1, 1, 1, 1, 1, 1,−2, 0), G91(1, 1, 1, 1, 1, 1, 1, 0,−2) .
(A.2)

Note that at two-loop order, each family is defined using seven propagators and two irre-

ducible numerators which correspond to the last two indices.

We present analytic results for all integrals in eq. (A.2) as an expansion for m2
t �

s, |t| in the ancillary file to this paper [18]. For the integration measure we use

(µ2)(4−d)/2eεγEddk/(iπd/2) where d = 4− 2ε is the space-time dimension.

B Non-planar master integral basis

For the six-line non-planar master integrals all boundary conditions can be computed for

the original FIRE basis. We use the method described in detail in [12].

For the seven-line non-planar integrals we first rewrite the integrals with dots (in

the following denoted by a superscript “(d)”) in terms of the integrals with numerators

(superscript “(n)”) using integration-by-parts relations. The latter are chosen such that

the amplitude has no ε poles in the prefactors of the integrals.

Altogether we have 19 seven-line master integrals which decompose into a 4 × 4 and

three 5× 5 blocks. For illustration we briefly discuss the 4 × 4 block of family G33, where

the relation between the integrals reads

~I
(n)
33 =




1 0 0 0

st
s+2t +m2

t

(
−4s
s+2t + ε 8s

s+2t

)
+O(m4

t , ε
2) m0

t (. . .) m
2
t (. . .) m2

t (. . .)

m0
t (. . .) m0

t (. . .) m
2
t (. . .) m2

t (. . .)

m0
t (. . .) m0

t (. . .) m
2
t (. . .) m

2
t

(
− st4ε −

1
2 (s+ t)(3s+ 2t) +O(m4

t , ε)
)


 ~I

(d)
33

+simpler integrals ,

(B.1)

with

~I
(n)
33 =




G33(1, 1, 1, 1, 1, 1, 1, 0, 0)

G33(1, 1, 1, 1, 1, 1, 1,−1, 0)

G33(1, 1, 1, 1, 1, 1, 1,−2, 0)

G33(1, 1, 1, 1, 1, 1, 1, 0,−2)


 , ~I

(d)
33 =




G33(1, 1, 1, 1, 1, 1, 1, 0, 0)

G33(1, 1, 1, 1, 2, 1, 1, 0, 0)

G33(1, 1, 2, 1, 1, 1, 1, 0, 0)

G33(1, 2, 1, 1, 1, 1, 1, 0, 0)


 . (B.2)

In eq. (B.1) we only show some of the matrix elements; the others have a similar structure.

To obtain the finite (m2
t /s)

0 terms for the four integrals of ~I
(n)
33 we must compute

the coefficients of the leading terms in the small-mt limit of ~I
(d)
33 . In practice, that is the

coefficients of (m2
t /s)

−1/2 and (m2
t /s)

0 for the first entry, and for the second entry the

coefficients of (m2
t /s)

−1, (m2
t /s)

−1/2 and (m2
t /s)

0. For the third and fourth entries, the
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coefficients of (m2
t /s)

−3/2 and (m2
t /s)

−1 are needed. All other higher order terms need not

be computed for the boundary conditions.

By inspecting the matrix in eq. (B.1) one observes that for the O(m0
t ) terms at most the

constant term in the ε expansion has to be computed. All 1/ε poles in (B.1) are suppressed

by a factor m2
t which means that O(ε) contributions are only needed for the O(s/m2

t )

term, which are much simpler to compute than the O(m0
t ) terms. Note that our explicit

expressions for ~I
(d)
33 contain constants and functions which have at most transcendental

weight four. For details on their computation we refer to ref. [12].

For the three 5 × 5 blocks there are similar transformation as in (B.1) and the same

procedure is performed as described above.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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