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Abstract

The mechanical properties of metallic multilayer materials differ from the bulk because of

the properties of interfaces between the layers. These differences become greater as the layer

thickness is reduced to the nanoscale. This thesis describes two FCC metallic multilayer

materials, Cu1−xAgx|Ni and Cu|Au stacked along their [111] axis. These systems form

semi-coherent interfaces with networks of partial Shockley dislocations arranged in a regular

triangular pattern. The two systems represent two alternatives to fine tune the interfaces

properties. The first one, the Cu1−xAgx|Ni system, uses an alloying element, Ag, to fine tune

the lattice mismatch between the layers. The second, the Cu|Au system, is a fully miscible

binary system. As such the multilayer stack is a metastable form of the system inevitably

leading to intermixing at the interface.

Molecular dynamics (MD) and a combination of molecular dynamics and Monte Carlo

methods were used to study the structure and strengthening mechanism of these composite

materials. Calculations were carried out on various geometries and loading conditions, from

representative volume elements to realistic geometries such as nanopillar compression or

nanoscratching setups. With the help of large scale MD calculations it was possible to reach

system sizes directly comparable to experiments.

Ag was found to be a good candidate for alloying in the Cu|Ni binary system as it only forms

a solid solution with Cu and therefore should only alter the Cu layers. As Ag was added

to the Cu layer, it increased the lattice mismatch with the Ni layer, effectively increasing

the density of the network of misfit dislocation at the interface. The excess of Ag in the Cu

layer segregated at preferential sites at the interfaces and pinned the dislocation network.

Molecular dynamics simulations demonstrated that these modifications increased the strength

of the Cu1−xAgx|Ni systems. This model shows that using a well chosen alloying element

in a binary multilayer system is a route for tuning the strength of a system under various

loading conditions.

A custom EAM potential for the Cu|Au system was developed and compared with pre-

existing EAM potentials. This new potential allowed to successfully describe the unary as

well as the stable binary phases existing for this binary system. Investigation of the interface

of the Cu|Au system showed that the interface structure and properties were highly sensitive
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Abstract

to the intermixing between the two species, with a strong increase of the interface shear

strength with intermixing. It was also noticed that this system was sensitive to defects and

heterogeneities in its structure which lead, under tribological load, to the formation of vortex

instabilities at the interfaces. Finally, catastrophic failure was observed of the system under

compression as shear band nucleation was triggered by surface flaws. The observation and

understanding of the effect of defects on the mechanical responses of multilayer systems

can thus lead to a better material design by avoiding or embracing these defects.
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Kurzfassung

Die mechanischen Eigenschaften von mehrlagigen metallischen Laminaten unterscheiden

sich von homogenen Metallen, da diese durch die Eigenschaften der Grenzflächen zwischen

den Schichten bestimmt werden. Der Einfluss der Grenzflächen steigt, wenn die Schicht-

dicke auf der Nanoskala reduziert wird. In dieser Arbeit werden die zwei mehrlagigen

metallischen Materialien, Cu1−xAgx|Ni und Cu|Au untersucht. Beide werden entlang der

[111]-Achse ihrer kfz-Gitter gestapelt. Diese Systeme bilden semikohärente Grenzflächen

mit Netzwerken von partiellen Shockley-Versetzungen, die in einem regelmäßigen Dreiecks-

muster angeordnet sind. Die beiden Systeme bieten Alternativen zur Feinabstimmung der

Grenzflächeneigenschaften. Das Cu1−xAgx|Ni-System verwendet das Legierungselement

Ag um die Gitterfehlanpassung präzise einzustellen. Das Cu|Au-System ist ein vollständig

mischbares binäres System. Somit ist das Laminat eine metastabile Form des Systems, die

zwangsläufig zu einer Mischung an der Grenzfläche führt.

Molekulardynamik (MD) und Monte-Carlo-Methoden wurden verwendet, um die Struk-

tur und die mechanischen Eigenschaften dieser Verbundwerkstoffe zu untersuchen. Die

Berechnungen wurden für verschiedene Geometrien und Belastungsbedingungen durch-

geführt, von repräsentativen Volumenelementen bis hin zu realistischen Geometrien wie

zum Beispiel der Kompression eines Nanopillars oder von Kratzversuchen auf Nanoebene.

Mit Hilfe von großen MD-Berechnungen konnten Systemgrößen erreicht werden, die direkt

mit Experimenten vergleichbar sind.

Ag bietet sich als Kandidat für die Legierung im Cu|Ni-Binärsystem an, da es lediglich in Cu

löslich ist und daher nur die Cu-Schichten verändern sollte. Das Zulegieren von Ag zur Cu-

Schicht erhöhte die Fehlanpassung des CuAg Gitters bezüglich des Ni-Gittern und erhöhte

damit die Versetzungsdichte Grenzfläche. Der Überschuss an Ag in der Cu-Schicht fällt an

bevorzugten Stellen des Versetzungsnetzwerks der Grenzfläche aus. Die Molekulardyna-

miksimulationen zeigten, dass diese Modifikationen die Stärke der Cu1−xAgx|Ni-Systeme

erhöhten. Dieses Modell zeigt, dass die Verwendung eines gut gewählten Legierungsele-

ments in einem binären Mehrschichtsystem ein Weg ist, um die Festigkeit des Systems unter

verschiedenen Lastbedingungen einzustellen.
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Kurzfassung

Für das Cu|Au-System wurde ein EAM-Potential entwickelt und mit bereits vorhandenen

EAM-Potentialen verglichen. Dieses neue Potential ermöglicht es, sowohl die unären als

auch die stabilen binären Phasen dieses Binärsystems erfolgreich zu beschreiben. Die Unter-

suchung der Grenzfläche des Cu|Au-Systems ergab, dass die Struktur und die Grenzfläche

sehr empfindlich auf die Vermischung zwischen den beiden Spezies reagiert, wobei die

Scherfestigkeit der Grenzfläche mit der Vermischung stark ansteigt.

Weitere Molekulardynamiksimulationen haben gezeigt, dass dieses System empfindlich auf

Defekte und Heterogenitäten in seiner Struktur reagiert. So führt zum Beispiel tribologische

Belastung zur Bildung von Wirbelinstabilitäten in dem Laminat und Oberflächenfehler

können zur Bildung von Scherbändern und darauf folgendem katastrophalen Versagen

der Strukturen führen. Die Beobachtung und das Verständnis der Wirkung von Defekten

auf die mechanische Antwort von Mehrschichtsystemen kann somit zu einem besseren

Materialdesign führen.
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1. Introduction

1.1 Motivation

Over the past decades the technological challenges have pushed research towards advanced

engineered materials, such as thin films materials (Was and Foecke, 1996). Thin film

materials exhibit a broad range of unique properties from mechanical to electrical, including

tribological, thermal, magnetic or biological properties. Thanks to this wide range of

characteristics associated with the large amount of possible material combinations, thin

film materials are good candidates for numerous applications where a surface has to sustain

severe conditions. Thin film materials can be found in application such as hard coatings,

tribological contacts or micro-electro-mechanical systems (Clemens et al., 1999). The

definition of thin film materials is broad and ranges from free standing films, to coatings

and multilayers. The focus of this thesis will be on problems related to metallic multilayer

materials, often called nanolaminates or nanolayered composites.

In nature, heterogeneous multilayered materials have existed for a long time, exhibiting for

example high toughness in shell of mollusks (Currey, 1977). It has only been a few decades

since a new class of materials composed of alternated metallic layers started to emerge.

The first mention of such system was by Palatnik and Il’Inskii (1964). They found that the

strength of laminated copper chromium was several times higher than that of a chromium

bulk counterpart. Similarly, Koehler (1970) proposed guidelines to obtain a “strong solid”.

He outlined that such a “strong solid” should be made out of two thin crystals having

similar lattice parameters and thermal expansion with dissimilar shear moduli to prevent

dislocation transmission. Using these parameters he proposed Cu|Ni as a theoretical good

candidate for such application. but it is only in the 1990’s that metallic multilayered system

have been considered and studied as the capacity to produce such system experimentally

became viable (Was and Foecke, 1996). Simultaneously, the increase in computational

power allowed scientist to use computational models to study similar systems (Allen and

Tildesley, 2017, Dodson, 1988).
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1. Introduction

In this thesis, the mechanical properties and thermodynamic stability of metallic multilayers

at the nanoscale will be investigated.

1.2 Mechanical properties of multilayered materials

Contrary to bulk composites, where the rule of mixtures can be applied to describe the

mechanical properties, the unique mechanical properties of multilayered materials can be

traced back to two interconnected factors, the reduction in layer thickness and the importance

of interfaces in the system (Misra et al., 2004).

The impact of layer thickness reduction on the structure has first been observed for metallic

monolayer in the 1960’s and early 1970’s. A linear scaling of the layer thickness with

the average grain size, and a columnar growth of these grains have been observed for

these metallic monolayers with thickness down to few hundreds of ångström (Smith et al.,

1960, Donovan and Heinemann, 1971). Likewise, Adams et al. (1993) reported a similar

linear scaling in metallic multilayer systems. As a consequence of the different grain

size observed in different metallic monolayers, they follow the the well-known Hall-Petch

relationship (Griffin et al., 1987, Venkatraman and Bravman, 1992). This relationship

predicts a strengthening of a polycrystalline materials proportional to average grain diameter

∝ d− 1
2 (Hall, 1951, Petch, 1953). Petch (1953) rationalized this relationship with the

dislocation pile-up model. This model states that dislocations stored in a pile-up against

a grain boundary generate a stress across the boundary lowering the critical stress barrier

to overcome to generate dislocation in the neighboring grain. As dislocation pile-up are

also seen at interfaces the Hall-Petch can be extended to metallic multilayer in this case the

strengthening is proportional to the layer thickness ∝ λ− 1
2 (Anderson and Li, 1995, Friedman

and Chrzan, 1998, Misra et al., 1998). This scaling has been observed by Anderson et al.

(1999) for Cu/Ni multilayer systems having a layer thickness going from more than 100 nm

down to less than 20 nm. They observed deviations from this scaling below 20 nm. This

deviation from the Hall-Petch relationship comes from the fact that at small layer thickness

the grains (layers) can no longer store dislocation pile-ups. This scaling breaks down at

small length scale (Misra et al., 1998).

When the number of dislocations in pile-ups become too small, the strengthening follows a

confined layer slip (CLS) model that involve dislocation loops bounded by two interfaces.

The strengthening in this CLS model is proportional to the inverse of the layer thickness

along the dislocation slip plane (Anderson et al., 1999, Phillips et al., 2003). This model

has been further refined by Misra et al. (2005) to take into account interface reactions as the

former model was overestimating the strengthening for small λ and underestimating it for
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1.2. Mechanical properties of multilayered materials

large λ . In their refined CLS model the strengthening is proportional to ln(λ/b)/λ , with

b being the Burgers vector of the dislocation. In their model Misra et al. (2005) took into

account the interface response to the stress field of the dislocation as well as the interaction

between dislocations already present at the interfaces (either deposited by another loop or

misfit dislocations).

At even smaller scale, λ ≈ 1−2 nm, the Hall-Petch and CLS models stop to describe the

strength of a multilayer system. The strength of such multilayer system is determined by

the interfacial barrier to slip transmission which is intrinsic to the materials composing the

multilayer stack (Misra et al., 2005). Thus, from about 1−2 nm and down to smaller scales,

the strength does not depend on the layer thickness as long as interface structure remains

stable.

The interface density in multilayered materials is extremely important. By design in mul-

tilayer systems the ratio between the interface area and the system volume is extremely

large. The interface acts as buffer between the different materials ; it accommodates the

property difference of these materials. As some examples of variations that can occur one

can cite the accommodation of misfit in lattice constant, crystal structure variation or elastic

modulus from one layer to the next (Was and Foecke, 1996, Misra et al., 1998, Clemens

et al., 1999, Anderson et al., 1999, Misra and Krug, 2001, Wang and Misra, 2011, Gumbsch

and Daw, 1991). Under deformation, the interfaces can as well act as a source, sink or

barrier to dislocations (Hoagland et al., 2006). One of the first strengthening model proposed

by Koehler (1970) made abstraction of the layer thickness and only involve difference of

shear moduli resulting in an image force on the dislocation at the approach of the interface.

The coherency stresses arising from accommodating the lattice mismatch is also a source of

strengthening for multilayered materials as it create a stress fields near the interfaces that

can either repel or attract incoming dislocations.

(a) (b) (c)

Figure 1.1: Schematic representation of the alignment of the crystallographic planes with the lattice
mismatch. (a) coherent interface, (b) semi-coherent interface, (c) incoherent interface.
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1. Introduction

Up to now the interfaces have been considered as a flat plane of contact between two

metals without considering their structure. Three types of interfaces can be distinguished in

crystalline metallic multilayers, as shown in figure 1.1. These interfaces are sorted according

to the degree of coherency across the interface. The first type of interfaces are the fully

coherent ones (Fig. 1.1(a)), these interfaces show a continuity of the atomic planes across

the interfaces between the two crystals. In this case the metal with the larger (smaller)

lattice parameter experiences a compressive (tensile) strain to accommodate for the lattice

mismatch. The lattice mismatch is here defined as

δ12 = 2
a1 −a2

a1 +a2
(1.1)

where a1 and a2 are the equilibrium lattice constants of each layer. These coherent interfaces

are only possible for small lattice mismatch and up to a certain critical layer thickness.

Indeed, for a given lattice mismatch the coherency strain energy increase with the layer

thickness. This increase of energy determines a critical layer thickness after which the

coherent interface is thermodynamically unfavorable (Frank and Merwe, 1949). The critical

thickness is inversely proportional to the lattice mismatch (Matthews and Blakeslee, 1974).

For example the critical thickness for Cu|Ni bilayer has been estimated and experimentally

observed at around 2 nm (Hoagland et al., 2004, Liu et al., 2011).

The second kind of interfaces are the semi-coherent ones (Fig. 1.1(b)). They are observed

for systems having layers of thickness greater than the critical thickness. In this case misfit

dislocations are observed at the interface accommodating the lattice mismatch between the

two crystal structures. In FCC/FCC systems for example, the misfit dislocations appear as a

network grid with 90∘ junctions at (100) interfaces, or triangular network at close-packed

(111) interfaces with dislocations split 120∘ apart (Cullen et al., 1973). The spacing between

these misfit dislocations only depends on the lattice mismatch and the rotation angle between

the two FCC crystals (Shao et al., 2013).

The third type of interfaces are incoherent interfaces (Fig. 1.1(c)). There is no correspondence

of atomic planes across the interface in this case. This occurs if the lattice mismatch is too

large or if the crystal structures are incompatible.

The structure of the heterointerface therefore depends on lattice parameters, and it is decisive

for the control of the mechanical properties of these materials (Feng et al., 2017, Béjaud et al.,

2018). These size effects can be exploited to design materials with mechanical strengths

orders of magnitude larger than their bulk counterparts (Misra and Krug, 2001, Wang and

Misra, 2011). To put it in a nutshell, at a given layer thickness, the mechanical properties of

a multilayer system are strongly dominated by the interface structure. Therefore this thesis
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will focus on investigating the possibilities to fine tune the interface properties and their

stability as it is a key to design multilayered systems.

1.3 This thesis

The work described in this thesis was carried out as part of a Helmholtz-CAS (Chinese

Academy of Science) joint research group. The research carried by the members of this

group explores the possibility of tailoring metallic multilayered nano structures and the

impact of such tailoring on their mechanical properties. With the aim of better understanding

the relationship between structure and properties, this research could open the way to the

development of application oriented multilayered materials. The work in this joint research

group is carried in parallel using experimental and computational modeling techniques. The

idea here is to use information coming from experimental samples to build and validate

numerical models, and then use numerical simulations to shed some light on phenomena

happening at length and time scales not yet accessible experimentally. This includes dis-

location nucleation, the interfaces evolution under strain or segregation processes. The

work presented in this manuscript is the computational modeling part of this joint project

and employs atomic-scale modeling techniques, mainly molecular dynamics (MD) and

Monte-Carlo (MC).

Two specific material systems have been studied in this thesis, Cu|Ni and Cu|Au. The

difference between the two systems reside mainly in the lattice mismatch and the miscibility

of the components. Using Eq. (1.1) with the experimental lattice constants of Cu, Ni and Au

at 300 K (Massalski et al., 1990) gives δCuNi ≈ 2.55% and δCuAu ≈ 12.05%.

While the Cu-Ni binary system shows a miscibility gap of up to 630 K (Fig. 1.2), the Cu-Au

binary system is miscible at all concentrations and has stable intermetallic compounds,

CuAu3, CuAu and Cu3Au (Fig. 1.3). The two multilayered systems have face centered cubic

(FCC) structures and can be grown along their [111] axis when prepared experimentally (Tu

and Berry, 1972, Schweitz et al., 2001). The interfaces of these structures are semi-coherent,

exhibiting a triangular array of misfit dislocations with alternating FCC and hexagonal close

packed (HCP) stacking regions (Fig. 1.5(a)). Theses regions are separated by a triangular

network of Shockley partial dislocations (Fig. 1.5(b)) (Shao et al., 2013).

These systems represent two approaches to fine tune in a systematic manner the lattice

mismatch and defects at the interfaces. This can shed light on the role of dislocations and

defects at the interfaces for mechanical performance. As the density of the dislocation

network depends directly on the mismatch in lattice parameter between the constituent
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Figure 1.2: Experimental binary phase diagram of Cu-Ni (Massalski et al., 1990).

materials, alloying Ag to the Cu|Ni multilayer stack is an interesting option. Indeed, Ag is

miscible with Cu (up to x = 3% in Cu1−xAgx at 1000 K, Fig. 1.4(a)) but not miscible with

Ni (Fig. 1.4(b)). Therefore Ag will remain on the Cu side of the multilayer. Since the lattice

parameter of Cu1−xAgx alloys is known to increase with increasing silver content (Madelung,

1991, Subramanian and Perepezko, 1993), alloying Ag to Cu could therefore be used to

engineer the interface of the multilayer stack and thereby tune its mechanical properties.

This proposition is probed here with atomic-scale calculations employing a combination of

Monte-Carlo and molecular dynamics techniques.

For the Cu|Au system, fine tunning involves annealing the system to achieve intermixing at

the interface and thus to smooth out the lattice mismatch over a finite interface region (Zhang,

2014). This system is particularly interesting experimentally for its strong contrast in

electronic microscopy which allows to easily characterize the different layers (Goldstein

et al., 2017).

In the next chapter the main numerical methods used for this thesis will be introduced. Then

the effect of Ag and Cu-Au intermixing on the interface structure will be characterized.

Finally, for each of the systems investigations will be carried out to determine how these

structure changes affect their mechanical properties.
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Figure 1.3: Experimental binary phase diagram of the Cu-Au (Massalski et al., 1990).
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(a)

(b)

Figure 1.4: Experimental binary phase diagram of (a) Ag-Cu and (b) Ag-Ni (Massalski et al., 1990).
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(a) (b)

Figure 1.5: Molecular dynamic model of the Cu|Au (111)/(111) interface showing (a) the local crys-
talline structure as determined by common neighbor analysis (Honeycutt and Andersen,
1987, Stukowski, 2012). Atoms in green are FCC, atoms in red are HCP, atoms in blue
are BCC and atoms in white are in an undefined coordination structure. And (b) the net-
work of misfit dislocation obtained with the dislocation extraction algorithm (Stukowski
et al., 2012): Perfect dislocations are in blue, Shockley partials in green.
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2. Methods

2.1 Interatomic potentials

Energies in MD are derived from models describing the interaction between atoms. The total

potential energy Epot({~ri}) of an atomistic system is a function of the positions of all atoms~ri.

Different models for Epot exist, one of the most accurate description considers the electronic

degrees of freedom explicitly (often involving the Born-Oppenheimer approximation), such

as density functional theory (DFT). However, because of limitations in computational

resources, in the early days of molecular dynamics the interatomic potentials consisted

mainly of idealized pair potential. The interaction energy between two atoms in a pair

potential solely depends on the distance between the atoms. A simple empirical example is

the 12/6 Lennard-Jones potential shown in Eq. (2.1).

ELJ(r) = 4ε

((
σ

r

)12
−
(

σ

r

)6
)

(2.1)

This simple potential could be fitted to describe interaction between noble gas atoms. The

attractive part of the functional of the form −1/r6 has a physical origin in that it describes the

Van der Waals interaction (mainly the London dispersion interaction (Israelachvili, 2011))

between two atoms with a negative energy well of depth ε . The term 1/r12 is on the other

hand empirical, it correspond to a rapidly rising repulsive interaction at distance r ≈ σ

mimicking the Pauli repulsion between two atoms. This last term is conveniently the square

of the first term. This makes the Lennard-Jones potential a good candidate for efficient

evaluation on computers.

The simplicity of these pair potentials comes with many limitations. They do not describe

correctly the elastic constants of cubic crystals C11, C12 and C44. They predict a Cauchy

pressure Cp =C12 −C44 equal to zero and a Poisson’s ratio exactly equal to 0.25. Theses

limitations, while working to some extend for noble gas crystals, do not work for most of the
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metals. Another limitation is the bad description of metallic atoms near a free surface (Gupta,

1981).

2.1.1. Embedded-atom method potentials

Due to the limitation of pair potentials and the increase of computational power some more

complex and accurate “many-body” interatomic potentials were developed in the early 1980s.

One of the most commonly used many-body interatomic potential for metals is the embedded

atom method (EAM) (Daw and Baskes, 1984). The basic idea behind EAM potentials is to

consider an atom in a solid as an impurity embedded in a matrix comprised of all the other

atoms.

In the embedded atom method, the total energy of an atomic configuration is given by

E = ∑i Ei with

Ei = Fσi (ρi)+
1
2 ∑

j ̸=i
φσiσ j(ri j) (2.2)

Here latin i, j denote atom indices and Greek σi, σ j denote the species of atoms i and

j, respectively. The symbol ri j is the distance between two atoms, ri j = |~ri −~r j|, where

~ri denotes the position of atom i. The total energy then depends on the local density of

atoms ρi through the “embedding” functional Fα(ρ). The heuristic rationale here is that the

nucleus of atom i is embedded in a gas of nearly free electrons whose density depends on

the density of atoms in the neighborhood of atom i, an argument which can be supported by

quantum-mechanical considerations (Gupta, 1981, Cleri and Rosato, 1993, Tománek et al.,

1985). The density is computed from

ρi = ∑
j ̸=i

fσi|σ j(ri j) (2.3)

where fσi|σ j(ri j) is some function that drops to zero as ri j → rc. The function fσi|σ j(ri j)

describes the contribution of an atom of species σ j to the local density of an atom of species

σi. Here, rc is the range or cutoff radius of the embedded atom potential. The cutoff value

in an EAM potential usually lie between the second and third nearest neighbor for a FCC

crystal. This distance can be critical for FCC crystals to describe certain properties such

as the stacking fault energies. The function φσiσ j(r) in Eq. (2.2) is a pair-potential and

symmetric with respect to exchange of the species σi and σ j. The function fσi|σ j(r) does not

necessarily share this symmetry.

Most formulations of the embedded-atom method use an expression like Eq. (2.2). The major

difference between different formulations is how the atomic species enter Eqs. (2.2) and
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2.1. Interatomic potentials

(2.3). For example, the widely used formulation of Daw & Baskes (Daw and Baskes, 1984)

uses fσi|σ j(ri j) = fσ j(r), i.e. the contribution of atom j to the density of atom i depends only

on the type σ j on atom j and not on the type σi of atom i. The formulation given in Eqs. (2.2)

and (2.3) is due to Finnis & Sinclair (Finnis and Sinclair, 1984). This latter formulation is

employed in chapter 6 since it gives most flexibility.

2.1.2. Alloy-averaged interatomic potentials

In the case of an alloyed system it can be useful to reduce the stoichiometric degrees of

freedom of a system, for example when studying properties sensitive to variation in chemical

environment. Examples are solute energies or energy of a dislocation interacting with a

single solute atom.

The averaged embedded atom method was first introduced by Smith and Was (1989) and

then Varvenne et al. (2016). The potential energy of an alloy-averaged system can be defined

within the embedded atom method framework. For a random solid solution one can define a

set of occupation variables {sσ
i } where sσ

i = 1 if atom i has type σ , otherwise it is equal to

zero. Considering a system with NT atom types, Eq (2.2) can be re-written as

E =
N

∑
i

NT

∑
σ

sσ
i Fσ (ρi)+

1
2

N

∑
j ̸=i

NT

∑
σ1,σ2

sσ1
i sσ2

j φ
σ1σ2(ri j) (2.4)

with the density defined as

ρi = ∑
j ̸=i

NT

∑
σ

sσ
i f σ (ri j) (2.5)

Assuming a perfectly random solid solution, i.e. uncorrelated occupation variables, the

averaged value
〈

sσ1
i sσ2

j

〉
can be simplified as

〈
sσ1

i

〉〈
sσ2

j

〉
where

〈
sσ1

i

〉
correspond to the

average concentration cσ . One can now derive the configurational average of Eq. (2.4) as

E =
N

∑
i

NT

∑
σ

cσ ⟨Fσ (ρi)⟩+
1
2

N

∑
j ̸=i

NT

∑
σ1,σ2

cσ1cσ2φ
σ1σ2(ri j) (2.6)
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In order to further simplify Eq. (2.6), one need to introduce the main approximation of the

alloy-averaged method by expanding the embedding function in a Taylor series around the

average electron density ⟨ρi⟩ as

⟨Fσ (ρi)⟩= Fσ (⟨ρi⟩)+F ′σ (⟨ρi⟩)(ρi −⟨ρi⟩)+O(ρi −⟨ρi⟩)2 (2.7)

Due to averaging the first order term in Eq. (2.7) vanishes. And by neglecting the second

order term in Eq. (2.7) one can now write

E =
N

∑
i

Fα (⟨ρi⟩)+
1
2

N

∑
j ̸=i

φ
αα(ri j) (2.8)

with Fα (⟨ρi⟩) =
NT

∑
σ

cσ Fσ (⟨ρi⟩) ,

⟨ρi⟩=
N

∑
i

NT

∑
σ

cσ
ρ

σ
i ,

φ
αα(ri j) =

NT

∑
σ1,σ2

cσ1cσ2φ
σ1σ2(ri j).

(2.9)

Equation (2.8) has the form of an EAM potential for an average-atom of type α . This

average atom represents a new species having the average properties of a random alloy.

In chapter 3, this method is used to compute the energetics of single Ag atoms within a

Cu1−xAgx matrix. The method introduces an alloy-averaged EAM potential that describes

the mean interaction between averaged ⟨Cu1−xAgx⟩ atoms and hence introduces a single

synthetic atom type for the random alloy. This synthetic atom type homogenizes the

structural disorder of the alloy while still faithfully reproducing energy differences and hence

eliminate sampling thousands of disordered configurations. The solute energy of single Ag

atoms in a matrix of average-atom ⟨Cu0.90Ag0.10⟩ is computed in order to study the Ag’s

energy at the interface at different point of interests (i.e along dislocation lines, dislocation

nodes) in chapter 3.

Recent work employing thermodynamic integration along alchemical mutation of random

alloys into average-atom solids (Nöhring and Curtin, 2016) have shown that free-energy

differences between the true random alloy and the average-atom solid are on the order of

∼ 10meV at 300K. Similar corrections are expected to apply for the energy differences
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computed in this work. All energies obtained here with the average-atom potential method

are at least an order of magnitude larger than this energy scale. Conclusions drawn from

these calculations therefore still apply to free energies, where these corrections must be

taken into account.

2.2 Molecular dynamics

Molecular dynamics is used in this thesis to describe the dynamical behavior of the systems

under external load. Molecular dynamics allow to describe the evolution of a given config-

uration in time and in the phase space. This set of data build a so-called trajectory of the

N-particles of a system. The interactions between particles are modeled using interatomic

potentials (also called force fields) described in the previous section 2.1. In molecular dy-

namics the N-particles of a configuration move according to Newton’s equations of motion.

The integration in MD give the information on the position, velocity of the system at a time

t +∆t. These information are usually obtained using the velocity Verlet algorithm that uses

Taylor expansions at t +∆t. The time step ∆t must be small enough so that the derivative

can be approached by finite difference approximations. A good approximation for ∆t is

some order of magnitude lower than the atomic vibration (Howe, 1997). For a metal this

is typically a few femtoseconds. At the date of the writing of this thesis this allow for a

maximum time calculation in the order of the nanoseconds for systems of up to millions

of atoms using an EAM potential. Indeed, this thesis describes calculations of up to 400

million atoms, among the biggest calculations carried out to date.

The aforementioned method let the system evolve in the N, V, E ensemble. However

performing calculations at fixed temperature is possible by coupling the simulation cell to an

external heat bath. Similarly fixed pressure calculation can be done by rescaling the periodic

boundaries and the atomic positions of a system (Shinoda et al., 2004, Berendsen et al.,

1984, Schneider and Stoll, 1978). All these techniques are fairly standard and described in

many text books (Allen and Tildesley, 2017) and their details will not be repeated here.

2.3 Monte Carlo

2.3.1. Metropolis Monte Carlo

In part II the multilayer system is composed of Cu, Ni and Ag. As described in the

introduction Ag is used there as a solute in the Cu layer. The atomic inter-diffusion in an
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alloy has a high energy barrier. This means that it requires a long time in order to statistically

occur. As mentioned in section 2.2, the timescale accessible with classical MD is too short to

relax the system to its thermodynamic equilibrium by purely dynamical means when starting

from a random solid solution structure. Practically this mean that MD can only model a

metastable configuration of a solid which might not reflect an experimental setup.

Another path to study atomistic models is the Monte Carlo (MC) method (Binder and Heer-

mann, 2002). One well known MC algorithm was presented by Metropolis et al. (1953). In

this article Metropolis proposed a technique where the atoms carry out random displacements

that are accepted given the probability Ac = min{1;exp[−∆E/kBT ]}. This lead to a set of

configurations that sample the Boltzmann distribution. Contrary to MD method that is in

most flavors deterministic, MC methods use (usually) unphysical displacements that sample

the configuration space in a manner that allow to compute equilibrium properties.

Later on Kikuchi et al. (1991, 1992) showed that the Metropolis algorithm could also be used

to study dynamic properties, which allowed to combine it with a MD method to circumvent

the time limitation inherent to this method. A MC/MD method has been used in this thesis

to bring the systems closer to their thermodynamic equilibrium with a sequential algorithm

that alternates MD and MC sequences (Neyts and Bogaerts, 2013). The idea here is that the

MD runs are perfectly suited to simulate fast processes such as local stress relaxation, while

the MC runs can account for slower processes i.e. atomic diffusion.

2.3.2. Atom-swap Monte Carlo

During the MC runs atom swap trial moves within the metropolis algorithm (Metropolis

et al., 1953) have been used. One MC step consist of :

1. Picking two random atoms of types σi, σ j with σi ̸= σ j. In a system having an energy

E0

2. Swapping their types and rescaling their velocities to conserve the kinetic energy.

3. Computing the new energy E1 and accepting the move with the probability Ac =

min{1;exp[−∆E/kBT ]} where kB is the Boltzmann’s constant and T is the calculation

temperature.

With this algorithm, atoms are picked and swapped within the system which means that the

system is bound to evolve at fixed composition.
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2.3.3. Parallel variance-constrained semi-grand canonical ensemble
Monte Carlo

This method is described in detail by Sadigh et al. (2012). What follows is a short overview

of the method and its advantages.

One technical limitation of the previously described Monte Carlo methods is the lack of

efficient parallelization (Frenkel and Smit, 2002). This limitation is quite critical when it

comes to model system with millions of particles. The bottleneck comes from the fact that

in the atom-swap ensemble the number of atoms in the system is fixed, thus trial steps are

performed by randomly picking atom pairs in the full simulation volume. Technically the

simulation volume is split in sub-volumes spread on the parallel processors. This means that

the parallel processors are not independent with regards to performing local trial move and

energy change evaluation.

In order to make all the trial events independent from each other one has to switch to the

semi-grand canonical (SGC) statistical ensemble where the number of particles is fixed but

the relative concentration of the species can vary. This corresponds to a system in a contact

with an infinite reservoir, in this case independent trial moves can be envisioned as an atom

swap to and from the infinite reservoir. In order to limit concentration fluctuation the authors

in Sadigh et al. (2012) used a subset of the SGC ensemble called the variance-constrained

SGC (VC-SGC) where two parameters φ and κ are used to constrain the fluctuations of

concentration around a targeted value c0. In this case the system can be seen as in contact

with a finite reservoir.

Due to the parallelization of the VC-SGC method, one has to perform a composite trial move

split in two steps to satisfies detailed balance. Step 1 consists of NCPU synchronous moves,

with one move localized on each processor i, where one particle is randomly selected and its

type is swapped, each move is accepted with the probability

Aloc
v (i) = min{1;exp [−(∆Ei +N∆ci(φ +2κNc0))/kBT ]} (2.10)

where ∆Ei and ∆ci are the local energy and concentration changes, respectively. Step 2 is

a global move that considers the swaps that were accepted during step 1 and accept all of

them together with the probability

Aglob
v = min

{
1;exp

[
−(κN2

∆ctot
{

∆ctot −2[ĉ(σN)− c0]
}
)/kBT

]}
(2.11)

where ∆ctot is the total change in concentration and ĉ(σN) the concentration of the system

state σN .
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The outcome of these two methods have been compared, atom-swap and variance constrained

MC, on a CuAg|Ni bilayer system in appendix A

2.4 Nested Sampling

While the number of available interatomic potentials has grown since the 1980s, it is still a

complex task to obtain a transferable interatomic potential that can fully describe a material

system, e.g. its thermodynamic properties, mechanical properties, diffusion properties, etc.

In the case of a missing feature in the available interatomic potentials, it might be useful to

create a new one to fit specific needs. EAM potentials can be fitted to targeted properties

defined experimentally or via ab-initio calculations such as cohesive energy, lattice constants,

elastic constants. Nowadays, these properties can rapidly be computed in order to enter in

an optimization procedure. This allows to fit EAM mathematical functions.

Thermodynamic data is more difficult to obtain in such a stream-lined fashion. For example

accessing the melting temperature of one single composition via the voids methods (Solca

et al., 1997) or the melt-crystal equilibrium (Morris et al., 1994) requires careful calculations

setup and statistical sampling (Zhang and Maginn, 2012). This is a particular cumbersome

task for binary alloys where the composition has to be varied.

In order to test effectively thermodynamic properties of EAM potentials a nested sampling

(NS) algorithm (Skilling, 2004, 2006, Pártay et al., 2010, 2014, Baldock et al., 2016) has

been used to compute the temperature/composition phase diagram of the binary Cu-Au

system in part III. This algorithm is of particular interest for thermodynamics of complex

systems as it is independent of temperature, i.e. thermal sensitive properties are obtained

during a post processing step and not during the actual calculation. Additionally, it does

not rely on any prior knowledge on the system, thereby yielding results unbiased by the

researcher that in some method (such as obtaining the melting point from melt-crystal

equilibration) has to input guesses for the stable phases and transition temperatures.

In brief, the NS algorithm directly constructs the phase-space volume χ(H) as a function of

enthalpy H. Considering the partition function of a system at constant pressure composed of

N particles of mass m

Z(N,P,β ) =
βP
N!

(
2πm
βh2

)3N/2 ∫
dH

∂ χ

∂H
e−βH , (2.12)
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where h is Planck’s constant, ∂ χ

∂H the density of states and β = 1/kBT . One can approximate

it as

Z(N,P,β )≈ βP
N!

(
2πm
βh2

)3N/2

∑
i
(χi−1 −χi)e−βHi (2.13)

with a set of suitably chosen configuration i. As described below, the NS algorithm provides

just such a series of configuration i of decreasing enthalpy, Hi. Each of these enthalpies are

bound to a volume of configuration space χi nested in the volume χi−1. Once the partition

function is known, thermodynamic properties can easily be computed, e.g. heat capacity :

CP(T ) =−kBβ
2 ∂ ⟨H⟩

∂β
, with ⟨H⟩=−∂ ln(Z)

∂β
(2.14)

where ⟨H⟩ is the expected value of the enthalpy. Peaks within Cp(T ) indicate phase transi-

tions. These peaks can be fitted with Gaussians. This yields the transition temperatures and

a measure for their error.

An NS run starts with K random phase-space configurations uniformly distributed within the

phase-space volume bounded by the enthalpy H0. The K random configurations are initially

constrained to have a cell volume smaller than V0, corresponding to a volume where the

system can be assimilated to an ideal gas. This represents a total configuration space χ0.

After this initialization the algorithm execute the following loop:

1. Record and discard the n-th configuration with the highest enthalpy Hn, set Hlimit = Hn.

Since all HK cover phase space (up to Hlimit) uniformly, discarding the configuration

with the highest enthalpy Hlimit leads to K −1 remaining configurations that cover a

phase space volume approximately K/(K +1) smaller than the initial one.

2. An additional configuration k is then added to the K−1 configurations by cloning one

of the a random K−1 remaining configurations and propagating it using a combination

of molecular dynamics (Burkoff et al., 2016) and Markov chain Monte Carlo steps

with the constraint Hk < Hlimit .

3. return to step (1) or exit the loop if a convergence criteria has been reached (number

of iterations, effective temperature threshold).
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This generates a series of decreasing enthalpy values Hi with corresponding phase space

volumes χi = χ0[K/(K +1)]i, which constitutes a discretization of χ(H).

2.5 Molecular Dynamic trajectory post-processing

In this section the post-processing methods used in this thesis are described. All of these meth-

ods are implemented in the Open Visualization Tool (OVITO), a powerful and widespread

software for the visualization and analysis of atomistic calculations (Stukowski, 2010).

2.5.1. Local structure analysis

The local crystalline structures is primarily analyzed using the common neighbor analysis

(CNA) as invented by Honeycutt and Andersen (1987) and extended by Stukowski (2012).

This method analyses the bonds between nearest neighbors. For each atom the bonds are

determined using a given cutoff radius. The extension developed by Stukowski (2012)

determines automatically the optimal cutoff radius for each particle. For one central atom the

algorithm determines for each pair formed with one of the N nearest neighbors the number of

common neighbors the two atoms share, the total number of bonds between these common

neighbors and lastly the longest chain of bonds connecting the common neighbors. These

N ×3 numbers correspond to a specific signature for each local crystalline structure.

More recently, the polyhedral template matching (PTM) method was developed by Larsen

et al. (2016). This method is more reliable than the CNA, especially when dealing with

small crystal distortions caused by thermal vibrations. This method contrary to the CNA

does not rely on atomic bonds, instead for each atom it computes the convex hull formed

by the nearest neighbors. The nearest neighbors for each of the local structures (simple

cubic, BCC, FCC, HCP, icosahedral) form a particular polyhedron that can be stored in some

database. The algorithm then compares the computed convex hull to the one in the database

to assign to each atom a local structure. Through the identification process the PTM method

analyses the lattice orientation for each atom as well as the alloy structures (e.g. L10 or L12

for FCC).

2.5.2. Dislocation extraction algorithm

The dislocation extraction algorithm (DXA) was used throughout this thesis to identify

dislocations and their Burgers vectors. This algorithm counts and classifies the dislocations
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present in the systems. This method, developed by Stukowski et al. (2012), extracts dis-

locations information solely from the atomic positions of an MD trajectory. In order to

locate the dislocation lines, the algorithm is based on the principle that the local structure

inside the core of dislocation differs from the one in a perfect crystal. These two type of

regions in the system can be qualified as “good” and “bad” crystals. To identify the “good”

and “bad” crystals the algorithm first uses the CNA. Then based on the principle defined by

Frank (1951), a Burgers circuit must not cross a “bad” crystal region, the algorithm creates a

surface mesh between the “good” and “bad” regions on which Burgers circuits can be build

for each dislocation.

2.5.3. Local atomic strain analysis

In order to quantify elastic and plastic rearrangements rather than defects (that are the carriers

of plasticity that may disappear at sinks), it is possible to compute the local strain tensor from

the analysis of Falk and Langer (1998) within local neighbor spheres of radius that include

just an atom’s nearest neighbors. This techniques computes the atomic neighborhood in a

reference frame and then extracts the deformation gradient tensor F necessary to transform

the vectors connecting the atom of interest to its reference neighborhood to the deformed

configuration in a least-squares sense. Then from the deformation gradient the local Green-

Lagrangian strain tensor is computed (Shimizu et al., 2007), γ = (FT F− I)/2. With this

method one can visualize the total amount of local deformation a system has experienced,

i.e. where dislocations have slipped.

23





Part II.

Cu1−xAgx|Ni multilayer systems





3. Monocrystalline layers: Structure

3.1 Introduction

This part will focus on the study of metallic multilayer systems composed of two FCC

metals, a Cu1−xAgx alloy with x = 0%, 5%, 10% and Ni. Here, Ag is used as a way to fine

tune the lattice mismatch between two layers of FCC metals. First the structure of such

multilayer system and the effect of Ag on this structure is investigated, with a focus on the

interfaces. The structure will be compared in both monocrystalline and polycrystalline setup.

Once the equilibrium structure is properly defined the mechanical impact of Ag alloying in

the Cu|Ni system will be studied.

In this chapter Monte Carlo and classical molecular dynamics methods are used to equilibrate

the structure close to the thermodynamic equilibrium of such mono crystalline bilayer. The

material system is based on the Cu|Ni multilayer that has been widely studied experimentally

and theoretically (Rao and Hazzledine, 2000, Misra and Krug, 2001, Hoagland et al., 2002,

Mastorakos et al., 2011, Liu et al., 2011, Chen et al., 2012, Yan et al., 2013a, Shao et al.,

2013).

3.2 Methods

3.2.1. Interatomic potential

A ternary Cu-Ni-Ag embedded atom method (EAM) potential was employed to model the

multilayer system (Zhou et al., 2004). To characterize the applicability of the potential to

mechanical deformations, the stacking faults in the three phases are computed. Following

standard procedures (Zimmerman et al., 2000), the properties of stacking faults are computed

by continuously displacing two blocks of a crystalline system, separated by a {111} plane,

rigidly along the [112] direction. The systems had periodic boundaries along the [112] and

[1̄10] directions and a free boundary along the [1̄1̄1] direction. After each rigid displacement,
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3. Monocrystalline layers: Structure

Table 3.1: Stacking fault energies γSF for Cu, Ni and Ag computed with the ternary EAM potential by
Zhou, Wadley and Johnson (Zhou et al., 2004) used in the present work. Results obtained
with the classic ternary EAM potential by Daw, Baskes and Foiles (Foiles et al., 1986)
and by experiments (Carter and Ray, 1977, Carter and Holmes, 1977, Li et al., 2011) are
given for reference.

γSF (mJ m−2) Cu Ni Ag

Experimental 45 144 16

Zhou, Wadley and Johnson 23 99 6

Daw, Baskes and Foiles 18 15 2

the potential energy of the system was minimized by allowing the atoms to move along the

[1̄1̄1] axis until the norm of the force vector falls below 10−8 eV Å−1.

Table 3.1 shows calculated values of stacking fault energies in comparison with experimental

values. Stacking fault energies are consistently lower than the corresponding experimental

values. Energies are underestimated by about 1/2 for pure face-centered cubic (FCC) phase

of Cu and by 1/3 for Ni, and about a third of the experimental value is found for Ag. Even

though this deviation of stacking fault energies from experiment is important for Ag, the

Zhou et al. potential (Zhou et al., 2004) gives stacking fault energies in the correct order

of magnitude and relative order. Moreover, the calculations will only include Ag in solid

solution or segregated in small clusters. This deviation in Ag bulk properties should therefore

have a negligible impact on the final results. To put these numbers into context, the widely

used ternary EAM potential by Daw, Baskes and Foiles (Foiles et al., 1986) underestimates

the stacking fault energies much more dramatically (see Tab. 3.1).

3.2.2. Multilayer system

The multilayer cell used in the simulations is shown in Fig. 3.1 with x-, y- and z-axes oriented

along the [112], [1̄10] and [1̄1̄1] directions, respectively. The simulation cell is periodic in

all directions and consists of two crystals of Cu1−xAgx and Ni with a layer thickness of

approximately 6nm in the [1̄1̄1] direction. The lateral cell size needs to be commensurate

with the lattice constant of both, Cu1−xAgx solid solution (lattice constants aCu = 3.65Å

to aCu0.90Ag0.10
= 3.71Å at 300K, Fig. 3.2) and Ni (aNi = 3.53Å), phases. The nominal

mistmatch δ between the two phases and the residual mismatch ∆ε between two crystalline

supercells can be defined as (Gumbsch, 1992)

δ =
2(aCu1−xAgx

−aNi)

aCu1−xAgx
+aNi

,∆ε =
2(naCu1−xAgx

−maNi)

naCu1−xAgx
+maNi

, (3.1)
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3.2. Methods

where n and m are the numbers of unit cells of the Cu1−xAgx and Ni supercells that constitute

the individual layers in the multilayer stack. The choice of simulation cell size minimizes

∆ε while keeping the overall size small enough for the simulation methods. The final

simulation cells have n/m = 29/30 for Cu|Ni, 23/24 for Cu0.95Ag0.05|Ni and 19/20 for

Cu0.90Ag0.10|Ni. Such different unit cell ratios reflect the difference in the density of the

misfit dislocation network, manifested in an increase in interface energy with misfit (see

e.g. Gumbsch (1992)). Table 3.2 reports the exact number of unit cells and the resulting

residual misfits. These ratios depend on Ag content because increasing Ag content changes

the lattice constant of the CuAg solid solution. It therefore also changes the misfit of the

interface (see Fig. 3.2). Note that the chosen layer thickness of 6 nm can readily be realized

in experiments (Mitlin et al., 2004).

Cu1-xAgx

Niy [1!10]
z [1!1!1]

x [112]

Cu1-xAgx

Ni

Lx

Ly

Lz

Figure 3.1: (a) Illustration of Cu1−xAgx|Ni multilayer simulation geometry; (b) snapshot of the final
atomic realization of the Cu1−xAgx|Ni multilayer system with Lz = 12nm.

The initial Cu1−xAgx phases are prepared as solid solutions. For this a Cu FCC crystal is

generated. Then a random fraction x of atoms is selected from this crystal. This fraction of

atoms is mutated to Ag, arriving at a random solid solution with stoichiometry Cu1−xAgx

and FCC structure.

3.2.3. Monte Carlo / molecular dynamics (MC/MD) relaxation

A combined Monte Carlo (MC) / molecular dynamics (MD) method (Neyts and Bogaerts,

2013) is used to relax the initial systems. The combined MC/MD method consists of

repeating sequences of: Natoms MC steps followed by a 20ps MD run at isobaric-isothermal

(NPT) conditions. Here Natoms is the total number of atoms in the simulation. At the end

of each sequence the last MD configuration is used as starting configuration for the next

MC/MD sequence. The MC steps use the Atom-swap Monte Carlo method described in

section 2.3.2. The MD run uses a Nosé-Hoover thermostat and an Andersen barostat (Shinoda

et al., 2004) and relaxes stresses due to the swapped atoms. Relaxation time constants for the
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3. Monocrystalline layers: Structure

Table 3.2: Minimum simulation cell size used for the simulations. The numbers m and n denote
the number of unit cells of the Cu1−xAgx and Ni layer, respectively. A ratio m/n ̸= 1 is
necessary to accommodate the nominal mismatch δ of the two phases. The remaining
residual mismatch is denoted by ∆ε . The exact system size along the [112] and

[
1̄10
]

directions is given after relaxation at 300 K.

Cu|Ni Cu0.95Ag0.05|Ni Cu0.90Ag0.10|Ni

Ratio m/n 29/30 23/24 19/20

System size Lx ×Ly (Å) 129.79×74.93 103.90×59.97 86.53×49.98

Nominal mismatch δ (%) 3.34 4.16 4.97

Residual mismatch ∆ε (%) −0.047 −0.094 −0.11

Number of atoms 106260 67452 46460
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Figure 3.2: Calculated lattice constant a0 of the Cu1−xAgx metastable solid solution computed at 0 K
(black triangles). Experimental values are shown for stable (Subramanian and Perepezko
(1993), red crosses) and metastable (Madelung (1991), blue line) solid solution. Values
have been obtained at room temperature are given for reference.

thermostat and the barostat are 1ps and 5ps, respectively. The barostat controls the length

of the three Cartesian cell vectors independently but does not allow the cell to tilt. This

sequence of repeating MC/MD steps is a heuristic approach to relax the systems towards

their thermodynamic equilibrium, a state that is inaccessible by direct molecular dynamics

calculations because of long interdiffusion time scales.
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3.3. Results

3.3 Results

3.3.1. Structure of pure and solid solution multilayers

Due to the mismatch in lattice constant between the Cu1−xAgx and Ni phases, the system

forms a regular triangular pattern of misfit dislocations at the interface. This leads to

alternating zones of hexagonal close packed (HCP, stacking faults) and FCC stacking within

the perfect FCC lattice. The stacking faults are color-coded in Fig. 3.3(a). HCP and coherent

FCC regions are separated by a network of 1
6 a0⟨112⟩ Shockley partial dislocations merging

into spiral shaped nodes that are shown by the green lines in Fig. 3.3(b). The distance

between two nodes is equal to 7.5 nm at 300 K for the perfect Cu|Ni interface. Larger cells

with smaller residual mismatch (ratios n/m = 59/61 and 88/91) give corrections to the node

spacing . 0.05%. This distance depends solely on lattice mismatch and is in agreement

with values reported in Ref. (Shao et al., 2013).

After relaxation, atomic stresses σi = wi/Vi are computed from the atom-resolved virial wi

and atomic volumes Vi obtained from a Voronoi analysis. The atom-resolved virial wi is

defined as

wi = mivivi +
N

∑
j=1, j ̸=i

~Fi j~ri j (3.2)

where ~Fi j is the force on atom i due to the pair interaction with atom j. To resolve the virial

per atom, pair-contributions (Thompson et al., 2009) to the virial are equally split between

the two atoms participating in a pair. The stress per atom on the Cu side of the interface

(Fig. 3.3(b, d, f)) reveals that the partial dislocation pattern affects the local stress, creating

regions of tensile stress at the nodes of the misfit dislocation network and compressive stress

within the HCP and FCC stacked regions.

Figure 3.3(c) and (d) shows that the perfect network of dislocations is perturbed by alloying

Ag to the Cu layer in a random solid solution. Node spacing is reduced to an average of

4.6±0.3 nm as the lattice mismatch increases from 3.5% to 5% by increasing Ag content

from 0% to 10%. Figure 3.3(d) shows individual atoms that feel a highly compressive local

hydrostatic stress (blue dots in Fig. 3.3(d)), which are all Ag atoms. Figure 3.3(c) also shows

that with addition of Ag the node regions become more spread out.

3.3.2. Monte Carlo/Molecular Dynamics relaxation

The experimental Cu|Ni binary phase diagram (Massalski et al., 1990, Dey, 1968) has a

miscibility gap at 600 K, with Cu0.6±0.15Ni0.4±0.15 and Cu0.10±0.15Ni0.90±0.15 at the bound-

31



3. Monocrystalline layers: Structure
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Figure 3.3: Interface structure on the Cu-rich side after annealing at 300 K and minimization of
(a, b) Cu|Ni and (c, d) Cu0.90Ag0.10|Ni random solid solution. Panels (e-g) show
Cu0.90Ag0.10|Ni after MC/MD relaxation and minimization. The atoms in panels (a, c,
e) are colored after their local atomic environment as determined by common neighbor
analysis (Honeycutt and Andersen, 1987, Stukowski, 2012). Atoms in green are FCC,
atoms in red are HCP and atoms in white have other local environments. Panels (b, d, f)
are color-coded according to the hydrostatic stress on the Cu side of the interface. The
dark blue colored atoms (high compressive stress) in panel (d) are all Ag. The green lines
in panels (b, d, f) are interfacial dislocations obtained with the dislocation extraction
algorithm (Stukowski et al., 2012): Perfect dislocations are in blue, Shockley partials in
green and stair-rod in purple. Panel (g) is color-coded according to the atom type at the
interface. The black rectangles show the supercell used for the MC/MD calculations.

aries of this gap. After approximately 650 MC/MD sequences (at 600 K), the pure Cu|Ni

periodic bilayer system equilibrates to a Cu0.7Ni0.3 layer and a Cu0.3Ni0.7 layer. The detailed

composition is shown in Fig. 3.4(a) and is inside of the experimental miscibility gap. This

occurs because the atom-swap Monte Carlo technique does not model the grand-canonical

ensemble but rather constrains the overall composition of the system. In addition, the

misfit between the layers introduced in the system cannot be removed by the the atom-swap

Monte Carlo technique. The Cu|Ni interface, that was initially atomically sharp, has become

smeared out over a distance of approximately 5 Å after MC/MD relaxation.

Ag atoms in layers of initial composition Cu0.95Ag0.05 and Cu0.90Ag0.10 remain in the Cu

layer but segregate into clusters as shown in Figs. 3.3(g) and 3.4(b) at both 300 K and

600 K. The local environment of the Ag atoms is classified by the adaptive common neighbor

analysis (Honeycutt and Andersen, 1987, Stukowski, 2012). This analysis shows that Ag

is mainly (75%) within an FCC environment. The remaining 25% are mostly classified

as either HCP or BCC. Visual inspection of the environment of Ag atoms shows that Ag

appears to segregate into small clusters of bulk Ag. Additional MC/MD calculations have
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Figure 3.4: Atomic concentration profile along the [111] direction after MC/MD relaxation of a (a)
Cu|Ni bilayer system at 600 K, (b) Cu0.90Ag0.10|Ni periodic bilayer system at 300 K and
(c) Cu0.90Ag0.10|Ni bilayer system with a free {111} surface at 300 K. The snapshots on
the left show the final stage of the MC/MD relaxations. Atoms are colored after their
type.

been performed outside of the miscibility gap at composition Cu0.99Ag0.01 and temperature

of 600 K. For bulk Cu0.99Ag0.01, Ag does not segregate and stays in solid solution. For the

Cu0.99Ag0.01|Ni multilayer, it does segregate to the node positions even though the system

is thermodynamically outside the miscibility gap. This suggests that node positions are

favorable for Ag segregation for generic reasons.
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3. Monocrystalline layers: Structure

As shown in Fig. 3.4(b), the Ag concentration is roughly constant when measured in thin

slices parallel to the interface within the Cu layer. It increases in the region 1 nm around

the interface, indicating segregation of Ag at the Cu|Ni interface. Within the interfacial

plane, Ag preferentially segregates at node positions and along dislocation lines as shown in

Fig. 3.3(g).

Segregation in a system with a free surface have also been probed. A free surface will be

present during growth of a such multilayer system, e.g. by sputtering (Mirkarimi et al.,

1992, Clemens et al., 1999). In the case of a (111) Cu surface, Ag segregates at the free

surface as shown in Fig. 3.4(c), leading to a nonuniform Ag concentration profile across the

layer. Enrichment of Ag at the heterointerface of as-grown multilayers could therefore occur

during the growth process.

The effect of the MC/MD relaxation on the interface stacking and the misfit dislocation net-

work in the ternary system are shown in Figs. 3.3(e) and (f), respectively. Cu-Ni intermixing

occurs during MC/MD relaxation in the binary system and does not affect the dislocation

network. Ag segregation, however, does affect the shape of the nodes. Their spiral character

is lost, their length increases and sessile stair-rod dislocations form at the interface. The

planar dislocation network becomes a three-dimensional network with expanded nodes and

dislocation loops extending into the Cu rich layer.

3.3.3. Validation of the average EAM potential

To validate the average EAM (AEAM) potential constructed using the method described in

section 2.1.2, The properties of interest are computed using both the AEAM potential and the

regular EAM potential. While the AEAM potential gives only one results per concentration

by definition, the EAM require averaging over several solid solution configurations for a

given concentration for a representative result. Four different random solid solutions are

used for each concentration.

Figure 3.5 shows the results obtained over the entire concentration range. The AEAM

potential shows a good agreement for cohesive energies and lattice constants obtained at

0 K with a deviation smaller than 1% from the EAM potential values. The (111) surface

energies obtained with the AEAM potential are in good agreement with the one obtained

with the EAM potential, with a maximum deviation of 5% for a concentration of 45 at.% Ag.

The (100) surface energies show a larger discrepancy of up to 10%. The intrinsic stacking

fault energies predicted by the AEAM potential agree with the EAM potential value at low

and high Ag concentration but are underestimated at a concentration of around 20 at.% Ag.

The complex shape of the intrinsic stacking fault energies across the concentration range is

nonetheless recovered with an inflexion point at around 40 at.% Ag. The AEAM reproduces
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3.3. Results

correctly the bulk modulus over the entire concentration range, while the shear moduli are

only correctly predicted in the 0-20 at.% Ag and 80-100 at.% Ag ranges. In the 20-80 at.%

Ag range the moduli predicted by the AEAM are overestimated by up to 15% with respect

to the solid solution results. The results indicate that the AEAM potential is well suited for

an usage here, where the concentration of Ag does not exceed 10 at.%.
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Figure 3.5: Comparison of the properties obtained at 0K for the Cu1−xAgx system using an EAM
potential and AEAM. The properties computed are (a) cohesive energy, (b) lattice
constant, (c) surface energies, (d) intrinsic stacking fault energies and (e) Bulk modulus
B, shear moduli C44, C′ = C11−C12

2 . The results obtained for the EAM solid solution
are averaged over 4 random solid solutions iteration, the error bars show the standard
deviation of the obtained results.

3.3.4. Energetics of Ag segregation

To rationalize the segregation of Ag to the node positions, one can compute the difference

in energy of a bulk Ag atom within a solid solution of Cu0.90Ag0.10 to an Ag sitting at the

interface of Cu0.90Ag0.10 and Ni. Sampling over different configurational realizations of the

solid solution occurs implicitly by using a compositionally-averaged EAM formulation for

Cu0.90Ag0.10, as described in section 2.1.2. This model introduces an alloy-average atom

type ⟨Cu0.90Ag0.10⟩ from which a crystalline solid is built. The energetics of Ag segregation

is then computed by placing individual Ag atoms in this alloy-averaged solid.

35



3. Monocrystalline layers: Structure

The energy difference maps obtained for moving an Ag atom from the bulk to the interface

are shown in Fig. 3.6. These maps show the gain in energy when moving Ag to the first and

the second interfacial layers separately. In these calculations, the first interfacial layer can

have up to two Ag atoms already present at the interface. The energy landscape on the first

layer has a sixfold symmetry. Ag atoms segregate preferentially at node positions or along

the dislocation lines. On the second interfacial layer the energy landscapes has threefold

symmetry and low energy positions at HCP stacked positions. The energy gained by moving

one to three Ag atoms to the interface ranges from 0.3 to 0.4 eV. These calculations with

individual Ag atoms also provide information about the hydrostatic atomic stress in the

node area. The larger Ag atom reduces the tensile stress by approximately 7 GPa (from

8.8 GPa to 1.7 GPa) on the central position when a ⟨Cu0.95Ag0.05⟩ atom is substituted by

Ag. Substituting a second Ag atom next to the aforementioned one reduced the hydrostatic

stress by an additional ≈ 1GPa (from 6.7 GPa to 5.5 GPa) at the substitution positions next

to the central position.

3.4 Discussion

The first notable observation is that no Ag is found in the Ni layer because its heat of

formation in Cu is significantly lower than in Ni. This difference is in accord with the binary

Cu-Ag and Ag-Ni phase diagrams (Massalski et al., 1990) that show miscibility of up to

3% Ag in Cu at 1000K and no miscibility of Ag in Ni. Any Ag in the multilayer system

therefore stays out of the Ni and alloys with Cu and any excess Ag segregates within the Cu

layer. The first aim to modify only one of the layers with the addition of Ag to the Cu|Ni

multilayer system was hence successful. However, the MC/MD calculations show that this

segregation leads to the formation of clusters of pure Ag in the Cu layer and partially at the

interface.

The segregation of individual Ag atoms as well as the formation of the Ag clusters occurs at

the nodes of the interfacial Cu|Ni misfit dislocation network. A simple heuristic argument

explaining segregation into these nodes can be developed from the atomic size difference of

Ag and Cu. Since Ag is larger than Cu, it feels a compressive stress within the solid solution

phase. From the hydrostatic component of local atomic stress tensor (Fig. 3.3(b)) it is known,

that the nodes of the misfit dislocation network are under tension on the Cu side. This tensile

stress, as mentioned in section 3.3.4, is partially released by moving the larger Ag atoms

there (Meunier et al., 2000, Borovikov et al., 2017), consistent with the observation that

local stress alters the solubility of a solute (Larché and Cahn, 1985). In the case of Cu

and Ag this has, for example, been observed in a Cu1−xAgx nanocrystaline structures (with
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Figure 3.6: Energy map obtained for the energy difference of an Ag solute at bulk and interfacial
positions. Panel (a) shows a common neighbor analysis of the corresponding interface
(atoms in green are FCC, atoms in red HCP and atoms in white have other local envi-
ronments). Energy maps (b) and (c) show the energy difference when moving a solute
atom (b) directly to the interface and (c) to the second layer from the interface. Dashed
rectangles in (a) show the area that is mapped in (b) and (c). The columns show the
energy obtained within in the pristine average-atom solid, and with one or two Ag atoms
already present at the interface. Blue atoms in panel (a) show the position of these Ag
atoms. Relative positions in panels (b) and (c) are calculated with respect to the center
of the node.

x = 0−24%), where Ag segregates to the grain boundaries because it reduces the tensile

stress arising from large free volumes (Riedl et al., 2013, Li and Szlufarska, 2017).

This heuristic argument is supported by the potential energy calculations with a composition-

ally (alloy-)averaged interatomic potential (Fig. 3.6). These calculations show a decrease in

potential energy as the Ag atom segregates at the nodes of the interface. Furthermore, the

energy difference becomes more favorable when an Ag atom is already present at these node

positions. This suggests stabilization of Ag clusters for the investigated Ag concentrations

of 5% to 10%.
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3. Monocrystalline layers: Structure

The calculations have additionally shown that the stabilization of bulk Ag at the nodes leads

to segregation even at compositions outside the miscibility gap. Practically this means that

an alloyed layer can not be easily stabilized as an alloy but will tend to segregate out. The

interface is always providing locations of high stress which can be reduced by moving a

size-mismatched element there. This mechanism should also be active at other types of

interfaces than the one investigated here. In other words, the presence of the heterophase

interfaces will always tend to widen a miscibility gap, even for the almost ideal {111}
interfaces.

Experimental growth of such multilayer stacks temporarily exposes free surfaces of Cu and

Ni to the growth chamber. Calculations have shown that Ag segregates to a free Cu surface.

This could mean that during growth Ag enriches preferentially at the Cu—Ni interfaces,

leading to an asymmetric Ag concentration. Such concentration gradient could be easily

detected in microscopy on film cross-sections.

3.5 Summary

In this chapter, Ag has been alloyed into the Cu layer of a Cu|Ni (111) multilayer system.

This alloying affects the interface dislocation network by increasing the misfit between the

layers. The interface dislocation network is a triangular pattern of alternating FCC and

HCP (stacking fault) regions, which becomes denser with increasing Ag content because the

lattice mismatch between the Cu1−xAgx and Ni phases increases. Monte Carlo simulations

reveal that Ag atoms segregate within the Cu layer at the nodes of the triangular misfit

dislocation network.
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4.1 Introduction

The previous chapter showed that Ag in the Cu1−xAgx|Ni multilayers systems has the ten-

dency to segregate. The segregation took place in area of the systems with low coordination

or high tensile stress. The systems studied in chapter 3 were idealized structures with each

layer comprised of a single crystal. Experimentally such multilayer systems would most

likely have polycrystalline layers. For example in the fabrication process using physical

vapor deposition, structure tend to have columnar grains (Was and Foecke, 1996) with a

grain size scaling linearly with the layer thickness (Srolovitz et al., 1995). In this chapter

the impact of the introduction of grain boundaries in the Cu0.90Ag0.10|Ni multilayer system

is investigated. This investigation is done with the help of a bilayer system having 40 nm

thick layers. This allow to work with grain sizes readily observable experimentally (Li and

Zhang, 2010). Such system size is also used in atom probe experiments in order to obtain

information at the atomic scale on precipitations, compositions and interface shapes (Gault

et al., 2012). This chapter focuses on the results obtained for a relaxed Cu0.90Ag0.10|Ni

polycrystalline structure. This increase of system size, from about 1000 nm3 in the previous

chapter to 180,000 nm3, requires a modification of the approach to the MC/MD relaxation

process, which does not parallelize well. For this matter the variance constraint semi-grand

canonical (VC-SGC) Monte Carlo / Molecular dynamics method (MC/MD) is used, which

allows for highly parallelized calculations.

4.2 Methods

The polycrystal was setup using a 2D Voronoi tessellation procedure (Voronoi, 1908, Hirel,

2015). This procedure forms polycrystalline layers with columnar grains aligned along a

specific direction, here [111], as found experimentally in FCC multilayers build by physical

vapor deposition (Li and Zhang, 2010). In order to build the polycrystalline layer, four seeds

are used on a plane specifically arranged to form regular hexagonal shape after construction.
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4. Polycrystalline layers: Structure

From these four seeds the Voronoi tessellation forms convex polyhedrons with planes lying

halfway between neighboring seeds. The final system shown in Fig. 4.1(a-b) is composed of

approximately 15×106 atoms spread over two 40 nm thick layers. Each layer has 4 regular

hexagonal grains of approximately 30 nm diameter.

As described in section 2.3.3, the variance constraint semi-grand canonical Monte Carlo/Molecular

dynamics method (MC/MD) have been used to bring a polycrystalline multilayer system

to its thermodynamic equilibrium. The system was initially setup with a Cu0.90Ag0.10 solid

solution layer and a pure Ni layer. For this a Cu FCC polycrystal was generated from which

is then selected a random fraction of atoms. This fraction of atoms was then mutated to

Ag, arriving at a random solid solution with stoichiometry Cu0.90Ag0.10 and a FCC poly-

crystalline structure. The calculation was performed at 300 K using ∆µNiCu
0 = −0.89 eV

and ∆µ
NiAg
0 =−1.46 eV. The target global concentrations were fixed to cCu ≈ 43 at.% and

cAg ≈ 5 at.%. Similarly to the serial MC/MD method used in chapter 3, the calculation

consisted in repeating sequences of Natoms MC trial moves followed by 20 MD steps at

isobaric-isothermal (NPT) conditions with an integration time step of 2.5 fs. Here Natoms

is the total number of atoms in the simulation, i.e. approximately 15× 106. A total of

approximately 75,000 MC/MD steps was performed. The total number of MC/MD steps

was chosen large enough to reach a steady state of the local concentrations of the different

atom types in the system.

(a) (b)

y

x

z
y

x

z

Figure 4.1: Cu0.90Ag0.10|Ni initial polycrystalline bilayer system with Ag in solid solution in the
Cu layer. Panel (a) shows the atoms colored according to their type with Ni in red, Cu
in blue and Ag in yellow. The atoms in panel (b) are colored after their local atomic
environment as determined by common neighbor analysis (Honeycutt and Andersen,
1987, Stukowski, 2012) highlighting the grain boundaries. Atoms in green are FCC,
atoms in red are HCP and atoms in white have other local environments.
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4.3. Results

The resulting relaxed structural model was used to identify segregation patterns occurring in

polycrystalline FCC/FCC alloyed multilayer system presenting miscibility gaps.

4.3 Results

Figure 4.2(a-c) shows the system state obtained after 75000 MC/MD steps. Figure 4.3(a)

shows the corresponding profile concentration along the main [111] z-axis. It shows a Cu-

rich layer having an average composition of Cu0.85Ag0.10Ni0.05 and a Ni-rich layer having

global a composition of Cu0.05Ni0.95. The inset of Fig. 4.3(a) shows that the initially sharp

interface is smeared over a distance of approximately 1 nm.

Figures 4.2(b-c) and 4.3(b-c) show respectively qualitative and quantitative results on the

composition of the grains and grain boundaries. In the Cu-rich layer the grains have an

average composition of Cu0.87Ag0.08Ni0.05 with a high concentration of Ag at the grain

boundaries up to 27 at.% (Fig. 4.3(b)). The average composition of the grains in the Ni-

rich layer is Cu0.02Ni0.98 with a clear trend to Cu segregating at the grain boundaries with

concentration going up to 22 at.% (Fig. 4.3(c)). Figure 4.2(d) shows that the majority of

the Ag atoms are in the Cu-rich layer while a few Ag atoms are visible along the grain

boundaries in the Ni-rich layer.

(a) (b)

(c)

y

x

y

xy
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z

(d)

y

x

z

Figure 4.2: (a) Cu0.9Ag0.1|Ni polycrystalline bilayer system after VC-SGC MC/MD relaxation, (b)
cross section of the Cu-rich layer, (c) cross section of the Ni-rich layer, (d) Ag atoms in
the polycrystalline bilayer system after VC-SGC MC/MD relaxation. Atoms colored
according to their type with Ni in red, Cu in blue and Ag in yellow. The dashed rectangles
in (b-c) represent the slice used to extract the profile concentration in Fig. 4.3.
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Figure 4.3: (a) Atomic concentration profile along the [111] direction after VC-SGC MC/MD re-
laxation. The inset shows a zoom on one of the interface concentration profile. (b)
Concentration profile in the Cu-rich layer along the x-axis in a 15nm centered slice
shown in fig. 4.2(b). (c) Concentration profile in the Ni-rich layer along the x-axis in a
15nm centered slice shown in fig. 4.2(c). The dashed lines in (b) and (c) show the grain
boundary position.

Figures 4.4(a-c) show quantitative information about the Ag segregation in the form of

concentration iso-surfaces. This confirm that the highest Ag concentration, volume with

more than 25 at.% Ag, is at the grain boundaries in the Cu-rich layer. While the concentration

at the interfaces is only on the order of 10-15 at.% as the small iso-surfaces patched disapear

on 4.4(c).

(a) (b) (c)
10 at.% Ag 15 at.% Ag 25 at.% Ag

Figure 4.4: Concentration iso-surfaces for (a) 10at.% Ag, (b) 15at.% Ag and (c) 25%. Ag using
1.5 × 1.5 × 1.5nm3 voxels. Neighboring voxel sharing the same concentration are
connected using a marching cube algorithm. The surface mesh connecting these voxels
is shown in blue.
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4.4 Discussion

The grains composition extracted from the VC-SGC MC/MD relaxation are still within the

miscibility gaps of the Cu-Ni and Cu-Ag systems shown in Fig. 1.2 and 1.4(a). This confirms

that the constraint applied in the VC-SGC MC/MD method allows to model systems at

concentration being inside a miscibility gap. Similarly to the monocrystal setup discussed

in chapter 3 the Ag shows a strong tendency to segregate, and the Cu and Ni show a slight

intermixing across the interface.

The calculations performed here with a polycrystalline structure show that the presence

of grain boundaries amplify the segregation of Ag following the scheme demonstrated in

section 3.4. Ag segregates out of the Cu-rich layer towards areas where the stresses due to

a large lattice mismatch can be released. Riedl et al. (2013) noticed this behavior in atom

probe tomography experiment of nanocrystalline Cu1−xAgx alloys for x = 0.2− 0.4at.%,

and Li and Szlufarska (2017) observed a similar segregation pattern in a polycrystalline

Cu1−xAgx alloy model with x = 0−24at.% using a different potential. The large amount of

Ag segregating in the grain boundaries prevent it from having a higher Ag concentration at

the interfaces than in the volume.

Even though Ag and Ni are not miscible at 300K (Fig. 1.4(b)) some Ag is observed at

the grain boundaries in the Ni-rich layer after MC/MD equilibration. The presence of Cu

in this same grain boundaries and the larger volume available could explain the presence

of Ag at this grain boundaries. Atom probe tomography experiments on Cu1−xAgx|Ni

polycrystalline multilayers carried out by collaborators (Schwaiger group at KIT) also

showed Ag segregation together with Cu at grain boundaries in Ni-rich layers (Schwaiger,

2015).

4.5 Summary

Compared to the single crystal structure described in the previous chapter, the polycrystalline

structure adds another location for segregation with the grain boundaries. The driving force

to segregation of both Ag and Cu remain similar to the one discussed in chapter 3, i.e. large

free volume releasing the stress due to the lattice mismatch.

A Cu0.90Ag0.10|Ni polycrystalline structure has been modeled at a size directly comparable

with atom probe tomography experiments (Schwaiger, 2015). This model could complement

atom probe tomography experiments as it brings information at the atomic scale when the
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4. Polycrystalline layers: Structure

atom probe tomography has a detection efficiency of about 50% (Gault et al., 2012). This

shows a possible synergy between experiments and MD models.
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5. Monocrystalline layers:
Deformation

5.1 Introduction

In this chapter the MC/MD relaxed systems obtained in chapter 3 is used to investigate the

effect of Ag on the mechanical properties of the Cu1−xAgx|Ni monocrystalline multilayer

system. As described earlier Ag modifies the lattice mismatch between the two layers and

segregates in the Cu-rich layer. Therefore it is interesting to examine the impact of Ag on the

misfit dislocation mobility by running simple shear calculation along the interface planes. By

increasing the lattice mismatch Ag increases the density of node dislocation at the interface.

For this reason this chapter explores the effect of such increase on the multilayer strength by

running biaxial tensile deformation in the interface planes. These calculations remove any

initial motion of the misfit dislocation because the Schmid factor on the interface planes is

zero. Lastly, one more loading condition is considered where the systems are sheared across

the interface planes.

5.2 Methods

Direct deformation was performed at a temperature of 1K and 300K. 1K runs were carried

out to reduce thermal noise that complicates atomic-structure analysis. The same atomic

structure obtained from the MC/MD relaxation at 300 K was used as starting configuration

in both cases. A strain rate of 108 s−1 was used in all cases; yield stress dependence on

strain rate is negligible at these rates in FCC metals (Horstemeyer et al., 2001, Zepeda-Ruiz

et al., 2017). Before straining, the systems were relaxed at the final temperature for 500 ps

using the Nosé-Hoover/Andersen ensemble without any strain. Simple shear strain was

applied along [112](1̄1̄1) directions for shear parallel to the multilayer interfaces and along

[1̄1̄1](1̄10) directions for perpendicular shear by homogeneously deforming the box. The
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5. Deformation

notation [abc](hkl) for simple shear reports both the direction of shear [abc] and the plane

of shear (hkl).

Under perpendicular shear, the dislocations are expected to nucleate at the interfacial

nodes (Shao et al., 2015). Due to the interface orientation (1̄1̄1) the dislocation nucleate

and glide on {111} planes that are not parallel to the main cell axes. In the case of a small

periodic simulation cell, dislocation reenter the cell through the periodic boundaries which

results in the critical multiplication of the nucleated dislocations at a non-physical rate.

In order to weaken this replication issue supercells were used. The supercells consisted

in 2×2×1 replication of the simulation cell given in Tab. 3.2 for shear perpendicular to

the heterointeface and 1×1×1 simulation cells for the parallel shear calculations, where

shear is localized at the interface and no dislocations are emitted in to the bulk of Cu or Ni

layers.

Additionally biaxial tensile tests were carried out on 2×4×2 supercells of the simulation

cells reported in Tab. 3.2 resulting in supercells with lateral size of approximately 20 nm.

The biaxial tensile test was carried out on a box with full periodic boundary conditions

along the [112],[1̄10] and [1̄1̄1] directions. The deformation was imposed by changing the

simulation box size along the [112] and [1̄10] directions according to the defined strain

rate. The pressure perpendicular to the deformation (i.e. the [1̄1̄1] direction) was kept at

zero using a Berendsen barostat (Berendsen et al., 1984) with a relaxation time constant of

100 ps.

5.3 Results

5.3.1. Simple shear deformation

The mechanical response of the bilayer system is probed via carrying out simple shear

deformation parallel to the heterointerface. Calculations are carried out on the fully MC/MD-

relaxed systems, but on larger supercells as described in the methods section. For parallel

simple shear , the stress strain curves in Fig. 5.1(a) show a clear increase of the yield stress

from 0.3 GPa to about 1.3 GPa at strains of 2% and 4%, respectively, when alloying 5-10%

Ag to the Cu layer. The values obtained for the fully MC/MD-relaxed system are higher

than for the solid solution case where the heterointerface is atomically flat, and for which the

calculations gave a maximum stress on the order of approximately 50 MPa. These critical

stresses are in good agreement with the experimental interface shear strength value for Cu|Ni

multilayers (Liu et al., 2017).
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5.3. Results

Table 5.1: Flow stress at 300 K for parallel simple shear, perpendicular simple shear and biaxial
shear of Cu1−xAgx|Ni with x = 0%,5%,10%. Simple shear values are averages of the
stress from 20 to 40% strain, biaxial values are averaged from 4% to 14% strain. Error
(±) is the standard deviation of stress values in that range. Results given in parenthesis
are computed at 1 K. Results are given in GPa.

System Parallel Perpendicular Biaxial

Cu|Ni 0.03±0.06
(0.08±0.08)

1.03±0.26
(1.36±0.34)

2.64±0.19
(3.25±0.22)

Cu0.95Ag0.05|Ni 0.33±0.15
(0.52±0.18)

1.13±0.43
(1.72±0.46)

3.05±0.42
(3.87±0.40)

Cu0.90Ag0.10|Ni 0.44±0.22
(0.72±0.27)

1.54±0.42
(1.97±0.38)

3.41±0.42
(4.44±0.73)

The stress-strain curve appears almost periodic at low strains for the binary system. It

becomes irregular and intermittent for the ternary system as Ag segregates at the nodes.

During shear, the stress appears to evolve towards a state with smaller fluctuation amplitudes

at large strain for all cases. The final flow stress is larger for the systems alloyed with Ag

than the pure Cu|Ni multilayer (see Tab. 5.1). Atomic strain analysis (Falk and Langer, 1998,

Shimizu et al., 2007) reveals that deformation is always localized at the interface for both

pure Cu|Ni and the alloyed system.

Figure 5.1(e) shows the evolution of the dislocation density

ρdislocations =
Total dislocation line length

Cell volume
(5.1)

as a function of strain. The total dislocation line length is here obtained with a dislocation

extraction algorithm (Stukowski et al., 2012). The dislocation densities are constant for all

strain values and for pure Cu|Ni as well as the alloyed systems. This is in agreement with

the observation of shear localization at the interface. The dislocation density in the alloyed

Cu0.90Ag0.10|Ni system is twice as large as the density in the pure Cu|Ni system.

Figure 5.1(b,d) show the stress-strain curves obtained for simple shear perpendicular to

the interface for different Ag concentrations after MC/MD relaxation. It is worth noting

that at 300 K the stress is lower than at 1 K because thermal activation aids movement and

nucleation of dislocations. At strains below 10%, the curves show the same periodic behavior

seen for parallel shear. As the strain increases to about 20%, dislocations are emitted into

the Cu layer and the stress-strain curve starts to show intermittent behavior. In contrast to

parallel shear, where no shear strengthening was observed, in the perpendicular shear cases a

slight strengthening is observed once dislocations are present in the bulk. Again, the average

flow stress is slightly larger for the systems with Ag than the pure Cu|Ni multilayer (see
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Figure 5.1: Stress-strain curves during simple shear at 1 K and 300 K (a,c) parallel, (b,d) perpen-
dicular to the (111) interface for the Cu|Ni binary, the Cu0.95Ag0.05|Ni ternary and
Cu0.90Ag0.10|Ni ternary system after MC/MD relaxation. Thick lines are a moving
averages over a strain interval ±0.025 around the respective data point, thin lines show
the full data. Panels (e) and (f) show the dislocation density (at 1 K) for the three
stoichiometries and parallel and perpendicular shear, respectively. The inset in panel (a)
shows the stress strain curve for the atomically flat interface systems. The inset in panel
(f) shows the ratio of the stair-rod dislocation density to the density of Shockley partials
for the Cu|Ni binary and the Cu0.90Ag0.10|Ni ternary systems.

Tab. 5.1). Figure 5.1(f) shows the corresponding evolution of the dislocation density as a

function of strain. The dislocation densities are increasing at smaller strain values (≈ 0.1)

for the alloyed systems, while the density only increase at a strain value of approximately

0.2 for the pure Cu|Ni system. The dislocation density is 3 to 4 times higher in the ternary

systems than in the binary system.
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5.3. Results

The ratio of the density of stair-rod dislocations to the density of Shockley partials is shown

in the inset of Fig. 5.1(f) as a function of applied strain, and it is about a factor of three larger

for the binary system than for the one with 10% Ag. The stair-rod dislocations are defined

as dislocations having a 1
6 < 110 > Burgers vector.

Figure 5.2 shows the evolution of the atomic fraction with γi > 30% in both the Cu-rich

and Ni-rich layer as a function of strain. This quantifies the participation of the two layers

in the deformation process. The evolution of this participation fraction in Fig. 5.2 shows

no strain-accumulation within the layers below the yield strain (≈ 0.2). After yielding the

participation steadily increases in the Cu-rich layer for all systems. The participation of

the Ni-rich layer is much lower (about 4 times at ε = 0.4). Each step in the curves for the

Ni-rich layer corresponds to a dislocation burst.
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Figure 5.2: Atom fraction in the Cu-rich and Ni-rich layers (excluding atoms ±1 Åaround the
interfaces) with an atomic strain γi > 0.3 for Cu1−xAgx|Ni with x = 0%,5%,10% at 1 K
under perpendicular shear.

5.3.2. Biaxial tensile deformation

Biaxial tensile deformation parallel to the interface roughly corresponds to the situation

encountered in a compression test or directly underneath the tip of an indenter. Specifically,

the system is elongated along the [112] and [1̄10] directions while maintaining zero normal

stress (i.e. along [1̄1̄1]). Stress strain curves are shown in Figs. 5.3(a) and (b) for 300 K and

1 K, respectively. Stress rises monotonously for the three systems up to strains of around

2.5% for all systems before dropping to around 2.5 GPa to 4 GPa after yield. Note that in

contrast to simple shear, the ternary alloys show a slightly lower yield stress than the pure

multilayer. Fig. 5.3(c) shows the dislocation density as a function of strain. The dislocation

density is 2 to 3 times higher in the ternary systems than in the binary system.

During plastic deformation all systems reach a quasi steady-state where the stress remains

approximately constant while the dislocation density still rises slowly. The flow stresses
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Figure 5.3: Stress-strain curves at (a) 300 K and (b) 1 K, and (c) the corresponding dislocations
density at 1 K for Cu1−xAgx|Ni with x = 0%,5%,10% under an applied biaxial tensile
strain along the [112] and [1̄10] directions. Thick lines are moving averages over a strain
interval ±0.01 around the respective data point, thin lines show the full data.

reported in Tab. 5.1 are obtained by averaging the stress over an interval from 4% to 14%

strain. An increase of the flow stress of approximately 20% and 25% is found for the 5%

and 10% alloyed systems, respectively. Although the yield stress decreases with Ag content,

the flow stress increases slightly.

A microscopic analysis of dislocation nucleation in the pure Cu|Ni multilayer system (at

1 K) is shown in Fig. 5.4 from 0% to 2.6% of deformation. At small strain, the dislocation

nodes change from a perfectly planar arrangement to a structure that spreads out of plane.

At higher strain (1.8%) three out of the six branches of the nodes nucleate dislocation loops,

splitting a Shockley partial into a Shockley partial and a stair-rod dislocation. As the strain

increases to 2.6%, the loop size increases up to the emission of one dislocation loop into the

Cu layer.

5.4 Discussion

Parallel simple shear deformation. The multilayer system responds by gliding along the

heterointerface in parallel shear because the Schmid factor on the interface plane is maximum.

The stress oscillations observed for all the systems during simple shear deformation parallel

to the interface along the [112] axis (Fig. 5.1(a,c)) can be traced to the translational invariance

of the interfacial misfit dislocation network. Translation of the network by integer multiples

of one unit cell vector leads to states that are indistinguishable from each other and must

therefore have the same energy. The average stress over one cycle then vanishes because

integrating stress over strain gives the energy difference between the two states, which

must be zero because of translational invariance. Note that such periodicity is not observed

with almost incoherent interfaces such as the Kurdjumov–Sachs interface in FCC/BCC

multilayers where misfit dislocation can not form (Wang et al., 2008).
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Figure 5.4: Evolution of node dislocations with applied biaxial strain to the Cu|Ni multilayer system
from (a) 0% to (f) 3.0% of strain. Top row: Atoms are colored after their atomic structure
environment determined by common neighbor analysis (Honeycutt and Andersen, 1987,
Stukowski, 2012). FCC atoms have been removed for clarity, atoms in red are HCP
and atoms in white have other local environments. Bottom row: Dislocation lines as
identified by the dislocation extraction algorithm (Stukowski et al., 2012). Shockley
partial dislocation are represented in green, stair-rod dislocation are represented in purple.
The blue shaded region in the open Thompson tetrahedron represent the interface plane.
In frame (a) and (d) the burger vectors are assigned to the Shockley partial of interest.

This conclusion is confirmed by the invariance of the dislocation densities with applied

strain (Fig. 5.1(e)). No dislocations nucleate in the bulk of the layers since all the plastic

deformation is accommodated at the interfaces with their pre-existing network of misfit

dislocation. Note that for the ternary systems, translational invariance is broken by the

presences of Ag and its segregation into clusters. This pins the dislocation network in the
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5. Deformation

multilayer interfaces and leads to an increase in flow stress even after shearing by one full

lattice unit cell, while maintaining localization of shear at the heterointerface.

Pinning has also been observed to a smaller extent in two other cases. First, when comparing

atomically ideal to MC/MD-relaxed systems of Cu|Ni (without Ag) under simple shear, the

maximum stress differs by an order of magnitude (Fig. 5.1(a)). This difference is due to

the imperfection brought into the interface by swapping some Cu atoms with Ni atoms. A

direct indication that pinning comes from interface heterogeneity is given by the calculations

performed with the alloy-averaged EAM approximation (described in section 2.1.2). When

the heterogeneous Cu1−xAgx is replaced by a homogeneous average ⟨Cu1−xAgx⟩ solid (that

describes the thermodynamic properties of this solid solution correctly), the maximum stress

drops by one order of magnitude close to the values obtained for the pure, ideal Cu|Ni

multilayer. These results are not shown here, but they look essentially like the calculations

for the pure Cu—Ni system shown in Fig. 5.1.

Similar mechanisms have been observed in CuNb|Cu multilayer system where coherent inter-

faces show alternating compressive and tensile stresses that can strongly hinder dislocation

mobility (Gu et al., 2015). Similarly, in nanocrystalline CuAg alloys, segregated Ag at the

grain boundary affects the resistance of the grain boundary to sliding and dislocation slip (Li

and Szlufarska, 2017). The shear strength obtained for the FCC/FCC interfaces in such alloys

can reach values similiar to those of more complex interfaces such as FCC/BCC (Wang et al.,

2008, Zhang et al., 2016) that show a higher shear resistance than FCC/FCC interfaces.

Perpendicular simple shear deformation. The oscillation in the stress strain curves observed

in parallel shear can also be seen when the systems are sheared perpendicularly to the

multilayer interface (Fig. 5.1(b,d)). All systems accommodate the deformation at small

strains by first sliding along the heterointerface although the Schmid factor for sliding along

that plane is small. This is because the resistance to shear of the heterointerface is much

smaller than the stress required to nucleate dislocations on the other three {111} planes.

The dislocation density remains approximately constant in that regime (Fig 5.1(f)). The

origin of the oscillatory stress-strain curves at small applied strain is identical in parallel

and perpendicular shear. Note that the difference of shape observed in the feature between

Fig. 5.1(a) and (b) comes from the different crystal orientation accommodating the interface

strain. In the first case, the interfaces are sheared along the [112] direction while in the

second case the interfaces are sheared along the [110] direction.

At an applied strain of around 10% and larger, the stress-strain response becomes intermittent,

which is typically a sign of the presence of structural disorder. This onset of intermittency

coincides with increased dislocation activity within the Cu layer but also crossing the layers

(Fig. 5.1(f)). The primary source of the dislocations are the nodes of the interfacial misfit
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dislocation network, whose density depends on Ag content. Structures with more Ag

therefore show a more pronounced increase in overall dislocation density when sheared

(Fig. 5.1(f)). Dislocations then interact with obstacles, such as bilayer interfaces, randomly-

located Ag aggregates and other dislocations that are present in the bulk of the layers.

Pure systems can obviously withstand enormous elastic stress in the single layers without

dislocation nucleation. The alloyed system lowers the barrier to dislocation nucleation

because of interface defects and segregation that leads to stress concentration. Similar stress

concentration zones are for example found in CuNb|Cu system at amorphous/crystalline

interface (Gu et al., 2015). Ag segregation within the Cu layers leads to defects resulting in

a higher initial dislocation density for the ternary systems (Fig. 5.1(f)). These initial defects

help nucleation of clusters of stacking faults at much smaller applied strain than the pure

bilayer. At strains from around 5% to 15%, deformation is confined to the heterointerface

for the pure system as confirmed by the absence of pronounced dislocation production

(Fig. 5.1(f) and 5.2), while the systems with 5% and 10% Ag have created stacking faults

within the Cu1−xAgx layer (Fig. 5.1(f) and 5.2).

The evolution of local atomic strain γi, defined in section 5.3.1 and shown in Fig. 5.2,

shows that during the entire deformation process, dislocation activity concentrates in the

Cu-rich layer with only few Shockley partial dislocations crossing to the Ni-rich layer. These

dislocations do not leave behind any stable stacking fault in that layer as one full dislocation

passes but create steps at the interface. The fraction of atoms with atomic strain γi > 0.3 in

the Ni-rich part of the system is larger for the systems with 0% and 5% Ag than the system

with 10% Ag. This suggests that the interface barrier strength is larger in the latter cases.

Biaxial tensile deformation. The initial response of the system during biaxial tensile defor-

mation leads to a yield stress much larger than for the simple shear cases. This is because

during simple shear, the system can always respond by sliding along the bilayer. This mode

of accommodating the deformation is suppressed in the biaxial configuration. In biaxial

shear, the resolved shear stress on the interface vanishes (its Schmid factor becomes zero)

because of the loading geometry. The system must nucleate dislocations to accommodate

deformation plastically.

Dislocation nucleation is again aided by the presence of disorder in the form of Ag segregates.

This is evident from the decrease in yield stress with increasing Ag content shown in

Fig. 5.3(a,b). It can even more clearly be seen in the corresponding dislocation densities,

shown in Fig. 5.3(c), which increase with increasing Ag content. From this it is evident that

the alloyed system has higher dislocation density at similar strain, even when considering for

the fact that the initial dislocation density (at zero strain) in the alloyed system is higher with

than without Ag. Most of this increase in dislocation density happens during yielding.
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The high dislocation density then leads to an inversion of the dependency on Ag content of

the stress required to continuously deform the bilayer during flow. The more Ag present,

the higher the flow stress, as reported in Tab. 5.1. Many of the Shockley partials that are

created glide along one of the three (111), (11̄1̄) and (1̄11̄) planes and react to form sessile

stair-rod dislocations and stacking fault tetrahedra within the layers (Jøssang and Hirth,

1966), that then act as obstacles to later dislocations and therefore strengthen the material

(see Fig. 5.4(f)). The mechanism leading to the formation of stacking fault tetrahedra from

the dislocations emitted at the interface nodes has been recently observed (Shao et al., 2015)

in molecular dynamics simulations of binary Cu|Ni multilayers, albeit with a different EAM

potential (Voter and Chen, 1986, Mishin et al., 2001, Bonny et al., 2009), and in simulations

of deformation of Cu|Ag bilayer system (Yuan et al., 2013).

It is worth pointing out that the situation for simple perpendicular shear is different. As

shown in Fig. 5.5(a), dislocations nucleate only on two out of the three {111} planes. Sessile

stacking fault tetrahedra therefore do not form at a rate comparable to the biaxial situation.

This difference has been observed similarly for uniaxial and biaxial deformation parallel

to the interface in Cu|Ni multilayers (Chen et al., 2018). The increase in flow stress with

increasing Ag content (Tab. 5.1) is therefore less pronounced in simple shear than in biaxial

tension.

(a) (b)

Figure 5.5: First step of dislocation emission from the nodes for the cases of (a) shear perpendicular
to the interface and (b) biaxial tensile deformation parallel to the interface. Yellow lines
indicate the active {111} planes that can emit dislocations. Atoms are colored after their
local crystal structure and FCC atoms have been removed for clarity: Atoms in red are
HCP, atoms in blue are BCC and atoms in white have other local environments.

5.5 Summary

The direct molecular dynamics simulations have shown that increasing the Ag content (up

to 10%) increases the strength of the multilayer stack. Inspection of the results yielded
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three strengthening mechanisms: First, Ag clusters pin the interface dislocation network,

increasing the interface resistance to shear. Second, the increase in density of the interfacial

misfit dislocation network as Ag atoms are added appears to increase the resistance to

dislocations crossing the interface. Third, the increase in misfit dislocation density leads to

more potential sites for the nucleation of dislocations that cross the Cu layer. Dislocations

nucleate at the interface nodes and react to form sessile stair-rod dislocations. These in turn

act as obstacles that hinder dislocation motion and strengthen the material.

These three strengthening mechanisms are active for different deformation modes, namely

simple shear parallel to the interface, simple shear perpendicular to it and biaxial tensile

deformation, respectively. Tuning the lattice constant of Cu by alloying it with Ag is

therefore a potential route for tuning strength of the Cu|Ni multilayer system for a variety of

loading conditions.

Additionally the segregation pattern at the grain boundaries in both Cu-rich and Ni-rich in

chapter 4 layer is expected to further modify the mechanical properties of the multilayer

system and could be the source of an additional strengthening mechanism. Such aggregates

could modify the grain boundaries slip resistance to dislocation and to a smaller extend

alter the grain boundaries sliding mechanism. Similarly, an increase in flow stress has been

observed by Li and Szlufarska (2017) in nanocystalline Cu-Ag alloys with a grain size

smaller than 40 nm where Ag has segregated to the grain boundaries.
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6. EAM potential for Cu-Au

6.1 Introduction

The binary Cu-Au system has been studied in recent years because multilayered (phase

separated) films of Cu-Au can be prepared experimentally (Borders, 1973, Paulson and

Hilliard, 1977, Li et al., 2010), yet Cu-Au is miscible and forms stable intermetallic phases.

The phase separated state is therefore an example of a material far from equilibrium that can

be used to study alloying by mechanical action (Delogu and Cocco, 2005, Kaupp, 2009) and

the influence of microstructure on mechanical properties (Misra and Krug, 2001, Wang et al.,

2008, Wang and Misra, 2011). Cu and Au both crystallize in the face-centered cubic (FCC)

structure. Their intermetallic phases are of mainly L10 and L12 structure (Borders, 1973).

Studying deformation processes in this binary system requires an interatomic potential that

captures both mechanical and thermodynamic properties. The benchmark property for the

mechanical performance of an embedded atom potential for FCC metals is the stacking fault

energy (SFE) (Zimmerman et al., 2000), since deformation in FCC metals is mainly carried

by dislocations that often dissociate into two Shockley partials separated by a stacking fault.

The splitting distance between these partials is determined by SFE and elastic constants (Hull

and Bacon, 2011).

Most of the binary Cu-Au EAM potentials found in the literature (Barrera et al., 2000,

Foiles et al., 1986, Zhou et al., 2004, Ackland and Vitek, 1990) are fitted to describe

thermodynamic properties and provide an approximate description of the Cu-Au binary

phase diagram (Fig. 1.3), but they do not describe the energies of planar defects in pure

phases well, such as stable and unstable stacking fault energies or surface energies. The

present work reports an interatomic potential for the binary Cu-Au system that describes

stacking faults well while conserving a reasonable description of the Cu-Au phase diagram.

For this goal, the established Cu potential by Mishin et al. (2001) and the Au potential by

Grochola et al. (2005) are used for the unary phases, only the Cu-Au cross interaction is

fitted. This is a pragmatic approach to arrive at a potential energy expression that can be used

to study mechanical deformation in the Cu-Au system. The properties of this potential are

59



6. EAM potential for Cu-Au

compared to four potentials published in the literature: Ackland and Vitek (1990), Barrera

et al. (2000), Zhou et al. (2004) and the universal EAM of Foiles et al. (1986).

6.2 Methods

6.2.1. Embedded-atom method

In this chapter the embedded atom method describe in section 2.1 was employed. The two

established potentials used here report the three functions F(ρ), f (r) and φ(r) in a tabulated

form (Becker et al., 2013). Values and derivatives are then computed from a third-order

spline approximation to this table. Mishin’s potential has been fit to experimental and

ab-initio properties of Cu (lattice constant, heats of formation, etc.) while Grochola has

adopted the force-matching approach of Ercolessi & Adams (Ercolessi and Adams, 1994)

to fit the potential to ab-initio (density-functional theory (Martin, 2004) with the PW91

functional (Perdew et al., 1992)) data. While these fitting procedures differ in philosophy,

both potentials give accurate representations of the underlying material. Table 6.1, Tab. 6.2

and Tab. 6.3 show a comparison of computed lattice parameters, elastic constants and planar

defects in comparison with experimental and ab-initio data for the unary phases as described

by these potentials.
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6.2. Methods

Table 6.1: Lattice constant a0 of the Cu and Au unary FCC phases from experiments (extrapolated
to 0 K unless otherwise noted), DFT and the respective EAM potential (both at 0 K).

Element Method a0 (Å)

Cu Experimental Kittel (2005) 3.615a

DFT-PW91 (Literature) (Kamran et al., 2009) 3.637
DFT-PBE (This work) 3.637

Mishin et al. 3.615

Ackland et al. 3.615
Barrera et al. 3.615
Foiles et al. 3.615
Zhou et al. 3.615

Au Experimental (Kittel, 2005) 4.07

DFT-LDAb (Literature) (Wang et al., 2013) 4.067
DFT-PBE (Literature) (Wang et al., 2013) 4.175
DFT-PBE (This work) 4.157

Grochola et al. 4.070

Ackland et al. 4.078
Barrera et al. 4.079
Foiles et al. 4.080
Zhou et al. 4.080

a At 300 K ; b Local density approximation (LDA).
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Table 6.2: Cubic elastic constants C11, C12 and C44 and bulk modulus B of the unary FCC phases
from experiments (at 0 K) and the respective EAM potential (at 0 K). Elastic constants
were obtained from a finite-differences approximation of the derivative of the stress tensor
using a strain increment of 10−6. All results are given in GPa

Element Method C11 C12 C44 B

Cu Experimentala 176 125 82 142

DFT-PW91b (Literature) 177 130 82 145
DFT-PBE (This work) 179 126 78 143

Mishin et al. 170 122 76 138

Ackland et al. 169 122 76 137
Barrera et al. 163 117 75 132
Foiles et al. 167 124 76 139
Zhou et al. 178 128 78 145

Au Experimentala 202 170 45 180

DFT-LDAc (Literature) 198 185 56 189
DFT-PBEc (Literature) 147 136 40 140
DFT-PBE (This work) 155 130 26 138

Grochola et al. 202 169 46 180

Ackland et al. 187 157 42 167
Barrera et al. 186 148 49 161
Foiles et al. 183 159 45 167
Zhou et al. 188 158 43 168

a Simmons et al. (1971) ; b Kamran et al. (2009) ; c Wang et al.
(2013) .
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Table 6.3: Energies of planar defects in the unary FCC phases. The table reports the stacking fault energy γSF, the unstable stacking fault energy γUSF and the
energies of free {100}, {110} and {111} surfaces (γ100, γ110 and γ111, respectively). Values in parenthesis are computed without atomic relaxation.
Values in curly brackets are corrected DFT values using the technique described in (Mattsson et al., 2006). Experimental and previous ab-initio
calculation results are shown when available. All the results are in mJ m−2. Large deviations between theoretical and experimental data are shown in
bold and discussed in the main text.

Element Method γSF γUSF γ100 γ110 γ111

Cu Experimental 45-75a - 1790b 1790b 1790b

DFT (Literature) 39c 158c 1460 (1470) 1320 (1320)
{2270}d {2130}d

43e 175e

49 f 210 f

DFT-PBE 51 (51) 161 (179) 1408 (1423) 1495 (1539) 1223 (1226)
(This work) {2021} {2108} {1836}
Mishin et al. 44.4 (44.8) 162 (180) 1347 (1352) 1478 (1492) 1241 (1248)
Ackland et al. 46.4 (52.1) 289 (297) 1135 (1144) 1230 (1253) 960 (969)
Barrera et al. 17.8 (17.8) 154 (159) 1331 (1354) 1446 (1473) 1225 (1254)
Foiles et al. 17.4 (17.8) 141 (157) 1288 (1291) 1413 (1427) 1181 (1185)
Zhou et al. 22.6 (39.8) 110 (179) 1563 (1566) 1744 (1756) 1502 (1505)

Au Experimental 32-40a - 1506b 1506b 1506b

DFT (Literature) 27e 94e 1450d 1250d

DFT-PBE 36 (39) 87 (103) 835 (840) 883 (894) 646 (648)
(This work) {1261} {1309} {1072}
Grochola et al. 42.6 (42.7) 92 (98) 1296 (1439) 1530 (1735) 1196 (1281)
Ackland et al. 31.7 (44.3) 219 (296) 769 (794) 814 (871) 622 (644)
Barrera et al. -1.5 (-1.3) 117 (136) 683 (766) 738 (851) 577 (645)
Foiles et al. 4.8 (4.8) 95 (103) 914 (976) 977 (1094) 785 (827)
Zhou et al. 3.3 (5.1) 86 (106) 1015 (1083) 1109 (1236) 907 (952)

a Yan and Zhang (2013) ; b Tyson and Miller (1977), extrapolated to 0 K for average orientation.
c PW91, Ogata et al. (2002) ; d PW91, Swart et al. (2007) ; e PBE, Wu et al. (2010) ; f LDA, Zimmerman
et al. (2000).63
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6.2.2. Ab-initio calculations

The reference values were computed using density functional theory (DFT). These cal-

culations were carried out using the Vienna ab-initio Simulation Package (VASP ver-

sion 5.3.2) (Kresse and Hafner, 1993, Kresse and Furthmüller, 1996b,a). The projector-

augmented wave (PAW) (Blöchl, 1994) method was used to represent frozen core electrons

and the Perdew–Burke–Ernzerhof (PBE) (Perdew et al., 1996) exchange correlation func-

tional. For both elements the standard potentials distributed with VASP with PAW electronic

configuration [Ar] 3d10 4p1 for Cu and [Xe] 4f14 5d10 6s1 for Au were used. All calculations

were spin-paired. The wavefunctions were expanded into plane waves up to an upper energy

cutoff of 500eV. The Brillouin-zone was sampled with a 15x15x15 k-points mesh distributed

according to the sampling scheme of Monkhorst and Pack (1976) for bulk properties (lattice

constants, elastic constants, etc.). For systems containing planar defects (stacking faults or

surfaces) an 11x1x11 Monkhorst and Pack mesh was used. Energy level were populated

using the method of Methfessel and Paxton (1989) with a smearing width of 0.2 eV.

6.2.3. Stacking fault energies

The intrinsic stacking fault is a lattice defect that breaks the stacking sequence . . .ABCABCABC. . .

of {111} planes in the FCC structure to . . .ABCABABC. . .. Atoms in the stacking fault are

locally in a hexagonal close packed (HCP) environment. The energy for forming this defect

is positive and called the stacking fault energy (SFE).

Stacking faults can be characterized by the γ-surface (Vı́tek, 1968), the potential energy

surface that is obtained by rigidly displacing a crystalline block of atoms parallel to a {111}
plane. In the case of an FCC structure the local minima of the γ-surface in the ⟨112⟩ direction

are stable stacking faults and the respective energy is the SFE. Saddle points are called

unstable stacking faults. For the L12 structure the γ-surface is more complex. The local

minima correspond successively to the complex stacking fault (CSF) energy (at a0
6 [112̄]),

the antiphase boundary (APB) energy (at a0
2 [112̄]) and the superlattice intrinsic stacking

fault (SISF) energy (at 2a0
3 [112̄]) (Reed, 2008). For the L10 structure one can find the SISF

energy at a0
6 [112̄] and the CSF at a0

12 [1̄1̄2]+ a0
4 [11̄0] (Paidar and Vitek, 2002). In an atomistic

calculation, the stacking fault energy γSF can be computed from

γSF =
ESF −E0

A
(6.1)

where ESF is the energy of the crystal with defect (HCP stacking fault in this case), E0 is the

energy of the perfect lattice (FCC in this case), and A is the area of the stacking fault.
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All stacking fault energies reported here were computed at 0 K. The systems were composed

of 12 atomic layers with two free surfaces separated by a 15 Å vacuum. The x, y and

z axis of the simulation box were oriented along the [112], [1̄10] and [1̄1̄1] directions,

respectively. The upper six atomic layers were then rigidly displaced in the [112] direction

while computing the energy.

In order to quantify the effect of lattice relaxation, additional calculations were carried out

where relaxation of atoms along the [1̄1̄1] direction was allowed. These calculations were

run for only the EAM potentials and used larger crystalline blocks of approximately 48,000

atoms originally in perfect FCC stacking. A conjugate gradient minimizer was used and

optimized until the length of the global force vector of the system dropped below 10−6 eV

Å−1.

6.2.4. Surface energies

The surface energy is the energy of another planar defect, the interface of the crystal with

vacuum. Its energy represents the work required to create a free surface from a perfect FCC

bulk on a given (hkl) plane. Similarly to the stacking fault definition, surface energies can be

computed from

γhkl =
Ehkl −E0

2A
(6.2)

where Ehkl is the energy of the crystal with two free surfaces, E0 is the energy of the perfect

lattice (FCC in this case), and A is the area of the two planar faults created.

All surface energies reported here are computer at 0 K. The surface energies were computed

for three low-index crystallographic planes {100}, {110} and {111}. In ab-initio calcula-

tions the systems used were similar to the one used for the SFE calculations. The systems

were set up such that at least 30 Å separated the two free surfaces. A stack of 8 crystalline

layers was used for the (100) orientation, 12 layers for the (110) orientation and 9 layers for

the (111) orientation. Free surfaces were relaxed using a conjugate gradient minimizer until

the length of the global force vector of the system dropped below 10−3 eV Å−1.

The energies of (free) surfaces computed from DFT calculations using both LDA or GGA ap-

proximations typically underestimate the corresponding experimental values. The correction

by Mattsson et al. (2006) was applied to the DFT surface energy results. This correction uses

the intrinsic error of the corresponding functional (PBE in this case) as computed for the

Jellium surface (for which high-quality random phase approximation data is available (Yan

et al., 2000, Pitarke and Eguiluz, 2001)) to correct the surface energy of DFT calculations.
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6.2.5. Nested sampling

The nested sampling calculations used unit cells containing 64 atoms. K = 2400 phase space

configurations were used. The nested sampling algorithm was stopped when the expectation

value of the temperature dropped below 100 K. One configuration per iteration was removed

and the new uncorrelated configuration was generated with a Monte-Carlo (MC) walk of

640 MC moves. The MC walk was a repeating sequence of eight N-particle moves, 16 cell

volume moves, eight MC cell shear moves, eight cell stretch moves and eight atom swaps.

Then χ(ε) was used to compute the heat capacity Cp(T ) as a function of temperature T .

Peaks within Cp(T ) indicate phase transitions. These peaks were fitted with Gaussians. This

yields the transition temperatures and a measure for their error.

6.3 Fitting the cross potential

The two unary EAM potentials of Mishin and Grochola were used as the starting point for

the new binary Cu-Au EAM potential. A simplified procedure for determining the cross

term was adopted, inspired by the (Lorentz-Berthelot) type mixing rules that are commonly

used for cross terms in Lennard-Jones type potentials, but also the embedded atom method

(e.g. Foiles et al. (1986)) or empirical bond-order potentials (e.g. Tersoff (1988)). Rather

than employing a simple mix that treats the contribution of both species equally (either

through arithmetic or geometric averages), mixing parameters were fitted. This leads to

small set of fitting parameters while still giving some flexibility for the target properties to

be reproduced.

Specifically, this expression was used

φCuAu(r) = αCu ·φCuCu(r)+αAu ·φAuAu(r) (6.3)

for the repulsive pair potential in Eq. (2.2). Here, φCuAu(r) is the pairwise interspecies

potential and φCuCu(r) and φAuAu(r) are the pairwise potentials for the pure species (i.e.

Mishin’s and Grochola’s estimates for those). The coefficients αCu and αAu are the mixing

parameters and fit using the procedure described below. Note that Eq. (6.3) conserves the

symmetry of φσiσ j(r) with respect to exchange of the indices σi and σ j.

The local electron densities were obtained from the functions

fAu|Cu(r) = βCu · fCu|Cu(r)+ γCu · fAu|Au(r) (6.4)

fCu|Au(r) = βAu · fAu|Au(r)+ γAu · fCu|Cu(r) (6.5)
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where fAu|Cu(r) and fCu|Au(r) are the missing cross terms.

The coefficients in Eqs. (6.3), (6.4) and (6.5) were fitted to experimental data for each of the

intermetallics. The (experimental) target properties for the Cu3Au, CuAu and CuAu3 phases

are marked with a dagger in Tab. 6.4 and Tab. 6.5.

The cross potential was fitted by minimizing a cost function Q with respect to the model

parameters using the downhill simplex method of Nelder and Mead (Nelder and Mead,

1965). The cost function was a sum of the weighted residuals for each targeted physical

constant,

Q = ∑
i
(δi ·wi)

2, δi = vi,EAM − vi,0, (6.6)

where i is the i-th physical constant value to fit, vi,EAM and vi,0 are the computed and targeted

physical constants, respectively, and wi is a weighting coefficient. The initial values entering

Eqs. (6.3), (6.4) and (6.5) are taken as αCu = αAu = βCu = βAu = γAu = γCu = 0.5 with the

weight coefficients defined in Tab. 6.6. The lattice constant of the L12 phase did not require

a high weight as the value from the initial guess already agreed well with experimental data.

For the L10 a high weight was required to obtain the correct c/a ratio. A particular focus

was put on the enthalpy of mixing in order to conserve thermodynamic properties. The

c/a ratio was constrained to be smaller than 1. An initial fit gave values for the prefactors

γCu and γAu smaller than 0.01. The fit was then reran at fixed γCu = 0 and γAu = 0. This

produced the final prefactors reported in Tab. 6.7.
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Table 6.4: Lattice constant a0 for the cubic L12 phases, lattice constants a0 and c0 for the tetragonal L10 phase and enthalpy of mixing ∆Hmix of the Cu-Au binary
phases from experiments at 0 K, DFT and the respective EAM potential (at 0 K). Large deviations between theoretical and experimental data are shown
in bold and discussed in the main text. The values marked with a dagger are fitting targets for the potential. The error relative to the experimental
enthalpy of mixing at 0 K is given in percent in the last column.

Phase Method a0 (Å) c0 (Å) c/a ∆Hmix (eV/atom) Error (%)

Cu3Au (L12) Experimental 3.74†a -0.074†b –
DFT (Literature) 3.725c – –
DFT-PBE (This work) 3.784 -0.048 35
EAM (This work) 3.735 -0.072 3
Ackland et al. 3.748 -0.071 4
Barrera et al. 3.726 -0.081 9
Foiles et al. 3.753 -0.051 31
Zhou et al. 3.750 -0.093 26

CuAu (L10) Exp 3.966†d 3.673†d 0.93† -0.091†b –
DFT-PBE (This work) 4.061 3.679 0.91 -0.058 36
EAM (This work) 3.852 3.803 0.99 -0.092 1
Ackland et al. 3.899 3.902 1.00 -0.071 22
Barrera et al. 3.944 3.653 0.93 -0.094 3
Foiles et al. 3.070 (B2) – – -0.082 10
Zhou et al. 3.941 3.715 0.94 -0.133 46

CuAu3 (L12) Experimental 3.98†a -0.059†b –
DFT-PBE (This work) 4.047 -0.028 53
EAM (This work) 3.941 -0.060 2
Ackland et al. 3.997 -0.057 3
Barrera et al. 3.960 -0.052 12
Foiles et al. 3.982 -0.035 41
Zhou et al. 3.976 -0.095 61

a Kittel (2005) ; b Ozoliņš et al. (1998) ; c Wang et al. (2013), calculated with the revised PBE functional
of Perdew et al. (2008) ; d Barrera et al. (2000), at 300 K.
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6.4 Tests of the binary potential

6.4.1. Lattice parameters and elastic constants

The physical properties (enthalpy of mixing, lattice constants, elastic constants) obtained

for the ordered phases in the potential described here are shown in Tab. 6.4 and 6.5. The

enthalpies of mixing are in good agreement with the experimental values with differences of

less than 2 meV for the L12 phases. The lattice constants for the L12 phases are within a 1%

range from the experimental values. The potential predicts a slightly deformed version of the

tetrahedral L10 phase with a 2% smaller a0 lattice vector and a 2% larger c0 lattice vector,

while keeping a c0/a0 ratio smaller than one (consistent with the L10 structure) and almost

no error in density (differs by 0.2%). While structure and formation energy is excellently

described by the EAM potential, the elastic constants (Tab. 6.5) for the intermetallic L12

phases phases are overestimated by ∼ 17% (CuAu3) and ∼ 22% (Cu3Au).

Existing EAM potentials manage to describe properly the elastic constants for the Cu and

Au pure phases. The potentials from Ackland and Vitek (1990), Barrera et al. (2000), and

Foiles et al. (1986) successfully describe the elastic properties of the Cu3Au L12 phase,

while the potential from Zhou et al. (2004) slightly underestimates the elastic constants for

this phase. The potential from Ackland and Vitek (1990) overestimates the elastic constants

for the CuAu3 L12 phase when the three other correctly describe the elastic constant for this

phase.

6.4.2. Stacking fault energies

Figure 6.1 shows the energy of the fault as a function of the relative displacement of the

two ideal crystals bounding the stacking fault. For the Cu, Au and CuAu single crystals,

the intrinsic SFE (γSF) is defined as the first minimum of the curve. For the Cu3Au and

CuAu3 curve the first minimum corresponds to the complex SFE (γCSF). The unstable SFE

to nucleate the leading partial can be identified as the first maximum of the curve (Xie et al.,

2014).

Table 6.3 reports experimental planar defect energies (Yan and Zhang, 2013, Ogata et al.,

2002) and values obtained for the unary Cu and Au EAM potentials of Mishin et al. (2001)

and Grochola et al. (2005) as well as the binary Cu-Au EAM potentials of Ackland and

Vitek (1990), Barrera et al. (2000), Zhou et al. (2004) and the universal EAM of Foiles et al.

(1986) for the unary phases. Both Mishin et al. (2001) and Grochola et al. (2005), and hence

also the binary potential presented here, agree well with experimental and DFT data for

stacking fault and unstable stacking fault energies. Except for Ackland and Vitek (1990), the
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6. EAM potential for Cu-Au

Table 6.5: Independent elastic constants and bulk modulus B of the L12 and L10 phases from experi-
ments (at 0 K) and the respective EAM potential (at 0 K). Elastic constants were obtained
from a finite-differences approximation of the derivative of the stress tensor using a strain
increment of 10−6. All results are given in GPa. The values marked with a dagger are
fitting targets for the potential. The averaged error relative to the experimental value over
all the elastic constant is given in percent in the last column.

Phase Method C11 C12 C44 B

Cu3Au (L12) Experimentala 189† 132† 74† 150 –

DFTb (Literature) 198 154 91 169 13
DFT-PBE (This work) 178 120 65 139 9

EAM (This work) 236 172 78 194 22

Ackland et al. 177 126 65 143 7
Barrera et al. 174 124 66 140 8
Foiles et al. 175 140 60 151 8
Zhou et al. 124 107 47 112 29

CuAu3 (L12) Experimentala 189† 155† 47† 166 –

DFT-PBE (This work) 157 123 36 134 20

EAM (This work) 220 193 50 202 17

Ackland et al. 269 192 96 218 50
Barrera et al. 194 149 57 164 7
Foiles et al. 181 155 47 164 1
Zhou et al. 192 150 55 164 6

Phase Method C11 C22 C12 C13 C44 C55

CuAu (L10) DFT-PBE (This work) 264 269 157 272 189 37

EAM (This work) 228 250 176 186 71 70

Ackland et al. 214 280 184 158 84 100
Barrera et al. 198 148 144 127 59 59
Foiles et al. (B2) 171 – 154 – 58 –
Zhou et al. 183 130 126 128 60 50

a Simmons et al. (1971) ; b Wang et al. (2013).
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Table 6.6: Weight coefficients used in Eq. (6.6) to fit to the experimental target data tabulated in
Tabs. 6.4 and 6.5. Fitting targets marked with a dagger in Tabs. 6.4 and 6.5.

Phase Cu3Au CuAu CuAu3
Structure L12 L10 L12

a0 1 20 1
c0 40
c/a 80
∆Hmix 30 30 30

C11 10 10
C12 10 10
C44 10 10

Table 6.7: Optimized set of mixing parameters for the binary EAM potential.

Au Cu

α 0.397 0.857
β 0.699 1.124
γ 0 0

binary Cu-Au potentials underestimate the SFE of Au by an order of magnitude and the SFE

of Cu by at least a factor of two. Conversely, while all potentials give unstable SFEs that

agree well with DFT, Ackland and Vitek (1990) gives unstable stacking fault energies about

a factor of two larger than the reference DFT calculations.

The complex stacking fault (CSF) and superlattice intrinsic stacking fault (SISF) energies

obtained for the binary phases were compared with DFT calculation. Results are summarized

in Tab. 6.8. All stacking fault values obtained for ordered phases with the fitted potential

are positive. The values for the L12 phases are underestimated by a factor of two to three.

The values for the L10 phases are underestimated by a factor of six to seven. Both Ackland

and Vitek (1990) and Zhou et al. (2004) yield reasonable values for the stacking faults of

these three compounds (to within a factor of three of the DFT calculations). Barrera et al.

(2000) and Foiles et al. (1986) give negative SISF energies for the CuAu3 L12 structure. This

indicates that CuAu3 is not L12 is these potentials. Barrera et al. (2000) does additionally

have a SISF energy for CuAu that is close to zero, also indicating a problem with the stability

of the L10 CuAu phase in this potential.

71



6. EAM potential for Cu-Au

0.0 0.5
0

50

100

150

200

250

300

Cu

CuAu
3

CuAu

Cu
3
Au

Au

S
u

rf
a

c
e

 e
n

e
rg

y
 (

m
J
/m

²)
S

u
rf

a
c
e

 e
n

e
rg

y
 (

m
J
/m

²)

-0.25 0.00 0.25
0

50

100

150

200

250

300

-0.50 -0.25 0.00 0.25

-0.25 0.00 0.25

0.0 0.5

 This work          Foiles et al.

 Ackland et al.   Zhou et al.

 Barrera et al.    DFT (This work)

(a) (b) (c)

(d) (e)

[11 ഥ2] [11 ഥ2] [11ത2]

[ത1ത12] [11ത2][11ത2]

1

2
[1ത10] +

1

6
[ത1ത12]

[ത1ത12]

0.5 0.25

0.250.25 0.0 0.25 0.250.0

0.0 0.250.0 0.50.0 0.5

CSF SISF

CSFCSF SISFSISF

Figure 6.1: Generalized stacking fault energies of the single crystal Cu, Cu3Au, CuAu, CuAu3 and
Au (without ⟨111⟩ axis relaxation for all calculations) for the potentials considered in
this work and DFT calculations. The directions of the rigid displacements within the
corresponding (111) plane are indicated in the axis labels.
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Table 6.8: Energies of planar defects in the binary phases. The table reports the complex stacking fault energy γCSF, the superlattice intrinsic stacking fault energy
γSISF and the energies of free {100}, {110} and {111} surfaces (γ100, γ110 and γ111, respectively). Previous ab-initio calculation results are shown
when available. Values in parenthesis are computed without atomic relaxation. All the results are in mJ m−2. Large deviations between ab-initio and
EAM data are shown in bold and discussed in the main text.

Phase Method γCSF γSISF γ100 γ110 γ111

Cu3Au DFT 260a ; 369b ; 227c 120a ; 199b

(L12) DFT-PBE (This work) 133 (161) 76.7 (79.4) 1274 (1294) 1301 (1385) 1074 (1086)

EAM (This work) 17.6 (48.5) 20.4 (41.0) 1408 (1456) 1576 (1655) 1317 (1354)

Ackland et al. 48.8 (102.5) 40.6 (42.4) 1020 (1044) 1100 (1145) 864 (882)
Barrera et al. 47.3 (58.3) 10.9 (10.9) 1145 (1164) 1235 (1266) 1031 (1044)
Foiles et al. 58.2 (82.3) 11.2 (11.5) 1122 (1155) 1223 (1288) 997 (1028)
Zhou et al. 19.9 (24.0) -3.4 (-3.3) 1475 (1484) 1626 (1669) 1372 (1385)

CuAu DFT (This work) 167 (201) 35.9 (40.5) 1071 (1091) 1121 (1222) 906 (937)
(L10) EAM (This work) 22.3 (40.5) 5.8 (6.3) 1445 (1512) 1592 (1680) 1311 (1383)

Ackland et al. 46.0 (80.8) 65.2 (65.5) 982 (1021) 976 (1060) 584 (775)
Barrera et al. 75.3 (89.2) 0.6 (0.6) 1014 (1041) 1038 (1098) 1398 (1600)
Zhou et al. 81.6 (88.8) 22.8 (22.9) 1384 (1408) 1483 (1552) 1235 (1263)

CuAu3 DFT 220b 119b

(L12) DFT (This work) 88.7 (104) 57.8 (65.6) 960 (986) 973 (1070) 774 (798)

EAM (This work) 39.6 (46.1) 21.4 (21.9) 1360 (1454) 1564 (1727) 1263 (1328)

Ackland et al. 51.2 (73.8) 61.6 (71.9) 849 (885) 907 (970) 702 (731)
Barrera et al. 26.4 (30.9) -1.7 (-1.7) 807 (854) 866 (941) 696 (729)
Foiles et al. 31.6 (41.0) -0.8 (-0.7) 951 (1019) 1016 (1144) 816 (871)
Zhou et al. 50.5 (54.7) 27.6 (28.8) 1186 (1235) 1295 (1393) 1067 (1103)

a Paxton (1992), full-potential LMTO calculations using the local-density approximation without relaxation.
b Rosengaard and Skriver (1994), tight-binding LMTO calculations without relaxation.
c Paxton and Sun (1998), full-potential LMTO calculations using the local-density approximation without relaxation.73
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6.4.3. Surface energies

The {100}, {110} and {111} surface energies are well described by all EAM potentials

(Tab. 6.8) except for Barrera et al. (2000) that underestimates the values for Cu and Au by a

factor of two or more and Ackland and Vitek (1990) that gives values for Au equal to half of

the experimental or DFT values.

6.4.4. Binary phase diagram

The phase diagram of Cu-Au is explored using the nested sampling method. The heat

capacity (at constant pressure) was computed as a function of temperature, CP(T ) for alloy

compositions with 0, 25, 50, 75 and 100 at.% Cu. For the potential presented here 9, 34, 66

and 91 at.% Cu are additionally considered. A typical CP(T ) curve derived from one of

theses calculations is shown in the inset of Fig. 6.2. Each peak indicates a first order phase

transition. The location of these individual peaks is reported along the experimental phase

diagram shown in Fig. 6.2. A Gaussian was fitted to the peaks in the CP(T ) curves to

determine mean and error of the transition temperature. The error bars shown in Fig. 6.2 are

the standard deviation of this Gaussian.

The phase diagrams were computed for the EAM potentials listed in Tab. 6.3 as well as

the fitted potential. Compared to experimental values (Massalski et al., 1990), the nested

sampling calculations show that Grochola et al. slightly underestimates the melting point

of Au (by around 100 K) and Mishin et al. overestimates the melting point of Cu (by

around 100 K). There are only two potentials with a clear depression of the melting point at

intermediate composition, Foiles et al. (1986) and Ackland and Vitek (1990). Both, however

underestimate the melting points of the binary phases by more than 150 K. (All other

potentials are within 100 K of the experimental melting point.) The potential by Ackland

and Vitek (1990) shows two phase transitions for the pure Au phase which should have just a

transition from FCC to the melt. The first transition (at high temperature) corresponds to the

transition from the liquid state to an ordered BCC-rich phase, the second point corresponds

to a solid phase transition to a pure FCC structure.

The potential described here shows a clear transition from solid solution to ordered in-

termetallic phases. These transitions from solid solution to ordered L12 and L10 phases

are described by almost all EAM potentials at temperatures about half the experimental

values, except for the correct prediction of the transition temperature at 50 at.% Cu by Foiles

et al. (1986). Only the potential by Ackland and Vitek (1990) severely overestimates the

temperatures of the solid phase transitions of the CuAu3 and CuAu phases.
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Figure 6.2: Phase diagram of the Cu-Au system. Solid lines are experimental data from Ref. (Mas-
salski et al., 1990). Red data points show melting points reported in (Mishin et al., 2001,
Grochola et al., 2005). All other results were computed using nested sampling. Full sym-
bols represent liquid to solid transition, open symbols represent solid phase transitions.
The dotted line connects data points and is a guide the eye. The inset exemplarily shows
the nested sampling result of the heat capacity Cp(T ) for CuAu and the EAM potential
of this work. Phase boundaries in the diagram are the positions of peaks of this curve.
Overlapping points have been offset slightly in the concentration axis for clarity.

The structure of the low-temperature phases obtained from the nested sampling calculations

are inspected, for those structures that show negative stacking fault energies. Note that a total

of K = 2400 ground state configurations for each composition. Automatic classification of

binary lattice structures is difficult and here are only reported structures manually inspected

and analyzed with a combination of the adaptive common neighbor analysis (Honeycutt

and Andersen, 1987, Stukowski, 2012) and polyhedral template matching (Larsen et al.,

2016).

The potential of Barrera et al. (2000) forms an HCP phase for pure Au at low temperatures,

consistent with the negative SFE for FCC Au (see table 6.3) which indicates that the FCC

phase is not the ground state. Similarly, CuAu L10 has a close to zero SISF energy in Barrera

et al. (2000) and might therefore be metastable. The low-temperature intermetallic for this
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composition found by the nested sampling calculations gives an HCP-like structure and

not L10. The negative SISF energies of the CuAu3 (L12) phase in Barrera et al. (2000)

and Foiles et al. (1986) are in agreement with the nested sampling ground state, where

mixed HCP/FCC-like structures are obtained in both cases at low-temperature. For the

potential of Foiles et al. (1986), the CuAu phase collapses into a B2 (BCC-like) structure

when starting from an L10 structure during a cell shape and volume optimization. This

ground state is confirmed by inspecting the nested sampling calculations. The Cu3Au

(L12) phase in Zhou et al. (2004) has a negative superlattice SISF energy. Consistent with

this, the nested sampling calculations predict an HCP-like structure as the ground state at

low-temperature.

6.5 Summary

Capturing all the features of a complex system such as a binary alloy with a simple potential

energy expression is a difficult task. There are numerous existing EAM parameterizations

for the Cu-Au system in the literature, four of which (Ackland and Vitek, 1990, Barrera

et al., 2000, Zhou et al., 2004, Barrera et al., 2000) have explicitly been tested here. Each

of the potentials manages to describe a part of the properties spectrum. Ackland and

Vitek (1990) gives good SFEs but does not describe the phase diagram well. The other

three potentials (Barrera et al., 2000, Zhou et al., 2004, Barrera et al., 2000) give a good

reproduction of the phase diagram but underestimate SFEs. The most significant failure of

all of the potentials tested here is that they do not describe the correct ground-state for some

of the binary phases.

The new potential presented here as a mix between the Cu potential of Mishin et al. (2001)

and the Au potential of Grochola et al. (2005) gives a good description of both SFEs and the

phase diagram. In particular, this new potential gives reasonable energies for planar defects

energies (stacking faults and surfaces), with the exception of the CuAu L10 phase where

the SFE is underestimated by 85% with respect to DFT calculations. Its thermodynamic

properties (enthalpy of mixing) for the binary Cu-Au system are consistent with DFT data.

The melting temperature is predicted within a 100 K of the experimental values across the

full concentration range. Disordered solid solution to ordered phase transitions exist for all

concentrations. Lattice constants deviate by 0.3%-3% from experimental values and the

c/a ratio for the L10 tetrahedral CuAu phase is below unity. Elastic constants are in good

agreement with experiment for the pure phases and within a 5%-30% error range for the

binary phases.
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7.1 Introduction

In this chapter the EAM potential developed and described in the previous chapter is used.

The structure of dislocation networks at the Cu|Au interfaces is studied as a function of

the width of the intermixing between two layers. Then the influence of intermixing on the

mechanical properties is investigated.

For non-miscible metals such as Cu and Ni, the heterointerface is often semi-coherent,

consisting of a network of Shockley partial dislocations separated by stacking faults (Cheng

et al., 2007, Shao et al., 2013). The structure for heterointerfaces of miscible compounds

such as Cu|Au is less clear because of the tendency of the interface to diffusively intermix.

The concentration then varies continuously from one side to the other.

Phase separated films of Cu-Au have been prepared experimentally for decades (Borders,

1973, Paulson and Hilliard, 1977, Li et al., 2010). Cu and Au both crystallize in the face-

centered cubic (FCC) structure. They are miscible and form stable intermetallic phases

as shown in the CuAu binary phase diagram (Fig. 1.3). The phase separated state is

therefore an example of a material far from equilibrium. Intermixing of the two species

can experimentally occur for several reasons. The first one being intermixing during the

growth of a Cu|Au multilayer system. Chambliss and Chiang (1992) have shown that a

half monolayer of Au deposited on Cu(110) substrate would form a Cu3Au(100) surface.

Similarly, Chistjakov et al. (1988) have observed CuAu intermixing width up to tens of

nanometer using a thermal deposition method. This intermixing can be further amplified
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by aging the sample, e.g. annealing or irradiating (Chistjakov et al., 1988, Myagkov et al.,

2009).

7.2 Interface model

Atomistic simulations were used to study the interface between Cu and Au in these multilay-

ers. The initial system was composed of two perfect crystals of Cu and Au stacked along the[
1̄1̄1
]

directions (Fig. 7.1(a)). The height of each crystal was approximately 25 nm. The

two other axes of the orthorhombic simulation cell were oriented along the [112] and the[
1̄10
]

directions for both crystals. The simulation box was periodic along the [112] and[
1̄10
]

directions, with a free boundary in the
[
1̄1̄1
]

direction.

Cu

Au

MD CNA

(a) (b) (c) (d) 10nm

[112]
[-1-11]

[-110]

mix

Figure 7.1: Illustration of the simulation procedure. Starting with (a) an initial perfect Cu|Au system
composed of two single crystals and then (b) intermix the interface region by randomly
swapping atoms to achieve the concentration profile given by Eq. (7.1). (c) This system
then annealed and and aged. (d) Then a common neighbor analysis (CNA) is used to
identify atoms not in their ideal face-centered cubic (FCC) environment. Atoms are
colored according to their chemical element in figures (a-c) with Cu in blue and Au in red.
Atoms in (d) are colored according to their local lattice structure with hexagonal close
packed (HCP) atoms in red, body-centered cubic (BCC) atoms in blue and structures
unidentified by the CNA in white.

In order to minimize the stresses arising from the large lattice mismatch (δ ≈ 12%) between

the Cu and Au crystals, the lateral cell size needed to be commensurate with the lattice

constant of both Cu and Au. nAu = 33 and mCu = 37 were used resulting in a residual

mismatch of ∆ε = 0.08% while keeping the overall size small enough for the simulation

methods. The total number of atoms in the simulation cell was ∼ 106.
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The intermixing process that occurs between the Cu and Au crystal involves processes at

a timescale not readily accessible by molecular dynamics methods, such as interdiffusion

of Cu and Au atoms at the interface during the deposition process. In order to mimic this

process, the interface between Cu and Au layers was manually intermixed by randomly

flipping Cu and Au atoms over the interface to arrive at a specific concentration profile cw(z).

The coordinate z here denotes the distance from the ideal interface and w is a measure for the

initial width of the interface. The functional form of cw(z) was obtained by solving Fick’s

diffusion equations for interdiffusion in two semi-infinite bodies,

cw(z) =
1
2
+

1
2

erf
( x

w

)
. (7.1)

The final atomic system with such a manually intermixed layer is shown in Fig. 7.1(b).

After artificially intermixing the two crystals, the system was annealed at 1000 K for a

total of 2 ns in molecular dynamics (MD) and then quenched it down to 300K at a rate

of 350K.ns−1. This was followed by further aging the system at 300 K for 1 ns. The

resulting atomic configuration is shown in Fig. 7.1(c). During these MD simulations, the

temperature was controlled using a Langevin thermostat with a relaxation time of 1 ps. An

anisotropic Berendsen barostat (Berendsen et al., 1984) with a relaxation time of ∼ 5 ps was

used to maintain zero stress along the [112] and [110] directions. All calculation steps were

performed with a timestep of 5 fs.

Then the adaptive common neighbors analysis (CNA) (Honeycutt and Andersen, 1987,

Stukowski, 2010) was used to identify and isolate defects in the crystal. The result of this

analysis is exemplarily shown in Fig. 7.1(d), where all atoms except for those being in an

ideal face-centered cubic (FCC) structure are shown. This analysis characterize the resulting

interface with respect to the defects formed at or near it.

Finally, simple shear deformation was applied on four samples with different intermixing

distances w = 0,1,2,4 nm. In this case a smaller periodic simulation cell was used, with

a layer thickness of 5 nm and nAu = 33 and mCu = 37. The same annealing sequence as

previously described was used to relax the systems. Direct deformation was performed at a

temperature of 300K. A strain rate of 108 s−1 was used in all cases. Simple shear strain was

applied along [112]
(
1̄1̄1
)

directions for shear parallel to the multilayer interfaces.

7.3 Results

Fig. 7.2(a) shows the fraction of atoms that are not FCC in slices of constant thickness

parallel to the (1̄1̄1) plane. This quantity is referred to as the defect concentration in what
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follows. While there are slight fluctuations with position, the defect concentration appears

rather homogeneous throughout the volume even though the initial atomic concentration had

a gradient. Clearly, the width of the interface grows with increasing intermixing width w.

Fig. 7.2(b) shows the interface width as a function of the initial intermixing width w. The

interface width is defined as the distance between topmost and bottommost hexagonal close

packed (HCP) atom perpendicular to the interface plane. The figure shows that the defect

zone grows monotonously with increasing intermixing parameter w. For w < 4 nm the

interface width is roughly w/2, while for w > 4 nm a larger fraction of the intermixed region

develops stacking faults. The maximum width of the defected region along the [1̄1̄1] axis

is about 7 nm when the intermixing width of the two crystal is w = 10 nm, the maximum

value investigated here.
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Figure 7.2: (a) Defect density, the fraction of atoms not in an FCC environment in slices parallel
to the heterointerface, as a function of distance from the initial interface. (b) Interface
width, measured as the distance between top- and bottommost HCP atom perpendicular
to the heterointerface, as a function of the width of the initial intermixed layer w.

Figure 7.3 shows a series of views onto the interfacial plane. Shown are defects, i.e. all atoms

except for those locally in an FCC neighborhood, in the interfacial atomic region ±0.5 nm

around the initial interface. The sequence of panels (a) to (h) represents the structure of the

interface for intermixing parameters from w = 0 nm to w = 10 nm. Figure 7.3(a) (w = 0 nm)

shows a perfect triangular network of HCP atoms. These are stacking faults that are bounded

by Shockley partial dislocations. This network becomes distorted at w = 0.4 nm (Fig. 7.3(b)).

The interfacial stacking faults are at this point no longer located exactly at the initial Cu|Au

interface but start spreading into the material away from the interfacial plane. The regular

structure of the network becomes even more distorted for w = 1 nm and 2 nm (Figs. 7.3(c)

and (d)). At w = 4 nm (Fig. 7.3(e)) the regular pattern is no longer visible. The stacking

faults follow a seemingly random pattern. At larger intermixing parameters, w = 6 nm, 8 nm

80



7.3. Results

and 10 nm (Figs. 7.3(f), (g) and (h)) the interface is covered by large continuous patches

of stacking faults with geometries reminiscent of slit islands (Mandelbrot, 1983). A side

view of the defects at w = 10 nm, the largest intermixing width, is shown in Fig. 7.1(d).

Figure 7.1(d) directly illustrates that stacking faults do form not only on the (1̄1̄1) plane

perpendicular to the heterointerface but spread into the bulk of the material on the three

other {111} planes. The triangular stacking fault indicated by an arrow in this figure is one

side of a stacking fault tetrahedron.

10mn

(a) w = 0 nm (b) w = 0.4 nm (c) w = 1 nm (d) w = 2 nm

(e) w = 4 nm (f) w = 6 nm (g) w = 8 nm (h) w = 10 nm

[112]
[-110]

Figure 7.3: Atoms not in an FCC environment within a central slice of 1 nm thickness for intermixing
width w of (a) 0 nm, (b) 0.4 nm, (c) 1 nm, (d) 2 nm, (e) 4 nm, (f) 6 nm, (g) 8 nm and (h)
10 nm. Atoms are color coded according to their local lattice structure with HCP atoms
in red, BCC atoms in blue and structures not identified in the common neighbor analysis
in white.

The interface structure is now characterized using two statistical measures. First, the two-

dimensional structure factor of all HCP atoms in a region ±0.25 nm around the initial

interface. The structure factor is given by

S(qx,qy) ∝ ∑
i, j

fi f jei~q·(~ri−~r j) (7.2)

where~q = (qx,qy,0) is the wavevector inside the interface plane,~ri is the position of atom i

and the sum runs over all atoms in the system. The form factor fi is unity for HCP atoms

and zero otherwise. The two-dimensional map of S(qx,qy) is shown in Fig. 7.4 for w = 0 nm

(panel a) and w = 10 nm (panel b). Both figures show the underlying symmetry of the (111)

plane with respective peaks at 2π/a0, where a0 is the lattice constant. The ideal interface

(Fig. 7.4(a)) shows individual peaks with a spacing of ∆q ∼ 3 nm−1 corresponding to ∼ 2 nm
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wavelength. This structure is no longer visible for the disordered interface with w = 10 nm

(Fig. 7.4b).
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Figure 7.4: Two-dimensional structure factor of HCP atoms in a 0.5 nm slice around the heterointer-
face for (a) intermixing width w = 0 nm and (b) w = 10 nm.

The conjugate measure to the structure factor is the radial distribution function (RDF),

g2(r) ∝ ∑
i j

fi f jδ

(
r−
√

(xi − x j)2 +(yi − y j)2

)
, (7.3)

where xi and yi are the x- and y-positions of atom i, respectively. The xy-plane is the plane

of the heterointerface. Fig. 7.5 shows the RDF for four interface width. The sharp interface

(Fig. 7.5(a)) shows pronounced oscillations with a first minimum as ∼ 1.5 nm. As the

interface width increases, the period of oscillation increases and for w = 10 nm, the first

minimum has moved to ∼ 3 nm.

The mechanical response is now examined. For this matter smaller bilayer systems with a

layer thickness of 5 nm are used. Simple shear deformation parallel to the heterointerface

are carried out to evaluate the influence of difference intermixing width and annealing.

Here an annealed system refers to a system having been through the 1000 K annealing

procedure describe in section 7.2, while a non annealed system refers to a system that has

simply been relaxed at 300 K. The defects were less present in the layers volume for the non

annealed systems compare with the annealed systems for the same initial intermixing width.

Figure 7.6 shows the stress strain curves obtained for the atomically sharp interface and three

intermixing width (w = 1,2.5,5nm) for both non annealed and 1000 K annealed systems.

Figure 7.6(a) reveals that atomically flat interface without annealing has a interface shear

strength of a few MPa. The three intermixed systems show relatively similar response to the

applied strain with a yield stress of 0.3 to 0.4 GPa and an averaged flow stress of 0.3 GPa.
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Figure 7.5: Two-dimensional radial distribution function of HCP atoms in a 0.5 nm slice around the
heterointerface for intermixing with of (a) w = 0 nm, (b) 1 nm, (c) 6 nm and (d) 10 nm.

The data for the annealed systems in Fig. 7.6(b) are more scattered. The yield stresses vary

from 0.45 to 0.25 GPa with the intermixing width going from 0 to 5 nm. The average flow

stress is still oscillating around 0.3 GPa for the annealed system with a intermixing width

w = 0,1,2.5 nm. The annealed system with an intermixed width of 5 nm shows a slightly

lower average flow stress value of approximately 0.25 GPa.
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Figure 7.6: Stress-strain curves during simple shear at 300K parallel to the heterointerface of the
Cu|Au multilayer system with a layer thickness of 5 nm and intermixing width w =
0,1,2.5,5 nm (a) without annealing and (b) after annealing at 1000 K. Thick lines are
a moving averages over a strain interval ±0.025 around the respective data point, thin
lines show the full data.
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7.4 Discussion

The perfectly sharp Cu|Au interface shown in Fig. 7.3(a) is a realization of a semi-coherent

interface, such as those found between immiscible compounds such as Cu|Ni. (Shao et al.,

2013) The structure factor (Fig. 7.4(a)) and RDF (Fig. 7.5(a)) both show the periodicity of

the triangular lattice of stacking faults. The first minimum in the RDF characterizes the

typical spacing between the triangles.

The semi-coherent character of the interface is lost as it become more disordered by inter-

mixing. The primary defect at the interface is still the stacking fault, but the fault is no

longer located at exactly the midplane between the two phases. The triangular structure of

the stacking fault lattice is also lost at larger intermixing width. Fig. 7.1(d) illustrates that the

majority of these faults are located on the interfacial (1̄1̄1) plane, but that at larger width w

the interfaces has a tendency to form stacking fault tetrahedra. Since these tetrahedra are ses-

sile, they are often responsible for hardening, embrittlement or plastic instabilities. (Martı́nez

and Uberuaga, 2015)

The spacing of faulted and ideal crystalline regions can be estimated from the RDFs presented

in Fig. 7.5. The minimum of the RDF corresponds to the distance from an HCP atom where

the likelihood of finding another HCP atom is minimal. For the semi-coherent interface

(Fig. 7.5(a)), this corresponds to the size of spacing between the triangular faults. For the

disordered interfaces, this gives an approximated measure of the spacing between faulted

regions. At w = 10 nm, the distance (indicated by an arrow in Fig. 7.5(d)) is around 3 nm,

about half the total interface width of 7 nm (see Fig. 7.2(b)) and about double the spacing of

∼ 1.5 nm between the triangles of the sharp interface (w = 0 nm).

The multilayers stress response to simple shear parallel of a few MPa for the atomically

sharp interface (Fig. 7.6(a)) is a clear sign that the system reacts by gliding along the

heterointerface as observed for the CuAg|Ni system in chapter 5. If one focuses on the

non annealed system (Fig. 7.6(a)), one can see that for any intermixing width greater than

0 nm the yield stress is approximately constant. This shows that the intermixing width has

only a small impact on the yield stress and interface shear strength which means that most

of the strengthening comes from the heterogeneities introduced next to the heterointerface

acting as pinning point to the dislocation network. Experimental results of Cu|Au nanopillar

compression with a tilted interface in relation to the compression axis (Schwaiger, 2015)

gave a value for interface shear strength approximately equal to 0.3 GPa. The averaged flow

stress obtained here (Fig. 7.6) for any disturbed interfaces is in good agreement with the

experiments.
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As is was just shown a small disturbance next to the interface greatly impact the stress-strain

response of the system. In Fig. 7.6(b) the originally sharp interface annealed at 1000 K has

a yield stress orders of magnitude greater than its non annealed counter part (Fig. 7.6(a)).

This means that even a short annealing at 1000 K is enough to disturb the heterointerfaces

by atomic interdiffusion. After annealing the defect density out of the heterointerface plane

increases (Fig. 7.2(a)) which lead to a greater number of dislocation nucleation points. As a

result the the yield stress decreases with intermixing width (Fig. 7.6(b)) but a large flow stress

value is still observed, indicating that dislocations are still hindered by the heterogeneity of

the system.

7.5 Summary

This chapter shows that as a diffusive intermixed region develops at the heterointerface

in the miscible Cu|Au system, the interface develops from an ordered two-dimensional

network of triangular stacking faults to a three-dimensional network spreading in both

crystals. This transformation increases the spacing of dislocations at the interface and gives

rise to dislocation self-organization into stacking fault tetrahedra. These changes in interface

structure will have an influence on dislocations interacting with the interface and therefore

the mechanical property of Cu|Au multilayers.

The mechanical tests have shown that the smallest perturbation at the atomic scale at the

heterointerface leads to an increase of the interface shear strength as those perturbation act

as pinning point of the dislocation network. The observed value of 0.3 GPa using the EAM

potential fitted in chapter 6 is in good agreement with experimentally measured interface

shear strength (Schwaiger, 2015). This provides a supplementary validation point to the

EAM potential developed in this thesis.
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8. Scratching the surface with nanoscale
tips

8.1 Introduction

Multilayers are interesting because deformation can be quantified in experiments by looking

at the layer structure post-mortem. This works because the initial structure, parallel straight

layers, is known and the different materials can have good contrast in microscopy.

In this chapter the evolution of the Cu|Au interfaces under tribological load is investigated

at the nanoscale. Significant plastic deformation takes place when indenting or scratching

a surface. Indeed, plastic deformation is responsible for part of the material loss during

abrasive (Khruschov, 1974, Mishra and Szlufarska, 2012, Mishra et al., 2012) and slid-

ing (Rigney and Hirth, 1979) wear and the plowing motion of asperities on the counter body

contribute to the friction between two materials (Rigney and Hirth, 1979) . It is therefore

interesting to study how multilayers behave under such conditions.

Recently, Luo et al. (2015) and Pouryazdan et al. (2017) have experimentally shown that

multilayers intermix during sliding. Luo et al. (2015) have observed an interesting inter-

face roughening mechanism under tribological loading at the nanoscale. This mechanism

eventually leads to intermixing and formation of vortices at the interfaces between the Cu

and Au layers as seen in Fig. 8.1. The average layer thickness in the system was 100 nm,

with layers deposited by physical vapor deposition. This method creates, as described in

chapter 4, a columnar polycrystal structure. Pouryazdan et al. (2017) have observed similar

vortex formation for the Cu|Al multilayer system. The system was here build out of a stack

of 25 µm thick layers. This technique leads to a random polycrystalline structure, and allows

the formation of oxides at the interfaces. This system have a smaller lattice misfit but Cu and

Al, similarly to the Cu-Au binary system, are fully miscible and form some stable binary

alloys. They have observed the vortex formation at the micrometer scale under high-pressure

torsion deformations. The process leading to the formation of vortices shown in Fig. 8.1 is

still unclear and debated (Kim et al., 2009, Rigney and Karthikeyan, 2010, Luo et al., 2015,

Pouryazdan et al., 2017).
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MD work by Kim et al. (2009) and Rigney and Karthikeyan (2010) using Lennard-Jones

potential to describe the atomic interactions showed vortex forming at the sliding contact

between two crystalline bodies. The vortex formation in these calculations leads to local

intermixing, and was attributed to Kelvin-Helmholtz-like instabilities in fluids. Kelvin-

Helmholtz instabilities are known from fluid dynamics in the turbulent regime, i.e. large

Reynolds number (Thorpe, 1971). These instabilities are responsible, for example, for vortex

formation in clouds. Pouryazdan et al. (2017) pointed out that the velocities required to

be in a turbulent regime at the contact of two metallic crystals are unrealistic (hundreds

of km s−1). The Kelvin-Helmholtz instabilities are therefore unlikely to occur in such

multilayers. Instead, Pouryazdan et al. (2017) proposed a fluid-mechanics model involving

solely viscosity contrast between the constituents of a multilayer stack at the microscale.

While this model does not require unrealistic flow velocities, it requires strain values going

up to 400. These extremely high applied shear strains are easily achievable using high-

pressure torsion as the shear strain scales linearly with the sample diameter and the number

of revolutions. This is a plausible explanation for micro- and macroscale to explain vortex

formation and layer folding in multilayered materials. However, these strain values are much

larger than the one achieved under the sliding track. At the nanoscale other deformation

mechanisms have been observed involving dislocations, such as shear banding (Li et al.,

2010), which could trigger such vortex formation.

Figure 8.1: SEM picture of the CuAu system before (left) and after (right) cyclic sliding showing
evidence of layer mixing with vortices formation. Figure 1 from Luo et al. (2015).

This chapter aims at reproducing these vortex structures in large scale molecular dynamics

(MD) simulations to gain insights into their formation mechanism. The system consist of a

replica of the experimental system in Fig. 8.1. This allows to investigate the importance of

the heterogeneity of the stress field coming from the spherical indenter. Even though this
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system presents a realistic geometry, the correct (experimental) ratio between indenter radius

and layer thickness is not reachable in MD.

8.2 Methods

Figure 8.2 shows the atomistic system used here. It is comprised of a stack of 8 Cu and

Au layers of 5 nm thickness each with Au facing top. A few rows of atoms at the bottom

were kept fixed to anchor the atomistic model in space. The two bottom layers of the system

were thermostatted at 300 K using a using a Langevin thermostat with a damping constant of

10 ps. The layers were stacked along the
[
1̄1̄1
]

direction. Similarly to the method employed

in chapter 7 the interface between Cu and Au layers were manually intermixed by randomly

flipping Cu and Au atoms over the interface to arrive to a specific concentration profile over a

total width of 2.5 nm across the interfaces. Periodic boundary conditions were applied along

the [112] and
[
1̄10
]

directions. The EAM potential developed in chapter 6 was employed to

model the interactions in the multilayer slab. Table 8.1 gives the exact dimensions of the

multilayer system.

y [1�10]

z [1�1�1]

x [112]

Cu

Au

Lx

Lz

metallic 

glass

fixed

Ly

Figure 8.2: Illustration of the atomistic setup for the nano-scratch MD calculations. Atoms are color
coded according to their type and mobility with mobile Au atoms in red and mobile Cu
in blue, fixed Cu atoms are in white and indenter atoms in gray.

A rigid spherical indenter of 30 nm in diameter was used. This diameter is typical for atomic-

force microscopy (AFM) type experiments that are often regarded as a model for a single

asperity on a rough surface (Szlufarska et al., 2008). The indenter was obtained by freezing

the structure of a Cu0.50Zr0.50 metallic glass obtained by melting a random solid solution

of Cu0.50Zr0.50 at 2500 K and then quenching it down to 0 K at a rate of 6 K/ps. A purely

repulsive with rcut = 2
1
6 σ Lennard-Jones potential acted between atoms in the multilayer slab
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Table 8.1: Dimensions of the Cu|Au multilayer system used in the sliding contact calculations.

x, [112] y,
[
1̄10
]

nAu 130 438

mCu 145 390

Size (nm) 65 113

and the indenter. The interaction parameters with Cu and Au are εCu = 0.4093, σCu = 2.338,

εAu = 0.4251, σAu = 2.485 (Halicioǧlu and Pound, 1975). Compared with a perfectly

smooth mathematical representation of a hemisphere, the amorphous structure introduced

finite friction between indenter and metallic surface (Luan and Robbins, 2005, Klemenz

et al., 2018). This model was chosen because most real-world tip will exhibit some sort of

surface disorder: The most common material for AFM tips is Silicon which typically has an

amorphous silica at its surface (Jacobs et al., 2016).

The calculation was performed in two stages. The first step consists in lowering the spherical

indenter along
[
1̄1̄1
]

axis. The indenter was lowered with a downward velocity of 0.15 Å/ps

until the force acting on the rigid indenter atoms reached 1000 eV/Å. Then the indenter

was moved along the
[
1̄10
]

sliding direction over a distance of 40 nm from the indentation

point. The normal force acting on the indenter was monitored and maintained at the control

value of 1000 eV/Å by adjusting the indenter depth on the fly. The sliding velocity was

set to 0.5 Å/ps and instantly reversed upon reaching the dead centers. A maximum of 5

reciprocating passes was performed.

8.3 Results

The initial structure (Fig. 8.2) of the simulation setup is a stack of perfectly flat Cu|Au

multilayers terminated with an Au layer on top. The only defects present are introduced

by the intermixed regions at the heterointerfaces. The different panels in Fig. 8.3 show a

sliced view of the system parallel to the sliding direction at the different calculation stages.

Figure 8.3(b) shows the final configuration after indentation with a normal load of 1000 eV/Å.

The indenter sinks into the soft terminating Au layer, but does not sink all the way to the

next Cu layer.

Starting from the configuration shown in Fig. 8.3(b) the indenter is moved at constant

velocity of 0.5 Å/ps in a reciprocating motion. During the whole motion the external force

on the indenter is held constant. The true force experienced by the indenter also includes a

component from the inertia of the tip and fluctuates slightly around this value. Figure 8.4(a)
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(a) (b)

(d)

(f)

(c)

(e)

Figure 8.3: Snapshots of the reciprocating sliding contact simulation at a normal force of 1000 eV/Å.
Each panel shows a 3D view of the system sliced parallel to the sliding direction for
clarity. Panel (a) shows the initial simulation setup, (b) the final stage of the indentation
at 1000 eV/Å, and panels (c-f) show the final snapshot after cycles 1 to 4, respectively.
Cu atoms are in shown blue and Au atoms are in shown in red.

shows that the fluctuation is on the order of ±23 eV/Å. The lateral force required to move

the indenter is shown in Fig. 8.4(b). At every inversion of the direction of movement, the

force jumps to a value of approximately 250 eV/Å over a distance of 10 nm. The force then

rises roughly linearly with sliding distance. In the later strokes the force rises again sharply

towards the end of the wear track.

The progression in geometry after each subsequent sliding cycles is shown in Fig. 8.3(c-f).

The indenter progressively sinks into the substrate, accompanied by transfer of material to

the edge of the wear track where it piles up. Figure 8.3 also shows that the indenter sinks

quickly into an Au layer while it requires multiple cycles to break through the harder Cu

layer. Note that in Fig. 8.3(d) both the terminating Cu and the Au layer underneath have

thinned.

In addition to thinning of the softer Au layer, the interface between Au and Cu roughens.

This is particularly evident in Figs. 8.3(c-e) for the interface just below the sliding indenter.
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Figure 8.4: Normal (a) and lateral (b) load on the indenter over the sliding cycles. The black line
shows the floating overage of the normal load over a period of 50 ps (black). The average
normal load is FN = 1000±23 eV/Å.

Roughening extends to regions outside the wear track just under the pileup that have not yet

been reached by the indenter.

Figure 8.5 shows details of where the strain is accumulated during the first stroke. Panels

(a)-(c) display just atoms that have accumulated more that 20% of atomic strain. During

indentation, most strain is localized within the topmost Au layer with the exception of a

small region just underneath the tip apex, where dislocations have passed into the underlying

Cu layer. The corresponding common neighbor analysis of this snapshot (Fig. 8.5(d)) clearly

shows stacking faults in the Cu layer in that region and within the Au layer. The top view of

the deformation during indentation reflects the threefold symmetry of the {111} slip planes

outside of the main indenter depression. Dislocations nucleate underneath the indenter

and then escape on the respective slip planes; this shields some regions from accumulating

strain.

The strain accumulated in the first layer and the corresponding density of defects increase

after the first stroke (Figs. 8.5(b-c)). Interestingly, damage in the lower-lying Cu layer (and

the next Au layer) can only be seen at the point of indentation and the end of the wear track.
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After the first cycle, deformation and defect structure has extended from the topmost Au

layer to the next Cu and the subsequent Au layer (Figs. 8.5(e-f)). Figure 8.3(c) shows that

the indenter has at this point already penetrated the harder Cu layer; the soft Au underneath

then immediately accommodates some of the deformation introduced into the layer.
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Figure 8.5: Reciprocating sliding simulation snapshots with a force of 1000 eV/Å after (a,d) inden-
tation, (b,e) half a stroke and (c,f) one full stoke. Atoms in panels (a)-(c) are colored after
their local atomic shear strain values. Atoms with a atomic shear strain value lower than
0.2 are removed for clarity. The atomic strains are computed taking for reference the
relaxed undeformed state of the system. Panels (d)-(f) shows the corresponding common
neighbor analysis (CNA). Atoms in red are in an HCP local environment, atoms in blue
are in a BCC local environment, atoms in white are in an undefined local environment.
In the CNA snapshots, all the FCC atoms have been removed for clarity.

8.4 Discussion

During the initial indentation (Fig 8.3(a)) the indenter does not cross entirely the first Au

layer. This can be related to Fig. 8.5(a) showing a significant density of stacking faults right

underneath the indenter and pilling up against the first Cu-Au interface. As expected by the

various models exposed in section 1.2, at such a small scale the interface plays a critical role

blocking dislocations and thus responsible for the hardening of the single crystal Au layer.

The lateral force increase observed in Fig. 8.4(b) can be rationalize by the indenter hitting

material piling up in front of the indenter. This material is then pushed against the pileups

of the previous strokes at the edge of the wear track where the material has significantly

hardened. The range of forces seen during the first two strokes corresponds to a friction

coefficient of 0.25 to 0.75 which are typical values for dry contact sliding of metals (Bhushan,
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2002). The sharp rise in friction force towards the end of a stroke can be explained by a

similar pileups mechanism, i.e. the indenter pushes against more and more piled-up material.

The fold just outside the wear track in Fig. 8.3(f) appears to nucleate from a pronounced

interface roughness in the previous cycles. Similar folds are often observed on machined

surfaces, their explanation in the case of machining is a heterogeneity in material properties,

such as elastic modulus (Sundaram et al., 2012) or grain orientation (Beckmann et al.,

2014). This would indicate that the material piled up outside of the wear track present some

heterogeneity.

The difference in penetration rate in Cu and Au is consistent with common measures

of hardness for Au and Cu films where Cu is measured as being the harder of the two

materials (Li et al., 2017). This increased resistance to the penetration of the indenter can

also be seen in the increased resistance towards sliding. Friction forces shown in Fig. 8.4(b)

are significantly higher for the strokes that plow within the Cu layer than those that displace

mainly Au atoms.

8.5 Summary

This chapter has shown and discussed a set of scratching simulations of Cu|Au multilayers

with indenters of sizes typically used in atomic-force microscopy (AFM). The simulation

does not show the formation of vortex instabilities observed experimentally on much larger

scales and for loads with much larger indenters. Most likely this is because the indenter

radius is on the order of the multilayer thickness, while the experiments of Luo et al. (2015)

used 100 nm thick layers and an indenter of size 16 µm, two orders of magnitude larger

than the layer thickness. However, the results can in principle be directly compared to

recent efforts using AFMs for indentation and scratching (Egberts and Bennewitz, 2011,

Egberts et al., 2012, Caron and Bennewitz, 2015) that have not yet been applied to metallic

multilayers.
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9.1 Introduction

This chapter starts from the observation that reproducing the vortex formation with MD

as shown in the previous chapter was not possible. The ratio between layer thickness λ

and indenter radius R, λ/R, was approximately equal to 2× 10−1 in the calculations of

chapter 8 and 6×10−3 in the experiments of interest (Luo et al., 2015). Such a large ratio

in the calculations leads to an inhomogeneous stress field underneath the indenter across

the thickness of the first layer (Hamilton, 1983). For the smaller experimental ratio, the

stress field can be approximated to an homogeneous stress field over the thickness of a few

layers. This leads to a complete redesign of the system in this chapter where the calculations

are ran considering a representative volume. This system emulates the loading conditions a

representative volume of the multilayer stack would feel underneath the indenter.

Earlier work on simple shear of Cu|Au multilayers, e.g. in chapter 7, did not show any

precursory signs of vortex formation. Therefore, one possible hypothesize is that some

heterogeneity in the system is necessary to trigger vortex formation. As mentioned in

chapter 4, FCC multilayer materials grown experimentally tend to form columnar grains

with a grain size on the order of the layer thickness, i.e. in the 100 nm range in the

experiments of interest (Luo et al., 2015). Zhang et al. (2017) showed that nanocrystalline

surfaces are unlikely to be perfectly flat, consequently some misorientation between layers

can occur during the preparation of a multilayered structure experimentally. With this

simpler system this chapter aims at investigating one specific hypothesis regarding vortex
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formation: what is the influence of the misalignment of the [111] axis with the multilayer

growth direction?

9.2 Methods

The representative volume element used in this chapter, shown in Fig. 9.1, was designed for

an abstraction of the indenter itself. The simulation cell represents a volume element that

would lie underneath a spherical indenter of a radius much larger than the layer thickness,

similarly to the experimental setup describe by Luo et al. (2015). Implicit in the use of a

representative volume element is the assumption that stress gradients are small and that the

stress in the volume element can be approximated as homogeneous. To test the hypothesis

on {111} planes misorientation compared with the interfaces, the calculations were initially

performed on a system having initially perfectly parallel {111} planes with the interfaces.

Then the {111} planes were tilted around the y,
[
1̄10
]

axis. Because of the final size of the

volume elements (linked to the lattice mismatch between Cu and Au) only a final number of

tilting angles were accessible in order to keep the periodicity of the system. The initial system

shown in Fig. 9.1 was composed of 10 layers of 5 nm thickness each, with an in-plane size of

approximately 30×30 nm2. A possible size effect was also investigated by running a similar

calculation on a “supercell” system nine times larger (replicating the undeformed system

cell in the x and z directions for θ = 5∘) comprised of 30 layers. Table 9.1 gives the exact

number of Au and Cu unit cell used in the in-place directions and the corresponding tilting

angles. Periodic boundary conditions were applied for all the simulation cell directions.

θ°

�1�1�1�

[112]

θ°

y, �1�10�

Cu

Auz

x

Figure 9.1: Illustration of the atomistic setup for the Cu|Au slab deformation MD calculations.
Atoms are color coded according to their type with Au atoms in red and Cu in blue.
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Table 9.1: Minimum simulation cell size used for the simulations. The numbers n and m denote the
number of unit cells of the Au and Cu layer, respectively. A ratio m/n ̸= 1 and different
tilting angles θ are necessary to accommodate the nominal lattice mismatch and comply
with the periodic boundary conditions. All systems are composed of 10 layers, except the
supercell containing 30 layers.

Setup name θAu/θCu (
∘) n[112]/m[112] n[1̄10]/m[1̄10]

0∘ 0/0 66/74 125/140

2.5∘ 2.45/2.19 66/74 125/140

5∘ 4.90/4.37 66/74 125/140

5∘(supercell) 4.90/4.37 198/222 125/140

10∘ 10.0/8.93 64/72 125/140

The systems were initially annealed at 1000 K and then relaxed at 300 K following the

procedure described in chapter 7. The systems then underwent two successive deformation

steps, the first one consisted in an equi-biaxial tensile deformation. Then the resulting system

was deformed using simple shear. The deformations were carried out at 300 K with a strain

rate of 108 s−1. The temperature was controlled using a Nosé-Hoover thermostat with a

relaxation time of 1 ps applied only in the direction perpendicular to the deformation. The

biaxial tensile deformation was imposed by changing the simulation box size along the x

and y, [1̄10] directions according to the defined strain rate. The pressure perpendicular to the

deformation (i.e. z direction) was kept at zero using a using the Parinello-Rahman barostat

with a relaxation time constant of 10 ps. Simple shear deformation was then applied along

the interface planes, i.e. along [112](1̄1̄1) for θ = 0∘, by homogeneously deforming the box

at the prescribed strain rate.

9.3 Results

Equi-biaxial deformation. The initial systems with 10 layers and misalignment ranging

from θ = 0∘ to 10∘ with interfaces parallel to the xy-plane are deformed by equi-biaxial

deformation along the x and y axis. Figure 9.2(a) shows the evolution of the averaged root

mean square width (wl
RMS) for each Cu-type and Au-type layers. The root mean square

width for each type is defined as

wl
RMS =

√√√√ 1
Nl

∑
i∈l

(
zi(t)−

1
Nl

∑
j∈l

z j(t)

)2

(9.1)
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9. Tribological loading of Cu|Au

with l a given layer in the system, Nl the total number of atom in this layer and zi(t) the z-

component of atom i at time step t. Each atom is assigned to a single layer at the beginning of

the calculation. This assignment stays fix during the course of the calculation. This measure

allows to track down layer thinning and broadening. During the equi-biaxial deformation,

wl
RMS shows a similar behavior for all the systems independently of their misorientation.

wl
RMS linearly decreases to reach a minimum at strain value of approximately 20% before

showing a small increase after 25% strain. Both Cu-type and Au-type layers are thinning

down at the same rate. Figures 9.3(a,c) show the systems after equi-biaxial deformation

at 25% strain. Both θ = 0∘ and 5∘ systems show clear shear bands crossing several layers

which create the most pronounced roughness at the interfaces.
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Figure 9.2: (a) Averaged root mean square of the layer width, wl
RMS (Eq. (9.1)), over the course

of the biaxial (subplot A) and simple shear deformation (subplot B). (b) Stress strain
curve obtained during the simple shear calculation of the misoriented {111} planes
for θ = 0∘,2.5∘,5∘,10∘. The blue letters in square brackets indicates the strain values
corresponding to the snapshots shown in Fig. 9.4 for the θ = 5∘ calculation.

Simple shear deformation. After the equi-biaxial deformation the systems are deformed

by applying simple shear. Figure 9.2(b) shows the stress-strain curves obtained for this

deformation on the four systems of interest. The system without misorientation (θ = 0∘)

shows a stress strain curve similar to the ones shown in Fig. 7.6 for the simple shear

deformation of Cu|Au bilayer parallel to the interface. The system yields at around 0.5 GPa

and then enters a flow regime with a flow stress fluctuating around 0.5 GPa. The systems

with a misorientation show yield stresses that increase with θ . The systems yield between

0.6 GPa for θ = 2.5∘ and 0.88 GPa for θ = 10∘. All misoriented systems then show strain

hardening leading to a point where the stress lowers. The strain values at which this stress

reduction occurs varies with the misorientation. It occurs at ε ≈ 2.9 for θ = 2.5∘ and ε ≈ 1.3

for θ = 5∘ and 10∘. The shear stress eventually lowers to approximately the same value

for all the misoriented systems, about 0.6 GPa. Figure 9.2(a) shows that the sudden stress
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Equi-biaxial tensile 
deformation εxx=εyy=0.25

Simple shear 
deformation εxz=3.0

θ = 0°

θ = 5°

(a) (b)

(c) (d)

Figure 9.3: Snapshots of the multilayer stack with (a,b) aligned
[
1̄1̄1
]

planes with the interface
and (c,d) θ = 5∘ misoriented planes. (a,c) snapshots taken after equi-biaxial deforma-
tion along the x and y axis to εxx,εyy = 0.25, and (b,d) after subsequent simple shear
deformation to εxz = 3.0 (right).

decrease for the misoriented systems occurs at the same strain as the rapid increase of the

averaged wl
RMS values. For θ = 0∘ the averaged wl

RMS value stays relatively constant over

the whole shear deformation. Figure 9.3(b,d) shows the systems obtained at shear strain

value of ε = 3.0 for θ = 0∘ and 5∘. One can see that for θ = 5∘, the layered structure is

severely deformed with noticeable folding pattern, while for θ = 0∘ the deformation is

localized at the interfaces.

In order to better understand what happens with the misorientation, the calculations now

focus on the θ = 5∘ misoriented system. Figure 9.4 shows snapshots of the system with FCC

atoms color coded according to their local lattice orientation along the z-axis. Additionally,

Fig. 9.5 shows density maps of these local lattice orientations in inverse pole figures. The

lattice orientation is obtained using the polyhedral template matching method (Larsen et al.,

2016, Stukowski, 2010) (PTM). The orientation was determined along the z-axis (multilayer

growth axis) and an equal-area projection was used to assign a color to each atom according

to the color map in Fig. 9.4.
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9. Tribological loading of Cu|Au

Before shear, one can see that almost all the FCC atoms are oriented in similar directions,

with the [1̄1̄1] direction along the z-axis. As the applied shear strain increases to ε = 1.0,

some curvature is introduced on the interface planes. At shear strain value of ε = 1.4, i.e.

right after the stress decrease, dislocations traces are seen across three layers marked by

the two white arrows in Fig. 9.4(c). As the strain increases, this interlayer region widens

up to a shear strain of ε = 1.8. The system now has a large twinned area with a [111]

orientation along the z-axis (in purple in Fig. 9.4). As the shear strain continues to increase

and raises above ε = 1.8, this zone is now shrinking and assimilated back to the bulk of

the system by rotating back to a similar orientation. This rotation lead to the creation of

two slightly misoriented zones in the system as the green color of half of the system in

Fig. 9.4 is fading away. The separation between these two zones is highlighted in Fig. 9.4

with red dashed lines. At the final shear strain value of ε = 3.0 one can see that there is now

two distinct orientations in the system, [1̄1̄1] (original) and [11̄1] (rotated), separated by a

boundary. Further analysis quantifies a misorientation of approximately 58∘ between the two

grains. The rotation process is clearly shown in Figs. 9.5(c-h). First, there is a distribution

of orientations between the [111] and [011] area of the standard stereographic triangle after

the stress decrease (Fig. 9.5(c)), followed by the appearance of two distinct orientations

in Figs. 9.5(c-g), and finally at shear strain value of ε = 3.0 (Fig. 9.5(h)) the rotation is

complete with the atoms in the system reverting to a [111] orientation along the z-axis.

A possible size effect on this rotation mechanism is investigated by running a similar

calculation on a larger supercell of the system shown in Figs. 9.3- 9.5. Figure 9.6(a) shows

the result obtained after equi-biaxial deformation. Similar shear bands are observed as in

the smaller system. This system is then deformed using the aforementioned simple shear

protocol. Figure 9.2(b) shows the stress-strain curve obtained for the supercell system.

Compared with the smaller system the large system yields at the same point but does not

show as much strain hardening after yielding. Instead the system enters in a flow regime

until a stress decreases at a shear strain of ε = 0.55, the stress then reaches values similar to

the one encountered for the smaller system. At larger shear strain the two systems behave

similarly and the two stress-strain curves collapse onto each other. At a shear strain of

ε = 3.0 the larger system shows similar folding patterns (Fig. 9.6(b)). The analysis of the

local lattice orientation on Figs. 9.6(c-d) shows that a similar misoriented area is present at

the end of the calculation.
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Figure 9.4: Orientation maps of the system with a misorientation of θ = 5∘ during simple shear
deformation. Non-FCC atoms have been removed, FCC atoms are color coded after
their local lattice orientations along the z-axis. The interfaces are still visible as darker
contrasted atoms. For clarity one interface is marked up with a white dashed line. The
arrows in (c) indicate the boundaries of the twinning event. The red dashed line highlight
the separation between two misoriented zones as discussed in the text. {111} directions
are shown on the colormap, the remaining crosses on the colormap correspond to the
main low index directions in cubic symmetry.

9.4 Discussion

The initial reduction of the averaged wl
RMS values in Fig. 9.2(a) during the equi-biaxial

tensile deformation can easily be connected to the layers co-deforming homogeneously.

Even though co-deformation is here dictated by the periodic boundary conditions applied

on the system, such behavior is observed experimentally under indentation for Cu|Au at

the nanoscale (Li et al., 2017). The inversion of the averaged wl
RMS slope in Fig. 9.2(a)

corresponds to the appearance of roughness at the interfaces. Indeed during equi-biaxial

tensile deformation, where layers should thin down due to mass conservation, the only way
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(a) ε = 1.00 ε = 1.40ε = 0.00

ε = 2.00 ε = 3.00ε = 1.80

ε = 1.50 ε = 1.60

Figure 9.5: Inverse pole figures showing the local lattice orientation density along the z-axis of the
simulation cell in the standard stereographic triangle. The quadrants correspond to differ-
ent shear strain ε applied on the system with a misorientation of θ = 5∘. Each quadrant
has its corresponding snapshot in Fig. 9.4. The black dots in (a) show the position of the
[001], [011] and [111] poles in the standard stereographic triangle representation.

to increase the averaged wl
RMS value is for the layer to shear. Such shear bands are visible in

Fig. 9.3. The equi-biaxial deformation outcome seems to be independent from the {111}
misorientation. Similar shear banding have been observed in multiple multilayered system

under indentation (Li et al., 2010, Yan et al., 2013b).

The first noticeable difference regarding the {111} misorientation is the increase of yield

stress with increasing misorientation θ during the simple shear deformation (parallel to the

initial interface plane, xy) in Fig. 9.2(b). These higher values translate into an increase of the

interfacial shear strength. Indeed, in order to accommodate for misorientation, steps must be
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Equi-biaxial tensile 

deformation εxx=εyy=0.25 ; εxz=0.0

Simple shear 

deformation εxz=3.0

(a) (b)

(c) (d)

Figure 9.6: Snapshots of the θ = 5∘ misoriented system with 10 and 30 layers (supercell) after
simple shear deformation up to ε = 3.0. (a,b) Atoms color coded after their type, Cu
atoms are in shown blue and Au atoms are in shown in red. (c,d) Atoms are color coded
according to their local orientation along the z-axis. The corresponding colormap is
shown in Fig. 9.4.

created at the interfaces. The spacing between the steps is proportional to the misorientation

angle θ . As described in the previous chapters under parallel shear to the interface, FCC

multilayers accommodate the deformation by interface sliding. Thus the steps here disrupt

the flat dislocation network at the interfaces and act as obstacles the dislocation have to

climb to allow for interface sliding. This translates into an increase of the interfacial shear

strength. Zhang et al. (2016) noted a similar behavior for the Cu|Nb system under simple

shear parallel to the interface.

The second difference with lattice misorientation happens at larger shear strain with a stress

reduction for θ ̸= 0∘ in Fig. 9.2(b). This stress reduction corresponds to the sudden increase

of the slope of the averaged wl
RMS as a function of strain in Fig. 9.2(a). The slope increase

can be traced down to the appearance of waviness in the layer shapes as seen in Figs. 9.4(a-h).

At larger strain, ε > 2, the plateau observed for the wl
RMS value is attributed to the layers

folding as shown in Fig. 9.3(d). The stress reduction corresponds to a burst of dislocations
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9. Tribological loading of Cu|Au

crossing several layers with the two nucleation points shown by white arrows in Fig. 9.4(c).

As the strain increases, the growth of a twinned area is observed, in purple in Figs. 9.4(c-g).

This growth mechanism is compatible with twin growth from grain boundary with successive

emission of partial dislocation on successive {111} planes (Anderson et al., 2017).

At the point where the twin appears (Fig. 9.4(c)), one can already note that the local lattice

orientation starts to shift toward the [011] direction (Fig. 9.5(c)). Further shearing rotates

the twinned area back into the main matrix orientation.

The relevance of the biaxial deformation on the overall mechanism is tested by shearing

directly the θ = 5∘ system. As Fig. 9.2(a) shows, just misaligning the lattice by an angle

θ is not enough to trigger layer rotation and folding. This indicates that the shear bands

created during biaxial tensile deformation are necessary to create stress concentration points.

The biaxial deformations, via the formation of shear bands, introduce some misalignment

on both side of the sheared areas as indicated by the spread orientations in Fig. 9.5(a). This

misalignment across the system could be a starting point for the rotation observed during

simple shear and the vortex formation observed experimentally.

The supercell calculations revealed that strain hardening is drastically reduced, which

indicates that the strain hardening is mostly the result of a size effect acting only on “small”

systems. Indeed the system starts first to respond to the shear deformation by creating a

large wavy structure as seen in Figs. 9.4(a-c). Due to image forces acting across the periodic

boundaries, such wavy structure formation can be hindered.

9.5 Summary

Compared to the previous chapter that described calculations of sliding on surfaces of metal-

lic multilayers, the model described here made abstraction of the indenter by deforming a

representative volume. This model successfully reproduce the formation of vortex structures

at strain much smaller than the one discussed by Pouryazdan et al. (2017). This preliminary

work show that the misorientation of the [111] axis with the direction growth combined with

the presence of shear bands crossing the interfaces is critical regarding multilayer deforma-

tion at the nanoscale. It can modify the response of the multilayer under shear deformation,

from deformation accommodated at the interfaces by sliding to vortex formation with drastic

lattice rotation.
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10. Compression of Cu|Au nanopillars

10.1 Introduction

In this chapter the evolution leading to the failure of the Cu|Au multilayer system under

compression is investigated. Metallic multilayers, while showing higher strength compared

to their bulk counterparts, suffer from catastrophic failure (Zhang et al., 2014). As seen in

the previous chapters, multilayer materials at the nanoscale exhibit a wide range of different

deformation behaviors, which depend on the loading conditions, structure of the interfaces

and composition of the layers. Under compression shear-banding is the primary failure

mechanism in multilayered materials at the nanoscale (Li et al., 2009). These instabilities

were observed for several crystalline systems, including Cu|Au, and attributed to a reduced

strain hardening ability (Wei et al., 2002, Li et al., 2010, Wang et al., 2011).

Earlier work by Schwaiger et al. (2012) shows how valuable information can emanate from

the collaboration between experiments and simulations, such as the effect of experimental

procedures on the shape of a nanopillar after compression. Therefore, in this chapter the

models are motivated and validated on input from experiments in order to provide a quanti-

tative comparison between experiments and MD simulations. Thanks to the collaboration

with Ruth Schwaiger (KIT) precise information and results about experiments on Cu|Au

nanopillar compression were accessible. Figure 10.1(a-d) shows the typical outcome of such

an experiment. The diamond indenter first contacted the pillar somewhere on the its flat top

(Fig. 10.1(a)). Deformation then lead to the gradual compression of the pillar and eventually

to the nucleation of a shear band (indicated by a “1” in Fig. 10.1(b) and (c)). Shear banding

localized further deformation and lead to the extrusion of a wedge shaped region near the

top of the pillar. Further compression nucleated a second shear band, initiated right where

the wedge has slid enough to create a surface step that concentrated stress (position “2” in

Fig. 10.1(c) and (d)). Deformation then continued along this secondary shear band and

eventually to the extrusion of a larger wedge shaped region.
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10. Compression of Cu|Au nanopillars

Figure 10.1: Scanning electron microscope images of deformation and failure during compression
of a nanolaminate pillar comprised of 40 layers of 25 nm thickness. (a) Initial pillar.
(b) The deformation localizes at the top of the pillar and (c) forms a step on the top half
(d) followed by failure through an interlayer shear-band.(Schwaiger, 2015)
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10.2 Methods

To rationalize these observations molecular dynamics (MD) calculations were carried out

with varying monocrystalline layer thickness from 5 nm to 25 nm, resulting in systems of up

to 380 million atoms with a total pillar height of 300 nm (Fig. 10.2(a)). These pillars are

smaller than their experimental counterparts (Fig. 10.1(a)) but have identical layer thickness

and aspect ratio. The interaction between Cu and Au was modeled using the embedded atom

method potential described in chapter 6. The flat, rigid indenter was obtained similarly to the

spherical indenter in chapter 8. This rigid indented was obtained by freezing the structure

of a Cu50Zr50 metallic glass obtained by melting a random solid solution at 2500K and

quenching it down to 0 K at a rate of 6 K.ps−1. A purely repulsive Lennard-Jones potential

with interaction parameters εCu = 0.4093, σCu = 2.338, εAu = 0.4251, σAu = 2.485 acted

between pillar and indenter (Halicioǧlu and Pound, 1975). Note that the disordered nature of

the indenter introduced finite friction between indenter and pillar. The indenter was pressed

onto the pillar by displacing it at a constant strain rate of 0.8×108 s−1. The whole pillar

was kept at 300K using a Nosé-Hoover thermostat (Shinoda et al., 2004) with a relaxation

time constant of 0.5 ps. A few rows of atoms at the bottom were fixed in space to anchor the

pillar to the substrate.

To facilitate comparison with experiments, the MD simulations were evaluated in the same

way the experiments were evaluated: Stress σ = F/A is computed by dividing the force F

on the indenter by the cross-sectional area A at a position 1/5 along the pillar from its top.

Since experiments only have access to a side view (Fig. 10.1) and must assume rotational

symmetry, the influence of this assumption on the stress-strain curves was investigated. The

exact area A was computed from the convex hull of the cross section at the given height

(Fig. 10.2(c)). The smallest and the largest diameters of the pillar were also computed.

These measurements were used to estimate error in the determination of A (as shown by

the dashed lines in Fig. 10.2(c)). The lateral strain in the pillar was determined with these

measurements, ε = ln(1+(d −d0)/d0) where d0 is the initial diameter.

The response to deformation of an MD system strongly depends on the initial defects present

in the system (Zepeda-Ruiz et al., 2017). In order to build a reasonable MD model, the

influence of the introduction of different sources of defects on the MD model was first

assessed: 1) Interface defects: as seen in chapter 7, the structure of defects at the interface is

heavily influenced by intermixing. Therefore the interfaces between Cu and Au layers were

mixed over a finite interface width of 15 Å. 2) Surface defects: surface roughness on the pillar

as introduced by cutting atoms above a plane that follows random self-affine scaling (Persson

et al., 2005) with Hurst exponent 0.8 and root-mean square (rms) slope of 0.1 (Fig. 10.2(b)).

3) Bulk defects: as a representative volume defect, five screw dislocations were introduced
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10. Compression of Cu|Au nanopillars

at random positions and orientations crossing the entire system. The dislocation lines were

introduced using the isotropic elastic solution (Anderson et al., 2017), all the atoms were

displaced by a distance u3 parallel to the dislocation line direction:

u3 =
b

2π
atan

(
x2

x1

)

Where x1 and x2 are the atomic positions in a plane perpendicular to the dislocation line

direction, and b is the Burgers vector of the dislocation. As dislocations cross both Cu and

Au layers the Burgers vector norm ||b|| was set as:

||b||= ||bCu||+||bAu||
2

Where ||bCu|| and ||bAu|| are the Burgers vector norms in Cu and Au, respectively.

10.3 Results

Figure 10.3(a) shows the influence of initial defects on the plasticity response of the nanopil-

lar systems under compression for λ = 5 nm. All the systems reach a similar flow stress

around 2.4 to 2.8 GPa. The most significant difference observed concerns the yield stresses.

The perfect system yields at σ ∼ 6.1 GPa with a significant drop to the aforementioned flow

stress. The introduction of defect at the interface via intermixing the Cu and Au elements

already reduced the yield stress overshoot down to σ ∼ 4.6 GPa. The addition of defect at the

surface of the nanopillar reduces the overshoot even more to σ ∼ 4.0 GPa. A minimum value

for the yield stress is observed at σ ∼ 3.2 GPa after the introduction of screw dislocations

in the system. From these observations, all the subsequent systems in this chapter will be

modeled with defects at the interfaces and at the surface.

Figure 10.4 shows the results obtained for the different definitions of the cross-section area

A (smallest and largest cross-section, exact convex hull). In all the cases it was observed

that systems yield at σ ∼ 4 GPa and ε ranging from 0.1% to 1%, followed by some strain

softening. The maximal lateral strain is achieved for the largest cross-section definition

with ε ∼ 25%, the smallest cross-section reaches ε ∼ 22% and the exact convex hull area

ε ∼ 19%. In all the cases the final stress value is around σ ∼ 2.3 GPa.
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(a) (b)

(c)

50nm

λ = 10nm

λ = 5nm

λ = 25nm 20nm

Figure 10.2: (a) Side view of the pillar models with layer thickness of λ = 25, 10 and 5 nm used in
the MD simulations. Atoms are color coded according to their type and mobility with
mobile Cu atoms in blue and Au atoms in red, fixed Au atoms in yellow. (b) Top view
of the pillar model with λ = 5 nm showing a realization of random surface roughness.
Atoms are colored after their position along the [111] axis. (c) Cross-section at 1/5 of
the pillar height during compression used to compute the cross-sectional area from the
MD calculations. Red and green dashes lines show the longest and shortest half-axes of
the cross-section.

The models are now compared with the experimental dataset. The open symbols in

Fig. 10.3(b) show that, for the experimental setup, the stress rose to a maximum of

σ ∼ 1.8 GPa at ε ∼ 4% strain and then dropped during subsequent deformation. The

material hence softened during deformation.

The stress-strain curves in Fig. 10.3(b) clearly show that the overall magnitude of the yield

and flow stress depends on the thickness λ of the layers. The model at experimental scales
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Figure 10.3: (a) Stress-strain curves obtained from MD simulations with controlled defects (see text).
(b) Stress-strain curves of pillar compression obtained in experiments and through MD
simulations for different layer thickness λ . The lateral true strain and the area require
to compute σ are determined from reference cross-sections at 1/5 of the pillar height
from the top of the pillar in all cases. (c) Stress-strain curves from panel (b) normalized
by the Hall-Petch flow stress, σHP = σ0 + kyλ−1/2, fitted to the yield stress obtained in
the MD simulations. The error bars of the simulated data are obtained by repeating the
area measurement at distances ±1 nm of the reference cross-section.
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Figure 10.4: Stress-strain curves of pillar compression obtained with different approximations for
the area determination (see text). The error bars are obtained by repeating the area
measurement at distances ±1 nm of the reference cross-section.

(λ = 25 nm) exactly reproduces the experimental curves in the flow region, given that at

least surface roughness is introduced into the system. To test whether the system could

follow the Hall-Petch relationship, the stress σ was normalized by σHP = σ0 +kyλ−1/2. The

parameters σ0 and ky were obtained from performing a linear fitting on the yield stresses

obtained with the simulations (ignoring the stress overshoot). Figure 10.3(c) shows that the

normalization σ/σHP collapses the data of all of the calculations in the flow region.

The deformation in the simulations can be classified as occurring homogeneously (Fig. 10.5(a))

or heterogeneously through the formation of a shear band (Fig. 10.5(b,c)). Formation of a

shear band eventually leads to a failure-mode similar to the one observed experimentally

(Fig. 10.1). A key observation in the simulations is that perfectly flat surfaces always

lead to homogeneous deformation (Fig. 10.5(a)) while rough surfaces show heterogeneous

deformation and failure (Fig. 10.5(b)).

To clarify the role played by roughness pillars with the simplest model for “roughness”

were created, a single atomic step on their surface (Fig. 10.5(c), left column). This model

“roughness” already lead to a deformation mechanism dramatically different from perfectly

flat surfaces. A shear band is clearly visible already at an applied strain of ε = 0.20,

manifested by a series of kinks in the Cu|Au heterointerfaces and extrusion of a wedge

shaped part of the pillar (Fig. 10.5(c), right column). Similarly, compressing a nanopillar
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10. Compression of Cu|Au nanopillars

with a flat surface using a misaligned indenter (Fig. 10.5(d)) also yield to the formation of a

shear band. Figure 10.6 shows the deformation stages of the model “roughness” nanopillar

under compression. One can see that the first dislocations nucleate at the junction of the

interface and the free surface in the uppermost Au layer (Fig. 10.6(b)). These dislocations

cross several interfaces and glide on one given plane (Figs. 10.6(c-e)). At this stage the shear

band is not visible on the pillar. At a compressive strain of ε = 0.05 , the dislocation activity

is concentrated in the three uppermost Au layers and the aforementioned glide plane crossing

the interfaces (Fig. 10.6(f)). There is now a clear kink present at the interfaces, signs of

the shear band formation. Further compression accentuate the shear band and dislocation

activity along this plane (Figs. 10.6(g-i)), leading to the extrusion of a wedge shape section

of the pillar.

εcomp=0.20εcomp=0

(c)(a)

(a)

(b)

εcomp=0.20εcomp=0

(d)
1°

Figure 10.5: Comparison of deformation mechanism for (a) an atomically flat nanopillar, (b) a
nanopillar with a random roughness on the top with a RMS slope value of 0.1, (c) a
nanopillar with an atomic step at the surface and (d) an atomically flat indenter using
an indenter tilted by 1∘. The left column correspond to the undeformed stage of the
systems, while the right column correspond to the system after at normal compressive
strain value of 0.2. Layer thickness in set to 5nm, the indenter have been removed for
clarity in (a-c). Atoms are color coded after their type and mobility, Cu are in blue, Au
are in red and fixed atoms are in yellow. Arrow in (c) shows the initial position of step
at the surface.

Finally, control calculations were carried out using single crystal Au pillars of 60 nm (total

pillar height in the λ = 5 nm case). Figure 10.7 show that the pillar deforms homogeneously

even in the presence of surface steps (or self-affine roughness, not shown here). After a
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ε = 0

ε = 0.026
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ε = 0.028

ε = 0.029

ε = 0.1

ε = 0.05

ε = 0.2

ε = 0.4

(a)

(b)

(c)

(d)
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(f)

(g)

(h)
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All atoms DXA

fixed

Cu

Au

Figure 10.6: Deformation stages of a Cu|Au nanopillar with layer thickness λ=5 nm under com-
pression. The arrows in (a) mark the location of the single atomic step at the surface.
Atoms are color coded after their type and mobility with red atoms being Au and blue
Cu, the yellow atoms are fixed. The dislocation extraction algorithm (DXA) was used
to display the dislocations at each deformation stage. The shaded surface represents the
nanopillar surface, Shockley partial dislocations are in green and stair-rod dislocations
in purple.

dislocation nucleates at the surface (Fig. 10.7(b)) it then crosses the full pillar, vanishing at

the side wall and leaving behind a complementary step (Fig. 10.7(c-d)). Unlike in multilayers,

this dislocation do not imprint its signature into the bulk of the material. Further compression

lead to new dislocations nucleating from the top pillar surface (Fig. 10.7(e)). While some

dislocations escape the pillar, other react in the bulk or pill up against the fixed layer at the

bottom (Fig. 10.7(f-i)).

10.4 Discussion

Consistent with previous observation from calculations of bulk or surface deformation (Zepeda-

Ruiz et al., 2017, Klemenz et al., 2018), the defect-free system (Fig. 10.3(a)) yielded at a

stress roughly double the flow stress of the material. The introduction of interface defects
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ε = 0

ε = 0.015

ε = 0.017

ε = 0.018
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ε = 0.1

ε = 0.05

ε = 0.2
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(f)

(g)

(h)

(i)
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Figure 10.7: Deformation of a 60 nm Au single crystal nanopillar under compression. The arrows in
(a) mark the location of the single atomic step at the surface. Atoms are color coded after
their mobility with red atoms being mobile and blue fixed. The dislocation extraction
algorithm (DXA) was used to display the dislocations at each deformation stage. The
shaded surface represents the nanopillar surface, Shockley partial dislocations are in
green and stair-rod dislocations in purple.

reduces this value and adding surface defects or bulk defects lead to smoother stress-strain

curve qualitatively comparable to the one obtained in experiments. The choice was made

to only use interface and surface defects as the insertion of full dislocation lines artificially

creates preferential strain accommodation path. Eventually leading to artificial premature

deformation at the bottom of the nanopillar in the earlier stage of deformation. A solution

would be to use dislocation loop instead of dislocation line crossing the whole model, but

such small dislocation are difficult to stabilize in system with a small layer thickness as they

would be attracted to the free surfaces or interfaces (Yamakov et al., 2001). Another solution

would involve the introduction of stable prismatic loops.

The area definition does not have a big impact on the stress values, while it shifts significantly

the strain values due to the definition employed for the strain. These results indicate

that using the apparent diameter to define the cross-section area is a valid approximation,

although a second measurement perpendicular to the first one could improve the accuracy in

experiments.
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The results (Fig. 10.3(c)) show that even down to a layer thickness of λ = 5 nm the behavior

of the system could follow Hall-Petch relationship. Due to the small number of data points

used in the fitting procedure, it is still hard to differentiate between a 1/r2 and 1/r scaling

for this system. This behavior may depend on the deformation mode induced by the external

load.

Regarding the catastrophic failure mechanism, it is remarkable that the single step is sufficient

to nucleate a shear-band. This is because edges, or indenter misalignment, concentrate stress

that trigger the emission of a single dislocation into the bulk. This dislocation leaves behind

steps at the Cu|Au heterointerfaces, essentially imprinting the surface structure into the

bulk of the material. Once a shear band has nucleated it will accommodate all subsequent

deformation since the steps or kink created by the band themselves concentrate stress.

Figures 10.5(c) and 10.6 also shows that the individual pillar can host more than one shear

band. The final snapshot of these figures clearly shows an extruded, wedge-shaped region of

the pillar that is bounded by two shear bands.

The explanation for shear banding relies on the existence of domains with varying elastic

modulus affecting the dislocation motions in the multilayer systems. While the surface

flaws are the reasons for the nucleation of an initial dislocation that constitutes the onset

of the shear band, the existence of alternating sequences of hard and soft materials is the

fundamental reason for its stabilization (Knorr et al., 2013).

10.5 Summary

In summary, the strength of multilayer nanopillars was obtained from atomic-scale sim-

ulations and showed excellent agreement with experiments. The pillar localized shear in

shear bands that lead to catastrophic failure of the material. This chapter demonstrated that

the nucleation process is extremely sensitive to surface flaws but the stabilization of the

shear band is a result of the imprinting of the surface flaws into the interface structure of

the multilayers. Surface flaws associated with multilayer materials that present contrast in

their mechanical properties lead to stress concentration. Fine tunning the barrier strength

of interfaces to avoid imprinting the interfaces is thus a route that could solve the issue of

catastrophic failure.
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11. Conclusion

Two systems having semi-coherent interfaces were studied here. Their structures were sys-

tematically characterized, with a strong focus on the interface structures. Their deformation

and failure mechanisms were then monitored under various loading conditions. The two

systems represent two approaches to fine tune the interface properties. The first approach,

described in part II, used two partly miscible FCC elements, Cu and Ni, with a small lattice

mismatch. A third larger metallic element, Ag, was alloyed in the Cu layers in order to

fine tune the lattice mismatch. The effect on the mechanical properties was monitored.

The second path, detailed in part III, used two fully miscible FCC elements, Cu and Au,

with a large lattice mismatch. The interface defects were strongly influenced by the layers

interdiffusion as shown in chapter 7 which greatly affect the mechanical properties. With

this later system, the impact of surface defects on the mechanical response was studied in

chapter 10.

The use of molecular dynamics combined with Monte Carlo in chapters 3 and 4 allowed to

bring toward thermodynamic equilibrium the Cu1−xAgx|Ni. Specific segregation patterns of

Ag were noticed, mainly in the Cu layers at the interfaces. Ag segregation was observed

in zones of larger free volume or under hydrostatic tensile stress, such as the dislocation

network nodes at the interface or at the grain boundaries for the polycrystalline system.

These areas have been linked to zones of lower solute energy using an EAM averaged method

that introduced a synthetic averaged element. This method allowed to efficiently compute

solute energy of Ag at the interface with only one calculation per position instead of several

calculations for a large number of solid solution state. These calculations also showed

that the segregation follows a chain reaction as the solute energy becomes increasingly

favorable with increasing number of Ag atoms at the dislocation nodes. In the case of the

polycrystalline system, a preferential segregation path of Cu in the Ni layer was noticed,

with the Cu atoms following the grain boundaries. From these equilibrated systems the

dislocation network nodes were identified as nucleation points for dislocations when the

system is under load. The dislocations bow out of these nodes in the Cu layers on three

different {111} planes which can then intersect to form sessile tetrahedron lock. Alloying

Ag in Cu translated in an increase of the lattice mismatch between the two layers and thus

an increase of the density of dislocation nodes at the interface. The increase of node density
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translates in a higher probability to form tetrahedrons. Interfaces were also more opaque to

dislocations with Ag content increasing. Lastly, the Ag aggregates pinned the dislocation

network at the interfaces leading to an increase of the interface shear strength.

Contrary to the CuAg|Ni system, the study of the Cu|Au system started with the development

of an EAM potential. Chapter 6 started with the observation that none of the pre-existing

EAM potentials in the literature could describe the thermodynamic and mechanical properties

of both unary and binary Cu-Au phases. During the fitting procedure several binary EAM

potentials were benchmarked, leading to a comprehensive comparison of the mechanical

and thermodynamic properties for each of them. Chapter 7 showed that the miscibility in the

Cu-Au system had a strong influence on the interfacial shear strength. Indeed, as soon as the

first atomic layer on each side of the interface were intermixed, the interface shear strength

increased by an order of magnitude. Further intermixing did not have such a strong impact

on the interface shear strength. As the intermixing distance across the interface increased,

the defect network (i.e. dislocations and stacking faults) changed from a quasi 2D regular

structure to a 3D complex structure that hindered dislocation motion in the interfacial planes.

A parallel can easily be drawn between this mechanism and the one observed with the Ag

aggregates in chapter 5.

In Chapter 8, 9 and 10 the systems setup investigated were directly related to experiments

such as nanoscratching and nanopillar compression. Defects that experimentally occur (i.e.

growth misalignment, tool misalignment, surface roughness) were modeled and their effect

on the different deformation mechanisms were assessed. Using molecular dynamics a nano

scratching setup was reproduced at the expense of some unphysical dislocation interactions

due to simulation cell size limitation. This led to a complete redesign of the calculation

setup in order to make abstraction of the indenter itself. With this new system a mechanism

and the necessary conditions to form vortexes at the nanoscale on metallic multilayers were

proposed. The misalignment between the [1̄1̄1] axis and the growth axis lead to {111}
glide planes in the multilayers slightly tilted toward the interface planes. This caused the

dislocations to pile up against the roughness at the interfaces and eventually led to a rotation

of the structure, i.e. a vortex embryo.

Finally the impact of defects on nanopillar structures were investigated. It was first noticed

that in order to properly model these nanopillar and be able to compare those results with

experimental ones, some initial defect had to be inserted in the system. The failure of the

nanopillar by shear banding was found to be sensitive to the roughness of pillar top surface.

With a perfectly flat surface the nanopillar deform uniformly without any catastrophic event.

On the other hand any roughness (or indenter misalignment) can act as stress concentration

point and lead to failure via shear banding in the Cu|Au nanopillar setup.
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Overall the two systems, CuAg|Ni and Cu|Au, showed that the usage of specific defects,

both chemical and crystallographic, is a route to explore to fine tune properties of interfaces

in order to build multilayer materials and meet specific requirements. Over the course of

this dissertation several large scale simulations have shown that MD calculations could

provide some information at length scale accessible experimentally. The best example is

the polycrystalline structure in chapter 4 that can readily be compared with atom probe

experiment results. The nanopillar calculations in chapter 10 showed that similar layer

thickness could be reached while the total number of layer in the nanopillar is still too large

for the actual computational power available.

As shown in this dissertation, the interfaces play a major role in metallic multilayers. In most

of the existing literature, MD models use flat interfaces that do not grasps the complexity of

the interactions between dislocations and interfaces. By using MC/MD methods or artificial

intermixing systems that are closer to the experimental ones have been created. Descriptions

of the interfaces at the atomic scale from the experimental point of view is thus important to

properly model and validate systems via MD.
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A. Comparison of MC/MD methods

In this section we compare the atom-swap MC/MD and VC-SGC MC/MD methods described

in sections 2.3.2 and 2.3.3, respectively. We ran simulations using both methods on the

minimum simulation cell size describe in Tab. 3.2 for the Cu0.90Ag0.10|Ni system containing

approximately 50,000 atoms.

The VC-SGC MC/MD method only allow for the usage of a limited number of processors for

such small system. Because this method is parallelized, the cell volume is split in domains

that must be independent from each other, and each of these domains is then allocated to a

processors. In order to achieve this division, each domain dimensions must be at least four

times the potential cutoff length. In our case, the VC-SGC MC/MD method can only run on

12 processors for the minimum cell. Thus, we reduced the length of each MD run to 50 fs to

be able to run enough MC/MD sequence within a reasonable amount of computing time.

We ran calculations using the atom-swap MC/MD method with both 20 ps and 50 fs MD runs

and 650 MC/MD sequences. Figures A.1(a) and (b) do not show any noticeable difference

regarding Ag segregation in the Cu layer with the variation of the MD runs time. For the

VC-SGC MC/MD method we used a constraining value κ = 1000 to keep the fluctuation of

concentration to a minimum. Table A.1 the initial and final concentrations (after 650 MC/MD

sequences) of Cu, Ag and Ni. With the applied constrain, the concentrations stayed within

0.2 at.% of their initial values. Figures A.1(b) and (c) compare the atom-swap MC/MD

and VC-SGC MC/MD methods. We can see that the overall results are the same, with Ag

segregating in the Cu layer without diffusing in the Ni layer. The interface between the Cu

and Ni layer is smoothed out with the interdiffusion of Cu and Ni over a distance of about

1 nm.

Table A.1: Concentration of the species in the Cu0.90Ag0.10|Ni system before and after VC-SGC
MC/MD calculation.

Element initial (at.%) final, after 650 MC/MD sequences (at.%)

Cu 42 42.1

Ag 4.6 4.4

Ni 53.4 53.5



A. Comparison of MC/MD methods
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Figure A.1: Cu0.90Ag0.10|Ni systems and concentration profiles along the [1̄1̄1] axis after 650
MC/MD steps using (a) the atom-swap method with MD runs of 20 ps, (b) the atom-swap
method with MD runs of 50 fs, (c) the VC-SGC method with MD runs of 50 fs.
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Symbols and Abbreviations

Abbreviations

AEAM Average Embedded-Atom Method

BCC Body-Centered Cubic

CNA Common Neighbors Analysis

DFT Density Functional Theory

DXA Dislocation eXtraction Algorithm

EAM Embedded-Atom Method

FCC Face-Centered Cubic

HCP Hexagonal Closed Packing

MC Monte Carlo

MD Molecular Dynamics

NS Nested Sampling

PTM Polyhedral Template Matching

SEM Scanning Electron Microscope

SGC Semi-Grand Canonical

VC Variance-Constrained

Symbols

ε Applied strain
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Symbols and Abbreviations

kB Boltzmann’s constant

b Burgers vector

β Inverse temperature

λ Layer thickness

γ Local atomic strain

h Planck’s constant
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