
Practical yet Provably Secure:
Complex Database Query Execution over Encrypted Data

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Florian Hahn
aus Baden

Tag der mündlichen Prüfung: 10.12.2018

1. Referent: Prof. Dr. Jörn Müller-Quade
2. Referent: Prof. Dr. Florian Kerschbaum

Abstract

Encryption schemes are designed to protect data and prevent access by unauthorized parties. With the rise
of cloud computing and cloud storage (e.g. in form of databases-as-a-service) encryption schemes are vital
for outsourcing sensitive data. However, common symmetric encryption schemes do not support compu-
tation over encrypted data rendering them incompatible with the cloud computing scenario. Thus, special
encryption schemes are required for these scenarios supporting computation over encrypted data. Fully
homomorphic encryption provides a theoretical solution for all possible scenarios while providing semantic
security for the encrypted and outsourced data. However, decreasing the flexibility of the encryption schemes
to be suitable for a specifically predefined use case and reducing the guaranteed security characteristics can
result in better performance, e.g. in lower computational overhead and smaller ciphertext size.
For the use case of databases-as-a-service, CryptDB has been proposed in 2011 by Popa et al. The

design of CryptDB is founded on property-preserving encryption. Particularly, such encryption schemes
preserve specific properties of the plaintext even after the application of the encryption operation, e.g. the
same plaintext always results in the same ciphertext. As one consequence of this approach, index structures
provided by the database management system are compatible with such ciphertexts since these index
structures are founded on the preserved properties. However, the preserved properties are also exploitable
for a potential adversary as they are initially leaked for the whole encrypted data collection. Alternative
approaches aim to increase the security of encrypted databases while still supporting query execution. This
is achieved by unveiling information only if required. For instance, the information if an encrypted data
record matches a specific database query is only unveiled at the point in time the query is executed.
Based on the approach proposed by Curtmola et al. for searchable symmetric encryption we investigate if

this approach is applicable for encrypted databases providing varying functionality. Particularly, we aim for
provably secure mechanisms that are practical – specifically with respect to the required runtime for query
execution over encrypted data. For each novel mechanism presented in this thesis we formally quantify the
information that can be extract from the initially encrypted database and the subsequently executed queries.
Based on cryptographic assumptions we proof these information as an upper bound. Further, we analyze
the amortized runtime of each mechanism and benchmark the runtime based on an implementation.

i

Kurzfassung

Verschlüsselungsverfahren bieten Schutz für Daten und können den Zugriff auf diese Daten durch un-
befugte Dritte verhindern. Mit dem Paradigmenwechsel von lokalen Server und Rechenzentren hin zu
Cloud-Computing und dem Angebot der Datenspeicherung (zum Beispiel in Form von Datenbanken) als
Dienstleistung, sind Verschlüsselungsverfahren als Schutzmechanismus besonders für sensible Daten es-
sentiell geworden. Jedoch verhindern Standardverschlüsselungsverfahren die Erbringung der vereinbarten
Dienste auf verschlüsselten Daten, so dass auf spezialisierte Verschlüsselungsverfahren ausgewichen wer-
den muss. Mit voll-homomorpher Verschlüsselung gibt es eine theoretische Lösung, die dieses Problem
für alle Arten der Berechnung löst und gleichzeitig semantische Sicherheit für die Daten liefert. Es ist
jedoch möglich, durch den Einsatz weniger universeller Verschlüsselungsverfahren, also Verfahren, die
in ihrer Funktionalität eingeschränkt sind, und durch das Abschwächen der Sicherheitseigenschaft, den
Berechnungsaufwand auf verschlüsselten Daten und den benötigten Speicherplatz für Chiffretexte stark zu
verringern.
Für das Szenario von Datenbanken als Dienstleistung ist mit „CryptDB“ bereits 2011 solch ein Ansatz

vorgeschlagen worden. Er basiert auf speziellen Verschlüsselungsverfahren, die gewisse Relationen ver-
schiedener Klartexte selbst nach Anwendung der Verschlüsselungsoperation beibehalten. Der Vorteil dieses
Ansatzes ist, dass interne Indexstrukturen des Datenbanksystems auch auf verschlüsselten Einträgen weit-
erhin funktional sind, da sie gerade auf den beibehaltenen Relationen basieren. Gleichzeitig sind diese
Relationen auch aus verschlüsselten Daten noch zu extrahieren, und liefern somit Informationen über die
komplette verschlüsselte Datensammlung an potentielle Angreifer. Alternativ existieren Ansätze, die da-
rauf abzielen, die Sicherheit für die verschlüsselte Datenbank zu erhöhen und weiterhin Abfragen darauf
zu ermöglichen, beispielsweise indem nur die Information aufgedeckt wird, ob ein Datenbankeintrag eine
gegebene Anfrage erfüllt oder nicht. Allerdings benötigen diese Ansätze spezielle Indexstrukturen, um für
große Datenmengen für den praktischen Einsatz performant genug zu sein.
In dieser Dissertation wird untersucht, ob solch ein Ansatz beweisbar sichere Methoden für das Auslagern

von verschlüsselten Datenbanken liefert, die weiterhin Datenbankoperationen verschlüsselt ermöglicht,
und die gleichzeitig für den realen Einsatz praktikabel sind – insbesondere im Hinblick auf benötigte
Ausführungszeiten. Genauer wird hierfür einerseits die jeweilige Sicherheitseigenschaft, das heißt die In-
formationen, die aus der Datenbankanfrage und dem entsprechenden Ergebnis Daten extrahiert werden,
formal quantifiziert und anschließend basierend auf kryptographischen Annahmen als obere Grenze be-
wiesen. Andererseits werden Ausführungszeiten zunächst durch eine theoretische Analyse abgeschätzt und
anschließend durch eine praktische Implementierung für einen speziellen Anwendungsfall demonstriert.
Das Ergebnis dieser Arbeit besteht aus neun Kapiteln, die sich folgendermaßen zusammenfassen lassen.

Kapitel 1 beginnt mit einer ausführlichen Motivation der Fragestellung, die in dieser Arbeit behandelt
wird. In Kapitel 2 werden die formalen Grundlagen, Definitionen und technische Details, auf die im Fol-
genden immer wieder zurückgegriffen wird, genauer dargelegt. Kapitel 3 gibt eine allgemeine Übersicht
über verwandte Arbeiten und bisherige Lösungen, die das Rechnen auf Daten und insbesondere das auf
verschlüsselte Datenbanken ermöglichen. Eine detaillierte Übersicht, die sich mit speziellen Ansätzen au-
seinandersetzt, die nur eine konkrete Datenbankoperation adressieren, werden in den jeweiligen Kapiteln
diskutiert. Das formale Rahmenwerk, das die Analyse der einzelnen Ansätze dieser Arbeit sowohl hin-

iii

Kurzfassung

sichtlich der Sicherheitseigenschaften, als auch der Laufzeiteigenschaften ermöglicht, wird in Kapitel 4
vorgestellt.
In Kapitel 5 wird eine Lösung für verschlüsselte Datenbanken diskutiert, die Gleichheitsabfragen er-

möglicht. Hierbei werden dynamische Datenbanken betrachtet, das bedeutet, der Inhalt der Datenbank
ist nicht statisch und es können verschlüsselte Einträge modifiziert, entfernt oder hinzugefügt werden. Im
Vergleich zu bisherigen Ansätzen für Gleichheitsabfragen auf dynamischen Datenbanken liefert die hier
vorgestellte Lösung semantische Sicherheit für alle hinzugefügten Werte, nach denen noch nicht gesucht
worden ist. Gleichzeitig benötigt diese Lösung keinen Zustand, der vom Anwender gespeichert werden
muss, um das sichere Entfernen von Einträgen zu ermöglichen. Für das Hinzufügen von Werten ist ein
solcher Zustand optional um bessere Laufzeiten zu erzielen. Die Konstruktion, die in diesem Kapitel für
Gleichheitsabfragen vorgestellt wird, basiert auf der Idee, dass Ergebnisse von bisherigen Anfragen zwis-
chengespeichert werden, sodass eine erneute Abfrage des gleichen Wertes schneller beantwortet werden
kann.
In Kapitel 6 wird eine Lösung für Datenbank-Joins vorgestellt. Hierbei wird das Ziel verfolgt, best-

mögliche Sicherheitseigenschaften für alle Datenbankeinträge beizubehalten, die nicht im tatsächlichen
Ergebnis der abgefragten Operation auftreten. Durch die Normalisierung von Datenbanken stellen
Datenbank-Joins eine wichtige Operation dar, dennoch sind bisher nur wenige Lösungen veröffentlich
worden, die sich mit Datenbank-Joins auf verschlüsselten Datenbanken befassen. Alle bisherigen Lösungen
legen nach einmaliger Anwendung das Ergebnis des kompletten inneren Datenbank-Joins offen, selbst wenn
die komplette Datenbank Abfrage weitere Restriktionen beinhaltet und das tatsächliche Ergebnis damit nur
eine kleine Untermenge des kompletten inneren Datenbank-Joins beinhaltet. Im Gegensatz dazu liefert
die in Kapitel 6 vorgestellte Konstruktion fein granulare Sicherheitseigenschaften und alle Datenbankein-
träge, die mögliche zusätzliche Restriktionen nicht erfüllen, sind auch nach der Join-Operation noch durch
semantische Sicherheit geschützt.
In Kapitel 7 wird ein neuer Ansatz für Bereichsanfragen diskutiert. Die hier vorgestellte Lösung liefert

semantische Sicherheit für alle Werte, die keine gestellte Anfrage erfüllt haben, und hat gleichzeitig eine
amortisierte Laufzeit, die poly-logarithmisch in der Anzahl der Datenbankeinträge ist. Bisherige Lösungen
lieferten entweder schwächere Sicherheitseigenschaften (beispielsweise wird die Ordnungsrelation aller
verschlüsselten Datenbankeinträge direkt nach der initialen Verschlüsselung offengelegt) oder die Laufzeit
einer Anfrage ist linear in der Anzahl der Datenbankeinträge. Der in diesem Kapitel vorstellte Ansatz greift
die Idee aus Kapitel 5 erneut auf und erweitert ihn. Genauer wird ein Zwischenspeicher für die Ergebnisse
von bereits gestellten Bereichsanfragen erzeugt und basierend auf weiterenAnfragen inkrementell verfeinert.
Während alle Anfragen, die bereits durch diesen Zwischenspeicher beantwortet werden können, beschleunigt
werden, haben alle Werte, die nicht in diesem Zwischenspeicher enthalten sind, weiterhin semantische
Sicherheit.
Kapitel 8 beschäftigt sich mit der Frage, wie Strings (Zeichenketten) verschlüsselt werden können, sodass

dennoch das Ergebnis einer verschlüsselten Anfrage nach Substrings (einem zusammenhängenden Teil der
Zeichenkette) berechnet werden kann. Der hier vorgestellte Lösungsansatz basiert auf der Beobachtung, dass
dieses Problem auf das Problem von verschlüsselten Bereichsanfragen abgebildet werden kann. Dadurch ist
das Problem theoretisch durch den Ansatz aus Kapitel 7 lösbar, jedoch wird hier ein Ansatz verfolgt, der die
Sicherheitseigenschaften abschwächt, dadurch aber die Laufzeiteigenschaften der vorgestellten Lösung stark
verbessern. Dazu wird in diesem Kapitel eine Methode vorgestellt, wie das Problem der verschlüsselten
Substring-Anfragen durch spezielle randomisierte Verschlüsselungsverfahren, die die Ordnungsrelation der
Klartexte auch auf Chiffretexten beibehalten, gelöst werden kann. Da die Sicherheit solcher Verschlüs-
selungsverfahren stark von der Struktur der zugrundeliegenden Klartexte abhängt, wird die Sicherheit des

iv

Kurzfassung

Verfahrens für das Verschlüsseln von Text in englischer Sprache durch das Ausführen bekannter Angriffe
evaluiert.
Schließlich wird in Kapitel 9 eine Zusammenfassung der Arbeit und ein Ausblick auf weitere Fragestel-

lungen bezüglich verschlüsselter Datenbanken gegeben.

v

Danksagung

Zunächst bedanke ich mich bei Jörn Müller-Quade, nicht nur dafür, dass er meine Arbeit betreut hat. Mein
Dank gebührt ihm insbesondere auch dafür, dass er mir während meines Studiums bereits Einblicke in die
faszinierende Welt der Kryptographie gewährt hat. Nicht zuletzt sein enthusiastischer Vorlesungsstil haben
mein Interesse an diesem Gebiet geweckt. Meinen herzlichsten Dank auch an Florian Kerschbaum, der
in meine Fähigkeiten vertraut hat und mir dadurch die Möglichkeit bot bei der SAP anzufangen. Florians
Schule war nicht immer einfach, aber sie führte zum Erfolg und ich habe unglaublich viel lernen dürfen.
Falls ich einmal nicht weiter wusste, so war auf Florians beeindruckendes technisches Verständnis und seine
fachlichen sowie politischen Ratschläge stets Verlass.
Ich bedanke mich bei meinen SAP Managern, die ich im Laufe meiner Zeit bei der SAP hatte und die mir

stets genug Freiheiten boten um diese Arbeit letztendlich fertigzustellen – Andreas Schaad, Roger Gutbrod,
Detlef Plümper und Mathias Kohler. Auch meinen SAP Kollegen, Mitdoktoranden und Freunden bin ich
zu Dank verpflichtet. Zunächst danke ich den Büronachbarn aus dem “Kryptographie Büro”: Fuhry, der zu
allem etwas Qualifiziertes (?) zu sagen hatte; Anselme, der die Vielzahl an Diskussionen meist ohneMurren
ertrug; sowie Andreas, der je nach Thema plötzlich mitdiskutierte. Ich zähle auch das “Anonymisierung
Büro” zumeinen Kollegen und Freunden und danke Benjamin, Daniel und Jonas für die vielen gemeinsamen
Kaffeepausen und/oder Feierabendbiere.
Meinen Eltern danke ich, dass sie mir durch ihre Erziehung meine Neugierde bewahrt haben und bei mich

all meinen Entscheidungen unterstützten.
Abschließend danke ich meiner langjährigen Freundin Laura, dass sie immer für mich da ist und mich

auch in den schwersten Zeiten ertragen hat und hinter mir stand, sowie meinem Sohn Phineas, der mich mit
seiner Geburt drängte die Arbeit fertigzustellen.

vii

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Contribution of this Work . 2
1.3 Structure of the Dissertation . 3

2 Notation and Preliminaries . 7
2.1 Notation . 7
2.2 Common Cryptographic Preliminaries . 8

2.2.1 Secret-Key Encryption . 8
2.2.2 Cryptographic Hash Functions and MACs . 10

2.3 Databases and Data Structures . 11
2.4 Privacy Preserving Query Execution . 13

3 Related Work . 15
3.1 Encrypted Databases . 15
3.2 Property-Preserving Encryption . 17

3.2.1 Deterministic Encryption . 17
3.2.2 Order-Preserving Encryption . 18
3.2.3 Attacks on Property-Preserving Encryption . 19

3.3 Searchable Encryption . 20
3.4 General Computation on Encrypted Data . 21

3.4.1 Functional Encryption . 22
3.4.2 Homomorphic Encryption . 22

3.5 Additional Approaches for Outsourced Databases . 23
3.5.1 Hardware-Based Approaches . 23
3.5.2 Solutions with Multiple Servers . 23
3.5.3 Hiding the Access Pattern . 24
3.5.4 Data Anonymization . 25

4 Methodology . 27
4.1 Security Assessment Methodology . 27

4.1.1 Framework for Formal Security Proofs for SSE 27
4.1.2 Practical Security Evaluation . 30

4.2 Performance Assessment Methodology . 31
4.2.1 Theoretical Runtime Analyses . 31
4.2.2 Practical Runtime Evaluation . 32

5 Exact Keyword Matching . 33
5.1 Introduction . 33

5.1.1 Framework . 34

ix

Contents

5.2 Related Work . 35
5.3 Implementation . 36
5.4 Evaluation . 38

5.4.1 Formal Security Proof . 38
5.4.2 Amortized Runtime Analysis . 40
5.4.3 Practical Benchmark . 41

5.5 Tradeoff between Communication Overhead and Client Storage 43
5.6 Summary . 44

6 Secure Joins . 47
6.1 Introduction . 47

6.1.1 Framework . 49
6.2 Related Work . 50
6.3 Implementation . 51

6.3.1 Straw-Man Solution . 52
6.3.2 Required Tools . 53
6.3.3 Protocol . 56

6.4 Evaluation . 58
6.4.1 Formal Security Proof . 58
6.4.2 Amortized Analysis . 62
6.4.3 Practical Benchmark . 62

6.5 Tradeoff between Runtime and Predicate Security . 65
6.6 Summary . 69

7 Range Queries . 71
7.1 Introduction . 71

7.1.1 Framework . 73
7.2 Related Work . 74
7.3 Implementation . 75

7.3.1 Range Predicate Encryption . 75
7.3.2 Protocol . 77

7.4 Evaluation . 83
7.4.1 Formal Security Proof . 84
7.4.2 Amortized Runtime Analysis . 88
7.4.3 Practical Benchmarks . 89

7.5 Summary . 92

8 Substring Search . 95
8.1 Introduction . 95

8.1.1 Framework . 97
8.2 Related Work . 98
8.3 Implementation . 99

8.3.1 Order-Preserving Encryption . 99
8.3.2 Protocol . 100
8.3.3 Different Filtering Algorithms . 103

8.4 Evaluation . 106

x

Contents

8.4.1 Theoretical Security Evaluation . 107
8.4.2 Practical Security Evaluation . 108
8.4.3 Practical Benchmarks . 110

8.5 Further Discussion . 113
8.5.1 From Static to Dynamic Database . 113
8.5.2 Increased Security . 114

8.6 Summary . 115

9 Conclusions . 117
9.1 Summary . 117
9.2 Outlook . 117

A Appendix . 119
A.1 Pairing Based Cryptography . 119
A.2 Attribute Based Encryption . 119
A.3 Range Predicate Encryption . 120

A.3.1 Secret Key Inner-Product Encryption . 121

Bibliography . 125

xi

Acronyms

ABE attribute-based encryption.

AES advanced encryption standard.

CP-ABE ciphertext-policy attribute-based encryption.

DBaaS databases as a service.

DBMS database management system.

ECB electronic codebook mode.

FE functional encryption.

FHE fully homomorphic encryption.

FHOPE frequency-hiding order-preserving encryption.

IND-CCA indistinguishability under chosen ciphertext attacks.

IND-CPA indistinguishability under chosen plaintext attacks.

IND-OCPA indistinguishability under ordered chosen plaintext attacks.

IPE inner product encryption.

KP-ABE key-policy attribute-based encryption.

MAC message authentication code.

OPE order-preserving encryption.

ORAM oblivious RAM.

ORE order-revealing encryption.

PDN private data networks.

PEKS public-key encryption with keyword search.

PHE partially homomorphic encryption.

PIR private information retrieval.

POPE partial order-preserving encoding.

PPE property-preserving encryption.

xiii

Acronyms

PPT probabilistic polynomial-time.

PRF pseudorandom function.

PRNG pseudorandom number generator.

PRP pseudorandom permutation.

PSI private set intersection.

RPE range predicate encryption.

SGX Software Guard Extension.

SMC secure multiparty computation.

SQL structured query language.

SSE searchable symmetric encryption.

SWHE somewhat homomorphic encryption.

UDF user defined function.

xiv

1 Introduction

In this thesis we present novel constructions enabling complex database queries over encrypted data. All
approaches presented in this thesis can be deployed on common hardwarewhile providing security guarantees
proved in a formal framework. In Section 1.1 we discuss the motivation of this work and in the following
Section 1.2 we summarize the scientific contribution of this dissertation. An overview of the structure of
this thesis finalizes this chapter in Section 1.3.

1.1 Motivation

Within recent years, more and more aspects of our daily life have become affected by computer systems.
This development has opened novel opportunities in our modern life such as online banking and online
shopping, as well as personalized advertisement and improved health services. While the core business
of most companies is not directly founded on information technology, they profit from these innovative
capabilities in data analytics and knowledge management provided by such technology. As a result, these
companies strive to minimize their direct expenses for computer systems and personnel capable in installing
and maintaining these systems.
Cloud computing is one approach with increasing popularity that addresses this issue. It is based on the

idea of outsourcing the computation to third parties that focus on providing computational resources and the
maintenance thereof [58] as provided by, e.g. Google, Amazon andMicrosoft. Particularly, cloud computing
allows a data owner to outsource her data collection while enabling her to access this data with arbitrary
devices anytime over a computer network. Even devices with small computational power and memory can
be used to access an enormous data collection. This is possible by delegating computationally expensive
operations like searching specific data records to the cloud service provider. Then only a small subset
matching the search query is transferred back and processed directly by the client’s lightweight device.
Since most services are based on a large amount of data, databases as a service (DBaaS) as suggested by

Hacigümüs et al. [75] has become a common application for cloud computing.
While data is of great value providing novel business cases, this value also motivates criminals to attack

the systems and steal outsourced data. As a result, cloud service providers and users thereof apply multiple
securitymechanisms such as networkmonitors and firewalls, enforcement of security policies, virus scanners
and static or dynamic code scans to prevent deployment of vulnerable programs. However, all these security
mechanisms do not protect against insider attacks such as, e.g. malicious employees of the service provider
with direct physical access to the server or virtual access in form of administrator rights.
Preventing data breaches and providing confidentiality even against such insider attacks can be achieved

by encrypting all data on the client side before it is transferred into the cloud. In this scenario it is crucial
that the corresponding decryption key is never transferred to the cloud service provider, otherwise insider
attackers can extract the decryption key and bypass this protection mechanism. While general encryption
schemes such as AES provide data confidentiality for outsourced data, they do not support computation over
ciphertexts and hence prevent straightforward deployment for DBaaS scenarios.
Fully homomorphic encryption is a general approach enabling computation over encrypted data. The

theoretical capabilities of such encryption schemes are nearly unlimited thus the general idea of fully

1

1 Introduction

homomorphic encryption (FHE) has been formulated decades ago [127]. The first instantiation of fully
homomorphic encryption has been proposed by Gentry [61] receiving a lot of public attention, hence
non-cryptographers consider FHE as a solution suitable for all problems regarding data confidentiality.
However, other solutions developed for specific scenarios have gained less attention by non-experts. While
these solutions have limits in their supported functionality and might leak additional information compared
to FHE they achieve smaller ciphertexts (and hence reduced memory footprint) and faster computation time.
That is, these solutions trade functionality and security for better performance.
With CryptDB, a very performant approach for outsourced databases has been proposed by Popa et

al. [123] based on property-preserving encryption. Unfortunately, systems founded on property-preserving
encryption provide security with debatable consequences. Indeed, Naveed et al. [116] have demonstrated
that systems founded on this approach are exploitable with devastating results, e.g. a data breach affecting up
to 80% of the outsourced data seemingly protected by property-preserving encryption. As a result, solutions
trading performance for security is of great interest for sensitive data outsourced in the DBaaS scenario.
One example for an encryption scheme realizing such tradeoff that is specifically crafted supporting exact
keyword search over data protected by randomized encryption (instead of deterministic encryption as used
in CryptDB) is searchable symmetric encryption initially proposed by Song et al. [137]. In more detail,
the data owner can encrypt values with searchable symmetric encryption (SSE) using her secret key and
transfers the ciphertexts to the cloud service provider. Using the same secret key the data owner can generate
a search token for a keyword and pass it to the cloud service provider. Given this search token to the cloud
service provider she can filter for all ciphertexts that match with this search token. Further lines of work on
SSE have defined a framework for formal security proofs [49, 84] with the goal to quantify an upper bound
of the information leaked during the initial outsourcing process as well as the information extractable from
each query execution. Following this framework, we design and implement different schemes for the DBaaS
scenario enabling execution of varying query types over encrypted data.

1.2 Contribution of this Work

The main research question investigated in this dissertation can be formulated as follows:

Is it possible to design a practical system that enables queries over an encrypted database while
still being provably secure and providing a possibility to quantify the leakage induced by the
initial outsourcing step and by each query executed over encrypted data?

This question involves two different aspects to be considered we elaborate in the following.
First, what is the nature of a practical system and what are its properties? In this thesis, we demonstrate

practical feasibility by the deployment of such system on common hardware for each construction. Based
on a prototype we have implemented we report concrete runtime numbers. In order to give a profound
assessment independently of the underlying hardware, we additionally state an amortized runtime analysis
for each construction; we assume amortized runtime that is sublinear in the database size to be vital for
practical relevance of an encryption scheme enabling queries over encrypted databases even suitable for big
data scenarios.
Second, what is a suitable framework to quantify information leaked by an encryption scheme providing

query functionality over encrypted data and how can one be sure that this information leakage is not
exceeded? In order to answer this question we follow the approach of modern cryptography and state
a rigorous proof of security. On the one hand, there exist practical solutions as proposed by Popa et

2

1.3 Structure of the Dissertation

al. [123] that are adopted in real systems, e.g. Ciphercloud1 and Microsoft2. However, these solutions lack
a comprehensive security proof and the information leaked by this solution can be exploited to render the
protection mechanism insufficient as demonstrated in recent attacks [72, 115]. On the other hand, there exist
solutions that provably leak minimal information of the underlying database, that is, only the size of the data
stored in the database. While these approaches provide semantic security for the complete database and even
the computation result they are not practical as defined previously. That is, the theoretical runtime is lower
bounded in the database size since sublinear runtime contradicts the semantic security, e.g. information
about the result set size is extractable.
As a result, we are interested in constructions that provide a tradeoff between practicability and security.

While the security characteristics are weakened to achieve practical schemes we maintain a formal security
definition. We follow the security definitions introduced by Curtmola et al. [49] for encryption enabling
exact keyword search. Further, we extend this approach to be suitable for additional functionality besides
exact keyword search. According to this security definition we prove security for different query types in
this thesis. More particular, the solutions presented in this thesis are practical yet secure and enable the
following four database query types:

1. exact keyword search over encrypted data,

2. range queries over encrypted data,

3. secure database joins over encrypted tables,

4. secure substring search.

All these solutions give a positive answer for both of the previously discussed questions simultaneously.
Thus, the constructions presented in this thesis can guarantee security properties while they are practically
relevant, hence allow outsourcing of sensitive data into untrusted environments addressing real world
scenarios.

1.3 Structure of the Dissertation

We present different approaches enabling privacy-preserving query execution of four different query types
on encrypted data within this thesis. Each query type is discussed individually in a self-contained chapter,
hence the reader can consult each chapter of interest independently.
The general preliminaries in cryptography and database principles laying the foundations for all chapters

are given in Chapter 2 together with used notation. A reader knowledgeable in these topics can skip this
chapter. In order to keep this general review as compact as possible, advanced cryptographic constructions
and database principles are reviewed in the particular chapter if required there. In Chapter 3 we discuss
different approaches that allow secure processing of encrypted data for general applications and introduce
the idea of more specialized encryption schemes trading this generality for performance gains. However,
due to brevity we only review general principles and constructions for privacy-preserving query processing
on encrypted data in this overview discussion. For a thorough review of related work suitable for one
particular query type we refer to the corresponding chapters dealing with one specific query type more com-
prehensively. Since we apply similar methodologies for different constructions, we revise our methodology
in Chapter 4. After this preliminary discussion, the four major chapters are presented addressing different
privacy-preserving query types, namely, equality queries in Chapter 5, database joins in Chapter 6, range
1 http://www.ciphercloud.com/
2 https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-
database-engine

3

http://www.ciphercloud.com/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine

1 Introduction

queries in Chapter 7 and substring queries in Chapter 8. Finally, a conclusion and outlook for future work
and further research questions is given in Chapter 9.
Specifically, we follow a unified structure for each of the four major chapters: We start with a section

introducing the problem, e.g. in form an example structured query language (SQL) query we strive to be
executable over encrypted data, together with an abstract framework suitable for this problem. Specific
related work on this particular query type is reviewed in the next section. The third section of each
major chapter introduces special cryptographic tools and system designs that are only required in this
particular chapter and go beyond the general preliminaries already presented in Chapter 2. Further, the
actual implementation of the abstract framework utilizing these special tools and designs are presented in
this section. In the following evaluation section a benchmark of each construction is given with respect to
security and performance. Additional discussion, possible extensions and tradeoffs for the main construction
but without detailed evaluations are discussed in a subsequent section before eachmajor chapter is completed
with an individual summary.
The following short abstracts summarizing the major chapters presented in this thesis finalize the intro-

duction of this dissertation.

• In Chapter 5 we present a searchable encryption scheme for exact keyword matching enabling updates
that leak no more information than the access pattern with asymptotically optimal search time.
Constructions for efficient, dynamic searchable encryption schemes previously published suffer from
various drawbacks: Either they deteriorate from semantic security to the security of deterministic
encryption under updates, or they require to store information on the client side for deleted files and
added keywords, or they have very large index sizes. Our construction is based on the novel idea of
learning the index from the access pattern itself, hence achieving efficient processing time with small
information leakage.

• In Chapter 6 we present a solution for database joins that minimizes the information leakage of join
values not contained in the actual query result. Although crucial for practical database operations due
to database normalization, the join operation of encrypted tables has rarely been addressed by research
so far. Previous solutions for database joins over encrypted data leak the complete inner join result,
although data queries consist of additional data constraints in common applications, e.g. expressed by
additional WHERE clauses in SQL. Our solution provides fine granular security since all join values
of data rows not involved in the join computation remain semantically secure.

• In Chapter 7 we present a novel scheme for range queries that only leaks the access pattern while sup-
porting amortized poly-logarithmic search time. Privacy-preserving range queries allow encrypting
data while still enabling queries on ciphertexts if their corresponding plaintexts fall within a queried
range. Previous methods for range queries either leak additional information (like the ordering of the
complete data set) or slow down the search process tremendously by scanning the ciphertext in the data
collection linearly. The construction in this chapter extends the idea of Chapter 5 of an incrementally
constructed search index based on a combination of the access and the search pattern. By doing so,
the cloud service provider can use this search index for accelerated query processing while all values
that have been never contained in any result set remain semantically secure.

• In Chapter 8 we address the problem of outsourcing sensitive strings while still providing the func-
tionality of substring searches. We transform the problem of secure substring searches into range
queries hence this construction is compatible with the solution presented in the previous Chapter 7.
While security is one important aspect that requires a careful system design, users’ acceptance of the
solution depends on feasible processing time and integration efforts into existing systems. Thus, we

4

1.3 Structure of the Dissertation

decided to apply frequency-hiding order-preserving encryption allowing efficient query processing on
common database systems without further modifications. Since the practical security characteristics
of such encryption schemes heavily depend on the structure of the underlying plaintext data we provide
an additional practical security evaluation of this construction assuming data protection of natural
(English written) text.

5

2 Notation and Preliminaries

In this section we review notations and definitions used throughout this thesis in Section 2.1. Since we
focus on encrypted database processing in this thesis, cryptographic mechanisms that achieve data security
are reviewed in Section 2.2, together with data structures that are crucial for efficient query evaluation on
databases in Section 2.3. Finally, we give a preliminary general high-level framework for privacy-preserving
query execution in Section 2.4 that we will adapt for different types of queries in this thesis.

2.1 Notation

The set of binary strings of length n is denoted as {0, 1}n, the set of all finite binary strings is denoted
as {0, 1}∗. Given a binary string s, we denote len (s) as its bit length. Given two binary strings u ∈
{0, 1}n, v ∈ {0, 1}m, the concatenation is written as u||v ∈ {0, 1}m+n. Further, x← A denotes the output
x for a (possible) probabilistic algorithm. The notation [m,n] withm,n ∈ N andm ≤ n denotes the integer
set {m, . . . , n}. Sampling from a probability distribution D is denoted as x ← D, sampling uniformly
random from a set X is denoted as x $←− X . We write bold letters C to refer to a ordered collection of
objects, the ith individual object is denoted as C[i] or Ci. Further, the number of objects contained in C is
denoted as len (C).
Throughout this thesis λ ∈ N refers to the security parameter. If not stated explicitly, we implicitly assume

it is input to all algorithms in an unary representation 1λ. A function f : N → N is called negligible if for
every polynomial p(·) there exists a N ∈ N such that for all n ∈ N with n > N it holds that f(n) < 1

p(n) .
We write negl for the set of all negligible functions and poly for the set of all polynomials.

Algorithms aremodeled as TuringMachines TM(·)with input tape, working tape and output tape. Further,
we say algorithm A is efficiently computable, if it can be executed for any input x ∈ {0, 1}∗ in p(len (x))
steps with p ∈ poly. In other words, there exists a polynomial-time Turing Machine TM(x) modeling A
that halts within p(|x|) steps for any input x written to the input tape.

Extending this approach, efficient probabilistic algorithms are modeled as Turing Machines TM(·, ·)
equipped with an additional random tape. This random tape is initialized before the Turing Machine
is executed and its input is sampled from an input set r $←− R. Efficiently computational probabilistic
algorithms that can be modeled by such Turing Machines TM(·, ·) are called probabilistic polynomial-time
(PPT) algorithms.
There are functions no PPT algorithms can compute efficiently. In fact, this is pivotal for cryptography,

e.g. for any computationally secure encryption scheme the decryption function for a given ciphertext should
be computational infeasible without the corresponding decryption key (see Section 2.2.1) for more formal
details). In order to model powerful adversaries as PPT algorithms A, they are aided with an oracle O that
is able to compute auxiliary functions in a single operation – functions the adversary A cannot compute on
its own efficiently. This oracle O can be queried by A as a black box, denoted as AO(·); given a specific
function f the oracle computes, we write Af(·) to denote algorithm A with access to such an oracle. For
example, given a decryption oracle Dec(k, ·) with hard coded decryption key k enables ADec(k,·) to ask for
decrypted values of queried ciphertext but without direct access to the secret decryption key k.

7

2 Notation and Preliminaries

A probability ensemble X is a set of probability distributions Xi indexed by i ∈ N, that is, X =
{Xi}i∈N. Based on probabilistic algorithms the concept of computational indistinguishability of two
probability ensembles can be formulated as follows. We call two probability ensemblesX ,Y computational
indistinguishable if for all PPT algorithms D

|Pr [D(x) = 1 : x← Xλ]− Pr [D(y) = 1 : y ← Yλ]| ≤ negl(λ).

2.2 Common Cryptographic Preliminaries

In this section we introduce common cryptographic primitives necessary for this thesis and revise their
corresponding security definitions. We follow the definitions given byKatz and Lindell in the comprehensive
textbook [85]. These constructions are the standard repertoire of cryptographic tools we repeatedly make
use of within this thesis. Advanced constructions required for privacy-preserving processing of particular
query types are introduced in the corresponding chapters as needed.

2.2.1 Secret-Key Encryption

The classical use case for secret-key encryption is two parties that want to transfer sensitive messages
over an untrusted communication channel while preserving confidentiality. Both parties have access to the
same key used for encryption by the sender and used for decryption by the receiver. Since we address
secure outsourcing in most cases presented in this work, sender and receiver are the same entity and the
communication channel goes over an external untrusted storage provider.

Definition 1 (Secret-Key Encryption). A secret-key encryption scheme Π = (Gen,Enc,Dec) for key space
K, message spaceM and ciphertext space C consists of three PPT algorithms.

k ← Gen(1λ) takes as input the security parameter 1λ and outputs a key k ∈ K.

c← Enc(k,m) takes as input the key k and a plaintext message m ∈ M and outputs a corresponding
ciphertext c ∈ C. Sometimes we write this as Enck(m).

m← Dec(k, c) takes as input the key k and ciphertext c ∈ C and outputs the decrypted plaintext message
m ∈M. Sometimes we write this as Deck(c)

For any meaningful secret-key encryption scheme we require correctness of the decryption algorithm,
that is, applying the decryption algorithms with the matching key on a ciphertext encrypted under the
same key returns the original plaintext message. More formally, for any secret-key encryption scheme
Π = (Gen,Enc,Dec), for any k ← Gen(1λ) and anymessagem ∈M it holds thatDec(k,Enc(k,m)) = m.
The main purpose of encryption is to preserve confidentiality against dishonest parties that try to “break”

the encryption scheme. The adversaries’ goal of breaking a encryption scheme is quite vague, that is, when
is a encryption said to be broken, e.g. just when the adversary can extract the secret key or already when
an adversary is able to distinguish between two different messages (e.g. in a fictional military scenario it
is sufficient for an adversarial eavesdropper to distinguish the encrypted order of an attack between the
encrypted order of an retreat). Obviously, an adversary that can extract the secret key can also distinguish
between different messages simply by decrypting both messages; the other way round any (correct) encryp-
tion scheme that is secure against such distinguishing attacks must be secure against such key extraction
attacks as well. Moreover, the computation power of such potential adversaries may vary tremendously,
e.g. one private person with little technical equipment in contrast to a national intelligence agency that has
access to supercomputers; the same argument holds for the auxiliary knowledge an adversary has, e.g. does

8

2.2 Common Cryptographic Preliminaries

she know the internal structure of the system she attempts to attack or is she oblivious to such details and
performs a black box attack. Note that each scheme that is secure against an adversary with fixed power, is
also secure against any less powerful adversary.
In order to protect sensitivemessages against a broad class of adversaries, the definition of security is given

in a formal framework in modern cryptography. There are two widely accepted definitions regarding the
security of secret-key encryption schemes, namely indistinguishability under chosen plaintext attacks (IND-
CPA) and indistinguishability under chosen ciphertext attacks (IND-CCA). Roughly speaking, these security
concepts are defined via security experiments conducted by a challenger. In these security experiments, an
adversary A submits two challenge messages m0,m1 and the challenger samples one challenge message
randomly denoted asmb and returns the ciphertext c = Enc(k,mb) to the adversary. The adversary is said
to be successful in this security experiment, if she assigns the correct message to the output ciphertext of the
randomly sampled plaintext. The purpose of this security experiment is tomodel the strongest attack goal in a
formal framework. Regarding the auxiliary knowledge of an attacker, the adversaryA gets additional access
to an oracleO the adversary can ask for help. Depending on the specific function the oracle can evaluate, the
adversary can perform chosen plaintext attacks, i.e. the oracle only performs the encryption (with hard coded
key) or the adversary can perform chosen ciphertext attacks, i.e. the oracle can performs the encryption
and the decryption (with hard coded key) except the decryption of the challenge ciphertext. Without this
constraint regarding the decryption oracle, any correct encryption scheme would become insecure since
the adversary can use the decryption oracle for decrypting the ciphertext challenge and then distinguish
between the plaintext challenges. However, there is no constraint for the encryption oracle, that is, any of
the challenge messages can be queried to the oracle. As a direct consequence, any secret-key encryption
scheme that meets such security definition requires a probabilistic encryption algorithm as highlighted by
Goldwasser and Micali [67].
Formally, the IND-CPA experiment for a secret-key encryption scheme Π = (Gen,Enc,Dec) for an

adversary A is defined as shown in Definition 2.

Definition 2 (IND-CPA Experiment). The IND-CPA experiment ExpIND−CPA
Π,A for a secret-key encryption

scheme Π = (Gen,Enc,Dec) and for an adversary A is defined as follows.

1. A secret key k ← Gen(1λ) is generated.

2. Adversary AEnc(k,·) gets input 1λ and has access to an encryption oracle Enc(k, ·) with hard coded
secret key generated in the previous step.

3. Two challenge messages (m0,m1)← A(1λ)Enc(k,·) are output by the adversary where the adversary
wishes to be challenged.

4. A bit b $←− {0, 1} is sampled randomly.

5. The challenge message mb is chosen according bit b. The corresponding ciphertext challenge
Enc(k,mb) is given to adversary A.

6. Adversary A outputs a guess b′.

The experiment outputs 1 if b equals b′ and 0 otherwise.

The advantage of an adversary A succeeding in this IND-CPA experiment is defined as the probability
of the experiment outputting 1 minus the probability of correct guessing. A secret-key encryption scheme
is called indistinguishable under chosen plaintext attacks, if this advantage is negligible as formalized in
Definition 3.

9

2 Notation and Preliminaries

Definition 3 (IND-CPA security for secret-key encryption). Let Π = (Gen,Enc,Dec) be a secret-key
encryption scheme and λ ∈ N its security parameter. Π is indistinguishable under chosen plaintext attacks
if for all PPT adversaries A the advantage of A defined as∣∣∣∣Pr

[
ExpIND−CPA

Π,A (λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

As encryption schemes that are indistinguishable under chosen ciphertext attacks (IND-CCA) are not
required for the constructions presented in this thesis we omit the formal definition of IND-CCA security
and refer to the comprehensive textbook by Katz and Lindell [85].

2.2.2 Cryptographic Hash Functions and MACs

A hash function h : {0, 1}n → {0, 1}m is a deterministic function that compresses its input value, that is,
binary string with length n are mapped to binary strings with fixed length m where n � m. Due to this
compression nature, there exist multiple values a, b ∈ {0, 1}n where a hash collision occurs, i.e. the hash
values for both inputs a and b are the same h(a) = h(b). A well-designed hash function minimizes the
probability of such hash collisions by spreading the output over the complete output domain in a “random
looking” fashion [47]. In the remainder of this work we often assume a hash function h : {0, 1}∗ → {0, 1}λ

with arbitrary finite binary strings as input instead of fixed input input length n.
A cryptographic hash function has the additional properties of pre-image resistance and collision resis-

tance. A hash function is called pre-image resistant if it is one-way: evaluating the hash function for any
given input is efficient, however, it is required to be computationally infeasible to invert the hash function.
More precisely, given the output y = h(x) of a cryptographic hash function for any input x ∈ {0, 1}n no
PPT algorithm A can find x′ ∈ {0, 1}n such that h(x′) = y with non-negligible probability. Collision
resistance for a hash function h requires that no PPT algorithm A can find two values x, y such that they
result in the same hash value h(x) = h(y) with non-negligible probability. In the remainder of this work
we simply write hash functions but refer to cryptographic hash functions if not stated otherwise.
Amessage authentication code (MAC) is a hash function that is parametrized with an additional secret key

k. In order to highlight the difference between the secret key and the payload we denote a MAC as a function
f : {0, 1}λ×{0, 1}n → {0, 1}m. Given a tuple (x, f(k, x)) for aMAC f it his computationally infeasible to
compute a collision, that is, find a message x′ such that f(k, x) = f(k, x′) even with knowledge of the secret
key k. Additionally, we require the MAC to be unforgeable: given set of tuples {(xi, f(k, xi)}i∈poly(λ)

chosen by the adversary, the adversary cannot compute a valid MAC f(k, x′) for any value x′ not contained
in the given set. This property is used to protect integrity of a message x but also to ensure the authenticity
of the sender to the receiver since only the sender and receiver are assumed to know the secret key k.
For theoretical proofs we either model MACs as keyed pseudorandom functions and hash functions as

random oracles if required, hence we review their corresponding definitions in the following as given by
Katz and Lindell [85].

Definition 4 (Pseudorandom Function). Let F : {0, 1}λ × {0, 1}n → {0, 1}m be an efficiently computa-
tional keyed function. We say F is a pseudorandom function (PRF) if for all PPT distinguishers D, there
exists a negligible function negl(·) ∈ negl such that∣∣∣Pr

[
DF (k,·)(1λ) = 1

]
− Pr

[
Df(·)(1λ)

]∣∣∣ = negl(λ)

10

2.3 Databases and Data Structures

where k $←− {0, 1}λ is secret key sampled uniformly at random and f : {0, 1}∗ → {0, 1}∗ is a function
chosen randomly from the set of all functions mapping bitstrings with length n to bitstrings with length m.
If F is bijective and the inverse function F−1 can be computed efficiently given the secret key k we call F a
pseudorandom permutation (PRP).

Note that success probability of the distinguisher is expressed in dependence of the sampled key k.
However, the distinguisher cannot access the actual key but only query an oracle that has this key hard
coded, otherwise she could compute F by herself (with known key k) and compare his simulated output for
a fixed string with the actual output of the oracle. This would enable the distinguisher to win the game with
non-negligible probability.
In contrast, a hash function h as described previously, has no additional secret key as input but is

a deterministic function. In a real-world implementation, the hash function is realized by standardized
algorithm such as SHA-2561. In this thesis, we follow the popular approach vastly used for efficient
implementations [17, 112, 117] and model hash functions as random oracles for theoretical security analyses
– a model founded by Bellare and Rogaway [16]. From a theoretical point of view this construction is
debatable as highlighted by Canetti et al. [36], however, others such as, e.g. Koblitz and Menezes [93] argue
that a proof in the random oracle model is better than no formal proof at all.
Informally speaking, in the random oracle model one replaces a hash function h : {0, 1}n → {0, 1}λ

with a random oracle RO : {0, 1}n → {0, 1}λ that works as follows: Each participant of the protocol can
query the random oracle with arbitrary input x ∈ {0, 1}n and gets a uniformly sampled random answer. For
each input x, the output y = RO(x) is sampled independently and uniformly from {0, 1}λ; this output y is
then fixed for repeated queries of the same value x for all parties. This consistency models the standardized
and deterministic nature of a hash function h for all participants. One can imagine two different ways for the
random oracle to work internally: either each value y = RO(x) is sampled randomly on-the-fly for value x
queried the first time and then stored in a big table in order to stay consistent, or the complete content of this
big table is stored from the beginning on (at least for all values x queried during the protocol execution).
The big advantage gained by this methodology is that the experiment environment (e.g. the challenger) can
chose values as required as long as the chosen values are sampled according the correct uniform distribution.
This possibility of choosing the values as required is called “programmability” and the corresponding oracle
is called programmable random oracle. Note that it is easy to construct a pseudorandom function (PRF)
F : {0, 1}λ × {0, 1}n → {0, 1}λ given a random oracle RO : {0, 1}∗ → {0, 1}λ, e.g., by mapping
Fk(x) = RO(k||x)2.

2.3 Databases and Data Structures

A database is a collection of data entries that is stored and organized in a way providing functionality to
query this data efficiently, e.g. filtering for specific attributes or computing data aggregation. In this thesis
we assume a database consists of multiple database tables where each table has a specific number of columns
and an arbitrary number of rows. A column is identifiable by a unique attribute name and each column
stores specific attributes of a fixed data type, e.g. integers, strings, timestamps or links to binary files. Each
row is uniquely identifiable by a subset of attribute values stored in the corresponding columns; this set of
attributes is called the primary key. In this thesis we simplify the assumption of primary keys consisting
of exactly one attribute value; this can be achieved by adding an artificial unique value (e.g. an ascending

1 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
2 Be aware that this construction is not secure for real hash functions based on theMerkle-Damgård construction due to length extension
attacks. In fact this is a prime example for the subtlety one must keep in mind when using the random oracle model.

11

2 Notation and Preliminaries

counter) for each primary key (possibly consisting of multiple values). We refer to these simplified primary
keys as identifier of a data entry. More formally we define databases and their individual tables as follows.

Definition 5 (Database Table). A database table T is defined by a scheme, that is, an ordered set of attributes
{A1, . . . , An}. Table T contains tuples over the domain ID × V1 × · · · × Vn called rows. Each row or
data entry (id, v1, . . . , vn) has a unique identifier id and values vi ∈ Vi, where Vi is the value domain of
attribute Ai. We write |T | do denote the size of the table, that is, the number of different tuples and hence
the number of different identifiers.

Definition 6 (Database). A database D = {T1, · · ·Tn} is a finite set of tables as introduced in Definition 5.

The query interface for a database is offered by a database management system (DBMS) such as,
e.g. MySQL, PostgreSQL or SAP HANA. As a result, a DBMS offering flexibility in the type of queries that
can be processed consists of a combination of different data structures for varying purposes. In this section
we revise data structures for plaintext data that are then utilized and modified in this thesis to be compatible
with encrypted data and different types of queries on this data.
One possible query type for a database table is to retrieve the complete row indexed by one single identifier

queried by the database user. A data structure that supports such queries is called (regular) forward index;
it indexes each data entry under its unique identifier. One way to implement such forward indexes with
constant lookup time is a hash table or hash map for a hash function h with the identifier as input, and
the location where the corresponding data entry can be found as output, e.g. a deterministic mapping of
the unique identifier to a memory address the payload is located. The identifier used as input for the hash
function is called the key of the hash table.
A more natural query type for a database table is to filter for all data entries that match a specified attribute

value without knowledge of the row identifiers stored in the table. While a forward index can be used to
access single data entries by their identifier in constant time, such filtering queries require a linear scan of
all table rows given only a forward index. Hence, additional auxiliary indexes are crucial for a database
supporting such attribute filtering queries in sublinear search time. One data structure that supports such
queries is called inverted index; it indexes all data entries under their corresponding attribute value. Utilizing
hash tables keyed with these attributes, the filtering operation for such indexed attributes can be performed
in constant time.

EmpID Name Dept Salary
1 Harry Finance 4000

2 Sally Management 7000

3 Harry Sales 5000

4 George Sales 3500

Table 2.1: Full Database Table

Name EmpIDs
Harry 1, 3

Sally 2

George 4

Table 2.2: Inverse Index

Although query execution for exact patternmatching on a database resulting in all data entriesmatching one
specified attribute value seems quite easy, it requires engineering effort to implement this query execution
with sublinear search time. In order to generally describe the functionality offered by a (encrypted or
unencrypted) DBMS we write q to describe an arbitrary query compatible to this DBMS. Given a particular
database D containing actual values we denote D[q] as the result set after a successful execution of database
query q on this database D. In this work we assume query result D[q] consists of row identifiers that

12

2.4 Privacy Preserving Query Execution

match query q but we omit complete database entries in our notations for readability reasons. For example,
assuming database D as specified in Table 2.1 and a query q filtering for all employees with salary between
3200 and 4500 the result set D[q] consists of the identifiers 1 and 4. These identifiers can then be used to
reconstruction the complete data entries (1, Harry, Finance, 4000) and (4, George, Sales, 3500).
Note that a first step towards an encrypted database can be achieved in a straightforward way for the

payload, i.e. all attributes that are never used in any query. That is, these values can be encrypted using
a common secure encryption scheme such as, e.g., the advanced encryption standard (AES) specified by
NIST3. For example, assuming database D as specified in Table 2.1 and the only query type supported by
the given DBMS are range queries over the salary attribute, then all values for the attribute “Salary” are
stored in plaintext enabling range queries while values for attributes “Name” and “Dept” can be encrypted
with any common encryption scheme. While this approach is a first step it is no sufficient solution: Even
thought the names are encrypted in this database containing all employees of our imaginary company, a
potential attacker might be able to reconstruct some of these entries. Given auxiliary knowledge, e.g., the
name of the chief execution officer of this imaginary company, then a potential attacker concludes that the
encrypted name in the row containing the maximum salary value (stored in plaintext) is the CEO’s name
with high chances. Thus, we focus on encryption schemes supporting query execution on encrypted data
and omit the payload encryption in our considerations in the remainder of this thesis.

2.4 Privacy Preserving Query Execution

In order to be performant for real-world applications – especially in the context of big data – the approach
of search indexes has been transferred to methods providing privacy preserving query protocols. While the
historical development of such constructions is discussed more comprehensively in Section 3.3 we introduce
a general high-level framework for privacy preserving query execution in the following. We assume the
complete database D to be outsourced is initially stored on the trusted environment on the client side and a
privacy-preserving search index supporting a specific type of queries is constructed there before outsourcing.
This search index is then protected by cryptographic means and can be given to an untrusted party without
additional trust assumptions. More specifically, we assume the untrusted party (e.g. the service provider
offering DBaaS) in this work to be an honest-but-curious (or semi-honest) adversary. That is, while the
server follows the specified protocol, it keeps track of all exchanged messages and tries to extract additional
information from this transcript. This attacker model is particularly reasonable for a rational economically
motivated service provider: although the service provider follows the specified protocol she is interested in
additional information that could be monetized. In contrast, a malicious adversary is a much stronger model
where the service provider is not following the specified protocol but potentially mishandles executions,
deletes data completely or suppresses parts of the result set. However, such kind of attacks would become
suspicious with a great likelihood and results in a damaged reputation contradicting the economical interests
of the service provider.
Formally, the general definition of framework for privacy-preserving query execution in the honest-but-

curious model is stated as follows.

Definition 7 (General Framework for Privacy-Preserving Query Execution). A protocol Π =
(
Gen, Enc,

QueryToken, Query
)
for general privacy-preserving query execution consists of the following (possible

probabilistic) algorithms:

K ← Gen(1λ) is executed on the client. On input of security parameter 1λ this algorithm outputs a master
keyK.

3 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

13

2 Notation and Preliminaries

C← Enc(K,D) is executed on the client. On input of master key K and an initial database D this
algorithm outputs the corresponding encrypted version C.

τq ← QueryToken(K, q) is executed on the client. On input of master key K and a query q compatible to
D this algorithm outputs an query token τq compatible with C, the encrypted version of D.

D[q]← Query(τq,C) is executed on the server. On input of query token τq and an encrypted database C
this algorithm outputs the result set D[q].

The procedure for outsourcing a database to an untrusted environment is initiated by the client calling
Gen(1λ) creating a master keymk. Obviously, this master key is never transferred outside the client’s trusted
environment. In the next step the client encrypts the database D to be outsourced by calling Enc(K,D)
resulting in an encrypted database C that allows processing of one specific query type. This encrypted
database C is then outsourced to the untrusted environment. Each database query q (of compatible type) is
transformed by the client using the master key K by calling QueryToken(K, q) resulting in a query token
τq . The query token τq is transferred to the untrusted environment where the encrypted database C is stored
and used there to retrieve the query result D[q] calling Query(τq,C).

Note that this framework addresses static databases encrypted in the initial step and not alterable after-
wards. That is, adding or deleting or updating data entries after the initial outsourcing step is not supported
in this case. This framework can be extended to address dynamic databases by providing supplementary
token algorithms for add and delete tokens (requiring the master key K for creation) that allow database
alterations after the initial encryption step. Updates for a table row are then supported by deleting the
obsolete database entry from the encrypted database and adding the updated database entry the index after
the deletion.

14

3 Related Work

In this chapter we review related work enabling database queries over encrypted data. In Section 3.1 we
discuss foundational work on databases outsourcing and complete database systems enabling query execution
over encrypted data. In the following Section 3.2 we discuss property-preserving encryption widely used in
solutions for encrypted databases. Attacks on property-preserving encryption are reviewed in Section 3.2.3
as these attacks give evidence that such encryption schemes provide weak security characteristics and
are insufficient to provide data confidentiality. Next, in Section 3.3 we present searchable encryption with
provable upper bounds for the leaked information extractable from each executed query. We elaborate on this
formal security definition widely used for searchable encryption in the following Chapter 4. In Section 3.4
we outline homomorphic encryption and functional encryption. Due to their generality, these encryption
schemes can be utilized to address encrypted databases theoretically. However, these general solutions
have poor performance compared to solutions specifically developed for encrypted databases or even one
explicit database query type. In Section 3.5 we briefly discuss related work not completely matching our
requirements for encrypted databases(cf. Section 2.4). We sketch approaches providing data confidentiality
but with additional server requirements in the first two subsection and approaches with deviating security
goals in the remaining two subsections. Particularly, constructions based on special trusted hardware and
multiple servers are outlined in Section 3.5.1 and in Section 3.5.2. Finally, we discuss solutions protecting the
query and the corresponding result in Section 3.5.3 and approaches for data anonymization in Section 3.5.4.
We emphasize that we give a supplement discussion about related work suitable for specific query types

in the corresponding chapters but consider this chapter as a general overview of approaches related to
protection mechanisms for query execution over outsourced data.

3.1 Encrypted Databases

The databases as a service (DBaaS) paradigm has been proposed by Hacigümüs et al. [75] with the goal to
eliminate expensive software and hardware, hiring professionals and transfer these tasks to a service provider
for small and medium companies (especially companies whose main business is not based on information
technology). In their fundamental work they identified data privacy as one essential issue to be addressed
by the database community. In the same work they proposed to implement an encryption and decryption
function on the server as user defined function (UDF). Each time the client wishes to add data to the database
the cryptographic key is transferred to the server in order to encrypt the payload and store the ciphertext in
the database. The analogue procedure is triggered each time the client wished to query data, that is, the
cryptographic key is transferred to the server in order to decrypt the stored data and execute the query over
the retrieved plaintext. Obviously, this solution offers no protection against an untrusted database service
provider since she can modify the UDF such that the cryptographic key is copied and stored, however, it
provides security against snapshot attackers, e.g. external adversaries that may get access to disk files. In
summary, in this work they present a solution that is secure against outsider attackers but can be attacked by
insider attackers.
In the same year, Hacigümüs et al. presented a preliminary solution for the identified data privacy and

security challenges without the intermediate decryption step, thus even secure against insider attackers [74].

15

3 Related Work

Their construction is founded on the deployment of a coarse index that does not contain the individual data
but maps data in different partitions. These partitions preserve specific properties of the plaintext data,
e.g. identical values are always mapped into the same partition; however, the actual plaintext value cannot be
extracted from these partitions. Such a coarse index is utilized by the untrusted database server to perform
coarse query processing based on the partitions and the still encrypted result set containing false positives
is transferred back to the client. Using the decryption key, this result set can be decrypted on the client side
and the false positives can be corrected by the client. Varying approaches are proposed optimizing the query
execution order with the target to minimize false positives and hence reduce the computation overhead for
the client.
The techniques for query processing on encrypted data have been advanced by Popa et al. [123]. Compared

to the construction byHacigümüs et al., they found a solutionwithout false positive results based on property-
preserving encryption (PPE). We refer to the next Section 3.2 for technical details of property-preserving
encryption schemes and discuss the general ideas of CryptDB in the remainder of this section. As the name
suggests, applying this kind of encryption scheme preserves specific properties, more particular, relations
– such as equality or the order relation – of plaintext values remain valid on the ciphertext output by a
property-preserving encryption algorithm. Due to the preservation of these properties even on ciphertexts
the deployment overhead of such encryption schemes on common database systems is low. Firstly, internal
indexing techniques based on such preserved properties can directly be applied on encrypted values as on
plaintext data. Secondly, queries stated by the client are directly executable on encrypted data or can be
transformed by the application of the appropriate encryption scheme of the query payload. That is, grouping
and sorting can be done on encrypted data and queries are supported by the encryption scheme that preserves
the relation specifically queried, e.g. filter for all values that match a stated string can be implemented by
searching for the corresponding ciphertext of the stated string. Obviously, themore functionality is supported
by the ciphertexts output by a PPE scheme themore information is leaked in form of the preserved properties.
Popa et al. propose adjustable encryption to address this dilemma, here the properties are hidden as long
as they are not required to answer a query. Technically, adjustable encryption means the application of
multiple encryption schemes one after the other: beginning with the weakest (but most flexible in terms of
functionality) encryption scheme, then encrypting the ciphertext output by the first encryption scheme with
a stronger encryption scheme providing more security but less functionality and finally hiding all properties
by the application of a semantically secure encryption scheme. This adjustable encryption is applied for
each database column individually and the resulting “ciphertext onion” for each cell is then stored in the
database. In case of a query that is not supported by the currently stored ciphertext, one “onion layer” is
peeled off by the server, that is, the client sends the decryption key to the server enabling the server to decrypt
the current ciphertext unveiling the underlying ciphertext with more properties preserved. The decryption
process can be repeated until the query is supported or the minimal protection level is reached according to
a given policy. Additional functionality for query processing on the server side and increased performance
for the ciphertext decryption on the client side can be supported by storing multiple ciphertexts of the same
plaintext supporting different functionalities in parallel in the database. Obviously, the security level for the
plaintext is as low as the security level provided by the weakest encryption scheme.
Companies with varying sizes have implemented the approach of CryptDB: not only start-up such as,

e.g. Ciphercloud1 or Vaultive2, but also big players such as, e.g. Microsoft3 offer commercial solutions for

1 http://www.ciphercloud.com/
2 http://www.vaultive.com/
3 https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-
database-engine

16

http://www.ciphercloud.com/
http://www.vaultive.com/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine

3.2 Property-Preserving Encryption

encrypted databases inspired by CryptDB. Further, Popa et al. demonstrated the possibility to build web
applications on top of encrypted databases implementing the approaches of CryptDB [124].
The practical evaluation results demonstrate that performance overhead of property-preserving encryption

is negligible [71, 123]. The reason for this minimal performance overhead is that indexing techniques
provided by the database engine can result in huge search time speed-up and are directly applicable for
property-preserving encryption. That is, data structures such as hash tables can be applied to deterministic
encryption providing fast processing time for exact keyword search and even advanced data structures such
as search trees are compatible with order-preserving encryption providing fast processing time for range
queries.

3.2 Property-Preserving Encryption

The general framework of a property-preserving encryption scheme has been stated by Pandey and Rouse-
lakis [119] as given the following definition.

Definition 8 (Property-Preserving Encryption). A property-preserving encryption scheme Π =
(
Gen, Enc,

Dec
)
for plaintext spaceM and a binary property P : M×M → {0, 1} consists of the following four

(possibly probabilistic) polynomial-time algorithms:

K ← Gen(1λ) is a probabilistic algorithm that takes as input the security parameter λ and outputs a secret
keyK.

c← Enc(K,m) is a possibly probabilistic algorithm that takes as the secret keyK and a plaintextm ∈M
and outputs a ciphertext c.

m← Dec(K, c) is a deterministic algorithm that takes as input the secret key K and a ciphertext c and
outputs a plaintext m.

We require that the property is preserved after the encryption, that is, for all messages m1,m2 ∈ M and
all secret keysK output by Gen it holds that P (m1,m2) = P (Enc(K,m1),Enc(K,m2)).

The practical advantage of property-preserving encryption is natural, namely, it is easy to integrate such
encryption schemes into existing databases. However, the security consequences are debatable and heavily
depends on the underlying plaintext distribution to be stored in such encrypted database as we will see in
the following Section 3.2.3.

3.2.1 Deterministic Encryption

Obviously, for deterministic encryption and adversary can win the IND-CPA experiment as stated in Defini-
tion 2. Specifically, each time the same plaintextm is input to the encryption algorithm the same ciphertext
c is output and further the adversary has access to an encryption oracle with no restrictions. Thus, the
adversary can submit both challenge messages to the encryption oracle even before the challenge submis-
sion and learn the corresponding (deterministic) ciphertexts making it trivial to win the experiment. This
determinism is even worse for the asymmetric encryption setting, where no encryption oracle is required
since everyone (including the adversary) is assumed to know the public encryption key. Bellare et al. in-
vestigated deterministic encryption in the asymmetric encryption setting and the formal security notions
thereof [14]. The resulting security notation is indeed based on the idea to limit the access to the public
encryption key. More specifically, the security experiment contains two stages between separate adversaries.
The first adversary does not gain access to the encryption key and is asked to choose a sequence of challenge

17

3 Related Work

messages together with some side information thereof. The resulting challenge sequence is then submitted
to a second adversary that has access to the encryption key, with the task to extract and output the side
information. Boldyreva et al. proposed the first asymmetric encryption scheme without a random oracle [23]
and Bellare et al. extended the security definition with variants thereof [15]. The construction of symmetric
encryptions schemes that output deterministic ciphertexts can be achieved quite natural and are appropriate
for the cases of encrypted databases. In more details, blockciphers are deterministic by definition and can be
randomized by specific modes of operation based on additional randomized initialization vectors. Hence,
either choosing the deterministic electronic codebook mode (ECB) mode or fixing the initialization vector
results in a deterministic symmetric encryption scheme as also proposed for CryptDB [123].

3.2.2 Order-Preserving Encryption

While exact keyword search and grouping is compatible with deterministic encryption, sorting and range
queries can be executed over ciphertexts that are output by order-preserving encryption (OPE) as introduced
by Agrawal et al. [5]. Compared to the construction proposed by Hacigümüs the following construction
by Agrawal et al. yields no false results. In the work by Agrawal et al., the security properties of their
construction is only analyzed for a fixed plaintext distribution; however, the attacker’s advantage heavily
depends on the plaintext distribution and the work lacks a theoretical rigorous security analysis. Boldyreva
et al. [21] have introduced two thorough security definitions for OPE, that is, indistinguishability under
ordered chosen-plaintext attack (IND-OCPA) and the weaker definition of pseudorandom order-preserving
function against chosen-ciphertext (POPF-CCA) attack. They proved that IND-OCPA security can only
be achieved by an algorithm with ciphertext spaces that are exponentially large (in the plaintext space)
or requiring additional client state. Further, they have succeeded in constructing a scheme that achieves
POPF-CCA security. This construction is the first OPE scheme that only requires a secret key to be stored
on the client side. In their subsequent work [22], Boldyreva et al. have stated that a random order-preserving
function leaks the high-order bits of the plaintext.
Popa et al. [122] proposed the first construction that achieves IND-OCPA but requires a state with storage

size linear in the number of distinct plaintexts. This state is stored on a dedicated OPE server and this state
is then retrieved in an interactive multi-round protocol. Further, this state is mutable hence the encryption
of novel values might trigger an updating process. Kerschbaum and Schröpfer improved the construction
by Popa et al. eliminating the necessity of a dedicated OPE server but also improve the construction such
that the probability of an event requiring the updating process is negligible [91].
The general idea of OPE is that the ordering relation on plaintexts is preserved for ciphertexts, e.g. given

x, y with x ≤ y then EncOPE(x) ≤ EncOPE(y). Specifically, the identical function ≤ can be evaluated on
plaintexts and on ciphertexts always yielding the same result. A generalization of OPE is given with order-
revealing encryption (ORE); again the ordering information can be extracted from two ciphertexts output
by ORE but a publicly known function f has to be evaluated with the ciphertexts as input [27, 44, 97]. As
a result, the integration overhead of such order-revealing encryption schemes into existing database system
increases, e.g. the ≤ operator must be rewritten. Nevertheless, index structures for ORE encrypted data can
be generated by the database system after the initial upload since the special function f can be evaluated
publicly by any party. As a consequence, the information leakage of ORE is the same as the information
leakage of OPE and any party – including an adversary – can extract the order of all outsourced ciphertext4.
Thus, in the remainder of the chapter whenever we discuss the information leakage of property-preserving
encryption we implicitly address property-revealing encryption as well.
4 This information leakage renders OPE and ORE encryption insecure in the asymmetric key setting. Particularly, assuming a public
key algorithm outputting a valid order-revealing ciphertext, an adversary can decrypt any value with computation effort that is
logarithmic in the plaintext domain size by running a binary search

18

3.2 Property-Preserving Encryption

3.2.3 Attacks on Property-Preserving Encryption

As discussed in the previous sections it is intended by design of PPE that information about the plaintext
values can be extracted from the ciphertexts. The practical consequences of this information leakage,
however, are not clear and heavily depend on the side knowledge of an adversary and the distribution of the
plaintext values. For deterministic encryption this weakness has been known and exploited for centuries5.
For example, a mono-alphabetic substitution cipher applied on each character encrypting natural language is
attackable with simple frequency analysis assuming the language and its character distribution as auxiliary
information known by an adversary. Even more information than just the frequency of each ciphertext is
extractable for ciphertexts output by deterministic order-preserving encryption, hence the question regarding
the practical security provided by such encryption scheme is quite natural.
With the growing popularity of PPE based on the publication of CryptDB, this question has been examined

by the academic community. A first practical implementation demonstrating successful attacks has been
presented by Naveed et al. [115]. They proposed two kinds of attacks on order-preserving encryption,
namely the sorting attack for targets that contain the most part of the message space in encrypted form, and
the cumulative attack that combines ordering information with frequency information. The sorting attack is
particularly powerful against values drawn from a small plaintext domain. Using combinations of sorting
attacks and cumulative attacks Naveed et al. were able to empirically recover more than 80% of the patient
records for 95% of encrypted databases containing electronic medical records encrypted with deterministic
OPE.
In order to mitigate these kind of attacks, Kerschbaum proposed a stateful but frequency-hiding order

preserving encryption scheme that does not only fulfill the IND-OCPA security but the strictly stronger se-
curity notion indistinguishability under frequency-analyzing ordered chosen plaintext attacks [89]. Further,
Kerschbaum proved negligible probability for the rebalancing operation of the client’s state (also inducing a
re-encryption) assuming a database with a huge number of data queries but moderate number of data inserts.
Partial order-preserving encryption (POPE) is an alternative scheme fulfilling this strong security notion
utilizing a trusted comparison oracle and has been published recently by Roche et al. [128]. In contrast to
Kerschbaum’s scheme, the assumption for the underlying database operations is orthogonal for POPE, that
is, Roche et al. assume a huge number of data inserts but moderate number of data queries.
Another series of practical attacks against (not only deterministic) order-preserving encrypted values

has been published recently by Grubbs et al. [72]. Particularly, the bucket attack is the first attempt of
exploiting only the ordering characteristics without the need of frequency information, hence it is applicable
on randomized order-preserving encryption. In Section 8.4.2 we elaborate on the bucketing attack andmount
it against our instantiation of frequency-hiding order preserving encryption used for encrypted substring
queries.
Lacharité et al. proposed another line of attacks that do not require auxiliary data [96]. They assume

a dense dataset (i.e. each value taken from the domain is encrypted at least once) and uniform queries
leaking the access pattern. Further improvements are presented given additional rank leakage for each range
query as induced by all (frequency hiding) order-preserving encryption schemes. Based on this information
leakage Lacharité et al. have stated algorithms that are able reconstruct all plaintexts afterN logN +O(N)
uniformly distributed queries where N is the domain size.

5 Queen Mary of Scots was sentenced to death in 1587 based on deterministically encrypted letters that have been cracked.

19

3 Related Work

3.3 Searchable Encryption

All successful attacks on property-preserving encryption exploit the fact that the complete ciphertext col-
lection leaks the relation of each ciphertext to all other ciphertexts contained in the collection. Especially,
this information is leaked directly after the initial encryption (and outsourcing) step and enables the server
to construct advanced data structures to accelerate the processing time of queries that might be stated in the
future.
Hiding the relation between multiple ciphertexts after the initial encryption step by semantically secure

encryption but unveiling information only if queried has been proposed in the preliminary work by Song
et al. [137]. Specifically, with their work on SSE they investigated queries for exact keyword search. SSE
enables the client with access to the master key to create a search token for a keyword to be queried. Given
this search token to the party holding the collection of ciphertexts output by SSE, each ciphertext can be
compared with the search token unveiling if it matches the keyword or if it does not. More formally, a SSE
scheme can be described as stated in the following definition.

Definition 9 (Searchable Symmetric Encryption Scheme as proposed by Song [137]). A secure searchable
symmetric encryption scheme SSE is a tuple of four (possibly probabilistic) polynomial-time algorithms:

K ← SSE-Setup(1λ) is a probabilistic algorithm that takes as input a security parameter λ and outputs a
master keyK.

cm ← SSE-Enc(K,m) is a probabilistic algorithm that takes as input a master key K and a plaintext m.
It outputs a randomized ciphertext cm.

tw ← SSE-Token(K,w) is a deterministic algorithm that takes as input a master keyK and a keyword w.
It outputs a (deterministic) search token tw.

{0, 1} ← SSE-Match(cm, tw) is a deterministic algorithm that takes as input a ciphertext cm and a search
token tw. It returns 1 if w = m with cm ← SSE-Enc(K,m) and tw ← SSE-Token(K,w) generated
with the same master keyK. Otherwise, this algorithm returns 0.

Motivated by encrypted emails providing search functionality, a scheme for public-key encryption with
keyword search (PEKS) has been presented by Boneh et al. [24]. Particularly, any party knowing the public
key can encrypt values, while only the holder of the master key can generate search tokens.
Note that both in the symmetric and the asymmetric setting each ciphertext must be tested individually,

hence this approach results in linear search time scanning a encrypted ciphertext collection. As discussed in
Section 2.3 we assume linear runtime to be too inefficient for big data scenarios. Thus, indexing techniques
for encrypted data resulting in huge search time speed-up are vital for such scenarios. Goh has published
the first scheme using indexing techniques for searchable encryption based on obfuscated Bloom filters for
each indexed document [64]. With constant lookup time per Bloom filter the search time is reduced from
linear in the number of indexed keywords to a search time that is linear in the number of indexed documents.
Due to the nature of Bloom filters, however, this approach might raise false positives that must be corrected
on the client side. Further, Goh stated the first formal security definition for secure search indexes known as
semantic security against adaptive chosen keyword attacks (IND-CKA).
Chang and Mitzenmacher have proposed a scheme not yielding false positives founded on the idea of one

prebuilt dictionary per document [41]. Each dictionary is encoded as bit-vectors and blinded before it is
outsourced. The search token generated by the client enables the server to lift the blinded bit corresponding
to the queried keyword. In addition, they proposed a stronger security definition compared to Goh’s with
the goal to protect the document size and provide security for the search words.

20

3.4 General Computation on Encrypted Data

In the fundamental work by Curtmola et al. [49], they have proposed the first construction with optimal
search time based on inverted indexes per keyword. Further, they highlighted a flaw in the security definition
stated by Chang and Mitzenmacher and gave an alternative simulation-based definition for security. They
proved that their simulation-based definition is at least as strong as a security definition based on semantic
security with the result simulation-based security is still widely used for SSE. Refer to Section 4.1.1 for a
thorough discussion of this definition.
Recall that all these enhanced constructions for keyword search over encrypted documents consider a

large document collection during the encryption step. This complete overview of all values to be encrypted
provides the possibility to construct an encrypted search index during the initial encryption hence achieving
faster execution time (compared to a linear scan of all encrypted words). Chase and Kamara summarized
such approaches in a generalization known as structured encryption with controlled disclosure [42]. As an
application for this generalization they stated an encryption scheme for graphs providing neighbor queries
on encrypted graphs.
The design of algorithms for structured encryption with controlled disclosure becomes even more chal-

lenging for dynamic data collections. Particularly, in the case of static datasets the content of the complete
data collection can be analyzed during the initial encryption step and is immutable after this analysis. In the
case of dynamic datasets, however, novel content might be added requiring an adjustment of the encrypted
index structure raising novel challenges, e.g. adding a new keyword to a prebuilt inverted index might easily
leak the fact that a new keyword has been added. Kamara et al. proposed the first dynamic SSE scheme
based on inverted indexes with provable security in the simulation-based framework [84]. Improvements for
dynamic SSE for exact keyword search have been proposed, such as, e.g. an approach enabling parallelization
of the search process [83] or a construction suitable for file hosting systems such as DropBox [116].
Extensions for searchable symmetric encryption providing additional functionality have also been pub-

lished, such as, e.g. complex queries containing conjunctive [69] and disjunctive [29] keyword combinations.
Further results achieve significant efficiency gains for these complex queries [38, 39] and approaches for
fuzzy search have been proposed [55]. For a comprehensive overview of all the different solutions for
searchable encryption we refer to the survey published by Bösch et al. [30].
Although searchable encryption has a clear security advantage compared to deterministic encryption,

Islam et al. demonstrate an attack based on the leaked access patterns [82]. Their attack relies on the
knowledge of the distribution of specific keywords and works for a great number of ciphertexts given the
corresponding search tokens. Another approach has been presented by Zhang et al. [150] based on file-
injection attacks. Note that this assumption is always valid for public-key encryption with keyword search,
but we deploy searchable symmetric encryption and assume the client to be trustworthy. Further, in both
scenarios the adversary’s goal is to learn the underlying keywords for a given search tokens. This extracted
knowledge in combination with the access pattern leaks some information of the content of the encrypted
documents, however, all non-matching ciphertexts remain semantically secure.

3.4 General Computation on Encrypted Data

Tools for computing on encrypted data have been studied by a great number of different lines ofwork resulting
in varying solutions. In the following subsections we given an overview on function encryption and (fully)
homomorphic encryption that might be suitable for encrypted databases and sketch their differences.

21

3 Related Work

3.4.1 Functional Encryption

Functional encryption (FE) is an asymmetric encryption scheme with the possibility of function evaluation
over ciphertexts output by the encryption algorithm [28, 129]. Particularly, anyone knowing the public key
pk can encrypt value x and retrieve the corresponding ciphertext c ← EncFE(pk, x). The holder of the
corresponding secret master key can generate a function key kf for a specific function f . Any party with
access to this function key can evaluate function f over ciphertext c, i.e. DecFE

(
kf ,EncFE (pk, x)

)
= f(x).

Note that the function key is restricted to the function f it has been generated for and most FE schemes are
restricted to functions with special characteristics. Functional encryption schemes are distinguished between
schemes that are function-hiding, i.e. the function f cannot be extracted given a corresponding function key
kf , and schemes that are not function-hiding. Thus, PEKS is one special case of function-hiding FE where
the function key is generated for a specified keyword to be searched for. Other functions often addressed by
FE are tests for orthogonality of encrypted vectors and inner-products of encrypted vectors [6, 98], functions
considering the identity [25, 129], and functions considering supplement attributes [80, 100]. Recently,
theoretical approaches have been proposed enabling function key generation for arbitrary functions encoded
as binary circuits [60, 66].

3.4.2 Homomorphic Encryption

Although the idea of homomorphic encryption has been formulated four decades ago [127], the first
instantiation of a FHE encryption scheme has been proposed by Gentry ten years ago [61]. In theory, FHE
enables the encryption of data while preserving the possibility to evaluate any function over encrypted data.
In contrast to functional encryption, fully homomorphic encryption is not limited to a specific function key
that is generated by the holder of the secret key, but any party can evaluate any function. Especially for
non-cryptographers this flexibility has become folklore and FHE is considered as the one solution suitable for
use cases requiring computation over encrypted data. The function to be evaluated is typically represented
by a boolean circuit with depth that is polynomial in the input length; the individual gates are realized by
multiplication or addition over a finite field, hence the encrypted input must be encoded as elements in the
same finite field. Following Gentry’s scheme [61], a lot of alternative schemes have been proposed amongst
others [32, 33, 135, 142]. Nevertheless, FHE is too slow for practical adoption enabling the evaluation of
arbitrary functions over encrypted data. One example for the required overhead induced by FHE is given by
the evaluation of an AES circuit on encrypted data [62, 63], where the AES-encryption operation took 245
seconds and required 3GB of memory.

Recall that FHE provides full flexibility in the supported function because the number of multiplications
and additions are only limited to be polynomial in the input length. Decreasing this flexibility with a stricter
limitation in the number of, e.g. supported multiplication, yields a construction that is known as somewhat
homomorphic encryption (SWHE). One prominent proposal for SWHE has been given by Boneh, Goh and
Nissim [26] allowing exactly one multiplication over encrypted data and enabling the evaluation of boolean
circuits in 2-DNF6. Most approaches for FHE are founded on SWHE in combination with a bootstrapping
step. From a high-level perspective, one can imagine this bootstrapping step as an re-encryption step on
encrypted data before all multiplications are consumed resulting in a refreshed ciphertext supporting a larger
number of multiplications.
Further decrease of the flexibility results in partially homomorphic encryption (PHE), where only one

specific operation can be evaluated on encrypted data. There exist different approaches for varying opera-

6 DNF stands for disjunctive normal form disjunction, a logical formula that consists of disjunctions of conjunctive clauses. In case of
a 2-DNF, each conjunctive clause contains at most 2 literals.

22

3.5 Additional Approaches for Outsourced Databases

tions, such as, e.g. addition as proposed by Paillier [118] or multiplication as proposed by El Gamal [54], or
bitwise XOR as proposed by Goldwasser and Micali [67].
Note that all homomorphic encryption schemes provide semantic security, particularly, even the result of

the function evaluated is semantically secure. This result privacy is another difference between fully homo-
morphic encryption and functional encryption. As implication, even though FHE might be flexible enough
to implement encrypted databases in theory, the practical consequences of this semantic security render
sublinear runtime impossible. That is, the information leakage of functional encryption and specifically
searchable encryption in form of the access patterns can be utilized for runtime improvements that cannot
be achieved by FHE due to its strict security properties.

3.5 Additional Approaches for Outsourced Databases

In this section we describe approaches for outsourcing sensitive data that do not fully fit into our model as
outlined in Section 2.4. In more details, we briefly discuss solutions for data confidentiality that require
special trusted hardware in Section 3.5.1 and multiple servers in Section 3.5.2. In Section 3.5.3 we review
solutions that strive to protect the query and the corresponding result. Finally, we give an overview for data
anonymization in Section 3.5.4

3.5.1 Hardware-Based Approaches

The idea of hardware-based approaches for securing computation especially in hostile environments has been
discussed for over 20 years [136]. Intel’s recent release of Software Guard Extension (SGX) [48, 110] has
amplified the popularity of hardware based protection mechanisms in the security community [9, 35, 132].
The implementation of cryptographic primitives aided by SGX has been proposed recently, e.g. functional
encryption with SGX [57] or oblivious RAM with SGX [131]. The integration of SGX into nearly each
processor available on the market and the small computational overhead compared to solutions solely based
on cryptographic assumptions promise solutions suitable for a variety of use cases. Especially the small
computational overhead enables SGX to address big data scenarios, thus it has been proposed to implement
specific queries such as ranges over data protected by SGX [34] and even complete database systems
protected by trusted hardware (not explicitly designed for SGX) have been proposed [7, 11]. However, the
current version of Intel’s SGX only supports 128 MB memory (which is shared between the program code
and the payload), hence current solutions for big data utilizing SGX rely on expensive context switches.
Further, recent attack vectors on hardware level such as, e.g. Rowhammer [146] or Meltdown [104] or
Specte [94], demonstrate the difficulty of hardware design especially with respect to its security properties.

3.5.2 Solutions with Multiple Servers

Alternative construction for privacy-preserving databases have been proposed by Aggarwal et al. based on a
distributed architecture deployed on two servers [3]. In their security model each service provider operating
one dedicated server might be honest-but-curious but they do not collaborate. Aggarwal et al. discuss
different approaches how such fragmentation could be implemented depending on the information to be
protected. On the one hand, they propose information-theoretical security as achieved by the one-time pad
encryption and distribute the random key and the resulting ciphertext on different servers. On the other
hand, they propose a separation of different columns protection the confidentiality of the relation between
specific columns.

23

3 Related Work

Evolving the idea of Aggarwal et al., Ciriani et al. [45] proposed a fragmentation of databases on multiple
servers, where parts of the fragmentation are stored in plaintext and the remainder of the complete database
is stored in encrypted form on each server. Varying fragments for different queries, that is, varying column
combinations are kept in plaintext on different servers; however, for all servers the corresponding decryption
key remains on the client and thus the complete plaintext database can only be retrieved by the client. In
contrast to the security model by Aggarwal et al. even in the case of a malicious collaboration of servers,
the intersection of columns that are only stored encrypted cannot be retrieved. Depending on the query to
be executed, a different fragment might be chosen to evaluate parts of the query on the plaintext columns
whereas the remaining query parts are then executed on the client side over plaintext data retrieved there.
MimoSecco combines the approach of data fragmentation and secure hardware [2]. In more details,

Achenbach et al. propose a database scheme that separates the data and the search index. Each record is
completely encrypted before it is stored on the data server; further, an inverted index is built on plaintext
data, however, the list of actual occurrences of this plaintext value is encrypted hiding the actual relation. A
query is then first executed over the inverted index and based on the corresponding result the actual result is
retrieved. This is achieved using the secure hardware decrypting the result returned by the index server and
querying the matching payload from the data server.
Another approach using multiple servers for encrypted databases has been proposed by Bater et al. [12]

for private data networks (PDN). In this scenario, each member of the PDN holds a private database that
is not unveiled to any other peer of the PDN nor the query writer. The query writer submits queries to be
executed on each private database and is interested in a merged result. Bater et al. proposed a solution based
on secure multiparty computation (SMC) with varying optimization for each query type.
In summary, all approaches founded on varying number of servers increase the operational costs depending

on the number of required servers.

3.5.3 Hiding the Access Pattern

As discussed in Section 3.4.1, FE leaks the result of the evaluated function by design. The same is true
for searchable encryption, where the result set of all files (or rows in the case of databases) matching the
queried search term. Private information retrieval (PIR) [95] and oblivious RAM (ORAM) [65] are two
cryptographic tools that are designed to hide the access pattern. PIR hides the access pattern for each
database access, however, PIR does not require the confidentiality of the content stored in the database.
That is, the data might be assumed to be public but the access pattern of a client accessing this data is
protected. Theoretically, PIR can be realized by homomorphic encryption evaluated over the complete
database, selecting the data record queried by the user; in fact, Boneh, Goh and Nissim proposed the
implementation of PIR as one application for their SWHE scheme [26].
In contrast to PIR, the construction of oblivious RAM implements a read-write memory and takes a

sequence of multiple data accesses into consideration, providing the option to amortize the communication
cost. From a high-level perspective, data records are organized in blocks and every block accessed is shuffled
afterwards, that is, it is deleted at one position and rewritten at another position eliminating the correlation
of the accessed blocks. Some constructions assume a very simple server that only supports data read and
write functionality, there the shuffling step is amortized over a sequence of data access operations using
a stash that remains on the client side [138] achieving poly-logarithmic communication overhead. Other
ORAM constructions assume a more powerful server allowing computation on encrypted data and they
achieve constant communication overhead [126]. Recent ideas haven been published combining ORAM
and PIR [1, 109].

24

3.5 Additional Approaches for Outsourced Databases

However, Naveed [114] pointed out that the combination of ORAM and SSE in order to eliminate the
access pattern leakage is no practical option.

3.5.4 Data Anonymization

Compared to cryptographic solutions, data anonymization is an orthogonal tool providing protection of
individual sensitive records contained in a database to be outsourced. The idea to disclose an anonymized
version of a database containing sensitive information to third parties that can analyze the data by themselves
has been used widely in practice. Commonly, personal identifiers are either removed or replaced with
randomly looking data such as, e.g. a hashed value of the sensitive information. However, such anonymization
technique is not sufficient as demonstrated by varying attacks [113, 140] and thus data anonymization resulted
in its own academic research branch.
Generalization has been proposed as one approach achieving data anonymization, firstly defined by

Samarati and Sweeney [130] in their work on k-anonymity. The basic idea of k-anonymity is to generalize
sensitive attributes such that these attributes can be collected in buckets until different attribute buckets
contain at least k records. Further improvements have been formulated with l-diversity [107] and t-
closeness [101] addressing different attacks of the previous generalization approach.
Differential Privacy is an alternative to generalization technique that has been proposed by Dwork [52].

From a high-level perspective, this approach is based on the idea to randomly add Laplacian noise to
each individual data record while the noise is canceled out for an aggregation of multiple records. The
exponential mechanisms strives to address discrete attribute domains [111] and (ε, δ)-differential privacy
has been proposed weakening the privacy guarantees to achieve more utility [53].
However, all anonymization approaches for databases trade privacy for accuracy of the query result (e.g. in

case of differential privacy this is known as utility), that is, the result set is not complete or it might contain
false positives or yield results that are not accurate. Although work on differential privacy is currently very
popular, we omit further discussions since we focus on solutions yielding the correct result set after query
execution in this thesis.

25

4 Methodology

In this chapter we describe themethodologywe follow for each construction in order to evaluate our protocols
enabling privacy-preserving query processing. We address four different types of queries in the following
chapters, namely, filtering queries based on exact matching patterns in Chapter 5, database join queries in
Chapter 6, filtering queries based on range matching in Chapter 7 and substring filters in Chapter 8. The
approach for each type of query is evaluated with respect to two different dimensions, namely security on the
one hand, and performance on the other hand. Depending on the type of query supported by the considered
protocol and the specific design goals we apply different approaches for the evaluation. A description of
these different approaches and the motivation thereof are discussed in this chapter. A preliminary version
of this chapter has been published in the proceedings of the first SAP Security Search Seminar 2018.

4.1 Security Assessment Methodology

We follow different paths to assess the security properties of the solutions depending on the functionality
of the query transformed into a privacy-preserving counterpart. More particular, for each construction
providing basic functionalities such as exact pattern matching or range queries where we claim advanced
security properties we prove this claim in a formal framework discussed in the following Section 4.1.1. In
contrast, the implementation of secure substring search in Chapter 8, utilizes such fundamental queries but
focus on faster processing time. The acceleration of the processing time exploits the special structure of
natural (e.g. English written) text also exploitable by a potential attacker, hence we assess the security of this
construction in practical ways, that is, the best known attacks applicable to this construction are run against
our protocol. In the following section, we motivate and describe the standard framework for formal security
proofs for searchable symmetric encryption (SSE) as firstly stated in details by Curtmola et al. [49] in 2006
and further analyzed by Chase and Kamara later [42].

4.1.1 Framework for Formal Security Proofs for SSE

Compared to general symmetric encryption schemes as reviewed in Section 2.2.1 where the security goal
is to hide all information (except the length) of the underlying plaintext, the goal of searchable symmetric
encryption is somewhat contradictory to this security definition. Specifically, one design goal of schemes
support privacy-preserving query processing as sketched in Section 2.4 and specifically searchable symmetric
encryption as elaborated in Section 3.3 is to unveil the result set matching the queried search token making
some leakage of the underlying plaintext not only inevitable but worthwhile. As a direct consequence,
even the weakest widely accepted security definition for general symmetric encryption schemes, that is,
indistinguishability under chose plaintext attacks (IND-CPA security as given in Definition 3) cannot directly
be fulfilled for any SSE scheme where an attacker can generate search tokens offered by a corresponding
token oracle.
If one wants to follow the security definition of indistinguishability, a possibility solving this contradiction

is to restrict the oracle queries in a way that any adversary cannot use the oracle answers to distinguish
the challenges (consisting of document collections as discussed in Section 2.4) submitted by the attacker.

27

4 Methodology

This idea has first been published by Goh [64] under the term “Semantic Security Against Adaptive
Chosen Keyword Attack (IND-CKA)”. An alternative security framework has been published by Chang
and Mitzenmacher [41] for their interactive protocol they proposed for exact pattern matching on encrypted
documents. They have followed the fundamental notion of simulation based proofs frequently used for
secure multiparty computation [147, 148], zero knowledge proofs [68] and semantic security [67] as revised
by Lindell in his comprehensive tutorial recently [103]. Curtmola et al. [49] have analyzed the relation of
both security definitions given by Goh and by Chang and Mitzenmacher. Further, their work has resulted in
a de facto standard security framework for analyzing the security properties offered by searchable symmetric
encryption schemes and has been used in multiple constructions. We follow their approach in this thesis,
hence we discuss and motivate simulated-based proofs in the context of searchable encryption in more
details in the following.
From a high-level perspective, the idea of simulation based proofs is as follows: Given a protocol Π

consisting of PPT algorithms (A1, . . . , An) with sensitive input, one defines an experiment between a
challenger C and a distinguisher D, often referred to as adversary in the literature. Therefore we use the
terms distinguisher and adversary interchangeably in this discussion. In the initialization step the challenger
C samples uniformly at random between two possible versions of the protocol Π the distinguisher can
interact with for the rest of the experiment: one version is called the real protocol denoted as RealΠ and
the other version is called the ideal protocol denoted as IdealΠ. In the real protocol, the challenger follows
directly the specific implementation given for Π. That is, for any input x that is output by D for algorithms
Ai ∈ Π, the challenger executes y ← Ai(x) and forwards the corresponding result y to D. In contrast, in
the ideal protocol the challenger can only access a simulator S = (S1, . . . ,Sn) instead of the actual protocol
implementation (A1, . . . , An). This simulator S has no access to the actual input x output by D but only
to “some information” about x. This information about x is modeled by a leakage function Li(x) input
to simulator Si. Si (Li (x)) simulates Ai given the restricted information Li (x) and yields a simulated
output ỹ. The overall idea is depicted in Figure 4.1. The security proof consists of a sound construction of

Challenger CDistinguisher D

IdealΠ

RealΠ

q

y or ỹ

L(q)

ỹ

q

y

Figure 4.1: Concept of simulation-based security proofs. Note that the choice between IdealΠ and RealΠ is made during the
initialization and cannot be changed for the rest of this experiment execution.

simulator S for carefully quantified leakage functions L1, . . . ,Ln such that no distinguisher D given either
the real output y or the simulated output ỹ can decide which version of the protocol has been used by the
challenger (except with negligible probability).
Specifically for the simulation based proofs for protocols for privacy-preserving query processing

Π = (Gen,Enc,QueryToken,Query) as given in Definition 7 in Section 2.4, the leakage functions must
individually be defined for each algorithm that requires the master key K as input. The simulation of the

28

4.1 Security Assessment Methodology

encryption algorithm Enc has L1(D) as input, and the simulation for token generation QueryToken has
L2(q) as input. Note that the information quantified by L1 and L2 is an upper bound of the encrypted
database and the query token respectively. The line of arguments is as follows: The challenger has either
access to the real algorithm with real input x based on cryptographic primitives as reviewed in Section 2.2,
e.g., pseudorandom functions, while the constructed simulator Si has only restricted access modeled by
Li(x) that uses a randomly sampled function. Assuming a distinguisher D that can distinguish between the
real output y and the simulated output ỹ with non-negligible probability, we use this distinguisher to attack
the underlying cryptographic primitive.
This approach – known as reduction argument – is a common tool in theoretical computer science

and is often used for security proofs of cryptographic algorithms and protocols. The construction of
computationally secure algorithms or protocols is based on a problem that is assumed to be computationally
hard. That is, no PPT algorithm can solve such a problem with more than negligible probability. This
problem is then utilized to design a novel computationally secure algorithm, e.g., ciphertexts output by an
encryption algorithms are instances of a computationally hard problem. Security is then defined relative to
this problem and proved by a contradiction argument: given an attacker who can successfully (with more
than negligible probability) attack the cryptographic algorithm can be used to construct a computationally
efficient solver for the problem that is assumed to be computationally hard. Given a problem instance of this
problem this instance must be transformed into a ciphertext of the encryption scheme that is “attackable”
and the output of the attacker must then be transformed into a solution of the original problem instance. The
concept of security proofs by reduction arguments is depicted in Figure 4.2

Problem Solver

Problem Trans-
former T

Reverse Problem
Transformer
T −1

Adversary

Problem instance

Problem solution

C

Reply to C

Figure 4.2: Concept of cryptographic security proofs by reduction argument.

In the case of protocols for privacy-preserving query processing, the difficulty of such simulator con-
struction is to generate the encrypted database index C̃ in a way that it is consistent with all simulated
search tokens τ̃ . There exist two different kind of adversaries in the literature, namely the selective (or
non-adaptive) adversary and the adaptive adversary. The selective adversary commits in the beginning of
the security experiment to the complete batch of queries to be simulated as formalized in Definition 10.

29

4 Methodology

Definition 10 (Selective Leakage Security). Let Π = (Gen,Enc,QueryToken,Query) be a privacy-
preserving query processing protocol. Consider the following experiments with stateful distinguisher
D, stateful simulator S = (S1,S2) and leakage functions (L1,L2).

RealΠ : The challenger runs Gen(1λ) to get a master key K. Next, D outputs a dataset D and a query
batch q consisting of a polynomial number of database queries. The challenger returns a ciphertext
C ← Enc(K,D) and a batch of query tokens τq consisting of tokens τi ← QueryToken(K, qi) for
each query qi ∈ q. The tuple (C, τq) is returned to D. Finally, D returns a bit b that is output by the
experiment.

IdealΠ : The simulator sets up its internal environment. Next, D outputs a dataset D and a query batch q
consisting of a polynomial number of database queries. The leakage L = (L1(D),L2(q)) is given to
the simulator S. This simulator computes a simulated ciphertext C̃← S1(L) and a simulated batch
of query tokens τ̃q ← S2(L) consisting of simulated tokens τ̃qi corresponding to query qi ∈ q. The
tuple

(
C̃, τ̃q

)
is returned to D. Finally, D returns a bit b that is output by the experiment.

In contrast, the adaptive adversary gets each intermediate result and can adjust all future queries as
formalized in Definition 11. This ability of adjusting the queries increases the difficulty in creating a
consistent simulator hence is harder to achieve.

Definition 11 (Adaptive Leakage Security). Let Π = (Gen,Enc,QueryToken,Query) be a privacy-
preserving query processing protocol. Consider the following experiments with stateful distinguisher
D, stateful simulator S = (S1,S2) and leakage functions (L1,L2).

RealΠ : The challenger runs Gen(1λ) to get a master key K. Next, D outputs a dataset D and receives
C ← Enc(K,D). The distinguisher D makes a polynomial number of adaptive queries and for
each query qi D receives τqi ← QueryToken(K, qi). Finally, D returns a bit b that is output by the
experiment.

IdealΠ : The simulator sets up its internal environment. Next, D outputs a dataset D, where the leakage
L1(D) is given to the simulator and the simulated ciphertext C̃← S1(L1(D)) is returned to D. The
distinguisher D makes a polynomial number of adaptive queries. For each query qi the simulator
is given the leakage L2(qi) and return the appropriate query token τ̃qi

← S2(L2(qi)). Finally, D
returns a bit b that is output by the experiment.

We say the protocol Π for privacy-preserving query processing is (L1,L2)-secure against selective
resp. adaptive chosen-keyword attacks if for all probabilistic polynomial-time algorithms D there exists a
probabilistic polynomial-time simulator S so that advantage of D defined as∣∣∣Pr

[
RealΠ = 1

]
− Pr

[
IdealΠ = 1

]∣∣∣
is negligible in λ.
This definition can be adjusted for SSE schemes supporting dynamic databases with additional algorithms

providing functionality of add token and delete token generation. In this case, the add tokens and delete
tokens have to be generated by the simulator with corresponding additional leakage functions that must be
consistent as well.

4.1.2 Practical Security Evaluation

Although the theoretical framework discussed in the previous section offers a tool to quantify an upper
bound of information leakage for specific protocols the practical consequences of this leakage is not clear.

30

4.2 Performance Assessment Methodology

Depending on the sensitivity of the actual data to be outsourced, the data owner might be willing to accept
the induced information leakage or even increase the leakage in order to trade security for better performance
or additional functionality for encrypted data. Further, the practical implications heavily depend on the type
and entropy of data to be outsourced.
The constructions for exact patternmatching presented in Chapter 5, for secure joins presented in Chapter 6

and secure range queries presented in Chapter 7 achieve novel trade offs between security and performance
for fundamental functionalities that have already been supported by property-preserving encryption. Since
we claim increased security for these constructions compared to property-preserving encryption we prove
it in the simulation-based proof framework. In contrast, the construction for privacy-preserving substring
search presented in Chapter 8 is based on the functionality of secure range queries. Assuming a natural
text of a spoken language (e.g. English) to be outsourced, the entropy of such data is well known, therefore
we examine the practical security consequences for this construction using property-preserving encryption
for additional search performance. That is, we have applied our construction and try to extract as much
information as possible applying the best known attacks on property-preserving encryption. We refer to
Chapter 8 for a thorough discussion and a comprehensive description of the actual attack.

4.2 Performance Assessment Methodology

The second dimension we evaluate our protocols is performance, hence we give a brief description of the
methodology for performance assessment in this section. While we focus on the running time of a protocol
this methodology could be extended to other key performance indicators such as memory consumption or
required network bandwidth. We assume running time of the protocol as the most important parameter
for acceptance of the proposed solution by the end user. Therefore we measure the time period between
creation of the search token until receiving the corresponding query result as the overall running time of one
protocol run corresponding to the time the end users submits the query until the result retrieval. Further,
we investigate this overall running time in more details and give micro benchmarks for critical operations,
e.g. query token generation, in order to identify bottle necks or distinguish between processing time on the
client’s device and the server environment. Specific details and particular considerations depend on each
construction individually and are discussed in the corresponding chapter.

4.2.1 Theoretical Runtime Analyses

In order to get an “awareness” about the magnitude of runtime performance, we analyze the costs of an
algorithm using the big O notation. Big O notation gives an upper bound for the asymptotic performance
of an algorithm, i.e. when the input reaches or exceeds a specific value and allows to classify algorithms
with respect to their runtime as already done in Section 2.1 for PPT algorithms. Formally, big O notation is
stated as follows [47]:

Definition 12 (Big O Notation). Let f : N→ R and g : N→ R. We say f(x) is in O(g(x)) if there exists
a constant c > 0 and a threshold n0 ∈ N such that f(n) ≤ c · g(n) for all n ∈ N with n > n0. We write
f(x) = O(g(x)) for a function f(x) in O(g(x)).

The big O notation is transitive by definition: given three functions f(x), g(x) and h(x) with f(x) is in
O(g(x)) and g(x) is in O(h(x)) it holds that f(x) is in O(h(x)). Further, the most important classes for
algorithms are enumerated in the following in ascending order with faster growing runtime: constant runtime
denoted as O(1), logarithmic runtime denoted as O(logn), linear runtime denoted as O(n), polynomial

31

4 Methodology

runtime denoted as O(nc) for a constant1 c ∈ N and exponential runtime denoted as O(cn) for a constant
c ∈ N. Any search index for fast query processing should decrease search complexity in way such that it
is smaller than linear in the database table size. Note that these classes express the worst case runtime for
an algorithm. While no input for the algorithm results in a runtime larger than this bound, there might be a
great amount of inputs that result in strictly lower runtime.
In this thesis we design systems that are queried repeatedly, therefore it is natural to ask for the runtime of

a sequence of queries. One could simply multiply the worst case runtime expressed in big O notation with
the number of queries. Given a protocol with only a low number of possible inputs with such worst case
runtime, however, this assessment would result in a too pessimistic (i.e. too high) runtime estimation, thus
we follow the approach of amortized analysis as introduced by Tarjan [141]. While amortized analysis does
not state explicit performance numbers for one specific query it gives a better understanding of the average
performance properties. We refer to the textbook by Cormen et al. for additional details [47].

4.2.2 Practical Runtime Evaluation

Big O notation and amortized analysis are vital tools for estimation of a program’s runtime as function
of the input size. Nevertheless, practical evaluation on real input data is still vital for testing the practical
feasibility of an approach and allows comprehensive comparison of different approaches for specific use
cases. Especially the impact of large constants are omitted in big O notation and neither are considered in
amortized runtime analysis as discussed in the previous section. As a consequence we have implemented
each construction in this thesis and evaluated it in a real-world environment, that is, wemodel a real database,
encrypt it using the proposed construction and ask for realistic privacy-preserving query sequences. This
practical evaluation is performed on a testbed corresponding “state-of-the-art” environment and is specified
in full details in each chapter.

1 With c = 1 we get linear runtime.

32

5 Exact Keyword Matching

In this chapter we present protocols for exact keyword queries on encrypted data. Such functionality enables
the database client to delegate exact keyword filtering to the untrusted database server. The DBMS on
this server is then able to filter for all encrypted values that match the keyword specified by the client. In
the following Section 5.1 we give an introduction, discuss the problem in more details and give a general
interface that offers the functionality for exact pattern matching on encrypted data with the option to add
and delete data entries securely. An overview of related work addressing this type of query is presented
in Section 5.2. In Section 5.3 we describe the abstract idea of our solution from a high-level perspective
and present a concrete construction. Based on this concrete construction a detailed evaluation is given in
Section 5.4 regarding both formal security and performance. Performance evaluation is done in two ways,
that is, theoretical runtime numbers are given together with practical benchmark results. A variation of this
construction is given in Section 5.5 trading communication overhead for additional client storage. Finally,
Section 5.6 provides a summary of this chapter. The content of this chapter has been published in joint work
with Florian Kerschbaum at CCS 2014:

• Hahn, Florian ; Kerschbaum, Florian: Searchable Encryption with Secure and Efficient Updates.
In: Proceedings of the Conference on Computer and Communications Security, 2014 (CCS)

5.1 Introduction

One functionality often required for database systems is the possibility of filtering data that matches exactly
a string or equals a value specified by the user during runtime. For example, assume a database containing
employees and their individual salary as sketched in Table 5.1 the client wishes to outsource in encrypted
form. Later, the client wishes to query the salary for one specific employee defined by the exactly stated

EmpID Name Salary
1 Harry 4000

2 Sally 7000

3 Harry 5000

4 George 3500

Table 5.1: Example of plain database table Emp

name, e.g. the corresponding SQL query retrieving Sally’s salary might be stated as given in Listing 5.1

SELECT * FROM Emp WHERE Name = ‘‘Sally’’

Listing 5.1: Example SQL query for exact keyword matching

yielding the result given in Table 5.2 on the client side. Previous solutions adapted in real-world prototypes
for encrypted databases realize this functionality based on deterministic encryption [123]. The query
transformation is then simply the deterministic encryption of the filtering attribute, that is, the constant to be

33

5 Exact Keyword Matching

EmpID Name Salary
2 Sally 7000

Table 5.2: Plaintext result after query execution for table Emp

searched for is replaced by its deterministic encryption, e.g.EncDet(Sally). However, as discussed previously
in Section 3.2 and its Subsection 3.2.3 the initial deterministically encrypted database is vulnerable to quite
simple attacks such as frequency analysis. The constructions presented in this chapter mitigate this attack
vector while providing the functionality of exact pattern matching. Particularly, the equality relation between
outsourced values is obfuscated by initial randomized encryption, and the search for a specified value is
enabled using an additional search token created by the client and released only if required, i.e. actually
queried by the client.
We aim for our practical searchable symmetric encryption (SSE) scheme to be efficient, dynamic and

secure. By efficiency we mean sublinear search time and this is achieved using an (inverted) index the server
constructs incrementally based on released information. A dynamic searchable encryption scheme provides
the client the ability to modify the database by adding new data or deleting indexed data. These privacy
preserving index updates raise major problems either performance wise or security wise (cf. Section 5.2 for
a detailed discussion of related work).
We present a dynamic searchable encryption scheme with secure and efficient updates. Even under

updates, our schemes leaks no more than what can be inferred from the search tokens. Our index size is
linear in the number of keywords, hence asymptotically optimal. While the time for the first initial search
of a specific keyword is linear in the number of indexed keywords, we show that it amortizes over multiple
searches and is hence practical.

5.1.1 Framework

We describe the general interface addressing the scenario introduced previously. Following the general
approach of symmetric searchable encryption we discuss our scheme based on files to be outsourced instead
of individual database records. We sketch the ideas how the application of encrypted files can be transferred
to the application of encrypted databases after introducing the notation.
We assume each file f having a unique file identifier ID(f), each file consists of words that is f =

(w1, . . . , wlen(f)) with wi ∈ {0, 1}∗. For a fileset f we denote len (f) as the number of individual files in
f. Given a keyword w we write fw as the subset of all files f containing w. In addition, the set of all file
identifiers pointing to files that contain this keyword w is denoted by Iw. More formally it is defined as
Iw = {ID(fi) | fi ∈ fw}.
In order to apply this approach on searchable database encryption, one replaces each file with one row

in a table, where the keyword of a file is the specific value for an attribute stored in one specific database
column; the complete set of all indexed files then corresponds to the complete database table. The result fw
for searching a keyword w in fileset f transferred to the application of encrypted databases then corresponds
to the result set D[q] for a database query q with specified search term w.
Compared to other dynamic searchable encryption schemes, the scheme presented in this work does not

offer a dedicated operation for initial outsourcing a set of files but starts with an empty search index γ. By
executing the Add algorithm, the service provider’s encrypted search index γ is updated by file specific add
tokens αf for each file f to be added. This add token αf is generated by the client calling AddToken. In
order to perform a search query for keyword w, the client generates a deterministic search token τw calling
SearchToken. This search token τw is handed to the service provider initiating the actual search operation

34

5.2 Related Work

on the server calling Search with input of the search index γ and τw. For simplicity of the exposition we
assume that all generated search tokens are given to the service provider, i.e. if a search token has been
created by the client it is also transferred to service provider and the service provider gains knowledge of
that deterministic search token. Finally, in order to delete a file f the client creates a delete token δf for file
f .

Definition 13 (Securely Updating Index-Based Searchable Encryption Scheme). A securely updating index-
based searchable encryption scheme is a tuple of seven (possibly probabilistic) polynomial-time algorithms
SUISE = (Gen, Enc, SearchToken, Search, AddToken, Add, DeleteToken, Delete) such that:

(K, γ, σ)← Gen(1λ) is a probabilistic algorithm that takes as input a security parameter λ and outputs a
master keyK, a (still empty) search index γ and a (still empty) search history σ.

(σ′, τw)← SearchToken(K,w, σ) is a (possibly probabilistic) algorithm that takes as input a master key
K, a keyword w and search history σ. It outputs an updated search history σ′ and a search token τw.

(Iw, γ′)← Search(τw, γ) is a deterministic algorithm that takes as input a search token τw and a search
index γ. It outputs a sequence of identifiers Iw and an updated search index γ′.

αf ← AddToken(K, f, σ) is a (possibly probabilistic) algorithm that takes as input a master keyK, a file
f and a search history σ. It outputs an add token αf .

γ′ ← Add(αf , γ) is a deterministic algorithm that takes as input an add token αf and a search index γ . It
outputs an updated search index γ′.

δf ← DeleteToken(K, ID(f)) is a (possibly probabilistic) algorithm that takes as input a master key K
and an identifier ID(f) of the file that shall be removed. It outputs a delete token δf .

γ′ ← Delete(δf , γ) is a deterministic algorithm that takes as input a delete token δf for the file that shall
be removed and a search index γ. It outputs an updated search index γ′.

5.2 Related Work

An overview of general related work on searchable symmetric encryption is given in Section 3.3 and
encrypted databases in Section 3.1. In this section we review related work particularly applicable to the
functionality of exact pattern matching on encrypted and dynamic data.
Song et al. introduced searchable encryption for equality checks in their work [137] with no search index.

As a result, each encrypted value must be checked separately for a given search token, requiring linear search
time in the number of files times the number of keywords per file. At the same time, dynamic datasets are
easy to support for this scheme as no search index must be updated.
A number of works investigated efficiency increases for symmetric searchable encryption for equality

search. Goh first proposed the use of indexes [64] using Bloom filters [20] per indexed file reducing the
search to be constant for each encrypted file. These Bloom filters for individual files are additionally salted
with their public file identifiers resulting in different search indexes even for two files containing the same
words but with different identifiers. This index leads to a sublinear search time in the overall number of
indexed words and a linear search time in size of the file collection, however, false positives might be induced
due to the application of Bloom filters. Chang and Mitzenmacher followed Goh’s approach and created
one search index per document but thwarted false positive results. Particularly, their approach is based on
a prebuilt dictionary for each indexed file: assuming m as the universe size of potential keywords, such
dictionary for a specific file is represented by anm-bit array, where bit i is set to 1 if word wi appears in the

35

5 Exact Keyword Matching

file. Before outsourcing, these dictionaries are blinded with pseudorandom functions, while searching for
keyword wi is then performed by lifting this blinding for bit i for each file individual dictionary. Curtmola
et al. have been the first to use inverted indexes [49] achieving asymptotically optimal search time. These
inverted indexes are implemented using an oblivious linked list. The created search token unveils the entry
point into this linked listed together with the possibility traversing all relevant entries in the linked list
providing the complete result set. While constructing this index can be performed on the plaintext file
collection, modifying it without leakage is difficult.
The first dynamic searchable symmetric encryption scheme with asymptotically optimal search time has

been proposed by Kamara et al. [84]. In their work, Kamara et al. distinguish between initially indexed files
and files added after the initial outsourcing step. While the initially indexed files leak the same information
as they would do using Curtmola’s approach [49], the security of all files added after the initial outsourcing
step degenerates to deterministic encryption. Later, Kamara and Papamanthou addressed this information
leakage with a tree-based multi-map data structure, however, the index is of size of the number of documents
times the number of keyword [83]. An alternative approach for dynamic searchable symmetric encryption
has been published by Cash et al. [38]. They create a separate search dictionary indexing all files added after
the initial indexing step. This dictionary is complemented with keyword specific labels for all keywords
contained in the new file to be added. These labels are computed for each individual keyword together
with a keyword specific counter, i.e. how often a file with this specific keyword has already been added.
While considering this keyword specific counter into label generation hides the keyword frequency for all
files added after the initial indexing step, the client is required to know all these keyword specific counters.
Further, deleted files are stored at an extra revocation list, hence the index size increases with file deletion.
An alternative dynamic SSE scheme based on a construction named Blind Storage can be deployed on
servers that do not provide additional functionality besides uploading and downloading files [116]. Hence,
Blind Storage is suitable for file hosting services, like e.g. DropBox or Microsoft’s OneDrive. However, this
restricted functionality is not given in our use case of encrypted databases where we have the capability to
modify the DBMS.
Stefanov et al. [139] have proposed the first scheme with a security property they call forward privacy for

a dynamic SSE scheme. By forward privacy they mean the following: if a keyword w has been searched
for and later a new file is added also containing w, the server does not learn that this already queried
keyword w is contained in that file. They achieve forward privacy by an index of document-keyword
pairs stored in a hierarchical structure applying techniques known from the constructions of oblivious
RAM (cf. Section 3.5.3). This hierarchical index is then rebuilt periodically by the client to keep its
logarithmic structure sound. A later result published by Bost [31] also achieved forward privacy. In contrast
to Stefanov’s approach, this construction solely relies on pseudorandom functions but does not rely on
constructions inspired by ORAM.
The dynamic searchable symmetric encryption scheme proposed in this work has asymptotically optimal

search time, asymptotically optimal storage cost and no additional leakage on updates.

5.3 Implementation

Themain idea of our construction is based on the observation that common searchable symmetric encryption
schemes yield – with a few exceptions like Σoϕoς [31] – deterministic search tokens (also referred to as the
search pattern). Combining these deterministic search tokens with the unveiled result set (also referred to as
access pattern) after a successful search execution allows us to iteratively construct a result cache for search
executions on the server side. While the first search for a specific keyword requires runtime that is linear in

36

5.3 Implementation

the number of indexed files, all subsequent search operations for this same keyword is then optimal. Further,
the result cache construction is solely based on the search pattern and the access pattern. Keeping this cache
consistent even when adding or deleting files without additional leakage requires a careful protocol design
described in the following.
For the implementation we use several data structures such as lists and (chained) hash tables described in

the following. A hash table T stores values v associated with keys k, written as T [k] = v. We write v ∈ T
if there is a key k so that T [k] = v. For our implementation it is crucial that it is feasible to access a value v
with corresponding key k stored in a hash table in constant time. If the values stored in the hash table are
lists, we call it a chained hash table.
Assume a pseudorandom number generator (PRNG) G that outputs random numbers with bit length λ.

Given a pseudorandom functions F : {0, 1}λ × {0, 1}∗ → {0, 1}λ, and a random oracle H : {0, 1}λ ×
{0, 1}∗ → {0, 1}λ as introduced in Section 2.2 we construct dynamic SSE scheme SUISE = (Gen,
SearchToken, Search, AddToken, Add, DeleteToken, Delete) as follows:

(K, γ, σ)← Gen(1λ): Sample a λ-bit strings K $←− {0, 1}λ. In addition, create two empty chained hash
tables γf , γw and an empty set σ. Output (K, γ, σ), with γ = (γf , γw).

(τw, σ′)← SearchToken(K,w, σ): Calculate FK(w) = τw, set σ′ = σ ∪ {τw} and output (τw, σ′).

(Iw, γ′)← Search(τw, γ): Parse search index γ = (γw, γf) and check if there is an entry for τw in γw.

• If yes, then set Iw = γw[τw] and γ′w = γw.

• Otherwise create an empty list Iw and do for every c ∈ γf :

1. for every ci ∈ c that is i ∈ [1, len (c)], set ci = li||ri and check if Hτw
(ri) = li. If yes

then insert ID(f) that corresponds to c into Iw.

Update γ′w by creating an entry γw[τw] = Iw

Output Iw and (an updated version of) γ′ = (γ′w, γf).

αf ← AddToken(K, f, σ): For file f that consists of a sequence of words create a list f of unique words
f ⊇ f = (w1, . . . , wlen(f)). Generate a sequence of pseudorandom values s1, . . . slen(f) with PRNG
G and create an empty list x. For every word wi ∈ f do the following:

1. compute the corresponding search token τwi = FK(wi)

2. if this search token was used for a previous search, i.e. if τwi ∈ σ, add τwi to x.

3. set ci = Hτwi
(si)||si

Now sort c = (c1, . . . , clen(f)) in lexicographic order, set αf = (ID(f), c, x) and output αf .

γ′ ← Add(αf , γ): Parse αf = (ID(f), c, x), γ = (γw, γf) and set γf [ID(f)] = c. In addition, for every
xi ∈ x add ID(f) to γw[xi]. Output the updated version γ′ = (γw, γf).

δf ← DeleteToken(K, f): Output file identifier ID(f) as delete token.

γ′ ← Delete(δf , γ): Parse γ = (γw, γf) and δf = ID(f), check for every list e saved in γw if ID(f) ∈ e
and remove ID(f) in this case from e. Remove γf [ID(f)] from γf . Output an updated search index
γ′ = (γw, γf).

37

5 Exact Keyword Matching

5.4 Evaluation

In this section we evaluate the theoretical security properties in a formal framework. Further, we examine
the performance both from a theoretical point of view but also with a practical benchmark based on an
implementation of our protocol.

5.4.1 Formal Security Proof

We prove security of this construction following the simulation based security proofs discussed in Sec-
tion 4.1.1. First, we adapt the general definition given previously in a way fitting to our specific construction.
The leakage given to simulator S is required for simulating the add token generation and the search token
generation. Since the delete token is neither based on sensitive data but only on the identifier of the file to
be deleted, nor is it based on the master key, we omit the leakage for this token. We prove security against
an adaptive adversary as defined in the following.

Definition 14. Let SUISE = (Gen, Enc, SearchToken, Search, AddToken, Add, DeleteToken, Delete) be
a securely updating index-based searchable encryption scheme and λ the security parameter. Consider the
following experiments with stateful adversaryA, stateful simulator S and stateful leakage functions L1,L2.

RealSUISE(λ) : the challenger runs Gen(1λ) to get the tuple (K, γ, σ). The adversary A makes a poly-
nomial number of adaptive queries q ∈ {w, f} and for each query q the challenger generates either
a search token τw ← SearchToken(K,w, σ) or an add token αf ← AddToken(K, f, σ). Finally, A
returns a bit b that is output by the experiment.

IdealSUISE(λ) : the simulator sets up its internal environment. The adversary A makes a polynomial
number of adaptive queries q ∈ {w, f} and for each query q the simulator is given the appropriate
leakage, i.e. either given L1(f, w) or L2(f, f). S returns the appropriate simulated token τ̃w, α̃f .
Finally, A returns a bit b that is output by the experiment.

We say SUISE is (L1,L2)-secure against adaptive dynamic chosen-keyword attacks if for all probabilistic
polynomial-time algorithmsA there exists a non-uniform probabilistic polynomial-time simulator S so that
advantage of A defined as∣∣∣Pr

[
RealSUISE(λ) = 1

]
− Pr

[
IdealSUISE(λ) = 1

]∣∣∣
is negligible in λ.

As discussed in the previous Chapter 4, some operations leak particular information to the service provider.
In detail, we use the two leakage functions L1,L2 defined as follows:

L1(f, w) =(acct(w), ID(w))

L2(f, f) =(ID(f), len
(
f
)
, σt(f))

where acct(w) is the access pattern at time t defined as set {ID(fi) | w ∈ fi and fi ∈ f}, f is the set of
unique words in file f , and σt(f) is the set of IDs of all searched words until time t that also appear in f .

Search tokens are deterministic, that is, from a client’s perspective a search token for the same word w
requested several times is always the same; from the (potential malicious) server’s perspective given the
same search token several times , the same word w is always queried. In other words, an adversary is able
to link generated (repeated) search tokens with queries, although the attacker is not able to extract the plain

38

5.4 Evaluation

query. This knowledge is denoted by ID(w) in the defined leakage functions. Note that this possibility of
re-identification of already queried keywords corresponds to the security property provided by deterministic
encryption. Now we are ready to proof the following theorem:

Theorem 1. If the used functionF is a pseudorandom function and functionG is a pseudorandom generator
andH is a programmable random oracle, then SUISE as described in Section 5.3 is (L1,L2)-secure against
adaptive dynamic chosen-keyword attacks in the random oracle model.

Proof. We describe a polynomial time simulator S for which the advantage of any PPT adversary A to
distinguish between the output of RealSUISE and IdealSUISE is negligible. Our simulator adaptively
simulates a search index γ̃ with the additional information given by the leakage functions.

Setting up the environment: S creates

• An empty list σ̃ as simulated search history,

• an empty simulated search index γ̃ = (γ̃w, γ̃f) consisting of two empty hash tables

• an empty dictionary ρ to keep track of queries to the random oracle.

• A chained hash table P is used to keep track of tuples (j, τ̃) consisting of previously simulated search
positions and simulated search tokens for each individual file. In more details, an entry of P consists
of a linked list, we denote Pfi as the linked list for file fi, that is stored at hash table entry P [ID(fi)].

• A empty hash table T is created to keep track of the assignment of simulated search tokens τ̃w for
word w with ID(w) and

• A empty hash table A is created to keep track of simulated add tokens α̃f for already added files with
ID(f).

Simulating search tokens τ̃ : Given leakage

L1(f, w) = (acct(w), ID(w)),

the simulator checks if ID(w) is in T , i.e. if a search token for this word has been queried before.

• If this is the case, S outputs T [ID(w)].

• Otherwise, a random bit string τ̃ $←− {0, 1}λ is sampled and stored at T [ID(w)] and added to σ̃. For
every ID(fi) ∈ acct(w) the simulator sets Jfi

as the set of already used positions; more formally
set Jfi

= {jl | (jl, τl) ∈ Pfi
with 0 ≤ l ≤ |Pfi

|}. Then the simulator chooses an unused random
position ji

$←− [1, |γ̃f [ID(fi)]|] \ Jfi
and adds the tuple (ji, τ̃) to the list Pfi

of used positions for file
fi. Finally, S outputs τ̃ .

Simulating add tokens α̃: Given leakage

L2 (f, f) =
(
ID(f), len

(
f
)
, σt(f)

)
,

S checks if there is an entry at A[ID(f)], i.e. if an add token for file f with ID(f) has been simulated
before.

• If an add token α̃f for file f with ID(f) has been requested before, the simulator outputs A[ID(f)].

39

5 Exact Keyword Matching

• Else, this file has not been added before and the simulator chooses for every i ∈ [1, len
(
f
)
] a random

bit string s̃i
$←− {0, 1}2λ, and sorts this generated set (s̃1, . . . , s̃len(f)) in lexicographic order to get s̃

and stores this at γ̃f [ID(f)]. In addition, an empty list x̃ is created and for every ID(w) ∈ σt(f) the
token τ̃w = T [ID(w)] is looked up, added to x̃ and ID(f) is added to γ̃w[τ̃w]. S creates a temporary
set J and for all l ∈ [1, len (x̃)] a random fake position jl

$←− [1, |γ̃f [ID(fi)]|] \ J is sampled and
added to J . This position jl is marked as used in the list of used search positions by adding the tuple
(jl, τ̃l) to Pf in the chained hash table P , where τ̃l = x̃[l]. Finally, S outputs α̃ = (ID(f), s̃, x̃) and
stores this simulated token at A[ID(f)].

Answering random oracle queries: Given query (k, r), the simulator checks if this query was submitted
before, i.e. if there is an entry l = ρ[k||r].

• If this is the case, set l = ρ[k||r].

• Otherwise, S checks if key k is linked with some ID(w), i.e. if there is an entry k = T [ID(w)]
for some ID(w). If there is no used search token, a random bit string l $←− {0, 1}λ is sampled and
ρ[k||r] = l is set to stay consistent for future queries.

Else, k is linked with some ID(w), for every ID(fi) ∈ γ̃w[k] the simulator looks up the tuple
(j, k′) ∈ Pfi

where k′ = k. Then the value s̃j ∈ {0, 1}2λ is set as the j-th entry of s̃ = γ̃f [ID(fi)]
and divided in two λ-bit strings l′||r′ = s̃j .

– S checks if r′ = r, sets l = l′ in this case and stores l at ρ[k||r].

– If there was no fitting r′ for any ID(fi) ∈ γ̃w[k], a random l
$←− {0, 1}λ is sampled and stored

at ρ[k||r] to stay consistent for future queries.

Finally, l is returned.
The indistinguishability of a simulated search token τ̃ and a real search token τ follows from the pseudo-

randomness of F . Also, the indistinguishability of a simulated search history σ̃ and a real search history σ
follows from the pseudorandomness of F . The indistinguishability of a simulated add token α̃, especially of
s̃, x̃, and a real add token α follows from the pseudorandomness ofG and F . Since we choose the output of
our simulated random oracle H either totally random or out of a predefined domain, that itself is generated
in a random way, our random oracle is indistinguishable from a pseudo-random function.

Our leakage definition for the add operation still includes the identifier of the file ID(f)) and the number
of unique keywords in that file len(f). One can hide both by adding a level of indirection. First encrypt
each file f , resulting in the identifier ID(f). Then for each wi ∈ f encrypt file f ′ = {ID(f)} resulting in
unique identifier ID(f ′). One can now create the add token for ID(f ′) and wi. A simulator for the add
token operation is simple to derive from our simulator: ID(f ′) – which is unique in the system – replaces
ID(f) and is leaked instead, but len(f ′) = 1 and can hence be omitted.

5.4.2 Amortized Runtime Analysis

In our algorithm the first search for a keyword requires a linear scan, but subsequent searches are constant
in time1 due to the chained hash table. Hence, the initial overhead amortizes and we reach asymptotically
optimal search time for long-running systems. In the following we analyze the required number of search
operations until we reach this optimum.

1 This is a theoretical simplification. From a practical point of view there might be side effects slightly increasing the access time with
increased number of stored elements, e.g. due to memory paging.

40

5.4 Evaluation

Let n be the number of unique keywords stored in the ciphertexts; let m be the total number of stored
keywords in the ciphertext. Once we have created an index entry for a keyword, our search complexity is
m/n: We have a constant lookup in the hash table and returnm/n ciphertexts on average. An initial search
can take up to m search (lookup) operations and there can be at most n of those. Hence, the initial effort
is (upper) bounded by mn. We are interested in the number N of searches such that the amortized cost
becomes optimal. Since we need to return at leastm/n entries, this is the lower bound optimum. The cost
is asymptotically optimal, if there exists a constant c, such that the cost is at most the optimum times c. The
amortized cost is the cost for initial searches (mn) divided by the number of searches plus the cost for one
subsequent search:

mn

N
+ m

n
≤ cm

n
.

We conclude from this formula that we need at least N ≥ n2 searches until our cost is asymptotically
optimal. The constant c = 2 is low and we need at most 0.5 cryptographic hash operation on the server
on average. Read (search) requests dominate many systems like databases, such that this number can be
quickly reached in practice.

5.4.3 Practical Benchmark

The following experiments have been implemented in Java 7. Either operations performed by the server, or
operations performed by the client, have been executed on an Intel Xeon 1230v3 CPU 3.30GHz with 8GB
RAM running Windows 8. To minimize I/O access time all files used in our simulations are loaded into
main memory before starting measurements.
For the implementation of our keyed random function F and our random oracle H we use the imple-

mentation of HMAC-SHA-1 that is contained in the default Java library. Also contained in the default Java
library, we use SHA1PRNG as pseudorandom number generator G that outputs a pseudorandom number
with length of 160 bits.

On the client’s side

One main argument for outsourcing data is the use of slow and weak hardware on client’s side. To show
our SUISE scheme feasible for this scenario, we simulated the creation of add tokens and search tokens for
250, 000 random words per run. We repeated each creation run 100 times and present the average of these
100 runs for creating one token. We simulated both versions for storing the search history that is storing it
on the client or storing it on the server.
The cost for creating search tokens depends on the cost of generating one HMAC-SHA-1mainly. Creating

an add token without checking the search history (so let the server check for indexed words used in previous
search queries) needs two HMAC operations and one random number. If the client has to check the search
history, the cost for add token generation also depends on the size of search history. For our simulation we
filled the search history with 0, 100, 000 and 1, 000, 000 unique words. By using Java’s HashSet as data
structure implementing the search history, the lookup time can be minimized. Remember that the search
history contains unique search words used before and stays quite small (see Figure 5.2) in relation to the
number of search queries.

On the server’s side

All our simulations ran single threaded, but can easily be executed in parallel. By dividing the search index
γf into subsets and search these subsets on different cores it is possible to speed up searches for search

41

5 Exact Keyword Matching

operation |σ| time [µs]

SearchToken - 1.14
AddToken 0 4.77
AddToken 105 5.06
AddToken 106 5.47

Figure 5.1: Average duration for creating one token for one word.

tokens that were not searched before. In our test scenario all operations ran on one machine so we were able
to ignore latency through network transfers that may occur in practical application.
We omit benchmarks for Add and Delete since the runtime of these tasks depend on the chosen methods

for creating indexes and updating these indexes. In addition, one can interpret these operations as storing,
accessing, adding and deleting plaintext in an efficient way, because no cryptographic primitives are used
there. Either cryptographic primitives are used on the client before and benchmarked there (e.g. creating
add tokens) or are not needed at all.
So, the runtime of Search is discussed in the following. For our experiments we added 50 ebooks

downloaded from Project Gutenberg2. Before adding these files, all words were transformed to lower
case and punctuation was removed. Our complete fileset f consisted of 3, 654, 417 words separated by
whitespaces after this transformation. Removing words that appear multiple times in one file resulted in a
filest containing 337, 724 words so our index γf had size 337, 724. Altogether 95, 465 words were indexed,
i.e. 95, 465 different search tokens would result in at least one positive match. To simulate realistic search
queries we use a list of word frequencies3 which represent real world search queries but omitted the first 100
entries that mainly contained pronouns and prepositions. This word frequency list contains about 400, 000
words and our search words are chosen randomly weighted according to their frequency.
In order to benchmark search operations Search at the service provider we generate 5000 random search

tokens using the probability distribution explained above. The mean search time for these 5000 search
tokens results in one measurement point. A complete benchmark run consists of 75, 000 search queries,
i.e. 15 values are measured per run. In total, we repeated these benchmark runs 10 times and plotted the
average and the error bars provide the standard derivation of these 10 runs. The average time for an initial,
linear search was 414.38 ms. The average time for a second, constant time search was 0.01 ms.
Figure 5.2 shows the size of the search history over the time of the experiment. It also depicts the

decreasing number of newly generated search tokens that were not contained in the search history before.
Denoted by the white part, every bar represents the size of search history σ before the 5000 search queries.
The gray part4 represents the amount of queried search tokens that were not known before these 5000 search
queries. So, combining the white and the gray part shows the size of search history σ after executing
these 5000 queries. Figure 5.2 demonstrates the decreasing amount of newly generated search tokens with
increasing amount of total search queries. On the one hand, due to this effect the majority of our randomized
add tokens remain randomized. At the end of the experiment less than 16% of the unique keywords are in
the inverted index γw and hence encrypted deterministically. On the other hand, this results in decreasing
search time, because already searched tokens can be looked up in this inverted index.
This effect is presented in Figure 5.3 in more detail. It shows the mean search time in ms for blocks of

5000 searches over the time of the experiment. One bar at position i in Figure 5.2 can be linked with the

2 http://www.gutenberg.org/
3 Taken from http://invokeit.wordpress.com/frequency-word-lists/
4 The distribution of these still unknown search tokens follows Zipf’s Law [151].

42

http://www.gutenberg.org/
http://invokeit.wordpress.com/frequency-word-lists/

5.5 Tradeoff between Communication Overhead and Client Storage

0 10000 20000 30000 40000 50000 60000 70000 80000
Amount of all performed searches

0

5000

10000

15000

...

95465

S
iz

e
 o

f
u
n
iq

u
e
 w

o
rd

s
in

 s
e
a
rc

h
 h

is
to

ry
 [

w
o
rd

s]

Number of all unique indexed words

New added words in 5000 runs

Size of search history before

Figure 5.2: Unique search tokens queried; gray represents new search tokens not asked before.

point in Figure 5.3 at position i on x-axes. At the beginning the service provider did not know any search
tokens so that the search history σ is empty. Given a search token in this situation, the service provider had
to check the index of every file, i.e. every list representing one file in γf had to be checked value by value.
With an increasing size of the search history an increasing number of search tokens were indexed in our
reverse index γw and hence the service provider was able to answer these queries faster. Our results also
show that the optimal search time is reached much faster than in n2 searches, since we only perform 70.000
searches for more than 95.000 unique keywords.

5.5 Tradeoff between Communication Overhead and Client Storage

Wemaintain a history of previously used search tokens at the client and use it during the add operation. The
client creates the corresponding search tokens immediately as the deterministic identifier of the keyword.
Hence, the service provider can include it in the index. Note that the search token is not necessarily
part of the add token, rather it could be randomized. In order to check whether a randomized add token
corresponds to a search token, the service provider would need to check all previous search tokens. Only
then, it could convert the randomized add token to the deterministic search token. To the contrary, the
client can compute both – search and add token of the inserted keyword – and simply look up the search
token in the history. Hence, the cost of one insertion is O(len (() f)) using a history at the client and
O(len (() f)len (SRCH_HISt(f))) using a history at the service provider. Our solution using no client
storage (except the key) modifies the Add and AddToken operations as follows:

43

5 Exact Keyword Matching

0 10000 20000 30000 40000 50000 60000 70000
Amount of all performed searches

0

50

100

150

200

T
im

e
 f

o
r

o
n
e
 s

e
a
rc

h
 i
n
 a

v
e
ra

g
e
 [

m
s]

Figure 5.3: Mean query time for one random generated search token of 5000.

• αf ← AddToken(K, f, σ): For file f that consists of a sequence of words create a list f of unique
words f ⊇ f = (w1, . . . , wlen(f)). Generate a sequence of pseudorandom values s1, . . . slen(f)
with PRNG G. For every word wi ∈ f set ci = Hτwi

(si)||si with τwi
= FK(wi). Now sort

c = (c1, . . . , clen(f)) in lexicographic order and set αf = (ID(f), c). Output αf .

• γ′ ← Add(αf , γ): Parse αf = (ID(f), c), γ = (γw, γf) and set γf [ID(f)] = c. In addition, for
each τwi

∈ γw and each cj ∈ c set cj = lj ||rj and check if Hτwi
(rj) = lj . If yes, add ID(f) to

γw[wi]. Output the updated version of the search index γ′ = (γw, γf).

The history at the client is the same as the index words ID(w) in the inverted index γw at the service
provider. Hence, the client can always restore its history by downloading these from the server. Moreover,
let the number of unique keywords be n, then the size of the history will never exceed O(n) independent of
the number of searches performed.

5.6 Summary

We have demonstrated a new technique for efficient, dynamic searchable encryption. Our idea is to learn
and incrementally construct the index from the search token. We have theoretically shown that this leads to
the optimal search time over a sufficiently long period. We have experimentally shown that this search time
is low in absolute numbers and hence highly practical. Furthermore, it is reached much faster in practice
than the theoretical upper bound.
Our scheme can be implemented without client storage and only requires to store two cryptographic hash

values per index entry. Additions and deletes can be performed securely. We maintain semantic security

44

5.6 Summary

even during updates, i.e. we leak no additional information. We give detailed leakage functions in our
simulation-based security proof.In our experiments using real-world search terms, 84% of all keywords
were never searched for. These keywords remain semantically secure encrypted and hence profit from the
additional security under updates provided by our scheme.
We believe our construction to be valuable from two perspectives. First, it provides a novel design

alternative for constructing dynamic searchable encryption scheme. Second, it provides a favorable tradeoff
compared to deterministic encryption, since it is almost as efficient – the time for the second search of a
keyword is the same – but significantly more secure. Hence, it provides a viable alternative for practical
adoption.

45

6 Secure Joins

In this chapter we present protocols for secure joins but with fine granular leakage enabling the client to
delegate database joins of encrypted tables. More particular, we do not only consider full joins of two tables
but include additional attribute constraints, e.g. in form of where clauses, in our considerations. These
additional constraints together with the actual join operations allow us to achieve fine granular information
leakage. In the following Section 6.1 we give an introduction, discuss the problem in more details with one
example and give a formal definition. Further, we present a general interface that offers the functionality
of database joins on encrypted tables. An overview of related work addressing the problem of database
joins on encrypted tables is presented in Section 6.2. In Section 6.3 we describe a naive solution for this
problem and highlight shortcomings of this attempt. Further, we describe our abstract ideas addressing
these shortcomings and present a concrete implementation. Based on this concrete implementation a
detailed evaluation is given in Section 6.4 regarding both formal security and performance. Although join
operations are technically no search operation1 we follow the approach of searchable symmetric encryption
for the theoretical security analysis and define a leakage function proving security based on this leakage.
Additional tradeoffs between the security of values used as predicates in the where clause and practical
execution time are discussed in Section 6.5. Finally, Section 6.6 provides a summary of this chapter. The
content of this chapter is based on the master’s thesis by Nicolas Loza who has been supervised by the
author of this dissertation. Further, an academic paper containing the results is to be published.

• Loza, Nicolas: Implementing Secure JoinOperations over EncryptedDatabaseswith Low Information
Leakage, Karlsruher Institute für Technologie (KIT), Master’s Thesis, 2017

• Hahn, Florian ; Loza, Nicolas ; Kerschbaum, Florian: Encrypted Database Joins with Fine Granular
Security, ???? (In Preparation).

6.1 Introduction

In order to decrease data redundancy and increase data consistency for data stored in relational databases,
the process of database normalization introduced by Codd [46] is applied during the database design phase.
In this thesis we address joins for tables in third normal form, that is, all tables contain only columns that
are non-transitively dependent on the primary key. This is achieved by splitting the table into two tables,
where previously depended data is stored in its own separate table.
The dependency is then modeled as primary key in the one table, and foreign key in the second table and

can be reconstructed using the join operation in the data query, e.g. a SQL SELECT statement in combination
with the JOIN keyword. For example, Table 6.1 shows a table before such transformation, whereas the
resulting tables after the transformation are shown in Table 6.2 with primary key “DName” and in Table 6.3
with foreign key “Dept”. One instance for an equi-join query in combination of additional filtering conditions
we aim to support on encrypted databases with fine granular information leakage is expressed in SQL as
given in the following Listing 6.1.

1 Following the notation of relational algebra, the join operation is a binary operation, whereas the search operation or selection is a
unary operation

47

6 Secure Joins

EmpID Name Salary Dept Manager
1 Harry 4000 Finance George

2 Sally 7000 Sales Harriet

3 Thomas 5000 Finance George

4 Oscar 3500 Marketing Harriett

5 Jim 5500 Marketing Harriett

Table 6.1: Employee with Managers in one table.

DeptID DName Manager
1 Finance George

2 Sales Harriet

3 Marketing Harriet

Table 6.2: Dept with primary key “DName”.

EmpID Name Salary Dept
1 Harry 4000 Finance

2 Sally 7000 Sales

3 Thomas 5000 Finance

4 Oscar 3500 Marketing

5 Jim 5500 Marketing

Table 6.3: Employee with foreign key “Dept”.

SELECT * FROM Emp JOIN Dept ON Dept = DName WHERE Manager = ’Harriet’

Listing 6.1: Example SQL join query

The corresponding result table for that join query is given in Table 6.4. Although the result set might be
encrypted, the relation between the encrypted rows in different tables is inevitably leaked to the service
provider due to the efficient processing delegation.

Name Salary DName Manager
Sally 7000 Sales Harriet

Oscar 3500 Marketing Harriet

Jim 5500 Marketing Harriett

Table 6.4: Result of query stated in 6.1 on Table 6.3 and Table 6.2.

More formally, given two tables T0,T1, the result of the inner join operation on two join columns, one
fromT0 and one fromT1 is the set of all combinations of rows fromT0,T1 containing equal values in their
join columns. In this chapter we focus on inner joins but use the more general term join interchangeably. Let
us assume table T0 has schema (PKT0 , A1, . . . , Al) with primary key PKT0 and attributes A1, . . . , Al,
this table consists of |T0| records (pk1

T0
, a1

1, . . . , a
1
l), . . . , (pk|T0|

T0
, a
|T0|
1 , . . . , a

|T0|
l); table T1 has schema

(FKT0 , B1, . . . , Bm) with foreign key FKT0 establishing the relationship to table T0 and attributes
B1 . . . , Bm, this table consists of |T1| records (fk1

T0
, b11, . . . , b

1
m), . . . , (fk|T1|

T0
, b
|T1|
1 , . . . , b

|T1|
m). In the

following we use the row number as row ID, e.g. the third row in Table 6.2 has value “Marketing” as primary
key. The join of join attributes PKT0 and FKT0 is an operation with table T0 and table T1 as input
and denoted as T0 ./ T1. The result of T0 ./ T1 has schema (PKT0 , A1, . . . , Al, B1, . . . , Bm) and
consists of all records (pkiT0

, ai1, . . . , a
i
l, b

j
1, . . . , b

j
m) with equal join values (either primary or foreign key)

pkiT0
= fkjT0

for all i ∈ [1, |T0|], j ∈ [1, |T1|]. Note that the primary keys pkiT0
in table T0 need to be

unique, but each primary key maps to possible multiple foreign keys fkjT0
; in the following we denote the

48

6.1 Introduction

result of this map as MT0→T1 . In many applications the end user is not interested in the complete inner
join over both tables but only a small subset thereof based on additional filtering-predicates chosen from
attributes {A1, . . . , Al} and {B1, . . . , Bm}.
Current practically implemented solutions for joins on encrypted databases are based on deterministic

encryption as proposed by CryptDB [123], i.e. the same plaintext is encrypted to the same ciphertext
such that EncDet

k (x) = EncDet
k (y) ⇔ x = y. This preserved property enables join computation on such

deterministically encrypted foreign and primary keys. The straightforward application of deterministic
encryption supporting database joins, i.e. encrypting join values in different tables under the same key,
induces leakage that can be extracted even before the join operation is performed. This leakage can be
prevented with advanced techniques such as re-encryption before the actual join operation: Before the
actual join operations, join values contained in different tables are encrypted using different keys. For
example, values for the “Dept” attribute are deterministically encrypted under key k1 and values for the
“DName” are encrypted under key k2, hence EncDet

k1
(Finance) 6= EncDet

k2
(Finance) contained in different

tables. In case of a queried join operation, one column is re-encrypted given a corresponding token generated
by the client using both keys but without unveiling the underlying plaintexts to the untrusted server. After
the re-encryption process, the encrypted values stored in different columns to be joined are encrypted under
the same key enabling join calculation on deterministically encrypted data by a simple equality comparison
of ciphertexts. Note that different ciphertexts in the same table unveil equality relations directly after the
initial outsourcing step, hence leaking the self-join of an encrypted table. This leakage is addressed by the
application of adjustable encryption in CryptDB, i.e. encapsulating the deterministic ciphertexts with an
additional randomized encryption that is removed if required.
All previous schemes providing secure join functionality have a property we call all-or-nothing security

for inner joins: Before the join query the inner join might be hidden due to additional blinding, however,
after the join operation of two different tables the inner join of these tables is leaked completely. That is,
even though the result set the client is interested in might be a small subset of this inner join – it might
even be an empty set due to additional filtering predicates – the server learns the complete inner join. In
our example query specified in Listing 6.1, although the tuples (Harry, 4000, Finance) and (Thomas, 5000,
Finance) from Table 6.3 “Employee” are encrypted and not part of the actual query result, the server learns
that these tuples contain the same value and that they contain the same join-value as tuple (Finance, George)
from Table 6.2 “Dept”.
In this chapter we strive to minimize this additional leakage for encrypted database joins not directly

derivable from the encrypted result set the client has queried. As a result, we achieve a fine granular
security policy on the granularity level of the actual query answer maintaining semantic security for all
datasets that have never been part of any query result.

6.1.1 Framework

We assume the values to be joined on, named join-values ν are known before hand, i.e. the client knowswhich
column of T0 contains the primary keys and which column contains the foreign keys T1. All additional
columns can be used by the client to state additional filtering clauses for the join operation. We denote ι as
the complete join query comprising the specified filtering predicates also denoted as row attributes in the
following.
The general framework of our construction works as follows: In a first step, the client creates a master key

K used for data encryption and later for query token generation. The tables T0 and T1 are encrypted using
K, denoting the encrypted tables as C0 and C1. The encryption of a complete table is broken down to
multiple calls of EncRow encrypting individual rows. Since we may support different encryption algorithms

49

6 Secure Joins

for primary keys and foreign keys, their corresponding key role is indicated by b for each row encryption.
After the outsourcing step, the client wishes to execute join queries on encrypted tables; we assume these
join queries ι are supplemented with additional filter constraints on the attribute predicates. The client calls
GenToken with the master keyK and the join query ι resulting in a join token τι for this specific query. This
join token τι is then transferred to the server enabling her to compute the join result on encrypted tables C0

and C1 calling Join.
Formally, the framework of our secure join scheme with support of additional the filtering predicates as

discussed previously provides the following algorithms:

Definition 15 (Secure Join Scheme). Let T0 and T1 be the tables to be encrypted and joined later on. A
scheme SecJoin supporting secure joins with fine granular leakage implements the following algorithms:

K ← Setup(1λ) is a probabilistic algorithm that takes as input a security parameter λ. It outputs the
master keyK.

c← EncRow(K, b, ν, s) is a probabilistic algorithm that takes as input the master key K, the indicator b
indicating the type of join-value ν (i.e. ν is a foreign key if b = 1, primary key otherwise) and the
corresponding row attributes s. It outputs an encrypted join value c that is compatible with table Tb

and can be joined with table T1−b.

Cb ← EncTab(K,Tb) is a deterministic algorithm that takes as input the master keyK and a table Tb. It
runs EncRow for every row in Tb and the collection of all resulting encrypted join values is returned
in form of an encrypted table Cb.

τι ← GenToken(K, ι) is a (possibly probabilistic) algorithm that takes the master keyK and a join query
ι consisting of additional conditions on the attribute predicates for the tables T0,T1, e.g. specified
via a where clause in SQL. It returns a join token τι for the corresponding query.

MT0→T1 ← Join(C0,C1, τι) is a deterministic algorithm that takes as input the two encrypted tables C0

and C1, together with join token τι. The result is a map MT0→T1 , which maps row IDs in T0 to
their sets of matching row IDs in T1.

Note that this scheme can be extended to support joins over multiple tables with the same foreign key
column to be joined on, i.e. for all tables Tj that contain the foreign key call EncRow with indicator b = 1.

6.2 Related Work

Popa et al. [125] provide the functionality of secure joins by the utilization of deterministic encryption
that offers the possibility of re-encryption [19]. That is, each column is encrypted deterministically with
a different key, however, given a re-encryption token this key can be changed without an intermediate
decryption on the server side. In the case of a join query, the client creates such re-encryption token
allowing to adjust the encryption key of one column matching the encryption key of the second table,
hence enabling equi-joins by simple ciphertext comparison. For such adjustable joins on multiple tables
Kerschbaum et al. [90] present strategies for optimizing the performance with respect to the required re-
encryption overhead. However, the security of deterministically encrypted data strongly depends on the
underlying plaintext distribution and may be exploitable by an attacker as Naveed et al. demonstrated
recently [115] and reviewed in more details in Section 3.2.3.
The idea of using secure coprocessors for computing joins on outsourced data has been introduced by

Agrawal et al. [4]. Because of the low amount of memory available in these devices, the security of such

50

6.3 Implementation

methods relies on reading and writing from and to the processor in such a way, that the I/O access pattern
leaks the smallest amount of information as possible. Li et al. [102] later showed that the security assumption
from Agrawal et al. lead to unnecessary information leakage, and have replaced it with a new definition,
based on which they proposed three new algorithms for computing general joins on arbitrary predicates.
Despite these efforts, neither work [4, 102] provides a well-defined leakage formulation for their proposed
algorithms. Arasu and Kaushik [8] give an approach for oblivious query processing that hides the access
pattern of the join query and only unveils the join’s result size. They call query processing oblivious iff. no
attacker can distinguish the memory access sequence of two different databases and presented an algorithm
fulfilling this security definition. However, all solutions based on secure hardware require additional trust
assumptions regarding the hardware vendor.
An alternative approach solely based on cryptographic assumptions is based on SMC, specifically private

set intersection (PSI) as introduced by Fagin et. al [56] and formally studied by Freedman et al. [59]. The first
efficient solutions have been proposed by De Cristofaro et al. [50]. Since then many improved protocols have
been published including ones theoretically most efficient [121] and practically deployed [149]. Outsourced
PSI [87, 88] allows clients to upload their data to a server and then perform PSI which is closer to our system
setting. However, all PSI protocols assume that both sets contain only unique join values. This constraint
renders all these solutions not applicable to secure joins due to possibly multiple occurrence of the same
foreign key in one of the tables to be joined.
The first solution without this constraint has been proposed by Carbunar et al. [37] based on obfuscated

bloom filters constructed for the join values. For enabling the join operation, this obfuscation is removed,
degrading the security level for values stored in columns to be joined to that of deterministic encryption.
Further, due to the nature of bloom filters, post-processing for removing false positives is required on
the client side. In contrast, our solution does not raise false positives, hence client side computation is
independent of the result set size. Pang et al. [120] propose a secret key encryption scheme and Wang
et al. [145] propose a public key encryption scheme both rely on pairing based cryptography that allow
equi-joins, encrypted by the client and by an untrusted third party, respectively. However, all schemes with
support of non-unique join values published so far offer all-or-nothing security, in the sense that once the
join has been performed the inner join is unveiled completely.

6.3 Implementation

Our construction achieving fine granular leakage is based on two general ideas: First, searchable symmetric
encryption as proposed by Song et al. [137] provides the same functionality as deterministic encryption;
hence one can replace the deterministically encrypted values with either search tokens or search ciphertexts.
Second, it is sufficient to unveil the join result for all rows that match the additional filtering clause. Instead
of joining the complete tables followed by a filtering on that join-result, we follow the orthogonal approach
and run a privacy-preserving filtering on the complete table and perform the join operation on that filtered
result set. Particularly, we demonstrate the second idea with the following straw-man implementation for
the framework stated in Definition 15. This implementation increases the security compared to all current
solutions [37, 120, 123, 145] for databases with only one additional attribute column. The drawbacks of
this straw-man construction are then highlight in the end of this section and we discuss solutions in the
remainder of this chapter.

51

6 Secure Joins

6.3.1 Straw-Man Solution

The goal the of straw-man implementation presented in this section is to improve security with respect to the
previously discussed all-or-nothing security, i.e. this construction provides security with finer granularity.
In this preliminary construction we assume only one additional attribute column for each table; T0 has
schema (PKA, A1) and T1 has Schema (FKA, B1) with join-attributes PKA, FKA respectively, and a
filter clause ι with one filtering predicate a for attribute A1 and one filtering predicate b for B1. For the
sake of simplicity we follow the idea by Popa et al. [123] and utilize deterministic encryption for protecting
the encrypted values supporting joins. However, in contrast to CryptDB, we reduce the leakage of a secure
join scheme SecJoin founded on the following observation: it is sufficient to unveil the join result for all
rows that match the additional filtering clause ι, i.e. having value a for column A1 in T0 and value b for
column B1 in T1. Thus, instead of joining the complete tables T0 and T1 followed by a filtering on that
join-result, we follow the orthogonal approach and run a privacy-preserving filtering on the complete tables
T0 and T1, and perform the equi-join operation on that filtered result set. This is enforced by additional
encapsulation of all join-values using a semantically secure encryption scheme Π = (Enc,Dec) keyed with
a secret key ka and kb derived from the attribute predicates. Further, we assume the decryption algorithm
Dec indicates successful decryption. That is, decryption Dec(k′,Enc(k,m)) is called successful if and
only if k′ = k; this can be implemented by, e.g. concatenating the hash value h(m) to the encryption:
Enc(k,m||h(m)) and checking this relation in the decryption algorithm. Given a deterministic encryption
scheme ΠDet = (GenDet,EncDet,DecDet), a semantically secure encryption scheme Π = (Enc,Dec) with
key space K and a key derivation function KDF : {0, 1}λ × {0, 1} × {0, 1}∗ → K, we can implement a
secure join scheme supporting one attribute per table according to the framework given in Definition 15 as
follows:

K ← Setup(1λ): OutputK ← GenDet(1λ).

c← EncRow(K, b, ν, s): Sample row key SKs ← KDF(K, b, s) and encrypt the deterministic encryption
EncDet(K, ν) of the join value ν using row key SKs as c ← Enc(SKs,EncDet(K, ν)). Output the
double encrypted ciphertext c.

Cb ← EncTab(K,Tb): For every row in Tb call EncRow and return the corresponding encrypted table
Cb = {EncRow(K, b, νj , sj)}j∈[1,len(Tb)].

τι ← GenToken(K, ι): In this simplified construction ι = (a, b) consists of exactly two attributes, a for at-
tributeA1 and b for attributeB1. Derive the corresponding encapsulation keys SK0 ← KDF(K, 0, a),
SK1 ← KDF(K, 1, b) and return join token τι = (SK0,SK1) for the given query.

MT0←T1 ← Join(C0,C1, τι): Parse token τι = (SK0,SK1). For every encrypted join value ej ∈ Cb use
SKb for decrypting it, resulting in Dec(SKb, e

j) = EncDet(K, ν). For each encrypted primary key
epi = EncDet(K, ν) in C0 that is decrypted successfully, create map entryM [i]T0→T1 ← {j : efj =
EncDet(K, ν) ∈ C1 with efj = epi}. Finally, output the complete mappingMT0→T1 .

In the following, we discuss three drawbacks of this straw-man construction and give formal comprehensive
solutions for these drawbacks in the next section.
First, filtering is linear in the table size, that is, all rows must be decrypted and checked for a successful

decryption. We emphasize that we assume solely the join values as sensitive data, hence we strive to
minimize the leakage that can be extracted in regards to the secure join operations and the underlying
join-values. In contrast, we do not consider the encryption of additional row attributes in EncRow explicitly
but only decode their values to provide fine granular security for join values. Depending on the use case,

52

6.3 Implementation

one might outsource the additional attribute columns in plaintext, enabling the construction of indexing
data structures on plaintext that allow to retrieve efficiently all rows whose correct decryption keys are
contained in τι. If the row attributes are considered to be sensitive, the application of a dynamic and efficient
searchable symmetric encryption scheme as discussed in the previous Chapter 5 is a viable alternative and
the leakage is analyzed in Section 6.5. In this chapter we do not address the information leakage for the
row attributes and the additional leakage induced by such inverted indexing techniques. This leakage has
been studied in previous work on dynamic and efficient searchable symmetric encryption. Particularly the
work published by Cash et al. [39] is of great interest for our application, since it provides the functionality
to query search terms in boolean formulas. Hence, we either assume plaintext row attributes or the secure
application of dynamic and efficient searchable symmetric encryption schemes. Both cases result in more
efficient pre-filtering step compared to a linear scan of the complete tables. In the following discussion we
solely focus on protecting the join-values (i.e. both primary and foreign key) but do not consider the security
of additional attribute predicates, nor do we address the algorithms for potential pre-filtering.
Second, the application of deterministic encryption for securing the join values has additional leakage

that cannot directly be derived from the join result. That is, all values matching the where clause in table
T1 leak that they have the same foreign key fk even if they are not part of the equi-join result, e.g. because
no matching primary key from table T0 fulfills the where clause. As also observed by Pang et al. [120], this
enables the server to extract the result of a self-join, although not queried explicitly by the client.
Third, generalization of this straw-man construction to multiple row attributes for each table increases

the required memory to be exponentially in the number of attributes. In more details, given table T0 with
schema (PK,A1, . . . An) and the possibility to filter for all n attributes, the protected join value must be
blinded with all possible combinations of the n attributes resulting in 2n different keys SKj

i for j ∈ [1, 2n]
and the resulting blinded encrypted join values for all 2n different keys must be stored for each row in T0.
The analogue argument is true for table T1.
While the first drawback is addressed extensively by previous work, e.g. extensions for searchable en-

cryption for exact pattern matching as discussed in the previous chapter, we focus on the latter two for the
remainder of this chapter.

6.3.2 Required Tools

We identified different cryptographic tools that address these problems and enable us to reduce the infor-
mation leakage induced by join operation on a finer granularity. Putting these tools together we present
a comprehensive description of our implementation fitting the framework for secure joins as specified in
Definition 15. We quantify an upper bound for the information leakage induced by our implementation
based on the security properties offered by these tools and prove this upper bound in the formal framework
from Section 4.1.1.
Recall that we assume two different tables T0,T1 where the join values of T0 are primary keys, hence

they are unique, while the join values of T1 are foreign keys and might occur several times. As a result,
the application of deterministic encryption ΠDet for equality checks on encrypted data as proposed in
Subsection 6.3.1 has no consequences on the security level of encrypted values contained in join column of
T0, however, weakens security for encrypted values contained in join column of T1. In order to minimize
this security penalty while still providing the functionality of matching encrypted values for equality, we
replace the deterministic encryption scheme with a searchable searchable symmetric encryption (SSE) as
introduced by Song et al. [137] and summarized in Definition 9. Recall that the ciphertext cw output by
SSE-Enc for keyword w is randomized even for the same input (i.e. the same key K and plaintext w),
while the token tv output by SSE-Token is deterministic for search word v. With access to both, namely a

53

6 Secure Joins

ciphertext cw and a token tv , it is possible to check for equality using algorithm SSE-Match, i.e. if w = v

is true. We refer to both, the SSE-ciphertext cw and the SSE-token tw for word w as SSE-values in the
following. In order to model the inner join functionality for T0 and T1 using SSE, one encrypts all unique
join-values of T0 calling SSE-Token and all (probably non-unique) join-values of T1 calling SSE-Enc.
Here, the correct choice is crucial for the security, since the application of SSE-Enc on the non-unique
values hides the frequency due to its randomized output characteristics making self-joins on T1 impossible.
We emphasize that, although T1 on its own is semantically secure after applying SSE-Enc, all values that

occur in T0 as well have additional leakage due to the comparison functionality provided by SSE-Match.
An honest-but-curious adversary with access to all SSE-values can reconstruct mappingMT0→T1 , that is,
the adversary can define sets

Ri = {j ∈ [1, |T1|] | SSE-Match
(
SSE-Enc

(
K, fkj

)
,SSE-Token

(
K, pki

))
= 1 for i ∈ [1, |T0|]}

grouping randomized ciphertexts (in this case their IDs) for the same underlying plaintext value. As a
consequence, blinding the SSE-values (both SSE-ciphertexts and SSE-tokens) remains a vital protection to
provide fine granular security properties for the outsourced databases with support of secure joins.
We address the straw-man solution’s exponential memory blowup by utilizing the concept of attribute-

based encryption (ABE). ABE is an expansion of public key cryptography that allows the encryption and
decryption of messages based on attributes assigned to the ciphertext during encryption time. Originally
presented by Sahai et al. [129], it focused on ascribing the ciphertext with a policy described as predicate logic
f(·). This predicate logic is then required to be satisfied by the user’s credentials for a successful decryption.
Later, Goyal et al. [70] defined this as ciphertext-policy attribute-based encryption (CP-ABE), while also
defining its complementary: key-policy attribute-based encryption (KP-ABE). In the latter, attributes are
used to annotate ciphertexts, and formulas over these attributes are assigned to keys generated by the user.
These formulas must then be satisfied by the attributes in the ciphertext for a successful decryption. For
the purposes of our construction, we will henceforth use KP-ABE, and whenever we use the term ABE we
implicitly refer to KP-ABE.
In order to define the algorithms necessary for ABE, we first need to define the term access structure.

Definition 16 (Access Structure according to [80]). Let P = {P1, ..., Pn} be a set of parties. A collection
A ⊆ 2P is monotone if ∀B,C : B ∈ A ∧ B ⊆ C ⇒ C ∈ A. An access structure (respectively, monotone
access structure) is a collection (resp., monotone collection)A of non-empty subsets of P , i.e. A ⊆ 2P \{∅}.
The sets in A are called the authorized sets, and the sets not in A are called the unauthorized sets.

Based on this definition, we can now specify the algorithms implemented by any KP-ABE scheme we
will use in the following as black box.

Definition 17 (KP-ABE Scheme according to [80]). Given a message spaceM and access structure space
G, we define a key-policy attribute-based encryption (KP-ABE) scheme ABE as a tuple of the following
(possibly probabilistic) polynomial-time algorithms:

(PK,MK)← ABE-Setup(1λ, U) is a probabilistic algorithm that takes as input a security parameter λ
and an universe description U defining the set of allowed attributes in the system. It outputs the public
parameters PK and the secret key MK.

CT ← ABE-Enc(PK,M,S) is a probabilistic algorithm that takes as input the public parameters PK,
a message M and a set of attributes S, where each attribute si ∈ S is drawn from universe U . A
randomized ciphertext CT associated with the attribute set is output.

54

6.3 Implementation

SKA ← ABE-Key(MK,A) is a probabilistic algorithm that takes as input the master secret key MK and
an access structure A, and outputs a (randomized) private key SKA associated with the attributes
described by A.

M ← ABE-Dec(SKA, CT) is a deterministic algorithm that takes as input a private key SKA associated
with access structure A and a ciphertext CT associated with attribute set S and outputs the message
M encrypted in CT iff. S satisfies A.

Security for KP-ABE schemes is defined as follows.

Definition 18 (Selective security against chosen plaintext attacks for KP-ABE from [80]). Let ABE =(
ABE-Setup, ABE-Enc, ABE-Key, ABE-Dec

)
be a KP-ABE scheme for message space M and access

structure space G. Consider the following experiment ExpSelCPA
ABE,A (λ,U) between a challenger and an

adversary A, security parameter λ and attribute universe U .

Init: A gives a set of attributes S∗ used for encrypting the message she wishes to be challenged later on.

Setup: The challenger runs the ABE-Setup algorithm and gives the public parameters PK to A.

Query Phase 1: The challenger initializes an empty table T and an integer counter j = 0. The adversary
can repeatedly issue queries, where each query is one of two types:

1. Create query: The adversary submits an access structure A. The challenger sets j = j + 1.
It runs the key generation algorithm SKA ← ABE-Key(MK,A) and stores in T [j] the entry
(A, SKA). This can be repeatedly queried with the same input.

2. Corrupt query: The adversary inputs a number i. If there exists an entry T [i], then the challenger
obtains tuple (A, SKA) stored at position i. Here,A cannot corrupt an access structureAwhich
is satisfied by S∗. If no entry i exists or it violates the restriction then the challenger returns ⊥.
Otherwise, the challenger returns the private key SKA to A.

Challenge: A submits two equal length messagesM0 andM1 from the message spaceM.

The challenger flips a random coin b $←− {0, 1} and encryptsMb under S∗. The resulting challenge
ciphertext CT ∗ ← ABE-Enc(PK,Mb,S∗) is given to A.

Query Phase 2: The adversary can issue the same queries as in Phase 1.

Guess: A outputs a guess b′.

The experiment outputs 1 if b equals b′ and 0 otherwise.
We say that ABE is selective-secure against chosen-plaintext attacks for attribute universe U if for all

probabilistic polynomial-time adversaries A running this security experiment, it holds that∣∣∣∣Pr
[
ExpSelCPA

ABE,A (λ,U) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

Note that general KP-ABE schemes have no claims with respect to the security of the attribute set S used
in ABE-Enc, hence an attacker can potentially extract information about the used attribute set from a given
ciphertext generated under this set.
Further, according to the standard definition of KP-ABE, a finite attribute universe U is used as domain

of attributes specified in set S. However, there are lines of work that propose implementations of KP-ABE

55

6 Secure Joins

with arbitrarily large attribute universes, like the one presented by Hohenberger and Waters [80]. For future
references we therefore will omit the usage of U . The access structures used to generate ABE-keys can be
constructed from any boolean formula, as shown by Lewko and Waters [99].
In our application, we will blind the (SSE encrypted) join value with ABE under the attribute values

specified in the additional predicates and we use ABE-keys to describe the restrictions of a join query in
form of additional filtering attributes, e.g. the WHERE clause in a SQL query. This constructions supports
arbitrary restrictions described as boolean formulas, since ABE supports them as well.
We emphasize that, following the approach of Kiayias et al. [92], this flexibility in the policy formulation

can be utilized to allow range filtering with only logarithmic (in the value domain size) attribute blowup,
e.g. a column stores values vi ∈ D that should be compatible with range queries in the where clause in a
SQL query. Further details are given in Appendix A.3 as this construction is crucial for encrypted range
queries. For the sake of a brief and coherent security proof, however, our construction in the remainder of
this work will focus only on conjunctions, i.e. formulas where all the specified restrictions must be fulfilled.
Thus, from now on we write ABE-Key(MK, {s1, . . . , sl}), referring to the access structure describing the
conjunction of all values s1, . . . , sl.
Depending on the construction of KP-ABE, the sizes of the ciphertexts produced by ABE-Enc and of the

keys produced by ABE-Key can vary. While some solutions might result in constant ciphertext size [10], we
will focus on constructions optimized for efficient evaluation operation for our purposes. One example for
such construction is given by Hohenberger and Waters [80] which requires only two pairings per decryption
and none for encryption or key generation, and produces ciphertexts and keys with sizes that are linear in
the number of attributes used for their generation. We refer to Appendix A.2 for a formal description of this
scheme.

6.3.3 Protocol

In summary, the straw-man construction is based on blinding deterministic encryption of the join values.
The keys used for this blinding are derived from their corresponding attribute predicates. This construction
has two drawbacks. First, an honest-but-curious attacker can deduce a self-join on T1 for all unblinded keys
without being queried explicitly, and Second, extending this construction to multiple attributes predicates,
it has an exponential memory-overhead in the number of attributes.
Our implementation addresses both drawbacks, with the following approaches: first, the functionality

of equality checks is realized with SSE, thus rendering self-joins impossible, and second, we reduce the
memory-overhead to be linear in the number of attributes by using KP-ABE. This approach is sketched in
Figure 6.1.

SSE KP-ABE
Join Value ν cν or tν

Row Attributes s

Ciphertext

Figure 6.1: Our solution offering fine granular information leakage for secure joins. The ciphertext output by SSE is denoted as cν

and the search tokens are denoted as tν .

56

6.3 Implementation

Now we present our main construction based on a searchable symmetric encryption scheme SSE =
(SSE-Setup, SSE-Enc, SSE-Token, SSE-Match) (as described in Definition 9) and a key-policy attribute-
based encryption scheme (as described in Definition 17) ABE = (ABE-Setup, ABE-Enc, ABE-Key,
ABE-Dec). Since we assume attribute based encryption without attribute privacy, we use a pseudoran-
dom function H : {0, 1}λ × {0, 1}∗ → {0, 1}λ to mask the plain values of these attributes. As discussed
previously, this deterministic masking enables the server to build index structures for fast filtering operations.
Further, we discuss an alternative construction based on attribute-hiding KP-ABE and formalize its security
properties in Section 6.5. For the sake of brevity we abuse notation and write a = H(hk, s) for hk ∈ {0, 1}λ

and set s where a is defined as a = {H(hk, i, si) : ∀si ∈ s}. Note that each si ∈ s is additionally salted
with a column identifier i, hence the same attribute value in two different columns results in different hash
values. Now we are ready to implement secure joins as specified in Definition 15 as follows:

K ← Setup(1λ): Sample the following keys corresponding to the security parameter:

KSSE ← SSE-Setup(1λ)

hk0
$←− {0, 1}λ

hk1
$←− {0, 1}λ

KABE0 ← ABE-Setup(1λ)

KABE1 ← ABE-Setup(1λ).

Output master keyK = (KSSE,hk0,hk1,KABE0,KABE1).

c← EncRow(K, b, ν, s) : Parse K = (KSSE,hk0,hk1,KABE0,KABE1) and create an SSE-value for the
join value ν and encrypt it using attribute based encryption under the blinded attributes derived from
s

sseVal←

SSE-Token(KSSE, ν) if b = 0

SSE-Enc(KSSE, ν) if b = 1

a = H(hkb, s)

c← ABE-Enc(KABEb, sseVal,a).

Output ciphertext c.

Cb ← EncTab(K,Tb): For every row rj = (νj , sj) in Tb with join value νj and attribute values sj run
EncRow(K, b, νj , sj) returning the SSE-value encapsulated by the ABE-encryption in form of an
encrypted table Cb.

τι ← GenToken(K, ι): Parse K = (KSSE,hk0,hk1,KABE0,KABE1) and let ι = (ι0, ι1) be the filtering
values in the where clause corresponding to columns in tables T0 and T1, respectively. Compute the
ABE private keys for the blinded attribute sets p0,p1 derived from the filtering values ι0, ι1

p0 = H(hk0, ι0)

p1 = H(hk1, ι1)

SKι0 ← ABE-Key(KABE0,p0)

SKι1 ← ABE-Key(KABE1,p1).

Output the join token τι = (SKι0 ,SKι1).

57

6 Secure Joins

MT0→T1 ← Join(C0,C1, τι): Parse τι = (SKι0 ,SKι1) and remove the ABE-blinding for all rows match-
ing the specified filtering attributes ι0, ι1 as follows:

toks = {ti | ∃ encTokeni ∈ C0 : ti = ABE-Dec(SKι0 , encTokeni)}

ciphs = {cj | ∃ encCiphj ∈ C1 : cj = ABE-Dec(SKι1 , encCiphj)}

If either toks or ciphs is empty, then the equi-join result is empty, hence the algorithm returns ⊥.
Otherwise, define a mapMT0→T1 where for every ti search the matching ciphertexts, that is,

M [i]T0→T1 = {j : cj ∈ ciphs with SSE-Match(cj , ti) = 1 for ti = toks[i]}

Finally, returnMT0→T1 .

Recall the assumption that table T0 has its primary keys as join values, hence we can assume that the join
column contains only unique values. In this construction, we assume concretely that such values are the
ones in T0’s join column, and thus we replace them with their corresponding SSE-tokens. The reasoning
behind this is that SSE-ciphertexts are always randomized, and thus multiple encryptions of the same word
cannot be recognized as such without a valid SSE-token. This is not the case with SSE-tokens, since they
are generated deterministically. Further, all join-values that cannot be contained in the result set for the
join-query, due to not-matching the where clause, remain obfuscated by attribute-based encryption.

6.4 Evaluation

In this section we evaluate the theoretical security properties in the formal framework. Further, we examine
the performance both from a theoretical point of view but also with a practical benchmark based on an
implementation of our protocol.

6.4.1 Formal Security Proof

Utilizing the simulation-based security proof as discussed in Section 4.1.1 we quantify the leakage of
our implementation for a secure join schemes. First, we adapt the general definition in a way fitting the
framework for secure joins stated in Definition 15. Recall that the leakage given to simulator S must enable
S to simulate the encryption algorithm EncRow and the algorithm for join-tokens generation GenToken.
Stating an algorithm simulating these algorithms is sufficient since the other operation with which the client
can encrypt data, i.e. EncTab, is founded on EncRow.

We prove security against a non-adaptive adversary as stated in the following definition.

Definition 19. Let SecJoin = (Setup, EncRow, EncTab, GenToken, Join) be a secure join scheme and λ the
security parameter. Consider the following probabilistic experiments with a stateful adversaryA, a stateful
simulator S, and a stateful leakage function L:

RealSecJoin(λ): the challenger runs Setup(λ) to generate the master key K. The adversary A generates
a polynomial set of non-adaptive encryption requests r1, . . . , rq with rj = (i, ν, s) and i ∈ {0, 1}.
A also generates a polynomial set of non-adaptive join queries ι1, . . . , ιq′ . A then sends the tu-
ples (r1, . . . , rq) and (ι1, . . . , ιq′) to the challenger. For each encryption request, the challenger
generates a ciphertext c ← EncRow(K, i, ν, s), and for each join query, the challenger generates
τι ← GenToken(K, ι). The challenger then returns all ciphertexts c1, . . . , cq and all join tokens
τι1 , . . . , τιq′ to A. Finally, A returns a bit b that is the output of the experiment.

58

6.4 Evaluation

IdealSecJoin(λ): the simulator sets up its internal environment. The adversary A generates a polynomial
set of non-adaptive row encryption requests r1, . . . , rq with rj = (i, ν, s) and i ∈ {0, 1}. A also
generates a polynomial set of non-adaptive join queries ι1, . . . , ιq′ . The simulator S is given the
appropriate leakage, i.e. L ((r1, . . . , rq) , (ι1, . . . , ιq′)). Using this leakage, S simulates and returns
the appropriate ciphertexts c̃1, . . . , c̃q and join tokens τ̃ι1 , . . . , τ̃ιq′ to A. Finally, A returns a bit b
that is the output of the experiment.

We say SecJoin isL-secure if there exists a non-uniform polynomial-sized simulator S, so that the advantage
for all probabilistic polynomial-sized (in λ) non-adaptive adversaries A defined as∣∣∣Pr

[
RealSecJoin(λ) = 1

]
− Pr

[
IdealSecJoin(λ) = 1

]∣∣∣
is negligible in λ.

In order to benefit from all further progress achieved in both active research topics, attribute-based
encryption and searchable symmetric encryption, we use these cryptographic tools as black boxes in our
security proof. As a result, the information leakage we define for the security proof may be too pessimistic
for some possible tools in the sense that the quantified leakage is an over-estimation. Further, we emphasize
that we prove security against non-adaptive attackers due to our black box applications of attribute based
encryption. While it is relatively easy to build efficient SSE systems that are secure even against adaptive
attackers as shown in Chapter 5, the construction of ABE schemes that are secure against adaptive attackers is
really challenging as discussed by Boneh et al. [28]. The flexibility in the choice of actual implementations
for attribute-based encryption and searchable symmetric encryption results in several possible tradeoffs
between performance and information leakage. Depending on the offered properties of the tools actually
implementing our construction, the information leakage might be lower than the leakage we state in the
following; we give a more detailed discussion for attribute-hiding ABE schemes in Section 6.5 with reduced
information leakage.
We will now proceed to show how to simulate the output for a tuple of encryption requests (r1, ..., rq)

and join queries (ι1, . . . , ιq′) given the following leakage:

L ((r1, ..., rq) , (ι1, ..., ιq′)) = (b, ρ(r1, . . . , rq), acc, ID0, ID1) .

Here, b = {0, 1}q is the indicator bit string for all row encryption queries, that is, for each encryption
query ri submitted by the adversary bi indicates if the join-value submitted in the i-th query is a primary
or a foreign key. Let q = n0 + n1, where n0 is the number of rows containing primary keys for T0,
i.e. the number of zeros in b; analogously n1 is the number of foreign keys for T1, i.e. the number of ones
in b. We denote s[i][j] as the j-th attribute value submitted in encryption query ri. Further, we define
ρ(r1, . . . , rq) = (ρ0, ρ1) as the attribute pattern, where ρb indicates which predicates are shared for one
specific column in what rows in the corresponding table Tb. That is, we can imagine ρ0 as a table with
n0 rows and with len (s) columns and denote ρ0[i][j] as the j-th attribute identifier in column i. As also
discussed in Section 5.4.1 regarding the search history of searchable symmetric encryption, these attribute
identifiers allow the adversary to distinguish between different attributes contained in the same column,
however, the adversary cannot extract the actual attribute values.
Further, we re-interpret the scenario of SSE handling encrypted documents to our scenario handling

exactly one encrypted join value per table row. Note that – compared to the definition stated by Curtmola
et al. and the construction given in the previous Chapter 5 – we assume a non-adaptive adversary hence
we can omit the specific point of time t. Recall that the access pattern acc consists of sets f(w) =
{ID(fj) | w ∈ fj and fj ∈ f} containing the documents matching the keyword w. In our case, f(wi) in

59

6 Secure Joins

acc will contain the identifiers of those rows whose join values match exactly the value wi and that have
been decrypted with ABE. Since we assume SSE-tokenization for unique primary keys we avoid multiple
occurrences of the same deterministically generated SSE-token allowing us to omit the search pattern in the
leakage. Additionally, we SSE-encrypt single join values, hence len (fj) = 1 is true for all j and we can
omit it in the leakage definition.
Finally, let ID0 and ID1 represent all attribute identifiers specified in the join queries for table T0 and

T1, respectively. More specifically, for every join query ιi, ID0 contains an attribute identifier for all
attribute values specified for T0 in the where clause. These attribute identifiers are consistent with the
attribute identifiers stated in ρ0, i.e. if a constraint is given for a row attribute value that has also been used
in one encryption query it contains the same identifier, whereas novel attributes values contain different
identifiers. We denote ID0[i][j] as the attribute identifier for column j in the i-th join query; if no constraint
for the j-th column is stated in query ιi set ID0[i][j] to special symbol ⊥. ID1 is similarly constructed,
referring to columns and attribute identifiers specified for table T1.

Theorem 2. If the used SSE scheme is (LSSE
1 ,LSSE

2)-secure as stated in Theorem 1, the used ABE scheme
is selectively secure against chosen-plaintext attacks according to Definition 18 and H is a pseudorandom
function, then the secure join scheme SecJoin as described in Section 6.3.3 isL-secure against non-adaptive
adversaries.

Proof. We describe a polynomial-time simulator S for which the advantage of any PPT attacker A to
distinguish between the output of RealSecJoin and IdealSecJoin is negligible. The stated simulator non-
adaptively simulates the encrypted tables and join tokens given the additional information defined by the
leakage functions.

Setting up the environment: Given λ, the simulator S initializes the following data structures:

• Empty tables C̃0 and C̃1, which will contain the simulated join values. These are returned as
simulated versions of the encrypted tables

• Empty setsX0,X1 and X̃ , which will contain ABE-keys (X0 andX1) and join tokens X̃ . The latter
will be returned as the set of simulated join tokens

• Empty tables A0, A1, that map attribute identifiers to randomly sampled values. Here table Ab

contains all attribute identifiers for both, attribute identifiers IDb leaked for join queries and the
attribute pattern ρb.

• KSSE ← SSE-Setup(λ)

• KABE0 ← ABE-Setup(λ) andKABE1 ← ABE-Setup(λ)

Simulating encrypted rows: Given leakage L = (b, ρ(r1, . . . , rq), acc, ID0, ID1) the simulator S pro-
ceeds as follows:

1. First simulate all SSE-tokenized unique primary keys and program the foreign keys that are matched
in at least one join query to be consistent.
For each row i ∈ [1, n0]:

• si
$←− {0, 1}λ

• ti ← SSE-Token(KSSE, si)

• C̃0[i] = ti

60

6.4 Evaluation

• ∀j ∈ f(wi) where f(wi) is part of acc:

– cj ← SSE-Enc(KSSE, si)

– C̃1[j] = cj

2. Next simulate all remaining SSE-ciphertexts that are never unveiled for any join query or whose
matching SSE-token are not unveiled. All rows that have successfully been joined in at least one join
query have already been filled in the previous step.
For each row i ∈ [1, n1] : if C̃1[i] is undefined, do:

• si
$←− {0, 1}λ

• C̃1[i] = ci

3. Now ABE-encrypt the entries based on attribute pattern ρ0. Assuming that table T0 has n0 rows as
highlighted in b do the following:
For each row i ∈ [1, n0]:

• s̃i = {}

• Extract attribute identifiers for the i-th encryption query: ri = ρ0[i]

• For each attribute identifier rj ∈ ri:
If this attribute identifier rj has never been used before, i.e. A0[j][rj] is undefined:

– s
$←− {0, 1}λ

– A0[j][rj] = s

• s̃i = s̃i ∪A0[j][rj]

• Retrieve the simulated SSE-token ti = C̃0[i]

• C̃0[i]← ABE-Enc(KABE0, ti, s̃i)

4. Analogously to previous Step 3, encrypt entries in table C̃1 using the attribute pattern ρ1.

Simulating join tokens: Based on the attribute identifiers for the predicate conditions ID0 and ID1 the
simulator creates consistent join tokens as follows:

1. Simulate the ABE-keys that are generated for C0

For each query i ∈ [1, q′]:

• Extract attribute identifiers for constraints stated in the i-th join query: qi = ID0[i]

• ι̃i = {}

• For each constraint qj ∈ qi that is not ⊥:
If this attribute identifier qj has never been used before, i.e. A0[j][qj] is undefined:

– s
$←− {0, 1}λ

– A0[j][qj] = s

• ι̃i = ι̃i ∪A0[j][qj]

• Generate the corresponding ABE-key ki,0 ← ABE-Key(KABE0, ι̃i) and set X0[i] = ki,0

2. Analogously to Step 1, generate ABE-keys compatible with C1 and store them in X1.

3. The overall simulated join token for each query τ̃ιi = (X0[i], X1[i]) is added to X̃[i] = τ̃ιi .

61

6 Secure Joins

The indistinguishability from the real encrypted rows containing primary keys and the simulated ones in
Step 1 follows from the (LSSE

1 ,LSSE
2)-security provided by SSE. Specifically, each primary key is assumed

to appear exactly once hence each search token is unique either for the real protocol or the simulated version
resulting in the same search pattern leakage induced by SSE. Also in this step simulating the encrypted rows
containing foreign keys for all rows that match (at least) one join-query are filled with the same random values
used for the primary keys instead of real join values. Again, this is indistinguishable for A due to the SSE
(LSSE

1 ,LSSE
2)-security; more specifically the access pattern leakage is the same for the real and the simulated

protocol. The difference between the real protocol and the simulation in Step 2 simulating foreign keys with
no matching primary key as random values instead of actual foreign keys is indistinguishable for A either
due to security offered by ABE or by SSE. In the first case, a matching ABE-key is never unveiled hence the
random values remain ABE encrypted; they are indistinguishable due to selective CPA-security provided
by ABE. In the second case, no matching SSE-token is known to the adversary since the corresponding row
containing this token either is never ABE-decrypted or is not contained in the encrypted table; in these cases
the SSE ciphertexts of random values are indistinguishable due to (LSSE

1 ,LSSE
2)-security provided by SSE.

The difference between the real protocol and the simulation of masked attribute values used for encrypting
the rows in Step 3 is indistinguishable for A . Here S samples random values si instead of calculating the
actual masked attribute values; this is indistinguishable sinceH is assumed to be a pseudorandom function.
Simulation of the join tokens in Step 1 for fake attribute predicates that are consistent with the join-queries

is indistinguishable due to the pseudorandomness of H . Masked values are sampled consistently based on
the attribute identifiers IDi or are generated using fresh randomness, hence the ABE-keys are correctly
simulated join-tokens.

6.4.2 Amortized Analysis

Assuming n0 matching rows for the filtering query specified in the where clause for attributes in T0,
the implementation has an upper bound of n0 ABE-Dec calls (upper bounded since some might already
be unblinded due to previous queries). Analogously, assuming n1 matching rows for the filtering query
specified in the where clause for attributes in T1, the implementation has an upper bound of n1 ABE-Dec
calls. Based on the unveiled SSE values, the join mapping is computed as follows: For each of the n0

SSE-tokens ti, the n1 SSE-ciphertexts are scanned for matches calling SSE-Match, resulting in an upper
bound of n0 ·n1 calls of SSE-Match. Hence, the overall runtime is bounded by n0 +n1 +n0n1 ∈ O(n0n1).

Although the theoretical analysis indicates that the runtime is dominated by the number of performed
SSE-comparisons, the practical runtime is heavily influenced by the number of performed ABE-decryption
operations. While the implementation of SSE-Match operations is based on fast symmetric cryptographic
operations such as pseudorandom functions, the implementation of ABE-Dec operations requires computa-
tionally expensive pairing-based operations as elaborated in more details in the following section.

6.4.3 Practical Benchmark

We have implemented a prototype of our scheme and have tested its efficiency for both parties, the trusted
client side and the honest-but-curious server side.
On the client side, we evaluate the performance for the initial encryption step in Paragraph “Encryption”

and the token generation in Paragraph “Token Generation”. For the server side, we measure the actual
join execution time preformed in the untrusted environment as described in Paragraph “Trace Evaluation”.
Initially completely obfuscated by the encryption step of our scheme, entries are gradually ABE-decrypted
with every passing join query. As a result, the performance impact of ABE-decryption operations decreases

62

6.4 Evaluation

with time, and queries with similar result sets tend to have decreasing cryptographic overhead reducing the
join computation time.
The following experiments were implemented in Java 8. All operations, i.e. client and server, were

executed on a machine with 32 processor cores, each a 64-bit Intel Xeon E5-2670 @2.60 GHz, with 240GB
RAM and running SUSE Linux Enterprise Server 11. In the operations involving a client and a server, the
server used a MySQL Server 5.7 instance for storage of the encrypted data. Moreover, our implementation
makes use of the following libraries: The SecureComputationAPI (SCAPI)2 for all symmetric cryptographic
primitives (e.g. AES, SHA-X, HMAC, PRFs, etc), and jPBC for all group and pairing-based operations.
Both are available as Java native code.
As SSE scheme we used a variation of the construction from Chapter 5 but omitted the inverted index,

where each “file” is a join value. As PRF for the SSE scheme we used a CBC-MAC-based PRF with AES
as building block. As KP-ABE scheme we used the one proposed by Hohenberger and Waters [80], with
PBC’s symmetric Type A pairings3 over a group with a 160-bit-long prime number of elements, and a
CBC-MAC-based PRF as the hash function necessary for the support of large universes.

Encryption

In order to test the efficiency and scalability of the EncTab implementations, we generated random sets of
rows, with different number of attribute columns, ranging from 3 to 20. For every row we assumed it as part
of T1, hence SSE-encrypted each join value followed by ABE-encryption of the resulting ciphertext with
the other row values as attributes. We evaluated SSE-encryption and not tokenization, since the encryption
operation contains the generation of a corresponding token as described in the AddToken algorithm in
Section 5.3 Thus, SSE-encryption contains extra work compared to simple tokenization, hence we evaluate
the worst-case situation for table encryption. Recall that SSE-operations are all symmetric encryption, and
thus require small computational effort.
The results of these tests are given in Figure 6.2. It is evident that the performance of the encryption is

linearly correlated with both the number of attribute columns ascribed to every ABE-ciphertext as well as
with the number of rows to be encrypted. These presented tests were executed purely and sequentially in
Java, and only take into account the computational effort for the client to execute the necessary SSE and
ABE operations, and do not include any transmission costs or I/O overhead, which would be observed when
submitting the encrypted data to a SQL server. As such, it can be interpreted as the computational effort
invested by a client into the encryption of a join column before outsourcing it. We emphasize that this
process can also be easily parallelized.

Key Generation

Once the client has finished encrypting the table rows and outsourcing them, join tokens are generated
by the client and transferred to the server to delegate the join operation. In order to do so, the specified
query’s WHERE clause is parsed into two ABE-keys which are sent to the server. For synthetically generated
data, we measured the performance of generating a single ABE-key with varying number of restrictions
(i.e. attributes), the results are presented in Figure 6.3. The key generation does not pose a serious
challenge to any modern processor and can thus be efficiently computed within a reasonable amount of time.
Furthermore, this effort is linear in the number of conditions placed by the client in the where clause.

2 https://cyber.biu.ac.il/scapi/
3 https://crypto.stanford.edu/pbc/manual/ch08s03.html

63

https://cyber.biu.ac.il/scapi/
https://crypto.stanford.edu/pbc/manual/ch08s03.html

6 Secure Joins

Attribute columns

E
n
cr
y
p
ti
on

ti
m
es

(1
0x

se
co
n
d
s)

1

2

3

4

5

5 10 15 20

102 rows
103 rows
104 rows
105 rows

Figure 6.2: Encryption times with varying rows and attribute columns

Trace Evaluation

The evaluation on the server side is based on data produced by the TPC-HBenchmark4 for analytical queries.
Using this benchmark’s data generator with a scaling factor of 0.1, we took the table PART (20,000 rows
and 6 attribute columns) with its primary key P_PARTKEY and the table LINEITEM (600,000 rows and 8
attribute columns) with the foreign key L_PARTKEY as our test tables. After encrypting them with our secure
joins scheme (cf. Section 6.4.3) a random trace of join executions was generated. Iterating over said trace,
the client parsed each join-query into the corresponding join-token (cf. Section 6.4.3) and sent them to the
server (running our protocol in Java, storing the databases in MySQL). Given this join-token, the secure
join operation was computed and evaluated as discussed in the following.
In our tests we assume that the server is able to quickly identify the rows satisfying the where clause.

Thus the server proceeds to ABE-decrypt the identified rows if necessary, and compares the underlying
SSE-values for the join computation. In this evaluation scenario, we took advantage of the 32 processors
available in the test machine and parallelized internally each join query. This was done in such a way that
first, the (Java) server retrieved all rows from the (MySQL) tables T0 and T1 matching the corresponding
restrictions placed in the where clause. Once retrieved, all ABE-decryption operations were executed in
parallel. Next, a “full join” was built between all matching rows of both tables, and the resulting set of rows
was evenly distributed among the available threads. Each thread then proceeded to compute a “local” result
set, which was then returned to the main thread once the computation was finished, so that all local results
could be combined in a global result set. Finally, all values that needed ABE-decryption operations were
replaced with their underlying SSE-values in the corresponding MySQL tables, and the result set of the join
operation returned to the client.

4 http://www.tpc.org/tpch/

64

http://www.tpc.org/tpch/

6.5 Tradeoff between Runtime and Predicate Security

Specified Attributes

G
en

er
at

io
n

ti
m

e
(s

)

0.05

0.10

0.15

0.20

0.25

5 10 15 20

Figure 6.3: ABE-key generation times with varying attribute restrictions

The results of executing a trace with 103 join operations, with the server acting as specified before, is given
in Figure 6.4a. For the sake of readability, we took the average runtime results from every 20 consecutive
join queries, also referred to as “batch”, and plotted them in red dashed lines, whereas the bars represent the
averaged number of ABE-values that needed to be decrypted per join batch. As we can see, in time (implicit
in the x-axis) both plots tend to sink, since the queries will increasingly need to ABE-decrypt less values.
This results in a lower average query runtime as highlighted in Figure 6.4a. Since the impact of ABE lessens
in time, the dominating factor in later sets of queries (i.e. queries executed towards the end of the trace) is
the number of necessary SSE-comparisons. This effect can be explicitly observed in Figure 6.4b, which
depicts (as before, averaged per batch) the ratios of the time invested by a single join query in executing
ABE and SSE operations, compared to the operation’s total runtime. As we can see, when starting the
trace’s execution, a join query invests close to 30% of its execution time on SSE-comparisons, and most of
the rest is spent in ABE operations. This is contrasted with queries in later stages of the trace, where SSE
comparisons take up more than 50% of the execution time, up to even 60%. Since SSE-operations are much
more efficient than ABE-operations, this results in lower runtime characteristics for the queries executed
later in the trace.

6.5 Tradeoff between Runtime and Predicate Security

Assuming the row attributes to be sensitive the distinguishability of different row attributes might be
a security risk, e.g. frequency analysis on the row attributes is possible for our construction given in
Section 6.3. Recall that this attack vector exists due to the application of KP-ABE that does provide attribute
security by default. This shortcoming has been identified by Katz et al. [86] resulting in a stronger ABE

65

6 Secure Joins

0 10 20 30 40 50

0
20
0

40
0

60
0

80
0

10
00

12
00

Query batches

A
ve
ra
ge

d
ec
ry
p
te
d
va
lu
es

0
5

10
15

A
ve
ra
g
e
ru
n
ti
m
e
(s
)

Average decrypted values
Average query runtime

(a) Average decrypted values and runtime for a trace with 103 joins
queries.

0.00

0.25

0.50

0.75

10 20 30 40 50
Query batches

R
at
io

to
to
ta
l
ru
n
ti
m
e

Operation
ABE
Compare

(b) Average ratio between processing time for ABE-decryption and
SSE-operations.

Figure 6.4: Evaluation results for batches of 20 join queries.

construction with the additional security property called attribute-hiding. We can swap the general ABE
encryption scheme with one providing the additional attribute-hiding property allowing us to simplify the
construction. Compared to the construction given in Section 6.3 one can omit the hash function H for
blinding the attribute rows. However, the additional security property induces additional computation and
storage overhead: The decryption algorithmwithout explicit attribute-privacy proposed by Hohenberger and
Waters requires a constant number of pairing operations. In contrast, the decryption algorithm proposed by
Katz et al. with explicit attribute-privacy requires n pairing operations where n is the number of attributes
used for encryption.
Given a searchable symmetric encryption schemeSSE = (SSE-Setup, SSE-Enc, SSE-Token, SSE-Match)

(as described in Definition 9) and a key-policy attribute-based encryption scheme (as described in Def-
inition 17) ABE = (ABE-Setup, ABE-Enc, ABE-Key, ABE-Dec) with the attribute-hiding property we
modify the Setup, the EncRow and the GenToken operations from Section 6.3 as follows:

K ← Setup(1λ): Let λ be the security parameter. Run the following algorithms:

KSSE ← SSE-Setup(1λ)

KABE0 ← ABE-Setup(1λ)

KABE1 ← ABE-Setup(1λ)

and returnK = (KSSE,KABE0,KABE1).

c← EncRow(K, b, ν, s): Parse K = (KSSE,KABE0,KABE1) and create an SSE-value for the join value ν
and encrypt it using attribute-hiding ABE-encryption under the attributes s

sseVal←

SSE-Token(KSSE, ν) if b = 0

SSE-Enc(KSSE, ν) if b = 1

c← ABE-Enc(KABEb, sseVal, s)

and return c.

66

6.5 Tradeoff between Runtime and Predicate Security

τι ← GenToken(K, ι): Let ι = (ι0, ι1) be the attributes in the where clause corresponding to columns in
tables T0 and T1, respectively. Generate the corresponding ABE-keys:

SKι0 ← ABE-Key(KABE0, ι0)

SKι1 ← ABE-Key(KABE1, ι1)

and return these keys as join token τι = (SKι0 ,SKι1).

Following Definition 19, this construction does not leak the equality of attributes used for ABE-encryption
and results in the following reduced leakage function:

L ((r1, ..., rq) , (ι1, ..., ιq′)) = (b, acc, ID0, ID1, R0, R1) .

Again, b indicates if the row encryption query contains a primary key or a foreign key andacc denotes
the access pattern matching queried keywords. Recall that a join query can be split as ι = (ι0, ι1), where
ι0 and ι1 represent the restrictions placed in ι regarding tables T0 and T1, respectively. Using definitions
from above, let ID0 and ID1 be the information leaked through the join queries regarding tables T0 and
T1, respectively.

While in our previous construction the simulator could extract the row IDs matching the constraints
specified in one join query based on the given leakage ID0 and ρ0 this is not possible here since ρ0 is
hidden due to attribute-privacy (analogously the same is true ID1 and ρ1, respectively). Hence we modify
the leakage function with result sets R0 mapping for each join query ιi the set of row IDs from table T0

matched by the restrictions stated in ιi (and analogously R1 for table T1).

Theorem 3. If the used SSE scheme is (LSSE
1 ,LSSE

2)-secure, the used ABE scheme provides attribute-
privacy and is selectively secure against chosen-plaintext attacks then the secure join scheme SecJoin based
on the description given in Section 6.3.3 with the modifications described in this section is L-secure against
non-adaptive adversaries.

Proof. The proof is based on the same idea as Theorem 2, however, simulator S has no access to the
complete attribute pattern. Thus, the simulator generates the join tokens first and encrypts the row attributes
afterwards consistently based on attributes leaked by these join tokens. Due to the mutual simulation of
encrypted rows and join tokens the whole simulation step is given in one paragraph. We will now proceed
to show how to non-adaptively simulate a set of encryption requests and join queries given this leakage.

Setting up the environment: Given λ, the simulator S initializes:

• Empty tables C̃0 and C̃1, which will map row IDs to the encrypted values. These are returned as
simulated versions of the encrypted tables.

• Empty setsX0,X1 and X̃ , which will contain ABE-keys (X0 andX1) and join tokens X̃ . The latter
will be returned as the set of simulated join tokens.

• Empty tables T̃0, T̃1, which map row IDs to sets of attributes.

• Empty tables A0 and A1, which map attribute IDs to bitstrings.

• InitializeKSSE ← SSE-Setup(λ).

• InitializeKABE0 ← ABE-Setup(λ) andKABE1 ← ABE-Setup(λ).

67

6 Secure Joins

Simulation: Given the leakage from above, S proceeds as follows:

1. First simulate all SSE-tokenized unique primary keys and program the foreign keys that are matched
in at least one join query to be consistent.
For each row i ∈ [1, n0], do:

• si
$←− {0, 1}λ

• ti ← SSE-Token(KSSE, si)

• C̃0[i] = ti

• ∀j ∈ f(wi) where f(wi) is part of acc:

– cj ← SSE-Enc(KSSE, si)

– C̃1[j] = cj

2. Next simulate all remaining SSE-ciphertexts that are never unveiled for any join query or whose
matching SSE-token are not unveiled. All rows that have successfully been joined in at least one join
query are already filled in the previous step.
For each row i ∈ [1, n1] if C̃1[i] is undefined, do:

• si
$←− {0, 1}λ

• ci ← SSE-Enc(KSSE, si)

• C̃1[i] = ci

3. Simulate the ABE-keys that are generated for C0 while also filling table T̃0 and maintaining attribute
consistency.
For each query i ∈ [1, q′]:

• Extract attribute identifiers for constraints stated in the i-th join query: qi = ID0[i]

• ι̃i = {}

• For each constraint id qj ∈ qi that is not ⊥:
If this attribute identifier qj has never been used before, i.e. A0[j][qj] is undefined:

– s
$←− {0, 1}λ

– A0[j][qj] = s

• ι̃i = ι̃i ∪A0[j][qj]

• Fill all matching rows with the current attribute identifier:
∀r ∈ R0[i]: T̃0[r][j] = A0[j][qj]

• Generate the corresponding ABE-key ki,0 ← ABE-Key(KABE0, ι̃i) and set X0[i] = ki,0

4. Analogously to Step 3, generate ABE-keys from the leakage in ID1 for table C̃1 using key KABE1

and store them inX1, while also filling table T̃1 and maintaining attribute consistency with table A1.

5. Fill the remaining cells in T̃0. For each row i ∈ [1, n0]:

• For each attribute value j ∈ len
(

T̃0[i]
)
:

• If T̃0[i][j] is undefined:

– T̃0[i][j] $←− {0, 1}λ

• Retrieve the simulated SSE-token ti = C̃0[i]

68

6.6 Summary

• Encrypt this token with simulated attributes C̃0[i]← ABE-Enc(KABE0, ti, T̃0)

6. Analogously to Step 5, encrypt the entries in table C̃1 using the data stored in T̃1 with the keyKABE1.

7. ∀i ∈ [1, q′]: τ̃ιi := (X0[i], X1[i]) and set X̃[i] = τ̃ιi

8. Return (C̃0, C̃1, X̃)

As in the previous proof, all rows in Step 1 that match (at least) one join-query are filled with random
values that match the characteristics leaked by the SSE leakage; all remaining rows are filled in Step 2 This
is not distinguishable by any attacker due to (LSSE

1 ,LSSE
2) security provided by SSE. In Step 3 and Step 4

S creates attribute predicates that are consistent with the join-queries and their attribute patterns, i.e. the
values are added to the correct columns and the corresponding rows share the same attributes. Further,
ABE-keys are created for such fake predicates forming the simulated join-tokens. This is not distinguishable
by any attacker due to the provided ABE security for ABE-keys and their attributes. In Steps 5 and Step 6
the simulator ABE-encrypts the two simulated tables with values that are consistent with the queries, as
generated in the previous step, while also filling remaining empty attribute predicate cells with random
values, i.e. all values that contain attributes matching no join-query. This is not distinguishable by any
attacker due to the provided ABE security for ciphertexts.

6.6 Summary

In this section we presented a novel approach for cryptographically protected database joins with fine
granular security. While schemes based on private set intersection require uniqueness of the join-values
per database table and alternative solutions without this constraint only provide all-or-nothing security,
our scheme provides full flexibility and advanced protection. Most join queries on databases contain
additional filtering predicates, all previous schemes supporting secure joins unveil the complete inner join
result, leaking unnecessary information. Taking the additional filtering process in consideration already
during the encryption phase, our construction minimizes the information leakage of the join-operation by
only unveiling the join values actually involved in the computation of the result set. Our constructions is
based on a combination of searchable symmetric encryption and key-policy attribute-based encryption, both
applied as generic black boxes. Due to this black-box construction, our solution benefits from all further
improvements in these active research areas. Based on this black-box construction we proved two different
leakage characteristics that might be applicable for different use cases.

69

7 Range Queries

In this chapter we present a protocol for privacy-preserving range queries on encrypted data. This function-
ality enables the database client to delegate range filtering to the untrusted database server. The DBMS on
such server is then enabled to filter for all encrypted values that fall within the range specified by the client.
In the following Section 7.1 we give an introduction, discuss the problem in more details and give a general
interface that offers the functionality for range queries on encrypted data we strive to fulfill. An overview
of related work addressing range queries on encrypted data is presented in Section 7.2. In Section 7.3 we
review the cryptographic tools we use for our construction. Further, we describe the abstract idea of our
solution on plaintext data and give a concrete construction how these ideas can be transferred for encrypted
data utilizing the tools described before. Based on this concrete construction a detailed evaluation is given
in Section 7.4 regarding both formal security and performance. Performance evaluation is done in two
ways, that is, theoretical runtime numbers are given together with practical benchmark results founded on a
prototypical implementation. Finally, Section 7.5 provides a summary of this chapter. The content of this
chapter has been published in joint work with Florian Kerschbaum at CCSW 2016:

• Hahn, Florian ; Kerschbaum, Florian: Poly-Logarithmic Range Queries on Encrypted Data with
Small Leakage. In: Proceedings of the ACM on Cloud Computing Security Workshop, 2016 (CCSW)

7.1 Introduction

Besides exact keyword matching, another functionality frequently required by database systems is the
possibility to filter values that fall withing specified range values. For example, recall the database from
Chapter 5 containing employees and their individual salary as sketched in Table 7.1. Again, the client wishes
to outsource this table in encrypted form. Later, the client wishes to query all employees whose salary falls

EmpID Name Salary
1 Harry 4000

2 Sally 7000

3 Harry 5000

4 George 3500

Table 7.1: Example of plain database table Emp

within a specific range defined by the client, e.g. the corresponding SQL query retrieving all employees with
a salary between 4000 and 6000 as given in Listing 7.1

SELECT * FROM Emp WHERE 4000 <= SALARY and SALARY <= 6000;

Listing 7.1: Example SQL query for range query on the Salary column.

yielding the result given in Table 7.2 on the client side.
Previous solutions adapted in real-world for encrypted databases that realize such functionality are based

on order-preserving encryption (OPE) [5, 21]. An OPE scheme consists of the following three algorithms

71

7 Range Queries

EmpID Name Salary
1 Harry 4000

3 Harry 5000

Table 7.2: Plaintext result after query execution for table Emp

(OPE-Setup,OPE-Enc,OPE-Dec) where OPE-Enc(x) ≤ OPE-Enc(y) if and only if x ≤ y. A search in-
dex can then be constructed based on the preserved ordering relation, that is, all entries vi are encrypted ci =
OPE-Enc(vi) and then sorted by the yielded ciphertexts. The query transformation for a range [q(s), q(e)] is
then the OPE-encryption of the range’s boundary points, e.g. (OPE-Enc(4000),OPE-Enc(6000)). Given
these OPE-ciphertexts to the server storing the previously sorted search index, she is able to obtain the
set {OPE-Enc(vi) | OPE-Enc(q(s)) ≤ OPE-Enc(vi) and OPE-Enc(vi) ≤ OPE-Enc(q(e))} in logarithmic
time. Particularly, the server scans the index, e.g. by executing binary search, for the boundary points
OPE-Enc(q(s)) and OPE-Enc(q(e)) and all values indexed between these boundary points match the re-
quested range query. As discussed in Section 3.2, leaking the index’ complete ordering relation after the
initial outsourcing step can be exploited for concrete attacks and might result in a total data breach in the
worst case as demonstrated by Naveed et al. [115].
The construction given in this chapter provides the functionality for range queries but only leaks the access

pattern, hence mitigates these attack vectors. Specifically, the ordering relation of all values is obfuscated
initially by randomized encryption and the search for a specified range is enabled by unveiling a range token
only if required, i.e. the range is queried by the client.
Our goal is a secure construction that is efficient and is scheme-agnostic about the underlying range

predicate encryption scheme. The presented scheme has amortized poly-logarithmic runtime and our
implementation shows the benefits of this change already after a short period of queries. Further, range
predicate encryption can be implemented founded on functional encryption providing secure inner product
evaluation, hence, we can profit from any performance improvements in this active research area. This
flexibility is demonstrated by our prototype implementation utilizing two different functional encryption
schemes for inner product evaluation, one published by Shen et al. [133] and an alternative published more
recently by Bishop et al. [18].
We extend the idea applied for exact keyword queries presented in Chapter 5 to range queries where the

search index is updated incrementally. While the initial search time for a range query is linear in the number
of indexed values we can speed up subsequent queries requested in the future. In the first, initial search the
database service provider learns the result set of the range query; given a range query in a second search
request that is a subrange of the already queried range in the first step, it is sufficient to scan this previously
learned result set. This downscaling of the possible search space results in a tremendous speed-up for the
search operation. For every access pattern unveiled by a new range query, the server incrementally updates
the encrypted search index resulting in decreased search time for values contained in this search index. On
the contrary, ciphertexts that have never fallen within any queried range are not contained in any access
pattern, hence, these ciphertexts are not indexed and remain semantically secure. Compared to the approach
for exact keyword queries presented in Chapter 5, the approach for range queries described in this chapter
causes additional complications. Particularly, any exact keyword query yields result sets that are exclusively
valid for one specific keyword, rendering incremental updates for the search index straightforward. In
contrast to range queries, where different queries might overlap or one queried range might be a subset of
another previously queried range; for such cases, the structure of a search index supporting these variations
and the incremental updating process of such search index require a more complex system design.

72

7.1 Introduction

7.1.1 Framework

As already introduced in Section 5.1.1 the solution presented in this chapter can be extended to be applicable
for files with additional filtering values, e.g. encrypted photos with their encrypted record dates as tags
where the client should be able to filter for all photos recorded in a specified time period. Analogously
to searchable encryption for exact keyword search, we assume each file f has a unique identifier ID(f),
further each file is indexed – or tagged – with at least one value point v, where v falls within a predefined
domain [0, d], e.g. [0, 232 − 1] the domain of unsigned integers used in common programming languages.
We define a messagem = (v, ID(f)) as the tuple containing the file identifier and the corresponding value
point. For a fileset f and a search range Q = [q(s), q(e)] with Q ⊆ [0, d] we denote fQ as the collection of
files that are indexed with a value v so that q(s) ≤ v ≤ q(e). The set of all identifiers pointing to files that
are indexed under a value v ∈ Q is denoted as IQ = {ID(fi) | fi ∈ fQ} or IDQ. While encrypting the
payload, i.e. the content of these files, does not require any special functionality besides IND-CPA security
and is omitted in the following discussion, the encryption of these filtering tags with provided range filtering
functionality is non-trivial. Recall from Chapter 5, that this approach can be used for encrypted and tagged
files as well as for databases as motivated in the introduction of this chapter. More specifically, we strive to
realize a framework for secure range queries described as follows.
In an initial step, the client creates public parameters and a master key for a desired value domain by

executing SRQ-Setup. We assume the public parameters are known by all parties and omit them for the sake
of simplicity in the remainder of this chapter. In the next step, a message collection is encrypted and indexed
under given value points by executing SRQ-Enc; each value point is an element of the predefined value
domain stated in the initial setup step. Note that this encryption step requires the complete file collection
to be encrypted, that is, we assume a static database1. The output of this encryption algorithm, namely the
encrypted search index is transferred to the database server. The client holding the master key is able to
create range tokens by executing SRQ-Token. Given this range token to the server she can run SRQ-Search
to filter all message identifiers associated with messages whose value points fall within the requested range.
More formally, we implement a scheme for secure range queries as stated in the following definition.

Definition 20. [Secure Range Queries Scheme] A scheme for secure range queries is a tuple of the following
(probabilistic) polynomial-time algorithms SRQ = (SRQ-Setup, SRQ-Enc, SRQ-Token, SRQ-Search)
such that:

K ← SRQ-Setup(1λ, [0, d]) is a probabilistic algorithm that takes a security parameterλ and value domain
[0, d] as input and outputs a master keyK.

γ ← SRQ-Enc(K,M) is a probabilistic algorithm that takes a master keyK and a message collection M
as input. Each messagemi ∈M is a tuplemi = (vi, ID(fi)) containing a file identifier and a value
point. A search index γ is output.

τQ ← SRQ-Token(K,Q) is a probabilistic algorithm that takes master key K and range Q = [q(s), q(e)]
with Q ⊆ [0, d] as input and outputs a search token τQ for range Q.

IQ, γ′ ← SRQ-Search(τQ, γ) is a deterministic algorithm that takes a range token τQ for rangeQ and index
γ as input. It outputs a sequence of identifiers IQ and updated search index γ′.

1 This limitation is required to prove the security of our construction, but functionality can be provided for dynamic databases as well.
However, the security properties cannot be proven formally due to the limitations raised by the range predicate encryption scheme.

73

7 Range Queries

7.2 Related Work

We refer to Chapter 3 for an overview of general related work on searchable symmetric encryption and
encrypted databases. In this section we review related work particularly applicable to the functionality of
range queries on encrypted data.
The idea of order-preserving encryption was introduced by Agrawal et al. [5]. In more detail, such

kind of encryption has the following characteristic: given two plaintexts x and y with property x ≤
y, the same property OPE-Enc(x) ≤ OPE-Enc(y) holds for their corresponding ciphertexts. A first
concrete implementation of order-preserving encryption was introduced by Boldyreva et al. [21] with further
improvements and additional security considerations published later [22]. An interactive scheme with client
state fulfilling ideal security definitions stated by Boldyreva et al. has been published by Popa et al. [122] and
further optimizations for the client state have been published by Kerschbaum and Schröpfer [91]. However,
privacy properties of such deterministic property-preserving encryption schemes might be questionable
for highly sensitive data. Recent work published by Naveed et al. [115] demonstrate concrete attacks on
deterministic order-preserving encryption. Although Kerschbaum introduced the first randomized order-
preserving encryption scheme [89] improvements of such attacks even applicable to randomized order-
preserving encrypted values with limited entropy have been published subsequently by Grubbs [72].
The paradigm of searchable encryption for exact pattern matching, i.e. hide as much information as

possible and only unveil tokens corresponding to requested predicates, can be transferred to encryption
schemes supporting secure range queries as demonstrated by the following proposals. Solutions for the
public key setting exist and have been published by Boneh [29] and improved by Shi et al. [134]. One
solution in the secret key setting has been published by Shen et al. [133]. This construction has been
revisited by Demertzis et al. [51], they realized a searchable encryption scheme for range queries using
SSE for exact keyword matching internally as building block. Since their approach is solely based on
symmetric cryptography, this approach results in faster execution time but leakage from queries increases,
e.g. information about the covered subranges is unveiled. All these constructions have search costs that are
linear in the database size since no privacy-preserving search index is created.
The first approach of building such encrypted search index for range queries has been introduced by

Lu [106]. However, Lu’s index reveals the order relation of all indexed elements initially after the outsourcing
step, thus degrading its security properties to order-preserving encryption. A tradeoff between privacy and
performance for range queries is proposed by Hore et al. [81] using bucketization of indexed ciphertexts.
Other tree index approaches have been published by Wang et al. [143], however, again bucketization of
indexed ciphertexts is leaked. Wang et al. published an encryption scheme that leaks the relative distance
of all indexed ciphertexts to build an R-tree as index for ciphertexts [144]. The leakage of all these indexes
is disclosed after the initial outsourcing step hence they are vulnerable to the before mentioned attacks as
those published by Naveed et al.
Independently of our work, Roche et al. [128] published an approach with a similar high-level idea

compared to our construction, that is, the search index is refined incrementally for each range query. They
proposed the deployment of a general purpose semantically secure encryption scheme for the search index
and all outsourced values. For each range query, the client downloads the search index and executes the
range query locally. With the locally computed access pattern, the client can incrementally refine this search
index, that is then updated on the server reducing the client’s overhead for future queries. In Roche et al.’s
solution the service provided by the untrusted server is general outsourced data storage; in contrast, we
designed our construction with the aim to outsource as much computational effort as possible to the server
side.

74

7.3 Implementation

7.3 Implementation

From an abstract level we start with a range predicate encryption scheme, that is, a searchable encryption
scheme providing search functionality for range queries but with linear search time since no encrypted
index exists. We modify the range predicate encryption (RPE) range tokens in a way enabling the server to
compare range tokens from different queries. By doing so, the server can use the access pattern together
with the search pattern unveiled previously to accelerate future search queries. On the one hand, values that
have fallen within a queried range, are stored in an interactively built index decreasing the processing time
for future requests. On the other hand, values that have not been queried do not leak any information to the
cloud service provider and stay semantically secure.
In the followingSection 7.3.1we elaborate on range predicate encryption and review the security properties

thereof. Next, we describe the details of the search index on plain data before we give a comprehensive
description how these indexing ideas can be realized on encrypted data using RPE.

7.3.1 Range Predicate Encryption

Founded on techniques published by Shen et al. [133] providing inner product encryption (IPE) and inspired
by the construction given by Shi et al. [134], Lu has constructed an encryption scheme for range queries
called RPE [106]. We refer to Appendix A.3 for a review of this construction. Specifically, an RPE scheme
consists of the following algorithms.

Definition 21 (Predicate-only range-predicate encryption scheme from [106]). A symmetric key range
predicate encryption scheme RPE consists of the following four (probabilistic) polynomial-time algorithms.

k ← RPE-Setup
(
1λ, [0, d]

)
is a probabilistic algorithm with security parameter 1λ and a domain range

[0, d] as input. It outputs a private key k.

cv ← RPE-Enc (k, v) is a probabilistic algorithm with key k and an value point v as input. It outputs a
ciphertext cv .

tkQ ← RPE-Token (k,Q) is a probabilistic algorithm with key k and search range Q as input. It outputs
range token tkQ.

{0, 1} ← RPE-Match (tkQ, cv) is a deterministic algorithm with range token tkQ and ciphertext cv as
input. It outputs 1 if v ∈ Q and 0 otherwise.

Security properties for an RPE scheme guarantees plaintext privacy and predicate privacy. On the one
hand, plaintext privacy guarantees that an attacker cannot distinguish between encrypted value points as
formally stated in the following definition.

Definition 22 (RPE plaintext-privacy from [106]). Let RPE be a range predicate encryption scheme as
stated in Definition 21. Consider the following security experiment ExpPlainPriv

RPE,A between adversary A and
a challenger consisting of the phases described below:

Init: A submits two values v0, v1 ∈ [0, d] where she wishes to be challenged.

Setup: The challenger generates a secret key k by running RPE-Setup(1λ, [0, d]).

Query Phase 1: A adaptively issues queries, where each query is one of two types:

1. Token query: On the i-th query, A submits range Qi ⊂ [0, d] with the following condition:
either (v0 /∈ Qi ∧ v1 /∈ Qi) or (v0 ∈ Qi ∧ v1 ∈ Qi). The challenger generates a token by
running tkQi

← RPE-Token(k,Qi) and outputs it.

75

7 Range Queries

2. Ciphertext query: On the i-th query, A submits a value zi. The challenger encrypts this value
point zi by running ci ← RPE-Enc(k, zi) and returns the output.

Challenge: The challenger flips a random coin b $←− {0, 1} and outputs RPE-Enc(k, vb).

Query Phase 2: A adaptively issues further queries with the same restrictions as stated in Query Phase 1.

Guess: A outputs a guess b′.

The experiment outputs 1 if b equals b′ and 0 otherwise.
We say RPE has selective secure plaintext privacy, if for all probabilistic polynomial-time adversariesA

running this security experiment, it holds that∣∣∣∣Pr
[
ExpPlainPriv

RPE,A (λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

On the other hand, predicate privacy guarantees that an attacker cannot distinguish between range tokens
with the same access pattern as formally stated in the following definition.

Definition 23 (RPE predicate-privacy from [106]). Let RPE be a range predicate encryption scheme as
stated in Definition 21. Consider the following security experiment ExpPredPriv

RPE,A between adversary A and
a challenger consisting of the phases described below:

Init: A submits two ranges R0, R1 ⊂ [0, d] where she wishes to be challenged.

Setup: The challenger generates a secret key k by running RPE-Setup(1λ, [0, d]).

Query Phase 1: A adaptively issues queries, where each query is one of two types:

1. Token query: On the i-th query, A submits range Qi ⊂ [0, d]. The challenger generates a token
by running tkQi

← RPE-Token(k,Qi) and outputs tkQi
.

2. Ciphertext query: On the i-th query, A submits a value zi with the following condition: either
(zi ∈ R0∧ zi ∈ R1) or (zi /∈ R0∧ zi /∈ R1). The challenger encrypts value point zi by running
RPE-Enc(k, zi) and returns the output.

Challenge: The challenger flips a coin b $←− {0, 1} and outputs RPE-Token(k,Rb).

Query Phase 2: A adaptively issues further queries with the same restrictions as stated in Query Phase 1.

Guess: A outputs a guess b′.

The experiment outputs 1 if b equals b′ and 0 otherwise.
We say RPE has selective secure predicate privacy, if for all probabilistic polynomial-time adversariesA

running this security experiment, it holds that∣∣∣∣Pr
[
ExpPredPriv

RPE,A (λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

Note that the adversary has to commit to her challenges before she can submit queries, that is, we assume
selective privacy only. Further, the restrictions for the query phases prevent trivial distinguishability between
the adversary’s challenges.

76

7.3 Implementation

It is straightforward that given such RPE scheme, one can construct a secure range query scheme SRQ
as stated in Definition 20 with small leakage but linear runtime. Specifically, for message any mi =
(vi, ID(fi)) the attribute vi is encrypted to ci = RPE-Enc(k, vi) and the tuple (ci, ID(fi)) is indexed. For
a range query of rangeQ a token tkQ is created by the data owner holding the master key using RPE-Token.
Given this token, the server retrieves IQ simply as entries ID(fj) with RPE-Match(tkQ, cj) = 1. However,
it is necessary to scan the complete index, hence runtime is linear in the number of all indexed files; in the
remainder of this chapter we strive to decrease the amortized runtime to be logarithmic.

7.3.2 Protocol

Nowwe describe howwe organize the search index in order to accelerate search executions while keeping the
leakage of the indexed encrypted values minimal. We tackle these contradictory requirements by updating
the index every time the server learns new information from the access pattern. This newly gained knowledge
is then used to refine the encrypted search index for subsequent searches queried in the future. First, we
explain our ideas and design decisions on plaintext data and transfer this approach on encrypted values in
the upcoming section.

Organizing an Index for Plaintext Values

As already mentioned, we extend the idea from Chapter 5, that is, the searchable data is organized in a linear
search index together with a result cache that can be accessed more efficiently. Particularly, the search index
γ consists of the following two components:

The point list denoted as P is a linear list of all indexed points. This list enables the server to answer any
range query in linear time.

The tree list denoted as T is a list of search trees, each tree covering one coherent and already searched
range. Whenever a new search is executed, existing trees are updated or a new tree is added to the
list. This enables the server to answer range queries that are subranges of already queried ranges in
logarithmic time.

Since we unveil range tokens and strive to reuse them, we decided for search trees keeping ranges as search
keys for their nodes. More particular, T contains R-trees [73], where each R-tree Γ covers one coherent
range completely. For simplicity we write Γ ⊆ S for a range S, meaning that the range covered by Γ is
a subset of S, vice versa S ⊆ Γ and S = Γ. For each R-tree we define the threshold t, that is, any node
holds up to t range entries; each entry has the form (p,R), where R is a range and p is a pointer to another
node (either an inner node or a leaf) covering this range; hence pointer p points to a subtree. We denote
Γ[p] as the subtree of Γ pointed to by p. In addition, for any two entries (p1, R1) and (p2, R2) contained in
the same node it holds that R1 ∩ R2 = ∅, i.e. the ranges in one node are distinct and do not overlap. For
every entry (p,R) it holds that the subtree rooted at the node pointed to by p covers the complete range R,
i.e. Γ[p] = R. Finally, all leaves contain up to t entries, every entry has the form (obj,R), where R is a
range and obj points to identifiers that are indexed under values falling within range R, denoted as IDR.
Queried range Q = [q(s), q(e)] and given an R-tree Γ covering a superset of Q (i.e. Q ⊂ Γ) the server can
traverse this tree for Q in logarithmic time. More formally, the server is able to retrieve IQ in logarithmic
time using Algorithm 7.1.
An example for a search index γ containing P is depicted in Figure 7.1a and T with one tree Γ covering

range [4, 16] is depicted in Figure 7.1b. Assume the client submits a query for range [17, 23]. In the initial
step, the server checks if there exists a tree Γ ∈ T that covers the queried range [17, 23] ⊂ Γ to search in

77

7 Range Queries

Algorithmus 7.1 : SearchForRange
Input : R-Tree Γ, Queried range Q
Output : IQ

1: Initialize temporary result list L
2: for all ei = (pi, Ri) in root of Γ do
3: if Ri ⊆ Q then
4: Add all values indexed by Γ[pi] to L
5: end
6: else if q(s) ∈ Ri or q(e) ∈ Ri then
7: if pi points to another node then
8: Add output of SearchForRange(Γ[pi], Q) to L
9: end

10: if pi points to a list IDRi
then

11: Add all values with v ∈ Q to L
12: end
13: end
14: end
15: return list L

(5, A) (14, E) (7, B) (8, C) (22, F) (8, D) (1, G) . . .

(a) Point List P

[9, 16] [4, 8]

[9, 16]

(14, E)

[8, 8] [4, 7]

(8, C) , (8, D) (5, A) , (7, B)

(b) Initial R-Tree Γ ∈ T

Figure 7.1: Example of plain search index γ consisting of P and T

logarithmic time. Since this is not the case, the server scans all entries in P linearly yielding the queried
result set ID[17,23]. Next, this fresh information is added to the search index for future queries and results
an updated version of Γ covering [4, 23] as depicted in Figure 7.2.

[9, 23] [4, 8]

[17, 23] [9, 16]

(22, F) (14, E)

[8, 8] [4, 7]

(8, C) , (8, D) (5, A) , (7, B)

Figure 7.2: Updated R-Tree Γ after query [17, 23]

We refer to the following paragraph in for a comprehensive description of this updating process.

78

7.3 Implementation

Building an Encrypted Range Index

Note that the following functionality is sufficient for answering such range queries by the execution of
Algorithm 7.1:

1. check if rangeQ is a subrange of another rangeR required for identifying matching R-tree Γ in T and

2. check if range R and range Q intersect for tree traversal and

3. check if a value v falls withing range Q for a linear scan of values in matching leaves and the linear
scan of point list P.

All required functionality can be provided by a slightly modified RPE scheme. A token for range
Q = [q(s), q(e)] created by RPE-Token is supplemented by encrypted limiting points, that is start point
and end point of the range. Particularly SRQ-Token outputs the following tuple

(
RPE-Enc(k, q(s)),

RPE-Enc(k, q(e)), RPE-Token(k,Q)
)
as part of range token τQ.

Given two tokens τQ =
(
c
(0)
Q , c

(1)
Q , tkQ

)
and τR =

(
c
(0)
R , c

(1)
R , tkR

)
generated with this approach, the

server is able to check for the following relation of these ranges, as required for tree traversal on encrypted
R-trees.

Subrange: Q is a subrange of R if RPE-Match(tkR, c(0)
Q) = 1 and RPE-Match(tkR, c(1)

Q) = 1.

Intersection: R and Q intersect if RPE-Match(tkQ, c(i)R) = 1 or if RPE-Match(tkR, c(i)Q) = 1 for i ∈
{0, 1}.

Equality: Q and R are equal if R is a subrange of Q and Q is a subrange of R.

Such modified range predicate encryption scheme combined with an interactively and incrementally
updated search index can be used to define an SRQ scheme with poly-logarithmic runtime and small
leakage. Given a range predicate encryption scheme RPE consisting of algorithms

(
RPE-Setup, RPE-Enc,

RPE-Token, RPE-Match
)
and a secret-key encryption scheme Π = (Gen,Enc,Dec) we construct an SRQ

scheme as follows:

K ← SRQ-Setup
(
1λ, [0, d]

)
: on input of security parameter 1λ and value domain [0, d] create the following

keys corresponding to the security parameter

k1 ← RPE-Setup
(
1λ, [0, d]

)
k2 ← Gen

(
1λ
)

Output master keyK = (k1, k2).

c← SRQ-Enc(K,M): on input of master key K = (k1, k2) and message collection M containing n
messages do the following:

1. Initialize an empty search index γ = (P,T) that contains an empty point list P and an empty
tree list T.

2. For each message mi = (vi, ID(fi)) encrypt ci ← RPE-Enc(k1, vi) and append (ci, ID(fi))
to point list P.

Output the encrypted search index γ.

79

7 Range Queries

τQ ← SRQ-Token(K,Q): on input of master key K = (k1, k2) and range Q = [q(s), q(e)] flip a coin
b

$←− {0, 1} and use RPE-Enc for encrypting the limiting points:

c
(b)
Q ← RPE-Enc(k1, q

(s))

c
(1−b)
Q ← RPE-Enc(k1, q

(e)).

Furthermore create range token tkQ ← RPE-Token(k1, Q) and encrypt Q to cQ ← Enc(k2, Q).
Output τQ =

(
c
(0)
Q , c

(1)
Q , tkQ, cQ

)
as range token.

IQ, γ′ ← SRQ-Search(τQ, γ): on input of range token τQ =
(
c
(0)
Q , c

(1)
Q , tkQ, cQ

)
for rangeQ and encrypted

search index γ initialize an empty list T̂ for trees that are completely covered by the queried range.
For each indexed search tree Γi ∈ T :

1. Check if there exists one tree Γi ∈ T containing both c(0)
Q and c(1)

Q . If this is the case, retrieve
IQ by calling Algorithm 7.1 and set Γ(0) = Γ(1) = Γi.

2. Otherwise, set tree Γ(0) with c(0)
Q ∈ Γ(0) and Γ(0) = ⊥ if no such tree exists. Analogously, do

the same with c(1)
Q and denote Γ(1) as the corresponding result. For each tree that is covered

completely by Q, append it to list T̂ resulting in T̂ = {Γi | Γi ⊆ Q}. Scan all ciphertexts
(ci, ID(fi)) ∈ P using RPE-Match(tkQ, ci) and store ID(fi) if their corresponding value falls
withing the queried range.

In order to maintain logarithmic search time for future queries, call an interactive procedure γ′ ←
SRQ-UpdateIndex(τQ, IQ,Γ(0),Γ(1), T̂) described comprehensively in the following section. Finally,
output IQ as result and the updated search index γ′.

Recall that the server is able to compare different range tokens without knowing the master key or
underlying plaintext values. The server getting a range token τQ for range Q = [q(s), q(e)] executes
SRQ-Search and retrieves all files associated with values falling within range Q. In the initial Step 1, the
server checks if she has extracted enough information from previous queries to answer the current query
in logarithmic time. Alternatively, in Step 2 the server checks if any information about range Q is already
indexed in at least one search tree. All tokens contained in the entries (p1, τR1) , . . . ,

(
pni

, τRni

)
contained

in the root node of Γi are compared with range token τQ. Here Γi ⊂ Q if all R1, . . . , Rni
are subranges of

Q. A list T̂ = {Γi | Γi ⊂ Q} of all trees covering a subrange of Q is created. Further, partial intersections
of indexed search trees and the queried range are checked, defining Γ(0) as the tree intersecting with c(0)

Q and
analogously Γ(1) as the tree intersecting with c(1)

Q . Finally, the server decides how to update the search index
based on the result of these checks, that is, depending on the nature of T̂ and Γ(0),Γ(1) different update
strategies for SRQ-UpdateIndex must be applied.

1. One tree covers the complete queried range Q, that is Γ(0) = Γ(1), so Q ⊂ Γ. If this is the case, the
server does not need to perform a search over the complete point list P but searching over the value
points indexed by Γ(0) is sufficient. This is done using Algorithm 7.1.

Finally, SRQ-UpdateIndex has to refine indexed ranges by using information gained from the current
range query.

2. No intersection of the current range query and all previously queried ranges, so Γ(0) = Γ(1) = ⊥ and
T̂ = ∅. If this is the case, the server does not know anything about the current range query. As a
result, the server has to scan all points indexed in point list P.

Finally, SRQ-UpdateIndex has to create a new search tree that is added to tree list T covering the
queried range.

80

7.3 Implementation

3. Only one part of the queried range is covered by indexed search trees. Either Γ(0) = ⊥ or Γ(1) = ⊥.
If this is the case, the server cannot know if there are values in point list P falling withinQ but are not
covered by Γ(0) resp. Γ(1). As a result, the server has to scan all points indexed in point list P.

Finally, SRQ-UpdateIndex has to extend the one tree covering the queried range partly, i.e. either Γ(0)

or Γ(1) that is not ⊥.

4. The values fall within different trees, that is c(0) ∈ Γ(0) and c(1) ∈ Γ(1) where Γ(0) 6= Γ(1). If this is
the case, the server cannot be sure that there is no “index gap” between the two trees, i.e. there could
be values in P falling neither within Γ(0) nor Γ(1) but that fall within queried range Q. As a result,
the server has to scan all points indexed in point list P.

Finally, SRQ-UpdateIndex has to merge these trees Γ(0) and Γ(1) closing the gap revealed by the
current range query.

In the following subsection we elaborate on these different updating cases and describe the updating
procedure in a formal protocol.

Updating the Encrypted Index

From a high-level perspective, a new range token contains novel information given to the server, namely the
result set IDQ and the relation of Q to all previous queries. This newly gained information is implicitly
leaked by the access pattern, that is, given IDQ ⊂ IDU the server can deduce that Q ⊂ U . Remember
that all efficient searchable encryption schemes with few exceptions leak this information. Our construction
utilizes this leakage to update the encrypted search index for accelerating future queries. Update operations
require the creation of fresh range tokens used to extend the encrypted search trees. Since this creation is
only possible given the master key, these update procedures are interactive protocols between server and
data owner; in the following discussion we highlight operations on the client side with the prefix“@Client:
Some Operation”. All these tree modifications append new entries to an existing tree which might result in
a number of entries in one node that is larger than t. Thus, a rebalancing step is required such that every
node’s size is lower than threshold t afterwards. Protocol 7.2 formalizes this interactive rebalancing step for
encrypted R-trees. Further details on how SRQ-UpdateIndex works internally are discussed in the following
paragraphs.

Refining a tree. An existing encrypted search tree Γ can be refined given range token τQ if this search tree
and the range token intersect, i.e. Q ∩ Γ 6= ∅. The server sends range token τQ and the encrypted R-tree Γ
intersecting with that range token to the data owner asking for help. Recall that the client has access to the
master key, hence she is able to decrypt the range tokens together with the tree’s intersecting leaves. Using
these intersecting leaves, she creates (up to) four non intersecting but more refined ranges and sends back
their tokens generated by SRQ-Token. The server replaces the old range tokens with the novel, more refined
tokens and the indexed file lists are segmented according to these novel tokens. A formal description of this
protocol is given in Protocol 7.3. Since this replacement increases the number of entries in one node, the
server finally runs Protocol 7.2.

Creating a tree. A fresh encrypted R-tree is created if no information on the novel queried range is cached
in any search tree indexed in T. In such case, the server creates a new tree Γ with one node only containing
the novel range token τQ and indexed items IDQ retrieved from the linear point list P. This tree Γ is added
to tree list T.

81

7 Range Queries

Protocol 7.2 : RebalanceTree
Input : Tree Γ with leaf l such that len (l) > t.
Output : Rebalanced tree Γ.

1: Set cur_node = l
2: while len (cur_node) > t do
3: Send all entries ei = (pi, τRi) ∈ cur_node to client

/* Split this node in two nodes of the same size */
4: @Client: Sort all entries {ei = (pi, τRi

)} according to their range Ri
5: @Client: Create two tokens τU , τV using SRQ-Token for ranges U =

⋃dn
2 e−1

i=0 Ri,
V =

⋃n
i=dn

2 e
Ri and set nodes NU = {ei | Ri ⊆ U}, NV = {ei | Ri ⊆ V }

6: @Client: Send permutations of NV , NU with corresponding tokens τV , τU to server
7: if cur_node is not root then
8: Replace cur_node ∈ Γ with NV , NU indexed with tokens τV , τU in cur_node.parent
9: Set cur_node to cur_node.parent

10: end
11: else
12: Replace cur_node with LV , LU
13: Create new root only containing tokens τV , τU pointing to LV , LU
14: end
15: end

Protocol 7.3 : Refining an encrypted R-tree.
Input : Tree Γ; range token τQ.
Output : Refined Tree Γ.

1: for q ∈ {q(s), q(e)} do
2: Search leaf containing token τR with q ∈ R in Γ
3: Send τR and τQ to the client
4: @Client: For R = [r(s), r(e)] and q set Q1 = [r(s), q] and Q2 = [q + 1, r(e)]
5: @Client: Send back τQ1 , τQ2 generated with SRQ-Token
6: Divide IDR that is pointed to by leaf into two lists IDQ1 , IDQ2

7: In leaf replace (IDR, τR) with two new entries (IDQ1 , τQ1), (IDQ2 , τQ2)
8: RebalanceTree(Γ, leaf)
9: end

Extending a tree. An encrypted tree Γ can be extended if a queried range token τQ intersects with one tree
Γ or covers this tree completely, i.e. q(s) ∈ Γ and q(e) /∈ Γ (or vice versa) or even Γ ⊂ Q. The server sends
the newly learned range token τQ and the root node to the client. The client decrypts all ranges contained
in the root to reconstruct the whole range currently covered by this tree. A new range token for the gap
between the range covered by the current tree and the limiting points of the new range token extending the
current tree is created and added to the updated tree. We refer to Protocol 7.4 for a formal description. The
resulting tree must be rebalanced after tree extension since at least one leaf got a new entry.

Merging two trees. Two trees Γ1,Γ2 can be merged if they both intersect with the queried range token
τQ, i.e. q(s) ∈ Γ1 and q(e) ∈ Γ2. Note that these two trees must not have a value gap between them. In
more details, the range R1 = [r(s)

1 , r
(e)
1] covered by one tree must be directly followed by second range

R2 = [r(s)
1 , r

(e)
1] covered by the other tree, that is, r(e)

1 + 1 = r
(s)
2 This can be achieved by the execution of

tree extension as described in Algorithm 7.4. The algorithm integrates the tree with the lower height into
the tree with greater height resulting in logarithmic merge time. That is, a new entry inner node is created
in the higher tree pointing to the root of the lower tree. This newly covered range must then be propagated

82

7.4 Evaluation

Protocol 7.4 : Extending encrypted R-tree.
Input : Tree Γ; range token τQ.
Output : Updated tree Γ covering τQ completely.

1: Set root_node to the root node of Γ
2: Send root_node and range token τQ to client
3: @Client: Set R = [r(s), r(e)] =

⋃
iRi for all entries (pi, Ri) in root_node

/* Compute the complete range covered by current tree. */

4: for r ∈ {r(s), r(e)} do
5: @Client: Ask server for all nodes in Γ containing r, retrieve node set N = {nj | r ∈ nj}
6: for cur_node ∈ N do
7: @Client: Extract lowest resp. greatest range R′ = [r′(s), r′(e)] in cur_node
8: if cur_node is not a leaf then
9: @Client: Extend this range to Q′ = [q(s), r′

(e)] resp. Q′ = [r′(s), q(e)]
10: @Client: Replace inner entry τR′ with τQ′ generated by SRQ-Token
11: end
12: else
13: @Client: Set range Q′ = [q(s), r′

(s) − 1] resp. Q′ = [r′(e) + 1, q(e)]
14: @Client: Create new token τQ′ using SRQ-Token
15: Add new entry (τQ′ , IDQ′i) to leaf nj
16: end
17: end
18: RebalanceTree(Γ, leaf)
19: end

through the inner nodes up to the root. See Algorithm 7.5 for a formal description. Again, rebalancing the
resulting tree is required.

Merging multiple trees We can repeatedly combine the previously explained steps of tree extension and
tree merging given a range token τQ that covers multiple indexed trees. In more details, the root nodes of all
trees Γi ∈ T̂ together with Γ(0),Γ(1) and the newly queried range token τQ are sent to the client. The client
decrypts all root nodes retrieving rangesRi = [r(s)

i , r
(e)
i] covered by tree Γi and sorts these ranges according

to their start value r(s)
i . Next, the client chooses two trees Γj ,Γj+1 she wants to merge. Without loss of

generality lets assume Γj has greater height, so we extend Γj to cover [r(s)
j , r

(s)
j+1 − 1] using Algorithm 7.4.

Now Γj and Γj+1 can be merged using Algorithm 7.5 and the number of different trees is reduced by one.
This is done repeatedly until exactly one search tree is left covering the complete queried range.

7.4 Evaluation

In this section we evaluate the security properties of our construction. Particularly, in Section 7.4.1 we state
the upper bound of the leakage induced by our construction and prove it in the formal framework. Further,
we analyze performance numbers from a theoretical perspective in Section 7.4.2 and state practical runtime
numbers in Section 7.4.3. In our practical evaluation we utilize the modular construction of RPE and analyze
two different implementations for range predicate encryption. The first implementation is based on the inner
product encryption proposed by Shen et al. [133] making this benchmark comparable to the work published
by Lu [106]. In addition, we implemented a more recent scheme published by Bishop et al. [18] with better
runtime numbers but larger encryption keys.

83

7 Range Queries

Protocol 7.5 : Merging two encrypted R-trees.
Input : Two trees Γ1,Γ2.
Output : One merged tree Γ.

1: Set Γ ∈ {Γ1,Γ2} to higher and Γ′ ∈ {Γ1,Γ2} to lower tree with height h and h′

2: Send roots of both trees Γ,Γ′ covering R = [r(s), r(e)] resp. R′ = [r′(s), r′(e)] to client
3: @Client: if r(s) > r′

(s) then
4: Set v = r(s)

5: end
6: @Client: else
7: Set v = r(e)

8: end
9: @Client: Create τR′ using SRQ-Token and auxiliary value cv ← RPE-Enc(k, v) used for tree

traversal
10: Set i = h and cur_node to root of Γ
11: while i > h′ do
12: Send τR′ in entry ei = (pi, τRi) in cur_node with v ∈ Ri and τR′ to client
13: @Client: Compute U = Ri ∪R′ and send back token τU generated using SRQ-Token
14: In entry ei replace τRi

with τU
15: Set cur_node to node pointed to by pi
16: i = i− 1
17: end
18: Insert entry (p′, τR′) in cur_node, where p′ points to tree Γ′
19: RebalanceTree(Γ, cur_node)

7.4.1 Formal Security Proof

Founded on the simulation-based security proof as discussed in Section 4.1.1 we quantify the leakage of our
implementation for secure range queries as formally stated in Definition 20 with poly-logarithmic runtime.
Recall that – in order to achieve this logarithmic execution time – messages have to be indexed in a suitable
way while the index should leak as little information as possible. The incremental generation of such index
is based on the initially generated ciphertexts and subsequently queried range tokens. In the following we
adapt the general simulation-based security framework fitting our specific construction and state the leakage
induced by SRQ-Enc and SRQ-Token. We prove security against a non-adaptive adversary as defined in the
following.

Definition 24. Given a scheme for secure range queries SRQ = (SRQ-Setup, SRQ-Enc, SRQ-Token,
SRQ-Search) and security parameter λ ∈ N, we consider the following probabilistic experiments with a
stateful adversary A, a stateful simulator S and leakage function L:

RealSRQ(λ) : the challenger runs SRQ-Setup(1λ, [0, d]) to generate a master keyK and an empty search
index γ. First the adversary sends a q-tuple of messages M =

(
m1, . . . ,mq

)
where each message

is a tuple mi = (vi, ID (fi)) with vi ∈ [0, d] for all i ∈ {1, . . . , q} and a q′-tuple of range queries
Q = (Q1, . . . , Qq′) withQj ⊂ [0, d] for all j ∈ {1, . . . , q′} to the challenger. The challenger returns
a sequence of ciphertexts C = (SRQ-Enc (K,m1) , . . . ,SRQ-Enc (K,mq)) together with a sequence
of range tokens T = (SRQ-Token (K,Q1) , . . . ,SRQ-Token (K,Qq′)) to the adversary. Finally, A
returns a bit b that is output by the experiment.

IdealSRQ(λ) : the simulator sets up its internal environment for domain [0, d]. The adversary A sends
a q-tuple of messages M = (m1, . . . ,mq) where each message is a tuple mi = (vi, ID (fi)) with
vi ∈ [0, d] for all i ∈ {1, . . . , q} and a q′-tuple Q = (Q1, . . . , Qq′) with Qj ⊂ [0, d] for all
j ∈ {1, . . . , q′} to the challenger. The simulator S is given the appropriate leakage L(M,Q) and

84

7.4 Evaluation

returns a q-tuple C̃ of simulated ciphertexts and a q′-tuple T̃ of simulated range tokens to the adversary.
Finally, A returns a bit b that is output by the experiment.

We say SRQ is L-secure against non-adaptive chosen-range attacks if for all probabilistic polynomial-time
algorithms A there exists a probabilistic polynomial-time simulator S, so that advantage of A defined as∣∣∣Pr

[
RealSRQ(1λ) = 1

]
− Pr

[
IdealSRQ(1λ) = 1

]∣∣∣
is negligible in λ.

Note that the stated leakage is based on black-box implementation of range predicate encryption. That
is, the stated leakage is an upper bound assuming the internally used range predicate encryption scheme
provides plaintext privacy as stated in Definition 22 and predicate privacy as stated in Definition 23. We
state the following leakage function as an upper bound

L(M,Q) = ((ID(f1), . . . , ID(fq)) , IDQ, RR(Q))

where ID(fi) is the identifier of the message that might be used as link to a potential payload as al-
ready discussed in Section 5.1.1. Further, the result set for each query in the query sequence IDQ =(
IDQ1 , . . . , IDQ′q

)
is unveiled. Finally, RR(Q) is a q′ × q′ range relation matrix, each element in this

matrix is out of the set {∅,∩,⊂,=,⊂=,⊃,⊃=}. Here an element in row i and column j indicates the
relation of ranges Qi and Qj given in queries i and j. Particularly, ∅ denotes no intersection, ∩ denotes a
intersection but no range is a subrange of the other. ⊂ denotes that rangeQi is a subset ofQj but no limiting
points are in common, ⊂= denotes a subset relation with one limiting point in common, and the other way
round ⊃ denotes that range Qi is a superset of Qj , i.e. if ⊂ is at position (i, j) than ⊃ is at position (j, i).
These range relations can be formalized by multiple inequations, as given in Table 7.3.

= ∩ ⊂ ⊂= ∅
R

Q

R

Q

R

Q

R

Q

R

Q

r(s) = q(s) ∧ r(e) = q(e)
r(s) < q(s)∧
r(e) ≥ q(s)∧
r(e) < q(e)

r(s) > q(s) ∧ r(e) < q(e)
r(s) = q(s)∧ r(e) < q(e)

or
r(s) > q(s)∧ r(e) = q(e)

r(e) < q(s)

Table 7.3: Illustration and formal representation of different relationships between ranges.

Note that this information can be extracted from the access pattern, namely if IDQ intersects with IDR

then Q intersects with R as well. We emphasize that only encrypted values that fall within a queried
range leak information, while encrypted values that have not been queried remain semantically according
to Definition 22. Shuffling the encrypted limiting values as implemented in SRQ-Token for each range
token results in an obfuscation of the order relation of overlapping queried ranges but preservers the fact
that they overlap. Particularly, this construction does not leak the order relation of matching values but only
a bucketization of these values.
Recall Definition 22 of selective secure plaintext privacy where the challenger only accepts challenges

v0, v1 that both occur in the same subset of queried access patterns. In more detail, if messagemi indexed
under vi is contained in IDQj

it must hold thatm1−i indexed under v1−i also is part of the result set IDQj

for i ∈ {0, 1} and all token queriesQj . By unveiling the range relation matrix to the simulator the simulator
can construct varying range sequences resulting in indistinguishable range token sequences. That is, these
sequences of tokens generated by SRQ-Token cannot be distinguished by any PPT adversary, assuming
SRQ-Token is founded on an RPE encryption scheme with plaintext privacy and predicate privacy. We

85

7 Range Queries

observe that given two range token sequences with the same range relation matrix (for their ranges), no
attacker can distinguish these range token sequences generated by SRQ-Token. A more formal statement of
this property is stated in the following Lemma 1.

Lemma 1. Assume SRQ-Token is built upon an IND-CPA secure secret-key encryption scheme Π and
a range predicate encryption scheme RPE with selective secure plaintext privacy according to Defi-
nition 22 and selective secure predicate privacy according to Definition 23. Given a domain [0, d],
two query sequences (Q1, . . . , Qn) = Q 6= R = (R1, . . . , Rn) with Qi ⊂ [0, d], Ri ⊂ [0, d] and
RR(Q) = RR(R) then the tuples TQ = (SRQ-Token(K,Q1), . . . ,SRQ-Token(K,Qn)) and TR =
(SRQ-Token(K,R1), . . . ,SRQ-Token(K,Rn)) are indistinguishable for any adversary A and any master
keyK ← SRQ-Setup(1λ, [0, d]).

Proof. For the sake of brevity of this proof we omit the explicit notation of the secret key, e.g. we abbreviate
RPE-Token(k1, Q) by RPE-Token(Q). We prove that a simulator can extend, shrink and move the ranges,
so that the probability of any adversary A to distinguish between a token τQ ← SRQ-Token(Q) and token
τ
Q̃
← SRQ-Token(Q̃) that is an extended, shrunk or moved version ofQ is negligible. These modifications

are then exploited to transform a complete range sequence Q to R such that any adversary can distinguish
these sequences only with negligible probability.
Recall that algorithm SRQ-Token on input of a range Q outputs a range token τQ in form of the

tuple
(
c
(0)
Q , c

(1)
Q , tkQ, cQ

)
with c(0)

Q ← RPE-Enc(q(s)), c(1)
Q ← RPE-Enc(q(e)) (or vice versa), tkQ ←

RPE-Token(Q) and cQ ← Enc(Q). Denote εΠ as the negligible probability of an adversary A winning the
IND-CPA security game for the secret-key encryption scheme Π. Denote ε1 as the negligible probability of
an adversary A winning the RPE plaintext privacy security game and ε2 as the negligible probability of an
adversary A winning the RPE predicate privacy game.

First we prove that, given a range token τQ = (c(0)
Q , c

(1)
Q , tkQ, cQ), it is possible to extend range Q to

range Q̃. We present a series of games and show that the probability of any adversary A to distinguish two
games is negligible.

In G0 the original token τQ is output.

In G1 replace cQ with encryption c
Q̃

= Enc(Q̃). A can distinguish between G0 and G1 with probability
εΠ.

In G2 we replace tkQ with this new RPE token tk
Q̃

= RPE-Token(Q̃). Note that q(s) ∈ Q̃ and q(e) ∈ Q̃
still holds. Hence, adversary A can distinguish between G1 and G2 with probability ε2.

In G3 we move the limiting point c(i)Q that encrypts q(e): Replace c(i)Q = RPE-Enc(q(e)) with c̃(i)Q =
RPE-Enc(q̃(e)). A can distinguish between G2 and G3 with probability ε1.

After G3 we have a valid token τ
Q̃
for the new range Q̃. Putting it altogether, adversary A can distinguish

between these tokens with probability ε̃ = εΠ + ε2 + ε1 which is still negligible.

The analogue argument holds for shrinking a rangeQ to a range Q̃ = [q(s) +x, q(e)], with swapped order of
G2 and G3. Again, as a result any adversaryA can distinguish between a token τQ and a token for a shrunk
range τ

Q̃
with probability ε̃ = εΠ + ε1 + ε2.

Combining these two techniques we can move any range Q = [q(s), q(e)] to a new range Q̃ = [q(s) +
x, q(e) + x] such that any attacker can only distinguish between token τQ ← SRQ-Token(Q) and Q̃ ←
SRQ-Token(Q̃) with negligible probability 2ε̃.

86

7.4 Evaluation

With this insight, we can complete the proof for Lemma 1. That is, we can move each range Qi ∈ Q
to a corresponding range Ri ∈ r while any adversary can distinguish between both with version only with
probability 2ε̃; here it is crucial to do this without altering the relation matrix for any intermediate modified
range. As there are at most n ranges to be modified, the overall probability to distinguish between tokens
generated for Q and tokens generated for R is ε ≤ 2nε̃ = 2nεΠε1ε2 and is still negligible for negligible
εΠ, ε1, ε2.

Given Lemma 1 we can now formally prove the security for the complete search protocol SRQ as stated in
Definition 24 with leakage L. The major idea of the proof is that simulator S generates simulated data and
query sequences based on the leaked range relation matrix. According to Lemma 1 and plaintext privacy
provided by RPE, any adversary has only negligible probability to distinguish the real protocol and such
simulated protocol execution. More formally, we state the following Theorem 4 for the implemented secure
range query protocol SRQ and prove it giving a concrete description of a simulator S.

Theorem 4. Let RPE be a range predicate encryption scheme with selective secure plaintext privacy
according to Definition 22 and selective secure predicate privacy according to Definition 23. Further let Π
be an IND-CPA secure symmetric encryption scheme. Then our scheme for secure range queries SRQ as
described in the previous Section 7.3.2 is L-secure against non-adaptive chosen-range attacks according to
Definition 24.

Proof. We describe a polynomial-time simulator S for which the advantage of any PPT adversary A to
distinguish between the RealSRQ experiment and IdealSRQ experiment from Definition 24 is negligible.
Particularly, S sets up the environment and simulates range tokens T̃ and ciphertexts C̃ using leakage L as
follows:

Setting up the environment: S internally executes the setup algorithm SRQ-Setup(1λ, [0, d]) and gener-
ates a master keyK.

Simulating range token sequence T̃: Given leakage

L(M,Q) = ((ID(f1), . . . , ID(fq)) , RR(Q))

S extracts clusters of ranges that form one coherent range from RR(Q). That is, for each range Qi all
directly intersecting ranges Qj or transitively connected ranges Qu are grouped into one cluster, e.g. using
Algorithm 7.6. Each cluster corresponds to one R-Tree in the implementation presented in Section 7.3.2.
For each cluster S simulates ranges with the same range relation matrix as given by RR(Q). In more
detail, for each cluster simulator S transforms the range relation matrix RR(Q) into a linear program
that is solved. Every relation can be formulated as a number of inequations as sketched in Table 7.3.
Repeating this transformation for all clusters, S gets simulated ranges Q̃ with RR(Q) = RR(Q̃). Now
S sets T̃ = (SRQ-Token(K, Q̃i)i∈[1,q′]) which is indistinguishable according to Lemma 4. Note that S
can recover the simulated range Q̃i given a range token SRQ-Token(K, Q̃i), since each token contains a
common IND-CPA encrypted value that can be decrypted. This feature enables S to simulate a consistent
ciphertext sequence as discussed in the following section.

Simulating ciphertext sequence C̃: S creates a set of simulated leaves L̃. More particular, S divides
IDQ =

(
IDQ1 , . . . , IDQ′q

)
in a set L̃ consisting of disjoint sets, where the union of all leaves in L̃i ∈ L̃

still covers the same values as IDQ. Particularly, two sets IDQi
and IDQj

with IDQi
∩ IDQj

= IDQi,j

are divided in IDQi
\ IDQi,j

, IDQj
\ IDQi,j

and IDQi,j
. Since the simulator has already generated the

87

7 Range Queries

Algorithmus 7.6 : Extracting range clusters.
Input : RR(Q)
Output : List of range clusters clusters.

1: Initialize empty list clusters containing multiple range lists
2: Initialize empty list U of inspected rows of RR(Q)
3: while len (U) < q′ do
4: Initialize empty list N that is a queue for ranges to be clustered
5: Initialize empty list G containing the intermediate cluster
6: Add random index from [0, q′] \ U to N
7: while N not empty do
8: choose random row index i from N
9: for 0 < j < q do
10: if RR(Q[j]) 6= ∅ and j /∈ U then
11: Add j to N
12: end
13: end
14: Add i to U and G
15: Remove i from N

16: end
17: Add G to clusters
18: end
19: return clusters

corresponding ranges Q̃i in the previous step, S can create consistent ranges covered by the corresponding
leaves, denoted as Q̃(L̃i). Given the set L̃ of simulated leaves, S can simulate the ciphertexts C̃ =
(c̃1, . . . , c̃q). S iterates over all tuples ID(fi) for i ∈ [1, q] and does the following:

• If there exists a leaf L̃j ∈ L̃ with ID(fi) ∈ L̃j , then S choses randomly a value point ṽi
$←− Q̃(L̃i).

S sets c̃i = RPE-Enc(k1, ṽi) and adds tuple (c̃i, ID(fi)) to C̃.

• Otherwise, there exists no simulated leaf L̃j ∈ L̃ with ID(fi) ∈ L̃j , hence the encrypted file has no
match with any queried ranges. Then S sets c̃i = RPE-Enc(k1, r) with random value outside of all
simulated ranges: r $←− [0, d] \

⋃q′
j=1 Q̃j . The simulator adds (c̃i, ID(fi)) to C̃.

Due to selective secure plaintext privacy of RPE and Lemma 4 the probability forA to distinguish between
C and C̃ generated by S is negligible.

Simulating update protocols: As seen before it is possible for S to simulate range queries Q̃ from given
leakage. Simulator S is able to simulate all update protocols on these tokens T̃K. Since decrypting range
token τ

Q̃i
is possible for the simulator, S can run all update queries on the simulated ranges Q̃. Note

that these update protocols do not contain new information, but all information is already included in
L(M,Q).

7.4.2 Amortized Runtime Analysis

Given a value domain withD elements and n indexed items, there exist
∑D
i=0 i = D+D2

2 = O(D2) different
coherent ranges that can be queried2. That is, afterD2 different queries all possible ranges have been queried
and γ consists of exactly one tree containing all possible ranges.
Obviously, in this state any repeated range query can be answered in logarithmic time. However, assuming

multiple queries for the same range before γ contains exactly one tree, these repetitions may raise problems.
2 One range of sizeD, two ranges of sizeD − 1, . . . , andD ranges of size 1.

88

7.4 Evaluation

Since these repeated queries do not contain new information the server is not able to update index γ. As a
result, there exist search patterns that result in linear search time: First, O(n) different, not coherent ranges
are queried and indexed, e.g. n2 different queries each of range size 1. Now these ranges are repeatedly
queried – in average half of all indexed queries must be checked before retrieving the answer.
We can reduce the search time for such cases implementing a cache for already queried ranges that allows

constant lookup. In more detail, using a hash table keyed with deterministic range identifiers, e.g. we
implement Π =

(
Gen,Enc,Dec

)
as a deterministic encryption scheme that is part of every search token.

This enables the server to reduce search time for repeated range queries to be in constant time O(1). We
emphasize that this cache does not induce additional leakage, since an adversary can identify two tokens
τQ, τR that are generated for the same range; that is, the construction is fitting with the idea of constructing
comparable tokens.
The runtime for one search operation is the sum of the actual search time ts and the update time tu. The

height of the tree is bound by log(D) and the size of an operation on one predicate-encrypted ciphertext is
also O(log(D)) (due to the construction described in Appendix A.3). Hence, merging two trees, extending
one tree, refining one tree or rebalancing one tree can be done in O(log2(D)). Consequently, r trees can be
merged inO(r · log2(D)). Furthermore, since any update operation adds at least one new boundary element,
there can be at most n trees. As a result, the expected update time is bounded by tu = O(n · log2(D)).
Search time depends on the newly queried rangeQ, i.e. if the newly queried rangeQ is covered by exactly

one tree completely. We denote the probability of this event by Pr [Q ⊆ Γi]. If this is the case, search can
be performed in O(log2(D)), because searching one tree is sufficient for learning the result set. Otherwise,
the complete point list must be scanned and potentially updated, resulting in search time of O(n log2(D)).
As a result, the expected search time is ts = Pr [Q ⊆ Γi] ·O(log2(D))+(1−Pr [Q ⊆ Γi]) ·O(n log2(D)).
Any time a range is not completely covered by a single tree at least one element inD is added to a search

tree. Hence, the size of the set Γi increases by at least 1. Consequently, we can have at most n times a search
complexity of O(n log2(D)). The maximum total time spent for these searches is n · n log2(D) This time
can be amortized over the events Q ⊆ Γi. Let x be the total number of searches until amortization occurs.
Then we have

n · n log2(D)
x

= log2(D)

We conclude that latest after n2 searches we have achieved amortized poly-logarithmic search time.

7.4.3 Practical Benchmarks

For the evaluation of our SRQ scheme we have implemented a prototype in Python 3 using bindings for the
PBC library (version 0.5.14)3. The runtime benchmarks have been executed on a computer running Ubuntu
14.04 with 8GB RAM and an Intel Xeon 1230v3 CPU 3.30GHz.
All files are indexed under independently sampled random value points uniformly distributed among the

complete value domain. In addition, every range query is sampled randomly with a size between 1 and a
defined upper limit, starting from a uniformly sampled point in the domain. The upper limit is given as
query factor of the complete domain size, for example given a domain size 1000 and a query factor 10−1

the range for one query may have a length between 1 and 100. By varying the range size we can modify
the probability for two ranges to intersect, hence we can influence the probability of merging and extending
trees. Furthermore, we analyzed the number of trees the search index consists of in dependence of the
number of preceding range queries.

3 https://crypto.stanford.edu/pbc/

89

https://crypto.stanford.edu/pbc/

7 Range Queries

First, we count the average number of comparisons for one range query, i.e. how often the server executes
RPE-Match. We expect this number to decrease in dependence of the ranges queried before as the search
index covers a larger domain. That is, the search tree contains more values and fewer linear scans are
necessary. An additional effect can be observed in dependence of the threshold t describing the number of
entries per node, i.e. RPE-Match is called more often for search trees with a greater t.
Next update costs on the client side are analyzed: we counted the number of range decryption operations

and range creations. We expect this number to be smaller in dependence of node threshold t for the same
number of searches. That is, the larger the number of ranges contained in one tree node the lower is the
height of the tree requiring less freshly generated range tokens for an updated index.
Finally, we present micro benchmarks for encrypting one data point by running SRQ-Enc, creating a

search token using SRQ-Token and checking two tokens generated for intersection. Thesemicro benchmarks
are evaluated with different domain sizes and varying security parameters. Since we use range predicate
encryption as a black box, we can change the underlying implementationwithoutmodifying our construction.
For demonstration purpose we implemented the schemes for secure inner-product evaluation proposed by
Shen [133] and an alternative by Bishop [18] and utilized them for the construction of a range predicate
encryption scheme as described in Appendix A.3.

Searching and updating trees

All measurements presented in this section are repeated five times and we state the average values. For this
subsection we assume the domainD = [0, 226− 1] and the number of indexed files to be 220. Furthermore,
we grouped and averaged 50 values for one data point in the evaluation, e.g. the average runtime of 50
successive search queries is represented by one data point in Figure 7.3.
Modifying the maximum size of one range query results in varying probability for two ranges to intersect.

As a result, the number of merge operations varies, as well as the number of different trees stored in the
search index. With smaller ranges to be queried the trees cover smaller ranges, hence the server must scan
the complete file list more often resulting in more RPE-Match calls, as depicted in Figure 7.3a. In this graph
we do not distinguish between RPE-Match calls for comparing two range tokens as done for tree traversal
or RPE-Match calls for checking if an indexed file falls within the queried range. In the worst case, there is
a huge amount of trees to be scanned, each covers only a small range. Given a new small range token, all
these indexed trees must be searched. If no match has been found, the complete point list must be scanned
additionally, resulting in more RPE-Match calls than a linear scan of all files would require.

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of past searches

103

104

105

106

#A
ve

ra
ge

 R
PE

-M
at

ch
 c

al
ls

QueryFactor = 2^08
QueryFactor = 2^11
QueryFactor = 2^16

(a) Mean number of RPE-Match calls depend-
ing on the query factor.

10000 12000 14000 16000 18000 20000
Number of past searches

200

225

250

275

300

325

350

375

#A
ve

ra
ge

 R
PE

-M
at

ch
 c

al
ls

t = 5
t = 20
t = 50

(b) Mean number of RPE-Match calls depend-
ing on tree threshold t.

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of past searches

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

#C
re

at
ed

 to
ke

ns

t = 5
t = 20
t = 50

(c) Mean number of created tokens depending
on the tree threshold t.

Figure 7.3: Mean number of different operations for one search.

Besides the query factor, we identified the node threshold t as an additional parameter that affects
the number of RPE-Match calls: A greater threshold t results in more RPE-Match calls per node and
consequently in the overall number of RPE-Match calls as depicted in Figure 7.3b. On the other hand, we

90

7.4 Evaluation

Number of preceding searches

100 1000 5000 20,000 40,000

Query
Factor

2−8 82.2 144.6 1 1 1
2−11 98.8 784.2 1467 149.4 3.2
2−16 100 993.2 4213.8 17133.2 29448

Table 7.4: Mean number of trees after five runs.

can decrease the probability of a rebalancing step by increasing the number t of entries one node can hold.
As a result, the server asks for help less often, hence the number of auxiliary token generations for tree
updates can be decreased as presented in Figure 7.3c.
We further evaluated the performance for different query factors as summarized in Table 7.4. Here the

number of indexed trees is given as a function of the number of already searched ranges and the query factor.
The number of indexed trees decreases with the number of preceding searches for query factor 2−8 and
increases for query factor 2−16. That is, for a query factor 2−8 the probability of intersecting queries is high
compared to query factor 2−16. Recall that intersecting queries result in a merge of trees hence decreasing
the number of indexed trees. The behavior of a border case can be observed for query factor 2−11, where
the number indexed trees first increases but decreases when further range queries are submitted.

Microbenchmarks

In our SRQ implementation we used the construction published by Shi et al. [134] utilizing functional
encryption for inner products. For the secret key setting such a scheme was presented in Shen et al. [133]
based on pairings and already proposed by Lu [106] for range queries4. In addition, we implemented the
construction for range predicate encryption based on an alternative approach that has been published recently
by Bishop et al. [18]. In the following we denote the implementation of SRQ utilizing RPE based on the
scheme published by Shen, Shi and Waters [133] as SRQSSW and the scheme published by Bishop, Jain and
Kowalczyk [18] as SRQBJK.

In the following evaluation we have omitted the actual payload encryption operation using a general
secret-key encryption since this is a well studied problem. For both implementations, the following two
parameters affect the runtime, namely the chosen security parameter and the supported domain [0, d].

Unsurprisingly, the computation time for each operation increases in dependence of the security parameter
as highlighted in Table 7.5. For SSW, an increased security parameter has a stronger effect on the increase
of computation time due to the underlying hardness assumption of factorization of the composite group
order. The same is true for the absolute runtime numbers; BJK is assumed to be secure for prime group
order, hence a smaller group order provides a comparable security level compared to SSW.
Second, the domain [0, d] supported by the RPE scheme has impact on the computation time as bench-

marked in Table 7.6. Particularly, the vector length to be supported by the underly IPE scheme increases
logarithmically depending on the domain size supported by RPE as described in Appendix A.3. However,
the underlying constructions differ in the constants they increase as a function of the vector length. Ac-
cording to Appendix A.3.1 the ciphertext size increases linear with the dimension of the vector for SSW,
particularly, one additional vector component increases the ciphertext length by one component. In contrast,
the ciphertext size for the BJK construction increases by two for each additional vector component. As

4 We identified an implementation flaw by Lu during our evaluation: the composite group order must be chosen such that factorization
is infeasible, however, Lu instantiated SSW with group order size of 128 bits. We have addressed this flaw in our implementation
hence report much slower execution times.

91

7 Range Queries

80 bits 128 bits 256 bits

SRQ-EncSSW 381 ms 1147 ms 5898 ms

SRQ-TokenSSW 9660 ms 34045 ms 143173 ms

SSW Token intersection 1553 ms 40625 ms 144512 ms

SRQ-EncBJK 18 ms 41 ms 141 ms

SRQ-TokenBJK 385 ms 854 ms 2466 ms

BJK Token intersection 210 ms 531 ms 1897 ms

Table 7.5: Microbenchmarks for domain size 232.

a result, the relative runtime difference for varying domain sizes is larger for BJK, however, the absolute
values are orders of magnitude lower.

212 220 232

SRQ-EncSSW 943 ms 945 ms 1147 ms

SRQ-TokenSSW 11685 ms 15071 ms 34045 ms

SSW Token intersection 11685 ms 14301 ms 40625 ms

SRQ-EncBJK 16 ms 26 ms 41 ms

SRQ-TokenBJK 114 ms 363 ms 854 ms

BJK Token intersection 58 ms 220 ms 531 ms

Table 7.6: Benchmark for fixed security parameter 128 bits.

Putting it all together

Finally, we present evaluation results for 5 runs of real search traces. We implemented the range predicate
encryptionwith the faster inner product encryption published byBishop et al. with 80 bits security parameter.
We encrypt and index 216 value points sampled independently at random out of domain D = [0, 212 − 1].
Figure 7.4 shows the mean values of all runs, where five searches are aggregated in one bar. We measured
the pure search time that is performed merely on the server side. Additionally, the needed update time was
measured; here the index is updated in the interactive way, hence the client and the server are involved.
Adding these times results in the complete execution time for one search. The execution time required of
one linear scan of all files is depicted as the dashed line. As one can see, we profit from the interactive index
construction already after 5 consecutive search operations. That is, the overall processing time for searching
and updating the index as proposed in SRQ is lower than one linear scan of the complete search index.

7.5 Summary

In this chapter we proposed a novel approach for performing range queries on encrypted data. Based on
the access patterns learned from previous queries the server can decrease search time for future subsequent
queries by incremental updates of a search index. We analyzed this effect on the runtime theoretically
and empirically and have presented a simulation based security proof. Compared to previous schemes for
privacy-preserving range queries with poly-logarithmic runtime we achieve a smaller information leakage
with our construction. Furthermore, our construction utilized functional encryption for inner product
evaluation as a block-box functionality, so one can exchange the underlying algorithm without modifying

92

7.5 Summary

Ti
m

e
fo

r o
ne

 s
ea

rc
h

an
d

up
da

te
 in

 a
ve

ra
ge

 [s
]

Amount of all performed searches

1200

1000

800

600

400

200

0
0 25 50 75 100

Linear search time for complete index
Update time
Search time

Figure 7.4: Average execution time for five searches.

our scheme as demonstrated in our implementation. As a result, the construction presented in this chapter
profits from all future improvements in the are of inner-product encryption and range-predicate encryption.
Based on a prototypical implementation, we demonstrate its feasibility and point out different parameters to
adjust search time and complexity on the client side.

93

8 Substring Search

In this chapter we present a protocol for private substring search over encrypted data. Such functionality
enables the database client to outsource encrypted strings and delegate substring queries to an untrusted
database server. After the protocol execution between the client and the untrusted server the server returns
encrypted string positions where the queried substring occurs. These encrypted string positions can then
be decrypted by the client having access to the decryption key. We implement this functionality by a
transformation of substring queries into range queries; hence this functionality can be implemented using
techniques presented in previous Chapter 7. Due to better performancewewill follow an alternative approach
in this chapter based on frequency hiding order-preserving encryption also providing functionality of range
queries. Further, this constructions is easy to integrate into existing databases, since no extra functionality
must be implemented into the existing database. However, security properties are hard to formalize for these
encryption schemes and their consequences on real-world data are difficult to foresee. In this chapter we
assume a weaker attacker model in form of a snapshot attacker without capabilities to monitor all actions
performed on the database and evaluate the practical consequences for encrypted text in English language.
We follow a slightly different approach in this chapter compared to previous chapters. Particularly, the

remainder of this chapter is structured as follows: An overview of related work is given in Section 8.2.
In Section 8.3 we present our protocols for secure substring search. First, we review the cryptographic
building blocks used in our construction and introduce specific notation. Further, we present the encryption
algorithm that allows to implement a protocol for substring search on encrypted data. Finally, we present
different tweaks for varying scenarios. In Section 8.4we evaluate the security properties and the performance
of our construction. First, we revisit the formal security definition for frequency hiding order-preserving
encryption and derive a related security notation for our construction. Additionally, we evaluate the practical
consequences of this security notion for encrypted text in English language. A detailed performance
evaluation demonstrates the practicability of our scheme. Further ideas how to extend and modify the
presented constructions are discussed in Section 8.5. Finally, we conclude in Section 8.6.
The content of this chapter has been published in joint work with Florian Kerschbaum and Nicolas Loza

at SIGMOD 2018:

• Hahn, Florian ; Loza, Nicolas ; Kerschbaum, Florian: Practical and Secure Substring Search. In:
Proceedings of the International Conference on Management of Data, 2018 (SIGMOD)

8.1 Introduction

One filtering functionality that is still rarely addressed by security mechanisms is substring search over
encrypted data. In real-world applications, this functionality is of great interest for fuzzy search, e.g. in
cases where the exact spelling of the search term to be queried during runtime is unknown.
For example, recall the case of a database containing employees and their individual salary as sketched in

Table 8.1 the client wishes to outsource in encrypted form. Later, the client wishes to query all employees
whose surname contains a specific substring defined by the client, e.g. all employeeswith surname “Schmidt”,
however, the client is not sure about the correct spelling, e.g. is the beginning might be spelled German
starting with “Sch” or it might be spelled English beginning with “Sh”. Additionally, the name might be

95

8 Substring Search

EmpID Forename Surename
1 Harry Maier

2 Sally Schmitt

3 Gary Mueller

4 Larry Schmidt

Table 8.1: Example of plain database table Emp

spelled with “dt” or “tt” or another variation at the end. A SQL statement as given in the following Listing 8.1
can be used to address such uncertainty.

SELECT * FROM Emp WHERE surename LIKE %hmi%;

Listing 8.1: Example SQL query for range query on the Salary column.

yielding the result given in Table 8.2 on the client side.

EmpID Forename Surename
2 Sally Schmitt

4 Larry Schmidt

Table 8.2: Plaintext result after substring query execution stated in Listing 8.1 over table Emp

Although substring search is a functionality that is requested frequently by potential stakeholders for
encrypted databases there exists only a little number of solutions applicable for this problem. Chase and
Shen present a scheme that processes suffix trees in a private interactive protocol purely based on secure
computation resulting in a scheme even secure against a malicious attacker [43]. While their solution offers
a high security level, the practical deployment is debatable due to high modification efforts required on
the underlying database system and the interactivity that is impractical in environments with high round-
trip times. Further, even minimal database updates result in a complete re-initialization of the suffix tree.
Unfortunately, no practical evaluation has been given in their work.
Another scheme presented by Faber et al. [55] is an extension of their searchable symmetric encryption

(SSE) scheme supporting conjunctive queries [38]. They divide the text to be outsourced into k-grams
outsourced using searchable encryption. Each substring search is then the conjunction of such k-grams with
correct relative position offset. Evaluating the correct position offset requires modular exponentiations on
the client side for each search query, thus hindering the deployment of this scheme on low powered client
devices with limited computation power.
In this chapter we discuss the application of a frequency-hiding order-preserving encryption (FHOPE) [89]

scheme for practical and secure substring searches. On the one hand, the advantage of applying such
property-preserving encryption is the possibility to re-use common algorithms for building search indexes
on plaintext databases without any internal system modification. More precisely, the indexing algorithms
for common database systems rely on exactly these properties that are preserved even after the encryption
process. This allows a straightforward and feasible integration of our scheme into existing databases without
need of modifying the underlying database internals. Further, our construction allows substring queries with
only one communication round.
On the other hand, security consequences of property-preserving encryption are uncertain and heavily

depend on the plaintext data and the attacker model. As demonstrated recently by Naveed et al. [115],
the preserved properties, namely ordering and plaintext frequency of frequency-leaking order-preserving

96

8.1 Introduction

encryption can be exploited by an attacker and enables him to reconstruct a large share of encrypted values.
Grubbs et al. [72] even reached recovery rates up to 99%. In contrast, the experiments performed in this
chapter based on the Enron dataset show that a successful attack on our frequency-hiding order-preserving
encryption scheme tailored for secure substring search heavily depends on the background knowledge of an
attacker. Particularly, the success of plaintext recovery of the bucketing attack suggested recently by Grubbs
et al. [72] ranges between 1% and 15% success ratio in plaintext fragment recovery.

8.1.1 Framework

In this chapter we assume a string s with length l over an alphabet Σ to be outsourced, e.g. Σ is the set
of ASCII characters and string s ∈ Σl. We denote si as the character of string s at position i and define
the k-gram of this string with position i as sequence of characters with length k starting at position i,
i.e. si . . . si+k−1 ∈ Σk. Given a k-gram kg contained in string s, denoted as kg ∈ s, we denote poss[kg] as
the ordered list of all positions where kg occurs in s and len (poss[kg]) denotes the number of elements.
Furthermore, we assume a total order over the alphabet Σ, so that it is possible to sort strings consisting
of characters of the alphabet Σ, e.g. lexicographic order or an order that is based on the internal bit string
representation.
Next, we sketch a scheme that supports substring search over encrypted data. In an initial step, the client

creates a master key K by executing Gen. In the following, the construction is discussed with one string
s to be encrypted and outsourced in one initial call of algorithm Enc. The output of Enc consists of two
parts, particularly, one secret state ST to be kept on the client side and the encrypted search index γ to be
transferred to the server. In order to execute substring queries, a protocol Query between the client and the
server is executed after the initial outsourcing step. The client’s input is the master key K and the secret
state ST and the substring query q; the server’s input is the search index γ. After a (possibly interactive
multi-round) protocol execution between the client and the server the query result poss[q] consisting of all
string positions beginning with the queried substring is returned in encrypted form to the client.
Note that this framework addresses one static string to be encrypted and outsourced. We outline a method

how the constructions presented in this chapter support databases with multiple strings in Section 8.3.2.
Possible solutions enabling dynamic strings and databases and how the secret state ST might be updated
are sketched in Section 8.5.1.
Formally, a substring searchable encryption scheme over an alphabet Σ consists of the following algo-

rithms.

Definition 25 (Practical and Secure Substring Protocol). A scheme for practical secure substring search
over encrypted strings consists of a tuple of three (possibly probabilistic) polynomial-time algorithms
PSSS = (Gen,Enc,Query) with the following characteristics.

K ← Gen(1λ) is a probabilistic algorithm that takes a security parameter 1λ as input and outputs a master
keyK.

ST, γ ← Enc(K, s) is a probabilistic algorithm that takes a master key K and plaintext string s ∈ Σ∗ as
input and outputs a secret state ST and a privacy-preserving search index γ.

Iq ← Query(K,ST, q, γ) is a (possibly multi-round) protocol between a client and a server. The client’s
input is a master key K, a secret state ST and a substring q ∈ Σ∗ and the server’s input is a
privacy-preserving search index γ. The client’s output is a query result Iq comprising of poss[q] and
the server has no output.

97

8 Substring Search

Note that a scheme implementing this substring searchable encryption framework does not require an
explicit decryption algorithm but can be supplemented by encrypting the complete plaintext swith a general
IND-CPA secure symmetric encryption scheme. Further, we assume the query length is small compared to
the message length, i.e. len (q)� len (s).

8.2 Related Work

Again, we refer to Chapter 3 for general related work on searchable symmetric encryption and encrypted
databases. In the following section we discuss related work particularly applicable to the functionality
of substring queries on encrypted data. Our construction is implemented using frequency-hiding order-
preserving encryption, hence we discuss this line of work as well.
Order-preserving encryption supports range-queries and sorting operations directly on encrypted data.

The idea of such encryption scheme was formulated by Agrawal et al. [5] based on the idea of modifying the
plaintext distribution into a uniformly distributed ciphertext domain. In addition, their intuitive description
includes a plaintext to ciphertext mapping table as also adopted in our construction, however, their construc-
tion lacks a compression step we apply in addition to achieve smaller memory consumption of the client
state.
The first formal security definition for order-preserving encryption, namely indistinguishability under

ordered chosen plaintext attacks (IND-OCPA) was presented by Boldyreva et al. [21]. Additionally, they
proved that no stateless order-preserving encryption scheme can fulfill this definition and gave a weaker
definition of pseudorandom order-preserving function POPF that can be fulfilled by a stateless encryption
scheme. The first specific construction of a stateful order-preserving encryption achieving the strong security
definition of IND-OCPA has been published by Popa et al. [122]. The linear size state (linear in the number
of distinct plaintexts) is then outsourced to a separate OPE server and can be retrieved in a multi-round
protocol between client and OPE server. This required multi-round communication renders their solution
practically inefficient due to possible network delay. An optimized version that eliminates the necessity of
a separate server but still with client state linear in the number of distinct plaintexts has been published by
Kerschbaum and Schröpfer [91]. All these order-preserving encryption schemes are deterministic, hence
they do not only preserve the order but also the plaintext distribution is preserved for the ciphertexts.
These characteristics can be exploited by an attacker who has access to auxiliary information about the
deterministically OPE-encrypted plaintext data, such as publicly available statistics, e.g. census data.
In order to mitigate these kind of attacks, Kerschbaum proposed a frequency-hiding order-preserving

encryption scheme that does not only fulfill the IND-OCPA security but the strictly stronger security notion
indistinguishability under frequency-analyzing ordered chosen plaintext attacks [89]. Kerschbaum proved
negligible probability for the rebalancing operation of the client’s state (thatmight also induce a re-encryption
process) assuming a databases with a huge number of data queries but moderate number of data inserts.
Partial order-preserving encoding is an alternative scheme fulfilling this strong security notion utilizing a
trusted comparison oracle and has been published recently by Roche et al. [128]. In contrast to Kerschbaum’s
scheme, the assumption for the underlying database operations is orthogonal for partial order-preserving
encoding (POPE), that is, Roche et al. assume a huge number of data inserts but moderate number of data
queries. Due to the simple integration of Kerschbaum’s scheme into common DBMS and the additional
comparison oracle required for POPE we decided to apply Kerschbaum’s scheme for our construction. We
emphasize, however, that both techniques provide functionality for range queries on encrypted data and
hence are applicable for our construction; especially for database with a high number of text inserts but a
moderate number of substring queries POPE is a suitable alternative.

98

8.3 Implementation

Order-revealing encryption enables the comparison of encrypted values but is based on a special com-
parison function. The first formulation of such order-revealing encryption schemes has been presented by
Boneh et al. [27] based on multilinear maps. Chenette et al. proposed constructions solely based on a
pseudorandom function but with lower security guarantees [44] and it has been further improved by Lewi
and Wu [97]. In contrast to order-preserving encryption schemes, the comparison function is not the same
as on plaintext data, the ordering property is not preserved but can be revealed using this special, publicly
computable comparison function. This enables the database systems to index all encrypted based on the
revealed property, however, the deployment is more invasive since the special comparison function needs to
be implemented into this database.
A series of practical attacks against (not only deterministic) order-preserving and order-revealing encrypted

values have been published recently by Grubbs et al. [72]. Particularly the bucket attack is the first attempt of
exploiting only the ordering characteristics without the need of frequency information, hence it is applicable
on randomized order-preserving encryption. We will evaluation the security of our construction using this
bucket attack as benchmark.
We are only aware of two different approaches that provide a direct solution for substring search func-

tionality over encrypted data. Faber et al. [55] followed the line of work started by Cash et al. with support
of conjunctive keyword search [39]. Faber divided the text to be encrypted into k-grams together with
encrypted index information where the corresponding k-gram occurs and this information is outsourced
using searchable encryption. A substring search is then the conjunction of such k-grams where the correct
k-gram position is evaluated directly on encrypted index information. A different approach has been studied
by Chase et al. [43]; they build a privacy-preserving suffix tree for the indexed text that is outsourced to
the server. For each substring query, this suffix-tree is then evaluated in an interactive protocol between the
client and the server.
Both approaches require extensive modifications of the underlying database system, hence prevent easy

deployment into existing database systems.

8.3 Implementation

The main idea of our construction is based on the observation that prefix queries for strings can be
implemented with range queries assuming a total order over the underlying character alphabet, i.e. substring
queries starting at the beginning of a string. For example, assume lexicographic order and lower case
alphabetic characters “a-z”then one can check if string s with length len (s) starts with prefix q with length
len (q) by a range query with lowest value q||alen(s)−len(q) and with greatest value q||zlen(s)−len(q). This
approach is extended to support substring queries with intermediate positions of the string by chopping the
complete string into overlapping parts, each part with varying starting position relative the overall string.
Each such string chop can be used queried for a prefix using the method described before.
The constructions presented in this chapter use a symmetric encryption scheme with semantic security

consisting of three polynomial-time algorithms (Gen,Enc,Dec) as introduced in Section 2.2.1. One specific
construction is based on deterministic encryption denoted as EncDet with the additional property that
EncDet(k,m1) = EncDet(sk,m2) if and only ifm1 = m2.

8.3.1 Order-Preserving Encryption

In addition, we make use of a frequency-hiding order-preserving encryption (FHOPE) scheme [89] that
consists of three polynomial-time algorithms.

99

8 Substring Search

ST ← GenFHOPE(1λ) is a probabilistic algorithm that takes a security parameter λ as input and outputs a
secret state ST .

ST ′, y ← EncFHOPE(ST, x) is a probabilistic algorithm that takes a secret state ST and a plaintext x as
input and outputs an updated secret state ST ′ and ciphertext y.

x← DecFHOPE(ST, y) is a deterministic algorithm that takes a secret state ST and a ciphertext y as input
and outputs a plaintextm.

Here, the order-preserving property requires that the order of the plaintexts is preserved on the ciphertexts
output by EncFHOPE, that is, y1 ≥ y2 ⇒ x1 ≥ x2 with yi

$←− EncFHOPE(ST, xi).
The formal security for frequency-hiding order-preserving encryption as introduced by Kerschbaum is

based on the (not necessarily unique) randomized order of two plaintext sequences defined in the following.

Definition 26 (Randomized Order from [89]). Let n be the number of not necessarily distinct plaintexts in
sequence X = x1, . . . , xn and all for all i it holds xi ∈ N. For a randomized order Γ = γ1, . . . , γn (with
∀i : 1 ≤ γi,≤ n, ∀i, j : i 6= j ⇒ γi 6= γj) of sequence X it holds that

∀i, j : xi > xj ⇒ γi > γj

and
∀i, j : γi > γj ⇒ xi ≥ xj

Founded on this randomized order, the security experiment ExpFAOCPA
FHOPE,A for a frequency-hiding order-

preserving encryption scheme is defined between an adversary A and a challenger as follows:

Query: Adversary A chooses two sequences X0, X1 such that they have at least one common randomized
order Γ.

Challenge: The challenger flips a coin b and encrypts Xb and sends this encrypted sequence back to A.

Guess: Finally, the adversary A outputs a guess b′.

The experiment outputs 1 if b equals b′ and 0 otherwise.

Definition 27 (IND-FAOCPA from [89]). We say FHOPE is IND-FAOCPA (indistinguishable under
frequency-analyzing ordered chosen plaintext attack) secure if the adversary’s advantage of a correct
guess is negligible, that is, if it holds that∣∣∣∣Pr

[
ExpFAOCPA

FHOPE,A (λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

We emphasize that our construction does not require any decryption functionality so we can weaken the
requirements and it is sufficient to assume a frequency-hiding order-preserving one-way function.

8.3.2 Protocol

For the goals of our encryption scheme, namely, easy deployment into existing database management
systems and fast execution time for practical adoption, we propose different approaches that all provide the
functionality of secure substring searches. These approaches have different characteristics in the overall
runtime (as comprehensively evaluated in Section 8.4) as well as in the amount of computation overhead

100

8.3 Implementation

required on the client side, either induced by intermediate steps for an interactive protocol or after the (non-
interactive) protocol execution to remove false positives. We describe the main idea in the next section from
a high-level perspective and dive into more details of three different variations in the subsequent section.

Basic Encryption

Recall that for simplicity and comprehensible notation only the case of encrypting a single string is addressed
in the framework stated in Definition 25. This framework can easily be extended to support encryption
of multiple strings with secure substring search, that is, concatenate all strings and extend the position
information for this large string with identifiers pointing to the original strings. For example in the case of
encrypted databases the content of the complete column providing substring search is interpreted as one
string during the preprocessing step and each position information is enriched with unique row identifiers.
Given a string s to be outsourced, the client divides this string into len (s) overlapping k-grams denoted

g1, . . . , glen(s). In the following, we distinguish between the k-gram sequence gi forming the string to be
encrypted, and the set of unique k-grams kgi occurring in this string. The k-grams gj are then encrypted
using a very simple FHOPE encryption implementation resulting in their corresponding FHOPE ciphertexts
denoted as oj . The general encryption algorithm can be summarized with the following steps:

• Build a map where each unique k-gram kgi is mapped to the list containing all position where said
k-gram appears, i.e. poss[kgi].

• Each position list poss[kgi] is permuted.

• Sort this map lexicographically according to its keys, i.e. the set of all unique k-grams kgi appearing
in string s.

• Iterating over this sorted k-grammap, all positions are enumerated, resulting in one coherent ciphertext
range for each k-gram [o(kgi)

1 , o
(kgi)
len(poss[kgi])

]. The secret state ST must be maintained at the client
side in order to enable the client to query this search index. That is, a map of all unique k-grams
kgi together with the corresponding FHOPE-range, i.e. the lowest ciphertext o(kgi)

1 and the highest
ciphertext o(kgi)

len(poss[kgi])
.

Each value oj occurs exactly once, hence even the same k-gram is mapped to different order-preserving
ciphertexts resulting in a frequency-hiding scheme for k-grams. Each FHOPE encrypted k-gram is addition-
ally equippedwith encrypted position information. Using a common symmetric encryption scheme the client
encrypts the particular position information poss[kgi] for each k-gram kgi resulting in ckgi

j = Enc(K, pj)
for all pj ∈ poss[kgi]. The set of tuples

(
o
kgi
j , c

kgi
j

)
j=1,...,len(poss[kgi])

for all unique k-grams kgi forms

then the most simple privacy-preserving search index γ. The secret state ST kept at the client is then a com-
pressed description of the mapping from k-grams to order-preserving ciphertexts. We evaluate the practical
viability of this client state in Section 8.4.3. A formal description of the preprocessing and encryption step
for one string is given in Algorithm 8.1. We assume k-gram size k to be public and omit it in the remainder
of the algorithm descriptions.
A toy example for encrypting the string ’bananas’ with k-gram size k = 3 with the resulting client state

given in Table 8.3 and the encrypted search index given in Table 8.4.

Basic Tokenization

After the initial string encryption step, the resulting privacy-preserving search index γ is transferred to the
database located at the untrusted server and the secure state ST is kept on the client side or outsourced into

101

8 Substring Search

Algorithmus 8.1 : Encryption of one string
Data : A string s = s1 . . . sl, k-gram length k, master keyK
Result : @DB: search index γ. @CL: secret state ST .

1: ∀i ∈ {1, . . . , n− k} gi = si . . . si+k
2: ∀i ∈ {n− k + 1, . . . , n} gi = si . . . sn
3: Define pos as Map< k-gram,List < Integer >>

/* Map each k-gram to its positions in s */
4: Define g as list containing all unique k-grams
5: Sort g lexicographically
6: Define ST as empty list
7: Define o = 0

/* current FHOPE ciphertext */
8: foreach kgj ∈ g do
9: define starto = o

10: l← shuffle(pos[kgj])
11: foreach p ∈ l do
12: c← Enc(sk, p)
13: γ.add((o, c))
14: o = o+ 1
15: end
16: ρkgi = (starto, o− 1)
17: ST.add(kgi, ρkgi)

/* k-gram and FHOPE ciphertext range */

18: end
19: Return ST, γ

kGram start end

ana 0 1

as_ 2 2

ban 3 3

nan 4 4

nas 5 5

s__ 6 6

Table 8.3: Secret State ST

FHOPE Position

0 Encsk(4)
1 Encsk(2)
2 Encsk(6)
3 Encsk(1)
4 Encsk(3)
5 Encsk(5)
6 Encsk(7)

Table 8.4: Search Index γ

a trusted environment. Recall that the underlying database system can be any common database system like
MySQL without further modifications; the secret state can be stored in another (trusted) database as well as
in a plain textfile. Given a substring query q = q1, . . . , ql the client holding the secret states tokenizes this
query to be compatible with the privacy-preserving search index as described in the following.
For simplicity, first assume l ≤ k, that is, the queried substring is at most as long as the k-gram length

stated during the encryption step. The client accesses the secret state and looks up the last indexed k-gram
kgi that is strictly smaller than q and the first indexed k-gram kgj that is strictly greater than q (according
to the defined order over alphabet Σ). Since the client state is stored in a sorted structure, this search
can be completed in logarithmic time, e.g. by applying binary search. The corresponding FHOPE-range
ρq = [ρ̇q, ρ̄q], beginning at ρ̇q = o

kgi

len(pos[kgi]) ending at ρ̄q = o
kgj

1 is then evaluated on the database and
results in all encrypted position informations where this substring occurs. This encrypted result set is then
transferred to the client and decrypted there.

102

8.3 Implementation

Now we are ready for a description of the more general construction for a substring query q = q1 . . . ql

with l > k. In order to support such queries, the client transforms the substring query q into multiple (if
possible disjoint) k-grams with size of at most k. All k-grams have to overlap or follow directly of each
other, i.e. their relative distance is smaller or equal than k. For that reason, the client chooses a reference
k-gram kgref, and assigns it the relative position δref = 0. The relative positions δ of all other k-grams in the
queried substring are then given relatively to this reference k-gram. If any of these k-grams are not found
in the secret state this k-gram was not part of the original text, hence the query cannot be a substring of the
indexed text. Otherwise, the client knows that all k-grams are part of string s, but cannot be sure if they
form the desired substring. Thus, the set of returned positions for each k-gram query is either decrypted on
the client side and filtered for the correct positions offsets or processed in a second subsequent protocol step
directly on the server side as discussed in the following Section 8.3.3.
We will use the statement

τττ ,ρρρ← convert(ST, q)

to refer to the process happening on the client side before the actual database queries, that is, convert
converts the substring query into range queries. In this case, τττ contains the tuples τi = (kgi, δi) and ρρρ is
a map where every k-gram kgi is mapped to a FHOPE-range ρi. Note that the result of this process is not
unique and the same substring query can result in different k-gram queries even consisting of a different
number of k-grams. For example, the outsourced string ’bananas’ with k-gram size k = 3 results in the
secret state ST and search index γ as given in Table 8.3 and in Table 8.4. Assume the client is searching for
the substring “anana”, then one possible tokenization is the following:

{(’nan’, 0), (’ana’,−1), (’ana’, 1)}

{’ana’ : [0, 1], ’nan’[4, 4]} ← convert(ST, ’anana’).

However, this results in 3 tokens being generated, and none of them are disjoint from their neighbors. This
can be simplified, for example, by generating the tokenization with maximal offset k

{(’ana’, 0), (’na’, 3)}

{’ana’ : [0, 1], ’na’ : [4, 5]} ← convert(ST, ’anana’).

Moreover, the covered values of the FHOPE range indicates how often a certain k-gram appears in the
original text, e.g. k-grams like “the" or “of" might appear much more often than others. This observation
allows the client to optimize the convert process with respect to the filtering overhead. The server is
queried for all FHOPE-ranges ρρρ computed by convert via common database queries. These FHOPE-range
queries can be evaluated efficiently on standard databases due to preserved order of the k-grams after
applying Algorithm 8.1 and indexing techniques common for database and suitable for range queries such
as, e.g. search trees.

8.3.3 Different Filtering Algorithms

In this section we discuss different approaches for filtering the result sets matching each FHOPE-range query
individually. For demonstration purpose we give examples of the resulting database queries after the query
transformation in SQL. We state three different approaches, with varying filtering complexity for the client
or the server. On the one hand, the filter process can be executed solely on the client resulting in a one-round
protocol, that is, all database queries can be sent in one batch without waiting for intermediate result sets but
false positives might be corrected in a post-processing step. On the other hand, the server side evaluation

103

8 Substring Search

is based on a two-round protocol but omits any post-processing (except decryption) required by the client.
The performance impact is evaluated in detail in Section 8.4.3.

Position Set Reduction

In this subsection we discuss the most straightforward solution, namely, every FHOPE ciphertext-range ρi is
queried separately on the database, resulting in position sets poss[kgi] for each unique k-gram kgi. Note that
these FHOPE-ciphertext range queries can be submitted in one (parallel) batch denoted as batchQuery()
in Protocol 8.2 with the corresponding SQL queries

SELECT Pos FROM Index WHERE (ρ̇0 < FHOPE < ρ̄0)

SELECT Pos FROM Index WHERE (ρ̇1 < FHOPE < ρ̄1)

.

The complete position filtering process is performed afterwards on the client side according to their position
offset δi. In more details, given the position set poss[kgref] of the reference k-gram, each other position set
pos[kgi] is corrected by adding δi. The intersection of all these corrected position sets contains the actual
positions the queried substring occurs

⋂
(kgi,δi)∈τττ{p+ δi|p ∈ pos[kgi]}. The complete filtering algorithm

is described more formally in Protocol 8.2.

Protocol 8.2 : Client Side Position Set Reduction
Data : @DB: search index γ.
@CL: Query q = q1 . . . ql, State ST
Result : Set Iq of matching positions for q

1: τττ ,ρρρ← convert(ST, q)
/* We assume all tokens exist in ST. */

2: pos← γ.batchQuery(ρρρ)
3: < kgref, δref >← τττ .removeF irst()

/* Here δ = 0 */
4: posref ← ρρρ.get(kgref)
5: foreach < kgi, δi >∈ τττ do
6: pos[kgi]

/* Matches for current k-gram */
7: foreach base ∈ posref do
8: if not pos[kgi].contains(base+ δi) then
9: posref.remove(base)

10: end
11: end
12: end
13: Return posref

Note that each separate k-gram query with a large result set size increases the filtering overhead on the
client side linear in this result set size, hence the runtime is dominated by the k-gram with the most frequent
occurrence.

Filtering on the Server Side

Next, we present a solution that decreases the filtering overhead on the client side to be linear in the result
set size of the least frequent k-gram, but is two round interactive. For this approach we slightly modify the
encryption algorithm. More particular, in Algorithm 8.1 line 12, the occurrence positions for each k-gram
in the outsourced string is encrypted using a deterministic encryption scheme as outlined in Section 8.3.

104

8.3 Implementation

Note that encrypting the positions with deterministic encryption does not weaken the security of the privacy-
preserving index (since each position is unique) but provides the server the ability to check for equality on
encrypted data.
In the first round, the client queries the k-gram with the FHOPE-range covering the least values as

reference token kgref. The number of values covered by a range directly correlates with the result set size as
highlighted previously, that is, each k-gram occurs as many times in string s as the FHOPE-range margin.
The result set containing all matching positions pos[kgref] is returned to the client. This set of matching
positions is then decrypted on the client side and further processed in order to match for remaining k-grams’
positions. For each k-gram kgi the offset δi is added pos[kgi] = {p + δi|p ∈ pos[kgref]} and encrypted,
resulting in a set of encrypted positions denoted as EncDet(pos[kgi]) = {EncDet(p + δi)|p ∈ posref}.
For each k-gram the FHOPE-range ρi is then queried at the server together with the calculated position
information EncDet(pos[kgi]) labeled as queryInSet(ρi,EncDet(pos[kgi])), e.g. using SQL syntax

SELECT Pos FROM SearchIndex WHERE ρ̇1 < FHOPE < ρ̄1

AND Pos IN EncDet(pos[kg1])

AND ρ̇2 < FHOPE < ρ̄2

AND Pos IN EncDet(pos[kg2])

.

The complete protocol is formally stated in Protocol 8.3.

Protocol 8.3 : Evaluation on the Server Side
Data : @DB: search index γ.
@CL: Query q = q1 . . . ql, State ST , master keyK
Result : Set Iq of matching positions for q.

1: τττ ,ρρρ← convert(ST, q)
/* We assume all tokens exist in ST. */

2: < kgref, δref >← τττ .getSmallestRange()
/* Choose k-gram with fewest matches as reference */

3: posref ← γ.query(ρref))
4: foreach < kgi, δi >∈ τττ do
5: posi = posref + δi

/* Retrieve matches for current k-gram */

6: posi ← queryInSet(ρi,EncDet(K, pos[kgi])
7: end
8: correctIndices(posref)
9: return baseMatches

Fragment search

In this section we strive for reduction of the filtering overhead on the client side by reducing the probability
of false positives compared to the first approach but without the necessity of a two-round protocol. Again,
the client starts with the FHOPE-encryption as described in Algorithm 8.1 but now the actual k-gram
positions are omitted. Instead, string s to be outsourced, is chopped in multiple string fragments fj of length
len (f) that overlap by length l, i.e. fj = si, . . . , si+len(f) and fj+1 = si+len(f)−l, . . . , si+2len(f)−l. This
overlapping length determines the maximal possible length for one substring query, otherwise substrings that
are chopped into two different fragments are not correctly retrieved. Each fragment fj is encrypted using a

105

8 Substring Search

general IND-CPA secure symmetric encryption scheme and outsourced together with all FHOPE-encrypted
k-grams said fragment consists of.
Given the FHOPE-ranges ρρρ output by convert(ST, q) the client queries the fragments that are indexed

with FHOPE-ciphers and fall within all ρi ∈ ρρρ stated as queryAll(ρρρ) in Protocol 8.4. This can be realized
using SQL join queries as follows:

SELECT fID FROM Frags WHERE (ρ̇0 < FHOPE < ρ̄0) AS T1

JOIN

SELECT fID FROM Frags WHERE (ρ̇1 < FHOPE < ρ̄1) AS T2

ON T1.fID = T2.fID

.

The result set consists of all encrypted string fragments that contain each k-gram in τττ . As already seen
in the previous section on Position Set Reduction, this result set can raise false positives, due to wrong
position offsets. That is, although all k-grams occur in the string fragment they might not coherently form
the queried substring q. Due to the distinction of different fragments, however, the probability of false
positives is reduced. These false positives are filtered on the client side based on the decrypted fragments.
The corresponding formal description of this approach is given in Protocol 8.4.

Protocol 8.4 : Partitioned Search Algorithm
Data : @DB: search index γ.
@CL: Query q = q1 . . . ql, State ST , master keyK
Result : Set Iq of matching positions for q.

1: τττ ,ρρρ← convert(ST, q)
/* We assume all tokens exist in ST. */

2: encFragments = γ.queryAll(ρρρ)
3: Define pos as empty List
4: foreach encF ∈ encFragments do
5: fragment← Dec(K, encF)
6: p← fragment.find(q)

/* We assume find returns −1 if q is not contained */
7: if p >= 0 then
8: pos.add(pos + fragmentOffset)
9: end

10: end
11: Return pos

8.4 Evaluation

In this section we give a short theoretical discussion on the security properties provided by our encryption
algorithm. Compared to previous chapter in this thesis, we utilize a property-preserving encryption scheme
in our construction; more specifically we use frequency-hiding order-preserving encryption. Since the real
protection provided by property-preserving encryption heavily depends on the underlying data structure
to be encrypted, we additionally evaluate the security in a practical analysis. Further, we evaluate the
performance of the different approaches presented in previous Section 8.3.3 based on an implementation.
We refrain from a theoretical runtime evaluation since it depends on the data structures provided by the
underlying database system used for storing the encrypted search index.

106

8.4 Evaluation

8.4.1 Theoretical Security Evaluation

Our indexing scheme is IND-FAOCPA secure as stated in Definition 27 since all k-grams are ordered
during the encryption step, hence in practice all possible k-gram sequences of length n have the same
randomized order, namely 1, . . . , n. Following the cryptographic approach of indistinguishability proposed
by Kerschbaum for FHOPE we state security of our construction founded on the following definition.

Definition 28 (IND-CPA-IOQ). Let PSSS = (Gen,Enc,Query) be a scheme with support for substring
search over encrypted data implementing the framework stated in Definition 25. For PSSS we define the
security experiment ExpCPA-IOQ

PSSS,A (λ) between adversary A and a challenger as follows:

• The challenger creates a master keyK $←− Gen(1λ).

• Adversary A chooses two strings s0, s1 with |s0| = |s1|.

• The challenger flips a coin b, calls STb, Ib
$←− Enc(K, sb) and sends Ib to A.

• Adversary A submits two query sequences Q0, Q1 with the same length. Each sequence must be
transformable into (multiple) range queries ρρρ0, ρρρ1 such that ρρρ0 = ρρρ1 (relative to STb) and result in
the same sized access pattern.

• The challenger simulates Query(K,STb, qb, Ib) and sends the transcript VIEW of these query execu-
tions to A.

• Adversary A outputs a guess b′ and the experiment outputs 1 if b = b′.

The encryption scheme PSSS with support for substring search over encrypted data is indistinguishable
under chosen plaintext attacks for identically ordered queries if all probabilistic adversaries A win this
experiment probability ∣∣∣∣Pr

[
ExpCPA-IOQ

PSSS,A (λ)
]
− 1

2

∣∣∣∣
that is negligible in λ.

Note that the restriction on queries (Q0, Q1) with one common randomized order relative to ST0, ST1 is
required, otherwise an adversary could win the game trivially. For example, assume k = 3 and two strings
(over the English alphabet with lexicographic order) s0 = “beefs” and s1 = “lulua′′ resulting in ST0 =
(bee, eef, efs, fs_, s__) and ST1 =(a__, lul, lua, ua_, ulu). Two valid query sequences for the experiment
are Q0 = (e__,s__) and query Q1 =(lu_,ulu) both transformed to range queries ρρρ0 = ρρρ1 = ([1 − 2], [5]).
The restriction of same sized access pattern requires that for each substring query out of set Qb all k-grams
forming these queries have the same number of occurrences.
Further, the transcript VIEW is the view of a semi-honest server, consisting of all messages sent from the

client to the server.

Theorem 5. The two round interactive protocol for substring queries over encrypted data with filtering
on the server side as described in Protocol 8.3 is IND-CPA-IOQ secure, if the underlying deterministic
encryption is secure and the frequency-hiding order-preserving encryption scheme is IND-FAOCPA.

Proof. We use the security of pseudorandom permutations together with the formalization of FHOPE as
stated in Definition 26 to give an intuition of the security proof for Theorem 5.
For this proof we present a sequence of games {G0,G1,i,G2,j}, each outputting a transcript VIEW0(b),

VIEW1,i(b), VIEW2,j(b). The games G1,i are hybrid games where we modify the i-th encrypted position
information returned by any k-gram query. The games G2,j are hybrid games where we modify the j-th

107

8 Substring Search

encrypted position information never returned by any k-gram query but stored in the encrypted index. By
i-th and j-th encrypted position information we assume an implicit order over ciphertexts according to their
bit representation. Each game gradually differs, until the transcript of the final game is independent of the
sampled bit b by the experiment, hence the adversary can only guess b′ with probability 1

2 in the final game.
We argue that each game is indistinguishable from the previous game except with negligible probability,
thus the view of the first game and the final game is also indistinguishable except with negligible probability.

G0: In this game we follow the experiment for IND-CPA-IOQ (cf. Definition 28) hence output the real
transcript VIEW0(b) the attackers observes.

G1,1: In this game we simulate the first encrypted position information returned by any k-gram query.
That is, we replace the first returned encrypted positions (both in the query result and the encrypted
search index) with a randomly sampled bit string in {0, 1}n. Denote the modified transcript with
VIEW1,1(b). Note that positions returned multiple times, e.g. because a substring query is repeated,
are always replaced with the same sampled bit string.

G1,i: In this game, we simulate all encrypted position information up to the i-th value returned by any
k-gram query.

G2,1: In this game we simulate the first encrypted position information stored in the encrypted search index
but never returned by any k-gram query. That is, we replace the first returned encrypted position in
the search index with a randomly sampled bitstring in {0, 1}n. Denote the modified transcript with
VIEW2,1(b).

G2,j : In this game we replace the deterministic encryption of the j-th positions never been returned with
randomly sampled bitstrings {0, 1}n.

The transition from one game to the next game is indistinguishable for the adversary except with negligible
probability ε, otherwise the adversary could attack the random permutation. Denoting n as the number of
replaced encrypted values, the overall probability for an adversary to distinguish G0 from G2,n is nε. In
the last game G2,l all deterministically encrypted values are replaced with random strings and hence are
independent from the sampled bit b. Since the range queries Q0, Q1 have the same ordering by definition
of the security, this completes the proof.

8.4.2 Practical Security Evaluation

For a better understanding of the practical implications using an IND-FAOCPA secure FHOPE scheme for
outsourcing k-grams, we attacked FHOPE-encrypted k-gram indexes with the best known attack on FHOPE
schemes published by Grubbs et al. [72]. This attack can be performed by a snapshot attacker, for example
an external attacker that has been able to download one version of the encrypted databases. However, this
attacker class is not empowered to constantly monitor activities on the sever. In the following we revise the
attack by Grubbs et al. called bucketing attack then we describe our evaluations settings and finally present
the results.
The bucketing attack is based on the assumption that an attacker has access to auxiliary data with similar

structure as the FHOPE-encrypted target data. That is, the attacker’s auxiliary data and target data are drawn
from the same value domain (in our string example the same k-gram distribution over the same alphabet
Σ) with a similar underlying distribution. Given encrypted target data of length n and sufficient (i.e. with
length greater than n) auxiliary data, the attacker samples n values from the auxiliary data. These values
are classified corresponding to their prefix of length β, every bucket is labeled with such a prefix. Then the

108

8.4 Evaluation

upper and lower bound on the rank of all elements in each bucket is calculated; following our construction
these ranks are the same as their FHOPE-ciphertext values. So these buckets give an approximation of all
ciphertexts that share the same prefix with length β. This data sampling and bucketing process is repeated l
times and the border rank values for each bucket are averaged. Finally, the most common plaintext for each
averaged bucket is the guess for the target ciphertext that falls within that averaged bucket range.
For our practical security analysis we evaluate the bucketing attack revised in the previous paragraph.

Each guess by the attacker is counted as successful if the mapping from the FHOPE-ciphertexts to the
corresponding k-gram is correct. The attacker’s success ratio is the number of correct guesses divided by
the overall FHOPE-encrypted k-grams. Each measurement has been repeated 100 times and we calculated
the mean value. All our attacks are based on the Enron dataset1. More particular, both the auxiliary data
and the challenge data is chosen out of the same dataset collection.

20 30 40 50 60 70 80 90 100
Percentage of known ciphertext

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
ra

tio

k = 3
k = 4
k = 5
k = 6
k = 7

Figure 8.1: Attacker’s advantage with partly know plaintext.

As a first baseline evaluation, we perform an attack where the attacker can access parts of the challenge
data as auxiliary data and we increased this known part successively. In more details, we evaluate how
successful the bucketing attack is with auxiliary data chosen as 500 random files and partly used the same
file set as challenge data. We set the bucketing prefix parameter β = 3 and varied the k-gram size between 3
and 7. Note that β = k = 3 is a special case in which each bucket has only one element, hence the bucketing
attack corresponds to the sorting attack on frequency-hiding order-preserving encryption as discussed by
Grubbs [72]. In the case of full knowledge about the known challenge text, called dense knowledge, the
sorting attack has 100% success rate as already highlighted by Naveed et al. [115]. The attacker’s advantage
for different k-gram sizes and different fractions of known plaintext is shown in Figure 8.1.

Further, we executed series of more comprehensive attacks where we fixed the dataset size for values
within {200, 500, 1000, 2000} and increased the amount of auxiliary data the attacker has access to. We
evaluated the effect of increased alphabet size by filtering the text for all special characters in Figure 8.2
and 8.3, and by ignoring case-sensitivity in Figure 8.4 and 8.5. We chose different k-gram sizes k, and
fixed the prefix size β = 2 with bucketing sampling process repeated l = 100 times as suggested in [72].
The attacker’s success ratio decreases with increased k-gram size k for all data sets. For the case sensitive
1 https://www.cs.cmu.edu/~enron/

109

https://www.cs.cmu.edu/~enron/

8 Substring Search

attacks we report attack success ratio between 1% and 3.5%, depending on the k-gram size chosen during
the encryption step. As expected, the filtering process increases the attack success and the same is true
for case-insensitive encryption since the target alphabet size decreases. That is, for the case insensitive
attacks we report attack success ratio between 3% and 15%, depending on the k-gram size chosen during
the encryption step. In conclusion, the attacker’s success ratio heavily depends on the challenge dataset.
The alphabet size and the k-gram size affects the number of different k-gram combinations and hence the
plaintext space. It is intuitive that a larger plaintext space decreases the success probability of a snapshot
adversary mounting the bucketing attack, however, increases the storage overhead required for the client
state.

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 200 encrypted files

k = 3
k = 5
k = 7

(a) 200 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.015

0.020

0.025

0.030

0.035

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 500 encrypted files
k = 3
k = 5
k = 7

(b) 500 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 1000 encrypted files

k = 3
k = 5
k = 7

(c) 1000 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.020

0.025

0.030

0.035

0.040

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 2000 encrypted files
k = 3
k = 5
k = 7

(d) 2000 target files

Figure 8.2: Case sensitive attacks on dataset filtered for special characters and different auxiliary dataset sizes.

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 200 encrypted files

k = 3
k = 5
k = 7

(a) 200 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 500 encrypted files

k = 3
k = 5
k = 7

(b) 500 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.015

0.020

0.025

0.030

0.035

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 1000 encrypted files
k = 3
k = 5
k = 7

(c) 1000 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.020

0.025

0.030

0.035

0.040

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 2000 encrypted files

k = 3
k = 5
k = 7

(d) 2000 target files

Figure 8.3: Case sensitive attacks on unfiltered dataset and different auxiliary dataset sizes.

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.03

0.04

0.05

0.06

0.07

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 200 encrypted files

k = 3
k = 5
k = 7

(a) 200 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.03

0.04

0.05

0.06

0.07

0.08

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 500 encrypted files
k = 3
k = 5
k = 7

(b) 500 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 1000 encrypted files

k = 3
k = 5
k = 7

(c) 1000 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.04

0.06

0.08

0.10

0.12

0.14

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 2000 encrypted files
k = 3
k = 5
k = 7

(d) 2000 target files

Figure 8.4: Lower case attacks on dataset filtered for special characters and different auxiliary dataset sizes.

8.4.3 Practical Benchmarks

Wehave prototypically implemented our substring search protocols inOracle’s Java 1.8. All client operations
have been executed on Windows 10 with an Intel i7 6600U CPU @ 2.6 GHz and 16 GB main memory.
As database system we chose MySQL running in the same LAN with 4 Intel XEON E5-2670 each @ 2.6
GHz processors and 256 GB main memory. We ran all our evaluations on subsets of the Enron dataset; the
subsets are sampled randomly for each run.

110

8.4 Evaluation

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.02

0.03

0.04

0.05

0.06

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 200 encrypted files

k = 3
k = 5
k = 7

(a) 200 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.03

0.04

0.05

0.06

0.07

0.08

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 500 encrypted files
k = 3
k = 5
k = 7

(b) 500 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 1000 encrypted files
k = 3
k = 5
k = 7

(c) 1000 target files

5000 10000 15000 20000 25000 30000
Auxiliary file set

0.04

0.06

0.08

0.10

0.12

At
ta

ck
 su

cc
es

s r
at

io

Bucketing attack on 2000 encrypted files
k = 3
k = 5
k = 7

(d) 2000 target files

Figure 8.5: Lower case attacks on unfiltered dataset and different auxiliary dataset sizes.

0 20000 40000 60000 80000 100000
Number of Files

0

250

500

750

1000

1250

1500

1750

Co
m

pr
es

sio
n

ra
tio

k = 3
k = 4
k = 5
k = 6
k = 7

(a) Compression ratio with no preprocessing step.

0 20000 40000 60000 80000 100000
Number of Files

0

1000

2000

3000

4000

Co
m

pr
es

sio
n

ra
tio

k = 3
k = 4
k = 5
k = 6
k = 7

(b) Compression ratio with initial preprocessing step.

Figure 8.6: Compression ratio for different k-gram sizes and indexed files.

Viability of the client state

Recall that the client needs to store a secret state mapping each k-gram to a range of FHOPE ciphertexts.
In a first step we analyzed the compression ratio for the client state depending on the used k-gram size
and the outsourced amount of files. We have randomly sampled different numbers of files and counted
the number of overall k-grams and the number of unique k-grams that are stored in the client’s state. The
compression ratio is the overall k-gram number divided by the number of unique k-grams. We repeated
each file sampling 10 times and averaged the compression ratio for all runs. This analysis was performed
with and without a preprocessing step in which all special characters have been filtered out. As we can see
in Figure 8.6a without the preprocessing step and in Figure 8.6b this compression ratio highly depends on
the chosen k-gram size k and the possible alphabet size since the number of all possible k-grams is |Σ|k.
For 100, 000 files without preprocessing consisted of 255, 322, 941 k-grams in average and the number of
unique k-grams varied from 138, 242 for k = 3 up to 3, 410, 053 for k = 7. With the character filtering
step before the actual outsourcing, the overall number of k-grams is 216, 817, 129 and the average number
of unique k-grams varied from 50, 315 for k = 3 up to 10, 313, 490 for k = 7.

Substring Search Time

In this section we evaluate the three different filtering strategies presented in Section 8.3.3, that is, the
straightforward position set reduction (Figure 8.7), the filtering on the server side based on deterministically
encrypted position information (Figure 8.8) and the fragment search (Figure 8.9). All tests have been run
on an unmodified MySQL database that has been accessed by the client via LAN interface and Java’s JDBC
driver. In order to evaluate the substring search in real-world scenarios, our measurements contain the
complete query answering time including network latency and client postprocessing time. Particularly, the
measured times include token generation, query transmission over the LAN interface, the MySQL database

111

8 Substring Search

processing time and the network latency for result set transmission together with the client’s intermediate
or post-processing step.
For each filtering strategy we have evaluated the substring search time for different k-gram sizes 3, 5, 7,

different query length starting with 3 up to 20 and a varying amount of indexed files out of the Enron dataset
starting from 500 files up to 10, 000 files. In order to be comparable, each measurement is given for the
same indexed files and the same sequence of substring queries. Furthermore, each plotted data point is the
mean value of 100 values. The search times for the position set reduction as described in Section 8.3.3 are
illustrated in Figure 8.7a for k-gram size 3, 8.7b for k-gram size 5, 8.7c for k-gram size 7.

3 7 11 15 19
Query Length [characters]

0

10000

20000

30000

40000

50000

60000

70000

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000
Database Size: 5000
Database Size: 10000

(a) Indexed k-gram size 3.

3 7 11 15 19
Query Length [characters]

0

5000

10000

15000

20000

25000

30000

35000

40000

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000
Database Size: 5000
Database Size: 10000

(b) Indexed k-gram size 5.

3 7 11 15 19
Query Length [characters]

0

5000

10000

15000

20000

25000

30000

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000
Database Size: 5000
Database Size: 10000

(c) Indexed k-gram size 7.

Figure 8.7: Search time for different k-gram sizes using the position set reduction filtering strategy.

3 7 11 15 19
Query Length [characters]

0

5000

10000

15000

20000

25000

30000

35000

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000

(a) Indexed k-gram size 3.

3 7 11 15 19
Query Length [characters]

0

2000

4000

6000

8000

10000

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000

(b) Indexed k-gram size 5.

3 7 11 15 19
Query Length [characters]

0

1000

2000

3000

4000

5000

6000
Se

ar
ch

Ti
m

e
[m

s]
Database Size: 500
Database Size: 1000
Database Size: 2000

(c) Indexed k-gram size 7.

Figure 8.8: Search time for different k-gram sizes using the filtering on the server side.

3 7 11 15 19
Query Length [characters]

0

100

200

300

400

500

600

700

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000
Database Size: 5000
Database Size: 10000

(a) Indexed k-gram size 3.

3 7 11 15 19
Query Length [characters]

0

100

200

300

400

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000
Database Size: 5000
Database Size: 10000

(b) Indexed k-gram size 5.

3 7 11 15 19
Query Length [characters]

0

100

200

300

400

500

Se
ar

ch
Ti

m
e

[m
s]

Database Size: 500
Database Size: 1000
Database Size: 2000
Database Size: 5000
Database Size: 10000

(c) Indexed k-gram size 7.

Figure 8.9: Search time for different k-gram sizes using the fragment search filtering strategy.

As one can see, the search time grows linearly with increased databased size, for example, doubling the
indexed database size from 5000 to 10000 indexed files increases the mean search time for query length 3
from 5 seconds to 10 seconds. This effect is independent of the used k-gram size. Nevertheless, the k-gram
size influences the search time depending on the query length since the k-gram size determines the required
query rounds. That is, a substring query of length l on database outsourced with k-gram size k requires
d lk e FHOPE range queries and each query induces an additional scan of the complete database. Hence,
the search time increases linearly with the number of required FHOPE range queries; a greater k-gram

112

8.5 Further Discussion

size supports longer substring queries with the same number of FHOPE (SQL) range queries but requires
a larger client state as already discussed. Compared to the other filtering strategies, the processing time of
this method is not affected by the result set size.
The search times for filtering strategy on the server side using deterministic encrypted position information

as described in Section 13 for k-gram size 3, 5, 7 are illustrated in Figures 8.8a, 8.8b, 8.8c. Here, both
result set size and number of k-grams that form the substring query affect the search time. Recall that the
position set for the reference k-gram poss[kgref] is corrected for each k-gram using the corresponding offset
value and needs to be re-encrypted and transferred again to the database system. Hence, the overhead for the
encryption operations multiplied by the number of k-grams the substring query is transformed to, resulting
in high search times especially for small k-gram sizes and big databases. Since the runtime results appear
to be impractical for large databases we abandoned the evaluation time for databases containing a number
of files greater than 2000.

The search times for the fragment search as described in Section 9 are illustrated in Figure 8.9a for k-gram
size 3, 8.9b for k-gram size 5, and 8.9c for k-gram size 7. The fragment size has been set to 500 characters
with 21 characters overlapping. Note that this filtering strategy can be performed with one single SQL query
hence the round trip time is minimized. Further, the FHOPE-range queries are evaluated on fragment IDs
instead of the complete position informations, decreasing the processing complexity (by approximately the
fragment size). We identified two main parameters that affect the query time. First, the result set size has
great impact, especially for short substring queries, since all (encrypted) matched fragments are transferred
to the client for post processing. Second, the required number of JOIN operations that are evaluated on
the database. Given a fixed k-gram size k, this correlates with the number of k-grams the substring query
consists of, hence the length of substring query increases the processing time although the result set size
decreases. Both effects can be observed in Figure 8.9.

8.5 Further Discussion

In this section we outline further extensions that support substring searches for dynamic databases. More
particular, we discuss different approaches how to add strings to the outsourced database after the initial
encryption process. Further, additional security measures are discussed in this section.

8.5.1 From Static to Dynamic Database

As discussed in Section 8.3.2, the initial preprocessing step – including encryption – is performed for the
whole sensitive data collection once before the outsourcing process. Recall that the resulting output of the
preprocessing step consists of the privacy-preserving search index γ and the secret stateST . This secret state
ST can be exploited for adding data already available in ST while providing randomness for such added
data. More precisely, we can hide the frequency information of a value x to be added by sampling a random
ciphertext in the existing ciphertext range. For example, assume the client’s state ST already holds five
different ciphertexts for the encryption of k-gram x, that is, EncFHOPE(x) ∈ {a, a+ 1, a+ 2, a+ 3, a+ 4}.
The client chooses one of these values randomly as ciphertext of value x. One the one hand, more frequent
k-grams have a bigger ciphertext-domain from which the encryption value is sampled. On the other hand,
less frequent k-grams have a smaller ciphertext-domain but a ciphertext is needed less frequent for these
k-grams since they occur less frequent. In conclusion, this random sampling has the effect of histogram
flattening for k-grams. A completely new k-gram kgn induces the re-encryption of all k-grams that are
greater than kgn,i.e. all k-grams kgi with kgi > kgn need to be re-encrypted. However, re-encryption is an
easy task for a DBMS: lets assume a new k-gram kg is added, and its OPE encryption is EncFHOPE(kg) = x.

113

8 Substring Search

So all values with greater ciphertexts need a re-encryption implemented by a simple SQL command, such
as

UPDATE CIPHERS SET ENC = ENC + 1 WHERE ENC > x.

In order to minimize the necessity of this updating step, the client can reserve a bigger domain than needed
for each value after indexing the initial database. For example, given a ciphertext domain for k-gram x as
EncFHOPE(x) ∈ {a, a+1, a+2, a+3, a+4} the client reserves an amount of b placeholding ciphertexts that
are not used for the encryption of actual k-grams but added for later sampling. That is, the ciphertext-domain
{(a+ 4) + 1, . . . , (a+ 4) + b} is added to the search index while the first ciphertext of the next real k-gram
y is (a+ 4) + b+ 1. Since FHOPE encryption is applied to k-grams of a natural language, we can extract
some statistics about x (or a prefix of x), e.g. in the case that k-gram x starts with the frequent letter ‘e’ we
choose a bigger ciphertext gap b than in the case that x starts with the less frequent letter ‘q’.

Alternatively, it is always possible to create a separate search index for each subsequently indexed
document collection. That is, a first document collection m1 is indexed in a privacy-preserving index
ST1, γ1

$←− Enc(K,m1) and a second document collection is indexed afterwards in another privacy-
preserving index ST2, γ2

$←− Enc(K,m2). Now the client needs to query all different indexes separately,
but we define a threshold t of different indexes. If t reached, all document collections m1, . . . ,mt are
merged toM =

⋃t
i=1mi. This merged document collection is then re-indexed to one fresh state and index

ST, γ
$←− Enc(K,M).

8.5.2 Increased Security

Although modular OPE as introduced by Boldyreva et al. [22] and further evaluated by Mavrofakis et
al. [108] has been suggested for deterministic order-preserving encryption, the same intuition can be applied
it to frequency-hiding order-preserving encryption. There are two different approaches: i) the ordering
information over the alphabet are shifted with modular addition, e.g. the alphabet {a, . . . , z} starts with
{o, . . . , z, a, . . . , n} or ii) the internal FHOPE range after building the index is shifted with a (secret) offset.
This modular offset is then part of the secret state and increases the complexity of the bucketing attack
described and evaluated in Section 8.4.2. While both approaches are viable in theory, the practical effect of
the modular shift directly on the alphabet has a small security effect because there are only as much different
shifts as the size of the alphabet.
As already noted in the introduction of this chapter, an alternative approachwith an increased security level

still enabling substring queries by our transformation from substrings to range queries can be achieved using
functional encryption, i.e. privacy-preserving range queries such as range-predicate encryption proposed by
Shen et al. [133]. Further improvements including search indexes as presented in previous Chapter 7 would
also be applicable and accelerate the processing time compared to linear scans, however, still would be
less efficient than the application of frequency-hiding order-preserving encryption. On the one hand, such
constructions render the bucketing attack impossible, since no ordering information about the plaintext is
leaked, but only the information if the plaintext falls within the queried range. As an additional advantage,
such construction would allow the client to dispense with its state and hence render its deployment for
dynamic databases more suitable. On the other hand, the integration overhead of such solutions increase
tremendously because the database internals require modifications and well engineered indexing techniques.
Further, since such constructions are founded on pairing-based cryptography, their computation overhead and
hence processing time is much larger compared to the instantiation using frequency-hiding order-preserving
encryption.

114

8.6 Summary

8.6 Summary

In this chapter we presented a novel approach for outsourcing encrypted datawhile providing substring search
functionality with focus on the practical deployment. Our construction is based on k-gram indexing where
each k-gram is encrypted using a static frequency-hiding order-preserving encryption scheme. We gave
a theoretical security definition for this scheme and have evaluated the security of this privacy-preserving
outsourcing techniques by practical means. That is, we attacked our constructionwith the strongest published
attack on such encryption scheme [72] and report plaintext recovery rates between 1% and 15% based on the
attacker’s auxiliary knowledge about the indexed plaintext and the plaintext alphabet. Compared to previous
schemes that allow privacy-preserving substring search, our scheme is easy to deploy into existing database
systems without system-internal modifications. In combination with a substring search time of 98.3 ms over
10, 000 randomly chosen indexed e-mails of the Enron dataset our scheme can be deployed for practical use
cases.

115

9 Conclusions

In the following chapter we conclude this dissertation. Section 9.1 contains a summary of this thesis. An
outlook of further research directions related to query execution over encrypted databases is given in the
final Section 9.2 of this dissertation.

9.1 Summary

Wehave presented novel constructions enabling database query execution over encrypted data. The presented
constructions realize different query types, hence they are applicable for different use cases. On the one
hand, we have focused on formal security properties provided by our constructions. Particularly for each
query type, we have quantified an upper bound of the leakage induced by the initial encryption and the
subsequent query execution in a simulation-based framework. On the other hand, we have demonstrated
the practicability of such provably secure encryption schemes for database queries on encrypted data by
means of practical evaluations founded on implementations. Our constructions for exact keyword search
from Chapter 5, for range queries from Chapter 7 and secure database joins from Chapter 6 provide novel
tradeoffs between security, performance for one specific query type.
Combining our novel encryption schemes with the existing approach introduced for CryptDB can be

realized with small implementation effort. That is, our solutions can be integrated into solutions already
realizing encrypted databases founded on adjustable encryption and the onion-encryption approach by
supplementing novel onions encapsulating our proposed encryption schemes. These novel encryption onions
are of special interest for columns with low plaintext entropy and thus would be protected insufficiently by
property-preserving encryption. We have demonstrated the computational overhead of our constructions to
be notably low and hence consider them to be suitable for practical adoption. Specifically, our constructions
benefit from queries that repeatedly retrieve only a limited subset of the outsourced database. At the
same time the security properties provided in these cases are enhanced compared to property-preserving
encryption.
In addition to these novel tradeoffs between security and performance, novel functionality in form

of substring search as presented in Chapter 8 further increases the use cases practically addressable by
encrypted databases.

9.2 Outlook

The constructions presented in this thesis are a first stepping stone for encrypted database with advanced
security properties that can refrain from property-preserving encryption. Supporting further query types
and introducing privacy-preserving versions of more complex data structures remain as challenging research
questions in the area of encrypted databases.
Specific functionality studied in this thesis, e.g. range queries realized with pure cryptographic pairing-

based constructions still induce notable computational overhead. This overhead can be decreased drastically
for implementations aided by trusted hardware such as Intel’s Software Guard Extension (SGX), as demon-
strated by Fuhry et al. [34]. General approaches based on trusted hardware are expected to result in huge

117

9 Conclusions

performance increase, but require additional trust assumptions in the hardware vendor1, e.g. Intel. A hy-
brid approach between cryptographic constructions and trusted hardware might decrease the required trust
assumptions in the hardware vendor while decreasing the processing time compared solutions purely based
on cryptographic assumptions.
Although the formal security framework adopted for searchable encryption quantifies an upper bound

for the information leaked by each query execution, varying constructions state different leakage functions.
Evaluating and comparing these different leakage functions is challenging even for experts. Further,
the practical consequences of these individual information leakage functions remain as open question.
As a result, we consider practical security evaluation for varying searchable encryption schemes to be
vital as already started for substrings in Chapter 8 of this thesis. Forward and backward secrecy as
introduced recently [31, 40] are novel security properties for searchable encryption, however, practical
security consequences of these properties are still unclear and might be of further interest for such practical
security evaluation. Finally, we believe that there is no universal construction fitting all scenarios but heavily
depends on the scenario it is to be deployed and the characteristics of the data to be protected. Thus, an
evaluation framework simulating different scenarios for encrypted databases might benchmark different
constructions for encrypted databases and might support practitioners in the correct choice depending on
the intended use case.

1 One might argue that this trust is already required, namely, the user trusts the hardware vendor that the hardware follows the given
specifications.

118

A Appendix

This appendix contains constructions that are used as tools for practical implementation. In order to achieve a
self-contained document we briefly state these implementations enabling the interested reader to reconstruct
the practical benchmarks that are a major contribution of this work. However, we refer to the corresponding
references for a thorough presentation and a more detailed discussion.

A.1 Pairing Based Cryptography

All schemes presented in this appendix use pairing based cryptography. Abstractly, such constructions use
three cyclic groups G1, G2, GT of the same order n and a bilinear map e : G1 × G2 → GT . This map e
satisfies the following properties:

• The mapping is computable, that is, given g1 ∈ G1 and g2 ∈ G2 there is a PPT algorithm to compute
e(g1, g2) ∈ GT .

• The mapping is bilinear, that is, for any integers x, y ∈ n we have e(gx1 , g
y
2) = e(g1, g2)xy .

• The mapping is non-degenerate, that is, ∃g1 ∈ G1, g2 ∈ G2 such that e(g1, g2) has order n in GT .

We say that the bilinear groups are symmetric iff. G1 = G2 otherwise they are asymmetric.

A.2 Attribute Based Encryption

In the followingwe elaborate on the attribute-based encryption scheme used for our construction in Chapter 6
implementing secure joins.

Definition 29 (KP-ABE scheme proposed by Hohenberger and Waters [80]). Let G and GT be two multi-
plicative cyclic groups of prime order, e : G×G→ GT be a bilinear map, andH : {0, 1}∗ → G be a hash
function. Then a KP-ABE scheme can be implemented as follows:

Setup(λ): choose a bilinear groupG of prime order p ∈ Θ(2λ). Select randomly g $← G and α $← Zp. Set

PK = (G, p, g, e(g, g)α) andMK = (PK,α).

Return (PK,MK).

Encrypt(PK,M,S): LetM ∈ GT . Choose s
$← Zp and compute the following:

C = M · e(g, g)αs, Ĉ = gs, {Cx = H(x)s}x∈S .

Finally, return CT = (C, Ĉ, {Cx}).

Note that since Cx are values derived from other column values in the same row asM , then they are
assigned fixed positions within the ciphertext. In other words, all ciphertexts for a concrete table use
the same internal index to store a value Cx derived from a specific column. Thus, we refer to them as
Ci, where i is the aforementioned index assigned to the corresponding column.

119

A Appendix

KeyGen(MK,a): Let a = {ai1 , ..., ail} be the set of attribute restrictions we wish the key to describe, and
i1, ..., il ∈ N be the set of positions of these attributes (in our case, the positions in the ciphertext
assigned to their corresponding columns). Let s1, ..., sl

$←− N. The algorithm generates l secret
shares λ1, ..., λl from the master secret α using Shamir’s l-from-l1 linear secret-sharing scheme using
the random evaluation points s1, ..., sl. Once these shares have been generated, the following will be
executed for all i ∈ {i1, ..., il}:

ri
$← Zp

Di = gλi ·
∏
a∈a

H(a)ri

Ri = gri

The algorithm then returns SK = ((Di1 , Ri1 , s1), ..., (Di1 , Ril , sl)). Moreover, we will assume that
for every tuple (Di, Ri) we can extract the actual index i ∈ i1, ..., il.

Decrypt(SK,CT): Using the indices s1, ..., sl, compute the coefficients ω1, ..., ωl as described by Beimel
in his thesis [13]. This construction allows us to reconstruct the secret shared across λ1, ..., λl. Note
that this method is executed by the untrusted party, and although she can reconstruct the ωi, she does
not have access to the actual values λi. Let ∆ = {i1, ..., il} be the set of indices referenced to by the
secret key SK, hi = H(xi) be the encoding of attribute xi for column with index i in CT , and

f(∆) =
∏
i∈∆

hi.

The algorithm computes
L =

∏
i∈∆

Ci =
∏
i∈∆

hsi = f(∆)s.

The algorithm recovers the value e(g, g)α·s by computing:

e(Ĉ,
∏
i∈∆

Dωi
i)/e(

∏
i∈∆

Rωi
i , L) =

e(gs,
∏
i∈∆

gλiωif(∆)riωi)/e(
∏
i∈∆

griωi , f(∆)s) =

e(g, g)αs · e(g, f(∆))s
∑

i∈∆
riωi/e(g, f(∆))s

∑
i∈∆

riωi = e(g, g)αs

The decryption algorithm can then divide out this value from C and obtain the message M.

A.3 Range Predicate Encryption

In the following we review the construction for range predicate encryption (RPE) for domain [0, d] as
stated in Definition 21 based on inner product encryption (IPE). First, we give the abstract framework of
inner-product encryption in the secret-key setting. Afterwards we sketch the general idea how to utilize
IPE in order to implement RPE. In the last two subsection we summarize the constructions we use for our
implementation supporting secure range queries with logarithmic search time.

Definition 30 (Inner product encryption (IPE)). A symmetric key inner-product encryption scheme consists
of the following four PPT algorithms.

1 Meaning that all shares are needed in order to reconstruct the master secret α.

120

A.3 Range Predicate Encryption

EK ← Setup(λ) is a probabilistic algorithm that takes the security parameter λ as input. It outputs a
secret master keyMK.

CT ← Encrypt(MK,~x) is a probabilistic algorithm that takes the secret master keyMK and a vector ~x
of predefined dimension n as input. It outputs a ciphertext CT .

EK ← KeyGen(MK,~y) is a probabilistic algorithm that takes the secret master keyMK and a vector ~y
of predefined dimension n as input. It outputs an evaluation key EK.

0 or 1← Evaluate(CT,EK) is a deterministic algorithm taking a ciphertextCT ← Encrypt(MK,~x) and
an evaluation key EK ← KeyGen(MK,~y) as input. It outputs 1 if ~x and ~y are orthogonal, that is,
〈~x, ~y〉 = 0; otherwise it outputs 0.

It is simple to construct a RPE encryption scheme with domain [0, d] given such IPE scheme supporting
vectors of dimension d. Particularly, a value v can be encoded as vector ~x with xv = 1 and xj = 0 for all
j ∈ [1, d] \ {v}. A range [s, e] can then be encoded as vector ~y with xi = 0 for i ∈ [s, e] and xj = 1 for
j ∈ [1, d] \ [s, e]. It is straightforward to see that v ∈ [s, e] if and only if 〈~x, ~y〉 constructed in such way.
However, such construction would require runtime that is linear in the domain size.
In the following we describe the construction decreasing this runtime to be logarithmic in the domain

size as proposed by Lu [106] that we utilize in our implementation for range queries. In a first step,
assume a binary tree T , where the leaves represent the domain [0, d] to be encoded, particularly, each leaf
represents one specific value as sketched in Figure A.1 for domain [0, 7]. Note that this tree has a hight
that is logarithmic in the domain size, denoted as h. Further, each tree node n has a unique ID denoted as
’n’. We denote P(v) for a value v ∈ [0, d] as the set of node IDs that are traversed on the path starting at
the root and ending at the leaf representing v, e.g. P(4) = {’a’, ’c’, ’f’, ’l’} as highlighted in Figure A.1 by
circles. Further, we say a node ID covers a value v if this ID is contained in P(v). We denote C([s, e]) as
the minimal set of node IDs covering all values in [s, e], e.g. C([0, 6]) = {’b’, ’f’, ’n’ } as highlighted in
Figure A.1 by squares. Given this notation, it is easy to see thatC([s, e])∩P(v) 6= ∅ if and only if v ∈ [s, e].
Let denote u(·) as function mapping the node IDs to unique natural numbers, then we can represent the
path P(v) by a polynomial Pv(·) with the node IDs’ unique natural numbers as roots of this polynomial,
that is, Pv(X) =

∏
n∈P(v) (X − u (n)). Note that P(v) has h elements, thus P (x) can be described

as Pv(X) =
∑h
i=0 αiX

i; further, given C([s, e]) with v ∈ [s, e] then exists an c ∈ C([s, e]) such that
Pv (u (c)) = 0. Finally, this polynomial evaluation can be implemented using inner product encryption with
vector ~x = (α0, . . . , αh) representing Pv(X) and vector ~y =

(
u (c)0

, . . . , (c)h
)
representing c ∈ C([s, e]).

Thus one can encode values by one vector with size that is logarithmic in the domain size, and a range can
be represented by a set of vectors with size that is logarithmic in the domain size.
We refer to the work [106] published by Lu for construction details and a proof that this construction has

runtime that is upper bounded to be logarithmic in the domain size and how to pad all range vector sets to
prevent additional information leakage.

A.3.1 Secret Key Inner-Product Encryption

In this section we state two constructions implementing IPE, since the practical evaluation results given in
Section 7.4.3 are founded on these constructions. However, we omit the correctness proof and the security
proof of these constructions and refer to the corresponding publications [18, 133] for such details.

Inner-Product Encryption by Shen, Shi and Waters [133] uses symmetric bilinear groups of composite
order; particularly, they use bilinear groups whose order is the product of four distinct primes. Let G denote a

121

A Appendix

’a’

’b’

’d’

’h’

0

’i’

1

’e’

’j’

2

’k’

3

’c’

’f’

’l’

4

’m’

5

’g’

’n’

6

’o’

7

Figure A.1: Tree representing domain [0, 7]. Here, P(4) is denoted as circles and C ([0, 6]) is denoted as square.

group generator algorithm that takes a security parameter λ as input and outputs a tuple (p, q, r, s,G,GT , e)
where p, q, r, s are distinct primes,G andGT are two cyclic groups of orderN = pqrs and e : G×G→ GT

is a bilinear map as described in Section A.1. It is important, that the factorization of N is hard, that is, the
primes p, q, r and s are chosen accordingly.
Now we describe the inner-product encryption proposed by Shen et al.

MK ← Setup(1λ): on input of the security parameter λ the algorithm (p, q, r, s,G,GT , e)← G(1λ) with
G = Gp × Gq × Gr × Gs. Next, it picks generators gp, gq, gr, gs of Gp, Gq, Gr, Gs, respectively.
It chooses h1,i, h2,i, u1,i, u2,i ∈ Gp uniformly at random for i ∈ [1, n] and outputs the secret master
keyMK = (gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}ni=1).

CT ← Encrypt(MK,~x): on input of the master keyMK = (gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}ni=1) and
the vector ~x ∈ ZnN this algorithm chooses independent and uniformly random elements y, z, α, β ∈
ZN , random S, S0 ∈ Gs and random R1,i, R2,i ∈ Gr for i ∈ [1, n]. It computes

C = S · gyp , C0 = S0 · gzp
{C1,i = hy1,i · u

z
1,i · gαxi

q ·R1,i, C2,i = hy2,i · u
z
2,i · gβxi

q ·R2,i}ni=1

and outputs the ciphertext CT =
(
C,C0, {C1,i, C2,i}ni=1

)
.

EK ← KeyGen(MK,PP, ~y): on input of the master keyMK = (gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}ni=1)
and vector ~y ∈ ZnN this algorithm chooses independent and uniformly random elements f1, f2 ∈ ZN
and random r1,i, r2,i ∈ ZN for i ∈ [1, n], random R0, R1 ∈ Gr and random S1,i, S2,i ∈ Gs for
i ∈ [1, n]. It computes

K = R

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i ,K0 = R0 ·
n∏
i=1

u
−r1,i

1,i · u−r2,i

2,i

{
K1,i = gr1,i

p · gf1,vi
q · S1,i ,K2,i = gr2,i

p · gf2vi
q · S2,i

}n
i=1

and outputs the evaluation key EK =
(
K,K0 {K1,i,K2,i}ni=1

)
.

122

A.3 Range Predicate Encryption

0 or 1← Evaluate(CT,EK): on input of the ciphertextCT =
(
C,C0, {C1,i, C2,i}ni=1

)
and the evaluation

key EK =
(
K,K0 {K1,i,K2,i}ni=1

)
as computed above, this algorithm computes

E = e(C,K) · e(C0,K0) ·
n∏
i=1

(C1,i,K1,i) · e(C2,i,K2,i).

It outputs 1 if E = 1 and 0 otherwise.

Inner-Product Encryption by Bishop et al. [18] is based on asymmetric bilinear groups of prime order
p. For g ∈ Gi and ~v = (v1, . . . , vn)Znp we abuse notation and write g~v denoting the n-tuple (gv1 , . . . , gvn)
in the following description. Further, for g1 ∈ G1, g2 ∈ G2 and ~v, ~w ∈ Znp we write:

e(g~v1 , g ~w2) =
n∏
i=1

e(gvi
1 , g

wi
2) = e(g1, g2)〈~v,~w〉

where the inner product is taken modulo p.
Bishop et al. utilize the concept of dual pairing vector spaces. Particularly, they propose to chose two

random sets of vectors B = {~b1, . . . ,~bn} and B∗ = {~b∗1, . . . ,~b∗n} with the constraint that they are “dual
orthonormal”

〈~bi,~b∗i 〉 = 1 (mod p) for all i

〈~bi,~b∗j 〉 = 0 (mod p) for all i 6= j.

We denote choosing such dual orthonormal sets randomly as (B,B∗)← Dual(Znp).
Now we are ready to describe the inner-product encryption proposed by Bishop et al.

MK,PP ← Setup(1λ, n): on input of the security parameter λ and a positive integer n specifying the
length of vectors this algorithm chooses asymmetric bilinear groups G1, G2, GT all with prime
order p. It samples generators g1, g2 of G1, G2 respectively. It samples dual orthonormal bases
B,B∗ ← Dual(Z2n

p) and dual orthonormal bases D,D∗ ← Dual(Z2
p). It outputs a secret master

keyMK = B,B∗D,D∗ and the groups G1, G2, GT together with the generators g1, g2 and prime p
as public parameters.

CT ← Encrypt(MK,PP, ~x): on input of the secret master keyMK = (B,B∗, D,D∗), the public param-
eters and a vector ~x ∈ Znp , this algorithm chooses two independent and uniformly random elements
α, α′ ∈ Zp. It then computes

C1 = g
α(x1~b

∗
1+···+xn

~b∗n)+α′(x1~b
∗
n+1+···+xn

~b∗2n)
1

and
C2 = g

α~d∗1+α′ ~d∗2
1

and outputs the ciphertext CT = (C1, C2).

SK ← KeyGen(MK,PP, ~y): on input of the secret master key MK = (B,B∗, D,D∗), the public pa-
rameters and a vector ~y ∈ Znp , this algorithm chooses to independent and uniformly random elements
β, β′ ∈ Zp. It then computes

K1 = g
β(y1~b1+···+yn

~bn)+β′(y1~bn+1+···+yn
~b2n)

2

123

A Appendix

and
K2 = gβ

~d1+β′ ~d2
2

and outputs the evaluation key EK = (K1,K2).

m or ⊥ ← Evaluate(PP,CT,EK): on input of the public parameters, the ciphertext CT = (C1, C2) and
the evaluation key EK = (K1,K2), this algorithm computers:

E1 = e(C1,K1)

and
E2 = e(C2,K2).

It then searches an m such that Em2 = E1 as elements of GT and outputs m. Note that we can
guarantee that the evaluation algorithm runs in polynomial time when we restrict to checking a
fixed, polynomially size range of possible values for m and check ⊥ otherwise. Particularly in our
application, we only the functionality to evaluate if ~x and ~y are orthogonal, that is, ifm = 〈~x, ~y〉 = 0
and output ⊥ otherwise.

124

Bibliography

[1] Abraham, Ittai ; Fletcher, Christopher W. ; Nayak, Kartik ; Pinkas, Benny ; Ren, Ling: Asymp-
totically Tight Bounds for Composing ORAMwith PIR. In: IACR International Workshop on Public
Key Cryptography Springer, 2017

[2] Achenbach, Dirk ; Gabel, Matthias ; Huber, Matthias: MimoSecco: A Middleware for Secure
Cloud Storage. In: Improving Complex Systems Today. 2011

[3] Aggarwal, Gagan ; Bawa, Mayank ; Ganesan, Prasanna ; Garcia-Molina, Hector ; Kenthapadi,
Krishnaram ; Motwani, Rajeev ; Srivastava, Utkarsh ; Thomas, Dilys ; Xu, Ying: Two Can Keep
a Secret: A Distributed Architecture for Secure Database Services. (2005)

[4] Agrawal, Rakesh ; Asonov, Dmitri ; Kantarcioglu, Murat ; Li, Yaping: Sovereign Joins. In:
Proceedings of the International Conference on Data Engineering, 2006 (ICDE)

[5] Agrawal, Rakesh ; Kiernan, Jerry ; Srikant, Ramakrishnan ; Xu, Yirong: Order Preserving
Encryption for Numeric Data. In: Proceedings of the International Conference on Management of
Data, 2004 (SIGMOD)

[6] Agrawal, Shweta ; Freeman, DavidM. ; Vaikuntanathan, Vinod: Functional encryption for inner
product predicates from learning with errors. In: Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security, 2011 (ASIACRYPT)

[7] Arasu, Arvind ; Blanas, Spyros ; Eguro, Ken ; Kaushik, Raghav ; Kossmann, Donald ; Ra-
mamurthy, Ravishankar ; Venkatesan, Ramarathnam: Orthogonal Security with Cipherbase. In:
Proceedings of the Conference on Innovative Data Systems Research (CIDR)

[8] Arasu, Arvind ; Kaushik, Raghav: Oblivious query processing. In: arXiv preprint arXiv:1312.4012
(2013)

[9] Arnautov, Sergei ; Trach, Bohdan ; Gregor, Franz ; Knauth, Thomas ; Martin, Andre ; Priebe,
Christian ; Lind, Joshua ; Muthukumaran, Divya ; O’keeffe, Dan ; Stillwell, Mark: SCONE:
Secure Linux Containers with Intel SGX, 2016

[10] Attrapadung, Nuttapong ; Libert, Benoît ; De Panafieu, Elie: Expressive key-policy attribute-
based encryption with constant-size ciphertexts. In: International Workshop on Public Key Cryptog-
raphy, 2011 (WPKC)

[11] Bajaj, Sumeet ; Sion, Radu: TrustedDB: A Trusted Hardware based Database with Privacy and
Data Confidentiality. In: Proceedings of the International Conference on Management of Data, 2011
(SIGMOD)

[12] Bater, Johes ; Elliott, Gregory ; Eggen, Craig ; Goel, Satyender ; Kho, Abel ; Rogers, Jennie:
SMCQL: Secure Querying for Federated Databases. In: Proceedings of the VLDB Endowment (2017)

[13] Beimel, Amos: Secure schemes for secret sharing and key distribution. 1996

125

Bibliography

[14] Bellare, Mihir ; Boldyreva, Alexandra ; O’Neill, Adam: Deterministic and Efficiently Search-
able Encryption. In: Advances in Cryptology: Annual International Cryptology Conference, 2007
(CRYPTO)

[15] Bellare, Mihir ; Fischlin, Marc ;O’Neill, Adam ;Ristenpart, Thomas: Deterministic Encryption:
Definitional Equivalences and Constructions without Random Oracles. In: Advances in Cryptology:
Annual International Cryptology Conference, 2008 (CRYPTO)

[16] Bellare, Mihir ; Rogaway, Phillip: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the Conference on Computer and Communications Security,
1993 (CCS)

[17] Bellare, Mihir ; Rogaway, Phillip: Optimal Asymmetric Encryption. In: Proceedings of the
Workshop on the Theory and Application of Cryptographic Techniques, 1994 (EUROCRYPT)

[18] Bishop, Allison ; Jain, Abhishek ; Kowalczyk, Lucas: Function-Hiding Inner Product Encryption.
In: Advances in Cryptology, 2015 (ASIACRYPT)

[19] Blaze, Matt ; Bleumer, Gerrit ; Strauss, Martin: Divertible Protocols and Atomic Proxy Cryptog-
raphy. (1998)

[20] Bloom, Burton H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. In: Communica-
tions of the ACM 13 (1970), Nr. 7, S. 422–426

[21] Boldyreva, Alexandra ; Chenette, Nathan ; Lee, Younho ; O’Neill, Adam: Order-Preserving
Symmetric Encryption. In: Proceedings of the Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2009 (EUROCRYPT)

[22] Boldyreva, Alexandra ; Chenette, Nathan ; O’Neill, Adam: Order-Preserving Encryption Revis-
ited: Improved Security Analysis and Alternative Solutions. In: Proceedings of the International
Conference on Advances in Cryptology, 2011 (CRYPTO)

[23] Boldyreva, Alexandra ; Fehr, Serge ; O’Neill, Adam: On Notions of Security for Deterministic
Encryption, and Efficient Constructions Without Random Oracles. In: Advances in Cryptology:
Annual International Cryptology Conference, 2008 (CRYPTO)

[24] Boneh, Dan ; Di Crescenzo, Giovanni ; Ostrovsky, Rafail ; Persiano, Giuseppe: Public key
encryption with keyword search. In: Proceedings of th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2004 (EUROCRYPT)

[25] Boneh, Dan ; Franklin, Matt: Identity-based encryption from the Weil pairing. In: Annual
international cryptology conference Springer, 2001

[26] Boneh, Dan ; Goh, Eu-Jin ; Nissim, Kobbi: Evaluating 2-DNF formulas on ciphertexts. In: Theory
of Cryptography Conference, 2005 (TCC)

[27] Boneh, Dan ; Lewi, Kevin ; Raykova, Mariana ; Sahai, Amit ; Zhandry, Mark ; Zimmerman,
Joe: Semantically Secure Order-Revealing Encryption: Multi-Input Functional Encryption Without
Obfuscation. In: Proceedings of the Annual International Conference on the Theory and Applications
of Cryptographic Techniques, 2015 (EUROCRYPT)

[28] Boneh, Dan ; Sahai, Amit ; Waters, Brent: Functional encryption: Definitions and challenges. In:
Proceedings of the Conference on Theory of Cryptography, 2011 (TCC)

126

Bibliography

[29] Boneh, Dan ; Waters, Brent: Conjunctive, subset, and range queries on encrypted data. In:
Proceedings of the Theory of Cryptography Conference, 2007 (TCC)

[30] Bösch, Christoph ; Hartel, Pieter ; Jonker, Willem ; Peter, Andreas: A survey of provably secure
searchable encryption. In: ACM Computing Surveys (CSUR) 47 (2015), Nr. 2

[31] Bost, Raphael: Σ oϕoς: Forward Secure Searchable Encryption. In: Proceedings of the Conference
on Computer and Communications Security, 2016 (CCS)

[32] Brakerski, Zvika ; Gentry, Craig ; Vaikuntanathan, Vinod: (Leveled) fully homomorphic
encryption without bootstrapping. In: ACM Transactions on Computation Theory (TOCT) 6 (2014),
Nr. 3

[33] Brakerski, Zvika ; Vaikuntanathan, Vinod: Efficient fully homomorphic encryption from (stan-
dard) LWE. In: SIAM Journal on Computing 43 (2014), Nr. 2

[34] Brasser, Ferdinand ; Hahn, Florian ; Kerschbaum, Florian ; Sadeghi, Ahmad-Reza ; Fuhry,
Benny ; Bahmani, Raad: HardIDX: Practical and Secure Index with SGX. In: Proceedings of the
Conference on Data and Applications Security and Privacy, 2017 (DBSec)

[35] Brenner, Stefan ; Wulf, Colin ; Goltzsche, David ; Weichbrodt, Nico ; Lorenz, Matthias ;
Fetzer, Christof ; Pietzuch, Peter ; Kapitza, Rüdiger: SecureKeeper: Confidential ZooKeeper
using Intel SGX. In: Proceedings of the 17th International Middleware Conference, 2016

[36] Canetti, Ran ; Goldreich, Oded ; Halevi, Shai: The Random Oracle Methodology, Revisited. In:
Journal of the ACM (2004)

[37] Carbunar, Bogdan ; Sion, Radu: Toward Private Joins on Outsourced Data. In: IEEE Transactions
on Knowledge and Data Engineering (2012)

[38] Cash, David ; Jaeger, Joseph ; Jarecki, Stanislaw ; Jutla, Charanjit ;Krawczyk, Hugo ;Rosu, Mar-
cel ; Steiner, Michael: Dynamic Searchable Encryption in Very-Large Databases: Data Structures
and Implementation. In: Proceedings of the Network and Distributed System Security Symposium,
2014 (NDSS)

[39] Cash, David ; Jarecki, Stanislaw ; Jutla, Charanjit ; Krawczyk, Hugo ; Rosu, Marcel-Catalin
; Steiner, Michael: Highly-Scalable Searchable Symmetric Encryption with Support for Boolean
Queries. In: Advances in Cryptology: Annual International Cryptology Conference, 2013 (CRYPTO)

[40] Chamani, Javad G. ; Papadopoulos, Dimitrios ; Papamanthou, Charalampos ; Jalili, Rasool: New
Constructions for Forward and Backward Private Symmetric Searchable Encryption. In: Proceedings
of the Conference on Computer and Communications Security, 2018 (CCS)

[41] Chang, Yan-Cheng ; Mitzenmacher, Michael: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Applied Cryptography and Network Security, 2005 (ACNS)

[42] Chase, Melissa ;Kamara, Seny: Structured encryption and controlled disclosure. In: Proceedings of
the International Conference on the Theory and Application of Cryptology and Information Security,
2010 (ASIACRYPT)

[43] Chase, Melissa ; Shen, Emily: Substring-Searchable Symmetric Encryption. In: Proceedings on
Privacy Enhancing Technologies (2015)

127

Bibliography

[44] Chenette, Nathan ; Lewi, Kevin ; Weis, Stephen A. ; Wu, David J.: Practical Order-Revealing
Encryption with Limited Leakage. In: Proceedings of International Conference on Fast Software
Encryption, 2016

[45] Ciriani, Valentina ; Di Vimercati, Sabrina De C. ; Foresti, Sara ; Jajodia, Sushil ; Paraboschi,
Stefano ; Samarati, Pierangela: Fragmentation and Encryption to Enforce Privacy in Data Storage.
In: Proceedings of the European Symposium on Research in Computer Security, 2007 (ESORICS)

[46] Codd, Edgar F.: A relational model of data for large shared data banks. In: Communications of the
ACM 13 (1970), Nr. 6

[47] Cormen, T ; Leiserson, C ; Rivest, R ; Stein, C: Introduction to Algorithms. MIT press, 2009

[48] Costan, Victor ; Devadas, Srinivas: Intel SGX Explained. In: IACR Cryptology ePrint Archive
2016/086 (2016)

[49] Curtmola, Reza ; Garay, Juan ; Kamara, Seny ; Ostrovsky, Rafail: Searchable Symmetric
Encryption: Improved Definitions and Efficient Constructions. In: Proceedings of the Conference on
Computer and Communications Security, 2006 (CCS)

[50] De Cristofaro, Emiliano ; Kim, Jihye ; Tsudik, Gene: Linear-complexity private set intersection
protocols secure in malicious model. In: Proceedings of the International Conference on the Theory
and Application of Cryptology and Information Security, 2010 (ASIACRYPT)

[51] Demertzis, Ioannis ; Papadopoulos, Stavros ; Papapetrou, Odysseas ; Deligiannakis, Antonios ;
Garofalakis, Minos: Practical Private Range Search Revisited. (2016)

[52] Dwork, Cynthia: Differential Privacy: A Survey of Results. In: International Conference on Theory
and Applications of Models of Computation, 2008 (TAMC)

[53] Dwork, Cynthia ; Roth, Aaron: The Algorithmic Foundations of Differential Privacy. In: Founda-
tions and Trends in Theoretical Computer Science (2014)

[54] El Gamal, Taher: A public key cryptosystem and a signature scheme based on discrete logarithms.
In: Advances in Cryptology, 1985 (CRYPTO)

[55] Faber, Sky ; Jarecki, Stanislaw ; Krawczyk, Hugo ; Nguyen, Quan ; Rosu, Marcel ; Steiner,
Michael: RichQueries on EncryptedData: Beyond ExactMatches. In: "Proceedings of the European
Symposium on Research in Computer Security", 2015 (ESORICS)

[56] Fagin, Ronald ; Naor, Moni ; Winkler, Peter: Comparing information without leaking it. In:
Communications of the ACM 39 (1996), Nr. 5, S. 77–85

[57] Fisch, Ben ; Vinayagamurthy, Dhinakaran ; Boneh, Dan ; Gorbunov, Sergey: Iron: functional
encryption using Intel SGX. In: Proceedings of the Conference on Computer and Communications
Security, 2017 (CCS)

[58] Fox, Armando ; Griffith, Rean ; Joseph, Anthony ; Katz, Randy ; Konwinski, Andrew ; Lee,
Gunho ; Patterson, David ; Rabkin, Ariel ; Stoica, Ion: Above the Clouds: A Berkeley View
of Cloud Computing. In: Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS 28 (2009), Nr. 13

128

Bibliography

[59] Freedman, Michael ; Nissim, Kobbi ; Pinkas, Benny: Efficient Private Matching and Set Inter-
section. In: Proceedings of the Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2004 (EUROCRYPT)

[60] Garg, Sanjam ; Gentry, Craig ; Halevi, Shai ; Raykova, Mariana ; Sahai, Amit ; Waters,
Brent: Candidate indistinguishability obfuscation and functional encryption for all circuits. In:
SIAM Journal on Computing 45 (2016), Nr. 3

[61] Gentry, Craig u. a.: Fully homomorphic encryption using ideal lattices. In: STOC Bd. 9, 2009, S.
169–178

[62] Gentry, Craig ; Halevi, Shai ; Smart, Nigel P.: Homomorphic Evaluation of the AES Circuit. In:
Advances in Cryptology: Annual International Cryptology Conference. 2012 (CRYPTO)

[63] Gentry, Craig ; Halevi, Shai ; Smart, Nigel P.: Homomorphic Evaluation of the AES Circuit.
IACR Cryptology ePrint Archive, Report 2012/099, 2012

[64] Goh, Eu-Jin: Secure Indexes / IACRCryptology ePrint Archive 2003/216. 2003. – Forschungsbericht

[65] Goldreich, Oded ; Ostrovsky, Rafail: Software Protection and Simulation on Oblivious RAMs.
In: Journal of the ACM 43 (1996), Nr. 3

[66] Goldwasser, Shafi ; Kalai, Yael T. ; Popa, Raluca A. ; Vaikuntanathan, Vinod ; Zeldovich,
Nickolai: How to run turing machines on encrypted data. In: Advances in Cryptology: Annual
International Cryptology Conference, 2013 (CRYPTO)

[67] Goldwasser, Shafi ; Micali, Silvio: Probabilistic Encryption and How to play Mental Poker
Keeping Secret All Partial Information. In: Proceedings of the Symposium on Theory of Computing,
1982

[68] Goldwasser, Shafi ; Micali, Silvio ; Rackoff, Charles: The Knowledge Complexity of Interactive
Proof Systems. In: SIAM Journal on Computing 18 (1989), Nr. 1

[69] Golle, Philippe ; Staddon, Jessica ; Waters, Brent: Secure conjunctive keyword search over
encrypted data. In: Proccedings of the International Conference on Applied Cryptography and
Network Security, 2004 (ACNS)

[70] Goyal, Vipul ; Pandey, Omkant ; Sahai, Amit ; Waters, Brent: Attribute-based encryption for
fine-grained access control of encrypted data. In: Proceedings of the Conference on Computer and
Communications Security, 2006 (CCS)

[71] Grofig, Patrick ; Haerterich, Martin ; Hang, Isabelle ; Kerschbaum, Florian ; Kohler, Mathias
; Schaad, Andreas ; Schroepfer, Axel ; Tighzert, Walter: Experiences and observations on the
industrial implementation of a system to search over outsourced encrypted data. In: Sicherheit, 2014

[72] Grubbs, Paul ; Sekniqi, Kevin ; Bindschaedler, Vincent ; Naveed, Muhammad ; Ristenpart,
Thomas: Leakage-abuse attacks against order-revealing encryption. (2017)

[73] Guttman, Antonin: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the
International Conference on Management of Data, 1984 (SIGMOD)

[74] Hacigümüs, Hakan ; Iyer, Balakrishna R. ; Li, Chen ; Mehrotra, Sharad: Executing SQL
over Encrypted Data in the Database-Service-Provider Mode. In: Proceedings of the International
Conference on Management of Data, 2002 (SIGMOD)

129

Bibliography

[75] Hacigümüs, Hakan ; Mehrotra, Sharad ; Iyer, Balakrishna R.: Providing Database as a Service.
In: Proceedings of the International Conference on Data Engineering, 2002 (ICDE)

[76] Hahn, Florian ; Kerschbaum, Florian: Searchable Encryption with Secure and Efficient Updates.
In: Proceedings of the Conference on Computer and Communications Security, 2014 (CCS)

[77] Hahn, Florian ; Kerschbaum, Florian: Poly-Logarithmic Range Queries on Encrypted Data with
Small Leakage. In: Proceedings of the ACM on Cloud Computing Security Workshop, 2016 (CCSW)

[78] Hahn, Florian ; Loza, Nicolas ; Kerschbaum, Florian: EncryptedDatabase Joins with FineGranular
Security, ???? (In Preparation)

[79] Hahn, Florian ; Loza, Nicolas ; Kerschbaum, Florian: Practical and Secure Substring Search. In:
Proceedings of the International Conference on Management of Data, 2018 (SIGMOD)

[80] Hohenberger, Susan ; Waters, Brent: Attribute-based encryption with fast decryption. In: Public-
Key Cryptography. 2013 (PKC)

[81] Hore, Bijit ; Mehrotra, Sharad ; Tsudik, Gene: A Privacy-Preserving Index for Range Queries.
In: Proceedings of the 30th International Conference on Very Large Data Bases, 2004 (VLDB)

[82] Islam, Mohammad ; Kuzu, Mehmet ; Kantarcioglu, Murat: Access Pattern disclosure on Search-
able Encryption: Ramification, Attack andMitigation. In: Proceedings of theNetwork andDistributed
System Security Symposium, 2012 (NDSS)

[83] Kamara, Seny ; Papamanthou, Charalampos: Parallel and Dynamic Searchable Symmetric En-
cryption. In: Financial Cryptography and Data Security. 2013

[84] Kamara, Seny ; Papamanthou, Charalampos ; Roeder, Tom: Dynamic Searchable Symmetric
Encryption. In: Proceedings of the Conference on Computer and Communications Security, 2012
(CCS)

[85] Katz, Jonathan ; Lindell, Yehuda: Introduction to Modern Cryptography. CRC press, 2014

[86] Katz, Jonathan ; Sahai, Amit ; Waters, Brent: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Proceedings of the Annual International Conference
on the Theory and Applications of Cryptographic Techniques

[87] Kerschbaum, Florian: Collusion-resistant outsourcing of private set intersection. In: Proceedings
of the 27th Annual ACM Symposium on Applied Computing, 2012 (SAC)

[88] Kerschbaum, Florian: Outsourced Private Set Intersection Using Homomorphic Encryption. In:
Proceedings of the Symposium on Information, Computer and Communications Security, 2012 (ASI-
ACCS)

[89] Kerschbaum, Florian: Frequency-hiding order-preserving encryption. In: Proceedings of the
Conference on Computer and Communications Security, 2015 (CCS)

[90] Kerschbaum, Florian ; Härterich, Martin ; Grofig, Patrick ; Kohler, Mathias ; Schaad, Andreas
; Schröpfer, Axel ; Tighzert, Walter: Optimal Re-Encryption Strategy for Joins in Encrypted
Databases. In: Proceedings of the Conference on Data and Applications Security and Privacy, 2013
(DBSec)

130

Bibliography

[91] Kerschbaum, Florian ; Schröpfer, Axel: Optimal average-complexity ideal-security order-
preserving encryption. In: Proceedings of the Conference on Computer and Communications
Security, 2014 (CCS)

[92] Kiayias, Aggelos ; Papadopoulos, Stavros ; Triandopoulos, Nikos ; Zacharias, Thomas: Dele-
gatable pseudorandom functions and applications. In: Proceedings of the Conference on Computer
and Communications Security, 2013 (CCS)

[93] Koblitz, Neal ; Menezes, Alfred J.: The random oracle model: a twenty-year retrospective. In:
Designs, Codes and Cryptography (2015)

[94] Kocher, Paul ; Genkin, Daniel ; Gruss, Daniel ; Haas, Werner ; Hamburg, Mike ; Lipp, Moritz
; Mangard, Stefan ; Prescher, Thomas ; Schwarz, Michael ; Yarom, Yuval: Spectre attacks:
Exploiting speculative execution. In: arXiv preprint arXiv:1801.01203 (2018)

[95] Kushilevitz, Eyal ;Ostrovsky, Rafail: Replication is not needed: Single database, computationally-
private information retrieval. In: Foundations of Computer Science, 1997. Proceedings., 38th Annual
Symposium on IEEE, 1997, S. 364–373

[96] Lacharité, Marie-Sarah ; Minaud, Brice ; Paterson, Kenneth G.: Improved reconstruction attacks
on encrypted data using range query leakage. In: Proceedings of the Symposium on Security and
Privacy, 2018 (S&P)

[97] Lewi, Kevin ; Wu, David J.: Order-Revealing Encryption: New Constructions, Applications, and
Lower Bounds. In: Proceedings of the Conference on Computer and Communications Security, 2016
(CCS)

[98] Lewko, Allison ; Okamoto, Tatsuaki ; Sahai, Amit ; Takashima, Katsuyuki ; Waters, Brent: Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption.
In: Annual International Conference on the Theory and Applications of Cryptographic Techniques,
2010 (EUROCRYPT)

[99] Lewko, Allison ; Waters, Brent: Decentralizing attribute-based encryption. In: Proceedings of the
Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2011
(EUROCRYPT)

[100] Lewko, Allison ; Waters, Brent: Unbounded HIBE and attribute-based encryption. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques, 2011 (EU-
ROCRYPT)

[101] Li, Ninghui ; Li, Tiancheng ; Venkatasubramanian, Suresh: t-closeness: Privacy beyond k-
anonymity and l-diversity. In: Proceedings of the International Conference on Data Engineering,
2007 (ICDE)

[102] Li, Yaping ; Chen, Minghua: Privacy Preserving Joins. In: Proceedings of the International
Conference on Data Engineering, 2008 (ICDE)

[103] Lindell, Yehuda: HowTo Simulate It - ATutorial on the Simulation Proof Technique. Version: 2016.
https://eprint.iacr.org/2016/046. 2016 (046). – Forschungsbericht

[104] Lipp, Moritz ; Schwarz, Michael ; Gruss, Daniel ; Prescher, Thomas ; Haas, Werner ; Mangard,
Stefan ; Kocher, Paul ; Genkin, Daniel ; Yarom, Yuval ; Hamburg, Mike: Meltdown. In: arXiv
preprint arXiv:1801.01207 (2018)

131

https://eprint.iacr.org/2016/046

Bibliography

[105] Loza, Nicolas: Implementing Secure Join Operations over Encrypted Databases with Low Informa-
tion Leakage, Karlsruher Institute für Technologie (KIT), Master’s Thesis, 2017

[106] Lu, Yanbin: Privacy-preserving logarithmic-time search on encrypted data in cloud. In: Proceedings
of the Network and Distributed System Security Symposium, 2012 (NDSS)

[107] Machanavajjhala, Ashwin ; Gehrke, Johannes ; Kifer, Daniel ; Venkitasubramaniam, Muthu-
ramakrishnan: l-Diversity: Privacy Beyond k-Anonymity. In: Proceedings of the International
Conference on Data Engineering, 2006 (ICDE)

[108] Mavroforakis, Charalampos ; Chenette, Nathan ; O’Neill, Adam ; Kollios, George ; Canetti,
Ran: Modular Order-Preserving Encryption, Revisited. In: Proceedings of the International Confer-
ence on Management of Data, 2015 (SIGMOD)

[109] Mayberry, Travis ; Blass, Erik-Oliver ; Chan, Agnes H.: Efficient Private File Retrieval by
Combining ORAM and PIR. In: Proceedings of the Network and Distributed System Security
Symposium, 2014 (NDSS)

[110] McKeen, Frank ; Alexandrovich, Ilya ; Berenzon, Alex ; Rozas, Carlos V. ; Shafi, Hisham ;
Shanbhogue, Vedvyas ; Savagaonkar, Uday R.: Innovative Instructions and Software Model for
Isolated Execution. In: HASP ISCA 10 (2013)

[111] McSherry, Frank ; Talwar, Kunal: Mechanism Design via Differential Privacy. In: Symposium on
Foundations of Computer Science, 2007 (FOCS)

[112] Micali, Silvio: Computationally Sound Proofs. In: SIAM Journal on Computing 30 (2000), Nr. 4

[113] Narayanan, Arvind ; Shmatikov, Vitaly: Robust De-anonymization of Large Sparse Datasets. In:
Proceedings of the Symposium on Security and Privacy, 2008 (S&P)

[114] Naveed, Muhammad: The Fallacy of Composition of Oblivious RAM and Searchable Encryption.
In: IACR Cryptology ePrint Archive 2015/668 (2015)

[115] Naveed, Muhammad ; Kamara, Seny ; Wright, Charles V.: Inference Attacks on Property-
Preserving Encrypted Databases. In: Proceedings of the Conference on Computer and Communica-
tions Security, 2015 (CCS)

[116] Naveed, Muhammad ; Prabhakaran, Manoj ; Gunter, Carl A.: Dynamic Searchable Encryption
via Blind Storage. In: Proceedings of the Symposium on Security and Privacy, 2014 (S&P)

[117] Okamoto, Tatsuaki: Provably Secure and Practical Identification Schemes and Corresponding
Signature Schemes. In: Advances in Cryptology: Annual International Cryptology Conference, 1992
(CRYPTO)

[118] Paillier, Pascal: Public-key cryptosystems based on composite degree residuosity classes. In:
International Conference on the Theory and Applications of Cryptographic Techniques, 1999 (EU-
ROCRYPT)

[119] Pandey, Omkant ; Rouselakis, Yannis: Property Preserving Symmetric Encryption. In: Pro-
ceedings of the Annual International Conference on the Theory and Applications of Cryptographic
Techniques, 2012 (EUROCRYPT)

132

Bibliography

[120] Pang, Hweehwa ; Ding, Xuhua: Privacy-Preserving Ad-Hoc Equi-Join on Outsourced Data. In:
ACM Transactions on Database Systems (2014)

[121] Pinkas, Benny ; Schneider, Thomas ; Zohner, Michael: Scalable Private Set Intersection Based
on OT Extension. IACR Cryptology ePrint Archive, Report 2016/930, 2016

[122] Popa, Raluca A. ; Li, Frank H. ; Zeldovich, Nickolai: An Ideal-Security Protocol for Order-
Preserving Encoding. In: Proceedings of the Symposium on Security and Privacy, 2013 (S&P)

[123] Popa, Raluca A. ; Redfield, Catherine ; Zeldovich, Nickolai ; Balakrishnan, Hari: CryptDB:
Protecting Confidentiality with Encrypted Query Processing. In: Proceedings of the Symposium on
Operating Systems Principles, 2011 (OSP)

[124] Popa, RalucaA. ; Stark, Emily ;Helfer, Jonas ;Valdez, Steven ; Zeldovich, Nickolai ;Kaashoek,
Frans ; Balakrishnan, Hari: Building Web Applications on Top of Encrypted Data Using Mylar.
In: Proceedings of the USENIX Symposium of Networked Systems Design and Implementation, 2014
(NSDI)

[125] Popa, Raluca A. ; Zeldovich, Nickolai: Cryptographic treatment of CryptDB’s adjustable join.
(2012). https://css.csail.mit.edu/cryptdb/

[126] Ren, Ling ; Fletcher, Christopher W. ; Kwon, Albert ; Stefanov, Emil ; Shi, Elaine ; Van Dijk,
Marten ; Devadas, Srinivas: Constants Count: Practical Improvements to Oblivious RAM. In:
USENIX Security Symposium, 2015

[127] Rivest, Ronald L. ; Adleman, Len ; Dertouzos, Michael L.: On data banks and privacy homomor-
phisms. In: Foundations of secure computation 4 (1978), Nr. 11

[128] Roche, Daniel S. ; Apon, Daniel ; Choi, Seung G. ; Yerukhimovich, Arkady: POPE: Partial
Order Preserving Encoding. In: Proceedings of the Conference on Computer and Communications
Security, 2016 (CCS)

[129] Sahai, Amit ; Waters, Brent: Fuzzy identity-based encryption. In: Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, 2005 (EU-
ROCRYPT)

[130] Samarati, Pierangela ; Sweeney, Latanya: Protecting Privacy when Disclosing Information: k-
Anonymity and Its Enforcement through Generalization and Suppression / SRI International. 1998.
– Forschungsbericht

[131] Sasy, Sajin ; Gorbunov, Sergey ; Fletcher, Christopher W.: ZeroTrace: Oblivious Memory
Primitives from Intel SGX. In: Proceedings of Symposium on Network and Distributed System
Security, 2017 (NDSS)

[132] Schuster, Felix ; Costa, Manuel ; Fournet, Cédric ; Gkantsidis, Christos ; Peinado, Marcus ;
Mainar-Ruiz, Gloria ; Russinovich, Mark: VC3: Trustworthy Data Analytics in the Cloud Using
SGX. In: Proceedings of the Symposium on Security and Privacy, 2015 (S&P)

[133] Shen, Emily ; Shi, Elaine ; Waters, Brent: Predicate Privacy in Encryption Systems. In: Theory of
Cryptography Conference, 2009 (TCC)

133

https://css.csail.mit.edu/cryptdb/

Bibliography

[134] Shi, Elaine ; Bethencourt, John ; Chan, Hubert T.-H. ; Song, Dawn X. ; Perrig, Adrian: Multi-
Dimensional Range Query over Encrypted Data. In: Proceedings of the Symposium on Security and
Privacy, 2007 (S&P)

[135] Smart, Nigel P. ; Vercauteren, Frederik: Fully homomorphic encryption with relatively small key
and ciphertext sizes. In: International Workshop on Public Key Cryptography, 2010 (WPKC)

[136] Smith, Sean W.: Secure coprocessing applications and research issues. 1996. – Forschungsbericht

[137] Song, Dawn X. ; Wagner, David ; Perrig, Adrian: Practical techniques for searches on encrypted
data. In: Proceedings of the Symposium on Security and Privacy, 2000 (S&P)

[138] Stefanov, Emil ; Dijk, Marten van ; Shi, Elaine ; Fletcher, Christopher ; Ren, Ling ; Yu, Xiangyao
; Devadas, Srinivas: Path ORAM: An Extremely Simple Oblivious RAM Protocol. In: Proceedings
of the Conference on Computer and Communications Security, 2013 (CCS)

[139] Stefanov, Emil ; Papamanthou, Charalampos ; Shi, Elaine: Practical Dynamic Searchable Encryp-
tion with Small Leakage. In: Proceedings of the Network andDistributed System Security Symposium,
2014 (NDSS)

[140] Sweeney, Latanya: Simple Demographics Often Identify People Uniquely. In: Health (San Fran-
cisco) (2000)

[141] Tarjan, Robert E.: Amortized Computational Complexity. In: SIAM Journal on Algebraic Discrete
Methods 6 (1985), Nr. 2

[142] Van Dijk, Marten ; Gentry, Craig ; Halevi, Shai ; Vaikuntanathan, Vinod: Fully homomorphic
encryption over the integers. In: Proceedings of the Annual International Conference on the Theory
and Applications of Cryptographic Techniques, 2010 (EUROCRYPT)

[143] Wang, Boyang ; Hou, Yantian ; Li, Ming ; Wang, Haitao ; Li, Hui: Maple: Scalable Multi-
dimensional Range Search over Encrypted Cloud Data with Tree-based Index. In: Proceedings of
the Symposium on Information, Computer and Communications Security, 2014 (ASIACCS)

[144] Wang, Peng ; Ravishankar, Chinya: Secure and Efficient Range Queries on Outsourced Databases
Using R-trees. In: Proceedings of the International Conference on Data Engineering, 2013 (ICDE)

[145] Wang, Yujue ; Pang, HweeHwa: Probabilistic Public Key Encryption for Controlled Equijoin in
Relational Databases. In: The Computer Journal (2016)

[146] Xiao, Yuan ; Zhang, Xiaokuan ; Zhang, Yinqian ; Teodorescu, Radu: One Bit Flips, One Cloud
Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. In: USENIX Security Symposium,
2016

[147] Yao, Andrew C.: Protocols for Secure Computations. In: Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS)

[148] Yao, Andrew C.: How to Generate and Exchange Secrets. In: Proceedings of the Annual Symposium
on Foundations of Computer Science, 1986 (FOCS)

[149] Yung, Moti: From mental poker to core business: why and how to deploy secure computation
protocols? In: Proceedings of the Conference on Computer and Communications Security, 2015
(CCS)

134

Bibliography

[150] Zhang, Yupeng ; Katz, Jonathan ; Papamanthou, Charalampos: All Your Queries Are Belong to
Us: The Power of File-Injection Attacks on Searchable Encryption. In: USENIX Security Symposium,
2016

[151] Zipf, George K.: The psycho-biology of language. (1935)

135

	Introduction
	Motivation
	Contribution of this Work
	Structure of the Dissertation

	Notation and Preliminaries
	Notation
	Common Cryptographic Preliminaries
	Secret-Key Encryption
	Cryptographic Hash Functions and MACs

	Databases and Data Structures
	Privacy Preserving Query Execution

	Related Work
	Encrypted Databases
	Property-Preserving Encryption
	Deterministic Encryption
	Order-Preserving Encryption
	Attacks on Property-Preserving Encryption

	Searchable Encryption
	General Computation on Encrypted Data
	Functional Encryption
	Homomorphic Encryption

	Additional Approaches for Outsourced Databases
	Hardware-Based Approaches
	Solutions with Multiple Servers
	Hiding the Access Pattern
	Data Anonymization

	Methodology
	Security Assessment Methodology
	Framework for Formal Security Proofs for SSE
	Practical Security Evaluation

	Performance Assessment Methodology
	Theoretical Runtime Analyses
	Practical Runtime Evaluation

	Exact Keyword Matching
	Introduction
	Framework

	Related Work
	Implementation
	Evaluation
	Formal Security Proof
	Amortized Runtime Analysis
	Practical Benchmark

	Tradeoff between Communication Overhead and Client Storage
	Summary

	Secure Joins
	Introduction
	Framework

	Related Work
	Implementation
	Straw-Man Solution
	Required Tools
	Protocol

	Evaluation
	Formal Security Proof
	Amortized Analysis
	Practical Benchmark

	Tradeoff between Runtime and Predicate Security
	Summary

	Range Queries
	Introduction
	Framework

	Related Work
	Implementation
	Range Predicate Encryption
	Protocol

	Evaluation
	Formal Security Proof
	Amortized Runtime Analysis
	Practical Benchmarks

	Summary

	Substring Search
	Introduction
	Framework

	Related Work
	Implementation
	Order-Preserving Encryption
	Protocol
	Different Filtering Algorithms

	Evaluation
	Theoretical Security Evaluation
	Practical Security Evaluation
	Practical Benchmarks

	Further Discussion
	From Static to Dynamic Database
	Increased Security

	Summary

	Conclusions
	Summary
	Outlook

	Appendix
	Pairing Based Cryptography
	Attribute Based Encryption
	Range Predicate Encryption
	Secret Key Inner-Product Encryption

	Bibliography

