KIT | KIT-Bibliothek | Impressum | Datenschutz

Impact of different evaluation methods on the dropout rate of objectively detected physical activity on age specific subgroups: Results from the Motorik-Modul-Study (MoMo)

Burchartz, Alexander ORCID iD icon; Anedda Bastian; Oriwol, Doris; Albrecht, Claudia ORCID iD icon; Woll, Alexander ORCID iD icon

Abstract (englisch):

Introduction: In order to determine physical activity in free-living conditions the most common used objective method is accelerometry. This study analyzed the different technical methods and their outcomes evaluating accelerometer data in the large-scale epidemiological MoMo study. MoMo marks the first nationwide objective collection of data on physical activity and sedentary behavior of German children, adolescents and young adults. Method: The accelerometer sample size in MoMo from the latest survey from 2014-2017 is n = 1.971 (4-18 years). Wearing ActiGraph accelerometers GT3X+/wGT3X-BT movement behavior was objectively registered for one week. Effects on the dropout rate were analyzed with different epoch lengths (EL), non-wear-time (NWT) definitions, different valid day/week criteria and intensity-classification-algorithms. Results: Recording is in EL of 1s with the possibility to convert into 5s, 10s, 15s, 30s and 60s for future analysis. For the NWT Calculation the Choi-Algorithm was chosen because of the constancy in detecting NWT whereas Troiano shows variance up to 3% in NWT with different EL. Valid day criteria is 8h of recordings (+13% valid data compared to 10h) on four weekdays and one further weekend day when wearing the device for 7d. ... mehr

Zugehörige Institution(en) am KIT Institut für Sport und Sportwissenschaft (IfSS)
Publikationstyp Poster
Publikationsjahr 2018
Sprache Englisch
Identifikator KITopen-ID: 1000091052
Veranstaltung 7th International Society for Physical Activity and Health Congress (ISPAH 2018), London, Vereinigtes Königreich, 15.10.2018 – 17.10.2018
Schlagwörter Accelerometer, Physical Activity, MoMo-Study, Epoch Length, Non-Wear-Time, intensitiy classification algorithms
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen

Originalveröffentlichung
DOI: 10.13140/RG.2.2.10780.74883
Seitenaufrufe: 197
seit 25.02.2019
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page