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1
Chapter 1

Introduction

The interactions between light and matter are crucial for the existence of
life. Afterall, these interactions are fundamental to photosynthesis, the ar-
guably most important biological process on earth [1]. The way we perceive
the world through our eyes is another example for the interplay of light
and matter. Light is emitted from luminous objects as a superposition of
electromagnetic waves at different frequencies. These light waves interact
with matter and can be transmitted, reflected or absorbed. Eventually, the
remnants of the initially emitted light reach our eyes and are absorbed by
spectrally-sensitive retinal cells that initiate a series of steps resulting in a
signal to our brain. The majority of the aforementioned light-matter interac-
tions are reasonably described by what is called linear optics. It describes
most of the optical phenomena we observe in every day life and is based
on the assumption of a material response, given in terms of its polarization,
that is linear in the interacting electric field strength.

The regime covering the higher order correction terms to this linear approx-
imation is consequently called nonlinear optics. Due to the typically high
electrical field strength necessary to observe nonlinear optical phenomena,
these kind of light-matter interactions were not observed until the first exper-
imental realization of a laser in 1960 [2, 3]. Nowadays, the use of nonlinear
optical effects is manifold reaching from the generation of short laser pulses,
over laser machining and medical applications, to telecommunications [4].
The focus in this thesis lies on second-order nonlinear effects that are a key
ingredient of optical parametric oscillators and fast electro-optic modula-
tors used for the generation of frequencies that are not accessible by other
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1 introduction

methods and at the interface between electrical and optical data transfer, re-
spectively. Another prominent example of a second-order nonlinear effect is
second-harmonic generation used, for example, to convert infrared to visible
radiation in green laser pointers. Throughout this thesis, we will measure the
generated second-harmonic signal to characterize the second-order nonlinear
response of our samples.

It is quite common to use bulk single crystals to enable a high efficiency
of nonlinear effects. Unfortunately, they lack the flexibility necessary for
compact optical integration, e. g., on nanophotonic chips. Here, thin films
deposited by techniques that are compatible with complementary metal-
oxide-semiconductor processing are a promising alternative and have been
demonstrated to give good results in terms of both their linear and non-
linear optical properties. Among the available fabrication methods, the
focus in this work will lie on atomic-layer deposition as it allows for the
conformal deposition of a variety of materials with a precise control of the
thickness down to an atomic monolayer. The effective film properties depend
strongly on the growth mode and circumstances. This is especially relevant
for second-order nonlinear films that rely on a lack of inversion symmetry
to show a non-vanishing effect. Based on these considerations it becomes
clear that it is necessary to control the structure of the thin films in order to
optimize their effective optical performance. For fixed deposition conditions
one can use thin, alternating layers made from different materials to achieve
this goal. These so-called nanolaminate have been demonstrated to allow
for tuning of the effective optical and mechanical material properties. In
this work, our goal is to apply this concept to ZnO/Al

2
O

3
stacks grown by

atomic-layer deposition and, thereby, tailor the structural properties of ZnO
for an optimized effective second-order nonlinear response.

The overall efficiency of nonlinear interactions is often limited by the short
interaction length or a non-zero phase mismatch at the involved frequencies.
In nonlinear single crystals these issues are, usually, tackled by increasing
the intensity of the interacting waves and exploiting birefringence in the
used material. Nevertheless, there are situations where these approaches
fail due to a low damage threshold or a lack of birefringence, respectively.
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Conformally deposited thin films open a new route to deal with these limi-
tations due to the fact that they grow with equal thickness on all exposed
surfaces independent of their orientation. Therefore, depositing second-
order nonlinear nanolaminates on scaffolds or templates, gives an additional
degree of freedom in terms of the spatial arrangement and orientation of
the nonlinear properties in the resulting structure. In principle, one can
choose arbitrary templates tailored to meet the needs of the specific process
and application. We will demonstrate the approach by using 3D photonic
crystals as they allow for an unprecedented control over the flow of light and,
hence, can also be utilized to enhance nonlinear processes by reinforcing
light-matter interactions or providing novel pathways for phase matching [5].
The templates are "printed"using 3D direct laser writing allowing for a fast
and easy fabrication of nearly arbitrary 3D structures with a resolution of a
few-hundreds of nanometers.

The conformal deposition of second-order nonlinear nanolaminates on 3D
photonic crystals allows us to make use of the best from the two worlds.
The nanolaminate provides the second-order nonlinearity that is usually
not available in structures fabricated by means of 3D direct laser writing
and, thereby, enables a variety of new applications. The 3D photonic crystal
template enforces a spatial distribution of the nanolaminate properties and,
therefore, allows for tuning of nonlinear interactions to result in efficiencies
that are not achievable in plain films. Additionally, one benefits from the
increased amount of deposited material due to the simultaneous growth
on all surfaces. In the scope of this work we will fabricate and study these
so-called 3D nanolaminated photonic crystals. The goal is to demonstrate the
interplay of the two systems that results in an enhancement of second-order
nonlinear light-matter interactions.
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1 introduction

Outline of This Thesis

In Chapter 2 the fundamentals necessary for a thorough understanding of the
results obtained in the scope of this thesis are presented. After introducing
the inhomogeneous wave equation, the interaction of light and matter will
be introduced in terms of the material response. A general overview over
the effects that arise when this response becomes nonlinear is given and
the inhomogeneous equation is solved for examples in both the linear and
nonlinear regime. Chapter 2 is concluded by introducing the most important
concepts and characteristics of photonic crystals, dielectric waveguides, and
metamaterials. Where applicable special attention will be given to nonlinear
properties and interactions in these structures.

Following this introduction, the methods used for both fabrication and anal-
ysis of the novel second-order nonlinear materials and structures will be
described in Chapter 3. First, the basic mechanisms and setups used for the
fabrication by means of atomic-layer deposition and 3D direct laser writing
will be presented. Additionally, the features that deviate from the standard
approaches and are of special interest are highlighted. Next, the methods
and setups used to study both the linear and nonlinear optical properties of
the fabricated samples are introduced. Finally, the basics of X-ray diffraction
and the finite element method with their respective implementation are
illustrated as these methods are used to supplement the results from optical
measurements.

Chapter 4 covers design, fabrication, and results on both second-order nonlin-
ear nanolaminates and 3D nanolaminated photonic crystals. The effects and
mechanism leading to the observed behavior are described and the developed
understanding serves as a starting point to discuss possible improvements.
The thesis is summarized and concluded in Chapter 5.
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2
Chapter 2

Fundamentals

In this chapter, the basics necessary to understand the calculations and analogies used
in the remainder of this thesis are summarized. Starting from Maxwell’s equations,
the inhomogeneous wave equation governing the generation and propagation of
electromagnetic waves is derived. To solve this equation in matter, the material
response that becomes nonlinear for strong electromagnetic fields has to be discussed.
A summary of important second- and third-order nonlinear effects, some of them
exploited extensively in the remainder of this thesis, follows. Subsequently, the
inhomogeneous wave equation is solved for two exemplary cases that serve to
illustrate the linear and nonlinear interaction of light and matter. The derivations
follow the text book by Butcher and Cotter [6]. Finally, the fundamentals of photonic
crystals, dielectric waveguides, and metamaterials are discussed. Special attention
is payed to the peculiarities of nonlinear interactions in both photonic crystals and
metamaterials.

7



2 fundamentals

2.1 The Inhomogeneous Wave Equation

Studying the interaction of light and matter one usually starts at Maxwell’s
equations. In their microscopic form, they describe how the electric field
strength, E, is generated from the total charge density, ρtot, and variations
of the magnetic flux density, B, in time (boldface is used for vectors and
tensors) [7]. The magnetic flux density, B, in turn, depends on the total
current density, Jtot, and variations of, E, in time. To avoid having to consider
each charge and current individually, one introduces auxiliary fields in the
macroscopic formulation of Maxwell’s equations that incorporate material
contributions by means of the electric displacement, D, and the magnetic
field strength, H. Using the international system of units (SI) these equations
read:

∇ · D(r, t) = ρf(r, t)

∇ · B(r, t) = 0

∇× E(r, t) = − ∂
∂t B(r, t)

∇× H(r, t) = Jf(r, t) + ∂
∂t D(r, t)

(2.1)

with the free charge and current density, ρf and Jf, respectively [8]. The
information on the distribution of bound charges and both bound and
polarization currents is averaged over a suitable region that is usually larger
than the inter-atomic distance but smaller than the wavelength [9]. The
constituent equations relate the individual electric quantities through the
polarization, P, and the magnetic quantities through the magnetization, M,

D(r, t) = ε0E(r, t) + P(r, t)

B(r, t) = µ0H(r, t) + M(r, t)
(2.2)

with the vacuum permittivity ε0 and the vacuum permeability µ0. In general,
the material response described by polarization, P, and magnetization, M,
is a function of both the electric field strength, E, and the magnetic flux
density, B. Nevertheless, for the material systems studied in the scope
of this work it is sufficient to look at a purely electric dependency of the
polarization: P(r, t) = P[E] [10]. Furthermore, all materials are considered
to be nonmagnetic and to contain no free charges leading to M = 0 and

8



2 .2 the material response

ρf = 0, respectively [6]. Under these assumptions the inhomogeneous wave
equation governing the electric field strength, E, can be derived by combining
Equations 2.1 and 2.2. Using the fact that c2

0 = 1/(ε0µ0) it reads

∇×∇× E(r, t) + 1
c2

∂2

∂t2 E(r, t) = −µ0
∂
∂t

(
Jf(r, t) + ∂

∂t P(r, t)
)

. (2.3)

The solution to the homogeneous part of Equation 2.3 gives waves propa-
gating at the vacuum speed of light, c0. The source term on the right-hand
side of the equation represents the modifications to this propagation caused
by the interaction between light and matter. It is instructive to note that
the driving term is defined by the sum of the time derivatives of both the
time derivative of the polarization, P, and the free current density, Jf. For
practical reasons this aspect will be exploited in the numerical calculations
to define the nonlinear polarization at the second-harmonic frequency. For
all other purposes Jf is equal to zero in the studied systems.

For many problems, e. g., when considering dispersive media or monochro-
matic waves, it is beneficial to solve the wave equation in frequency domain.
Introducing the Fourier transform for E(r, t) and P(r, t) in Equation 2.3 and
looking at an individual frequency, ω, one obtains:

∇×∇× Ẽ(r, ω)− ω2

c2
0

Ẽ(r, ω) = µ0ω2P̃(r, ω). (2.4)

A tilde is used to denote the Fourier transform of the corresponding quantity,
e. g., Ẽ(r, ω) is the Fourier transform of the vector field E(r, t).

2.2 The Material Response

Having derived the inhomogeneous wave equation in the previous section,
the form of the driving term on the right-hand side has to be specified to
be able to solve this equation in time or frequency domain. The constitutive
relation that will be introduced in the following establishes the missing link
between the polarization, P, and the electric field strength, E.

The origin of the constitutive relation can be understood by considering a
simple model of a dielectric built of electrons and atoms with a restoring
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2 fundamentals

force binding them together. When an oscillating electric field is applied
negatively charged electrons and positively charged atoms are displaced in
opposite directions from their equilibrium position. They form oscillating
electric dipole moments that manifest themselves in the polarization, P.
For a weak electric field the displacement is small and the potential energy
is harmonic leading to a linear restoring force and a polarization that is
proportional to the applied electric field strength. This is no longer true for
applied fields approaching the atomic electric field strength that result in
large displacements from equilibrium [11]. Anharmonic effects come into
play and both the restoring force and the relation between the polarization,
P, and the electric field strength, E, become nonlinear. The necessity for
large electric field strengths is also the reason that nonlinear optical effects
cannot be observed that easily in every day life and that the observation of
the majority of these effects occurred only after the experimental realization
of the first laser in 1960 [2, 3].

The exact dependence of the polarization on the electric field strength is
usually unknown. Therefore, a widely used approach is to expand the
polarization in a power series of the electric field strength. In time domain
this expansion reads [6]:

P(r, t) = P(0)(r, t) + P(1)(r, t) + P(2)(r, t) + . . . + P(n)(r, t) + . . . , (2.5)

were P(n)(r, t) is proportional to the n-th power of the electric field strength.
The first term in the expansion gives a constant field-independent polar-
ization and will be neglected in the remainder of this thesis. The linear
polarization, P(1)(r, t), is the basis for linear optics and covers most of the
optical phenomena encountered in everyday life. The further discussion
will be limited to a homogeneous medium with a purely local response,
neglecting interactions between individual polarizable entities [12]. With
this assumption the polarization at a given point is completely determined
by the electric field strength at the same point. Additionally, the medium is
supposed to be time-invariant so that the response does not depend on the
absolute value of the time, t. Using the Einstein summation convention the
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2 .2 the material response

µ-component of the linear polarization in time domain can be written as

P(1)
µ (r, t) = ε0

+∞∫
−∞

dτ R(1)
µα (τ)Eα(r, t− τ). (2.6)

The way the components of the electric field strength, E, couple to different
components of the induced polarization, P, is described by the linear po-
larization response function, R(1). To ensure causality, this rank two tensor
is zero for negative arguments. Additionally it has to be real due to the
fact that both electric field strength, E, and polarization, P, are real. The
frequency domain counterpart to the linear response function is the linear
susceptibility that is, in general, complex and defined as

χ(1)
µα (−ωσ; ω) =

+∞∫
−∞

dτ R(1)
µα (τ)e

iωτ. (2.7)

The arguments in the brackets describe an additional requirement imposed
on the interacting frequencies, that is, that the sum of all frequencies to
the right of the semicolon has to be equal to ωσ. In the simple linear case
this leads to ωσ = ω. The Fourier transform of the linear polarization
is determined by rewriting the electric field strength and the polarization
in Equation 2.6 in terms of their Fourier transforms in combination with
Equation 2.7:

P̃(1)
µ (r, ω) = ε0χ(1)

µα (−ωσ; ω)Ẽα(r, ω). (2.8)

At this point the inhomogeneous wave equation in frequency domain can be
solved given a specific linear susceptibility (see Section 2.4).

Following the same approach for the higher order terms in the polarization
power series (see Equation 2.5), the respective response functions and suscep-
tibilities can be derived. The Fourier transform of the n-th order polarization
is given by [6]

P̃(n)
µ (r, ω) = ε0

∞∫
−∞

dω1 . . .
∞∫
−∞

dωn χ(n)
µα1...αn

(−ωσ; ω1, . . . , ωn)

×Ẽα1
(r, ω1) . . . Ẽαn

(r, ωn) δ(ω−ωσ).

(2.9)
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2 fundamentals

The tensor χ(n) of rank n + 1 is the complex n-th order susceptibility and as
before the individual frequencies, ωj, must fulfill

ωσ =
n

∑
j=1

ωj. (2.10)

For most of the applications monochromatic waves at specific frequencies,
ω′, are used. In that case, the electric field strength can be expressed as

E(r, t) = 1
2 ∑

ω′≥0

(
Ẽω′(r)e

−iω′t + c.c.
)

, (2.11)

where Ẽω′ is the monochromatic-wave amplitude at frequency ω′.

The focus in this work lies on materials and structures that have a non-
zero second-order susceptibility and, more specifically, on second-harmonic
generation in these systems. Contributions of higher orders will be neglected
as they tend to be small for a proper choice of excitation conditions [11].
The monochromatic-wave amplitude of the second-order polarization at
frequency ωσ = 2ω in the degenerate case of ω = ω1 = ω2 is[

P̃(2)
2ω (r)

]
µ
= 1

2 ε0χ(2)
µα1α2

(−2ω; ω, ω)
[
Ẽω(r)

]
α1

[
Ẽω(r)

]
α2

. (2.12)

To determine P̃(2)
2ω all one has to know is the monochromatic-wave amplitude

of the electric field strength at the fundamental frequency, Ẽω, and the
second-order susceptibility tensor, χ(2).

2.3 A Brief Overview of Nonlinear Optical Effects

The general form of the susceptibility tensor was derived in the previous
section. There is a great variety of effects that arise from χ(n) for the different
orders, n. Before going on to solve the inhomogeneous wave equation for
specific cases of n = 1 and 2, some important nonlinear effects connected to
the second order and third order susceptibility, χ(2) and χ(3), respectively,
will be discussed in general. Additionally, the prerequisites in terms of
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2 .3 a brief overview of nonlinear optical effects

material symmetries will be addressed briefly. A more thorough description
of nonlinear optical effects can be found in most text books on nonlinear
optics [6, 11, 13].

Second-order susceptibility χ(2)

The second-order susceptibility describes the first correction term to the
linear optical regime. Materials showing a non-zero χ(2) have to be non-
centrosymmetric, i. e., posses no inversion symmetry. Therefore, χ(2) van-
ishes for 11 out of the 32 crystal classes. The form of the second-order
tensor for all crystal classes is given in Reference [14]. The reason for
this symmetry restriction can be easily demonstrated for the case of ap-
plied monochromatic fields and an isotropic second-order susceptibility,
χ(2)

µα1α2
(−ωσ; ω1, ω2) = χ(2)(−ωσ; ω1, ω2)δµα1

δµα2
. The Fourier transform of

the second-order polarization for a specific process at frequency ωσ becomes

P̃(2)
ωσ

(r) = K(−ωσ; ω1, ω2)ε0χ(2)(−ωσ; ω1, ω2)Ẽω1
(r)Ẽω2

(r), (2.13)

where K(−ωσ; ω1, ω2) is a scalar prefactor associated with the considered
nonlinear process. Applying the inversion symmetry operator r → −r for a
material possessing inversion symmetry leads to

−P̃(2)
ωσ

(r) = K(−ωσ; ω1, ω2)ε0χ(2)(−ωσ; ω1, ω2)
(
−Ẽω1

(r)
) (
−Ẽω2

(r)
)

.

(2.14)

For applied electric fields that are non-zero, this equation can only hold if
χ(2)(−2ω; ω, ω) = 0 in accordance with the statement made above.

The effects enabled by the second-order polarization describe the mixing of
two waves and have to fulfill ωσ = ω1 + ω2. Therefore, both sum-frequency
and difference frequency generation with ωσ = ω1 + ω2 and ωσ = ω1 −ω2,
respectively, are second-order nonlinear processes. Difference-frequency
generation is the key effect used in optical parametric amplifiers and opti-
cal parametric oscillators. They allow for the generation and amplification
of laser radiation at nearly arbitrary frequencies that are smaller than ω1.
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2 fundamentals

Energy is transfered from the pump frequency, ω1, to the two smaller frequen-
cies with ω1 > ω2 and ωσ given from energy conservation considerations [4].
For the special case of degenerate frequencies, ω = ω1 = ω2, wave mixing
leads to a polarization at ωσ = 2ω and ωσ = 0. The former case is known
as second-harmonic generation and was first observed by Franken et al. in
1961 [15]. It will be discussed in more detail in Section 2.4. The case of
ωσ = 0 is optical rectification and leads to a constant polarization of the
material. In combination with short laser pulses optical rectification is used
for terahertz generation [16].

The Pockels effect or, equivalently, linear electro-optic effect, is closely related
to optical rectification and is described by the real part of χ(2)(−ω; 0, ω). It
leads to a change of the refractive index for a wave propagating at frequency
ω. This change is proportional to the applied static electric field and is widely
used to build electro-optic modulators for optical telecommunications [17].

Third-order susceptibility χ(3)

Unlike the second-order susceptibility, χ(2), relying on the lack of inversion
symmetry in a material, there is no symmetry argument leading to a van-
ishing third-order susceptibility. Therefore, all materials show a third-order
contribution to the nonlinear polarization.

The effects enabled by χ(3) cover the generation of new frequencies through
four-wave mixing with the degenerate case of third-harmonic generation.
Similar to the second-order susceptibility, the third-order susceptibility al-
lows for a change of the optical properties through an applied electric field.
In the case of a static control field the real part of χ(3)(−ω; 0, 0, ω) describes
the quadratic electro-optic effect also known as DC Kerr effect. It gives rise
to a change of the refractive index that is proportional to the square of the
applied static electric field. Replacing the static field by an oscillating optical
field at frequency ωp results in what is called the AC Kerr effect. A special
case of the AC Kerr effect results in an intensity dependent refractive index
associated with Re{χ(3)(−ω; ω,−ω, ω)}. It leads to a modulation of the
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2 .3 a brief overview of nonlinear optical effects

optical properties at frequency ω proportional to the intensity of the optical
field itself. Self-phase modulation and self-focusing are temporal and spatial
manifestations of this effect that play an important role in pulse propagation,
e. g., in optical fibers.

The same way the real part of the third-order susceptibility is responsible
for a nonlinear contribution to the refractive index, the imaginary part of
χ(3)(−ω; ωp,−ωp, ω) contributes to the absorption coefficient in what is
called two-photon absorption (2PA) [18]. Again looking at the degenerate
case of a single incident frequency (ωp = ω), the nonlinear part of the ab-
sorption coefficient scales as the beam intensity, Iω. Therefore, the absorption
probability for a plane wave propagating in z-direction with a negligible
linear absorption coefficient (see Section 2.4) and an isotropic third-order
susceptibility scales as the square of the intensity

dIω(z)
dz

= −α2PA(−ω; ω,−ω, ω)I2
ω(z) (2.15)

with the nonlinear absorption coefficient, α2PA(−ω; ω,−ω, ω), that is pro-
portional to Im{χ(3)(−ω; ω,−ω, ω)} [19]. The process of 2PA describes an
excitation to a higher energy state through the absorption of two photons
with frequency, ω, each carrying an energy of Eγ = h̄ω. As the linear ab-
sorption coefficient is assumed to be close to zero, there is no real state for
a resonant absorption of a photon with energy Eγ. Instead, a virtual state
with a finite lifetime, ∆t, can be excited in accordance with the uncertainty
principle, ∆E∆t ∼ h̄ [20]. If a second photon is absorbed within the time
frame given by ∆t the combined energy of the two photons allows for a
transition to the excited state with an energy Eexc = 2Eγ. 2PA plays a crucial
role in 3D direct laser writing that is described in more detail in Section 3.2.
Furthermore, it leads to two-photon excited fluorescence that is used in
nonlinear laser scanning microscopy and is a valuable tool in the nonlinear
characterization presented in Section 4.2.3 [21].
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2.4 Solving the Inhomogeneous Wave Equation

A variety of nonlinear optical effects has been discussed in the previous
section. In this section the form of the source term and the solution of the
inhomogeneous wave equation in frequency domain will be given for specific
cases in both the linear and second-order nonlinear regime. The discussion
is supposed to provide basics on wave propagation and facilitate an intuitive
approach to some of the effects occurring in the investigated samples.

Linear Regime

The regime of linear optics covers most of the optical phenomena observed
in every day life. The polarization is linear in the driving electric field
strength and the material response in frequency domain is described by
the linear susceptibility tensor, χ(1). For the sake of simplicity an isotropic
medium will be assumed with χ(1)

µα (−ω; ω) = χ(1)(−ω; ω)δµα. Together
with Equation 2.8 this results in a simple relation for the Fourier transform
of the linear polarization

P̃(1)(r, ω) = ε0χ(1)(−ω; ω)Ẽ(r, ω). (2.16)

Using this linear dependence as the source term, the inhomogeneous wave
equation (see Equation 2.4) becomes

∇×∇× Ẽ(r, ω)− ω2

c2
0

ε(ω)Ẽ(r, ω) = 0. (2.17)

Here the scalar dielectric function, ε(ω) = 1 + χ(1)(−ω; ω), was introduced.
This equation is the starting point for the numerical calculations describing
both the linear and nonlinear response of 3D nanolaminated photonic crystals
using a perturbative approach in Section 3.6. Keeping in mind that ρf =

0 in dielectrics, it can be shown that ∇ · Ẽ = 0 for the considered case.
Equation 2.17 can be rewritten into a simpler form:

∇2Ẽ(r, ω) +
ω2

c2
0

ε(ω)Ẽ(r, ω) = 0. (2.18)
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2 .4 solving the inhomogeneous wave equation

A set of solutions for this equation are plane harmonic waves of the form

Ẽ(r, ω) = Ẽk(ω)eikr (2.19)

with the Fourier amplitude of the electric field for wave vector k denoted by
Ek(ω). From ∇ · Ẽ(r, ω) = 0 together with Equation 2.19 one can directly
derive the requirement of perpendicularity that has to hold for k and Ek(ω).
The wave vector, k, can be further specified by introducing the plane wave
solution in Equation 2.18

k2 =
ω2

c2
0

ε(ω), (2.20)

where k = |k|. This is the so-called dispersion relation for a plane wave in
a dispersive medium illustrating the fact that modes only exist at specific
frequencies ω(k) for a given wave vector k.

The wave vector also defines the propagation direction of the plane wave.
For the case of isotropic media, as it is discussed here, it coincides with the
direction of energy flow determined by the Poynting vector S(r, t) = E(r, t)×
H(r, t). In terms of monochromatic-wave amplitudes (see Equation 2.11) the
optical intensity, Iω, of a monochromatic wave at frequency, ω, is given by
the magnitude of the time averaged Poynting vector [22]

〈S(r, t)〉 = Re
{

1
2 Ẽω(r)× H̃∗ω(r)

}
. (2.21)

Therefore, the optical intensity can be easily calculated from monochromatic-
wave amplitudes derived in numerical frequency-domain calculations (see
Section 3.6).

By introducing the complex refractive index n̄(ω) = n(ω) + iκ(ω) =
√

ε(ω),
Equation 2.20 can be rewritten as k = ω/c0 · n̄ = 2π/λ, where λ is the
wavelength in the respective medium. In general, k, is a complex quantity
describing the effect the induced linear polarization has on the propagating
electromagnetic wave [23]. Compared to the propagation in vacuum, where
n(ω) = 1, a plane wave in a material propagates at a phase velocity that is
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altered by the inverse of the corresponding refractive index

vph = c =
ω

Re{k} =
c0

n(ω)
. (2.22)

For the case of a wave packet comprising waves at different frequencies given
by the respective wave vectors, one can describe the movement of the packet
as a whole by the group velocity vg = dω/ dk. Group and phase velocity
are equal in cases where ω ∝ k.

Whereas the real part of the complex refractive index alters the propagation
velocity, a non-vanishing imaginary part of the complex refractive index
leads to damping of the wave. Given the linear absorption coefficient α(ω) =

2ω/c0 · κ(ω), that is directly connected to the imaginary part of the linear
susceptibility, the change in the intensity of a monochromatic plane wave
propagating in a homogeneous, absorbing medium follows the Beer-Lambert
law [24]

dIω(z)
dz

= −α(ω)Iω(z). (2.23)

Nonlinear Regime

The assumption of a material response that is linear in the driving electric
field is a good and reasonable approximation. Nevertheless, it is just an ap-
proximation and, naturally, fails at a certain point. Introducing higher order
contributions from the power series in Equation 2.5 leads to a polarization
containing frequencies arising from the mixing of the driving electric fields.
Through the wave equation it is coupled back to the electric field strength
and gives rise to new effects both at the driving and at the newly generated
frequencies. Usually, one has to deal with a set of coupled equations at the
interacting frequencies that often have to be solved numerically.

An analytical solution may be obtained for specific cases by introducing
some approximations. Similar to the linear regime it can be shown that
∇(∇ · Ẽ(r, ω)) is negligible or equal to zero, e. g., for a transverse, infinite
plane wave [11]. Therefore, ∇×∇× Ẽ(r, ω) ≈ −∇2Ẽ(r, ω) and the wave
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equation in frequency domain becomes

∇2Ẽ(r, ω) +
ω2

c2
0

ε(ω)Ẽ(r, ω) = −µ0ω2P̃NL(r, ω) (2.24)

with an isotropic linear susceptibility and the Fourier amplitude of the
nonlinear polarization P̃ NL(r, ω) = ∑∞

n=2 P̃(n)(r, ω). A possible solution to
the homogeneous part of Equation 2.24 is again in the form of plane harmonic
waves (see Equation 2.19). Treating the source term as a perturbation to
the homogeneous problem, it is reasonable to assume that the solution will
basically retain its form with the prefactor, Ẽk(ω), becoming a function of the
propagation distance due to the energy transfer between individual waves.
For variations of this prefactor that are small on the scale of the considered
wavelength the slowly-varying envelope approximation can be used to arrive
at [6]

∂
∂z Ẽk(z, ω) =

iω2µ0
2k

P̃NL(z, ω)e−ikz, (2.25)

where a wave traveling in the +z-direction is assumed. It is worth noting
that by making use of the SVEA, generated waves traveling backwards i. e.,
in the −z-direction, are neglected [13].

Among the multitude of effects that can arise from the nonlinear source
term the focus will be on second-harmonic generation due to its relevance
for the remainder of this thesis. Therefore, the discussion will be limited
to P̃(2). Equation 2.25 has to hold individually for each of the contributing
frequencies, i. e., ω and 2ω. With an isotropic second-order susceptibility,
χ(2)

µα1α2
(−2ω; ω, ω) = χ(2)(−2ω; ω, ω)δµα1

δµα2
, a negligible imaginary part

of the complex refractive index, and implying the validity of Kleinman
symmetry the coupled equations in scalar form read [25]

∂
∂z Ẽkωω(z) =

iω
2nωc0

χ(2)(−2ω; ω, ω)Ẽ∗kωω(z)Ẽk2ω2ω(z)e
−i∆kz,

∂
∂z Ẽk2ω2ω(z) =

i2ω

2n2ωc0

1
2

χ(2)(−2ω; ω, ω)Ẽ 2
kωω(z)e

i∆kz
(2.26)

with the monochromatic-wave amplitudes Ẽkωω(z) and the phase mismatch
∆k = 2kω − k2ω = 2ω/c0 · (nω − n2ω). The refractive index and the wave
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Figure 2.1: Second-harmonic intensity I2ω(L) normalized to the squared
initial intensity of the fundamental beam I2

ω(0). The solid curves show the
intensity I2ω(L) for various values of the phase mismatch ∆k according
to Equation 2.27 derived using the undepleted pump approximation. A
larger value of ∆k results in faster oscillations and a reduced maximal
second-harmonic conversion efficiency. Obviously, the undepleted pump
approximation leads to unphysical behavior for a phase mismatch that
tends to zero (see blue curve). In this case, the set of coupled Equations
2.26 has to be solved exactly (see dashed curve).

vector at frequency i are denoted by ni and ki, respectively.

For a non-vanishing phase mismatch, ∆k, the overall conversion efficiency
from fundamental to second-harmonic frequency is usually small. The reason
is that the "polarization wave"caused by the field at frequency ω spreads with
a phase velocity of ω/kω, whereas the newly generated signal at frequency
2ω has a phase velocity of 2ω/k2ω. These velocities tend to be different due
to material dispersion and the waves at frequency ω and 2ω get out of phase.
The individual intensities show an oscillatory behavior in the direction of
propagation with the direction of energy flow between second-harmonic and
fundamental wave being reversed after the coherence length Lc = |π/∆k|.
Hence, for ∆k 6= 0 Equations 2.26 can be decoupled using the undepleted
pump approximation implying that Ẽkωω(z) = Ẽkωω(0) = const. In this case
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the intensity of the second-harmonic wave as a function of propagation
length, L, given Ẽk2ω2ω(0) = 0, is

I2ω(L) =
(2ω)2

8ε0c3
0

|χ(2)(−2ω; ω, ω)|2

n2
ωn2ω

I2
ωL2sinc2

(
∆kL

2

)
(2.27)

with the sinc function defined as sinc(x) = sin(x)/x. The oscillation of the
second-harmonic intensity with varying propagation length, L, for ∆k 6= 0
(see Figure 2.1) was first demonstrated by Maker et al. [26]. Nowadays,
these kind of oscillations are called Maker fringes and they will be utilized
to calibrate the setup used for the nonlinear characterization of second-
order nonlinear thin films that is described in Section 3.4. Furthermore, the
effective-material hypothesis for the tailored nanolaminate metamaterials
(see Section 4.1.4) will be experimentally verified based on Equation 2.27.

To achieve a considerable conversion efficiency one has to fulfill the phase
matching condition, that is ∆k = 0. Probably the most common approach
is to make use of birefringence, i. e., the dependence of the refractive index
on the polarization of light, in anisotropic crystals [27]. Other approaches
are quasi-phase-matching, dispersion tailoring in waveguides, and the use
of anomalous dispersion regimes as they are also found in photonic crys-
tals [28–31].

In the case of perfect phase matching (∆k = 0) the intensity at frequency 2ω

grows as L2 (see Equation 2.27). Therefore, at a certain point the assumption
of an undepleted pump is no longer valid and the coupled set of Equations
2.26 has to be solved exactly. The solution describes a continuous transfer of
energy from the fundamental to the second-harmonic wave that saturates
due to the decreasing fundamental intensity [28]. This behavior is depicted
by the dashed curve in Figure 2.1.
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2.5 Photonic Crystals

Having covered the basics on electromagnetic wave propagation and non-
linear optical effects, the focus in this section will lie on the properties of
photonic crystals. The idea behind photonic crystals will be briefly moti-
vated by making use of analogies found in the field of solid-state crystals.
Subsequently, fundamental concepts like the dispersion relation, bandgaps,
and the first Brillouin zone will be introduced. Finally, the unique properties
of photonic crystals, and how these can benefit nonlinear optical interactions,
will be discussed.

The revolution in information and communication technology in modern
days is founded in the ability to understand and manipulate the electrical
properties of materials, and especially conducting crystals, at will. Crystals
are made up from a basic building block, called the basis that is positioned at
periodically arranged lattice points. A basis can consists of one or multiple
atoms in a fixed arrangement. The properties of electrons in solid-state
crystals are described by their energies and wave functions that are deter-
mined by solving the Schrödinger equation for a potential that shows the
same periodicity as the crystal lattice [23]. The solutions to this eigenvalue
problem describe an interesting behavior: In contrast to the continuous en-
ergy values found in a free electron gas, the electron energies in crystals are
restricted and form "bands". Especially, there are energy intervals, known
as bandgaps, where there are no electronic eigenstates and propagation is
forbidden altogether.

It is assumed that another technological leap would follow if one would be
able to extend the control that is nowadays given for the electrical properties
of a material to also cover its optical properties [5, 32]. Fortunately, one
can benefit from the experience and knowledge in the field of electronics
that was gathered over many years, to develop the necessary materials and
devices for optics. The reason is that a lot of the principles that govern the
motion of electrons in a solid-state crystal can be analogously applied to
the propagation of photons in artificial periodic dielectric structures with a
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1D 2D 3D

Figure 2.2: Scheme of photonic crystals with a periodic modulation of
the dielectric function in one, two, and three dimensions, 1D, 2D, and
3D, respectively. The shown 3D example is a so-called woodpile photonic
crystal.

periodicity on the order of the interacting photon wavelength. In analogy
to solid-state crystals, these structures are called photonic crystals, and are
classified as one-, two, or three-dimensional (1D, 2D, or 3D, respectively)
depending on the dimensionality of the periodic variation of optical proper-
ties (see Figure 2.2) [33, 34]. A simple and very common example of what is
sometimes called a 1D photonic crystal is just a laminated medium and was
already described by Lord Rayleigh in 1887 [35].

In the description of a photonic crystal, dielectric elements constitute the
basic building blocks. These are placed at lattice points described by the
lattice vectors R = m1a1 + m2a2 + m3a3, where mi are integers and ai denote
the fundamental translation vectors. The latter span a unit cell that, when
repeated, fills the whole space. An example of a 2D hexagonal lattice with a
possible choice of translation vectors and unit cell is illustrated in Figure 2.3a.
The eigenvalue problem for photons in a photonic crystal is given by the
inhomogeneous wave equation with periodically varied optical properties
(see Equation 2.17) [36]. Usually, one studies linear photonic crystals that are
characterized by a spatial modulation of the linear susceptibility, χ(1), and,
hence, posses a periodic dielectric function. Another example are quadratic
nonlinear photonic crystals that show a periodically varied second-order
susceptibility, χ(2), and a spatially constant dielectric function [37]. The focus
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Figure 2.3: a) 2D example of a crystal lattice. The fundamental translation
vectors, ai, of the hexagonal lattice and a possible choice of the unit cell
(yellow area) are indicated. b) Reciprocal lattice of the crystal lattice shown
in a). The fundamental reciprocal lattice vectors are denoted by gi. The first
Brillouin zone is highlighted in yellow and given by the area of the k-space
that is closer to one reciprocal lattice point than to all the others. c) Band
structure of a 3D photonic crystal calculated for kx = ky = 0. The frequency
is given in units of the stop band frequency, ωb = πc0/(neffaz), with the
lattice constant in z-direction, az, and the effective refractive index, neff. The
latter is calculated from the slope of the lowest band.

in the following will be on linear photonic crystals unless stated otherwise.

To get a better understanding of the behavior of photons in a photonic crystal,
it is instructive to have a look at the form of the solutions to the eigenvalue
problem. For the sake of simplicity, the dielectric function is assumed to be
scalar. The periodicity of the structure implies that

ε(r + R, ω) = ε(r, ω) (2.28)

has to hold for arbitrary lattice vectors, R. The periodic dielectric function
can be expanded as a Fourier series

ε(r, ω) = ∑
G

ε̃G(ω)eiGr
(2.29)
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with the Fourier components ε̃G and the reciprocal lattice vectors G =

l1g1 + l2g2 + l3g3, where li are integers. The fundamental reciprocal lattice
vectors, gi, are defined through Equation 2.28 and a given set of fundamental
translation vectors, ai, (see Figure 2.3b).

The eigenmodes of the photonic crystal eigenvalue problem describe the
electromagnetic fields and take the form of Bloch modes. Therefore, the
Fourier amplitude of the electric field for a given Bloch wave vector, k, can
be expressed as

Ẽkω(r) = ukω(r)e
ikr. (2.30)

Here, k is restricted to the so-called first Brillouin zone that is defined as the
k-space that is closer to one specific reciprocal lattice point than to any other
(see Figure 2.3b). An expression similar to Equation 2.30 can also be found
for the magnetic field strength. In contrast to the case of a spatially constant
dielectric function, where a set of solutions was given by plane waves (see
Section 2.4), the eigenmodes in a periodic structure are plane waves that
are, additionally, modulated by the lattice periodic function ukω(r) with
ukω(r) = ukω(r + R). The corresponding eigenvalues are directly associated
with the frequencies, ω(k), of the respective photonic crystal modes. The
characteristic dependence of ω(k) on k describes the photonic crystal dis-
persion relation that is also known as the band structure. An example of
ω(k) for a 3D woodpile photonic crystal assuming kx = ky = 0 is depicted
in Figure 2.3c. The stop band is indicated in red and located between the
second and third band for this specific case.

In a homogeneous material, continuous translation symmetry demands the
conservation of the wave vector, or, equivalently, the momentum p = h̄k.
This is no longer given for periodically varied material properties like they
are found in photonic crystals. The periodicity leads to a discrete trans-
lational symmetry and the wave vector, k, is only conserved modulo a
reciprocal lattice vectors, G. Therefore, solutions of the eigenvalue problem
for a given k are identical to solutions for all k′ = k + G with arbitrary
reciprocal lattice vectors, G. Hence, each solution can be "shifted"such that
its resulting wave vector, k, lies in the first Brillouin zone. Consequently, it
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suffices to look at the solutions in this part of the k-space.

Due to the analogy to solid-state crystals, it is not surprising that the periodic
variation of optical properties in a photonic crystals often results in frequency
regions where there are no photonic modes. Photons at these frequencies
cannot propagate inside the photonic crystal and are reflected. Unlike in
the electronic case, in photonics a complete bandgap, i. e., an overlapping
forbidden frequency region for arbitrary propagation directions and polar-
izations, is not achieved easily. It usually requires a high refractive index
contrast of the used dielectrics and is exclusively reserved to 3D photonic
crystals [22]. In order to avoid misunderstandings the term stopband will
be used in this thesis to denote a frequency gap that exists only for certain
directions or polarizations. Nevertheless, it is possible to create states in
this forbidden frequency region by deliberately introducing defects into the
photonic crystal. These defects usually come in the form of a local increase
or decrease of the dielectric function and can be classified as point, line,
or plane defects [38]. They lead to the localization of modes and find use
in many photonic devices, like for example, photonic cavities and low-loss
waveguides [39, 40].

Nonlinear Interactions in Photonic Crystals

Photonic crystals are designed and used to tailor the optical properties and
control the flow of light at will. This degree of control leads to a variety of
functionalities and applications in the linear regime. Obviously, the unique
properties of photonic crystals can also be used in nonlinear optical processes.
In this section, two basic approaches that lead to greatly enhanced nonlinear
interactions in photonic crystals will be discussed.

First, photonic crystals can facilitate phase matching even for materials that
cannot be phase matched otherwise, e. g., because they show no birefringence.
The dispersion of a photonic crystal can be controlled by tuning geometrical
parameters and can be adjusted such that it counteracts the given material
dispersion. Optical materials usually show normal dispersion, i. e., an in-
creasing refractive index for increasing frequency. The refractive index for
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a monochromatic electromagnetic wave in a photonic crystal is determined
by the phase velocity that can be calculated from the band structure. For
small frequencies corresponding to wavelengths that are large compared
to the period of the photonic crystal, the individual features of the struc-
ture are not resolved and it shows properties that can be simply described
by an effective refractive index determined through the properties of the
constituting materials. With the wavelength decreasing and approaching
the first stop band or bandgap, the interactions between wave and photonic
crystal become stronger and result in an additional contribution to the total
dispersion due to so-called geometrical dispersion [41]. Whereas this leads
to even stronger normal dispersion on the long-wavelength side of the stop
band or bandgap, anomalous dispersion is found across the gap region itself
and, therefore, allows for perfect phase matching by tuning the interacting
waves appropriately [42–45].

A slightly different aspect is the relaxed crystal momentum conservation that
translates into a generalized phase matching condition in photonic crystals.
It is worth noting that this phase matching scheme is often discussed in
connection with nonlinear or χ(n) photonic crystals for n ≥ 2. In these
photonic crystals, the linear susceptibility is kept constant throughout the
whole structure. Thereby, undesired reflections and backscattering that
might lead to a decrease in efficiency are avoided. The periodicity of material
properties is given by the variation of the nonlinear susceptibility χ(n). For
the case of n = 2 and the process of second-harmonic generation the relaxed
phase matching condition reads [37]

∆k = 2kω − k2ω −G = 0 (2.31)

with the wave vector at frequency i denoted by ki. The phase mismatch
that originates from the material dispersion can be compensated for by a
reciprocal lattice vector of the photonic crystal providing an additional mo-
mentum h̄G. This approach is called quasi-phase-matching and has been
known in nonlinear periodically poled 1D structures for a long time (see
Section 2.1). The generalization to higher dimensions in 2D and 3D photonic
crystals allows for quasi-phase-matching to be fulfilled simultaneously for
multiple directions and frequencies in the same structure. This has been ex-
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tensively studied and experimentally demonstrated in 2D nonlinear photonic
crystals [37, 46]. Due to the challenging fabrication the first 3D nonlinear
photonic crystals were fabricated just recently by means of femtosecond laser
writing approaches [47–49].

The second way nonlinear interactions are enhanced in a photonic crystal is
through reinforced light-matter interactions. These can be achieved using
dispersion related slow-light effects or strong mode confinement. Slow-light
effects in photonic crystals usually arise at the boundaries of the Brillouin
zone where a significant decrease of the group velocity, vg, is observed. In a
simple geometrical-optics model this low group velocity can be understood
as a net effect caused by either coherent backscattering or omnidirectional
reflection in the structure [50]. The optical interactions in the slow-light
regime have been shown to be enhanced by a factor proportional to the
slowdown factor, S = vph/vg, in linear effects and by even higher orders in
nonlinear processes [50–53]. The downside is that losses have been reported
to increase as well and scale at least with a factor of S [54].

Enhanced light-matter interactions can also be achieved by confining light
in one, two, or three dimensions. One example that was mentioned before
are defect modes in the form of waveguides or cavities [39, 55–57]. An-
other way to confine the photonic crystal mode to two dimensions is to
considerably limit the extent of the photonic crystal in one direction. The
guiding mechanism in these 2D photonic crystal slabs, that are surrounded
by a low refractive index medium, are analogous to the ones exploited in
dielectric slab waveguide (see Section 2.6). Modes in waveguides and cavities
can be characterized by their mode volume, Veff, and, in case of resonating
structures, their quality factor, Q. The mode volume describes the spatial
confinement and the energy density of the mode. Its theoretical lower limit
is given by half the wavelength in each confinement direction. The quality
factor of a resonating structure is a measure of the temporal confinement
and can be expressed as the ratio of the stored energy to the energy that is
dissipated per oscillatory cycle. Lossy resonator modes show a slow decay
and, therefore, behave as if they have a complex frequency ωc = ω − iγ,
where ω and γ are the resonance frequency and the attenuation rate, respec-
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tively. The power decay of these modes is proportional to exp(−2γt) and
the quality factor, Q, is given as

Q =
ω

2γ
. (2.32)

Both the increase in spatial and temporal confinement cause an enhancement
of nonlinear interactions. This was demonstrated using point defects and
photonic crystal slabs for various nonlinear processes [58–65]. The confine-
ment effects found in 2D photonic crystal slabs are of special interest for
this work. Therefore, the corresponding modes will be studied in more
detail from the point of view of dielectric waveguides showing a periodic
modulation.

2.6 Dielectric Waveguides

The 3D nanolaminated photonic crystals that will be discussed in more
detail in Section 4.2 are basically conformally coated 3D photonic crystals.
Nevertheless, some of the features linked to the strong enhancement of
second-harmonic generation in these structures can be intuitively under-
stood in analogy with the properties of dielectric waveguides. Therefore,
this section will cover fundamental properties derived for the example of
an asymmetric dielectric slab waveguide. Talking about waveguides one
cannot avoid mentioning the arrangements necessary to couple light into
the waveguide modes. A very common approach is the introduction of a
periodic modulation that leads to a dispersion relation closely related to that
of a photonic crystal slab. This aspect will be discussed in the last part of
this section.

Guiding light from one point to another by means of free-space optics can
be quite tedious. The beam broadens and has to be refocused repeatedly
on its way. Optical dielectric waveguides offer a solution by confining light
and allowing for flexible and low-loss transport of light over thousands of
kilometers. The operation is based on total internal reflection that occurs
at the boundary between two dielectrics with refractive indices nc and nf.
For nf ≥ nc and a ray coming from the medium with higher refractive index
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nf, total internal reflection occurs for angles of incidence, θ, larger than the
critical angle, θc = arcsin(nc/nf). Therefore, it is possible to trap light in a
waveguide by embedding a lossless dielectric with refractive index nf in a
medium with lower refractive index nc. One speaks of a mode of this waveg-
uide if the twice reflected wave interferes constructively with the original
wave. This requirement is called the self-consistency condition and can be
fulfilled for discrete values of the incidence angle, θm, with θm < θc.

The waveguide modes are exemplary derived for an asymmetric slab waveg-
uide. It consists of a guiding film of thickness h and refractive index nf that
is sandwiched between a cover and a substrate with refractive indices, nc
and ns, respectively (see Figure 2.4a). Additionally, nf > ns > nc is assumed.
The guided modes propagate in y-direction and the structure is invariant
along the x-direction. In this case the self-consistency condition reads [66]

2knf cos(θm)h− 2ϕs − 2ϕc = 2πm (2.33)

with the vacuum wave vector k = 2π/λ and the mode index m. The total
phase between initial and twice reflected wave is a sum of the phase accu-
mulated through propagation given by the first term and additional phase
shifts 2ϕs and 2ϕc due to total internal reflection at the film-substrate and the
film-cover interface, respectively. The phase shifts caused by total internal
reflection are given by the Fresnel equations. The guided wave propagates
into the y-direction with the propagation constant βm = knf sin(θm). Equa-
tion 2.33 can be solved and gives the dispersion relation for an asymmetric
slab waveguide. Figure 2.4b shows the solution for a transverse electric (TE)
wave with m = 0 to 3. The guided modes are found between the light lines
representing propagation in a homogeneous medium with refractive index
nf as the lower limit and a medium with the refractive index ns as the upper
limit. A continuum of radiation modes follows above the substrate light line.

The total number of guided modes, M, is limited by the fact that the mode
angle, θm, has to be greater than both of the two critical angles for total inter-
nal reflection at the interface to substrate and cover, θs and θc, respectively,
with θs > θc for the given example. Using the ceiling function dxe that maps
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Figure 2.4: a) Scheme of an asymmetric slab waveguide that consists of a
guiding film with thickness h and refractive index nf sandwiched between
a substrate and a cover layer with refractive indices ns and nc, respectively.
For nf > ns > nc and an incidence angle, θ, that is larger than the critical
angle, θc, total internal reflections at the interfaces with both substrate and
cover can lead to the formation of a guided mode. b) Dispersion relation
of the asymmetric dielectric slab waveguide for TE waves. The frequency,
ω, is given in units of the cutoff frequency, ωc, of the fundamental mode
with m = 0. The waveguide modes are depicted for different mode indices,
m = 0 to 3, indicated above the respective cutoff frequencies. The modes
are bounded by the light lines of film and substrate, and the continuum of
radiation modes is found above the substrate light line.

x to the smallest integer that is larger or equal to x, the number of guided
modes, M, can be expressed as

M =

⌈
2h
λ

√
n2

f − n2
s

⌉
. (2.34)

Obviously, the number of modes increases with increasing thickness of the
guiding film, h, and decreasing vacuum wavelength, λ. Unlike the case of a
symmetric slab waveguide with ns = nc, the asymmetric slab waveguide has
a non-vanishing cutoff frequency, ωc, for the fundamental mode, m = 0, (see
Figure 2.4b). Below this frequency there are no guided modes.

Considering a TE wave in an asymmetric slab waveguide with the electric
field vector pointing in the x-direction, the complex field amplitude is in-
dependent of x and the guided modes inside the film can be described by
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Figure 2.5: a) Normalized transverse field distribution um(z) of three guided
modes with m = 0 to 2 given at a fixed frequency. The number of zero-
crossings increases with the mode order m. b) Dispersion relation of an
asymmetric slab waveguide as shown in Figure 2.4a with an additional
periodic modulation in the y-direction given by the lattice constant ay. For
simplicity only the fundamental mode (m = 0) is depicted and the effects
of the modulation on the dispersion curve are neglected. Nevertheless,
the periodicity causes the modes for wave vectors ky and ky + Gy with
Gy = 2π/ay to become identical. Therefore, the dispersion curves can be
shifted by reciprocal lattice vectors Gy and it is sufficient to look at the modes
in the first Brillouin zone marked yellow. The original dispersion is plotted
in blue, the green and red curves are shifted by ±Gy and ±2Gy, respectively.
In addition to the guided modes that existed before the periodicity was
introduced, guided resonances occur above the light lines of both substrate
and cover. These modes couple to the continuum of radiation modes and at
the same time still show a strong confinement in the guiding film.

plane waves of the form[
Ẽω(y, z)

]
x = amum(z)e

iβmy, (2.35)

where am is a constant. The function um(z) can be derived from Maxwell’s
equations and by applying the proper boundary conditions [66]. It de-
scribes the transverse field distribution in the film and is depicted for a fixed
frequency in Figure 2.5a for m = 0 to 2 together with the corresponding
functions in the substrate and cover regions. The number of zero-crossings is
determined through the waveguide mode order, m, and given by m− 1. The
asymmetry of the structure is caused by the difference in refractive indices of
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substrate and cover. For ns > nc this results in waveguide modes penetrating
deeper into the substrate underneath than into the cover on top of the film.

Having calculated the waveguide modes that are allowed for a given geome-
try one has to think about possibilities to couple light into these modes. To
a certain extent the following considerations are also applicable to geome-
tries other than the asymmetric slab waveguide. For a specific frequency ω

in the dispersion relation (see Figure 2.4b), the wave vector component in
propagation direction, ky, of the radiation modes in both substrate and cover
layer is always smaller than βm of the guided mode in the film. Translation
symmetry in the direction parallel to the film requires the conservation of
the corresponding wave vector component ky. Therefore, it is not possible
to couple light coming from the substrate or cover into a waveguide mode
without additional effort. Several approaches exist to tackle this challenge.
A quite straightforward way to go is to couple the light by focusing it on the
facet of the waveguide. This way, the conservation of the wave vector poses
no limitation. The disadvantage of this approach is the required alignment
precision determined by the waveguide dimensions. Another approach often
found for an air cover layer, is the use of a prism with a refractive index
np that is larger than nf. The prism is placed in close proximity to the
guiding film and light is sent into the prism in a way that leads to total
internal reflection at the interface between towards air. This way the wave
vector in y-direction is sufficiently large to allow for coupling to the guided
modes based on the process of frustrated total internal reflection, i. e., an
energy transfer mediated by the evanescent field that extends over the air
gap between prism and film.

Aside from using an additional medium with a refractive index larger than
that of the guiding film, one can introduce an additional wave vector con-
tribution to match the y-component of the incident wave vector with the
propagation constant. As already discussed in connection with quasi-phase-
matching for nonlinear processes in Section 2.5, a periodic modulation of
optical properties can facilitate matching of the respective wave vectors due
to the flexibility to add or subtract a reciprocal lattice vector, G. In the
same spirit, a grating coupler or other kinds of periodic modulations of
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the waveguide can be used to provide the missing wave vector component
in propagation direction. For light incident from the cover layer under an
angle θi measured with respect to the surface normal, the phase matching
condition is

βm = nck sin(θi) + q
2π

a
, (2.36)

where a is the periodic modulation of the waveguide film and q is an integer.
Aside from the necessity to establish phase matching, the coupling efficiency
and the actually excited waveguide modes are determined by the overlap
between the field distributions of the light coupled into the waveguide and
the guided modes.

The introduction of periodicity as a way to allow for coupling to waveguide
modes can also be considered from the point of view of the dispersion rela-
tion. For the sake of simplicity, the effect a periodic modulation in y-direction
will be only considered in terms of the relaxed momentum conservation.
The impact on the curvature of the asymmetric slab waveguide dispersion
(see Figure 2.4b) will be neglected for the moment. The eigenmodes and
frequencies for the wave vectors k and k + G become identical as it was
already described for photonic crystals. Therefore, the waveguide dispersion
relation can be redrawn such that the whole information is contained in
the first Brillouin zone. In the given case the reciprocal lattice vector is
G = Gyêy. The unit vector in y-direction is denoted by êy and Gy = 2π/ay
is the magnitude of the reciprocal lattice vector with the period of modu-
lation given by ay. The resulting dispersion relation is shown exemplary
for the fundamental waveguide mode (m = 0) in Figure 2.5b with the prop-
agation constant, β, replaced by the wave vector component ky. Higher
order modes (m > 0) would undergo the same process but are not depicted
for the sake of simplicity. The guided modes between the substrate and
the film light line that show a strong field confinement in the film are still
present. Additionally, new modes in the radiation regime above the light
line of both the cover and the substrate layer appear. These modes still
show a strong field confinement in the film but also couple to the continuum
of radiation modes via the grating coupler effect. They are called leaky
modes or guided resonances and are characterized by a finite lifetime and a
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quality factor, Q, [55, 67]. Another point that is worth noting is that these
modes exist for ky = 0 and, therefore, can be excited under normal incidence.

Discarding the initial assumption of an infinitesimally small effect of the
periodic modulation on the curvature of the dispersion relation, gaps open
up at the crossing points, e. g., at the center and edges of the Brillouin zone.
The resulting dispersion relation of a periodically modulated waveguide is
closely related to that of a photonic crystal slab. This resemblance is due
to the structural similarity between the two systems. Consequently, the
guided resonances mentioned above are found in both systems and pose
an interesting approach to couple light in and out. At the same time, the
resonances show a strong field confinement in the guiding layer that leads to
reinforced light-matter interactions. The excitation of guided resonances is
an important mechanism for the observed enhancement of second-harmonic
generation in 3D nanolaminated photonic crystals presented in Section 4.2.3.
The fact that guided resonances also occur in these structures can be intu-
itively understood if one regards them as leaky waveguides or "3D photonic
crystal slabs".

2.7 Metamaterials

Optical waveguides and photonic crystals were shown to provide versatile
tools to tailor light propagation and light-matter interactions in general. The
extraordinary properties of photonic crystals are a direct consequence of the
periodic arrangement of different materials on a scale that is comparable to
the wavelength of interacting light. Therefore, the individual building blocks
are still resolved and the response is mainly determined by interference and
diffraction of the incident light. This changes when considering a photonic
crystal in the long wavelength limit, i. e., for small frequencies, ω. Here,
the modulation of optical properties occurs on a scale that is way smaller
than the wavelength of the interacting light and the details of the material
distribution can no longer be resolved. The photonic crystal behaves like a
bulk material and can be described using effective material parameters. This
long wavelength limit is where the border between photonic crystals and
metamaterials becomes blurred. An introduction to the ideas behind this rel-
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atively new class of materials will be given in this section. The application of
the metamaterial concept in various research areas will be presented. Finally,
the focus will be once again on nonlinear optical phenomena and, especially,
on all-dielectric metamaterials as they are related to the nanolaminate optical
metamaterials designed and fabricated in Section 4.1.

Ordinary matter is built from an arrangement of atoms or molecules. The
different atoms and molecules, their arrangement and their interaction with
each other determine the effective properties of the resulting material. It is
possible to manipulate the material composition and its structure, at least
to a certain degree, to arrive at the desired properties, but, obviously, this
is usually not straight forward and one is limited in the choice of the basic
atomic building blocks. This is where the metamaterial idea comes into
play. One starts from a meta-atom that is an artificially constructed build-
ing block on a scale that is much smaller than the wavelength of stimuli.
Subsequently, the metamaterial is built by periodical arrangement of this
meta-atom and can be described as a homogeneous medium with effective
material parameters. The bulk metamaterial limit is reached as soon as these
parameters converge and remain unchanged for an increasing number of
periods [68]. The intriguing aspect of metamaterials is that the properties of
the bulk are determined by the structure of the building block and not just
by the constituent materials [69]. This rational design approach facilitates
metamaterials with properties that sometimes even go beyond what is found
in nature.

The starting point for the recent boom in metamaterial research was based
on the idea of realizing a negative refractive index material and applying
it to build a perfect lens [70–72]. A negative refractive index can be ob-
tained if both the effective dielectric function, εeff, and the effective magnetic
permeability, µeff, are negative for the same frequency

neff =
√

εeffµeff < 0 (2.37)

with εeff < 0 and µeff < 0. Conventional materials showed to be of no
use to arrive at the required negative magnetic permeability in the optical
regime. Contrary to that, metamaterials met the requirements by introducing
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meta-atoms with a non-vanishing coupling to an external magnetic field.
As in the case of the dielectric function, the magnetic permeability becomes
negative close to the resonance. This allows for the realization of a negative
index of refraction at frequencies ranging from the microwave to the optical
regime [68]. The field of metamaterials expanded beyond negative refractive
index materials to cover other electromagnetic phenomena, like chirality,
nonlinearity, and invisibility cloaking [73–80].

Obviously, the concept is not limited to electromagnetism and found its way
into many other research areas [81]. In thermodynamics, rationally designed
metamaterials were used to implement inhomogeneous and anisotropic dis-
tributions of material properties derived from coordinate transformations.
These transformations can be used to mold the flow of heat or diffusive
particles by design and, for example, guide them around an obstacle [82,
83]. Mechanical metamaterials expand the available parameter space of
material properties through ultra-lightweight, auxetic, and pentamode mate-
rials [84–86]. Additionally, previously unavailable degrees of freedom can be
addressed like for example the coupling of a longitudinal deformation to a
twist of the whole medium [87]. The intriguing fact that the properties of
metamaterials depend on the meta-atom structure is demonstrated beauti-
fully in designs that allow for a continuous tuning of the effective material
properties through the change of geometrical meta-atom parameters. This
tuning even allows for a sign-inversion with respect to the properties of the
constituent materials. Examples are a negative thermal-expansion coefficient
for a metamaterial built from constituents showing a positive coefficient,
and a Hall coefficient that is negative with respect to the metamaterial con-
stituents [88].

It is said that the next big step for metamaterials lies in the "development
of active, controllable and nonlinear metamaterials" [89]. The latter are an
important part of this work and, therefore, the following subsection will deal
with the impact of metamaterials on nonlinear optics in more detail.
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Nonlinear Optical Metamaterials

There are various approaches to create metamaterials with a nonlinear re-
sponse that differ by their applicability in different frequency regimes and
the role the meta-atom plays [90]. One way is to make use of the nonlinear
response of the constituents the metamaterial is built of [76]. Another com-
monly followed approach is to start out with a metamaterial and complement
it by an additional nonlinear element. This nonlinear ingredient may come
in the form of an insertion in the gap of a split-ring resonator, a substrate, a
superstrate, or a nonlinear medium the metamaterial is embedded in [91–93].
Finally, the nonlinearity can be introduced by properly structuring the con-
stituents in a way that gives rise to a collective nonlinear response, although,
the constituents show no nonlinearity by themselves [94, 95].

Independent of the actual implementation, metamaterials can be used to
generate, enable, and enhance nonlinear optical phenomena in different
ways. Some of the exploited mechanisms are not exclusive to metamaterials
and can, for example, also be found in photonic crystals (see Section 2.5).
Others give rise to approaches that are exclusive to metamaterials.

One fascinating aspect of metamaterials is the possibility to deliberately tune
the magnetic and electric resonances and optimize them for specific non-
linear interactions, or even enable interaction schemes that are not possible
otherwise. Suchowski et al. have shown that phase-mismatch free four-wave
mixing is possible in metamaterials with a refractive index of zero [96]. The
interacting waves can be tuned to give perfect phase matching in both the
forward and backward direction at the same time. A different example is
given by second-harmonic generation in a metamaterial that shows a nega-
tive index of refraction nω, eff < 0 for the fundamental and a positive index of
refraction n2ω, eff > 0 for the second-harmonic frequency. If these refractive
indices have the same magnitude backward phase matching is achieved and
the material acts as a nonlinear-optical mirror that can convert the incoming
wave at frequency ω into a reflected wave at frequency 2ω with very high
efficiency [97].
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Another aspect is that metamaterials allow for a precise control and ratio-
nal design of the electric and magnetic field distribution. The nonlinear
response can be enhanced by making use of strong electromagnetic fields in
the vicinity of resonant structures. Additionally, a field distribution tailored
by proper metamaterial design allows for coupling of the electric field to
specific components of the nonlinear susceptibility tensor that might not be
accessible otherwise [92, 98].

The metamaterial designs mentioned so far show fascinating phenomena but
also have their disadvantages when it comes to their application in optical
devices. They are all based on meta-atoms with metallic constituents and
many of them are operated at frequencies that are close to resonances. This
leads to limitations due to a small operation bandwidth or increased losses
of the metals at optical frequencies. Strongly enhanced nonlinear interac-
tions become of less practical use when they are accompanied by a strongly
reduced interaction length and, therefore, low efficiency [99]. Furthermore,
these structures are often incompatible with complementary metal-oxide
semiconductor fabrication processes. Here, all-dielectric nonlinear metama-
terials may offer a solution. The losses can be significantly reduced using
dielectric, high refractive index materials like silicon or titanium dioxide
(TiO

2
) to construct the meta-atom. At the same time, Mie resonances can be

used to engineer metamaterial functionalities comparable to the ones found
in the metal-based case [100].

An interesting approach that does not rely on meta-atom resonances, but on
the structural tailoring of a second-order nonlinear response, are ABC-type
nanolaminates [95, 101]. These metamaterials are built from alternating layers
of centrosymmetric low-loss dielectrics. Possessing inversion symmetry, the
individual constituents show a second-order susceptibility that is equal
to zero in the bluk (see Section 2.3). Nevertheless, the final metamaterial
shows a nonlinear response with χ(2) 6= 0. The underlying idea is the
proper tailoring of nonlinear surface susceptibilities, χ(2)

s , that arise at the
individual interfaces where the inversion symmetry is locally broken. From
a microscopic point of view this can be understood as follows: Nonlinear
effects arise whenever the potential becomes anharmonic and, hence, the
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Figure 2.6: a) The interface between two homogeneous and centrosymmetric
dielectric materials, denoted by A and B, shows a non-zero nonlinear surface
susceptibility, χ(2)

s . It originates from breaking of the inversion symmetry
at the interface and can be understood in terms of the anharmonic poten-
tial seen by the electrons. b) Scheme of a metamaterial made from three
dielectric materials A, B, and C that exploits the local symmetry breaking
at the individual interfaces to generate a bulk second-order susceptibility.
The stacking order ("ABCABC . . . ") provides a structure without inversion
symmetry and ensures that neighboring interfaces do not interfere destruc-
tively as it would be the case for a material built from only two materials A
and B.

restoring force on the electrons is nonlinear. That is exactly what happens at
the interface between two materials as illustrated in Figure 2.6a. To arrive at
an appreciable effective nonlinear susceptibility, χ(2), the interfaces have to
be densely packed and carefully arranged. Taking a scalar susceptibility as
an example, one has to keep in mind that the nonlinear surface susceptibility
that arises at the interface between material A and B has the same magnitude
but the opposite sign of the surface susceptibility at the interface between B
and A:

χ
(2)
s, AB = −χ

(2)
s, BA. (2.38)

It is thus not enough to stack layers of two materials A and B on top of each
other. The globally restored inversion symmetry in a system with a sequence
given by "ABAB . . . "leads to a vanishing second-order nonlinear suscepti-
bility. This problem is resolved by introducing a third constituent material
as shown in Figure 2.6b. The resulting stapling sequence ("ABCABC . . . ")
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lacks inversion symmetry on a macroscopic scale and allows for an effective
second-order susceptibility. A layer with thickness d contributes an effective
susceptibility proportional to 1/d and, hence, the strength of the effective
nonlinear susceptibility depends on the density of layers. Atomic-layer de-
position is, therefore, the fabrication method of choice. It allows for the
conformal deposition of dielectrics with a thickness that ideally is equivalent
to one atomic monolayer. A more detailed description of the technique and
its features is given in Section 3.1. This approach was implemented by two
groups using the constituents HfO

2
, TiO

2
, and Al

2
O

3
or In

2
O

3
, TiO

2
, and

Al
2
O

3
, respectively. The complete bulk second-order susceptibility tensor

was determined with values of χ(2)
zzz = 0.67 pm

V and χ(2)
zzz = 1.17 pm

V for the
largest element in the two respective material systems [102]. These values
are comparable to the second-order susceptibilities of bulk nonlinear crys-
tals, but still leave room for improvement. Therefore, another approach for
the fabrication of second-order nonlinear materials grown by atomic-layer
deposition will be developed and implemented in this work (see Section 4.1).
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Chapter 3

Methods

This chapter gives an introduction to the most important fabrication and characteri-
zation methods utilized in this work. Atomic-layer deposition and 3D direct laser
writing will be discussed first. These techniques are essential for the fabrication of
nonlinear nanolaminates and 3D nanolaminateds photonic crystals. Subsequently,
the setups and approaches used for both the linear and nonlinear optical characteriza-
tion of the structures are presented. To arrive at a better understanding of the effects
leading to the observed nonlinear optical response, additional information on the
structural properties and the expected theoretical behavior are necessary. Therefore,
the fundamentals of X-ray diffraction and the finite element method, with their
respective implementations, are discussed in the last part of this chapter.
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3.1 Atomic-Layer Deposition

Atomic-layer deposition (ALD) is a technique that is essential to the fabri-
cation of the samples studied in this thesis. We will make use of its unique
properties to both tailor a strong second-order nonlinear susceptibility in
ALD-grown nanolaminate metamaterials and establish an easy route for
the fabrication of 3D photonic crystals showing a second-order nonlinear
response. In the following, the basic principles of ALD will be discussed with
an emphasis on the deposition of ZnO and Al

2
O

3
thin films. Subsequently,

the used ALD reactor will be described and the recipes adapted for the
growth on plane substrates and 3D polymer templates will be presented.

ALD is a vapor phase technique compatible with state-of-the-art comple-
mentary metal oxide semiconductor processes. It allows for the thin-film
deposition of various materials including metals, oxides and nitrides on
amorphous and crystalline substrates as well as on polymer and biological
templates [103]. This facilitates a wide range of applications from micro-
electronics over photovoltaics to energy storage. New use cases in various
industries emerge permanently [104]. ALD derives its unique properties
from the sequential and self-limiting surface reaction of at least two reactants
called precursors. The sample surface reacts with the precursor inserted into
the reaction chamber until a monolayer has formed. Ideally, the surface is
terminated at this point and no further reactions occur. This leads to the
elimination of the influence of the gaseous precursor distribution and the
thin film grows with identical rate on all surfaces. The deposition chamber is
purged to remove the excess precursor and the reaction products before the
next precursor is inserted. Subsequently, the chamber is once again purged
and one so-called ALD cycle is completed. Repeating these steps over and
over again results in the growth of continuous and pinhole-free films with
a control of the thickness down to a single monolayer. Additionally, the
process allows for conformal coating of nearly arbitrary 3D structures even
for high aspect ratios [103]. These aspects are the main advantages of ALD
as compared to other deposition techniques, such as physical or chemical
vapor deposition.
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The precursors have to fulfill a certain set of requirements to give a process
with the properties mentioned above. It is crucial that the only contribution
to film growth is given by the reaction of the precursor with the unter-
minated surface sites and not by unwanted side reactions of reactants or
products. Additionally, each step has to lead to stable chemical species and
terminate all surface sites in a given time span. Even for ideal precursors
these requirements are only met for a certain temperature region usually
called the ALD window. It is characterized by a growth per ALD cycle
that is constant with respect to small temperature variations. Processes
run outside this regime are often hard to control, lead to the loss of con-
formality, and an inferior film quality. On the low temperature side the
ALD window is limited by the condensation of precursor on the substrate
or incomplete reactions due to insufficient activation energy. Going to high
temperatures the decomposition of chemical species in the chamber, e. g.,
of the precursor or the surface molecules, into products that can not be re-
moved during purging, and the increased surface desorption pose a problem.

The nonlinear nanolaminate metamaterials we discuss in Section 4.1 are
made from alternating layers of zinc oxide (ZnO) and aluminium oxide
(Al

2
O

3
). In what follows, the precursors and reactions for both materials

will be presented and a typical ALD process will be illustrated taking the
deposition of ZnO as an example.

Deposition of Zinc Oxide and Aluminium Oxide Films

There exist a number of possible precursors for the growth of ZnO by
means of ALD. The use of diethyl zinc (DEZ, Zn(C

2
H

5
)
2
) and water (H

2
O)

is by far the most common as the reactants are readily available and result
in a process with a wide ALD window [105]. Nevertheless, DEZ suffers
from thermal decomposition at elevated temperatures in combination with
prolonged exposure times [106]. Additionally, both the orientation of the
crystallites and the electrical properties of the deposited ZnO films show
a strong temperature dependence [107–111]. We will come back to these
aspects when discussing the nonlinear nanolaminates in more detail. The
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chemical equation describing one cycle of ZnO film growth is

Zn(C2H5)2 + H2O −−→ ZnO + 2 C2H6 (3.1)

and has a reaction enthalpy of ∆H = −70 kcal [103]. Due to the sequential
nature of ALD each cycle consists of a binary sequence that can be split into
two half-reactions illustrating the processes that take place at the surface for
the individual precursors [112]

R−OH + Zn(C2H5)2 −−→ R−O−Zn(C2H5) + C2H6, (3.2)

R−O−Zn(C2H5) + H2O −−→ R−O−Zn−OH + C2H6. (3.3)

In these equations R denotes the remainder of the chemical species that is
chemisorbed at the surface.

The ALD growth of Al
2
O

3
from trimethylaluminum (TMA, Al(CH

3
)
3
) and

water (H
2
O) used as precursors results in amorphous films and is considered

a model system [113]. This ideal growth behavior is ascribed to the highly
efficient and self-limiting half-reactions with an extremely high overall re-
action enthalpy of ∆H = −376 kcal [103]. Nevertheless, it shows a loss of
chemisorbed surface species with increasing temperatures that results in a
decline of the growth per ALD cycle [114]. The overall chemical equation for
the deposition of Al

2
O

3
is given by

2 Al(CH3)3 + 3 H2O −−→ Al2O3 + 6 CH4. (3.4)

It can be again subdivided into steps that occur sequentially and describe
the surface reactions of the individual precursors

R−OH + Al(CH3)3 −−→ R−O−Al(CH3)2 + CH4, (3.5)

R−O−Al(CH3)2 + 2 H2O −−→ R−O−Al(OH)2 + 2 CH4. (3.6)

The deposition process itself involves more steps than illustrated by the
chemical half-reactions given for ZnO and Al

2
O

3
. These additional steps

serve the purpose of strictly separating the two precursors at any given time.
We will discuss a typical sequence of steps in ALD based on the deposition
of ZnO. The individual steps are sketched in Figure 3.1 and are as follows:
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a) One starts out from a surface that is reactive with at least one of the
precursors. In the given example the surface is covered with reaction
sites in the form of hydroxyl groups ( – OH).

b) By a process called pulsing the gaseous DEZ is introduced as the first
precursor into the chamber. One of the ethyl groups ( – C

2
H

5
) of the DEZ

molecules reacts with a hydroxyl group at the surface to form gaseous
ethane (C

2
H

6
). The Zn atom with the remaining ethyl group is now

attached to the surface and, ideally, stays there without decomposing or
desorbing. This half-reaction is described by Equation 3.2.

c) The precursor stays in the chamber for the exposure time τexp, P1 that
has to be chosen such that all surface sites, i. e., all – OH groups, are
saturated. It is crucial that the reaction is self-limiting and stops once all
hydroxyl groups have reacted. The excess precursor, the products or any
species that are formed from the former two should not react with or
alter the molecules chemisorbed at the surface. At this point, the surface
is filled with Zn(C

2
H

5
) groups attached to the oxygen remaining from

the hydroxyl group.

d) The reactor chamber is pumped till the reaction product (ethane) and the
excess precursor (DEZ) are removed. For non-ideal processes this time
can be prolonged to allow for condensed or physically adsorbed species
to be removed from the chamber. This marks the end of the first half
of the binary cycle completed. The surface sites have gone from being
terminated by hydroxyl groups to a termination by ethyl groups.

e) In the next step, the second precursor, i. e., water in the given example of
ZnO deposition, is pulsed into the chamber. The H

2
O molecules react

with the ethyl groups attached to the Zn atoms at the surface to form
gaseous ethane and leave behind a hydroxyl group at the surface-bound
Zn atom (see Equation 3.3).

f) After the exposure time τexp, P2 the surface reaction should have reached
completion and all surface sites should be terminated by hydroxyl groups
as a result from the reaction with water molecules. By now one layer of
ZnO has been deposited on all surfaces that were previously covered with
hydroxyl groups and that have been exposed to the gaseous precursors.
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Figure 3.1: Scheme of one ALD cycle. The individual steps are depicted for
the deposition of ZnO from DEZ and H

2
O used as precursors. A detailed

description of the process is given in the main text.

g) The reactor chamber is pumped till the reaction product and the excess
precursor (ethane and water, respectively) are completely removed. With
this, one full cycle is completed. The state is similar to the initial state
depicted in Figure 3.1a except for one additional layer of ZnO that has
been added beneath the hydroxyl groups. The deposition of the next
layer is done by repeating the cycle given by steps b)-g).

An aspect of ALD that has not been covered so far is the initial stage of
film growth providing the foundation necessary for the cyclic layer by layer
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growth as it is described above. On regular substrates like glass or silicon
wafers the process relies on a sufficient number of surface functional groups
that are reactive with at least one of the utilized precursors. For the men-
tioned substrates these are usually hydroxyl groups ( – OH) that are highly
reactive with both DEZ and TMA. To make sure the surface is covered with
a sufficient number of reactive sites one can, additionally, functionalize or
activate it using an air plasma. The lack of a fair amount of hydroxyl groups
leads to island growth and, thereby, hinders the deposition of a smooth and
continuous film [115].

Aside from the deposition of ALD films on plane glass or silicon substrates,
we are also interested in the conformal deposition on polymer templates.
The processes involved in this case are slightly different. Obviously, the
previously mentioned mechanism involving surface functional groups is still
an important factor, but so are the diffusion of precursor molecules into
the spaces between the polymer chains and the interaction with functional
groups in the polymer backbone and side chains [116]. The exact mechanism
and the resulting film properties depend on the involved polymer, the pre-
cursors, and the deposition parameters.

We will focus on the growth of Al
2
O

3
from TMA and water used as precur-

sors on polymer templates based on the monomer pentaerythritol triacrylate
(PETA). Al

2
O

3
has been found to reliably initialize film growth on various

surfaces with a constant growth per cycle showing no nucleation delay as it is,
for example, observed in ALD-grown ZnO films [117]. The monomer PETA
has four functional groups. Three of those lead to cross-linking with other
monomers molecules to form the polymer. The last one is a hydroxyl group
that is available for reactions with TMA. In addition to this standard path,
the precursor can also diffuse into the polymer network and get trapped
there [118]. The subsequent pulsing of the second precursor leads to the
formation of Al

2
O

3
clusters close to the surface. Eventually, the individual

clusters grown from the precursors that penetrated the polymer network
and the ones grown at the sites of the hydroxyl groups coalesce and form a
closed layer. This layer hinders further diffusion of the precursors into the
polymer network and lays the foundation for the subsequent ALD cycles.
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Therefore, utilizing ALD-grown Al
2
O

3
as a seed layer will be the method of

choice to ensure reproducible deposition on both conventional substrates
and polymer templates.

ALD Reactor and Deposition Recipes

The ALD reactor used in this work is the commercially available Savannah
100 (Cambridge NanoTech) depicted schematically in Figure 3.2. It is based
on a so-called viscous flow reactor where an inert carrier gas constantly
flows through the evacuated reaction chamber towards the pump. We use
argon (Ar) as the carrier gas. All the precursors described above have a
vapor pressure at room temperature that is higher than the pressure in the
reaction chamber. Hence, they can be simply dosed into the Ar flow by
briefly opening (pulsing) the pneumatic valves (Vp, i) at the individual pre-
cursor containers i. The gaseous precursors are carried by the carrier gas and
introduced into the reaction chamber through the inlet. The excess precursor
and the products are, subsequently, removed from the chamber by the pump
connected to the outlet. Various parts of the system can be heated to control
the process temperature and avoid condensation of the chemical species.
Independent temperatures can be set for the central part of the reaction
chamber holding the substrate (Tsub), the outer rim of the chamber (Tchamber),
the inlet piping between the precursor containers and the chamber (Tin),
and the outlet piping connecting the chamber to the pump (Tout). A mass
flow controller is used to regulate the flow of carrier gas given in standard
cubic centimeters per minute (sccm) into the system. On the other side of
the reaction chamber, right behind the outlet, a Pirani gauge monitors the
pressure. It is followed by a stop valve (Vs) that allows disconnecting the
pump from the reaction chamber.

The actual deposition of ALD films using the system described above is
specified in a "recipe". It gives an application- and material-specific sequence
of steps and process parameters for the deposition of ALD films. The
necessity to adapt the recipe for a given use case can be illustrated by
considering the deposition of ZnO on temperature sensible samples. On the
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substrate

Ar
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Tout
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Figure 3.2: Scheme of the viscous flow reactor used in this work. Ar is used
as inert carrier gas with its flow into the evacuated system regulated by
a mass flow controller. The individual precursors can be dosed into the
carrier gas by briefly opening the pneumatic valves, Vp, i. This way the
reactants are introduced to the reaction chamber where they interact with
the sample surface. Excess precursor and reaction products are removed by
a pump that can be disconnected from the chamber using the stop valve, Vs.
A Pirani gauge allows for online monitoring of the pressure in the chamber.
Individual parts of the system can be heated to temperature Ti to avoid the
condensation of chemical species and to control the reaction in the chamber.

one hand, one would try to deposit at temperatures chosen as low as possible
to avoid damaging the sample. On the other hand, the low temperature leads
to increased exposure times and altered properties of the deposited film.
The recipes and process parameter we use for the deposition of ALD films
on temperature insensitive, plain substrates and on temperature sensible,
complex 3D polymer templates are presented in the following.

Recipe for Plain Films

When depositing films on plain and thermally stable substrates, we aim
at short overall growth times allowing for large parameter sweeps as they
will be used to optimize the nonlinear properties of the nanolaminates in
Section 4.1.3. The short fabrication times will be achieved by depositing at
an increased substrate temperature, Tsub, of 250 ◦C. The high temperature
results in an enhanced diffusion and accelerated reaction kinetics allowing
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for short exposure and pump times. The temperature of the other heatable
parts will be set to Tin = Tchamber = Tout = 150 ◦C. The mass flow controller
keeps the Ar flow constant at 20 sccm. An ALD half-cycle as it is shown in
Figure 3.1a-d consists of the following two steps: First, the precursor valve,
Vp, i, is briefly opened for tpulse = 15 ms to pulse the gaseous precursor into
the carrier gas flow. Second, a pause of 5 sec is introduced to allow for
surface saturation and the subsequent removal of chemical species from
the reaction chamber. These two steps are repeated for the complementary
precursor and together the four steps form a complete cycle giving one layer
of ZnO or Al

2
O

3
. In this recipe, the pump is permanently connected to the

chamber. Nanolaminates can be easily fabricated by exchanging the pulses
of DEZ for TMA pulses (or vice versa). The final thickness of the deposited
film is controlled by adjusting the total number of full ALD cycles and can
be estimated from the so-called bulk growth per cycle of the individual
materials. The latter is determined from ellipsometry measurements on thick
samples grown using the deposition parameters described above. Mean
values of 0.19 nm/cycle and 0.12 nm/cycle are derived for the bulk growth
per cycle of ZnO and Al

2
O

3
, respectively.

Recipe for 3D Polymer Templates

The deposition recipe becomes a little more sophisticated when coating 3D
polymer templates (see Section 4.2.1). The main reason is the necessity to
find a good balance of competing effects. We have to reduce the deposition
temperature as compared to the plain films to avoid damaging the polymer
templates. The downside of this measure is that both diffusion and reaction
kinetics slow down. Nevertheless, we have to make sure that the precursors
can penetrate the whole structure and reach the surface sites lying deep
within. Additionally, the film growth on polymers relies on precursors dif-
fusing into the polymer network. Therefore, we have to make sure that the
polymer templates are exposed to the precursors for a sufficiently long time
in order to compensate for the decreased temperature and to ensure a truly
conformal film growth.

A temperature of 150 ◦C will be set for all parts of the ALD system, including
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the substrate heater, when depositing films on 3D polymer structures. The
Ar flow is initially set to 20 sccm. To prolong the exposure time of the
sample to the precursors, we use half-cycles that are as follows: First, the
stop valve, Vs, is closed, thereby, disconnecting the reaction chamber from
the pump. Second, the precursor is pulsed by opening the precursor valve,
Vp, i, for 15 ms. Third, the carrier gas flow is reduced to 5 sccm for a period
of 5 sec using the mass-flow controller. Finally, the pump is reconnected,
the flow is reset to 20 sccm and the reaction chamber is purged for 60 sec
to remove excess precursor and reaction products. The complementary
precursor follows the same half-cycle sequence and the complete cycle is
repeated to control the final film thickness. This deposition scheme comes
at the cost of longer fabrication times as compared to the plain film recipe,
but results in undamaged polymer templates with a smooth and conformal
coating (see Section 4.2.2). The bulk growth per cycle of ZnO and Al

2
O

3

using this recipe is identical to the values determined for films grown with
the plain film recipe (see above).

3.2 3D Direct Laser Writing

3D direct laser writing (DLW) is a fabrication technique that is essential to
this thesis. It will be used to rapidly fabricate polymer photonic crystals
that serve as templates for subsequent coating using ALD (see previous sec-
tion). After a short overview of other fabrication approaches for 3D photonic
crystals, 3D DLW will be considered in more detail. We will summarize the
basics of radical photopolymerization and see why a nonlinear photoresist
response is necessary for true 3D laser lithography. Motivated by experimen-
tal demands, a fruitful scheme to reduce polymer autofluorescence and at
the same time increase resolution in DLW will be discussed. Finally, the 3D
DLW setup used in this thesis will be presented.

The fabrication of 3D photonic crystals can be quite challenging. It demands
for techniques that allow structuring of dielectric materials in three dimen-
sions with a resolution that lies in the wavelength regime of the interacting
light. These requirements have been met by a few approaches each with its
own advantages and disadvantages [36]. Self-assembled colloidal crystals

53



3 methods

and directional etching are just two examples that were successfully demon-
strated, but are only applicable to certain geometries and, therefore, lack
flexibility [119, 120]. Another approach is based on the idea to assemble the
structures in a layer-by-layer manner. The individual layers can be fabricated
by means of well established patterning techniques like for example electron-
beam lithography in combination with etching. Subsequently, the structured
layers are planarized using a filling material that gives a sufficient refractive
index contrast or one that can be removed in the very last step [121]. At this
point the next layer can be structured. Instead of planarizing the layer, one
can, alternatively, stack two layers that are structured on a wafer and bond
them. After removing the substrate this step can be repeated and, given
a highly precise alignment of the individual layers down to a few tens of
nanometers, results in high quality 3D photonic crystals [122]. With the
layer-by-layer approach large refractive index contrasts and a relatively high
flexibility are achievable. The downside lies in the time consuming nature of
the process.

Another technique that can be used for the fabrication of 3D photonic crystals
is 3D DLW. The nonlinear optical response of a suitably composed photoresist
leads to multiphoton absorption and allows for the rapid fabrication of nearly
arbitrary 3D structures in one single step. The most common implementation
that was first proposed and demonstrated in 1996 relies on the third-order
nonlinear effect of 2PA (see Section 2.3) [123]. Meanwhile, 3D DLW is a well-
established technique that has been demonstrated to provide a resolution
in the sub-micrometer regime and high-quality 3D photonic crystals [124,
125]. By means of a sophisticated combination of approaches including
stimulated-emission-depletion inspired direct laser writing (STED-DLW) and
a titanium dioxide double inversion using ALD, it was even possible to
demonstrate a 3D photonic bandgap in the visible wavelength regime [126,
127].

Radical Photopolymerization

In DLW tightly focused laser pulses are used to locally alter the properties
of a photoresist. A widely used scheme that we will call the standard ap-
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proach is based on the radical polymerization of a negative-tone photoresist
in combination with fs-pulses in the wavelength regime around 800 nm.
Typically, the photoresist contains a monomer and a photoinitiator that is
chosen according to the excitation wavelength. The absorption of light by
the photoinitiator leads to the formation of radicals necessary to start the
polymerization reaction. As a result of this reaction a polymer network, that
is insoluble in the solvents used to wash away the remaining monomer, is
created.

A typical radical photopolymerization involves the following four stages [128,
129]:

1. Radical Formation. The absorption of incident radiation causes the for-
mation of a radical species denoted by R•. There exist various pathways
for this step. Quite often it is intermediated by the excitation of a pho-
toinitiator molecule, I,

I h̄ω−−→ I∗ −−→ . . . −−→ R•. (3.7)

2. Chain Initiation. The radical species, R•, attacks a monomer, M, and
forms a monomer radical, RM• that serves as the starting point of the
polymer chain

R• + M −−→ RM•. (3.8)

3. Chain Propagation. More and more monomer molecules are added to
the growing polymer chain

R (M)n M• + M −−→ R (M)n+1 M•. (3.9)

This results in a polymer that can no longer be dissolved once a certain
degree of polymerization is achieved. For monomers that have more
than one functional group, cross-linking between the individual polymer
chains occurs and leads to a complex interwoven polymer network.

4. Chain Termination. One possible way the radical polymerization is
stopped is by the reaction of two radicals. For example:

R1 (M)n M• + R2 (M)m M• −−→ R1 (M)n+m+2 R2. (3.10)
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Other possibilities to terminate the chain growth are through the for-
mation of a stable radical that will not react any further or the transfer
of a hydrogen atom between two chains to form a saturated and an
unsaturated chain.

3D Structuring and the Nonlinear Photoresist Response

The local confinement of radical generation spatially limits the formation
of a polymer network and can be used to "print"3D structures, but one has
to be cautious. The details of radical formation, or to be more precisely, its
dependence on the intensity of the excitation laser, plays a crucial role for
the fabrication of 3D structures. We assume that a certain energy per volume
given by the threshold dose, Dth, is necessary to form a sufficient number of
radicals and ensure a degree of polymerization that withstands the solvents
used in the development step following exposure. Additionally, we assume
that the photoresist "remembers"the whole process and the exposure dose,
D, is, therefore, proportional to the total intensity absorbed during the whole
exposure. We will first have a look at photoresists that show a predominantly
linear absorption (see Equation 2.23). The linear absorption coefficient, α(ω),
has to be sufficiently small to avoid the absorption of a large portion of the
energy right at the beginning of the light path through the photoresist. The
exposure dose, D, is linear in the excitation intensity, I, and given by

D(x, y, z) ∝ I(x, y, z, t). (3.11)

For a single point-wise exposure using a focused Gaussian beam the dose,
D, can be chosen such that the relation D(x, y, z) ≥ Dth is only satisfied for
a small region in the focus resulting in a polymerized volume often called
a voxel. Nevertheless, problems with an exposure dose that is linear in the
excitation intensity start arising as soon as one tries to fabricate complex
connected structures: In the limiting case of exposing a plane that is perpen-
dicular to the beam propagating along the z-direction, the total exposure
dose becomes independent of the axial coordinate, i. e., z, [36]. Instead of
fabricating a xy-plane, one ends up with a block due to the constant exposure
dose along the beam direction rendering 3D fabrication in one single step
impossible.
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The situation changes as soon as any kind of nonlinearity of order N > 1
is introduced in the photoresist response. Often this nonlinearity is given
by multi-photon absorption of the photoinitiator with the standard DLW
pathway of 2PA described by N = 2, but it can also have other origins [130].
The exposure dose is no longer linear in the excitation intensity. Instead it is
described by

D(x, y, z) ∝ I(x, y, z, t)N. (3.12)

If one again considers the previous example of the exposure of a xy-plane,
the z dependence no longer drops out as long as N > 1 [36]. Therefore, more
or less arbitrary 3D structures can be fabricated by moving the sample with
respect to the laser focus or vice versa.

Reducing the Autofluorescence

In agreement with the necessity for a nonlinear photoresist response given
above, the photoresist in the standard DLW approach based on an excitation
wavelength, λ, around 800 nm consists of a monomer that shows negligible
linear and nonlinear absorption for both λ and λ/2. Additionally, a photoini-
tiator that shows no absorption at the excitation wavelength, λ, but 2PA at
λ/2 is used. However, there exist situations where the use of a photoinitiator
in the photoresist is unpractical. Measuring the second-harmonic generated
from structures based on DLW polymer templates is one of those. The reason
lies in the strong photoresist autofluorescence that would interfere with the
second-harmonic signal [131]. The autofluorescence is dominated by the
photoinitiator contribution and even initiators that are supposed to have a
very low fluorescence signal are problematic and a source of errors in the
experiments presented in this thesis [132].

Fortunately, it turns out that by using fs-pulses at a significantly reduced ex-
citation wavelength of 405 nm, the photoinitiator can be discarded altogether.
The reason is that the double bonds present in the acrylate groups show a
strong absorption for wavelengths shorter than 220 nm [133]. It has been
demonstrated that a variety of acrylates can be photopolymerized without
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an additional photoinitiator following linear absorption of photons from an
excimer laser at 222 nm and the subsequent generation of radicals [134, 135].

The radical generation can also be triggered by nonlinear processes as they
are necessary for 3D DLW. Using an excitation wavelength of 405 nm, where
the linear absorption in the photoresist is very low, the monomer PETA
was found to show a nonlinear response with N = 1.61 [136]. The non-
integer value is attributed to contributions from different mechanisms like
for example a contribution from linear absorption involved in the formation
and termination of free radicals. The experiments were performed using
an electronically pulsed laser diode with pulse durations in the ps regime.
Throughout this thesis we will follow a related approach but turn to fs-pulses
at 405 nm. The idea is to increase the dynamic range, i. e., the relative range
from threshold to damage dose of the process that was found to be limited
in Reference [136]. Using short fs-pulses we can avoid overheating of the
photoresist that otherwise leads to micro-explosions and a low damage dose.
Therefore, this allows for higher stability during DLW and excellent results
in terms of structure quality (see Section 4.2.2).

Resolution in 3D Direct Laser Writing

The operating wavelength of photonic crystals is determined by the achiev-
able resolution of the utilized fabrication method. To be able to fabricate
3D woodpile photonic crystals with parameters envisioned in this work, it
is necessary to increase the resolution as compared to the standard DLW
configuration based on an excitation wavelength around 800 nm. One way to
achieve this is by employing STED-DLW that was shown to provide a resolu-
tion beyond the diffraction limit [126]. Unfortunately, this approach is incom-
patible with the demand for a low autofluorescence signal from the polymer
structures: The utilized photoinitiator 7-Diethylamino-3-thenoylcoumarin
(DETC) that provides a working depletion pathway also shows a strong
fluorescence signal in the wavelength range from 400 nm to 600 nm [137].

Another way to improve the resolution is the choice of a smaller fabrica-
tion wavelength, λ, as it is regularly done in the semiconductor industry.
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The achievable resolution in 3D DLW can be expressed by a slightly mod-
ified Abbe diffraction limit that also shows to be in good agreement with
numerical calculations based on the generalized Sparrow criterion [137].
The nonlinearity, N, results in an exposure-dose profile that is no longer
proportional to |E|2 as in the case of purely linear absorption but to |E|2N.
Assuming a Gaussian profile in both lateral (x, y) and axial (z) direction,
the critical lateral distance, axy, for an objective lens with a given numerical
aperture (NA) becomes

axy =
λ

2NA
√

N
. (3.13)

A similar expression for the critical axial distance, az, can be derived. It
incorporates the fact that the focus is elongated along the axial direction by
introducing the aspect ratio, AR, of the exposure volume and reads

az =
λAR

2NA
√

N
. (3.14)

A typical value for high-NA objective lenses is AR = 2.5 [137].

From Equations 3.13 and 3.14 it is quite evident that changing the excitation
wavelength from around 800 nm to 405 nm is accompanied by a reduction
of the critical distances by nearly a factor of two. This is the approach
that we will follow in the setup discussed in the following section. Aside
from the increased resolution, we profit from the simple photoresist formu-
lation that dispenses with the photoinitiator that would lead to increased
autofluorescence from the fabricated samples.

Experimental Setup for 3D Direct Laser Writing at 405 nm

The 3D DLW system we use for the fabrication of 3D photonic crystals
is based on the highly automatized setup that was initially designed and
assembled by J. Fischer with the help of J. Kaschke and J. Müller. It was
modified from the former standard excitation wavelength of 810 nm and
optimized for operation at the second-harmonic wavelength of 405 nm by
the author and P. Müller. The following description will mainly focus on
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Figure 3.3: a) Main components of the setup used for 3D DLW. A mode-
locked fs-Ti:sapphire oscillator is tuned to a center wavelength of 810 nm
and frequency doubled to arrive at 405 nm fs-pulses used for excitation.
The mean power going into the system is adjusted by means of a half-wave
plate (λ/2) and a Glan-laser polarizer. An AOM controls the mean power
during the writing process. The beam is converted from linear to circular
polarization using a quarter-wave plate (λ/4) before it is tightly focused
into the photoresist by a high-NA objective lens. The sample is mounted
to a piezo stage and can be moved with respect to the focus. The setup
is characterized by scanning a gold bead through the focus and collecting
the backscattered signal. Panels b) and c) show the normalized intensity in
different planes for a center wavelength of 810 nm and 405 nm, respectively.
As expected the focus size is reduced by approximately a factor of two by
going from the fundamental to the second-harmonic wavelength.

the aspects that differ from the previously used configuration. For a more
detailed description of the latter please refer to Reference [138].

As mentioned earlier, the goal of an increased resolution is achieved by
significantly decreasing the excitation wavelength, λ. To this end the output
of the fs-Ti:sapphire oscillator (Spectra-Physics, MaiTai HP) is sent onto a
second-order nonlinear crystal resulting in fs-pulses at a repetition rate of
80 MHz and a center wavelength of 405 nm (see Figure 3.3a). The mean laser
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power is reduced by a combination of a half-wave plate (λ/2) and a Glan-
laser polarizer. The beam passes an acousto-optic modulator (AOM), used to
control the mean excitation power during fabrication, before being sent into
an inverted microscope body. A quarter-wave plate (λ/4) converts the linear
into a circular polarized beam that is focused by a high-NA oil immersion
objective lens (Leica, HCX PL APO 100× /1.4 – 0.7 OIL CS). Using circular
polarized light at the back-focal plane of the objective lens is essential to
arrive at a electric field distribution in the focus that is rotationally symmetric
around the propagation direction.

The setup can be characterized by measuring the focal intensity distribu-
tion using single gold beads (diameter d = 80 nm) that are spin-coated on
a substrate and covered by PETA. A 3D reconstruction of the intensity is
derived from the backscattered signal collected while scanning a single gold
bead through the focus. This way we can make sure that the change of
wavelength indeed leads to the expected results and the setup is well aligned
for fabrication. Figure 3.3b and c shows measurements of the focal intensity
for an excitation wavelength of 810 nm and 405 nm, respectively. Both foci
look good but also show some minor aberrations, e. g., their shapes are not
perfectly identical for the xz- and yz- planes as one would expect from an
ideal focus that shows rotational symmetry around the z-axis. Additionally,
the fact that the focus dimensions in x- and y-direction are not the same
could hint at a slight digression from the desired circular polarization of
the beam at the back-focal plane. The focus sizes for the two configurations
are determined by fitting a 2D Gaussian to the individual slices. The mean
FWHM values are summarized in Table 3.1. As expected from the consid-
erations on resolution in 3D DLW, a decrease of the wavelength by a factor
of two goes hand in hand with a focus that is smaller by the same factor
and, therefore, facilitates the fabrication of 3D photonic crystals for shorter
operation wavelengths.

This concludes the introduction to the two fundamental techniques used for
sample fabrication in the scope of this thesis. ALD and 3D DLW provide the
tools necessary to tailor film properties and deposit them conformally on cos-
tume made polymer templates. Details on the fabrication processes and the
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810 nm 405 nm ratio (•810 nm/•405 nm)

xFWHM (nm) 316 157 2.02

yFWHM (nm) 335 165 2.03

zFWHM (nm) 887 435 2.04

Table 3.1: Comparison of focus characteristics for center wavelengths of 810 nm
and 405 nm. The focal intensity is derived from the signal backscattered from a
single gold bead that is scanned through the focus. Subsequently, a 2D Gaussian
is fitted to the data. The given FWHM values are averaged over the different
measured planes as they are shown in Figure 3.3b and c. The ratio of the
respective values at the two wavelengths are given in the last column and are
very close to the expected value of two.

structural parameters of the nonlinear nanolaminates and 3D nanolaminated
photonic crystals are given in Section 4.1.1 and 4.2.1, respectively. The fol-
lowing sections deal with the techniques used to characterize the fabricated
samples and to get a better understanding of the underlying effects.
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Figure 3.4: Setup used for the measurement of linear transmittance spectra.
A fiber-coupled white-light source is linearly polarized and focused onto
the sample by an objective lens. An identical objective lens is used to collect
the transmitted light that is, subsequently, coupled into an optical spectrum
analyzer. The spread of incidence angles can be reduced by an iris in front
of the back-focal plane of the focusing objective lens. The investigated area
on the sample is defined by an adjustable aperture that is placed in the
intermediate image plane. A kinematic mirror, Mk, and a camera aid with
the setup of the measured area.

3.3 Linear Optical Characterization

The linear optical characterization of the samples provides important infor-
mation on the sample properties and their quality. The isotropic refractive
index dispersion and thickness of the deposited ALD films are determined
by fitting Cauchy’s equation to ellipsometry data recorded with a Sentech
SE 850. These parameters are necessary to control further sample iterations
and also as an important input, for example, in the determination of the
second-order susceptibility tensor.

Additionally, linear transmittance experiments are performed to study the
quality and to determine the position of spectral features, like for example,
stop bands, in both 3D photonic crystal templates and 3D nanolaminated
photonic crystals. The linear transmittance spectra are measured using the
setup depicted in Figure 3.4. A fiber-coupled white-light source (Energe-
tiq, EQ-99 LDLS) is sent through a polarizer. The resulting light that is
horizontally polarized is focused onto the sample by a NA = 0.4 objective
lens. An iris diaphragm at the back-focal plane of the focusing objective
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lens is used to reduce the effective numerical aperture and, thereby, limit the
contribution by oblique incidence angles. The transmitted light is collected
by another NA = 0.4 objective lens. The measurement area on the sample
can be adjusted using an aperture that is placed in the intermediate image
plane in combination with a kinematic mirror, Mk, and a camera. Once
the sample is appropriately aligned and the investigated area is chosen, the
kinematic mirror is removed and the transmitted signal is detected with a
fiber-coupled optical spectrum analyzer (Ando, AQ-6315B). The recorded
transmittance spectra are normalized to an identical measurement on the
substrate right next to the structures.

3.4 Nonlinear Optical Characterization

The nonlinear optical characterization of the samples is a key aspect in this
thesis. It provides quantitative measures for parameter optimization and
allows for a deeper understanding of the underlying mechanisms. This
section is divided into two parts. In the first part, the characterization of
the nanolaminate metamaterials will be discussed. Here, the focus lies on
the measurement of the generated second-harmonic power. The results
are used to optimize the nanolaminates in terms of the layer sequence and
the individual layer thicknesses. Subsequently, a different setup is used
to determine the full second-order susceptibility tensor for the optimized
nanolaminate. In the second part, the setup used for the characterization
of 3D nanolaminated photonic crystals will be presented. The goal is to
understand the spectral features arising from the interplay of nonlinear
nanolaminate metamaterials and photonic crystals used as a template for
conformal deposition.

Nanolaminate Metamaterials

The properties of the nonlinear nanolaminate metamaterials discussed in
Section 4.1 depend critically on the exact layer sequence and thickness.
Therefore, a large parameter sweep is necessary to study the impact of the
individual parameters and to optimize the nonlinear metamaterial. In princi-

64



3 .4 nonlinear optical characterization

pal, the determination of the complete χ(2) tensor for each of the grown films
would be the perfect way to go. Unfortunately, this is not feasible due to the
sheer number of samples and the effort involved in determining the tensor.
Instead, we measure the generated second-harmonic power in the individual
nanolaminates for a single combination of in and output polarization at a
fixed angle of incidence. Subsequently, we normalize the detected power to
the squared film thickness, and use this quantity as a figure of merit for the
sequence optimization.

The setup utilized to measure both the mean fundamental and second-
harmonic power is depicted in Figure 3.5. The fundamental wavelength
is generated by a mode-locked Ti:sapphire (Ti:Sa) laser (Spectra-Physics,
MaiTai HP) with a pulse duration of below 100 fs and a center wavelength
of 800 nm. A half-wave plate (λ/2) and a Glan-laser polarizer are used to
control the mean power. The polarizer is followed by an optical isolator
that stops back reflections from interfering with the cavity mode or even
damaging the laser. A small fraction of the x-polarized fundamental laser
beam is reflected at a glass plate and detected with a Si photodiode. Having
calibrated the photodiode with a power meter, allows for online monitoring
of the mean fundamental power, Pω, incident on the investigated sample.
The main part of the laser power is focused onto the sample through a
lens (L1) with a focal length of f1 = 50 mm. A stage that supports both
translations and rotations of the sample allows for proper alignment with
respect to the laser focus. The emerging beam containing both fundamental
and second-harmonic signal is collected by the lens L2 ( f2 = 100 mm). To
get rid of the fundamental wavelength for the measurement, the signal is
sent through two shortpass filters (Thorlabs, FESH0700) with a cut-off wave-
length of 700 nm. Finally, the second-harmonic signal is detected using a
photomultiplier tube (PMT, Hamamatsu, R4332). The signal-to-noise ratio is
improved by modulating the impinging signal with a chopper wheel (CW)
and sending the signal detected by the PMT through a lock-in amplifier.
With an appropriate calibration the voltage measured at the PMT can be
translated into the generated second-harmonic power, P2ω.

65



3 methods

fs-Ti:Sa laser
800 nm

λ/2

polarizer

optical isolator

photo-
diode

filter

L1

CW

PMT

sample

L2

lock-in
amplifier

y
z

x

Figure 3.5: Setup used for the nonlinear characterization of nanolaminate
metamaterials. A mode-locked Ti:sapphire laser tuned to a center wave-
length of 800 nm is used to generate fs-pulses. The mean power is adjusted
by a half-wave plate (λ/2) and a polarizer. An optical isolator is used to
ensure that reflections in the setup cannot return to the laser. The mean
power, Pω, of the x-polarized fundamental beam is measured with a cal-
ibrated photodiode. Lenses L1 ( f1 = 50 mm) and L2 ( f2 = 100 mm) are
used to focus and collect the light incident on and emitted from the sample,
respectively. The sample itself is mounted on a stage that allows for both
translations and rotations to enable the proper positioning with respect to
the laser focus. Two shortpass filters are used to block the fundamental
and only allow the second-harmonic wavelength onto the PMT. To increase
the signal-to-noise ratio a lock-in amplifier is used to evaluate the signal
stemming from the PMT. The incident fundamental beam is modulated by
a chopper wheel (CW) positioned in the beam path right in front of lens L1.

The setup described above is a good starting point to get an idea of the non-
linear response, but, obviously, it does not suffice to determine all elements
of the second-order susceptibility tensor. There are numerous approaches
that can be used to deduce the full tensor. Two techniques that are especially
suitable for thin films as they are investigated in this thesis were compared
in Reference [102]. It was shown that the tensor elements for identical sam-
ples determined by the two approaches are in very good agreement and,
therefore, both seem to be a viable choice. One of the approaches relies on
the interference of the second-harmonic generated from the investigated
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Figure 3.6: a) Measurement scheme for the determination of the second-order
susceptibility tensor of nanolaminate metamaterials. A fixed angle of incidence,
ϑ, is used. The orientation of the linearly polarized electric field vector of
the fundamental beam is described by the angle ϕ and varied during the
measurement. b) The setup utilized for the determination of the second-order
susceptibility tensor is calibrated with a Maker-fringe measurement on a quartz
plate for ϕ = 90° (p-polarization). A typical measurement gives the transmitted
p-polarized second-harmonic power in air, Pp

2ω, air, as a function of the incidence
angle, ϑ. The setup parameters are determined by fitting a model based on the
well-known second-order susceptibility tensor of quartz to the measured data.

thin film with the second-harmonic originating from the interface between
the backside of the substrate and air under varying angle of incidence. For
increasing second-harmonic power generated in the nonlinear film, this
approach tends to be unsuitable as the signal generated at the substrate-air
interface becomes negligible and does not provide a sufficient modulation of
the detected signal.

In contrast to that, the second technique that was first described in Refer-
ence [95], possesses no limitations of that kind and will be used in this work
with some minor improvements that are discussed below. The approach is
based on the measurement of the second-harmonic power for a fixed angle
of incidence, ϑ, but varying orientation of the linear electric field polarization
described by the angle ϕ (see Figure 3.6a). This minimizes errors originating
from a misalignment of the focus with respect to the thin film as it may occur
in measurement schemes based on the variation of the angle of incidence.
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To fully determine the second-harmonic susceptibility tensor, the generated
second-harmonic signal is detected for both the polarization perpendicular
and parallel to the plane of incidence (s- and p-polarization, respectively).

Subsequently, the measured data for s- and p-polarization is fitted by a theo-
retical model that is derived by extending the expressions given by Herman
and Hayden to arbitrary linear polarization orientations [95, 139]. The model
describes the generated second-harmonic for a system that consists of a
nonlinear thin film, a substrate, and air. The inhomogeneous wave equation
(see Section 2.1) is solved in the individual materials taking into account
the boundary conditions at the interfaces. For all calculations presented
in this thesis we will neglect the reflections of the second-harmonic wave
at the boundary between air and the nonlinear film. This approximation
was suggested by Herman and Hayden as the effect of the reflections is
small compared to the typical measurement errors and allows for a drastic
simplification of the final expression [139]. For a fundamental beam with po-
larization angle ϕ that is incident at an angle ϑ from the side of the nonlinear
film, the transmitted s/p-polarized second-harmonic power in air, Ps/p

2ω, air, is
given by

Ps/p
2ω, air = χ

(2), s/p
eff (−2ω; ω, ω)P2

ω

(
ω

c0
L
)2

sinc(Ψ)2

×
2
((

sin(ϕ)tp
ω, a-f

)2
+
(
cos(ϕ)ts

ω, a-f
)2
)2 (

ts/p
2ω, f-s ts/p

2ω, s-a

)2

c0ε0A
(
n2ω, f cos(ϑ2ω, f)

)2 .

(3.15)

The first line is very similar to the second-harmonic intensity that was derived
previously in Equation 2.27. The second line introduces effects due to the in-
cidence angle and orientation of polarization. The superscript s/p indicates
perpendicular/parallel polarization with respect to the plane of incidence.
The Fresnel transmission coefficients for frequency i, s/p-polarization, and
at the given interface between the media n and m, where m and n can be
a(ir), f(ilm), and s(ubstrate), are denoted by ts/p

i, m-n. A is the focus area, Pω the
fundamental power, L is the thickness of the nonlinear film, and ni, f its refrac-
tive index at frequency i. Both the film thickness, L, and the refractive index
dispersion are taken from ellipsometry measurements modeling the material
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properties using Cauchy’s equation. χ
(2), s/p
eff (−2ω; ω, ω) denotes the effective

second-order susceptibility for the given second-harmonic polarization and
will be discussed in more detail below. The linear polarization orientation of
the fundamental beam is defined such that ϕ = 0° and ϕ = 90° corresponds
to s- and p-polarization, respectively. The propagation angle in the nonlinear
film, ϑi, f, at frequency i is given by Snell’s law as sin(ϑi, f) = sin(ϑ)/ni, f.
Ψ = φω − φ2ω is calculated from φi = ω/c0 · ni, f cos(ϑi, f).

The actual form of the effective susceptibility, χ
(2), s/p
eff (−2ω; ω, ω), is deter-

mined by the excitation conditions and the non-zero elements of χ(2). The
latter can be deduced from the inherent symmetries of the investigated
system. We will study nanolaminates that derive their nonlinear properties
from ZnO that typically crystallizes in the wurtzite structure. It belongs
to the crystal class 6mm (or C6v in Schoenflies notation) which has a 6-fold
rotation axis and, additionally, 6 mirror planes that contain the rotation axis.
This crystal class can be shown to have a second-order susceptibility tensor
with four independent non-vanishing elements given by [6]

χ(2)
xxz(−ωσ; ω1, ω2) = χ(2)

yyz(−ωσ; ω1, ω2),

χ(2)
xzx(−ωσ; ω1, ω2) = χ(2)

yzy(−ωσ; ω1, ω2),

χ(2)
zxx(−ωσ; ω1, ω2) = χ(2)

zyy(−ωσ; ω1, ω2), and

χ(2)
zzz(−ωσ; ω1, ω2).

(3.16)

Furthermore, when considering second-harmonic generation permutation
symmetry leads to a further reduction of the number of independent ele-
ments from four to three

χ(2)
xxz(−2ω; ω, ω) = χ(2)

yyz(−2ω; ω, ω) = χ(2)
xzx(−2ω; ω, ω) = χ(2)

yzy(−2ω; ω, ω),

χ(2)
zxx(−2ω; ω, ω) = χ(2)

zyy(−2ω; ω, ω), and

χ(2)
zzz(−2ω; ω, ω).

(3.17)

It is worth mentioning that Kleinman symmetry, i. e., the assumption of a
vanishing nonlinear susceptibility dispersion in the considered wavelength
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regime, was not exploited to arrive at this point.

The ALD-grown ZnO films are not crystalline but rather consist of small
crystalline domains, i. e., they are polycrystalline. Nevertheless, we will
show that characterizing the nonlinear nanolaminates based on a model
with the nonlinear susceptibility elements given by Equations 3.17 results in
an excellent agreement between theory and measurement. The reason this
works so well is that textured films are well described by the symmetry class
∞m (or C∞v in Schoenflies notation) [140]. They have an infinite number of
mirror planes containing the axis of rotation and a form of the second-order
susceptibility tensor that is identical with that of crystal class 6mm.

Keeping these considerations in mind, the effective second-order susceptibil-
ity for the process of second-harmonic generation in both crystal class ∞m
and 6mm can be expressed as given in Reference [95]

χ
(2), p
eff =− 1

2
χ(2)

xzx cos(ϑ2ω, f) sin(2ϑω, f) sin(ϕf)
2

− 1
2

χ(2)
zxx sin(ϑ2ω, f)

(
cos(ϑω, f)

2 sin(ϕf)
2 + cos(ϕf)

2
)

− 1
2

χ(2)
zzz sin(ϑ2ω, f) sin(ϑω, f)

2 sin(ϕf)
2,

χ
(2), s
eff =− 1

2
χ(2)

xzx sin(ϑω, f) sin(2ϕf).

(3.18)

The frequency argument ((−2ω; ω, ω)) was omitted for the sake of readabil-
ity. ϕf denotes the polarization orientation of the fundamental beam in the
nonlinear film and is given by

tan(ϕf) =
tp
ω, a-f

ts
ω, a-f

tan(ϕ). (3.19)

The setup we use for the determination of the second-order susceptibility
tensor elements is very similar to the one shown in Figure 3.5 and is de-
scribed in more detail in Reference [95]. Additionally, a complete derivation
of the presented theoretical model can be found there.
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A drawback of the approach presented so far is its reliance on setup specific
parameters like the fundamental power and the spot size on the sample. The
uncertainties accompanied by the determination of these quantities can be
easily eliminated by performing a Maker-fringe calibration measurement
for the given setup. We use a 100 µm thick y-cut quartz plate that has a
well-known second-order susceptibility tensor with the dominant element
χ(2)

xxx = 0.6 pm/V [141]. The detected p-polarized second-harmonic power
for an identically polarized incident fundamental beam with a mean power
of 100 mW is fitted to the theoretical expressions given by Herman and
Hayden [139]. A typical calibration measurement and the respective fitted
theoretical curve are depicted in Figure 3.6b. With this modification to the
previously described scheme we are able to determine the second-order
susceptibility tensor of nonlinear thin films without having to rely on setup-
dependent values.

3D Nanolaminated Photonic Crystals

The characterization of 3D nanolaminated photonic crystals presented in
Section 4.2 focuses on aspects that are different from the ones considered for
nonlinear nanolaminates. Whereas the goal for the latter is on quantifying
the effective nonlinear material parameters to allow for a comparison with
well-established nonlinear crystals, our emphasis when investigating 3D
nanolaminated photonic crystals is on the interplay of nonlinear nanolami-
nates and photonic crystal templates. How does the spatial arrangement of
the second-order susceptibility enforced by the polymer template influence
the second-order nonlinear response of the resulting structure?

The properties of a photonic crystal with fixed geometrical parameters
strongly depend on the considered wavelength. Therefore, it only seems
natural to study the nonlinear response of 3D nanolaminated photonic crys-
tals for various center wavelengths of the fundamental beam. For a correct
comparison of the effects at different wavelengths, the wavelength-dependent
setup properties like for example, the mean fundamental power, the pulse
length, the transmittance and reflectance of the individual components, and
also the dispersive properties of the nonlinear metamaterial itself have to
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be determined. A way to get around the uncertainties arising from the
determination of these parameters is to measure the nonlinear response of
the nanolaminated photonic crystals relative to the response of the plain
nonlinear nanolaminate measured right next to the structure. This way
all wavelength-dependent effects are automatically taken into account. By
performing this measurement for each sample we can, additionally, elimi-
nate batch to batch fluctuations in the properties of the ALD-grown films
and long-time fluctuations of the laser properties. Due to the symmetry
properties of the grown films, the second-harmonic generated for a normally
incident fundamental, i. e., ϑ = 0°, (see Figure 3.6), is zero. Therefore, we
choose an angle of ϑ = 45° for the reference measurements. The 3D nanolam-
inated photonic crystals are, nevertheless, excited at an incidence angle of
ϑ = 0°.

When it comes to the measurement of the generated second-harmonic signal,
we are interested in both its spectral distribution and its emission angle. The
wavelength-sensitive detection allows confirming the source of the signal and
eliminating possible errors due to, for example, fluorescence light stemming
from the setup components or the polymer. To this end, a spectrometer will
be used to analyze the generated signal. Dealing with photonic crystals with
a lattice constant that is smaller than the wavelength of the second-harmonic
signal, inevitably leads to the emission into various diffraction orders. The in-
formation on the contribution of the generated second-harmonic to different
diffraction orders is retained by imaging the back-focal plane of the objective
lens that is used to collect the signal onto the entrance slit of the spectrometer.

The setup used for the characterization of 3D nanolaminated photonic
crystals is depicted in Figure 3.7. A mode-locked fs-Ti:sapphire oscilla-
tor (Spectra-Physics, MaiTai HP) generates pulses with a center wavelengths
that is adjustable in the range from 800 nm to 1020 nm. The pulse duration
depends on the chosen wavelength and is below 100 fs. The mean power
is controlled by a combination of a half-wave plate (λ/2) and a Glan-laser
polarizer. To avoid back reflections, especially for measurements at normal
incidence, from disturbing the operation or damaging the laser, an optical
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Figure 3.7: Setup for the spectral nonlinear optical characterization of 3D
nanolaminated photonic crystals. A mode-locked fs-Ti:sapphire laser is
used to generate the beam at the fundamental wavelength. For a typical
measurement the center wavelength is tuned between 800 nm and 1020 nm.
The mean power is regulated by means of a half-wave plate (λ/2) and
a Glan-laser polarizer. An optical isolator hinders reflected power from
returning to the laser. A small fraction of the incident power is reflected at
a glass plate and is detected using a calibrated photodiode. This way the
fundamental power, Pω, can be monitored online. The beam is focused onto
the sample using the lens Lf with a focal length of 50 mm. An objective lens
with NA = 0.75 is used to collect the diffraction orders of the generated
second-harmonic. The structure to be investigated can be aligned with
respect to the focus using the stage and a camera. The illumination beam
path is not depicted. Two shortpass filters block the fundamental beam. The
lenses Lt1 and Lt2 are used to image the back-focal plane of the objective
lens with a magnification of 0.25 onto the spectrometer slit. The signal
entering the spectrometer is sent onto a grating and, subsequently, imaged
onto a liquid-nitrogen cooled charge-coupled device camera for detection.
The spectrometer measurement modes and the respective data imaged onto
the camera are described in the main text and illustrated in Figure 3.8.

isolator is used. A small fraction of the beam is reflected at a glass plate
and sent onto a calibrated Si photodiode for the online measurement of
the mean fundamental power, Pω. The fundamental beam is focused onto
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the sample using a lens with a focal length of 50 mm resulting in a focal
1/e2 beam diameter of approximately 40 µm. The sample is mounted on
a stage that allows for rotations around the y-axis and translations in all
directions. A dry objective lens (Zeiss, LD Plan-Neofluar 63× /0.75) with a
numerical aperture of 0.75 (maximum half-angle of 48.6°) and a focal length
of 2.6 mm is used to ensure that at least the first diffraction order at the
second-harmonic wavelength is collected. Using a kinematic mirror, Mk,
that is removed during measurements and a monochrome camera allows
for aligning the individual structures with respect to the incident excitation
beam. The fundamental wavelength is filtered out using two shortpass
filters (Thorlabs, FESH0700) with a cut-off wavelength of 700 nm. We use
two lenses (Lt1 and Lt2) to image the back-focal plane of the objective lens
with a magnification factor of 0.25 onto the entrance slit of the spectrometer
(Jobin Yvon, HR460). For polarization resolved measurements an additional
Glan-Thompson polarizer followed by an achromatic half-wave plate (not
depicted) can be inserted between the lens Lt1 and the entrance slit of the
spectrometer. This way one can make sure to measure just the selected
polarization while at the same time avoiding measurement errors due to
the polarization dependent diffraction grating efficiency. The light entering
the spectrometer through the adjustable entrance slit is sent onto a grating
with 300 lines/mm by a concave mirror and is afterwards imaged by another
concave mirror onto a silicon-based charge-coupled device camera (Prince-
ton Instruments, LN/CCD-1340/100-EB/1) connected to the output of the
spectrometer. The camera is cooled by liquid-nitrogen and operated at a
set temperature of −100 ◦C to allow for a high signal-to-noise ratio. The
spectrometer is calibrated using the documented emission lines of a Hg (Ne)
lamp.

A typical measurement involves the sweep over a set range of fundamental
wavelengths with a spectrometer image taken for each excitation wavelength.
Once the sample is manually aligned such that the investigated structure
is in the focus of the fundamental beam, a computer is used to run the
following automated procedure: The Ti:sapphire laser is tuned to the desired
wavelength while the shutter is closed. After the specified wavelength is set,
a pause is introduced to allow for the stabilization of the laser mode. The
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Figure 3.8: Illustration of the spectrometer operation modes sketching the
grating configuration and the respective image on the charge-coupled device
camera. a) The second-harmonic diffraction pattern in the back-focal plane
can be directly imaged by rotating the spectrometer grating to its zeroth
diffraction order and opening the spectrometer entrance slit to 2.2 mm. The
axes show the reciprocal space, spectral information is not available. The
field of view is indicated by the dashed line and is limited by the NA of
the objective lens. b) Spectral information on the generated signal can be
retrieved by rotating the grating to its diffraction order. The spectrometer
slit needs to be closed to 300 µm to limit the diffraction orders in the x-
direction to the zeroth order. The horizontal axis now shows the wavelength,
λ, whereas, the vertical axis remains unchanged and still shows ky/|k|. The
field of view is again limited by the NA of the objective lens.

shutter is opened allowing for the excitation of the structure. With only a
minimal safety delay a trigger signal is sent to the spectrometer and starts the
exposure. After a specified exposure time texp the measurement stops and
the shutter of the excitation laser is closed again with a small safety delay.
The excitation wavelength, the mean fundamental power that was measured
online, and the spectrometer image are stored. Subsequently, the whole
procedure is repeated for the desired range of fundamental wavelengths.

There are two spectrometer measurement modes used to study 3D nanolam-
inated photonic crystals. With the spectrometer grating rotated to its zeroth
diffraction order and the spectrometer slit fully opened to 2.2 mm, we record
an image of the reciprocal space with kx on the horizontal and ky on the ver-
tical axis (see Figure 3.8a). This allows for imaging of the whole diffraction
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pattern collected by the objective lens but without any information on the
wavelength. In the second scheme the grating is rotated to its diffraction
order resulting in a hybrid image showing the wavelength on the horizontal
and the reciprocal space on the vertical axis (see Figure 3.8b). This way we
can study the spectra while still retaining some information on the individual
diffraction orders. The entrance slit of the spectrometer has to be closed to a
width of 300 µm to avoid mixing up the spectral and the spatial information
by limiting the diffraction orders in the x-direction to the zeroth order.

3.5 X-Ray Diffraction

Using, X-ray diffraction (XRD) measurements, the structural properties of
the deposited ALD films can be studied. The nonlinear optical properties
of the nanolaminate metamaterials are determined by their structure and,
therefore, this allows for a deeper understanding of the mechanisms that
influence the optical material response (see Section 4.1.2).

XRD is based on the diffraction of electromagnetic radiation from periodic
structures with a periodicity in the range of the interacting wavelength. To
study the arrangement of atoms in a crystal with interatomic distances in
the sub-nm regime, one has to use X-rays with a wavelengths that is of
the same order. The observed phenomena are related to what was already
discussed for photonic crystals in Section 2.5. X-rays are elastically scattered
by electrons in the atoms that build up the investigated material. Scattering
from the nuclei can be neglected due to the significantly higher mass resulting
in a small amplitude of the scattered wave. Given a wave with wave vector
k impinging on a specific sample, a large scattered field can be observed
in characteristic directions denoted by the wave vectors of the outgoing
waves k′. For these directions that are determined by the Bragg or the Laue
condition, the individual X-rays scattered at a set of crystal planes interfere
constructively. This is given whenever the scattering vector, q = k′ − k,
coincides with a reciprocal lattice vector, G, of the investigated crystal [142]

k′ − k = G. (3.20)

From a different point of view this can be interpreted as momentum con-
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Figure 3.9: Scheme of a θ/2θ measurement for the structural characterization
of a thin film. X-ray source and detector are moved on the surface of a
hemisphere that has the sample placed in its center. The wave vectors
of the incoming and outgoing waves k and k′, respectively, are adjusted
such that they always enclose an identical angle θ with the sample surface.
Consequently, the scattering wave vector, q, is always parallel to the surface
normal. The angle enclosed by k and k′ is 2θ.

servation in the scattering process that is ensured through an additional
momentum h̄G provided by the crystal lattice. Studying the intensity for
various incoming and outgoing wave vectors one can map out the reciprocal
lattice and, thereby, determine the set of lattice planes that contribute to
a certain intensity peak also called a Bragg peak. The actual intensity of
the scattered wave depends on a variety of other things like the atomic and
structural form factors of the considered material. It will not be discussed in
detail as it is of minor relevance for the remainder of this thesis.

The information on the microstructure of thin films is often derived in θ/2θ

measurements as illustrated in Figure 3.9 [143]. In this scheme both the X-ray
source and the detector are moved on the surface of a hemisphere with the
sample placed at its center. The X-ray source defines the incident wavelength,
λ, and the wave vector, k, that is described by the angle θ measured with
respect to the sample surface. The detector and, thereby, the outgoing wave
vector, k′, is adjusted to lie in the plane defined by k and the surface normal
of the sample and enclose an angle of θ with the respect to the sample surface.
The angles for incoming and outgoing wave vector k and k′, respectively,
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are kept identical throughout the measurement and enclose a total angle of
2θ . Due to the specifics of the θ/2θ measurement, the scattering vector, q,
is always normal to the substrate and, therefore, only lattice planes that are
parallel to the sample surface contribute to the measured signal.

Two further aspects have to be mentioned when dealing with polycrystalline
thin films as it is the case for the measurements presented in this work. First,
the scattered intensity for a fixed angle θ is not limited to a few points as
for single crystals, but is spread on a circle due to the random orientation
of the crystallites in the sample plane. Second, the peaks in the scattered
intensity are broadened as compared to a single crystal sample. The reasons
are the finite size of the domains that scatter coherently and microstrains that
induce a variation of the local lattice constant. We will use a relation that was
derived by P. Scherrer to estimate the mean crystallite size τ perpendicular
to the substrate plane [144, 145]

τ =
0.9λ

∆(2θ) cos(θ)
. (3.21)

Here λ is the X-ray wavelength, ∆(2θ) denotes the FWHM of the peak given
in radians, and θ is the Bragg angle the peak occurs at. Equation 3.21 has to
be used with care as it is only valid for planes oriented along (00l) directions
with l being an integer. Furthermore, the broadening can not solely be
attributed to finite crystallite size effects, but is also determined by micros-
trains and the instrument response. Nevertheless, Equation 3.21 is helpful in
quantifying structural changes and will be used to estimate the lower limit
for the size of the crystallites contributing to the (002) peak in the presented
experiments.

In Section 4.1.2 a D8-Discover diffractometer (Bruker AXS GmbH) with
Cu–Kα radiation is used for the θ/2θ measurements in Bragg–Brentano
geometry.
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3.6 Finite Element Calculations

XRD measurements allow for deriving additional information on nonlinear
nanolaminates and, thereby, supplement the optical measurements. To get
a deeper insight into the effects leading to an enhanced second-harmonic
generation in 3D nanolaminated photonic crystals, we will perform numeri-
cal calculations based on the finite element method (FEM). The results are
compared with and complement the optical measurements. In this section,
we will briefly summarize the basics of the FEM. A detailed introduction to
the topic can be found in the literature. Subsequently, the specifics of the
frequency-domain implementations used in this thesis will be discussed.

Many physical problems including the ones in electromagnetism can be
described by partial differential equations (PDEs). Often these equations
cannot be solved analytically and numerical methods, such as the FEM, come
into play. One way to formulate the equations of interest is given by the
so-called weak form that allows for a reduction of the differentiation order
and, additionally, enables a straightforward implementation of boundary
conditions [146]. Whereas the equation given by a PDE has to hold for each
point individually, the integral equation used in the weak form "only"has
to be fulfilled for the complete set of so-called test functions that are zero
everywhere except for a small region and, thereby, sample a finite area in
the investigated domain. To allow for a numerical solution of the problem,
the equations given in the weak form are discretized on a given mesh that
fills the whole domain. A very common approach is to expand the solution
function in a basis that is identical with the set of test functions. This results
in a system of N equations for the individual test functions describing the N
unknown expansion coefficients. Boundary conditions can be implemented
directly and introduce further coefficients and the same number of addi-
tional equations. By solving the system of coupled equations one derives
the expansion coefficients and the solution function that approximates the
solution of the PDEs on the prescribed mesh.

We use the FEM implemented in the commercially available software COM-
SOL Multiphysics to solve the inhomogeneous wave equation in frequency
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domain (see Equation 2.17) describing the electromagnetic waves in the 3D
nanolaminated photonic crystals. The structures are simulated from two
different points of view. On the one hand, we look for eigenmodes that can
be, in principle, coupled to for the given excitation conditions and compare
their properties with the experimental findings. On the other hand, we try
to mimic the experimental measurement based on a perturbative approach.
Starting from plane waves that are incident on the structure, we determine
the nonlinear polarization, and, finally, derive the generated wave at the
second-harmonic frequency.

The essential properties of the simulated model for both approaches are
more or less the same. In the lateral directions (xy-plane) the model consists
of one square unit cell with an extent given by the rod spacing, a, in both
x- and y-direction. Using periodic boundary (PB) conditions on the exterior
boundaries with a surface normal in the xy-plane, results in a periodic
structure with an infinite number of unit cells in the lateral directions. The
exact form of the periodic boundary conditions depends on the eigenmodes
that are supposed to be excited or the impinging plane wave. In general, one
considers Floquet-Bloch periodic boundary conditions where the value of a
function u(x, y, z) that is shifted by arbitrary lateral unit cell vectors remains
unchanged except for a phase shift. Therefore, the values of u(x, y, z) and
u(x + a, y, z) on the periodic boundaries in the x-direction are connected by

u(x + a, y, z) = u(x, y, z)eikxa, (3.22)

where kx is the x-component of the considered wave vector. Obviously, the
same condition applies for the y-direction.

In the axial direction (z) a finite number of Nz unit cells with an axial lat-
tice constant, c, is assumed. The woodpile photonic crystal is constructed
from rods with an elliptical cross-section that are elongated along the axial
direction due to the properties of 3D DLW (see Section 3.2.) A fixed ratio
of the semiaxes, rz/rx = rz/ry = 2.5, that is typical for 3D DLW and which
agrees well with the values obtained for the fabricated structures by means
of focused-ion-beam milling, is used [126]. The whole photonic crystal is con-
formally covered by a single layer that represents the ALD-grown nonlinear
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3 .6 finite element calculations

nanolaminate metamaterial. Its thickness, df, is equal to the total thickness
of the deposited nanolaminate. This 3D nanolaminated photonic crystals
is surrounded by air that extends into the +z- directions and is placed on
a substrate that extends into the −z-direction. The model dimensions in
axial directions are chosen such that the fields can be studied in the far
field regime. The isotropic refractive indices of the individual materials are
implemented with their respective dispersion relations. For the polymer and
the nanolaminate it is described by the Cauchy equation with coefficients
taken from Reference [147] (IP-L) and ellipsometry measurements, respec-
tively. The dispersion of the glass substrate is modeled using the Sellmeier
equation and data given for "D 263 T eco Thin Glass"(Schott AG). All further
model properties specific to the individual calculations are discussed in the
following two sections.

Eigenmode Calculations

In studying the eigenmodes of 3D nanolaminated photonic crystals, the goal
is to identify possible sources of field enhancement in the structure. One
example was given in Section 2.6 in terms of guided resonances found in
photonic crystal slabs and periodically modulated waveguides. The Floquet-
Bloch periodic boundary conditions are adjusted such that the resulting
eigenmodes can be coupled to by a given incident plane wave with wave
vector, k. For example, eigenmodes that are calculated for kx = ky = 0 can
potentially couple to a plane wave that is normally incident on the structure
and so on. In contrast to the guided modes in a waveguide, the modes in 3D
nanolaminated photonic crystals are not completely confined to the structure,
but also couple to air and substrate modes due to the periodic modulation
of the refractive index. To suppress reflections of these radiating parts of the
modes in the air and substrate layers at the ends of the simulated domain,
one can use open boundaries. Technically, these can be implemented through
a so-called perfectly matched layer (PML) that absorbs the impinging wave
in the PML region without reflecting it. Having set up the model in this way
(see Figure 3.10a), we can compute eigenmodes of the 3D nanolaminated
photonic crystals for a given frequency.
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Figure 3.10: Illustration of the model used for the frequency-domain FEM.
It consists of a substrate carrying the structure. The latter is built from
a polymer that is conformally coated by a thin film. Air surrounds the
structure and extends to the +z-direction. The periodic boundaries (PB) in
x-direction are highlighted in orange. For the sake of clarity the ones in
y-direction are not shown. a) Configuration as it is used for the eigenmode
calculations and the calculations at the second-harmonic frequency. A PML
is used at both ends of the domain along the z-direction to prevent reflec-
tions. b) Configuration used for calculations with a plane wave incident at
the fundamental frequency. Port P1 is used to excite the linearly polarized
wave with wave vector k and electric field strength E. Both P1 and P2 act as
open boundaries for the given polarization and occurring diffraction orders.

Plane Wave Calculations

Performing the calculations for a plane wave at the fundamental frequency
impinging on the 3D nanolaminated photonic crystals and generating a wave
at the second-harmonic frequency, allows for a direct comparison of the
calculated properties with the experimentally measured ones. In principle,
one would have to solve a coupled set of equations describing the waves
at both the frequencies just as in the example discussed for one dimension
and a homogeneous material in Section 2.4. For a complex 3D structure this
approach is quite time and resource consuming. However, like in the 1D
case we can use the fact that the conversion efficiency from fundamental to
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second-harmonic frequency is low and apply the undepleted pump approxi-
mation. This allows for a decoupling of the equations at the two frequencies
and a step-wise solution of the problem.

We start by calculating the electromagnetic field that is caused by a linearly
polarized incident plane wave at the fundamental frequency. To this end,
port boundaries are used at both the air and the substrate end of the model
(see Figure 3.10b). The ports allow for the excitation of a wave with a given
polarization and, additionally, act as open boundaries for the specified po-
larization. Furthermore, they can be set up to show no reflections for the
occurring diffraction orders in periodic structures. The periodic boundary
conditions in the lateral directions are defined by the wave vector, k, of the
incident plane wave. The electromagnetic field distribution in the model is
calculated by solving the inhomogeneous wave equation with a fundamental
wave impinging from air that is excited by port P1. Additionally, we can
calculate both the transmission and the reflection of the structure at the
specified frequency.

Given the field distribution at the fundamental frequency, we are, at least in
principle, able to calculate the nonlinear polarization in the nonlinear layer
used as a source term in the inhomogeneous wave equation at the second-
harmonic frequency. Due to the conformal growth of the film the second-
order susceptibility tensor has not only a nonuniform spatial distribution
but also a nonuniform orientation throughout the structure. Therefore, the
calculation of the amplitude of the second-order nonlinear polarization,
P̃(2)

2ω (r), according to Equation 2.12 has to be performed with some caution
and involves further steps. For reasons discussed in Section 4.1 the c-axis of
the ZnO crystallites is assumed to be predominantly oriented perpendicular
to the underlying Al

2
O

3
layer and, therefore, parallel to the normal of

the surface it is conformally grown on. Consequently, the second-order
susceptibility tensor, that was determined for the c-axis parallel to the z-
direction, has to be rotated such that the c-axis coincides with the local
surface normal of the polymer template. For the symmetry properties
of the given χ(2), rotations of the tensor around the c-axis are irrelevant.
Therefore, the same two angles that are used to describe the direction of the
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surface normal are sufficient to describe the local orientation of the second-
order susceptibility tensor. We choose the polar angle θ and the azimuthal
angle ϕ like they are used in spherical coordinate systems for this purpose.
The components of the third-rank tensor χ(2) are transformed to the local
coordinate system by two rotations. Each transformation is described by

χ
(2)′

ijk (r) = R(p)
il (α(r))R(p)

jm (α(r))R(p)
kn (α(r)) χ

(2)
lmn(r) (3.23)

where the matrix R(p)(α(r)) denotes a rotation by an angle α(r) around
the p-axis. The frequency argument of the susceptibility describing second-
harmonic generation ((−2ω; ω, ω)) was omitted for the sake of readability.

What remains is the derivation of the local surface normal with the cor-
responding rotation angles θ(r) and ϕ(r). Another intermediate step is
necessary to determine these angles. The reason is that the structures is
build from intersecting basic elements that do not allow for an unambiguous
determination of the surface normal by geometrical means. This step is
based on modeling the heat transfer in the nonlinear layer. The outer surface
of this layer is fixed to a temperature T1 and the inner surface, in contact
with the polymer template, is set to temperature a T2 with T1 > T2. The tem-
perature gradient, ∇T(r), given by the stationary solution of this physical
problem is identical to the surface normal and, therefore, can be directly
used to calculate the local rotation angles. With this additional information,
the nonlinear polarization amplitude, P̃(2)

2ω (r), is fully defined. For technical
reasons it is implemented in the form of the free current density, Jf. As can
be seen from Equation 2.3 defining the source term by means of a free current
density is identical to using the partial time derivative of the polarization. In
frequency-domain the amplitude of the free current density oscillating at the
second-harmonic frequency can be easily calculated and is[

J̃f, 2ω(r)
]
µ
= −i2ω · 1

2 ε0

[
χ(2), L(r)

]
µα1α2

[
Ẽω(r)

]
α1

[
Ẽω(r)

]
α2

(3.24)

with the local second-order susceptibility tensor elements[
χ(2), L(r)

]
µα1α2

= R(z)
µi (ϕ(r))R(z)

α1 j(ϕ(r))R(z)
α2k(ϕ(r))

R(y)
il (θ(r))R(y)

jm (θ(r))R(y)
kn (θ(r)) χ

(2)
lmn(r).

(3.25)
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Finally, the inhomogeneous wave equation at the second-harmonic frequency,
2ω, is solved with the source term in the nonlinear film defined through the
free current density (see Equation 3.24). As for the eigenmode calculations,
PML at the end of the domain in the +z- and −z-direction are used to
avoid reflections (see Figure 3.10a). We end up with the second-harmonic
field distribution and are able to calculate the optical intensity from the
monochromatic-wave amplitudes according to Equation 2.21.
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Chapter 4

Results

In this chapter, the results achieved in the scope of this thesis will be discussed.
The first part covers the design, fabrication, and characterization of second-order
nonlinear nanolaminates made from alternating layers of ZnO and Al2O3. The
influence of the individual parameters is studied by complementing the nonlinear
optical measurements with data obtained from XRD. Finally, the nanolaminate
layer sequence is optimized and the effective second-order susceptibility tensor of the
thin film is derived. The second part of this chapter deals with 3D nanolaminated
photonic crystals. These structures are fabricated by conformal deposition of the
previously designed nanolaminates on 3D photonic crystals. The interplay of these
two systems is studied experimentally by measuring the generated second-harmonic
signal. Numerical calculations serve to complement the experimental data and allow
for a better understanding of the dominant effects.
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4.1 Second-Order Nonlinear Nanolaminates

This section deals with the design, optimization, and characterization of
second-order nonlinear ZnO/Al

2
O

3
nanolaminate metamaterials as they are

discussed in Reference [148]. The idea was developed and the experiments
were interpreted by the author and C. Kieninger with guidance from C.
Koos and M. Wegener. The author fabricated all samples, performed the
parameter sweeps to define an optimal cycle sequence, and studied the films
by means of scanning electron microscopy (SEM). C. Kieninger measured the
ellipsometry data and determined the elements of the effective second-order
susceptibility tensor. Help with the structural characterization using XRD
was provided by C. Sürgers. Scanning transmission electron micrographs
and energy-dispersive X-ray maps were taken by S. Schlabach and X. Mu.

Probably the most important ingredient in nonlinear optical structures and
devices is the material providing the nonlinear response. Its properties and
the techniques necessary for its deposition or fabrication determine the range
of possible applications. Whereas bulk crystals show the desired nonlinear-
ity, they are hard to incorporate in integrated or compact optical systems.
Here, nonlinear thin films deposited by well-established techniques provide
a promising alternative. Focusing on materials that show a second-order
nonlinear optical response and, at the same time, are compatible with thin
film deposition, ZnO has gained a lot of attention due to its favorable prop-
erties [149]. In its bulk crystalline form ZnO has a wide-bandgap of 3.37 eV,
is highly transparent in the visible wavelength regime, and shows a high
thermal stability [150]. It crystallizes in the hexagonal wurtzite structure
and shows an intrinsic n-doping that seems to be caused by defects that
are formed during crystal growth [151]. From the variety of interesting
properties, we are mostly interested in the optical nonlinearity of ZnO. The
lack of inversion symmetry in the crystal structure leads to a second-order
nonlinear response with the largest element of the susceptibility tensor in
ZnO single crystals being χ(2)

zzz = −14.31 pm
V [152]. It was shown that this

nonlinearity is also found in polycrystalline thin films grown by various
techniques with the values of the second-order susceptibility tensor, χ(2),
sometimes even exceeding that in bulk [153–163].
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Among the available ZnO deposition techniques, ALD is an interesting
candidate. The growth of ZnO by means of ALD has been intensively
studied and is well-established [105]. Additionally, the technique facilitates
an easy incorporation of the deposited film in complex 3D structures and
integrated optics. ALD allows for conformal deposition on nearly arbitrary
templates with a thickness control down to an atomic monolayer and is
compatible with state-of-the-art complementary metal-oxide-semiconductor
processing. Despite the advantages of ALD for certain applications, there
used to be no publications on the nonlinear optical properties of ALD-grown
ZnO films prior to our work (see Reference [148]). In general, the number
of second-order nonlinear materials fabricated by means of ALD is scarce
and mainly based on an accumulated effect from interface susceptibilities in
trinary nanolaminates where each constituent material shows a vanishing
χ(2) in the bulk (see Section 2.7) [95, 101]. This approach is fascinating from
a physical point of view, but has its limits when it comes to the strength of
the nonlinear response. Here, we will follow the straightforward approach
of using a non-centrosymmetric material, i. e., ZnO, with a non-vanishing
χ(2) from the start. The most important factors influencing the second-order
nonlinear response in ZnO thin films will be discussed in the next section.
Based on these findings we will suggest a material design and present the
actual fabrication using ALD.

4.1.1 Design and Fabrication of Nonlinear Nanolaminates

Studying the literature on second-order nonlinearities in polycrystalline
ZnO thin films deposited by various techniques, there seem to be two key
factors influencing the performance: The orientation and the size of the ZnO
crystallites.

The orientation of the ZnO crystallites has to exhibit a preferential direction
throughout the whole film, otherwise, the interference of neighboring crystal-
lites may lead to a decreased response or even its complete cancellation. The
structural properties of a thin film are strongly influenced by the substrate
it is deposited on. This influence also covers the orientation of the crystal-
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lites. Usually, a growth mode with the optical axis of the ZnO crystallites
(crystallographic c-axis) perpendicular to the substrate is desired for a strong
second-order response [158]. Nevertheless, other schemes, like for example
well-aligned crystallites having a preferential orientation with the a-axis
perpendicular to the substrate, have been demonstrated for properly chosen
substrates [160]. Unfortunately, the substrate influence decreases and stack-
ing faults become more and more frequent with increasing film thickness.
Therefore, a well-defined and stable orientation throughout the whole film
is hard to achieve and a thickness dependence of the nonlinear properties
is observed in ZnO thin films [154, 161, 163]. Interestingly, the growth of
ZnO crystallites with a certain preferential orientation is not exclusively
found on crystalline substrates. For ALD-grown thin films it was shown
that an amorphous Al

2
O

3
seed layer underneath the ZnO film fosters the

growth of crystallites with their c-axis perpendicular to the surface and, at
the same time, suppresses other orientations [164]. Aside from the choice of
substrate, the crystallite orientation also strongly depends on the deposition
parameters. ALD-grown ZnO films are predominantly oriented with their
crystallite c-axes perpendicular to the substrate for deposition temperatures
ranging from 220 ◦C to 300 ◦C [107]. On the contrary, this orientation is
greatly suppressed for lower deposition temperatures in the range of 155–
220 ◦C.

The size of the individual crystallites in the polycrystalline films is the second
key factor. It was shown that the value of the second-order susceptibility
can exceed that of bulk ZnO crystals and tends to decrease towards the bulk
value for increasing crystallite size in thicker films [154, 163]. This behavior is
explained by the strong contribution of crystallite boundaries and interfaces
to the effective nonlinearity. Nevertheless, the ZnO crystallites have to be
sufficiently distinct to show a bulk second-order susceptibility at all. Based
on these considerations a sweet spot with respect to the crystallite size is
expected. Therefore, we have to find a way to control the ZnO crystallite
size in order to optimize the second-order nonlinear response. An easy way
would be to just stop the film growth at a certain point, but obviously this
approach is limited in terms of the achievable thickness and does not result
in thickness independent effective optical properties. The crystallite size
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and surface morphology of materials deposited by ALD, can be tuned by
introducing an intermediate layer of a different material that has no epitaxial
relation with the previously deposited material. The intermediate layer can
inhibit further crystallite growth and reset the starting point for the subse-
quently deposited layer. A 0.5 nm thick intermediate layer of amorphous
Al

2
O

3
was demonstrated to be enough to disrupt the growth of crystallites be-

tween either two zirconium or hafnium oxide layers deposited by ALD [165].

Nanolaminates have already been demonstrated for tuning of the mechanical,
linear and third-order nonlinear optical properties of ALD-grown films [164,
166, 167]. Therefore, we will apply the idea of nanolaminates to rationally
design and optimize a metamaterial with the desired second-order nonlinear
properties. Having identified the key factors determining the second-order
response and ALD-compatible ways to control them, suggests a nanolaminate
design that is built from alternating ZnO and Al

2
O

3
layers. These ALD-

grown layers are made up from a given number of deposition cycles of
the respective material (see Section 3.1). The first layer consists of S cycles
of Al

2
O

3
. It serves as a seed layer to enable subsequent ZnO crystallite

growth with a controlled orientation. Additionally, it is supposed to limit
the influence the substrate has on the ZnO growth. The nonlinear properties
stem from the crystallites in the ZnO layers with Z cycles each. To control
the crystallite size and, at the same time, favor crystallites with a defined
orientation throughout the whole film, each ZnO layer is followed by I
cycles of Al

2
O

3
forming an intermediate layer. The sequence of Z × ZnO

and I ×Al2O3 is one macrocycle, M, that can be repeated to achieve the
desired film thickness (see Figure 4.1). In terms of ALD cycles the resulting
nanolaminate sequence is

S×Al2O3 + M× (Z× ZnO + I ×Al2O3) .

All plain film nanolaminate samples are deposited using the ALD process
parameters discussed in Section 3.1. The films are deposited on either
170 µm thick borosilicate glass or silicon wafers used as substrates. Prior to
deposition, the substrates are cleaned with acetone and, subsequently, dry-
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Figure 4.1: Schematic illustration of
the nonlinear nanolaminate cycle
sequence. S cycles of Al

2
O

3
serve

as the seed layer. On top of that
macrocycles given by a sequence
of Z × ZnO and I × Al2O3 are re-
peated M times to arrive at the de-
sired thickness.

S

I
Z

M×
ZnO

Al2O3

Al2O3

substrate

blown with nitrogen. The film growth on the back surface of the substrates
is avoided by using high temperature resistant masking tape that is removed
after deposition.

4.1.2 Structural and Nonlinear Optical Characterization

With the nanolaminate design and fabrication outlined above, we want to
verify the underlying assumptions for the used materials and process param-
eters both in terms of the structural and also nonlinear optical properties.
Scanning electron microscopy, scanning transmission electron microscopy
(STEM), and XRD are employed for the structural analysis. The generated
second-harmonic power, P2ω, for a fundamental beam that is incident at an
angle of 45° is divided by the squared film thickness, d2, and used as a figure
of merit for the optical second-order nonlinear response.

SEM is used for visual inspection of the deposited films. We study the
growth of crystallites in pure ZnO films with 70, 175, and 350 ZnO cycles
deposited on silicon wafers. As expected an increase of the crystallite size
with the total film thickness can be qualitatively observed, if the growth is
not limited, e. g., by intermediate layers (see Figure 4.2a-c). The structural
effect of the intermediate Al

2
O

3
layers can be studied directly by inspecting

the cross section of nanolaminates with M = 7 macrocycles, Z = 50 ZnO
cycles, and I = 10, 50, and 100 intermediate layer cycles (see Figure 4.2d-f).
Especially for I = 50 and I = 100 a clear laminate structure is visible suggest-
ing a disruption of crystallite growth. Using SEM this observation is hard
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Figure 4.2: SEM image of ALD grown thin films. a-c) ZnO films with
Z = 70, 175, and 350 cycles, respectively, viewed from above. An increase
in ZnO crystallite size is visible for increasing Z. d-f) Cross section of
nanolaminates with M = 7 macrocycles, Z = 50 ZnO cycles, and I = 10,
50, and 100 intermediate Al

2
O

3
cycles, respectively. The substrate appears

black and the top of the film is visible in the upper part of the images due
to slightly tilted sample. A clear separation of individual layers is visible
for I = 50 and I = 100 indicating a disruption of ZnO crystallite growth in
these samples.

to validate for the sample with I = 10 intermediate cycles corresponding
to an Al

2
O

3
layer thickness of approximately 1.2 nm. STEM allows imaging

the individual, well-separated layers even for this sample (see Figure 4.3a).
Additionally, information on the elemental composition of the film can be
obtained from energy-dispersive X-ray (EDX) maps depicted in Figure 4.3b-d.
The Zn and Al maps reveal a modulation that is in agreement with the layers
visible in Figure 4.3a. As expected, the O map shows a constant contribution
in the whole nanolaminate.

The investigation using SEM and STEM seems to confirm some of the initial
assumptions, but is difficult to interpret and analyze quantitatively. There-
fore, θ/2θ XRD measurements (see Section 3.5) are performed on samples
with three different nanolaminate sequences to study the effects the seed and
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a b c d

5 nm 5 nm 5 nm 5 nm

Zn Al O

Figure 4.3: a) Cross section of a nanolaminate with M = 7 macrocycles,
Z = 50 ZnO layer cycles, and I = 10 intermediate Al

2
O

3
layer cycles

taken using STEM. The separation of individual layers is visible despite an
estimated intermediate layer thickness of only 1.2 nm. b-c) Elemental maps
obtained from STEM-EDX measurements showing the integrated signal
at the Zn – K, the Al – K, and the O – K edge, respectively. Both Zn and Al
show the expected modulations, whereas, the O signal is homogeneous in
the whole nanolaminate. Adapted from Reference [148].

intermediate Al
2
O

3
layers have on the ZnO crystallites. The nanolaminates

are fabricated on both glass and silicon wafer substrates. The latter facilitate
the determination of the film thickness by means of ellipsometry. Sample
A is a pure ZnO film with a total of 700 cycles deposited on a substrate
and serves as a reference. A total thickness of d = 95.1 nm is determined
using ellipsometry. The resulting mean growth per cycle of ZnO is merely
0.14 nm/cycle as compared to the value of 0.19 nm/cycle determined for the
bulk growth per cycle (see Section 3.1). The reason is a nucleation delay that
leads to a reduced growth per cycle of ZnO on the untreated substrate [117].
It is attributed to the strong sensitivity of ZnO growth to the substrate prop-
erties mentioned previously.

In Sample B an Al
2
O

3
seed layer with S = 50 cycles is introduced beneath

the ZnO film. This is supposed to reduce the substrate sensitivity and foster
the growth of crystallites with a predefined orientation. A first hint sug-
gesting that this approach works is the total film thickness of d = 73.3 nm
resulting from the deposition of only 350 ZnO cycles on top of the seed
layer. This value is in excellent agreement with the thickness estimated from
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Sample Cycle sequence Measured thickness

A 700× ZnO 95.1 nm

B 50×Al2O3 + 350× ZnO 73.3 nm

C 50×Al2O3 + 7× (50× ZnO + 10×Al2O3) 79.7 nm

Table 4.1: Samples used to study the influence seed and intermediate Al
2
O

3

layers have on the ZnO crystallite growth. The mean growth per cycle in
sample A is way lower as compared to sample B and C due to a nucleation
delay of ZnO on the untreated substrate.

the bulk growth per cycle of the constituent materials. In contrast to ZnO,
Al

2
O

3
forms stable amorphous films and adheres perfectly well to all kind

of substrates [103]. ZnO in turn shows no nucleation delay when grown on
Al

2
O

3
.

Sample C is designed to investigate the effect of intermediate Al
2
O

3
layers

on the film properties. Starting from the sequence of sample B, the ZnO
film is subdivided by introducing additional Al

2
O

3
layers. We repeat the

macrocycle of Z = 50 ZnO cycles followed by I = 10 Al
2
O

3
cycles M = 7

times. The value of M is chosen such that the total thickness of the nonlinear
material, i. e., ZnO, remains the same as in sample B. Sample C has a total
thickness of d = 79.7 nm that is again in good agreement with the value esti-
mated from the bulk growth per cycle. The cycle sequences and thicknesses
of the three samples are summarized in Table 4.1.

The XRD θ/2θ measurements of the three samples are depicted in Figure 4.4a.
A quadratic baseline was subtracted from each data set. As discussed in
Section 3.5 only lattice planes parallel to the film surface give rise to a signal
in the given measurement configuration. In our samples we can identify
three Bragg peaks. Using ZnO-powder diffraction measurements from litera-
ture (gray bars) as a reference, we can ascribe these peaks to contributions
from (100), (002), and (101) ZnO crystallite planes oriented parallel to the
substrate surface. The (100) and (101) orientations indicate the presence
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Figure 4.4: Structural and nonlinear optical characterization to investigate
the effects of seed and intermediate Al

2
O

3
layers on the ZnO crystallite

growth based on the samples A, B, and C (see Table 4.1). a) XRD data de-
rived from θ/2θ measurements reveals the structural effects. The observed
Bragg peaks stem from crystallites with (100), (002), and (101) orientation
illustrated by the respective insets. Relative intensities from ZnO-powder
diffraction measurements (gray bars) are depicted for comparison [168].
The Al

2
O

3
seed layer greatly fosters the growth of ZnO crystallites with

(002) orientation, i. e., with their optical axis perpendicular to the substrate,
in samples B and C. The additional intermediate Al

2
O

3
layers in sample C

limit the crystallite size perpendicular to the substrate plane and suppress
the growth of crystallites with orientations other than (002). b) The gener-
ated second-harmonic power, P2ω, divided by the measured film thickness,
d, squared is given relative to sample A and used as a figure of merit for
the nonlinear optical performance. P2ω/d2 increases by nearly 40 times
going from the pure ZnO film (sample A) to the nanolaminate with seed
and intermediate Al

2
O

3
layers (sample C). Adapted from Reference [148].

of crystallites that have their optical axis (c-axis) in the plane of the film
(see insets in Figure 4.4a). Due to the amorphous nature of the underlying
surface as it is found in all samples, there is no preferential direction in the
surface plane. Therefore, there is no reason for these crystallites to show a
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preferential orientation leading to optical axes pointing into random direc-
tions. The situation is different for crystallites with (002) orientation. They
have their optical axis perpendicular to the substrate surface and, therefore,
show a well-defined orientation throughout the whole film.

According to the XRD data the pure ZnO film (sample A) consists mainly
of crystallites with (100) and (101) orientation. The (002) planes should
give a signal at a Bragg angle of 34.4°, but are barely visible in this sample.
The picture changes dramatically once the Al

2
O

3
seed layer is introduced in

sample B: The XRD signal from crystallites with (002) orientation becomes
the main contribution. At the same time, the signal from the two other
orientations decreases. This validates the idea to control the orientation of
ZnO crystallites by means of an amorphous Al

2
O

3
seed layer. Introducing

additional Al
2
O

3
intermediate layers in sample C, has two further effects:

First, the growth of crystallites with (100) and (101) orientation is strongly
suppressed and peaks at the respective Bragg angles cannot be identified
anymore. The orientation of ZnO crystallites with their optical axis perpen-
dicular to the substrate is enforced throughout the whole film. Second, the
remaining Bragg peak associated with (002) crystallite planes is broadened
in samples C as compared to sample B. Using the Scherrer equation (see
Equation 3.21) one can estimate the lower limit for the crystallite size, τ,
which we identify with the size of the domain coherently contributing to the
scattered signal, from the width of the (002) peak. The FWHM of the Bragg
peaks is determined by fitting a Gaussian to the data after the subtraction
of a quadratic baseline. A change in the crystallite size from τ = 15.1 nm
in sample B to τ = 8.4 nm in sample C is observed. This change is in good
agreement with the estimated thickness of 9.3 nm for the individual ZnO
layers in sample C. This finding confirms that the growth of ZnO crystallites
is indeed disrupted and that their size can be controlled by introducing
intermediate Al

2
O

3
layers.

The XRD measurements show structural changes that are in agreement with
our expectations. The next step is to determine the effects these structural
changes have on the nonlinear optical performance of the thin films. To
this end we measure the generated second-harmonic power, P2ω, from sam-
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ples A, B, and C using the setup depicted in Figure 3.5 (see Section 3.4).
The p-polarized fundamental is incident at an angle of ϑ = 45° with re-
spect to the surface normal and a mean power of 100 mW. The generated
second-harmonic power increases with the square of the sample thickness
for propagation lengths that are well below the coherence length (see Equa-
tion 2.27). Therefore, we use the second-harmonic power divided by the
film thickness, d, squared as a figure of merit to take different sample thick-
nesses into account (see Figure 4.4b). The seed layer fosters the growth of
well-oriented crystallites and results in an increase of P2ω/d2 by more than
three times from sample A to sample B. The improvement is even more
pronounced in sample C that shows a signal that is nearly 40 times larger
than that of sample A. On a structural level we ascribe this enhancement
to an optimized crystallite size maximizing the contribution from grain
boundaries and interfaces. Additionally, the intermediate Al

2
O

3
layers can

be regarded as seed layers in the depth of the nanolaminate that promote
crystallites with a well-defined orientation, reduce stacking faults, and lead
to homogeneous effective properties.

The generated second-harmonic signal from ZnO/Al
2
O

3
nanolaminates is

further analyzed to exclude possible sources of error. First of all a quadratic
relation between the fundamental and the second-harmonic power is ex-
pected for thin films (see Equation 2.27). Exemplary measurements on four
samples with different values of the number of macrocycles, M, are depicted
in Figure 4.5a and confirm the quadratic dependence. Using a PMT for
detection one lacks the spectral sensitivity to make sure the detected signal
is at the proper wavelength and not contaminated. Therefore, we perform ex-
emplary measurements of the second-harmonic signal using a spectrometer.
For the fundamental tuned to a center wavelength of 800 nm, the generated
second-harmonic signal is indeed centered around a wavelength of 400 nm
(see Figure 4.5b). Other contributions to the signal do not exist. Finally, we
expect a purely p-polarized second-harmonic given a fundamental beam
with identical polarization and considering the symmetry of the second-order
susceptibility tensor (see Equations 3.18). Figure 4.5c shows a polarization
resolved measurement of the generated signal that is in excellent agreement
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Figure 4.5: Optical characterization of the second-harmonic generated in
ZnO/Al

2
O

3
nanolaminates. a) The quadratic dependence of the second-

harmonic power, P2ω on the fundamental power, Pω, is confirmed for
nanolaminates with different values of the number of macrocycles, M. The
black curves are quadratic fits to the data. b) Spectral analysis of the
generated second-harmonic signal showing the expected position at 400 nm
for a fundamental signal centered around 800 nm. c) The polarization
dependence of the normalized second-harmonic power (red dots) is in
agreement with the anticipated behavior of a p-polarized beam (blue curve).

with the predictions.

4.1.3 Systematic Nanolaminate Sequence Sweeps

Having demonstrated the validity of the initial assumptions that lay the
foundation for the nanolaminate metamaterial design, systematic parameter
sweeps are performed to get a better understanding and identify the optimal
cycle sequence. One has to keep in mind that the individual optimized layer
thicknesses discussed in the following are specific to the used ALD system
and process parameters. Nevertheless, the underlying mechanism and the
rational design can be widely applied to tailor the desired nonlinear response
for other systems and fabrication parameters as well. The characterization is
again based on the measurement of the second-harmonic power generated
for excitation conditions that are identical to the ones discussed before. The
quantity P2ω/d2 is used as a figure of merit and the film thickness, d, is
estimated from the growth per cycle of ZnO and Al

2
O

3
as it is given in
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Section 3.1. Our starting point is the cycle sequence of sample C. Variations
of the number of seed layer cycles, S, the intermediate layer cycles, I, and
the cycles in the individual ZnO layers, Z, are performed.

The influence of the seed layer is studied by varying the number of seed
layer cycles, S, in six nonlinear nanolaminate samples following the sequence
S×Al2O3 + 7× (50× ZnO + 10×Al2O3). The generated second-harmonic
power, P2ω, increases with S and saturates around S = 100 for an estimated
Al

2
O

3
seed layer thickness of 12 nm (see Figure 4.6a). We ascribe this behav-

ior to the reinforced growth of crystallites with their optical axis oriented
perpendicular to the substrate. Additionally, the influence the substrate
has on the ZnO growth decreases with increasing seed layer thickness and
saturates once this influence is completely screened. We aim at the design
of a nonlinear material with maximized effective nonlinear properties and,
hence, the sample with S = 50, showing the largest value of P2ω/d2, is
optimal for our purpose.

The number of intermediate layer cycles, I, is varied for samples with the
sequence 50×Al2O3 + 7× (50× ZnO + I ×Al2O3). A rapid increase of the
second-harmonic power, P2ω, is observed when going from I = 0 to 7 cy-
cles (≈ 0.8 nm) and keeps on increasing more slowly up to I = 100 (see
Figure 4.6b). The rapid increase for thin layers suggests that a minimum
number of intermediate layer cycles, I, is necessary to stop the crystallite
growth and enforce a preferential growth orientation in the subsequently
deposited ZnO layer. This finding is in good agreement with the previously
found minimal Al

2
O

3
layer thickness of 0.5 nm that was shown to be neces-

sary to disrupt the growth between adjacent zirconium or hafnium oxide
layers [165]. Despite the fact that P2ω keeps increasing with increasing I, we
find a maximum of our figure of merit, P2ω/d2, for I = 10 and, hence, will
use this optimized value in the following.

Finally, the number of ZnO cycles, Z, in each layer is varied while adjusting
the number of macrocycles, M, such that the total number of ZnO cycles is
fixed to 350. This allows for a comparison of sequences that have the same
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Figure 4.6: a-c) Parameter sweeps used to optimize the nonlinear nanolam-
inate cycle sequence and get a deeper understanding of the individual
influencing factors. For each sample the generated second-harmonic power,
P2ω, for a p-polarized fundamental beam that is incident at an angle of 45°
and with a mean power of 100 mW is measured. The quantity P2ω/d2 with
the estimated film thickness, d, is used as the figure of merit for optimization.
Based on the sequence of sample C, a) the number of Al

2
O

3
seed layer cycles,

S, b) the number of cycles in each intermediate Al
2
O

3
layer, I, and c) the

number of cycles per ZnO layer, Z, for a fixed total number of 350 ZnO cy-
cles are varied. c) Generated second-harmonic power, P2ω, from samples fol-
lowing the optimized sequence 50×Al2O3 + M× (50× ZnO + 10×Al2O3).
The number of macrocycles is varied from M = 7 to 168. The measured
data (blue dots) is in excellent agreement with theoretical calculations (red
curve) based on the assumption of effective material properties. The error
region (red area) stems from slight variations of refractive indices measured
for the individual samples. Adapted from Reference [148].

total nonlinear material thickness. The fabricated nanolaminates follow the
cycle sequence 50×Al2O3 + 350/Z× (Z× ZnO + 10×Al2O3). Figure 4.6c
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shows that the generated second-harmonic power, P2ω, is small for samples
with a large number of macrocycles and thin ZnO layers, e. g. M = 35 and
Z = 10. Interestingly the same is also true for just one macrocycle (M = 1)
and a ZnO layer with Z = 350 cycles. The reason is that, on the one hand,
the crystallites have to be sufficiently distinct to show an optical nonlinearity
at all. By stopping the ZnO crystallite growth through the introduction of an
intermediate Al

2
O

3
layer after just a few cycles, prevents them from growing

to the necessary size. On the other hand, the probability for stacking faults
increases with the thickness of the individual ZnO layers given by Z [161].
This leads to the growth of crystallites with undesired orientations and
the incorporation of defects. Additionally, the increased crystallite size is
accompanied by a decreased contribution of grain boundaries and interfaces
to the effective second-harmonic susceptibility [163]. In between these two
extrema, there is a sweet spot for the thickness of the individual ZnO layers.
The contributions to the second-order nonlinearity from ZnO crystallites and
from interfaces and grain boundaries have to be balanced while, at the same
time, ensuring a proper crystallite alignment. For the given configuration
the second-order nonlinear response in terms of both P2ω and P2ω/d2 is
maximized for Z = 50 cycles per ZnO layer. Therefore, we conclude that the
nanolaminate sequence optimized for a strong second-harmonic generation
under the given conditions is 50 × Al2O3 + 7 × (50× ZnO + 10×Al2O3)

and, hence, identical to the sequence used for sample C.

4.1.4 Effective Material Hypothesis

The nonlinear optical properties in thin films usually change with their
thickness as a consequence of the mechanisms discussed above. In contrast,
a proper metamaterial is expected to show effective material properties ap-
proaching a constant value for an increasing number of unit cells. We expect
to find a similar behavior in our nanolaminates that is enabled through the
nanolaminate design and the role the individual layers with a thickness well
below the interacting wavelengths play.

To investigate this effective material hypothesis, we fabricate samples fol-
lowing the sequence 50×Al2O3 + M× (50× ZnO + 10×Al2O3) with the
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number of macrocycles going from M = 7 to 168. The second-harmonic
power, P2ω generated in a nonlinear material is proportional to the squared
thickness for propagation lengths that are well below the coherence length
Lc. For second-harmonic generation with a non-zero phase mismatch a
deviation from this behavior occurs when the thickness, d, approaches the
coherence length, Lc. The direction of energy flow that is initially going
from the fundamental to the second-harmonic wavelength is reversed and
oscillations of P2ω as a function of d occur. Figure 4.6d shows the second-
harmonic power, P2ω, generated from samples with different thicknesses, d,
for the excitation conditions also used in the previous parameter sweeps.
We compare the experimental data with expectations for P2ω based on the
theoretical model presented in Reference [139]. Due to slight fluctuations in
sample fabrication and the deviations from the effective material limit for
small values of M, there is a variation in the effective dispersion relation
determined from ellipsometry measurements on the individual samples. A
theoretical curve for the generated second-harmonic power, P2ω, is, therefore,
calculated for each of the eight samples with their respective effective mate-
rial parameters. The average of these eight curves is scaled with one global
parameter to best fit the measured data (red curve). The error region (red
area) is estimated from the deviations of the individual curves. The excellent
agreement between the experimental data and the theoretical model based
on effective material properties confirms the effective material hypothesis
and indicates that we are in the bulk metamaterial limit (see Section 2.7).
Therefore, our nonlinear nanolaminate design overcomes the shortcomings
of conventional nonlinear thin films as it ensures constant effective nonlinear
optical material properties that are almost insensitive to the used substrate
and the total thickness of the deposited film.

4.1.5 Determining the Second-Order Susceptibility Tensor

Having found the optimized nanolaminate metamaterial sequence, we want
to determine the full second-order susceptibility tensor, χ(2). The mea-
surements at a mean fundamental power of 200 mW are performed on a
sample with M = 28 macrocycles and the overall sequence 50×Al2O3 +

28× (50× ZnO + 10×Al2O3). Figure 4.7 depicts a typical measurement
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Figure 4.7: Typical measurement used to determine the elements of the
second-order susceptibility tensor on a sample with M = 28. The generated
s-/p-polarized second-harmonic power, Ps/p

2ω, air, is measured for varying
polarization angles, ϕ, of the fundamental beam. The mean fundamental
power is set to 200 mW incident at a fixed angle of ϑ = 45°. The three
independent second-order susceptibility tensor elements are determined by
fitting a theoretical model (see Section 3.4) to the data resulting in χ(2)

xxz =

1.6 pm
V , χ(2)

zxx = 1.5 pm
V , and χ(2)

zzz = −4.0 pm
V . Adapted from Reference [148].

used for the nonlinear characterization following the method described in
Section 3.4. To ensure reproducibility, the measurement is repeated 23 times
at different spots on two nominally identical samples. The values for the
three independent second-order susceptibility tensor elements (see Equa-
tion 3.17) derived for each measurement show a relative standard deviation
of no more than 10 % and their mean values are

χ(2)
xxz = 1.6 pm

V ,

χ(2)
zxx = 1.5 pm

V ,

χ(2)
zzz = −4.0 pm

V .

(4.1)

The fact that the tensor elements χ(2)
xxz and χ(2)

zxx are not identical shows that
Kleinman symmetry is not valid and, therefore, dispersion effects are not
negligible for a fundamental wavelength of 800 nm (see Section 3.4).
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4.1.6 Discussion

The presented results successfully demonstrate the rational design and tun-
ability of a second-order nonlinear optical nanolaminate metamaterial. The
magnitude of the derived second-order susceptibility tensor elements is
comparable to well-established bulk crystals [141]. At the same time, our
approach provides all the benefits accompanied by conformal thin film de-
position using ALD and clearly exceeds the values previously obtained for
ALD-grown ABC-type nanolaminates [95, 101]. Nevertheless, there is still
room for improvement and fine tuning.

Our approach was adopted by the group of Roel Baets resulting in the fabri-
cation of ALD-grown ZnO/Al

2
O

3
films showing even larger values of the

second-order susceptibility tensor elements. For ZnO grown on an Al
2
O

3

seed layer a value of χ(2)
zzz = (−15± 4)pm/V was derived [169]. The Al

2
O

3

seed layer is grown under similar conditions, from the same precursors,
and with the same thickness as in our structures. Therefore, we ascribe the
difference in the nonlinear response to the quality of the deposited ZnO
layer. The large values for the second-order susceptibility were measured for
a ZnO film deposited by means of plasma-enhanced ALD using DEZ and
an oxygen plasma at a temperature of 300 ◦C. These films seem to show a
superior nonlinear response that is in agreement with the higher structural
quality observed in films grown by plasma-enhanced ALD [105]. Despite
the differences in the used ALD system, it was found that the introduction
of an Al

2
O

3
seed layer strongly enhances the second-harmonic response,

thereby, once again confirming our basic idea and the general applicability
of this approach. Unfortunately, systematic parameter sweeps to identify an
optimal cycle sequences for this system were not performed.

Another opportunity for improvement lies in the unwanted n-type doping in
ALD deposited ZnO films that leads to absorption in the infrared wavelength
regime [170]. This could especially hinder the use in waveguide applications
where long propagation distances are quite common. The process parameters
can be optimized to decrease the carrier concentration by replacing the H

2
O

precursor with ozone (O
3
) [171]. Another way is once again the use of
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plasma-enhanced ALD that was shown to result in more stoichiometric ZnO
films and a reduced intrinsic carrier concentration as compared to thermal
ALD [105].
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4 .2 3d nanolaminated photonic crystals

4.2 3D Nanolaminated Photonic Crystals

The second part of the results chapter covers the fabrication and characteriza-
tion of 3D photonic crystals that are conformally covered with a second-order
nonlinear nanolaminate. We will focus on the process of second-harmonic
generation in these structures that we call 3D nanolaminated photonic crys-
tals or, equivalently, 3D metacrystals. The fabrication, characterization and
the finite element calculations were performed by the author. A. Abass pro-
vided guidance with the latter. SEM and focused-ion-beam (FIB) milling was
done by the author and P. Brenner, respectively. The results were interpreted
by the author together with A. Abass, H.-H. Hsiao, C. Rockstuhl, and M.
Wegener.

3D nanolaminated photonic crystals are based on 3D photonic crystals that
are combined with a conformally deposited nanolaminate metamaterial
used to change the properties and extend the functionality of the resulting
structure. The 3D photonic crystals serve as polymer templates and are
fabricated by means of 3D DLW. In combination with the conformal depo-
sition of ALD-grown, nonlinear ZnO/Al

2
O

3
nanolaminates, the polymer

template dictates a complex spatial distribution of the second-order non-
linear susceptibility tensor. This distribution can be adjusted by changing
the geometrical parameters of the template and, thereby, tune the interplay
of nonlinear nanolaminate and photonic crystal with the goal to achieve
enhanced second-order nonlinear interactions in 3D nanolaminated photonic
crystals.

4.2.1 Sample Design and Fabrication

The decision to use photonic crystals as polymer templates is motivated
in their unique properties and beneficial effects on nonlinear interactions
described in Section 2.5. Among 3D photonic crystals the so-called woodpile
structure is quite common as it is compatible with layer-by-layer fabrica-
tion. Using 3D DLW we are not limited by such restrictions, nevertheless,
the woodpile photonic crystal is also popular with this fabrication method
and is quite versatile in its applications [80, 125, 172, 173]. We will base
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our structures on 3D woodpile photonic crystals with different geometrical
parameters to demonstrate the effects of the underlying template on the
resulting nonlinear response.

A woodpile photonic crystal consists of periodically arranged rods with the
horizontal rod spacing denoted by a. The individual rod layers are stacked
on top of each other. One commonly used scheme has adjacent layers rotated
by an angle of 90° with respect to each other. Additionally, two consecutive
parallel rod layers are shifted horizontally by a/2. In stacking (axial) direc-
tion the structure repeats itself after four layers and the periodicity is given
by the axial lattice constant, c. In general, the woodpile photonic crystal is
described by a face-centered tetragonal lattice [36]. The special cases of a
face-centered and a body-centered cubic lattice are given for an axial lattice
constant to rod spacing ratio, c/a, of

√
2 and 1, respectively [174, 175].

In 3D DLW the rods of woodpile photonic crystals are, usually, written as
individual lines. As a consequence of the elongation of the 3D DLW writing
focus in the axial direction, the rods have an approximately elliptical cross
section. The rod semiaxes are equal in the lateral direction: rx = ry. The
axial semiaxis is determined by the aspect ratio as rz = rx ·AR. AR ≈ 2.5 is
derived using FIB milling and is in agreement with values typically found in
3D DLW [126]. The woodpile photonic crystals are fabricated on 170 µm thick
borosilicate glass substrates using the DLW setup described in Section 3.2.
The photoresist is based on PETA without an additional photoinitiator and
is excited at a wavelength of 405 nm. The mean writing power, P, at the
back-focal plane of the objective lens is varied around 1.2 mW. An increase
(decrease) in writing power leads to larger (smaller) dimensions of the rod
semiaxes and, therefore, allows for the fabrication of templates with different
filling fractions, f . The rod spacing, a, takes values around a = 675 nm
and is chosen such that the stop band of the resulting 3D nanolaminated
photonic crystal lies in the regime that can be investigated by the setup
used for nonlinear characterization. The axial lattice constant, c, is given in
terms of the ratio c/a that we choose to be even smaller than the value for
a body-centered cubic lattice. The reasons for this choice will be discussed
and explained below. If not specified otherwise, the number of axial periods
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is fixed to Nz = 6 and the footprint is 70 µm× 70 µm. After 3D DLW the
polymer templates are developed in mr-Dev 600 (micro resist technology)
for 15 minutes to remove the unpolymerized photoresist remains. To avoid
damage during the evaporation of the remaining solvents, the structures are
transfered to acetone and critical point dried (Leica, EM CPD030).

The next step is the conformal ALD growth of the previously discussed
optimized nonlinear nanolaminate sequence. We deposit two nanolaminate
macrocycles, M, resulting in a total ALD layer thickness, dALD, of approx-
imately 27 nm. An alternative to the deposition of nonlinear ZnO/Al

2
O

3

nanolaminates are nonlinear ABC-type nanolaminates (see Section 2.7). In
deed, some experiments were conducted for this configuration as well. Nev-
ertheless, the way lower second-order susceptibility of ABC-type nanolam-
inates leads to a low signal-to-noise ratio and complicates measurements.
Therefore, we will focus on a consistent dataset based solely on structures
with ZnO/Al

2
O

3
nanolaminates in the following. To protect the polymer

template and, at the same time, allow for a conformal growth on the complex
3D structure, we follow the ALD recipe for 3D polymer templates discussed
in Section 3.1 at a deposition temperature of 150 ◦C . The nanolaminate
growth is limited to the substrate side holding the polymer template by
masking the backside with high temperature resistant tape that is removed
after deposition. A 3D nanolaminated photonic crystal is schematically
illustrated in Figure 4.8.

4.2.2 Structural and Linear Optical Characterization

The fabricated 3D nanolaminated photonic crystals are investigated using
SEM and FIB milling to make sure the quality aligns with the expectations
and to extract geometrical parameters for the use in FEM calculations. To
avoid charging effects during image taking the samples are sputter coated
with a 10 nm thick gold layer. The polymer template parameters are identical
with the ones used in the optical experiments. Figure 4.9a depicts the SEM
image of a structure with a rod spacing of a = 675 nm and a footprint of
70 µm× 70 µm. It suggests a highly homogeneous structure quality without
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Figure 4.8: Scheme of a 3D nanolaminated woodpile photonic crystal with
rod spacing a and axial lattice constant c. The structure has Nz = 6 unit cells
in the axial direction and is periodically continued in x- and y-direction. The
woodpile photonic crystal consists of elliptical rods that are characterized
by the semiaxes rx, ry, and rz with rx = ry. A conformal nanolaminate
metamaterial layer with thickness dALD surrounds the polymer template.
Adapted from Reference [176].

the shrinkage effects that are often found in DLW structures. The reason lies
in the modified 3D DLW setup used for fabrication. The given woodpile pa-
rameters would be challenging for a standard DLW setup with an excitation
wavelength of 810 nm. As discussed earlier we use an excitation wavelength
of 405 nm and, thereby, are able to reduce the focus size by a factor of two.
The increased resolution allows for fabrication with an exposure dose, D,
that is clearly above the threshold dose, Dth. This leads to a higher degree of
cross-linking in the polymer and reduced shrinkage effects as compared to
woodpile photonic crystals written near the threshold dose, Dth.

For FIB milling a total of M = 20 nanolaminate macrocycles are deposited
onto the DLW-written woodpile photonic crystal. The result is a solid struc-
ture that consists of the polymer template and the ALD-grown film. This
way we can ensure the stability necessary for FIB milling is given. Figure 4.9b
shows the bulk of a structure with Nz = 6 axial periods (24 layers). The poly-
mer appears black and shows rods that are well separated both in the lateral
and the axial direction. The DLW writing power used for this structure lies
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Figure 4.9: a) Scanning electron micrograph showing a fabricated 3D
nanolaminated woodpile photonic crystal with M = 2 deposited nanolami-
nate macrocycles. The depicted sample has a rod spacing, a, of 675 nm and
a footprint of 70 µm× 70 µm. b) To ensure the stability necessary for FIB
milling, the photonic crystal template is completely filled using ALD. In the
scanning electron micrograph the polymer and the ALD layer look black
and gray, respectively. An axial lattice constant of c = 540 nm is derived.
Adapted from Reference [176].

in the center of the power range used to fabricate the 3D nanolaminated
photonic crystals discussed in the following. The derived mean values of
the geometrical parameters for this configuration are: rx = 62 nm, AR = 2.5,
a = 675 nm, c = 540 nm, and c/a = 0.8. In the axial direction we find a
shrinkage of roughly 13 % when comparing the observed ratio of c/a to the
intended value of c/a = 0.92. We will take this into account by adjusting the
value of c/a for the fabricated structures in the following discussion using
the determined factor. Obviously, this correction factor is not the same for
all structures as the actual shrinkage will depend on the writing power and
the geometrical parameters. Nevertheless, an estimation based on a constant
factor is sufficient for our purposes as the value is only used for a qualitative
comparison of experimental results and numerical calculations.

SEM and FIB are good ways to verify that the parameters are in the specified
range. Nevertheless, these techniques are time consuming and, afterwards,
the structures cannot be used for further experiments. Additionally, they
give no direct measure of the optical performance. Therefore, we use linear
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Figure 4.10: a) Optical microscope image of woodpile photonic crystals taken
in reflection mode. The samples are fabricated at different writing powers,
P, (horizontal) and rod spacings, a, (vertical). The colorful appearance
indicates the existence of a stop band. Underexposed structures look grayish
or inhomogeneous. b) Linear transmittance, T, of a woodpile photonic
crystal before and after the conformal deposition of two macrocycles of the
nonlinear nanolaminate. The ALD-grown film results in a spectral shift
towards longer wavelengths, but shows barely any effects on the form of
the spectrum otherwise. The good structural quality both before and after
ALD is confirmed by the high transmittance below the stop band.

optical methods to further characterize the structures. Both the "raw"and
conformally coated woodpile photonic crystals are expected to exhibit a stop
band. In this wavelength region, that shifts with the fabrication parameters,
the structures are supposed to show a high reflectivity. Therefore, a suitable
set of writing parameters and eventually occurring fabrication problems can
be easily identified at a glance using an optical microscope in reflection mode.
Figure 4.10a shows such a micrograph of structures fabricated at different
writing powers, P, (horizontal) and with different rod spacings, a, (vertical).
The colorful appearance indicates the existence of a stop band. Structures
written at too low powers are underexposed and unstable, Therefore, they
show no or just inhomogeneous reflections. At writing powers that are
chosen too high, the rods are no longer separated in the axial direction.
Again the structures look grayish (not depicted).

This qualitative approach is supplemented by measurements of the linear
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transmittance, T. We use the setup described in Section 3.3 to analyze the
structures both before and after the ALD step. Exemplary measurements
for one structure are depicted in Figure 4.10b. After ALD the stop band
lies in the low transmittance region slightly below 1000 nm. The excellent
structure quality both before and after ALD is confirmed by the high trans-
mittance (T ≥ 80 %) that is observed in the short-wavelength regime below
the stop band. We find a spectral shift by approximately 120 nm towards
longer wavelengths after the conformal deposition of two macrocycles of
the nanolaminate metamaterial. Otherwise, the spectrum remains more or
less unchanged. This behavior is in good agreement with our expectations:
The 3D nanolaminated photonic crystal is very similar to the plain polymer
template, but with increased mean refractive index and filling fraction.

4.2.3 Nonlinear Optical Characterization

The interplay of 3D woodpile photonic crystals and nonlinear nanolami-
nate metamaterials is expected to result in a spectrally dependent nonlinear
response of the composite structure that is based on either phase match-
ing or reinforced light-matter interactions provided by the photonic crystal
template (see Section 2.5). The goal is to identify the involved mechanisms
and, thereby, get a deeper understanding of 3D nanolaminated photonic
crystals. To this end, we use the setup presented in Section 3.4 and mea-
sure the spectrally and diffraction order resolved second-harmonic power
from our structures by imaging the back-focal plane of the objective lens
onto the entrance slit of a spectrometer. The emitted signal is compared to
the performance of the plain nonlinear film to compensate for dispersive
properties of the setup and the second-order susceptibility tensor of the
nanolaminate metamaterial that was shown to break Kleinman symmetry
(see Section 4.1.5). Additionally, the strong variations of available excitation
power at different fundamental wavelengths are accounted for by dividing
the obtained data by the measured mean fundamental power, P, squared.
The resulting quantity will, nevertheless, be referred to as an intensity and
can be identified from the context and the given unit.

The second-harmonic response of the plain film necessary for the normal-
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ization is measured for each sample right next to the 3D nanolaminated
photonic crystals using p-polarized light incident at an angle of 45° with
respect to the surface normal. Figure 4.11a shows the spectral intensity
detected on the charge-coupled device array when the film is excited at a
fundamental wavelength of λF = 800 nm. As expected, there are no diffrac-
tion orders from the plain film and the only contribution to the signal stems
from the generated second-harmonic centered around 400 nm. To allow for
an easier interpretation, we omit the spatial information and sum over the
vertical reciprocal space axis. The result is the spectral intensity, I, for an
excitation at λF = 800 nm depicted in Figure 4.11b. This step is repeated for
111 different fundamental wavelengths in the range from 800 nm to 1020 nm
and gives the overlay of spectra shown in Figure 4.11c. It confirms the ne-
cessity for normalization: Despite the fact that the variation in fundamental
power, P, is already accounted for, the peak intensity, I, varies strongly for
different excitation wavelengths. The measured data is further compressed
by integrating the spectral intensity, I, in each second-harmonic peak. This
gives the generated second-harmonic intensity, I2ω, as a function of the
fundamental wavelength, λF, (see Figure 4.11d) that is used to normalize the
results obtained from 3D nanolaminated photonic crystals and allows for
comparing the nonlinear response at different wavelengths.

The general procedure used to analyze the second-harmonic generated from
3D nanolaminated photonic crystals is very similar to the one just described
for the nonlinear thin films, but also involves additional measurements to
study the effects arising from the interplay with the polymer template. We
use a fundamental beam that is polarized along the x-axis and incident at an
angle of 0° with respect to the surface normal. The mean fundamental power,
Pω, is set to 30 mW at λF = 800 nm. As mentioned earlier, the rod spacing, a,
in our structures is such that we expect to collect higher diffraction orders
of the generated second-harmonic. The emission characteristics of the struc-
tures in reciprocal space are studied by rotating the spectrometer grating to
its zeroth diffraction order. Figure 4.12a shows an example of the obtained
back-focal plane image for an excitation wavelength of λF = 964 nm. The
visibility of low intensity features is increased by using a scale that is linear
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Figure 4.11: a) Hybrid image of the nonlinear nanolaminate emission with
the wavelength, λ, on the horizontal and the reciprocal space on the vertical
axis. The film is excited at an incidence angle of 45° and a fundamental
wavelength, λF, of 800 nm. As expected, the generated second-harmonic is
centered around 400 nm. b) Spectrum of the generated signal that is derived
from panel a) by summing over the vertical reciprocal space axis and
dividing by the squared mean fundamental power. c) Overlay of emission
spectra derived in the same manner as b) but for 111 different fundamental
wavelengths, λF. d) The wavelength-dependent second-harmonic intensity,
I2ω, generated in the nanolaminate film is obtained from the peak area in
each spectrum shown in panel c) and depicted as a function of the incident
fundamental wavelength, λF.

up to an intensity of 15 cps/px/mW2 and saturated for larger values. The
limit of the circular field of view is clearly visible and determined by the
NA of the objective lens used to collect the emitted light. Five distinct spots
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Figure 4.12: Measurements on 3D nanolaminated photonic crystals excited
at the indicated fundamental wavelength, λF. a) For the spectrometer
grating rotated to its zeroth order, an image of the generated signal in
reciprocal space is obtained. The bright spots are ascribed to the zeroth
and first diffraction orders of the generated second-harmonic. Additionally,
a fluorescence background signal is visible. b-c) With the spectrometer
grating rotated to its diffraction order, a hybrid image with the wavelength
on the horizontal and the reciprocal space on the vertical axis is obtained.
In this spectrometer operation mode the same structure as shown in panel
a) is excited at two different fundamental wavelengths, λF. The red arrows
indicate the respective second-harmonic wavelength, λSH. The diffraction
orders of the generated second-harmonic signal are clearly visible and their
relative strength varies with λF. The fluorescence background extends from
λSH towards longer wavelengths. Adapted from Reference [176].

can be identified. They belong to the diffraction orders of the generated
second-harmonic signal and are denoted by (kx, ky) = (m, n) with m and n
being −1, 0, or 1. The diffraction orders with |m| = |n| = 1 can, in principle,
be emitted into air for excitation wavelengths below 960 nm. Nevertheless,
their contribution cannot be detected due to the limited collection angle of
the NA = 0.75 objective lens. Higher orders (m, n ≥ 2) are totally reflected
in the samples.
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Aside from the spots ascribed to the diffractions orders of the generated
second-harmonic, another contribution that is smeared out over the back-
focal plane is visible. Its origin can be easier understood when looking at
the spectral information. To this end we change the spectrometer operation
mode by rotating the grating to its diffraction order. Thereby, we attain
a hybrid image with the wavelength replacing the reciprocal space on the
horizontal axis. Additionally, the entrance slit is closed to 300 µm to limit
the detection to diffraction orders with (kx, ky) = (0, n). With this changed
operation mode we perform a measurement on the same structure and for
the same fundamental wavelength as previously (see Figure 4.12b). The
diffraction orders permitted into the spectrometer are still visible and extend
to cover a small wavelength range as expected from a second-harmonic
signal that is exited by fs-pulses. Extending to the long-wavelength side
of these peaks, a broad fluourescence background is visible. We ascribe
it to two-photon induced autofluorescence originating from the polymer
templates that is still non-zero despite the photoresist recipe containing no
photoinitiator (see Section 3.2). Interestingly, the fluorescence is barely visible
when the structure is excited at a different fundamental wavelength, e. g.,
λF = 840 nm, even though, at the same time, the intensity of the generated
second-harmonic is way larger (see Figure 4.12c). The scale for these two
measurements is chosen such that it is saturated at the same intensity to
allow for an easier comparison. Another difference shows in how the second-
harmonic intensity is distributed among the different diffraction orders.
Whereas the orders (0,−1) and (0, 1) are dominating for λF = 964 nm, the
main part of the intensity goes to the zeroth order, i. e., (0, 0), at λF = 840 nm.

These findings align with our expectation to find a nonlinear response that
strongly depends on the fundamental wavelength, λF, both in its intensity
and the emission pattern. To further study this behavior, we perform 111
measurements like the ones shown in Figure 4.12b and c for fundamental
wavelengths from 800 nm to 1020 nm. For the moment, the information on
the distribution to different orders will be discarded by summing over the
vertical reciprocal space axis. The resulting overlay of 111 3D nanolaminated
photonic crystal spectra for a structure with a rod spacing of a = 675 nm and
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a shrinkage corrected ratio of c/a = 0.8 is depicted in Figure 4.13a. Again
the fluorescence is clearly visible towards long wavelengths. We separate
the second-harmonic signal from the fluorescence background by fitting
a Gaussian to the peak and linearly interpolating the background in the
respective region. By integrating the spectral intensity in the fitted peak and
dividing it by the value obtained for the plain nonlinear film at the same
excitation wavelength, we, finally, derive the normalized second-harmonic
intensity, I2ω, (blue dots) as a function of the fundamental wavelength, λF,
(see Figure 4.13b). It describes the enhancement achieved by the complex
arrangement of the second-order susceptibility tensor dictated by the 3D
polymer template. The contribution of the integrated autofluorescence signal
is given by the green curve and depicted in the same graph together with the
linear transmittance spectrum (red curve) measured on the same structure.
Figure 4.13c shows the same measurements performed on a structure with
a = 700 nm and c/a = 0.80. As expected, both structures exhibit a strong
spectral dependence of the nonlinear response. Increasing the rod spacing
from a = 675 nm to 700 nm, results in a shift of both the linear and nonlinear
features by approximately 40 nm towards longer wavelengths. The enhance-
ment of the generated second-harmonic is observed in coincidence with
prominent features in the linear spectra of the 3D nanolaminated photonic
crystals. On the long-wavelength side of the stop band this enhancement
approaches values of 100.

An interesting observation can be made from the behavior of the fluorescence
signal. Due to the limited data in the long-wavelength regime, the absolute
value is not reliable and, especially, varies among structures with different
geometrical parameters. The fluorescence signal is broadband, incoherent,
and expected to be unpolarized. Nevertheless, in both the structures it fol-
lows the same behavior as the spectrally narrow, coherent second-harmonic
signal. Therefore, we conclude that the enhancement of second-harmonic
and two-photon induced autofluorescence signal must be based on similar
effects. Consequently, phase matching cannot be the dominant mechanism.
This finding rather points at reinforced light-matter interactions that influ-
ence both coherent second-harmonic generation and incoherent two-photon
excited autofluorescence.
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Figure 4.13: Measurements on 3D nanolaminated photonic crystals excited
at 111 different fundamental wavelengths each. a) Overlay of 111 spec-
tra showing the signal emitted from a structure with a = 675 nm. Each
spectrum is derived by summing over the vertical reciprocal space axis
in measurements of the type depicted in Figure 4.12b and c. The second-
harmonic peak and the broad fluorescence background are clearly visible. b)
Linear and nonlinear spectrum measured on a structure with a rod spacings
of a = 675 nm and c/a = 0.8. The nonlinear spectrum is derived from panel
a) by separately integrating the spectral intensity of the second-harmonic
and the fluorescence contribution. Subsequently, the second-harmonic in-
tensity is normalized to the plain film measurement. c) Same measurement
as in b), but for a structure with a = 700 nm. For both rod spacings, a,
the second-harmonic intensity, I2ω, (blue dots) and the corresponding fluo-
rescence (green curves) show a similar spectral behavior. The normalized
second-harmonic intensity, I2ω, approaches enhancements of two orders of
magnitude and is especially strong close to prominent features of the linear
transmittance spectra (red curves). Adapted from Reference [176].
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The measurements discussed so far suggest that both spectral position and
strength of the enhancement of second-harmonic generation depends criti-
cally on the geometrical parameters of the photonic crystal template. This
dependence is further investigated by varying the rod spacing, a, the fill-
ing fraction, f , and the ratio of axial lattice constant to rod spacing, c/a,
in the following. Due to the mutual influence these parameters have on
each other during fabrication, a systematic variation is not easily achieved.
Nevertheless, we have performed the sweeps such that the change in the
"deliberately"varied parameter is large as compared to the fluctuations of
the parameters that are kept constant.

Figure 4.14a shows the measurements on structures with rod spacings of
a = 650 nm, 675 nm, and 700 nm. All other writing parameters and the ratio
of c/a = 0.8 are fixed. Again the peak of the second-harmonic enhancement
shifts towards longer wavelengths for larger rod spacing, a, following the
shift in the linear spectra. As compared to the structures with nominally
identical ratios of c/a and with a = 675 nm and a = 700 nm depicted in Fig-
ure 4.13b and c, respectively, these spectra show stop bands at considerably
shorter wavelengths. Additionally, the maximum enhancement is way lower.
We ascribe both observations to the fact that the measurements depicted in
Figure 4.14a stem from structures that were fabricated at lower mean writing
powers resulting in smaller dimensions of the rod semiaxes and, therefore, a
smaller filling fraction, f .

The dependence of the maximum enhancement on the filling fraction is
further studied in 3D nanolaminated photonic crystals fabricated at different
DLW writing powers, P, and, hence, with different filling fractions, f , (see
Figure 4.14b ). We denote the structures written at values of P = 1 mW,
1.2 mW, and 1.3 mW by low, medium, and high filling fraction, f , respec-
tively. The rod spacing and the ratio of axial lattice constant to rod spacing
are nominally identical with a = 675 nm and c/a = 0.8, respectively. Just
looking at the peak value of the enhancement that coincides with the long-
wavelength side of the stop band, suggests that there is a sweet spot for
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Figure 4.14: Measurements on 3D nanolaminated photonic crystals with
different a) rod spacing, a, b) filling fraction, f , and c) ratio of c/a. The
second-harmonic enhancement peaks shift with the linear spectra. Addition-
ally, the maximum achievable enhancement varies for different geometrical
parameters. This is particularly evident for different values of c/a (panel
c). The enhancement decreases with increasing deviation from the optimal
value of c/a = 0.80 towards both larger and smaller values.
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the geometrical parameters. It also seems that these optimal parameter
values are different for enhancements observed at different spectral positions
with respect to the linear spectra: Whereas the maximum enhancement at
the long-wavelength edge of the stop band is observed for medium f , the
enhancement around the second pronounced transmittance dip reaches its
maximum value, even exceeding a factor of 100, for high f .

Finally, we vary the ratio c/a from a shrinkage-corrected value of 0.68 to
0.92 for a given rod spacing of a = 675 nm and otherwise presumably fixed
parameters. The measurements depicted in Figure 4.14c reveal the criti-
cal influence the ratio of axial lattice constant to rod spacing, c/a, has on
the second-harmonic enhancement. The linear spectra are not depicted for
the sake of clarity. Again only looking at the peak at long wavelengths,
the maximum enhancement increases with c/a and reaches an optimum
for c/a = 0.80. For even larger ratios the performance decreases rapidly.
After having excluded phase matching as the dominant mechanism lead-
ing to second-harmonic enhancement in our structures, this finding allows
to further specify the responsible mechanism leading to reinforced light-
matter interactions. Slow-light effects occurring at the edges of the stop
band seem to be a valid assumption at first, but they do not agree with the
observed behavior for varying values of c/a. The effect should persist for
values both larger and smaller than c/a = 0.8. Therefore, we ascribe the
second-harmonic enhancement in our structures to reinforced light-matter
interactions due to the excitation of resonant 3D nanolaminated photonic
crystal modes that lead to a strongly enhanced field strength. We will base
the further discussion on this assumption and will confirm it using numerical
calculations.

The measurements discussed so far have been performed without paying
attention to the polarization of the generated second-harmonic signal. Using
a polarizer and a half-wave plate as described in Section 3.4, we repeat
the measurement depicted in Figure 4.12b. Figure 4.15a and b show the
x- and y-polarized contributions to the generated intensity, respectively.
The fundamental signal is polarized along the x-direction and normally
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Figure 4.15: Polarization resolved version of the 3D nanolaminated photonic
crystal measurements shown in Figure 4.12b. The fundamental beam at a
wavelength of λF = 964 nm is polarized along the x-direction. The polarizer
allows a) x- and b) y-polarized light into the spectrometer. In agreement
with our expectations, the fluorescence is polarization independent. This
is not true for the signal associated with the generated second-harmonic:
Here, the y-polarized contribution is clearly dominant. Nevertheless, a
small part of the second-harmonic is also polarized along the x-direction
and shows a non-vanishing intensity in the zeroth diffraction order. In
the ideal case this contribution is forbidden by symmetry. Adapted from
Reference [176].

incident at a fundamental wavelength of λF = 964 nm. The main part of
the detected second-harmonic signal is polarized along the y-direction. As
before the zeroth order is weaker as compared to the diffraction orders
(0,−1) and (0, 1). What is surprising is the contribution of x-polarized
second-harmonic in the zeroth order: It is weak and just slightly stronger
than the the fluorescent background, but, nevertheless, non-zero. Based on
symmetry arguments there should be no second-harmonic emission into the
zeroth order with the same polarization as the fundamental beam incident
at an angle of 0° on a perfectly centrosymmetric 3D nanolaminated photonic
crystal. Therefore, we will have to reconsider our assumptions for the
numerical evaluation of the investigated 3D nanolaminated photonic crystals:
Possible imperfections in the structures and slightly oblique incidence angles
of the fundamental beam cause clearly measurable deviations from the ideal
case and have to be taken into account to develop a thorough understanding.
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4.2.4 Numerical Calculations

With the experimental results on the second-harmonic generation in 3D
nanolaminated photonic crystals at hand, we will use numerical calculations
to reproduce the findings, identify the responsible effects, and study the
influencing factors in more detail. The FEM models for the individual cal-
culations are set up as described in Section 3.6. Based on the experimental
observations, we were already able to exclude phase matching and slow-
light at the stop band edges as the dominant effects leading to enhanced
second-harmonic generation. Therefore, we will focus our discussion on
reinforced light-matter interactions due to resonantly excited 3D nanolami-
nated photonic crystal eigenmodes.

The lateral periodicity of the 3D nanolaminated photonic crystals leads to
coupling of eigenmodes to radiation modes in both air and substrate just
like in the case of 2D photonic crystal slabs and periodically modulated
slab waveguides (see Section 2.5 and 2.6). We will make use of this analogy
and develop a more intuitive understanding of the observed effects in our
structures based on the resemblance to the behavior of modes in asymmetric
slab waveguides. The eigenmodes that allow for coupling to radiation modes
in air and substrate are usually referred to as guided resonances rather than
as guided modes. We start by identifying these resonances using eigenmode
calculations. Due to their finite lifetime, guided resonances are numerically
described by a complex valued eigenfrequency, ω. From this eigenfrequency
we can determine the quality factor, Q, according to Equation 2.32. To allow
for a better comparison with experiments, we will discuss the numerical
results in terms of the free-space wavelength given by λ = c02π/Re{ω}. For
the moment, we will limit the calculations to modes that can be excited by
normally incident light mimicking the idealized experimental configuration.
Therefore, we look for Bragg diffracted eigenmodes with the appropriate
Floquet-Bloch periodic boundary conditions defined by kx = ky = m · 2π/a
and integer m (see Section 3.6). If not specified otherwise, the calculations
are performed for the following geometrical parameters based on the anal-
ysis of the actually fabricated structures: Nz = 6, a = 675 nm, c/a = 0.8,
rx = 62 nm, AR = 2.5, and dALD = 27 nm. Additionally, we start by focusing
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on the second-harmonic enhancement peak at the long-wavelength edge of
the stop band that can be found in all measurements shown above.

The results of the eigenmode calculations show two guided resonances with
a strong field confinement in the region of the 3D nanolaminated photonic
crystal at a free-space wavelength of λ = 964 nm. The two nearly degen-
erate eigenmodes are almost the same if one exchanges the x- and y-axis
along with the components of the electric field amplitude Ẽx and Ẽy. The
symmetry is only broken due to the finite extent of the structure in the
z-direction. Nevertheless, based on symmetry considerations only one of
these modes can be excited for light with x- (or y-)polarization incident on
an ideal structure. We will consider the case of x-polarized incident light
and call the eigenmode that can be coupled to "bright"and the other one
"dark". The strong field confinement in the structure results in a high quality
factor of the two guided resonances with Q = 1379 and Q = 2162 for bright
and dark mode, respectively. The bright mode exhibits a standing-wave
pattern with the field being concentrated in the domain of the nanolaminated
photonic crystal (see Figure 4.16a). Nevertheless, a finite field amplitude is
observed in both air and substrate allowing for coupling to this resonance. If
this bright guided resonance is indeed excited, it would lead to a strongly
enhanced field at the fundamental wavelength and, consequently, to an
enhanced second-harmonic generation. It is worth noting that the bright
mode field distribution shows resemblance with that of the fundamental
mode of an asymmetric slab waveguide depicted in Figure 2.5a. Based on
this resemblance we call this bright eigenmode the fundamental guided
resonance of our structure. This analogy extends to higher order modes.
From the eigenmode calculations we are able to identify a guided resonance
similar to a waveguide mode with m = 1 (see Figure 4.16b). This mode is
found at a wavelength of λ = 965 nm and has a low quality factor of Q = 70.
The photonic crystal slab seems to be to thin to properly support this mode
that couples strongly to the air and substrate modes. Therefore, it is barely
confined in the structure and of minor interest to us, at least, for the given
number of axial unit cells, Nz.
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Ẽ ω
,x

+

−
z

y

air

photonic crystal

substrate
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Figure 4.16: Electric field distribution of guided resonances in a 3D nanolam-
inated photonic crystal with a = 675 nm and c/a = 0.8 determined from
eigenmode calculations. a) The bright eigenmode at λ = 964 nm has a qual-
ity factor of Q = 1379 and shows a strong field confinement in the photonic
crystal. Its field distribution resembles the fundamental waveguide mode
in an asymmetric slab waveguide, but with a finite field strength outside
the guiding layer. b) The next higher order mode has a quality factor of
Q = 70 and is found at λ = 965 nm. It shows a weak field confinement and
strong coupling to substrate and air modes. Adapted from Reference [176].

The observed position of the fundamental guided resonance is in excellent
agreement with the position of the enhancement peak at the long-wavelength
edge of the stop band measured on a structure with identical geometrical
parameters (see Figure 4.13b). To confirm this correlation between guided
resonance and second-harmonic enhancement, we perform eigenmode cal-
culations for different geometrical parameters and compare them with the
experimental findings. It was shown that the ratio of axial lattice constant to
rod spacing, c/a, has a strong influence on the maximal achievable second-
harmonic enhancement (see Figure 4.14c). To replicate this finding, we run
eigenmode calculations for different values of c/a and extract the quality
factor, Q, and the wavelength, λ, for the previously identified bright guided
resonance depicted in Figure 4.16a. This parameter sweep shows a strong
dependence of Q on the value of c/a (see Figure 4.17). For rx = 62 nm the
quality factor, Q, peaks for c/a = 0.79 at a value of Q exceeding 103. This
result is in good agreement with the experimentally observed optimal value
of c/a = 0.8. Deviations from this optimum value of c/a lead to a strongly
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Figure 4.17: Quality factor, Q, and wavelength, λ of the fundamental guided
resonance associated with the enhancement peak at the long-wavelength
edge of the stop band for different values of the ratio c/a and a fixed rod
spacing of a = 675 nm. The eigenmodes are calculated for rx = 50 nm,
62 nm, and 74 nm with a maximum of Q observed at c/a = 0.77, 0.79, and
0.81, respectively. Both for larger and smaller values of c/a, the quality
factor, Q, decreases rapidly. The wavelength, λ, of the guided resonance
increases with rx due to an increase of the effective refractive index. Adapted
from Reference [176].

decreased quality factor, Q, of the guided resonance that goes hand in hand
with a small second-harmonic enhancement observed in the experiments.
The dependence of the quality factor, Q, on c/a can be understood as follows:
For small ratios c/a, the structure is compressed in the axial direction. The
mode in this thin 3D nanolaminated photonic crystal leaks strongly and,
hence, has a small Q just as it would be the case for a slab waveguide. At the
other end, for large values of c/a, the filling fraction, f , and, consequently,
also the effective refractive index of the structure is greatly reduced. Once
again this leads to poor guiding and a small value of Q.

Repeating the numerical parameter sweep for rx = 50 nm and rx = 74 nm
reproduces this behavior (see Figure 4.17). The optimal values of c/a are
slightly shifted due to the changed effective refractive index. Additionally,
we find an increase of the maximum quality factor, Q, for decreasing values
of rx. We compare these results at a fixed value of c/a with the experimental
findings on structures with a shrinkage-corrected value of c/a = 0.8 and
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different filling fractions, f , shown in Figure 4.14b. In agreement with the
measured position of the enhancement peak, the guided resonance shifts to-
wards larger wavelengths with increasing rod semiaxis, rx, and, consequently
larger filling fraction, f . Additionally, in the experiments a second-harmonic
enhancement peak value that is largest for medium f was observed. We
want to neglects other effects for the moment and ascribe this behavior solely
to different values of Q. In the calculations this experimental finding can
only be reproduced if one assumes that the ratio c/a of the structures is
slightly above the optimal value found for rx = 62 nm. Taking for exam-
ple c/a = 0.8, the quality factor, Q, of the guided resonance is largest for
rx = 62 nm (corresponding to medium f ) and, therefore, would allow for an
explanation of the measured data.

The good agreement between experimental findings and eigenmode calcula-
tions suggests that a guided resonance is indeed responsible for the strong
second-harmonic enhancement found at the long-wavelength edge of the
stop band. To make sure this mode is actually excited and the source of the
observed effects, we mimic the experiments using calculations that follow
a perturbative approach. The involved steps are briefly summarized in the
following and described in more detail in Section 3.6. These calculations
are quite time consuming and will be discussed for the same parameters
as given at the beginning of this section. Especially, we set a = 675 nm and
c/a = 0.8. In the first step, the field distribution and the linear transmittance,
T, through the structure is determined for a plane wave at the fundamental
wavelength, λF. The wave is incident from air and propagates along the
−z-direction (see Figure 4.8). Next, we determine the second-order nonlinear
polarization in the nonlinear nanolaminate based on the previously obtained
fundamental field distribution and the properly rotated second-order sus-
ceptibility tensor. Finally, the amplitude of the electric field distribution,
Ẽ2ω, at the second-harmonic wavelength, λSH, is calculated. An example for
λF = 964 nm is depicted in Figure 4.18a and b. It shows a second-harmonic
field that exhibits a standing-wave pattern and radiates both into forward
and backward direction, i. e. into substrate and air, respectively. We take
the z-component of the time averaged Poynting vector as a measure for the
second-harmonic intensity, I2ω, emitted into the forward direction. To allow
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Figure 4.18: a) Ẽ2ω, x and b) Ẽ2ω, y component of the calculated electric
field distribution at the second-harmonic wavelength in the yz-plane. The
fundamental is a normally incident plane wave at λF = 964 nm that is
polarized along the x-direction. The second-harmonic field radiates both
into air and substrate and exhibits a standing-wave pattern. Adapted from
Reference [176].

for a representation identical to the one used for the experimental data, we
run the same calculations for a plane film of the nonlinear nanolaminate and
a plane wave impinging at an angle of 45°. The resulting second-harmonic
intensity is used to normalize the results calculated for the 3D nanolaminated
photonic crystals.

Figure 4.19a depicts the obtained spectrum with the transmitted and reflected
second-harmonic intensity denoted by I2ω, T and I2ω, R, respectively. Both the
linear transmittance and I2ω, T show a good qualitative agreement with the
experimental data for a structure with identical geometrical parameters (see
Figure 4.13b). We find several peaks of the second-harmonic enhancement
that are once again close to prominent features of the linear transmittance
spectrum. At the long wavelength-edge of the stop band, an enhancement
factor of close to 500 is determined in contrast to an experimentally observed
value of around 100. We ascribe this discrepancy to angular and spectral
averaging in the experiments that are caused by the both the finite opening
angle of focusing and the finite bandwidth of the incident fs-pulses. Having
a closer look at the transmittance at the long-wavelength edge of the stop
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Figure 4.19: a) Calculated linear and nonlinear spectra of a 3D nanolami-
nated photonic crystal with a = 675 nm and c/a = 0.8. The peaks of the
transmitted and reflected second-harmonic intensity, I2ω, T and I2ω, R, respec-
tively, coincide with prominent features of the linear spectrum. Furthermore,
I2ω, T reproduces the features observed in experiments on a structure with
similar parameters (see Figure 4.13b). The upwards pointing yellow trian-
gles and the downwards pointing black triangles indicate the calculated
positions of bright and dark eigenmodes, respectively. The size of the
triangles is proportional to the quality factor, Q, of the guided resonances.
For the sake of clarity, only modes with Q ≥ 100 are depicted. b) The zoom
into the calculated linear transmittance (see panel a) at the long-wavelength
edge of the stop band shows a sharp Fano-shaped feature. Adapted from
Reference [176].

band, we find a sharp Fano-shaped feature (see Figure 4.19b) that arises as a
consequence of coupling between a discrete mode (presumably the guided
resonance) and a continuum of states [177]. Such sharp features are not
observable in the measured data due to the angle averaging caused by the
finite opening angle of focusing optics in the experiments. The field distribu-
tion at the second-harmonic peak for λF = 964 nm confirms the origin of the
discrete state and our hypothesis on the role of the guided resonance: Both
the position and the field distribution coincide with the guided resonance
previously obtained from eigenmode calculations (see Figure 4.16a). Hence,
the eigenmode is indeed excited. It leads to a fundamental field that is
enhanced by a factor of 14 as compared to the incident field strength of
70 V/µm (not depicted).
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Obviously, field enhancement at the fundamental wavelength is not the
only factor determining the efficiency and, hence, the strength of second-
harmonic generation. The coupling strength to the guiding resonance, the
mode overlap between fundamental and second-harmonic mode, and, espe-
cially dealing with propagation lengths larger than the coherence length, the
phase mismatch are of great importance [6]. All these factors are expected to
vary with the geometrical parameters of the investigated structures. This is
beautifully illustrated when comparing the second-harmonic intensity at the
short-wavelength edge of the stop band in Figure 4.13b and c: Whereas no
enhancement is observed for a = 675 nm, a well pronounced peak is found
for a = 700 nm. In the calculations this additional influence becomes evident
when looking at the position and quality factor, Q, of guided resonances and
the actually calculated second-harmonic peaks in Figure 4.19a. The yellow
triangles pointing upwards and the black triangles pointing downwards
denote bright and dark eigenmodes, respectively. The triangle size encodes
the quality factor, Q, of the respective eigenmode. Whereas a large Q results
in a strong enhancement at λF = 964 nm, this correlation is not always given
for smaller wavelengths. Another interesting finding that is explained by
the same reasoning is that some peaks show a strong enhancement in both
transmitted and reflected second-harmonic intensity. In contrast, only the
reflected intensity, I2ω, R, is enhanced at the short-wavelength edge of the
stop band.

At this point we can, finally, summarize the operation principle leading to the
observed enhancement of second-harmonic generation in 3D nanolaminated
photonic crystals: The structure acts as a leaky, asymmetric waveguide with
the grating coupler functionality given by the periodicity of the underlying
photonic crystal. Incident light is Bragg diffracted into the photonic crystal
slab and is strongly enhanced if it resonates with a guided resonance of
the structures. For the case of normal incidence a standing wave is formed.
The reinforced light-matter interaction at the fundamental wavelength is,
basically, a resonant cavity effect and leads to an enhanced nonlinear po-
larization. The actually observed second-harmonic intensity is additionally
influenced by the mode overlap and the phase mismatch of the respective
modes at the fundamental and second-harmonic wavelength. The generated
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signal is emitted into directions that are dictated by the periodicity of the 3D
nanolaminated photonic crystal.

The results discussed so far show a good overall agreement with the ex-
perimental data. Nevertheless, looking at the numerical results in more
detail also reveals some important discrepancies that are still unexplained.
Figure 4.20a and b shows the second-harmonic intensity emitted to different
diffraction orders at λF = 840 nm as observed in calculations based on the
perturbative approach and experiments, respectively. The former is derived
by determining the Fourier transform of the generated second-harmonic
field in a xy-plane in the far field. Only orders that are also detectable in
the experiments are taken into account. Whereas the experimental data
shows a dominant contribution to the zeroth diffraction order, the numerical
results suggest that the main part of the signal goes to the orders (−1, 0) and
(1, 0). It turns out that such delicate details in the numerical calculations
are strongly influenced by the choice of geometrical parameters. Therefore,
we cannot assume to hit the parameters that exactly replicate the experiments.

It is still worth discussing this issue a little longer to deepen our under-
standing of the involved mechanisms. As highlighted in the discussion of
polarization-resolved measurements, there is a part of the second-harmonic
signal polarized identical to the normally incident fundamental beam that
is emitted into the zeroth diffraction order (see Figure 4.15a). We argued
that this contribution is forbidden in an ideal centrosymmetric structure and
that its existence hints at the significant influence structural imperfections
and deviations from the idealized excitation conditions due to misalignment
and the finite angle of incidence have on the measurements. Imperfections
can lead to breaking of the selection rule for what we call bright and dark
modes, thereby, leading to a mixing between the modes.

Taking the peak at λF = 840 nm detected transmission as an example, we
want to demonstrate that mode mixing in combination with oblique incidence
at an angle of up to 3° allows explaining the discrepancy between experiment
and calculations. Obviously, it is hard to determine the exact circumstances
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Figure 4.20: Contribution of the second-harmonic signal to different diffrac-
tion orders at a fundamental wavelength of 840 nm. a) Relative intensity
calculated from the second-harmonic field distribution in the far field as
derived from the perturbative approach. The main part goes to the orders
(−1, 0) and (1, 0). b) The experimentally observed reciprocal space emis-
sion shows a totally different picture with the intensity mainly going into
the zeroth order. c) Due to deviations of the structure and the excitation
conditions from the assumed ideal case, mode mixing and slightly oblique
angles of incidence have to be taken into account. A superposition of bright
and dark eigenmodes that can be coupled to for an incidence angle of 3°
(see Figure 4.21) is used to define the nonlinear source term. The resulting
second-harmonic field distribution is again analyzed in the far field and the
relative intensity shows a good agreement with the experimental findings.
Adapted from Reference [176].

of mode mixing, but it turns out that it is sufficient to use the sum of the two
eigenmodes that can be excited by a plane wave incident at an angle of 3°
and are close to λ = 840 nm (see Figure 4.21a and b) to define the nonlinear
polarization. The second-harmonic field generated for this configuration
can be analyzed and gives the relative intensity distribution depicted in
Figure 4.20c. It shows a very good agreement with the experimentally
observed pattern and, therefore, confirms the need to incorporate effects due
to imperfections in the structure and the excitation conditions to arrive at a
complete picture of the second-harmonic generation in 3D nanolaminated
photonic crystals.
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4.2.5 Discussion

The experimental data and the numerical calculations presented in the previ-
ous sections have shown the expected interplay of woodpile photonic crystal
templates and the conformally deposited second-order nonlinear nanolam-
inate. We have understood the origin of the observed second-harmonic
enhancement of up to two orders of magnitude and demonstrated that devi-
ations from the ideal numerical model are necessary to explain important
aspects of the experimental data. Nevertheless, the performed study is just
the first step to understand and profit from the complex and flexible spatial
arrangement of the second-order nonlinear susceptibility made possible by
the presented fabrication method.

Further experiments on 3D nanolaminated photonic crystals should inves-
tigate the influence of the number of axial unit cells, Nz, to demonstrate
the fact that the observed effect is not limited to structures with Nz = 6
used in the presented measurements. In analogy to the behavior of a di-
electric slab waveguide, we expect a stronger field confinement in the 3D
nanolaminated photonic crystal and, therefore, a larger quality factor, Q. We
have performed this parameter study in numerical calculations and find the
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Figure 4.22: Quality factor, Q, and wavelength, λ, of the fundamental
guided resonance versus the number of axial unit cells, Nz. The quality
factor, Q, shows a strong increase with Nz that is ascribed to a stronger
mode confinement in the structure. A similar behavior and the observed
cutoff of the fundamental mode (gray line) are well-known for asymmetric
slab waveguides.

results in agreement with our expectations (see Figure 4.22a). The quality
factor, Q, of the fundamental guided resonance grows rapidly with Nz and
exceeds values of 105. Additionally, we observe a cutoff of the fundamental
mode that is well-known from asymmetric slab waveguides (see Section 2.6)
for Nz < 3. The possibility to tune the quality factor is also found in 2D
photonic crystal slabs albeit accomplished by reducing the modulation of
the dielectric function instead of increasing Nz [55]. The oscillations of the
quality factor, Q, are attributed to the spatial extent of the guided resonance
that shows a nonlinear, step-wise growth with Nz. This leads to a strongly
enhanced overlap with both substrate and air layer for certain values of Nz.
Another aspect that has been neglected so far is the study of the mode at the
second-harmonic wavelength. In 2D photonic crystal slabs it has been shown
that a yet stronger enhancement of the nonlinear response can be achieved if
both the fundamental and the second-harmonic modes are tuned to guided
resonances of the structure [63, 64]. A detailed analysis of the eigenmodes at
the second-harmonic wavelength and appropriate tuning of the geometrical
parameters should enable doubly resonant second-harmonic interactions in
3D nanolaminated photonic crystals.

A variety of other ways to enhance and tailor the nonlinear response for a
given application have been discussed in Section 2.5. Based on the fabrication
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approach involving photonic crystal templates presented in this work, one
could, for example, aim at achieving (quasi-)phase matched second-order
interactions. For this purpose it is important to identify the modes that
are excited at all interacting wavelengths and tune them appropriately. For
second-harmonic generation an easy way would be to chose the second-
harmonic wavelength such that it lies in the anomalous dispersion regime of
the first stop band. In this case, the waves at both wavelengths are basically
plane waves and only have to be matched in terms of their refractive indices.
Another way is the fabrication of second-order nonlinear photonic crystals
that show a tailored distribution of the second-order susceptibility but only
minimal spatial variations in the linear susceptibility. This can be achieved
by completely filling the air gaps in the ALD step. In case the contrast in the
dielectric functions is still too large, one can implement more sophisticated
approaches based on inversion or even double inversion using materials
with a suitable linear and a vanishing second-order susceptibility [127].
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Chapter 5

Conclusion

In the scope of this thesis, a second-order nonlinear nanolaminate was de-
veloped and characterized. Conformally depositing this nonlinear film on
a "printed"3D photonic crystal, we were able to fabricate what we call 3D
nanolaminated photonic crystals. The synergies arising from the interplay of
nonlinear nanolaminates and 3D photonic crystals were studied and shown
to result in an enhancement of second-harmonic generation. This chapter
summarizes the main results and gives an outlook to possible future devel-
opments.

The two main fabrication methods central to this thesis were introduced
in the first part of Chapter 3. Atomic-layer deposition was described in
Section 3.1 and used for the growth of second-order nonlinear nanolami-
nates. Section 3.2 covered the basics of 3D direct laser writing. The features
necessary to allow for "printing"of 3D photonic crystals with the desired
geometrical parameters were highlighted. As compared to the conventional
configuration, we used a greatly reduced excitation wavelength and, there-
fore, benefited from a substantial improvement in resolution.

The second part of Chapter 3 dealt with the methods used for sample char-
acterization. The second-order nonlinear response was quantified based on
the generated second-harmonic signal. Investigating the plain nonlinear
nanolaminates, we were interested in optimizing and, finally, determining
the full second-order susceptibility. In contrast, the focus in studying 3D
nanolaminates photonic crystals, was on the directional and spectral char-
acteristics of the second-harmonic emission at different fundamental wave-
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lengths. The setups built and adjusted to meet the respective requirements
were presented in Section 3.4. To supplement the optical measurements
on nonlinear nanolaminates, we relied on structural information derived
from X-ray diffraction measurements. The technique was described in Sec-
tion 3.5 and allowed for correlating structural changes with the observed
second-order nonlinear response. A deeper understanding on the domi-
nating mechanisms in 3D nanolaminated photonic crystals was obtained
through numerical calculations based on the finite element method. Its
implementation was discussed in Section 3.6.

Chapter 4 covered the results obtained in the scope of this thesis. In Section
4.1 the design, fabrication, and characterization of second-order nonlinear
ZnO/Al

2
O

3
nanolaminates grown by atomic-layer deposition was presented.

After having identified the main factors influencing the nonlinear response
of ZnO thin films, we have studied the individual optical and structural
effects by comparing the properties of three different types of samples. Pure
ZnO films were shown to exhibit a nucleation delay and randomly oriented
crystallites leading to cancellation of the second-harmonic signal generated
in different domains. An Al

2
O

3
seed layer was demonstrated to limit the

influence of the substrate and enforce a preferential orientation of the ZnO
crystallite growth. This structural change was found to be correlated with
an increase of the generated second-harmonic power. The latter could be
further enhanced to a factor of close to 40 as compared to the pure ZnO film
by introducing additional intermediate Al

2
O

3
layers. We have ascribed this

observation to two effects: The intermediate Al
2
O

3
layers cause an improved

ZnO crystallite orientation throughout the entire film thickness. Additionally,
they disrupt the ZnO crystallite growth and, thereby, maximize the second-
order nonlinear contribution from grain boundaries and interfaces. Based on
these findings, we have performed extensive parameter sweeps to optimize
the individual layer thicknesses in the ZnO/Al

2
O

3
nanolaminate. Finally, it

was shown that the films are well-described by effective material parameters
and the full second-order susceptibility tensor was determined. The largest
tensor element was found to be χ(2)

zzz = −4.0 pm
V and is comparable to the

elements of conventional bulk nonlinear crystals.
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Section 4.2 dealt with 3D nanolaminated photonic crystals. These struc-
tures show a complex spatial distribution of the second-order susceptibil-
ity tensor as a consequence of the conformal deposition of second-order
nonlinear nanolaminates on 3D photonic crystals. Measurements of the
second-harmonic intensity emitted from 3D nanolaminated photonic crystals
have shown a strong spectral dependence. Additionally, enhancements of up
to two orders of magnitude as compared to the plain nanolaminates were
found in coincidence with the spectral positions of prominent features in the
linear spectra. Based on the detected two-photon induced autofluorescence
stemming from the polymer template and sweeps of the 3D photonic crys-
tal parameters, the mechanism responsible for the detected enhancement
was narrowed down to reinforced light-matter interactions. The associated
guided resonances at the fundamental wavelength were identified by means
of numerical calculations and shown to result in a strongly enhanced elec-
tric field strength and, consequently, an enhancement of the second-order
nonlinear polarization in the structure. Additionally, the influence of other
mechanisms determining the observed second-harmonic enhancement was
highlighted. The calculations were shown to be in good agreement with
the experimental findings. Nevertheless, discrepancies were found in terms
of the second-harmonic intensity emitted to different diffraction orders. To
reproduce the experimentally detected emission pattern numerically, the
effect of structural imperfections and a slightly oblique incidence of the
fundamental beam had to be taken into account.

The crucial role light-matter interactions play in our everyday life was already
stated in the introduction. By acquiring a certain understanding of these
processes both in the linear and in the nonlinear regime, mankind has
managed to make use of light-matter interactions for a variety of modern
technologies. To further promote this development, it is important to provide
materials and approaches that allow for tailored and efficient light-matter
interactions not only in the linear, but also in the nonlinear regime. In this
context, the results presented in this work can be seen as part of a tool
box that facilitates the design and fabrication of integrated optical systems
and photonic structures that rely on second-order nonlinear light-matter
interactions. The nonlinear nanolaminates are easy to integrate in compact
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5 conclusion

optical systems and their fabrication by means of atomic-layer deposition
is compatible with well-established semiconductor processes. Additionally,
they can be combined with 3D printed templates, that are by no means
limited to photonic crystals. The resulting structures are purely dielectric
and posses a complex distribution of the second-order susceptibility tensor
that introduces a high degree of flexibility. At the same time, this poses a
challenge as one has to take the distribution and the interacting modes at all
frequencies into account to tailor the light-matter interactions to ones needs.
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