
An extensible approach to implicit incremental model analyses

Georg Hinkel1 · Robert Heinrich2 · Ralf Reussner2

Abstract
As systems evolve, analysis results based on models of the system must be updated, in many cases as fast as possible. Since
usually only small parts of the model change, large parts of the analysis’ intermediate results could be reused in an incremental
fashion. Manually invalidating these intermediate results at the right places in the analysis is a non-trivial and error-prone task
that conceals the codes intention. A possible solution for this problem is implicit incrementality, i.e., an incremental algorithm
is derived from the batch specification, aiming for an increased performance without the cost of degraded maintainability.
Current approaches are either specialized to a subset of analyses or require explicit state management. In this paper, we
propose an approach to implicit incremental model analysis capable of integrating custom dynamic algorithms. For this,
we formalize incremental derivation using category theory, gaining type-safety and correctness properties. We implement
an extensible implicit incremental computation system and validate its applicability by integrating incremental queries. We
evaluate the performance using a micro-benchmark and a community benchmark where the integration of explicit query
incrementalization was multiple orders of magnitude faster than rerunning the analysis after every change.

Keywords Incremental computation · Model-driven · Monads

1 Introduction

In many engineering disciplines, abstract models of a system
are created in order to reason on properties of the mod-
eled system by analyzing the model. Nowadays, many of
these systems are supported by software that runs the anal-
yses automatically based on in-memory representations of
the models. As the systems evolve, the models are changed
and the analyses may have to be recomputed. These analy-
ses include simple validations, but also more complex model
transformations or simulations.

For some analyses, large benefits can be obtained from
incremental execution. An early example is digital circuit

Communicated by Dr. Daniel Varro.

B Georg Hinkel
georg.hinkel@gmail.com

Robert Heinrich
heinrich@kit.edu

Ralf Reussner
reussner@kit.edu

1 Wiesbaden, Germany

2 Karlsruhe Institute of Technology, Am Fasanengarten 5,
76131 Karlsruhe, Germany

simulation where incremental simulation yields orders of
magnitudes in performance [1,2] by introducing buffers to
save some intermediate results.

Saving such intermediate results for future requests on
changed input models and their invalidation is called incre-
mental derivation or incrementalization. The goal of this
process is that ideally, only those parts of an analysis that
are affected by a change in the underlying models have to
be recomputed. This may offer an increased performance as
the savings in terms of reused intermediate results can be
larger than efforts to invalidate those results affected by a
change. This is important since in many application areas,
the response time to get updated analysis results for a given
model change is critical. Examples include the area of self-
adaptive systems where it is important to reconfigure the
system as fast as possible before it crashes or breaks service
level agreements [3]. Hence, this response time is the most
common measurement for evaluating approaches in the area
of self-adaptive systems [4].

In other application areas like graphical user interfaces
with the Model–View–Viewmodel pattern [5,6], it is espe-
cially important to get change notifications for analysis
results in order to update the view accordingly to a changed
model underneath.

Manual incrementalization is a non-trivial and error-prone
task, as it is very easy to forget cases in which intermediate
results need to be invalidated. Furthermore, the management
of intermediate results may conceal the analysis code and
degrade understandability. This makes it harder to proofread
the code, thus leading to undetected bugs in the analysis and
hence wrong analysis results implying wrong conclusions
on the real system. Besides correctness, understandability is
crucially important. Currently, understanding existing code
makes up almost half of software maintenance costs [7].
Maintenance in turn is the main driver for overall software
project costs [8].

Furthermore, in some cases even little changes have a dra-
matic effect; thus, keeping prior intermediate results does
not yield any benefits. Therefore, manual incrementalization
may turn out to not give any benefits, despite the efforts put
into them. Whether or not an analysis benefits from incre-
mental execution is often hard to foresee. In addition, a batch
(i.e., non-incremental) version of the analysis is often never-
theless desirable, if the analysis is also used in cases where
model changes can be ignored. Here, manual incrementaliza-
tion leads to duplicated code, e.g., one version with buffers
optimized for incremental execution and one without these
buffers, saving memory and event management.

A promising approach to tackle this problem is implicit
incrementality, also referred to as implicit self-adjusting
computation. In this approach, the system decides which
intermediate results should be saved and manages their inval-
idation, typically by tracking its dependencies. This process
is transparent to the analysis developer since no changes
to the analysis are required. Such systems exist either for
general-purpose languages capable of expressing any analy-
sis [9] or for specific classes of analyses such as incremental
queries [10,11], incremental pattern matching [12] or even
incremental model transformations [13,14]. These special-
ized incremental approaches limit their applicability to a
given class of analyses and use abstractions common to these
analyses to make incremental execution more efficient.

General-purpose incrementalization systems such as the
type-directed self-adjusting computation system [9] or Adap-
ton [15,16] typically operate on a Turing-complete calculus
(such as the λ-calculus) and are thus able to incremental-
ize any analysis. To do that, a dynamic dependency graph
(DDG) is deduced from the execution of the running anal-
ysis. This graph is then used to decide when parts of the
analysis should be reevaluated for given inputs. Thus, the
incrementalized version of an analysis is tightly coupled to
its batch specification. Rather on a technical level, the exist-
ing approaches are not well suited for model analysis, as
they mostly rely on immutable data structures known from
functional programming. Models, however, are usually muta-
ble and several concepts such as resetting references once a

model element is deleted or bidirectional references are not
well suited for immutable data structures.

The exact conformance to the batch specification can lead
to inefficient results. Consider the minimalistic example of
incremental average calculation for a list of model elements
and a predicate that should be collected. The typical batch
implementation is to iterate through the list and keep a run-
ning sum and element count. If the predicate changes for
any model element in the list, this results in different run-
ning sums from that index on. Incrementalization based only
on the batch specification has to take this into account and
therefore recalculate the average calculation starting from
this index in the collection. The more efficient implementa-
tion would be to only increment the running sum and element
count, ignoring where exactly the predicate was changed.

Given that many functions such as average computation
are very common and used across many different analyses,
it is reasonable to invest additional effort to optimize these
functions once for incremental execution by supplying a ded-
icated dynamic algorithm. However, current approaches do
not provide a technique to do this, at least not for higher-order
functions.

Special-purpose incrementalization systems circumvent
this problem of low-level incrementalization because the
domain-specific operations they operate on, such as joining
partial matches of a graph pattern [12], are already on a high
abstraction level, but cannot describe all kinds of analysis.
This can be problematic in evolution scenarios, if analyses
fall out of the selected scope. Furthermore, the applicability
of these tools is limited to a certain class of analyses, for
example, graph patterns.

The goal of the research presented in this paper is there-
fore to overcome aforementioned limitations and provide
an approach to integrate developer-supplied dynamic algo-
rithms into implicit incremental computation. We present
a formalization of incrementalization as a functor. This
allows us to define the requirements for a dynamic algorithm
that shall be integrated, and prove correctness under these
assumptions. In particular, this includes a formal definition
of the semantics that a dynamic algorithm has to implement
such that the correctness of the incrementalized analysis can
be guaranteed by construction when exchanging the batch
algorithm by a dynamic counterpart.

In the aforementioned example of average calculation, our
approach gives developers a way to specify an incremental
average computation by implementing a class that keeps a
running sum and element count. This class should track the
selected predicate for each model element in the underlying
collection and adjust the running sum if any changes in the
predicate arise, independently of the index of the respective
element in the collection. The explicit incrementalization has
to be specified once by developers of the average function and

can be used many times without additional efforts, whenever
an analysis requires an average computation.

Such an optimization is cost-effective since higher-order
operators are typically used in a broad range of scenarios.
We therefore see two roles: The framework developer that
implements generic analysis frameworks that aid the general
creation of model analyses, and the analysis developer that
applies these frameworks to his particular domain of interest
to implement a concrete information need.

To validate our results, we have implemented a query
framework1 that supports incrementalization of model anal-
yses using our approach through the C# query syntax.
The presented approach is based on the .NET Modeling
Framework (NMF, [17,18]). We evaluated the performance
improvements in a micro-benchmark where we were able
to see that manually incrementalized methods are multiple
orders of magnitude faster than both instruction-level incre-
mentalization or batch reevaluation. We further evaluate the
performance against the incremental graph pattern matching
tool EMF- IncQuery [11] in a community benchmark [19].
In this benchmark, our approach is faster than the specialized
approach EMF- IncQuery for many model sizes.

Our implementation lets developers specify analyses in
the mainstream language C# so that typical problems of
domain-specific languages, such as tool support availabil-
ity [20,21] and language adoption [22], are mitigated. The
resulting incrementalized analysis supports online update
notifications and offers better response times from model
changes to updated analyses at the price of higher memory
consumption. Our approach is applicable to general-purpose
analyses, but can also incorporate efficiency based on anal-
ysis abstractions. The implicit approach allows us to derive
these benefits without the cost of degraded understandabil-
ity, conciseness or maintainability as the developer does not
have to change the analysis code. In summary, we make the
following contributions:

C1 We present a novel formalization of incremental compu-
tation using functors from category theory (Sect. 3) based
on a new formalization of mutable models (“Appendix
A.2”). This formalization adopts the idea of Carlsson
[23] to represent incrementalization using category the-
ory, but for mutable models.

C2 We propose an approach to integrate analysis frame-
works into incremental computation systems in order to
use the framework abstractions (Sect. 4).

C3 We show how the formalization of the incrementalization
concept can be used to implement an implicit incremen-

1 Here, we mean collection queries inspired by SQL as we see them in a
variety of programming languages nowadays. This is opposed to queries
as in the query-or-command pattern where queries are side effect-free
methods.

talization system with support for higher-order functions
(Sect. 5).

C4 We apply our approach to a query framework (Sect. 6)
and evaluate it in a micro-benchmark and in a commu-
nity benchmark for incremental pattern matching (cf.
Sect. 7).

Furthermore, our approach has already been used to power
incremental model synchronization [24–27] using our incre-
mental model analysis approach as a building block without
an explanation of the underlying theory as presented in this
paper.

Before we describe these contributions, we motivate our
approach with an illustrative example (Sect. 2). Section 3
introduces our concept how we formalize incremental com-
putation and the theorem that we can proof based on this
formalization. This section is written in an informal style.
Formal details and proofs can be found in “Appendix A”.
The sections that follow are written in a rather technical
style. Sect. 4 explains the general idea of integrating dynamic
algorithms and discusses the advantages and subtleties using
an example from graph algorithms. Section 5 presents the
implementation of our extensible incrementalization system
NMF Expressions. Section 6 presents the integration of query
support as a demonstration for the extensibility. Section 7
evaluates the incrementalization system and its query exten-
sion using a micro-benchmark of computing averages and
the TTC 2015 Train Benchmark. Finally, we discuss related
work in Sect. 8 and conclude the paper in Sect. 9. We discuss
future work in Sect. 10.

2 Running example

Throughout the paper, we use a synthetic example analysis
to both explain and evaluate our approach. The example is
taken from the TTC Train Benchmark [19]. Though only a
synthetic benchmark, this example case demonstrates both
practical use cases and also many of the problems typical for
incremental computation.

One of the tasks in this benchmark is to select the switches
along routes in a railway net that are set incorrectly accord-
ing to signal positions. The railway network is described
in a model conforming to a railway metamodel created by
Szárnyas et al. [19]. An illustration of an instance model for
a railway network excerpt is depicted in Fig. 1.

The railway network essentially consists of many seg-
ments, switches, semaphores and routes. Each route starts
and ends at a semaphore and is defined by a list of switch posi-
tions which define where a train following this route should
go. An excerpt of the metamodel is depicted in Fig. 2.

One wants to make sure that if the entry semaphore shows
the signal GO, all switches along the route should be set

Fig. 1 A visualization of the railway network instance model as used
in the TTC 2015 Train Benchmark case [19]

Fig. 2 An excerpt of the railway metamodel used in the Train Bench-
mark [19]

1 var faultyPositions = from route in

routes

2 where route . Entry != null && route

. Entry . Signal == Signal . GO

3 from swP in route . Follows

4 where swP . Switch . CurrentPosition

!= swP . Position

5 select swP ;

Listing 1 Query to find inaccurate switch positions in a collection of
routes routes

according to the route description. The benchmark iteratively
finds and fixes some (10 or 10%) violations of this and some
other validation constraints.

A possible solution to this analysis is the NMF solution
which can be found in Listing 1. According to the peer-
reviewed process at the TTC 2015, this solution was the most
understandable, even for developers not familiar to the C#
language.

Line 1 takes as input a collection of all routes in the
network. Line 2 selects those routes that have an entry
semaphore set and that entry semaphore shows a GO sig-
nal. Line 3 selects the switch positions along those routes
that define which switches in the network have to be set to
what position. Line 4 restricts the set of switch positions in
the result set of the query to those where the position of the
corresponding switch does not match the required position.
Lastly, Line 5 specifies that the result set of the query should
only contain the switch position elements.

While this solution is very hard to beat in terms of under-
standability and conciseness, using standard C#, the entire
model has to be reevaluated whenever a model element
changes. Furthermore, one has no information when the
analysis should be reevaluated and a new result has to be
compared with the last one in order to understand which
switch positions are wrong that were not wrong before.

As a consequence, as soon as performance becomes an
issue, developers may start introducing cache objects, e.g.,
to save the routes with an entry semaphore set to the signal
GO and dynamically registering hooks when the position of
switch positions changes. However, this is a laborious and
error-prone procedure as one may easily forget some cases
when to update these caches. For example, one may eas-
ily forget to remove the hooks when a SwitchPosition
element is removed from one of the routes with GO signal.
While this maintains correctness, it slowly decreases the per-
formance over time and is therefore hard to detect.2

Presumably the most dramatic consequence of such an
analysis inflated by caches is that domain experts likely have
no longer a chance to proofread the code. In contrast, the
code in Listing 1 is likely to be understood by railway experts,
meaning they could identify possible flaws in the understand-
ing of what this analysis should do.

Therefore, the goal of (live) implicit incrementality is to
enable the system to execute the analysis from Listing 1 incre-
mentally. That is, the system automatically registers event
handlers to propagate model changes and issues a notifica-
tion if a change to the model caused the result of the analysis
to change. However, to achieve good results, it is neces-
sary to provide an explicit incrementalization of commonly
used functions such as the query operators from, where
and select used in Listing 1. Enabling incrementalization
systems to incorporate such dynamic algorithms is made pos-
sible through C2.

For example, if the query in Listing 1 is running and
any model manipulation operation changes the position of
a switch, then the incremental system would automatically
recheck all switch positions pointing to this switch on routes
with entry signal GO, whether the position declared by the
route matches the actual position of the switch. For this to
work efficiently, the system caches the routes that have an
entry signal set to GO as well as the switch positions on this
route. These caches are automatically maintained, transpar-
ently to the developer.

Further, if the incrementalized analysis resembled the
batch specification on a low abstraction level and the entry
signal of a given route changes to GO, then all of the subse-
quent routes would have to be inspected again, because the
batch analysis would do this as well. Approaches such as

2 Some approaches exist that may automatically detect such perfor-
mance problems by automatically conducting experiments [28].

Nominal Adapton [16] try to mitigate this by reducing the
effort to recheck routes to a lookup, but a system understand-
ing the where-operator on a high abstraction level does not
need to recheck any of the other routes because the wrongly
set switches along these routes have not changed. Our
approach provides a mechanism to specify such semantics
once for higher-order operators such as the where-operator.

As a very important set of methods used in a range of
analyses, we have identified the Standard Query Operators
(SQO3) which the compiler uses to map the query syntax,
though the approach is also applicable for other higher-order
methods as well.

NMF supports incremental model analyses, including a
dedicated support for incremental queries based on the SQOs,
through the subproject NMF Expressions, which is explained
in depth in Sects. 5 and 6.

1 using NMF . Expressions . Linq ;

Listing 2 A namespace import to NMF.Expressions.Linq

To accomplish incrementalization, all the analysis devel-
oper has to do is to insert a namespace import at the top
of the file such as in Listing 2 and to make sure that the
model classes implement two interfaces to propagate ele-
mentary changes. The latter is not a hard restriction since
these interfaces are also used by user interface technologies
on the .NET platform. The model code generated by NMF
for a given metamodel implements these interfaces as well,
such that no additional effort is necessary, if a metamodel is
present.

The effect of the using-statement is that the C# com-
piler will use a different set of methods to bind the SQO
methods used in Listing 1. These methods implement our
approach so that their return value supports an event to notify
clients when new elements were added to the result. In case
of the faultyPositions query, this happens, for exam-
ple, when new switch positions arise along a route where the
entry semaphore shows GO but their switch is not set accord-
ingly, for example because either the routes entry signal or the
switch position has just changed. It may also happen when
the position of a switch changes, because there is some route
with a green entry signal that follows this switch, because
the switch element is mutable, i.e., the position of the switch
changes even though the switch is still the same.

3 Incrementalization as a functor

This section roughly presents our approach to formalize
incremental computation (C1). For brevity, details such

3 http://msdn.microsoft.com/en-us/library/bb394939.aspx; SQO is a
set of language-independent standard APIs for queries, specifically
defined for the .NET platform.

as formal constructions and proofs have been moved to
“Appendix” of this paper.

The goal of a formalization for incremental computation
systems given an analysis morphism f : M → R is some
object of a type I(R). This object will represent the running
live analysis. From this object, we would like to query the
current analysis result and apply any model changes or get
notified when the value has changed.

Functors from category theory are an adequate tool to
formalize such kind of relationships between methods (in
category theory terms: morphisms). Therefore, our goal is to
reify incrementalization as a functor that maps an analysis
f : M → R to its incrementalization I(M) → I(R).

To obtain the current value and apply changes, we suggest
the mappings

value : I(R) → R and apply : ΔΩ → (I(R) → I(R)).

In this situation, the value function is meant to return the
current value of an incremental value instance of I(R) while
apply applies a change in the global state to the incremen-
tal value. The idea is that this application could be used to
propagate changes to the analysis result. The type I(R) is
dependent on R to maintain type-safety while the system I
is independent of the analysis result type. In this setup, value
and apply can be formalized as natural transformations,4 in
order to reflect their independence of the result type.

As a trivial example, consider the check whether a
semaphore is set to GO in the running example. Let
Signal : Semaphore → Signal be the property getter
returning the current signal of a semaphore. Further we have
the morphism �=: Object × Object → bool and the
constant value GO can be extended to a constant morphism
GO : � → Signal which returns the signal GO regardless
of the state that is provided as a parameter. Thus, we can
formulate the expression as

isGo :Semaphore → bool,

(s, ω) �→�= (Signal(s, ω), GO(ω)).

In implementations, such a representation can be easily
retrieved from a typed abstract syntax tree.

With the help of mutable type categories (cf. “Appendix
A.2”), we can formalize incremental analyses using functors,
i.e., we can formalize I from above as a functor from the type
system CΩ where we only consider side effect-free methods
for incrementalization. The functor I then maps each type
A in CΩ to some I(A) in CΩ for which we demand the exis-
tence of a natural transformation value : I → I dCΩ

and
a mapping apply that maps state changes in ΔΩ to natu-
ral endotransformations of I. We can then apply I to our

4 apply is actually a family of natural transformations indexed by ΔΩ .

http://msdn.microsoft.com/en-us/library/bb394939.aspx

analysis f (since the latter is assumed side effect free and
therefore in CΩ) and yield a function I(f) : I(M) → I(R).
We call this function with a constant reference of the input
model and obtain an incremental result object in I(R). This
object is then used to automatically update analysis results
from a changed model underneath.

Using the functor I, we can apply it to our small subex-
pression isGo to retrieve

I(isGo) : I(Semaphore) → I(bool).

The associativity of the functor guarantees us that we
can assemble I(isGo) from the functor applied to the
components of isGo, i.e., its abstract syntax tree. For an
implementation, this means that only an implementation for
the elements of the abstract syntax tree has to be provided.
These implementations can then be stacked together to real-
ize the implementation of the generic functor.

When a model change Δω ∈ ΔΩ occurs in state ω, we
apply it to the incremental result r ∈ I(R) using the apply
function by evaluating apply(Δω)R(r). Whenever the cur-
rent value of the analysis is needed, it can be obtained using
value.

Moreover, the general approach of using functors to
change the way how a given function is executed is inde-
pendent of the exact structure of the type I(A) for a given
type A. This provides several degrees of freedom for imple-
mentations.

Finally, we arrive at the following definitions:

Definition 1 (Incremental Computation System) Let Ω be a
set of global states. Let C be a mutable type category (cf.
“Appendix A.2”). Then an incremental computation system
I : CΩ → CΩ for C is a functor for which the natu-
ral transformation value : I → I dCΩ

and the function
apply : ΔΩ → (I → I) exist where apply targets
the natural endotransformations of I. We further demand
a (non-natural) transformation η : I dCΩ

→ I with stateless
components such that

value ◦ η = I dIdCΩ

apply(I dΩ) = I dI .

The first equation demands that the composition of value
and η is the identity functor on CΩ . In particular, it is natural
(even though η is not natural). In other words, lifting a value
to a constant and then asking that constant for its current
value should obtain the original value.

The second equation means that apply changes neither
the given incremental value nor the global state if the iden-
tity on the state space is passed in, i.e., no changes have
occurred. This is similar to hippocraticness requirements of
synchronization systems.

Last, we demand that applying a state change to constants
does not have an effect, i.e., we have that for each Δω ∈ ΔΩ

that

apply(Δω) ◦ η = η ◦ Δω.

Here, we used the inclusion defined in Definition 15.

For correctness, we want incremental values giving us the
same analysis results as we would obtain through batch mode
execution. This is formalized by the below definition.

Definition 2 (Correctness of Incremental Computation Sys-
tems) An incremental computation system I on the category
C is correct if for every A and B in C, every side effect-
free morphism f : A → B in CΩ and every state change
Δω ∈ ΔΩ the following holds:

valueB ◦ I(f) ◦ ηA = f (Initialization)

and

valueB ◦ apply(Δω)B ◦ I(f) ◦ ηA = f ◦ ΔωA.

(Updates)

as morphisms A → B. This corresponds to the following
commutative diagram for (Initialization):

A B

I(A) I(B)

f

ηA

I(f)

valueB

The equation (Updates) corresponds to the following com-
mutative diagram:

A A B

I(A) I(B) I(B)

ΔωA

ηA

f

valueB

I(f) apply(Δω)B

In the last diagram, the mapping applyB(−,Δω) is the
mapping I(B) → I(B), b �→ applyB(b,Δω).

This means, if we create an incremental value for a given
analysis and immediately query the current value, we get
the same as if we just executed the original analysis (Ini-
tialization). Before we do that, we can apply a state change
Δω ∈ ΔΩ to the incremental value and then it should give
us the same value as if we were obtaining the analysis result
value again from scratch (Updates).

The key observation here is that while on the right hand
of (Updates), the analysis function f is only used after the

state change Δω is applied, the left hand of the equation first
evaluates I(f) before applying the change using applyB .
As a consequence, we already know the analysis f when we
apply Δω and can use abstractions of f to update caches.

Theorem 1 Let I be an incremental evaluation system for
the MTC C. Then I is correct.

Proof The proof is given in appendix, see “Appendix A.4”.
�	

Remark 1 Theorem 1 essentially shows that the correctness
of an incrementalization system is a consequence of the
naturality of the value and apply transformations. These
naturalities can be checked for each morphism separately
and thus enable to deduce the correctness of an entire incre-
mentalization system from the correct incrementalization of
elementary morphisms. As a reason, the commutative dia-
grams that are required for the naturality of a transformation
can be easily stacked together as long as the functor conforms
to the law that I(f ◦ g) = I(f) ◦ I(g). Thus, if a transfor-
mation is natural for morphisms f and g, it automatically is
natural for f ◦ g.

Remark 2 In general, apply is allowed to change the global
state. This can be useful in case that change propagation
should imply subsequent model changes, for example, to
recompute derived features.

4 Integrating dynamic algorithms into
incremental analyses

This section describes how arbitrary frameworks or libraries
can be tuned for implicit incremental computation sys-
tems (C2). Many analyses are based on recurring problems
with dedicated algorithmic solutions for the incremental
(dynamic) and non-incremental case, often based on graph
theory. In the literature, the APIs for both kinds of algorithm
are different: The API for the dynamic algorithm usually
extends the API for the non-incremental case by operations
that propagate input changes. For our approach, this is prob-
lematic because we assume a model analysis to be strictly
separated from the model manipulation—the functor I is
only defined for side effect-free methods. In particular, we
do not want to make the model manipulation aware that there
is an incremental analysis going on. Rather, the analysis has
to adapt to the changed model automatically. Therefore, the
goal of this section is to describe how algorithms need to be
reified for implicit incrementalization in order for the incre-
mentalization system to chose a different algorithm in the
incremental case than what is executed in the batch case.

For this, we first explain why different algorithms are nec-
essary in the incremental case and then present the approach
how such problems must be reified for incrementalization.

4.1 Choice of algorithms

As an example for graph algorithms beyond queries, we have
chosen connectivity analysis to explain our approach. This
means, we analyze whether two nodes in a graph are con-
nected, i.e., whether there is a path between them. We chose
this type of analysis not because of its relevance in practice
but because it demonstrates the problems of choosing algo-
rithms well, meanwhile in our running example, the choice
is rather obvious.

In batch mode, one would typically use a Union-Find
data structure that is created in Θ(n + mα(n)) time [29]
and answers connectivity queries in O(log n) time where
n is the number of vertices, m is the number of edges and
α is the inverse Ackermann function [30]. This amounts to
Θ(n + mα(n)) when we answer at most O(log n) connec-
tivity queries. As Tarjan showed, this solution has optimal
asymptotic complexity [29].

The Union-Find data structure essentially adds a parent-
pointer to each vertex pointing to a representative of its
strongly connected component. These pointers are followed
until an element is found which references itself. Then, two
vertices are in the same cluster iff their pointers ultimately
point to the same element. The data structure is created by
iterating through all edges and making sure that vertices con-
nected by an edge are always in the same cluster.

The Union-Find data structure does not support decremen-
tal updates, i.e., when edges are removed from the graph, the
entire data structure has to be rebuilt. However, there is also a
fully dynamic connectivity algorithm by Holm et al. [31]: He
suggests to create and maintain a data structure of dynamic
spanning forests in the graph, thus answering connectivity
queries in amortized logarithmic time O(log n) while requir-
ing amortized O(log2 n) time for updating the data structure
when edges are inserted or deleted. This yields a total time of
O(log2 n) to update analysis results on model changes when
we are only answering O(log n) connectivity queries.5

The key observation here is that the incremental algo-
rithm in this case, maintaining a dynamic spanning forest, is
entirely different from the batch mode approach of using
a Union-Find data structure. While Tarjans Union-Find
data structure efficiently answers connectivity queries, the
dynamic spanning forest by Holm can be updated even if
edges are deleted from the graph.

However, although Holms dynamic spanning forest algo-
rithm is known for more than a decade, it can be doubted that
many analysis developers are aware of it or even can imple-
ment it. For a developer of an analysis, it is more common
to use an implementation of connectivity analysis provided
by a library, without a deeper understanding of the algo-

5 A performance comparison of different algorithms was done by Cat-
taneo et al. [32].

rithm that is used behind the scenes. The rationale behind
our approach is that the developer of that library probably
knows the dynamic algorithms available, but requires a way
to implement that algorithm in a way such that an incremen-
talization system is able to access this implementation.

Another important observation is that the choice of algo-
rithms also depends on the usage context: Although Holm’s
dynamic spanning forests can greatly improve the amortized
asymptotic update performance in case connectivity is only
interesting for few pairs of nodes, it eventually gets worse
than recreating the Union-Find data structure from scratch
after every change. The choice which of these algorithms
are faster for a given practical model size may therefore be
difficult to answer.

4.2 Reification of the problem for
incrementalization

Incrementalization approaches that work on an instruction
level do not see the algorithmic problem and therefore are not
aware that there may be an elegant solution in an incremen-
tal setting which is entirely different to the best solution in
the batch scenario. Further, most graph algorithms are spec-
ified in imperative code that modifies some internal state in
loops, where some loop invariant ensures the correctness.
As the state has substantial influence on the control flow,
an incrementalization based on the batch specification has
to keep track of the potentially huge state space or reeval-
uate the algorithm from the earliest state that diverged, as
implemented in Traceable Data Types [33].

However, developers of a framework for graph connec-
tivity likely know such an alternative solution as they are
aware of the methods semantics and could specify a dynamic
version. The analysis developer can reuse the connectivity
analysis as a building block and the incrementalization auto-
matically decides whether to run the connectivity analysis
using Tarjans Union-Find data structure or Holms dynamic
spanning forest, depending on whether the analysis is exe-
cuted in batch mode or incrementally.

The basic idea is to enable developers to provide a cus-
tom implementation of the functor application (cf. Sect. 3)
of framework functions. An explicit functor application is
only required once for each generic analysis method such as
connectivity analysis while it may be used in a multitude of
analyses. An examples are the SQO methods that we manu-
ally incrementalized for our motivational example in Sect. 2.

The advantage of our formalization of incrementality as a
functor is that the correctness of the whole analysis follows
from the requirement that functors respect functional com-
position, i.e., for morphisms f : A → B, g : B → C we
have that I(f ◦ g) = I(f) ◦ I(g).

In terms of programming languages, this means that a
function f from A1 ×· · ·× An → B with n parameters must

be mapped to a function I(f) : I(A1) × · · · × I(An) →
I(B). If any of the Ai is a function type, then the incre-
mentalization of this function may utilize the functor I on
arguments passed for this parameter. This allows to provide
explicit incrementalizations for higher-order functions.

For example, consider again Listing 1. The query in this
listing is translated into calls to higher-order functions such as
where and select operators (SQOs). The incrementaliza-
tion of these operators can now take the incrementalization of
the predicates used by these functions into account, regard-
less of how these functions look like, and keep a reference
on the incremental results that are return values of the incre-
mentalized predicates.

Calls to these higher-order functions need to be mapped to
calls of the incremental derivatives, i.e., functions to which
the incremental computation system I has been applied. An
easy specification method is possible in languages that keep
metadata such as Java or C#. The metadata of a function can
then contain a reference to the incremental derivative, e.g.,
through .NET attributes or Java annotations.

While this approach is a straightforward outcome of our
formalization (C1), it has a strong impact on the API design
of analysis frameworks. In algorithmics, fully dynamic algo-
rithms such as the connectivity algorithm from above are
often designed with an API that mixes the functional specifi-
cation of the algorithm (in the example a function returning
whether two vertices are connected) and an API to adjust the
data structure to updated input (in the example methods that
insert or remove edges from the graph). As a consequence of
our approach, the latter is forbidden but must be implemented
as part of the functor application.

In the example of connectivity analysis, we can reduce
the API of a generic connectivity analysis implemented in a
single class to the two elements below.

– Connectivity<T> (T∗ vertices, T → T∗
edges) : Connectivity<T> creates a new data
structure to decide whether two elements of type T are
connected where the underlying graph is given by a set
of vertices and for each vertex the incident edges. Here,
T∗ denotes the Kleene closure, i.e., a collection of type
T .

– AreConnected(T a, T b) : bool as an instance
method of the resulting data structure determines whether
the vertices a and b are connected.

In batch mode, the method Connectivity creates a
Union-Find data structure as proposed by Tarjan. On this
data structure, the method AreConnected checks for two
instances of the domain, whether the parent pointers are
pointing to the same element.

In the incrementalized version, the result of Connecti-
vity is an incremental value of a connectivity object created

using Holms dynamic spanning trees, inheriting from the
same abstract base class. These methods get as an input an
incremental value for the vertices in the graph and an incre-
mental value for the method describing the outgoing edges.
This object will react on changes in the vertices appropri-
ately by adding or removing edges in the dynamic forest.
If, for example, the value for the parameter edges changes
entirely, it may also return a new Connectivity object, mean-
ing that the present dynamic forest is discarded.

The method AreConnected of the incremental dynamic
spanning tree implementation compares the root nodes for
both involved trees and looks whether they match. Further-
more, it hooks an event handler to react on changes to the
dynamic forest and reruns the check afterward. The result-
ing incremental Boolean value represents whether this has
any effect on the connection between nodes a and b.

This can be seen as a separation of concerns in the oth-
erwise query-and-command like interface of fully dynamic
algorithms. In this version, the functionality is exposed in a
purely functional manner whereas the state management is
hidden from the developer when the analysis is run in incre-
mental mode.

5 An extensible implicit incremental
computation system in .NET

This section presents NMF Expressions, an extensible
implementation of an incremental computation system (C3).
The system is available as open source6 as a subproject of
NMF [17] which supports model-driven engineering on the
.NET platform. NMF Expressions is an implementation for
online incrementality, i.e., we assume that the analysis is run
in a long-running process and gets notified for each elemen-
tary model change.

The basic idea of NMF Expressions is to implement
incremental expression evaluation by creating a dynamic
dependency graph (DDG) where each executed instruction
is reflected by a node in the DDG. DDG nodes represent
incremental values and are annotated with their current value
(value transformation).

As usually many instructions are necessary to compute an
analysis, DDGs may become very large and may consume
enormous amounts of memory. This makes the integration of
manually incrementalized functions important to avoid that
graph traversal outweighs the savings in terms of incremental
computation.

In the remainder of this section, we first introduce the
overall concept in Sect. 5.1, discuss the correctness of the
implementation in Sect. 5.2, the incrementalization of higher-
order methods in Sect. 5.3 and the extensibility in Sect. 5.4.

6 http://github.com/NMFCode/NMF.

5.1 Overview

To implement an incremental computation system, one of
the first decisions to make is how to design the API of the
incrementalization, i.e., how to implement the functor.

For the mapping of types, our implementation uses a
generic interface INotifyValue for the mapping of types
to decouple the monad7 as much as possible from concrete
implementations. Furthermore, interfaces in .NET offer sup-
port for covariance whereas in general, .NET uses a hard
implementation of generics in .NET.8 This means, if a class
A derives from B, then an INotifyValue<A> object can
be assigned to a variable of type INotifyValue.

The mapping of functions, i.e., computingI(f) for a given
function f , is done at runtime in our implementation. This
works because .NET languages such as C# have a feature
to obtain a function, in particular, a lambda expression, as a
pre-compiled abstract syntax tree (expression tree). Hence,
a function f is represented by such an expression tree that
is generated by the compiler. This allows us to lift this func-
tion at runtime while keeping the tool support intact. The
price is a slight overhead to the non-incremental execution
of such a function as the expression has to be compiled
before it can be used in non-incremental mode. In the incre-
mental case, our implementation relies on conversions from
the pre-compiled lambda expressions to a new set of types
ObservingFunc with a set of generic type arguments for
parameter types and a generic type parameter for the return
type, similar to the .NET built-in delegate Func types. These
ObservingFunc types represent a function f together
with its incrementalization I(f) and I(f) ◦ η. That is, one
can either call the function with the regular parameters and
get the regular result (for batch purposes), call the function
with incremental values for each parameter and get an incre-
mental result or call the function with the regular parameters
and get an incremental result where all arguments are lifted
to constants.

Next, we need to define how state changes (ΔΩ) should be
mapped to the type system in order to provide an implemen-
tation of the update mechanism (apply transformation). In
our implementation, apply is supported through an explicit
method at the individual DDG nodes that receives changes
from the DDG nodes it depends upon and outputs the value
changes in the current node. DDG nodes in turn are realiza-
tions of incremental values. That is, whenever a state change
occurs, the change propagates through the DDG. If the value

7 The unit transformation of an incrementalization system is not natural,
therefore incrementalization is not a monad in the sense of category
theory, only a functor. However, this construct is often still called a
monad in programming.
8 That is, generic type arguments matter for the identity of a type, unlike
for instance in Java.

http://github.com/NMFCode/NMF

of a node changes, this change is propagated to all of the
successor nodes; otherwise, change propagation is stopped.

In a modeling environment, the state changes are model
changes that can be recorded using standard notifica-
tion APIs. NMF reuses the notification API that is com-
mon in the .NET platform, available through the inter-
faces INotifyPropertyChanged and INotifyCol-
lectionChanged.9 Because the implementation only
uses these two interfaces, it can also be used with model
classes that are not generated from a metamodel but written
directly.10

In the formalization, we considered DDG nodes
immutable as components of I. In the implementation, we
essentially reuse the old object and fire an event when a DDG
node should be considered as different. The advantage is that
we can describe the actual changes in the notification, for
instance to note the exact value change, i.e., the old and the
new value. The same is done for collections where the noti-
fication (in the form of an event) also carries information
which objects have been added or removed (cf. Sect. 6).

In addition to the value and apply transformations, the
DDG nodes also carry a reference counter in order to track
whether the incremental value that they represent is currently
needed. If it is not, the DDG node are in a deactivated state
and do not listen to model changes.

The unit transformation η is straightforward to implement
as extensions methods. The unit transformation η converts a
value to a constant, i.e., a DDG node that always returns the
provided constant as its value and never changes upon calls
of apply. The functor itself is not as easy. In our implementa-
tion, we decompose methods into their abstract syntax trees
and incrementalize every element of it separately, making
use of the law that I(f ◦ g) = I(f) ◦ I(g).

For this to work, we require a decomposition of the model
analysis into instructions. We obtain this decomposition at
run time through the .NET Expression API in an expression
tree of the System.Linq.Expressions namespace.11

The resulting DDG essentially contains a node for each
executed instruction, including the type of instruction as well
as the data passed in. It is therefore much larger than compa-
rable DDGs created by self-adjusting computation [36] that
uses explicit incrementalization primitives to make the nodes
as large as possible. However, it has the advantage that we
have a direct representation of a method call which makes it

9 The interface INotifyCollectionChanged is only used in the
extension for incremental queries in Sect. 6.
10 The support for these two interfaces can even be generated automat-
ically using aspect-oriented programming [34].
11 C# has an option to instruct the compiler to generate a model of
the code instead of compiling the code to Intermediate Language (IL)
code. The usage of this language feature to build internal DSLs has been
discussed first by Martin Fowler [35, p. 455] under the term Parse Tree
Manipulation.

easier to exchange such nodes with an explicit incremental-
ization for the given method.

If any node in the expression tree changes its value, this
change is propagated up to the root of the tree that represents
the value of the whole tree. Along this way, the propagation
is stopped as soon as the value for a subexpression does not
change.

For example, whether the entry semaphore of a route
shows GO does not change if the entry semaphore of the
route has a failure while showing STOP (depicted in Fig. 3).
The member access node to the entry semaphore does not
change because the identity of the semaphore is still the same.
However, the signal property of that semaphore changed.
This change raises an event, fetched by the member access
node and further propagated through the DDG. The node
for the binary operator == receives the change notification
and checks whether it should be updated. However, the sig-
nal still does not show GO and thus the change is no longer
propagated.

If a node in a DDG is referenced by two other DDG
nodes—which means that an intermediate result is used more
than once—this causes problems as some DDG nodes may
be reevaluated too often.12 However, for many analyses, this
problem does not occur. Therefore, NMF Expressions pro-
vides multiple implementations of reevaluation strategies
called execution engines that support change transactions
or even parallel change propagation. However, we consider
these different execution engines outside the scope of this
paper.

5.2 Incrementalization at instruction level

We implemented an incrementalization for each instruction
type, each represented in its own class. If a change affects
an incremental value, we do not exchange the instance of the
DDG node but issue a change notification such that depen-
dent nodes treat the incremental value as new. The expression
tree is then converted using a visitor pattern. For each of the
instruction types, their incrementalization has to respect the
naturality of value and apply transformations.

The naturality of apply means that

1. the creation of the DDG can be done before or after a
given change is done to the model without affecting the
DDG after the change and

2. the change notification is issued whenever the repre-
sented value changes.

12 For example, consider the repeated-diamonds-shape problem
illustrated on http://rystsov.info/warp9/pages/competitors/diamond/
diamond.html.

http://rystsov.info/warp9/pages/competitors/diamond/diamond.html
http://rystsov.info/warp9/pages/competitors/diamond/diamond.html

Fig. 3 The DDG for the predicate route.Entry!=null&&route.Entry.Signal==Signal.GO and nodes that must be reevaluated when changing
the signal to FAILURE in red and dashed (color figure online)

The former statement is true for all nodes of our imple-
mentation, as the implementation is entirely sequential and
therefore the creation of a DDG node cannot interfere with
the change propagation. As soon as a change happens, all
DDG nodes that are affected by this change adapt them-
selves to the change. The latter statement and the naturality
of the value transformation have to be discussed for each
instruction type individually. This means that at any given
global state, the value transformation of a DDG node must
match the instruction applied to the value of the input DDG
node and if this result has changed since the last model
manipulation, a change notification must have been issued.
This change notification may contain detailed information
on the change that may help to propagate it. An implementa-
tion for the most common types of instructions is described
below.

Constants Constants never change. Thus, the node does not
save successor nodes as a notification that the value has
changed does not occur. The value transformation is also
a constant, which is clearly natural.

Member access A member access potentially changes either
if the target model element for the member access
changes or any change in the target element’s properties
is recorded through the notification API.

Unary expressions The considered unary expressions are
type casts, conversions, unary plus and minus of numbers,
logical negation and bitwise inverse. These operators
only change their value when their inputs change.

Binary expressions The value of a binary expression poten-
tially changes if either of the operand’s values changes.
An exception to this rule is the logical shorthand opera-
tors. In case of the conditional shorthand && operator,
the right operand must not be evaluated if the left operand
evaluates to false, as it might throw an exception.
Thus, the right operand must be activated or deactivated,

depending on the value of the left operand. The same
applies for conditionals.

Conditional expressions Conditional expressions
keep a DDG for the test expression, the true expression
and the false expression. Depending on the current value
of the test DDG, the DDG for the true or false expression
are dynamically activated and deactivated. The value of
the conditional expression only changes if the value for
the attached sub-DDG root node changes.

Method calls, constructors In case we have an abstract syn-
tax tree of the method available such as for Lambda
expressions, we recursively deduce a dependency graph
template from it. In all other cases, we assume that
a method return value only changes if either of its
arguments changes. This assumption is reasonable for
immutable types, particularly for platform functions like
string length or the sinus function to which we do not have
access. In all other cases, we require that the developer
provides an explicit incrementalization of the method.

Lambda expressions Nested lambda expressions are slightly
problematic. Because the function types of the .NET plat-
form are fixed, using a custom function type loses the
inherited compiler support.13 Therefore, the approach of
NMF is to perform a lazy incrementalization of lambda
expressions. That is, the lambda expression is only incre-
mentalized when actually needed.14 If this is the case,
the body expression of the function is recursively trans-
formed into the monad as well.

Invocations An invocation of a function expression is very
similar to a method call with the exception that no proxy

13 One may circumvent this problem by extending the compiler. Using
technologies such as Roslyn, this seems possible, even though one then
also has to extend the IDE support.
14 In case of nested predicates, the inner lambda expressions need to
remain lambda expressions to respect type system laws.

is required as the incrementalization system knows the
body of the function expression. The result is that the cor-
responding DDG template (cf. Sect. 5.3) is filled with the
dependency graph nodes obtained from the arguments.

Dynamic dependency graphs consume a lot of memory
and are the main reason why incremental computation has
a large memory overhead. Therefore, approaches like the
implicit self-adjusting computation by Chen et al. [9] argue
that constant operations that do not change their value should
not go into the functor since they unnecessarily increase the
size of the DDG. To solve this problem, their approach gener-
ates methods for each combination of an incremental value15

and constant value. To circumvent this problem, we intro-
duced a constant propagation, i.e., we do create nodes in the
dynamic dependency graph if a value is constant (i.e., there is
no change notification provided for it) but reduce operations
made on constants to constant values.

Converting the abstract syntax trees at runtime yields the
decision whether or not we apply the monad. If so, we can
apply the monad and obtain an incremental evaluation. If we
do not apply the monad, we can use the .NET built-in expres-
sion compiler and get a batch mode version of the analysis
with low overhead: Because the types of all expressions are
already known, it is straight forward and thus fast to compile
an expression tree to intermediate language code.16

5.3 Incrementalization of higher-order functions

Many model analyses such as the detection of wrongly
set switches in the running example include the usage of
higher-order functions, i.e., functions that take functions as
arguments. This has two consequences: First, the transition
from a function to a DDG happens while the system is
running, potentially as a reaction to some model changes.
Therefore, the parsing process of functions to DDGs need to
be moved upfront. Second, we need to handle cases where
the argument function changes while the system is running.

To solve the first problem, we use templates of DDGs. The
DDG is created for the body of the function, using placehold-
ers whenever an argument is accessed. Upon creation, the
entire DDG for a function is in a disconnected state. If argu-
ments are passed to the system, the DDG template is copied,
replacing the argument placeholders with the provided DDG
nodes. If all parameters are satisfied, the DDG is connected.
Otherwise, the copied DDG stays disconnected and realizes
the exponential mate, also known as the curried version of
the original method.

15 Called modifiable reference in [9].
16 However, the generated method should be stored in order to avoid
repeated JIT-compilation.

DDG templates are also used for conditional and short-
hand binary expressions. For example, the right side of a
shorthand && operator must not be evaluated if the left side
already evaluates to false. Therefore, in that case we deac-
tivate the subgraph. For the predicate route.Entry!=null
&&route.Entry.Signal== Signal.GO of the running
example, this is depicted in Fig. 4.

However, as an incremental analysis is usually meant to
run continuously, it is very important that the algorithm is
elastic in its memory consumption. This means, the memory
of DDG nodes is released once they are no longer needed.

In our implementation, each DDG node has a separate
counter to determine whether it should be connected or dis-
connected, because a DDG node generally does not know
where it is used. If this reference counter is incremented
to 1, the node automatically connects which means that it
increments the reference counter for all of its prerequisite
nodes and attaches to the model notification API if neces-
sary. Conversely, if the reference counter is decremented to 0,
the DDG node disconnects from the model and decrements
the reference counters of prerequisite nodes. However, the
implementation still holds a strong reference to the DDG
nodes such that they are not collected by the garbage col-
lector. This is because otherwise it would not be possible to
connect to the model again.

With parts of the DDG being able to be removed while the
incremental analysis is running, we can solve the problem
how to properly represent higher-order functions. A higher-
order function compatible with our approach is a function that
takes in a pre-compiled lambda expression as a parameter (as
above, in order to keep the tool support). The incremental-
ization of this function would then consume an incremental
value of pre-compiled lambda expressions and turns the cur-
rent value into a DDG template. If the value of the function
parameter ever changes (which rarely happens in all scenar-
ios we have come across so far), the DDG fragment created
for the template is discarded and replaced with a fragment
created from the new DDG template. In order to keep track
of the borders of the DDG fragment, wrapper DDG nodes
are inserted, if necessary.17

5.4 Extensibility

To keep the DDGs in a more reasonable size and improve
efficiency or to support also non-pure methods, we allow
developers to provide a custom incrementalization of a given
function. If such a manual incrementalization is provided, the
function is no longer seen as a composition of instructions
but rather treated as a primitive. The moment a manual incre-
mentalization is specified, the restrictions for the method no

17 The wrapper is not necessary for instance if the function parameter
is a constant.

Fig. 4 The DDG for the predicate route.Entry!=null&&route.Entry.Signal==Signal.GO and nodes that are disconnected if the entry
semaphore is changed to null

longer apply. This means, the method could also be imple-
mented in an imperative manner, such as, for example, graph
algorithms usually are.

We allow users different variants of specifying a proxy. For
a function f : A → B, the user may either provide a func-
tion I(f) : I(A) → I(B) or a function f ′ : A → I(B).
In case of the latter, we essentially reevaluate f ′ whenever
the current value of the arguments change and wrap the
resulting incremental value of B. The rationale behind this
decision is that for many functions—in particular higher-
order functions—such as the Average aggregate,18 it is much
easier to specify f ′ and it does not cost much performance
since the internal memory has to be reset entirely when the
original arguments change (which often does not even occur).
Furthermore, especially in the presence of collection oper-
ators, the argument identities of most collection operators
often do not change.

For the actual specification of the manual incrementaliza-
tion, we use an annotation called ObservableProxy. This
annotation specifies a type and a method name, identifying a
method that realizes the given extension point.

A problematic situation arises, if the method is recursive.
To create a DDG template that contains a recursive method,
we have to avoid recursively calling the proxy method. Here
we make use of the fact that the DDG template for the method
is only needed when the method is actually called, i.e., when
the DDG node is activated. In particular, we use a proxy node
that only copies the DDG template for the required method

18 Here, we consider an overload of Average that takes as input a
function what the value of an element shall be.

as soon as the node is connected to the model. As this proxy
node means additional memory, we require the user to specify
whether the proxy method is recursive.

A common problem with incremental proxies is that we
have no option but to trust the developer that the provided
proxy is correct in the sense that it fulfills the naturality
of value and apply for the annotated method. However,
because the requirements of the proxy are clear in relation to
the annotated method, a check of these naturalities could be
a goal of future code verification activities.

6 Incremental queries as an example
extension

This section presents an implementation of our concepts for
incremental queries. As queries are popular, this implemen-
tation is also part of NMF but separated in its own assembly,
proving that the incremental computation system is indepen-
dent from the query implementation.

Query operators are a good candidate for incrementaliza-
tion because the dynamic algorithms for most operators are
easier than for other algorithms such as connectivity analysis
algorithms. Meanwhile, the added value in terms of asymp-
totic improvements is larger: Maintaining a running sum and
element count to compute an average for instance reduces
the recalculation of an average from linear to constant effort,
despite its simplicity. Unfortunately, for other algorithms, it
is often neither as easy nor are the advantages as clear, as
discussed in detail in Sect. 4.1.

Because the incrementalization system is independent
from the incremental query support, we claim that this
proves the extensibility of our incrementalization system.
Furthermore, because most query operators are higher-order
functions, the incremental query framework also demon-
strates the support for higher-order functions.

According to the formalization, apply should always cre-
ate a different object, if the current value of an incremental
value has changed. For collections, one usually wants to
avoid this scenario as it implies to copy a lot of memory.
Furthermore, one usually wants to abstract from the kind of
collection (NMF typically uses an array list or a hash set or
a combination of both, depending on order and uniqueness
constraints of a reference, plus customizations for opposite
and containment references).

Dynamic algorithms usually require collection
changes at a high level. Therefore, we essentially use
the same idea as for DDG nodes, we treat collections as
immutable but require them to fire an event whenever their
contents change and fetch these events in manual incre-
mentalizations of collection operators. Because the generic
incrementalization system is unaware of collections, appro-
priate dynamic algorithms are even necessary because the
general incrementalization system is not aware of collection
changes and would otherwise lead to wrong results as col-
lections in NMF are mutable. The collection change event is
hidden behind an extended collection interface. This inter-
face yields a high-level change representation of collections,
similar to the proposal of Cai et al. [37], making abstractions
from the concrete collection implementation. This change
representation enables us to abstract from the index of a
changed element in a collection or even the collection imple-
mentation.

Queries can be seen as an extension of collections into
a monad [38]. Thus, we only refine this monad to rep-
resent changes, i.e., combine them with the INotify-
CollectionChanged interface commonly used in the
.NET platform for collection changes. That is, instead of
the usual IEnumerable interface, we created a new
INotifyEnumerable interface for incremental compu-
tation and the IEnumerableExpression that allows
users to switch between batch mode and incremental
mode. IEnumerableExpression behaves like the
IEnumerable monad but allows to switch to the
INotifyEnumerable monad through a method call.

The extension of collections to a monad is supported on
the .NET platform through the SQO methods (cf. Sect. 2).
For each of these methods, we have defined a manual
functor implementation that enables to use them incre-
mentally. The INotifyEnumerable monad is already
fixed to incremental execution. That is, any operation on
this monad operates directly on a DDG node representing
a collection. However, in applications, the SQO opera-

tions are also often helpful in a context where incremen-
tal computation is not required. Therefore, we added the
IEnumerableExpression monad that models an anal-
ysis. This model can then be executed in batch mode (the
default) or turned into a DDG upon request.

We implemented the following extension methods that are
part of the SQO both for the INotifyEnumerable monad
and for the IEnumerableExpression monad: All, Any,
Average, Cast, Concat, Contains, Count, Distinct, Except,
FirstOrDefault, GroupBy, GroupJoin, Intersect, IsProper-
SubsetOf, IsProperSupersetOf, IsSubsetOf, IsSupersetOf,
Join, Max, Min, OfType, OrderBy, OrderByDescending,
Select, SelectMany, SetEquals, Sum, ThenBy, ThenByDe-
scending, Union and Where. The semantics of these exten-
sion methods match their definitions from the SQO which are
reflected by their names. We implemented the overloads that
do not consider element indices that are thus not available
on either of our monads. If element indices are consid-
ered, an insertion of an element often results in too many
changes for incremental execution to be beneficial. In partic-
ular, adding or removing an element from a collection of n
elements in the average leads to n

2 index changes, meanwhile
if indices are not considered, only the removed element needs
to be adjusted. Furthermore, these overloads are not consid-
ered in C# for the query syntax and are thus rather rarely
used.

We demonstrate the implementation of the manual incre-
mentalization for the Average function. The average of a
collection (for example, of integers) changes not only when
the identity of its argument collection changes, but also when
the contents of this collection change as we are using muta-
ble collections. Therefore, Average plays the role of f from
Sect. 5.4.

For each overload of the Average function, a proxy method
is provided that implements a manually incrementalized ver-
sion. Since our formalization in category theory maintains
types, these proxy methods can be type checked and used
without any conversion efforts. At the same time, we know
that the incremental analysis is still correct, assuming that the
custom incremental derivation for each method is correct.

The implementation of the Average method including the
annotation that specifies the manual incrementalization is
depicted in Listing 3. The proxy method is specified using
a type and the name of a public method. If the original
method is static, the proxy method must also be static. The
proxy method must have either the same input parame-
ters or monad instances of them (in the example of List-
ing 3, INotifyValue<IEnumerableExpression>),
corresponding to the cases that the proxy is provided as f ′
or I(f) from Sect. 5.4. The proxy method itself switches the
input collection to a version that enables collection updates
and returns a custom DDG node implementation.

1 [ObservableProxy (typeof (Proxies) , "

CreateIntAverage ")]

2 public static double Average (this

IEnumerableExpression <int > list)

{

3 ...

4 }

5
6 private static class Proxies {

7 public static INotifyValue < double >

8 CreateIntAverage (

IEnumerableExpression <int >

list) {

9 return new ObservableIntAverage (

10 list . AsNotifiable ()

11);

12 }

13 }

Listing 3 Definition of the Average method and specification of the
manual incrementalization

A simplified version19 of the implementation of this DDG
node is depicted in Listing 4. In particular, the DDG node
memorizes the current sum and element count. When the
input collection resets, sum and element count are reset. Oth-
erwise, these fields are updated according to the changes of
the underlying collection.

The DDG node implementation may assume that only
change notifications from DDG nodes listed as dependen-
cies will be passed to this node. In the example, the average
node may safely assume that all change notifications come
from the collection DDG node source. Notably, because
the notification result is hidden behind an interface, exten-
sions may easily implement their own change representations
such as the query implementation uses the change represen-
tation of mutable collections.

The explicit incrementalizations of higher-order methods
such as the Select or Where operators internally manage
DDGs for any element in the underlying collection. If an
element in the collection is added, a new DDG is created
to obtain an incremental value for the predicate the operator
is using. If the element is removed from the collection, the
DDG is no longer needed and removed from the node.20 If the
result of one of the element DDG change, the corresponding
change in the operator is deduced and then propagated.

19 The real implementation is refactored to share code with similar
aggregation functions and catches error cases. A few names have been
simplified.
20 The implementations are aware of cardinalities larger than 1 so that
effectively, the DDG is removed if the cardinality of the removed ele-
ment is 0.

1 internal class ObservableIntAverage :
NotifyValue < double >

2 {
3 private int sum ;
4 private int count ;
5 private double value ;
6 private INotifyEnumerable <int > source

;
7
8 public ObservableIntAverage
9 (INotifyEnumerable <int > source) {

10 this . source = source ;
11 }
12
13 public override IEnumerable <

INotifiable >
14 Dependencies {
15 get { yield return source ; }
16 }
17
18 public override INotificationResult

Notify (IList < INotificationResult >
changes) {

19 var old = value ;
20 foreach (ICollectionChange change
21 in changes) {
22 if (change . IsReset)
23 { sum = 0; count = 0; }
24 foreach (int added in change .

Added)
25 { sum += added ; count ++; }
26 foreach (int removed in change .

Removed)
27 { sum -= removed ; count - -; }
28 }
29 value = (double) sum / count ;
30 if (old != value) {
31 return new

ValueChangedNotificationResult

32 <double >(this , old ,
value);

33 } else {
34 return

UnchangedNotificationResult .
Instance ;

35 }
36 }
37
38 public override double Value { get {

return value ; } }
39 }

Listing 4 The implementation of the Average DDG node

7 Validation and evaluation

In this section, we perform a validation and evaluation of our
approach. Section 7.1 explains the goals and strategy behind
our evaluation. Section 7.2 presents a micro-benchmark to
validate that manual incrementalizations improve the effi-
ciency of an incrementalized algorithm. Section 7.3 evaluates

our performance in a realistic scenario and compares the
results with other, both incremental and non-incremental
tools. Section 7.4 discusses threats to validity. Section 7.5
gives a summary of the validation.

7.1 Goals and strategy

In the scope of this paper, we have the following validation
and evaluation goals:

1. We want to validate that the extension mechanism intro-
duced in this paper has a better performance (measured
in response times to changes as well as memory con-
sumption and size of models that can be processed) than
a comparable version without the extension mechanism.

2. We want to validate that model analyses incrementalized
using our approach achieve better response times than
comparable non-incremental solutions.

3. We want to evaluate the performance of model analyses
incrementalized using our approach in comparison with
other incremental tools.

To maximize the validity of our results, we aim to use
community benchmarks for which a wide range of solutions
using other tools exist. For brevity, we have only included
one of such benchmarks, the TTC 2015 version of the Train
Benchmark [19], in this paper. For further evaluations, the
interested reader is referred to the Ph.D. thesis of the first
author [39] or the NMF solution [40] of the TTC 2018 Social
Media benchmark [41].

All of these benchmarks require to deal with collec-
tions, for which NMF uses its manually incrementalized
query framework (cf. Sect. 6). An implementation of these
queries without the abstraction of collections (in order
to avoid manual incrementalizations) would make these
queries much more difficult to understand than their batch
equivalents and therefore has not been implemented. To
compare these manually incrementalized functions with the
default incrementalization using recursive functions, we
added a new micro-benchmark that compares the compu-
tation of an average using the optimized manual imple-
mentation or a instruction-level incrementalized recursive
algorithm.

7.2 An incremental averagemicro-benchmark

In this section, we analyze a small micro-benchmark in
order to validate the efficiency gains by using manual
incrementalizations of higher-order functions. The code for
this benchmark is publicly available at https://github.com/
NMFCode/ExtensibilityBenchmark.

Root
Item

Value : EInt
[0..*] item

Fig. 5 The trivial metamodel used for the average micro-benchmark

7.2.1 Benchmark setup

To measure the performance of computing the average of
a collection, we created a trivial metamodel that we use as
basis. The metamodel only consists of two classes: a class
Root that serves as container and a class Item that has an
attribute Value containing the integers for which we want
to compute the average value. The metamodel is depicted in
Fig. 5.

Based on this metamodel, the benchmark consists of the
following steps:

1. Generate a model of size n + 1 consisting of one Root
element and n instances of Item with values for the
Value attribute drawn by random between 0 and 100.

2. Perform 40 model changes. Each model change is either
to add a new item with a random value or to modify the
value of a randomly selected existing item. After each
change, we recalculate the average of all elements. The
first 20 model changes are discarded, for the second 20
model changes we measure the time required to recalcu-
late the average. The random numbers are created outside
the time measurements.

3. The process is repeated 50 times for each size n to elimi-
nate the factors of just-in-time compilation and randomly
occurring garbage collections.

We make the benchmark deterministic by seeding the
random number generators and check the correctness of all
implementations by comparing the sums of all averages per
size and algorithm and making sure they are all the same.

We created a small benchmark framework where an
implementation essentially consists of two methods:
Initialize and ComputeAverage. The former method
is executed at the start of the benchmark, the latter after every
model change. We compared five different implementations:

– A batch implementation that uses the regular, non-
incremental query operator Average

– An incremental implementation that uses a manually
incrementalized version of the Average operator

– An incremental implementation that uses a recursive
algorithm without manual incrementalization

https://github.com/NMFCode/ExtensibilityBenchmark
https://github.com/NMFCode/ExtensibilityBenchmark

1 public void Initialize () { }

2 public double ComputeAverage () {

3 return root . Items . AsEnumerable () .

Average (i => i. Value);

4 }

Listing 5 Computing the average value from a list of items using query
operators

The batch implementation that recalculates the average
after every model manipulation is depicted in Listing 5. For
this implementation, we inserted a call to AsEnumerable
which simply forces the compiler to use the regular query
API in order to avoid the runtime compilation of predicates.

1 public void Initialize () {

2 resultCache = Observable .

Expression (() =>

3 root . Items . Average (i => i. Value)

4);

5 }

6 public double ComputeAverage () {

7 return resultCache . Value ;

8 }

Listing 6 Incrementally computing the average value from a list of items
using query operators

The incremental version of this solution is depicted in
Listing 6. It uses the NMF model query API that is man-
ually incrementalized. It starts the incremental calculation
of the average computation once in the Initialize
method using the Observable.Expression method.
This method turns the lambda expression that it receives
as an argument into a DDG. During the construction of the
DDG, the incrementalization of the call to the Average
method uses the provided manual incrementalization which
in turn makes use of the incrementalization system to convert
its inner function argument i => i.Value into a DDG
template. Afterward, this version only gets the current result
through the Value property of the incremental result object.
Any updates of the DDG are performed through hooks of the
model manipulation.

The implementation without a manually incrementalized
function is depicted in Listing 7. Because iterators have a
state, we cannot use the .NET collection interfaces and there-
fore use recursion to loop through the collection indices.
Unlike the query API, this assumes that the collection in
question is orderable and therefore has an index-based access
(which collections in NMF often do not have). The recursive
function starting in line 6 takes an index and a tuple of a run-
ning sum and element count. If the index is smaller than the
number of elements in the collection (cf. line 8), the func-
tion recursively calls itself with the successor index and adds
the value of the current item (lines 9–10), otherwise the cur-
rent tuple of running sum and element count is returned (line
11). Another function (lines 2–4) then takes this tuple and

computes the final result by dividing the running sum by the
element count.

1 public void Initialize () {

2 var computeAverage =

3 Observable . Func (((int , int)

tuple) =>

4 ((double) tuple . Item1) / tuple .

Item2

5);

6 var recurse =

7 Observable . Recurse ((rec , index ,

tuple) =>

8 index < root . Items . Count

9 ? Add (rec (index + 1, tuple) ,

10 root . Items [index].

Value)

11 : tuple

12);

13 resultCache = Observable .

Expression (() =>

14 computeAverage . Evaluate (

15 recurse . Evaluate (0 , (0 , 0))

16)

17);

18 }

19 private static (int , int) Add ((int ,

int) before , int value) {

20 return (before . Item1 + value ,

before . Item2 + 1) ;

21 }

22 public double ComputeAverage () {

23 return resultCache . Value ;

24 }

Listing 7 Incrementally computing the average value from a list of items
using a recursive algorithm

Note that lambda expressions in C# by default do not sup-
port recursion as the lambda expression cannot be referenced
before it has been declared. Our implementation solves this
problem by a dedicated Recurse method that incremental-
izes the iterative fixed point of a given function. In particular,
the first argument of the function passed into Recurse in
line 6 is itself a function that allows callers to make a recur-
sive call.

7.2.2 Results

The performance measurements for the recalculation of the
average are depicted in Fig. 6. All measurements were taken
on an Intel i7-8550U CPU clocked at 1,80Ghz in a system
with 8GB RAM. The sizes refer to the number of Item
elements in the generated model.

For the recursive algorithm, we were only able to run the
benchmark up to a size of 1000 items as the benchmark ran
into a stack overflow for larger model sizes. This recursion

0.1

1

10

100

10 50 100 500 1000 5000 10k 50k 100k 500k 1000k

Size

Ti
m

e
[m

s]

Algorithm Manually incrementalized Batch Recursive

Fig. 6 Performance results of the micro-benchmark to compute averages

happens when attaching the DDG to the model as attaching
nodes iteratively implies attaching of dependent nodes.

One can see that starting at a given size, the slope for the
batch results is constant. This is because, from this point, the
time to calculate the average is completely determined by the
number of items to process.

The recursive algorithm eventually has the same slope but
it takes slightly longer. This is because the recursive algo-
rithm has to process all items starting from the collection
index where a change was made. This means, if an element
has been added at the end of the collection, then the change
propagation can be done in constant time since the calcula-
tion of sum and element count is still valid up to the previous
index. If the value of an existing item is changed, then the
change propagation has to recalculate the recursion from that
index onward, resulting in a linear effort. However, because
the DDG adds a lot of overhead and defeats the compiler
optimizations, calculating the average incrementally using
the recursive algorithm is about two orders of magnitude
slower than just recalculating it every time it is required.

For the manually incrementalized version, the effort to
propagate any change is simply constant. For a new item,
a new DDG node is created to track its value which causes
to raise a notification that a new value has been added for
the average calculation. When the value of an existing item
has changed, this causes a notification that a value has been
replaced. In both cases, the running sum and element count
can be updated in constant time. However, the slope is not
as clear as for the other curves and it is not completely flat.
For this, we blame caching issue because for all larger model
sizes, not all elements fit into the CPU caches. In addition,
the accuracy for time measurements below a millisecond is
not ideal, even though we are using hardware performance
counters. Nevertheless, the slope indicates an almost con-
stant change propagation time which is much faster than the
batch recalculation for large models. For models with a mil-
lion elements, we already see that the incremental version
is more than three orders of magnitude faster than the batch
algorithm.

7.3 The TTC 2015 Train Benchmark

In this section, we analyze the Train Benchmark case [19] at
the TTC 2015 to which an NMF solution was submitted [42].
This benchmark consists of five analysis queries. The only
incremental tools that participated in this contest wereEMF-
IncQuery from the case authors and the NMF solution.

7.3.1 Benchmark setup

In the scope of this case study, we only investigate the TTC
version of the Train Benchmark [19] that covers a subset
of the entire Train Benchmark [43]. We briefly describe the
benchmark setup here, but further details can be found in
these papers.

Besides the SwitchSet query briefly introduced in Sect. 2,
the benchmark included four other queries: PosLength
queries the segments in the railway network that have length
0 or less. SwitchSensor looks for switches without a cor-
responding sensor. RouteSensor looks for switch positions
along a route that refer to switches that are not part of a
sensor that is defined within that route. The most complex
SemaphoreNeighbor query searches for routes that end at a
given track segment (which means that the next track seg-
ment belongs to a different route), but the exit semaphore of
the route is not the entry semaphore of the route that starts
with the connected segment.

The benchmark consists of four phases depicted in Fig. 7:
Read, Check, Repair and Recheck. In the Read phase, solu-
tions of the benchmark load the model of the respective size.
In the Check phase, the number of invalid elements is com-
puted, i.e., the number of pattern matches where each pattern
match represents a constraint violation. In the Repair phase,
several of these (either 10 or 10% of all, determined by the
parameter Change set size) constraint violations are fixed.
After that, the number of invalid elements is refreshed in a
Recheck phase of the benchmark. For each combination of
input model (size) and change set size, the benchmark is run
five times for each solution. Within each run, phases Repair
and Recheck are repeated ten times.

Execution time
Memory usage

of invalid elements
Execution time
Memory usage

of invalid elements

1. Read 3. Repair 4. Recheck2. Check

Iteration: × 10Run: × 5

Change set size
{fixed, proportional}

Model
increasing

size

Query Measure-
ments

Fig. 7 Phases of the Train Benchmark [19]

1 Fix (rc . Descendants () . OfType < Segment

>()

2 . Where (seg => seg . Length <= 0)

,

3 action : segment =>

4 segment . Length = - segment .

Length + 1) ;

Listing 8 NMF implementation of the PosLength query

During the execution of these phases, the benchmark col-
lects metrics on execution time, number of invalid elements
and memory usage.

In the scope of this case study, we are specifically inter-
ested in incremental revalidation, i.e., the time for Repair and
Recheck.

7.3.2 The NMF solution

The description of the NMF solution to the Train Benchmark
is based on the original submission to the TTC 2015 [42].

In the solution, we use NMF Expressions to incrementally
query the source model and cache the invalid elements con-
tinuously. However, this means that the phases Repair and
Recheck get merged as the model manipulation automatically
updates the incremental
query result. In particular, the Recheck phase becomes mean-
ingless as the updated results are always available and could
be used for immediate feedback, while more computational
effort is put into the model manipulation tasks in the Repair
phase.

In the following, we present the solution to the tasks,
following the structure of the case description, though with
omitted sort keys. The explicit parameter name action is
not necessary but is inserted to improve readability.

The implementation of the PosLength query is depicted
in Listing 8. It uses the Descendants operation of NMF
to iterate overall models contained somewhere in the railway
container. To this collection of model elements, a type filter is
applied that restricts the collection to instances of Segment.
This collection of segments is finally filtered to those that
have a length below 0. The repair operation sets the length
as suggested in the case description 2.

1 Fix (rc . Descendants () . OfType < Switch

>()

2 . Where (sw => sw . Sensor == null

) ,

3 action : sw =>

4 sw . Sensor = new Sensor ());

Listing 9 NMF implementation of the SwitchSensor query

1 var routes = rc . Routes

2 . Concat (rc . Invalids .

OfType < Route >());

3 Fix (from route in routes

4 where route . Entry != null

5 && route . Entry . Signal ==

Signal . GO

6 from swP in route . Follows

7 where swP . Switch . CurrentPosition

!= swP . Position

8 select swP ,

9 action : swP =>

10 swP . Switch . CurrentPosition =

swP . Position);

Listing 10 NMF implementation of the SwitchSet query

The implementation of SwitchSensor is depicted in List-
ing 9 and works very similar, though this time, elements of
type Switch are selected and filtered for those where no
sensor is attached. The repair operation creates a new sen-
sor and assigns this to the Sensor property of the selected
switch. Note that because Sensor is a container property,
this moves the switch out of the model.

The implementation of the SwitchSet query was already
explained in Sect. 2. We depict it again in Listing 10. This
query (and all of the below) is based on a collection of
routes. Because routes can only appear in two places, namely
their correct location in the containment hierarchy and in
the invalids reference, we make this more explicit to
only look in these two places than traversing the entire con-
tainment hierarchy. Note that this does hardly make any
difference for the incremental runtime because the contain-
ment hierarchy of the model is not touched in most queries.

1 Fix (from route in routes

2 from swP in route . Follows

3 where swP . Switch . Sensor != null

&&

4 ! route . DefinedBy . Contains (swP .

Switch . Sensor)

5 select new { Route = route ,

Sensor = swP . Switch . Sensor

},

6 action : match =>

7 match . Route . DefinedBy

8 . Add (match . Sensor))

;

Listing 11 NMF implementation of the RouteSensor query

The repair operation of the SwitchSet query sets the current
position of the switch to the position required by the route.

The implementation of RouteSensor is depicted in List-
ing 11. It iterates through all routes and all switch positions
defined by these routes and selects those where sensor of the
corresponding switch is not defined in that route. The repair
action adds the sensor to the collection of sensors of that
route. Because DefinedBy is a containment reference, this
again moves the sensor within the model.

The implementation of the SemaphoreNeighbor query is
twofold as depicted in Listing 12. We use a helper function
to compute the route that follows the current route of a route
provided as input. For this, we iterate through the sensors
of the route, iterate through all of its track elements, iter-
ate through the connected elements and to those where the
connected element is defined in a different route than the
current one. The railway network allows at most one of such
next routes. In the actual pattern, we then iterate through the
routes, find the candidate for the next route and save it as a
local variable, then filter this pair of routes to check that the
entry of that route is not the same as the exit of the first route.
The repair operation sets the entry of the second route to the
exit semaphore of the first route.

The solutions to SwitchSet, RouteSensor and Semaphore-
Neighbor use the query syntax of C#. This syntax is
translated to the method chaining syntax by mapping the
query keywords like from or where to SQO method calls
supported by NMF Expressions. The let expression in
the SemaphoreNeighbor query is converted to a Select
method that maps a route to a pair of routes, represented by
an anonymous type.

Because NMF Expressions allows to use the same speci-
fication both in a classic batch manner as also incrementally,
our solution can also be configured to run in batch mode
without any changes to the patterns. When executed in batch
mode, NMF Expressions forward the call to the LINQ to
objects implementation. Besides a negligible runtime com-

1 var connectedRoute =

2 ObservingFunc < IRoute , IRoute >.

FromExpression (

3 route =>

4 (from sensor1 in route .

DefinedBy

5 from te1 in sensor1 . Elements

6 from te2 in te1 . ConnectsTo

7 where te2 . Sensor != null &&

8 te2 . Sensor . Parent !=

route

9 select te2 . Sensor . Parent as

IRoute)

10 . FirstOrDefault ());

11
12 Fix (from route1 in routes

13 let route2 = connectedRoute .

Evaluate (route1)

14 where route2 != null && route2

. Entry != route1 . Exit

15 select new { Route1 = route1 ,

Route2 = route2 },

16 action : match =>

17 match . Route2 . Entry = match .

Route1 . Exit);

Listing 12 NMF implementation of the SemaphoreNeighbor query

pilation effort, this utilizes the highly optimized platform
LINQ implementation.

The patterns are enumerable expressions where devel-
opers can choose at runtime whether the pattern should be
executed in batch mode or whether NMF Expressions should
register for elementary change notifications to keep a cache
of the result up to date. To specify patterns, we created a
small method Fix that captures them.

The easiest implementation for the Fix function repairing
any validation error as soon as they occur would be the one
presented in Listing 13. In Line 2, we tell NMF Expressions
that we want to obtain incremental updates for the given
pattern. Line 3 repairs all occurrences existing so far and
Lines 4-8 handle new pattern matches. For the benchmark,
we adopted the Fix function to account for the benchmark
phases. In particular, the implemented version takes a third
parameter to allow us to sort matches. Since these sort keys
offer little insight, we omit them in the pattern presentation.

7.3.3 Results

The results from the open peer reviews21 are depicted in
Table 1.

21 https://docs.google.com/spreadsheets/d/1WepbTGB8XbXFV6tYK
DsdOn9kFvai8c4q_EoszeV3FsI/edit?usp=sharing.

https://docs.google.com/spreadsheets/d/1WepbTGB8XbXFV6tYKDsdOn9kFvai8c4q\protect \LY1\textunderscore EoszeV3FsI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1WepbTGB8XbXFV6tYKDsdOn9kFvai8c4q\protect \LY1\textunderscore EoszeV3FsI/edit?usp=sharing

1 public void Fix <T >(

IEnumerableExpression <T > pattern

, Action <T > action) {

2 var patternInc = pattern .

AsNotifiable () ;

3 foreach (T element in patternInc)

{

4 action (element);

5 }

6 patternInc . CollectionChanged += (o

,e) => {

7 if (e. NewItems != null) {

8 foreach (T element in e.

NewItems) {

9 action (element);

10 }

11 }

12 }

13 }

Listing 13 A simplified implementation of the Fix function

Table 1 Results from the open peer review of the TTC 2015 Train
Benchmark

Tool Correctness and
completeness

Conciseness Readability

ATL/EMFTVM 15 12 13

EMF-IncQuery 12.5 12.5 12.5

FunnyQT 15 15 12.5

NMF 12.7 13.3 15

SIGMA 15 13.3 13.3

For the understandability, the NMF solution was the only
solution at the TTC 2015 contest that received full points for
understandability from all open peer reviewers. In particular,
the solution was evaluated to be more understandable than all
batch solutions written in FunnyQT [44], ATL/EMFTVM
[45] or Sigma [46].

The performance measurements for the revalidation for
all queries are depicted in Fig. 8. All measurements were
taken on an Intel i7-4710 CPU clocked at 2.50Ghz in a sys-
tem with 16GB RAM. We use the same size notation as in
the Train Benchmark where a size 1 corresponds to about
1300 model elements. In the largest considered size 1024,
the model contains about 1.5 million model elements.

The NMF solution supported two execution modes, incre-
mental and batch mode. In the batch mode, the analysis is
rerun on the entire model in each step whereas the incre-
mental version maintains intermediate results and invalidates
them whenever elementary changes appear in the model.

The results show that the incremental version of the NMF
solution was able to keep up with specialized tools such as
EMF- IncQuery for many model sizes and queries and even

beat EMF- IncQuery by roughly a magnitude in the Switch-
Set query that we used in the motivational example. In other
scenarios, our implementation eventually gets slower than
the EMF- IncQuery solution.

Figure 8 also shows that for model sizes up to roughly
100,000 model elements (size 64), the incremental NMF
solution was the fastest for all queries depicted.

To explain why the NMF solution is faster than EMF-
IncQuery for the SwitchSet query, we depicted the Rete
network created byEMF- IncQuery for the SwitchSet query
introduced as running example for this paper in Fig. 9. In
the running incremental analysis, each node depicted in this
graph represents a list of partial pattern matches. The network
combines simple references and attribute accesses through
Join nodes to pattern matchers. On the contrary, nodes in
the DDG created by NMF Expressions only represent an
evaluation of an attribute or reference for a single model
element.

Besides the different granularity, the path in the data struc-
ture for a given change is different. In the NMF solution,
a change in a signal position only affects four nodes—the
respective attribute evaluation node, the binary expression
node that checks equality, the node for the where opera-
tor and lastly the node for a compiler-generated select
operator. Meanwhile, the same change in the Rete network
depicted in Fig. 9 has to be propagated through seven nodes.
In NMF Expressions, every node deals with exactly one
value and therefore has deterministic constant cost. In EMF-
IncQuery, nodes process in general more data. Through the
usage of hash tables, the nodes still have a constant effort,
but only amortized.

The results for the batch validation are depicted in Fig. 10.
Both NMF solutions had a relatively low constant overhead,
indicated by the fact that the solutions were much faster than
EMF- IncQuery or Java solutions. For larger models, the
overhead of the incremental algorithm to set up caches for
immediate results and register event handlers is similar to the
query effort done in the batch mode.

In the SemaphoreNeighbor query, the overhead of creating
the DDGs for the incremental revalidation is slightly higher
than in the other cases due to the higher complexity of the
query.

The incremental version has a drawback against the batch
version: memory consumption. We experienced that the
incremental version did not allocate more memory than the
batch version (since batch analysis has to reallocate memory
for each evaluation run) but the DDG that is responsible for
most of the memory consumption is continuously required
and cannot be released until it is detached from the model.
When the analysis is run in batch mode, the memory allocated
to compute the analysis can be released once the analysis
result is available.

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

PosLength, Function: repair+recheck

(a) PosLength

0.01
0.1

1
10

100
1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

SwitchSensor, Function: repair+recheck

(b) SwitchSensor

0.01
0.1

1
10

100
1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

SwitchSet, Function: repair+recheck

(c) SwitchSet

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

RouteSensor, Function: repair+recheck

(d) RouteSensor

0.01
0.1

1
10

100
1000

10000
1e+05

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

SemaphoreNeighbor, Function: repair+rechec

(e) SemaphoreNeighbor

Fig. 8 Performance results for revalidation. The graph compares the NMF solution (batch and incremental mode) with the reference solutions in
Java and EMF-IncQuery. Both axes are logarithmical

However, since both the .NET runtime and the Java Virtual
Machine employ garbage collection, the memory consump-
tion is difficult to measure because memory no longer used
may still be allocated because the exact time of a garbage
collection is not known. To at least get an impression on the
memory consumption, we depicted the working set of the
benchmark queries in Fig. 11.

The results show that the working set was within half
an order of magnitude difference as the Java or EMF-
IncQuery solution, at least for the queries SwitchSensor,
SwitchSet and RouteSensor. The working set also remained
within the limit of 2GB even for the largest models which is
why we think that the memory requirements are feasible for
this scenario.

For the PosLength query, the memory consumption is very
high, because of the large amount of segments that are con-

tained in the model. For each segment, a DDG to check
whether its length is less or equal to zero has to be instan-
tiated. On the contrary, the model manipulation performed
for the PosLength query is computationally inexpensive.
Therefore, the overhead due to incremental computation is
relatively higher.

For the SemaphoreNeighbor query, this result is differ-
ent. Rather, the memory consumption of the incremental
execution mode is about an order of magnitude higher than
the memory consumption of the batch mode execution and
all solutions required much larger amounts of memory. We
guess that this is due to the different query operators used, as
especially the SelectMany operator turns out to be very
memory intensive in the incremental setting.

Fig. 9 Rete network created by EMF- IncQuery for the SwitchSet query of the Train Benchmark (cf. [47])

7.4 Threats to validity

In this section, the validity of the results obtained in the pre-
sented validation is discussed. We separate this discussion
in the internal validity in Sect. 7.4.1 and external validity in
Sect. 7.4.2.

7.4.1 Internal validity

The internal validity of the case study results depends on
the type of result. In particular, there is a huge difference
between runtime measurements, memory measurements and
questionnaire results.

We can safely exclude an experimenters bias for the
Train Benchmark as the case has been authored by other
researchers and—more importantly—the set evaluation cri-
teria have undergone a peer-reviewed process. This does not
hold for the micro-benchmark for computing averages.
Performance There is a threat of confounding factors for
the performance measurements. Other applications than the
benchmark may be running on the machine such that the
measured performance times may not be completely accu-
rate.

To compensate this threat, all background services have
been terminated where possible, including messengers, stor-
age services and connection services.

However, there are also some services that are inevitably
connected to the benchmarks such as the garbage collec-
tor and the just-in-time compiler. To reduce the influence
of the latter two, all measurements have been repeated
ten times for the Train Benchmark and fifty times in the
micro-benchmark.

The benchmark framework of the TTC Train Benchmark
2015 does not consider an elimination of the just-in-time
compiler such that this compilation does influence the results.
However, this influence is only important for the smaller
model sizes. For the larger model sizes, the time for the
just-in-time compilation can be neglected. In the micro-
benchmark, we tried to eliminate this influence by warming
up the system, i.e., we ran the benchmark without measuring
results.

For the TTC Train Benchmark, less on the measure-
ment itself, there is also a difference of the used technology
because other solutions generally use EMF instead of NMF.
Therefore, differences in response times may be due to the
difference of the used framework instead of difference in the
used incremental tool. Clearing this effect from the measure-

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

PosLength, Function: read+check

(a) PosLength

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

SwitchSensor, Function: read+check

(b) SwitchSensor

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

SwitchSet, Function: read+check

(c) SwitchSet

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

RouteSensor, Function: read+check

(d) RouteSensor

10

100

1000

10000

1e+05

1 2 4 8 16 32 64 128 256 512 1024

Size

Ti
m

e
(m

s)

Tool EMFIncQuery Java NMF(Batch) NMF(Incrementa

SemaphoreNeighbor, Function: read+check

(e) SemaphoreNeighbor

Fig. 10 Performance Results for batch validation of the NMF solution versions compared to the reference solutions in Java and EMF- IncQuery
(both axes logarithmic)

ments required to reimplement the tools in another platform,
an overhead which is not justified by this confounding
effect.

Due to repetition of measurements, we think that the influ-
ence of garbage collection and just-in-time compilation is
much smaller than the observed differences between incre-
mental and non-incremental tools.
Memory Measurements For the memory measurements, there
is a large confounding factor because we only measured the
working set size. Therefore, the memory measurement is
confounded by the memory consumption of the modeling

framework as well as the memory consumption of any infras-
tructure code. Lastly, the memory consumption also depends
on the memory efficiency of the underlying technology which
is often different because NMF uses .NET meanwhile other
solutions usually use Java.

Furthermore, the garbage collector is a very important
confounding factor for the memory measurements because
it makes a tremendous difference whether the memory mea-
surement is done before or after the garbage collector frees
memory for unused objects. Because it is not possible in
.NET to clearly identify when garbage collection has taken

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024
Size

M
em

or
y

(M
by

te
)

Tool EMFIncQuery Java NMF(Batch) NMF(Incremental)

PosLength, working set

(a) PosLength

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024
Size

M
em

or
y

(M
by

te
)

Tool EMFIncQuery Java NMF(Batch) NMF(Incremental)

SwitchSensor, working set

(b) SwitchSensor

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024
Size

M
em

or
y

(M
by

te
)

Tool EMFIncQuery Java NMF(Batch) NMF(Incremental)

SwitchSet, working set

(c) SwitchSet

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024
Size

M
em

or
y

(M
by

te
)

Tool EMFIncQuery Java NMF(Batch) NMF(Incremental)

RouteSensor, working set

(d) RouteSensor

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024
Size

M
em

or
y

(M
by

te
)

Tool EMFIncQuery Java NMF(Batch) NMF(Incremental)

SemaphoreNeighbor, working set

(e) SemaphoreNeighbor

Fig. 11 Working sets in the Train Benchmark against relative model size (both axes logarithmic)

place or to manually trigger it,22 the influence of garbage
collection cannot be avoided.

Therefore, what one would rather want to measure is the
amount of memory that is actually used by the incremental
tool. However, this is not possible easily with the current
architecture. Therefore, the memory measurements have a
low accuracy.
Understandability This threat only concerns the Train Bench-
mark since understandability has not been evaluated for

22 It is indeed possible to suggest the system to perform a garbage
collection but it is not guaranteed when that happens.

the micro-benchmark. We list and discuss the most impor-
tant threats to internal validity of the understandability
below.

Confounding factors There are severe confounding factors in
the data for the understandability: NMF is yet a relatively
unknown approach and in general, the C# language is
much less common than, for example, Java in the model-
driven community. Therefore, many participants of the
TTC are (sometimes even admittedly) not familiar with
the technology, which clearly confounds the understand-
ability results.

History For the open peer reviews, it is unclear in which
order the assigned solutions were reviewed. Therefore,
an influence of history cannot be excluded. For the pre-
sentation at the TTC, there is a clear influence of history
since the solutions are presented in sequence.

Instrument change An instrumentation effect can be
excluded. Open peer reviews have been asked for by the
TTC organizers of 2015, not by the authors of this paper.

Several common forms of internal threats to validity such
as differential attrition, ambiguous temporal precedence,
maturation, diffusion or regression toward the mean do not
apply because the understandability was only evaluated once
and not over a period of time.

Overall, the results for understandability are very inac-
curate and have to be taken with great care. Mainly for the
unfamiliarity of the TTC audience both with NMF and .NET
in general, we think that the true understandability of the
NMF solutions is better than the understandability from the
questionnaire responses.

7.4.2 External validity

Again, we split the discussion of external threats to validity on
the type of validations. However, since both are hard metrics,
the threats to external validity are the same for performance
and memory measurements.
Performance and Memory Measurements For performance
and memory measurements, we face the problem that it is
unclear to what degree the obtained results can be generalized
for other applications, input model characteristics and change
sequences. Further, it is unclear to what extent the opponent
solutions represent the opponent tools, even though many
opponent solutions have been authored by tool authors.

Though the change sequence used in the various case
studies have been generated, they depend on the selection
of changes and their proportion. In the evaluation performed
for this paper, we aligned to the original benchmark proposal
that only consists of homogeneous change sequences. This
is required to allow a comparison to other tools, but limits
the external validity of the results.

For the comparison with EMF-IncQuery, we note that the
EMF-IncQuery solution to the TTC Train Benchmark 2015
was written by the authors of EMF-IncQuery. Therefore, we
can safely assume that this solution is the best solution pos-
sible using this tool.
Understandability The participants of the TTC cannot be
seen as representative for the likely users of incremen-
tal model analyses and incremental model transformations.
Rather, in the last years, they represent the authors of solu-
tions to the TTC cases and perhaps a few other participants of
the STAF event in which the TTC is embedded. The solution
authors may or may not be biased toward their own solution,

even though all of them are researchers and therefore should
give an unbiased opinion on all solutions.

A similar statement holds for the open peer reviews where
reviewers may or may not be biased toward their own solu-
tions. Because in the open peer reviews of the TTC, each
solution is only reviewed by two reviewers, there is an influ-
ence of chance whether the reviewers are biased.

However, the selection of reviewers and the selection of
participants of the solution presentations at the TTC is outside
the control of the author of this thesis. Therefore, similar
to the validation of correctness, the threats to validity limit
the expressiveness of the validation data but as we cannot
influence the validation setup, we do not have an option to
make the data more conclusive.

Overall, we think that the results on the understandabil-
ity are rather preliminary and should be supported by future
research to gain credibility.

7.5 Summary

The micro-benchmark about computing averages of a collec-
tion has proven that manual function incrementalizations can
substantially improve the performance of incremental anal-
yses, both in terms of memory, response times to changes
and also the maximum model sizes that can be processed.
Whereas the implementation of a recursive algorithm is sub-
stantially slower than just recalculating the average every
time, the manually incrementalized version has a better
asymptotic complexity. For the largest model size consid-
ered, we have that it is more than three orders of magnitude
faster than the batch algorithm.

The queries and repair transformations demonstrate a
good conciseness of the C# language for the Train Bench-
mark. We think that it is difficult to get a more concise textual
solution for this case and this opinion has been confirmed by
a very good evaluation of the understandability for the NMF
solution. At the same time, developers get the full tool sup-
port from, e.g., Visual Studio and the query syntax that we
use is used by thousands of developers already and widely
understood.

The performance figures show that the incremental ver-
sion of our solution outperforms the batch mode execution
of the same solution in all cases, often by multiple orders of
magnitude. Compared to the incremental pattern matching
tool EMF- IncQuery, we see that the performance is about
as good for most of the queries. Especially for medium-sized
models, the revalidation times are better for all queries.

Another advantage of our solution is that it gives both
a batch mode solution and an incremental solution of the
same pattern specifications. Thus, the same analysis code
can be used in the case setting where incrementality is a
clear advantage, or in a batch mode, e.g., when memory is a
sparse resource or the analysis results are only required once.

8 Related work

This section reviews the current state of the art in incre-
mental computation. We divided the existing approaches
into general-purpose approaches applicable to any analysis
through support of a Turing-complete language (and their
relatives in reactive programming) and those specific to a
class of analysis. We refer to the latter as specialized incre-
mental tools. These approaches do not have a restriction in
the domain but in the kinds of analysis that are supported,
e.g., only queries or graph patterns.

8.1 General-purpose incremental computation
systems

Pugh and Teitelbaum [48] were the first to apply memoization
to incremental computation. Memoization is applicable to
any referential transparent function but rests on the assump-
tion that the data structures it operates on is immutable—an
assumption often not met for modeling frameworks, in partic-
ular, not for EMF or NMF. Immutable data structures cannot
represent cyclic data structures as easily and therefore make it
very difficult to create analyses requiring them. In the running
example, the analysis would require the railway container
in order to connect switch positions to switches. The latter,
however, changes with every model change, making memo-
ization just a waste of memory. In general, it is unclear which
functions should be memoized to actually get a performance
benefit.

Later, Acar and others created Self-Adjusting Compu-
tation (SAC), a framework to support the development of
incremental programs [36] using the then newly introduced
DDGs. A good overview on SAC is provided by Acar [49].
The rough idea is to memoize the computation made for a
given analysis. While the framework originally supported
functional languages, it has been extended to imperative
languages based on C [50]. SAC operates on the batch
specification of an analysis annotated with explicit incre-
mentalization primitives. From these primitives, a DDG is
deduced that keeps track of changes.

Closest to our approach, Traceable Data Types (TDTs)
have been integrated into SAC to allow developers to supply
a custom incrementalization of an algorithm in a dedicated
data structure [33]. TDTs have an internal virtual clock and
work by allowing developers to explicitly revoke previous
operations and return the earliest inconsistent state, if any.
These operations include both state management and queries,
which allow different states during an analysis, but require
the developer of an analysis to manage the state of the data
structures on their own. As a consequence, TDTs are lim-
ited to their own data structures while our approach allows
the incrementalization of higher-order methods that are inde-
pendent of data structures used in predicates. Furthermore,

TDTs require some boilerplate code to use them in SAC
[33]. Our implementation only requires a method annotation
so that the dynamic algorithm can be reused in its compiled
form.

Based on SAC, Carlsson was the first to find that incremen-
talization can be represented as a monad [23]. Carlsson used
monads (as a Haskell language feature) to realize explicit
incremental computating on immutable data structures. This
is in contrast to our work, as we explicitly consider state and
are therefore able to operate on mutable models, which in our
view better reflects the nature of models. Because Carlsson
requires the user to insert boundaries of the monad explic-
itly, the approach is able to operate on functions as black
boxes. In contrast, we operate implicitly. On the downside,
this means that we require models of the analysis (its AST)
and the used operators. However, these models are worth-
while as they allow us the integration of dynamic algorithms
while the correctness is still covered by Theorem 1.

Further, because we do not use monads as a language fea-
ture for the implementation, we refer to it more as a term
from category theory. In particular, as argued in this paper,
incrementality is conceptually not a monad (in the original
meaning from category theory) because the unit transforma-
tion must not be natural—a fact that Carlsson ignores because
it is not strictly required for an implementation in Haskell.23

Hammer and others introduced the idea of demanded com-
putation graphs, implemented in Adapton [15,16]. Demanded
computation graphs make sure that a change propagation is
only performed if the result is actually needed, a feature that
we implemented using reference counters on the DDG nodes.
Similar to SAC, Adapton does not work implicitly, such that
developers have to think carefully about where to insert incre-
mentalization primitives.

SAC and Adapton both have the problem that they work
explicitly: The programmer must give a hint which parts of
an analysis can be saved for repeated analysis runs. Fur-
thermore, the mutation of the input must be done through
a dedicated mutator component in SAC or through refresh-
ing computation thunks in Adapton. Our approach is able to
pick up change notifications from the generated model API
and works entirely implicitly, i.e., the programmer does not
have to change the code at all. This makes it possible to use
incrementalization in mainstream technologies.

Chen et al. developed an approach to transform programs
written in purely functional Standard ML into SAC [9],
allowing developers to omit incrementalization primitives.
Hence, the approach works implicitly. However, we are not
aware of any research that integrates the usage of TDTs into
this framework to make them more efficient. Therefore, this

23 In the context of functional programming, monads are often defined
without the requirement that the unit transformation must be natural.

technique has the problem that incrementalizations of col-
lection operators are inefficient.

On a rather technical level, neither Adapton nor SAC are
currently available to be used with MOF models. While there
is no publicly available implementation of SAC, Adapton
has a freely accessible and maintained implementation in
Rust.24 However, Rust has very limited support for object-
oriented design. In particular, Rust only allows inheritance
and dynamic binding for traits, but trait objects cannot be
downcasted. However, this is a mandatory requirement for
many benchmarks such as, e.g., the Train Benchmark.

Other approaches to incremental computation include
entirely new programming models that allow an easy
incrementalization or parallelization. An example of these
approaches is revision-based computing [51]. However, here
the developer has to explicitly think about where to insert
such a revision concept.

IceDust [52] and its successor IceDust 2 [53] are systems
that allow users to use incremental computations through a
system of derived features. For each derived feature of a class,
the user can decide whether changes affecting it should be
computed incrementally (which means immediately after the
source features have been changed), on-demand (when the
value is read) or eventually (on a different thread). In con-
trast to our approach, we do not see IceDust making use of
dynamic algorithms to speed up the recomputation of analy-
sis results. On the contrary, we have no experience using our
approach for derived features.

8.2 Reactive programming

A very related paradigm to incremental computation is reac-
tive programming where the goal is to get notifications for
changes. An overview of 15 languages for reactive program-
ming was created by Bainomugisha [54]. According to the
taxonomy suggested in this survey, our implementation NMF
Expressions is based on events with a push-based evaluation
model and implicit lifting.

Our approach can be interpreted as a way with a formal
foundation how implicit lifting can be overridden to gain
performance. Most approaches in reactive programming cir-
cumvent this problem as they apply explicit lifting [54]. Even
if the lifting works implicitly, the approaches do not incre-
mentalize methods using their structure but rather execute a
given predicate as is.

In reactive programming, the developer has to explic-
itly declare signals to which the analysis should react. Our
approach makes this implicit as the incremental algorithm
automatically attaches to the model as required. Notable
exceptions are FrTime [55] and FlapJax [56].

24 http://adapton.org/, retrieved 18 Jul 2017.

Particularly on the .NET platform, Reactive Extensions
(Rx) have been introduced to support reactive programming
[57]. Similar to our approach Rx uses the query syntax to
combine several streams of data.

Reactive programming approaches are built upon an
important assumption, namely that signals do not change
once they are processed. That is, they operate on an (poten-
tially infinite) sequence of immutable data. This is a contrast
to model analysis where the model usually has an approxi-
mately constant size, but is mutable.

8.3 Specialized incremental approaches

Incrementality is a desirable property as it promises to save
computational effort when analyses are computed repeatedly.
Therefore, it has been a subject of research for decades [58],
prominently, for example, with the search for incremental
compilers [59]. Common to all of these approaches is that
they make advantage of abstractions they make on the anal-
ysis to perform at the cost of limited applicability. As soon
as one formalism alone is no longer capable of expressing an
analysis, multiple approaches must be integrated, causing a
large integration overhead [60]. This is especially important
in maintenance scenarios where perfective changes require
to extend an analysis such that it no longer suits the given
formalism.

Among the first incrementalization systems specialized on
a limited class of problems is the approach by Reps [61] for
attribute grammars. This approach works by using a static
dependency graph for attribute evaluations for which Reps
has shown that an optimal-time reevaluation strategy can be
found by reevaluating the attributes in a topologically sorted
order of a static dependency graph. This approach rests on the
assumption that the data processed by the attribute grammar
is immutable. As Reps applies this technique for parse trees,
this assumption is reasonable, but it does not hold for models
in general.

Willis et al. achieved convincing results for an implicitly
incremental execution of the Java Query Language [10]. In
their approach, they find all the places where caches may be
invalidated through aspect-oriented programming. As a con-
sequence, all these places must be known at compile-time.
Thus, model manipulation and analysis are tightly coupled
and cannot be separated into different modules.

On the .NET platform, a range of non-academic projects
aimed to provide change notifications for queries, sometimes
with an incremental execution. Among the rather mature are
Continuous LINQ [62], Bindable
LINQ25 and Obtics.26 However, the example query we
present in Sect. 2 only works with Bindable LINQ where

25 http://bindablelinq.codeplex.com/.
26 http://obtics.codeplex.com/.

http://adapton.org/
http://bindablelinq.codeplex.com/
http://obtics.codeplex.com/

the runtimes are far worse than rerunning the query for each
elementary change.

A similar problem to the incremental queries appears in
relational databases when maintaining materialized views
[63]. An overview on the research can be found in [64].
These approaches have also been applied to object-oriented
databases, as, for example, in [65]. Some approaches like
notably LINQ or SQuOpt [66] have ported this database
technology to object-oriented languages, in case of SQuOpt
Scala.

A popular approach to specify queries, especially in graph
transformation, are Graph Patterns. Bergmann et al. cre-
ated IncQuery, an incremental pattern matching system for
Graph Patterns [11,12]. This approach uses a Rete network
[67], a static dependency graph, whose nodes are primitive
filter conditions or joins of partial pattern matches. Each node
represents a set of (partial) pattern matches. This approach
can support mutable models because the notification API
of models can be used to determine when matches must be
revoked or new matches arise. Unlike NMF Expressions that
requires a dynamic dependency graph, this means that queries
as in the Train Benchmark can be incrementalized using only
a static dependency graph.

IncQuery was integrated to EMF models as EMF-
IncQuery [68]. This system was also used to evaluate
queries [69] and certain OCL expressions [70].

An incremental execution of OCL has also been subject of
research for incremental constraint checking [71–73]. These
approaches are either limited to boolean-valued constraints
or limited to static analysis.

Lastly, in the field of algorithmics, a whole class of algo-
rithms is dedicated to process incremental changes, dynamic
algorithms. Prominent examples from this field include the
dynamic spanning forests by Holm et al. for connectivity
analysis [31] and King and Sagerts approach for dynamic
transitive closures [74]. These algorithms often have a sub-
optimal runtime in absence of changes but can update their
data structures according to changes. Our approach does not
compete with these dynamic algorithms but provides a way
how they can be used to specify incremental analyses using
a batch specification.

A generic theory of changes applicable in a wider range
of applications was developed in the scope of the SCuOpt
project by Cai et al. [37]. While this approach has a wider
applicability than just a single class of analyses, the authors
do not yet have a concept how to mix several of such analysis
kinds. Thus, it serves as a foundation for the development of
specialized incremental tools. In the paper, Cai et al. applied
the approach to a map-reduce technique, which is a small
subset of incremental queries.

9 Conclusion

In this paper, we have introduced a novel approach to formal-
ize incremental computation systems as functors from cate-
gory theory (C1). This formalization allows us to compose
an incrementalization of a model analysis from incremen-
talizations of basic morphisms that reflect the programming
language. The correctness of the resulting incrementalization
can be proven (cf. Theorem 1) based on the naturality of two
transformations—which can be shown for each basic method
individually.

From this formalization, we deducted a methodology
how implicit incremental computation systems can be made
extensible. Thus, they can make use of abstractions incor-
porated in analysis frameworks also for incremental com-
putation, encouraging modular analyses reusing analysis
frameworks (C2). Our approach gives framework developers
a tool at hand, which they can use to offer implicit incremen-
tality to their users that is tuned to their framework. For the
developer of an analysis, this combines the understandabil-
ity of a batch specification with the efficiency gained from
framework abstractions. This avoids the error-prone process
of manual incrementalization and keeps the analysis more
readable, thus maintainable.

We have explained the implementation of such an incre-
mental computation system in .NET (C3) and proved its
applicability and advantages in terms of implicitly improved
performance using a micro-benchmark and a community
benchmark (C4). We were able to prove that our approach
can provide speedups without additional boilerplate syntax
compared to the batch mode versions and is as fast or even
faster than other state-of-the-art tools. Our implementation
allows the user to choose between batch mode and incremen-
tal execution based on a single specification.

10 Future work

Currently, we are applying the functor in a bottom-up fash-
ion to elementary pieces of an abstract syntax tree. The result
is a relatively large dynamic dependency graph that makes
our approach more memory intensive than other incremental
computation techniques, especially if the functions get more
complex, but no manual incrementalization is provided. On
the other hand, the classical batch mode version of an analysis
invoked after every elementary change (or change transac-
tion) can be regarded as a degenerated dependency graph
consisting of only a single node where the entire analysis has
to be recomputed for every elementary model change. Here,
we want to use composition hierarchies such as typically
used in model-driven engineering to generalize changes and
find granularities in between these two extremes. We hope
to coarsen the dynamic dependency graphs with these tech-

niques such that the performance of our approach can be
improved.

Implicit techniques always yield the decision whether to
apply them or not. In case of incrementality, an incremental
approach will always require more memory as intermediate
results are saved but on the other hand hopefully give a better
performance. The magnitude of performance improvements
that can be achieved, if at all, depends on the usage character-
istics of the analysis, i.e., what changes are expected and what
shares of the intermediate results are typically affected by it.
Furthermore, an approach of generalizing changes yields a
larger design space than just the binary choice of whether the
approach shall be applied or not. However, this design deci-
sion does not affect the functional specification of an analysis
and is only related to its performance. It can therefore be
automated such that given a usage profile, a system could
identify pareto-optimal candidates with regard to response
time versus memory consumption.

Acknowledgements We would like to thank the anonymous reviewers
of the Software & Systems Modeling journal that have helped us to
shape the paper into its current form with their thoughtful reviews.
This work was partially supported by the MWK (Ministry of Science,
Research and the Arts Baden-Württemberg) in the funding line Research
Seed Capital (RiSC).

A Details and proofs

In this section, we provide details and proofs for claims
made in Sect. 3. In particular, the section is structured as
follows: “Appendix A.1” gives a very brief introduction to
category theory for reference purposes and to clarify the nota-
tion used in the paper. “Appendix A.2” introduces Mutable
Type Categories, a representation of mutable object models
using category theory. The concept has been originally intro-
duced in the Ph.D. thesis of the first author [39]. “Appendix
A.3” discusses the usage of monads for the representation of
the incrementalization process. “Appendix A.4” contains the
proof of Theorem 1.

A.1 A very brief introduction to category theory

The goal of this section is to briefly introduce most of the
category theory that is used in this paper for reference pur-
poses. The concepts are not explained in depth as suitable
explanations can be obtained from many textbooks on cate-
gory theory. For the interested reader, we can recommend the
books by Lawvere [75] or Crole [76]. The book by Lawvere
is a good general introduction, whereas Crole’s book is more
focussed on applications to algebraic type theories.

Definition 3 (Category) A category C consists of a collection
ob C of objects and collections of morphisms between objects

of C equipped with an associative operator ◦. Furthermore,
for each object A, the identity idA must exist and for each
f ∈ Mor(A, B) it must hold that f ◦ idA = f = idB ◦ f .

For given objects A, B ∈ C, the set of morphisms is
denoted as MorC(A, B) or Mor(A, B) if C is clear from the
context. The collection of all morphisms in C is denoted as
Mor with mappings source, target : Mor → ob C deter-
mining the source and target object of a morphism.

Remark 3 The associativity means that for any f ∈ Mor
(A, B), g ∈ Mor(B, C), h ∈ Mor(C, D) where A, B, C ,
D ∈ C that (h ◦ g) ◦ f = h ◦ (g ◦ f).

Example 1 (Sets) One of the most important categories is the
category S of sets. Here, the morphisms are the mappings
between sets and the identity for a given set A is the identity
mapping on A.

Example 2 (Type systems) As shown by Crole [76], every
algebraic type system corresponds to a (Cartesian-closed)
category. In the running example, the railway network type
system is a category, where the objects are the types such as
Semaphore, Switch and Route. The morphisms are the
reflexive-transitive closure of the model properties between
these types, such as for instance the posi tion of a switch,
but also combinations such whether the position of the first
switch in some collection of switches matches a given (con-
stant) value.

Remark 4 In category theory, equations are often visualized
as graphs. Here, objects of a category form the vertices of the
graph whereas the directed edges are the morphisms between
the objects. The terminology that such a diagram commutes
equals to saying that following either path through the dia-
gram yields the same result.

Definition 4 (Functor) A (covariant) functor F : C → D
between categories C and D is a mapping between the
objects of C and D and the morphisms such that for each
objects A and B and f ∈ Mor(A, B) in C, we have that
F(f) ∈ Mor(F(A),F(B)). Further, a functor has to respect
composition, i.e., if f : A → B and g : B → C , then it must
hold that F(g ◦ f) = F(g) ◦F(f) and F(idA) = idF(A) in
D and for each object A in C.

Example 3 (Identity functor) An important functor is the
identity functor idC : C → C for a category C that maps
each object A ∈ C to itself and likewise each mapping
φ ∈ Mor(A, B) to itself.

Example 4 There are three prominent collection functors on
S:

1. The powerset functor P : S → S sends each set to its
powerset and for each morphism f : A → B we have
that

P(f) : P(A) → P(B), S �→ f (S) := { f (s)|s ∈ S}.

2. The multiset functor M : S → S sends each set S to
the set of multisets with elements of S, i.e., to a function
S → N0 that assigns each element a multiplicity in the
multiset. A morphism f : A → B is mapped to

M(f) : M(A) → M(B), m �→ (b �→
∑

a∈ f −1({b})
m(a)).

3. The Kleene closure ∗ : S → S maps each set A to
its Kleene closure A∗, which formally is the monoid of
finite sequences of elements of A. A morphism f : A →
B is mapped to

∗(f) : A∗ → B∗, (a1; . . . ; an) �→ (f (a1); . . . ; f (an)).

These three functors can be seen as a formalization of col-
lections.

Example 5 Collections are of course also very present in our
running example: As many of the features in the railway
network metamodel have a multiplicity higher than one, they
refer to collections. A collection of routes, for example, can
be typed using the object Route∗, meanwhile the morphism
to get all routes in a railway container is a morphism

routes ∈ Mor(RailwayContainer, Route∗).

Remark 5 Functors are the ‘natural’ mapping constructs
between categories. This is because indeed, the collection
of categories forms the category Cat where the morphisms
between categories C and D (which are themselves objects
of Cat) are the functors F : C → D.

Definition 5 (Natural transformation) A natural transforma-
tion η : F → G between two functors F,G : C → D is
a set of mappings ηA ∈ Mor(F(A),G(A)) for each A ∈ C
(called components of η) such that for each A, B ∈ C and
f ∈ Mor(A, B) it holds that ηB ◦F(f) = G(f) ◦ ηA. That
is, the following diagram commutes:

F(A) F(B)

G(A) G(B)

F(f)

ηA

G(f)

ηB

If all ηA are isomorphisms, η is called a natural isomorphism
between F and G.

Example 6 An important example of a natural transformation
between functors is the identity transformation on a given
functor F . For each object A in C, the transformation com-
ponent for A is the identity, i.e., (idF)A = idF(A).

Example 7 A common natural transformation is f irst : ∗ →
id . For a given type A, this transformation takes a collection
of elements in A∗ and returns the first element. This trans-
formation is natural, because taking the first element from a
collection and processing it further is the same as processing
the entire collection and then returning the first element. On
the contrary, the operation f irst − or − de f ault because
operations that do not map default values to default values
break the commutative diagram from Definition 5.

Definition 6 (Monad) A monad T : C → C is a functor
equipped with two natural transformations η : idC → T and
μ : T 2 → T such that μ ◦ T μ = μ ◦ μT and μ ◦ T η =
μ ◦ ηT = idT . Here, the natural transformation η ’lifts’
objects into the monad and is thus sometimes called the unit
operation, while μ simplifies a nested monad.

Example 8 A well-known example of a monad is collections.
Here, the functor maps each type A to a generic collection of
type A. The functor application of a function corresponds to a
mapping. The natural transformation η treats an item of type
A as a collection of type A that just contains this element,
while μ flattens a collection of collections of type A into a
collection of type A. As we already stated that collections
are useful for the running example, monad collections are as
well.

Definition 7 (Product) Let A and B be objects of a category
C. The product of A and B in C is an object A × B of C
together with two projection morphisms πA : A × B → A
and πB : A × B → B such that for every object C and every
pair of morphisms f : C → A and g : C → B, there is a
unique morphism p : C → A × B such that f = πA ◦ p and
g = πB ◦ p. That is, the following diagram commutes:

C

A A × B B

f
p

g

πA πB

Example 9 Products are used for creating tuple types. In
the Train Benchmark, tuples are of particular importance
because they serve to represent pattern matches.

Definition 8 (Exponential) Let C be a category such that
for each objects A and B their product exists. Then the
exponential of A and B is an object AB together with a
morphism eval : AB × B → A such that for any mor-
phism f : C × B → A, there is a unique morphism
λ f : C → AB such that for every c ∈ C and b ∈ B,
f (c, b) = eval(λ f (c), b). That is, the following diagram
commutes:

C × B

AB × B A

λ f × idB f

eval

Example 10 Exponentials are a formalization of curried func-
tions. They are thus very useful for predicates.

Definition 9 (Initial object, terminal object) An initial object
⊥ of a category C is an object such that for every object A in
C, there exists exactly one morphism from ⊥ to A.

Conversely, a terminal object � of a categoryC is an object
such that for every object A in C, there exists exactly one
morphism from A to �.

An initial object of C is a terminal object of Cop and
vice versa. Initial and terminal objects are unique up to iso-
morphism, i.e., if A and B are initial objects of the same
(semi-)category, then there is an isomorphism from A to B.

Example 11 In the category S of sets, the initial object is
the empty set. The terminal objects are the sets that contain
exactly one element.

Example 12 In programming, initial and terminal objects
usually correspond to the type of void and null. This
is because for any given type, there is exactly one morphism
that returns null (because there is no other choice) and there
is exactly one morphism from void to that type (that does
not have a specification because the type void allows no
instances).

Definition 10 A category C is called Cartesian-closed if it
satisfies the following properties:

– It contains an initial and a terminal object.
– For any objects A and B, the product A × B exists.
– For any objects A and B, the exponential AB exists.

Example 13 As stated above, Crole has shown that any
algebraic type system is isomorphic to a Cartesian-closed cat-
egory [76]. Thus, we may assume that anything expressible
in algebraic type theory can also be expressed in a Cartesian-
closed category. This mapping allows us to reason on the
program through the corresponding Cartesian-closed cate-
gory.

A.2 Mutable type categories

The goal of this section is to introduce a formalization of
mutable models based on category theory.

The basic idea is to interpret metaclasses as objects of a
category, similar to Croles mapping of algebraic type sys-
tems to categories [76]. Each metaclass represents the set of
possible elements of this class. In contrast to Crole, however,

we consider the mutable state of model elements at runtime.
This has a multitude of consequences: First, the value of a
member access of an object may be different, depending on
the state in which the member was accessed, but the iden-
tity of the object is assumed to stay the same. Second, the
added complexity in the formalization by Crole to cope with
generic methods and functions is not necessary because at
runtime, each method is bound already to a type, i.e., we do
not have to take open generic type definitions into account.
Therefore, we basically rest on the proof made by Crole that
any algebraic type system is equivalent to a Cartesian-closed
category.

While this foundation on algebraic type theory is useful
for many practical applications, we need to keep in mind that
model elements have an identity that stays the same even
though its attributes or references may change. In particular,
models are mutable. This is because according to the general
model theory by Stachowiak [77], models always correspond
to an original or concept whose identity does not change
either.

The goal of considering state is to analyze the impact when
this state has changed. Therefore, we are also interested in
actions that will change the global states. These operations
can be represented as a series of elementary model manipu-
lations.

To account for multiple objects having an interrelated state
as, e.g., through opposite references, we model this state as a
global stateΩ on which we do not make any assumption. This
is inspired by the universe Ω commonly used in stochastics.
The intuition is that attributes of an object can change over
time, just like random variables in stochastics can change
over multiple states in the state space.

The reason for a very rough model of a global state is
that an elementary model change may change the state not
only of the model element that is worked with but also many
others. An example here are opposite references where set-
ting a reference of one model element implicitly also sets the
opposite reference at another model element. Furthermore, a
global state space enables a unified consideration of changes
regardless of where the change originates.

The state space Ω can be seen as the space of possi-
ble memory states where we abstract from temporary data
needed only to compute a given method. Thus, Ω can be
thought of the set of sequences over an alphabet (e.g., {0, 1})
with finitely many nonzero entries. In particular, an element
of the function set Ω → A is a typed pointer, very similar to
a random variable: For each of the possible memory states
(resembling the possible outcomes in probability theory), the
value at this memory address may or may not be different.

In the running example, the current position of a switch
may change from straight to right or left (which may have
an impact on the analysis), but it is still the same switch. In
particular, the model element still corresponds to the same

switch in the physical system. In a running application, this
switch is typically represented as an object with a memory
address in the heap where the current position is carried as
an instance field with a fixed offset to the heap address of the
switch. In the formalization, this address (heap address of the
switch plus offset for the field), can be regarded as a function
Ω → SwitchPosition. A memory state ω, however, is
the complete state of the entire system.

If a route is extended by a switch position, the switch
position automatically references the route it belongs to. If a
route is deleted, also all of its switch positions are deleted and
references to them are reset. Therefore, a consideration only
of the state of the current model element is not sufficient.

One of the merits of category theory is that it often does
not require an in-depth understanding of the inner structure
of objects but rather reasons on their behavior, i.e., the value
or the uniqueness of certain morphisms. This is useful for
us, because it enables a formalization at a very high level of
abstraction that yields a good flexibility for a later implemen-
tation.

To take the global state into account, the basic idea is to
extend a static type system (which can be thought of as a
category T through the mapping defined by Crole [76]) with
this global state space. The resulting category has as objects
the canonical product of objects of ob T (i.e., types) and the
global state space Ω .

We are particularly interested in the incrementalization of
side effect-free morphisms as per the following definition:

Definition 11 (Side effect-free methods) The idea of the def-
inition of side effect-free methods is that they do not change
the global state. In particular, a function f : A×Ω → B×Ω

is side effect free if and only if for all (a, ω) ∈ A × Ω , it
holds that

πΩ(f (a, ω)) = ω

where πΩ is the canonical projection to the state of the
result.27

Further, another class of methods even ignores the global
state entirely, which we capture with the following definition:

Definition 12 (Stateless Morphism) Let f : A×Ω → B×Ω

be a method. Then f is stateless if and only if it is side effect
free and for every a ∈ A and every ω1, ω2 ∈ Ω we have that

πB(f (a, ω1)) = πB(f (a, ω2)).

27 It is common to index projections with indices. However, in the
scope of this paper, projections will be indexed with the space they are
projecting to, as there is no case of confusion.

Example 14 For any type A, the identity on A × Ω is side
effect free and stateless.

Proposition 1 A composition of side effect-free morphisms
is side effect free. A composition of stateless morphisms is
stateless.

Definition 13 (Mutable Type Category) A Mutable Type
Category (MTC) C for a set of types ob T and a state
space Ω is a category that consists of (set-theoretic) tuples
ob C := {A × Ω |A ∈ ob T } as objects and morphisms
Mor(A×Ω, B×Ω) between two types A and B as functions
A × Ω → B × Ω . We further demand that the restriction of
C to side effect-free morphisms CΩ forms a cartesian-closed
category.

Remark 6 If C is a category, then the restriction CΩ with
ob C = ob CΩ and MorCΩ

(A × Ω, B × Ω) = { f ∈
MorC(A × Ω, B × Ω)| f is side effect free} is a category
in any case because the composition of side effect-free
morphisms is side effect free. Demanding that CΩ is car-
tesian-closed means that products and sums exist in C, for
which only side effect-free methods must be taken into
account.

Proposition 2 In CΩ , the product of A × Ω and B × Ω is
A×B×Ω with projectionsπA ∈ MorCΩ

(A×B×Ω, A×Ω),

(a, b, ω) �→ (a, ω) and πB ∈ MorCΩ
(A × B ×Ω, B ×Ω),

(a, b, ω) �→ (b, ω).

Proof For methods with side effects, the order in which they
are executed matters which makes it hard to reason on product
and sum types. If we restrict the methods to side effect-free
methods, then the global state is not touched.

In particular, let C be a type and f ∈ MorCΩ
(C ×Ω, A×

Ω), g ∈ MorCΩ
(C × Ω, B × Ω). Let (c, ω) ∈ C × Ω .

f must map (c, ω) to some (a f , ω) ∈ A × Ω because f
is side effect free as a morphism in CΩ . Similarly, g maps
(c, ω) to some (bg, ω). Then, we define a functor (f ∗ g) ∈
MorCΩ

(C × Ω, A × B × Ω) as follows:

(f ∗ g)(c, ω) = (a f , bg, ω)

The projections pA and pB obviously satisfy f = πA ◦
(f ∗ g) and g = πB ◦ (f ∗ g). Furthermore, it is clear that
(f ∗ g) is unique.

Hence, A × B × Ω is a product of A × Ω and B × Ω in
CΩ . �	

As any product of two objects in a category, A× B ×Ω is
unique up to isomorphism. For example, B × A × Ω would
be an alternative.

Remark 7 The object A× B ×Ω is not necessarily a product
of A × Ω and B × Ω in C, basically because it is unclear

how state changes in two morphisms f and g combine. In
particular, the model changes performed by f and g may
interfere in C.

Remark 8 The idea is that a mutable type category can be
constructed from an algebraic type system with implemen-
tations by transforming the type system to the equivalent
Cartesian-closed category T through the mapping defined
by Crole. For every object of T (that represents a type), one
creates the set-theoretic product of the set of instances of
this type28 and Ω , and obtains C. Objects of CΩ and T are
clearly isomorphic. The morphisms of C are the morphisms
of T applied to a given state where the effect that the mor-
phism has to the state is determined by its implementation29

and the morphisms of CΩ are those that are side effect free.
Hence, CΩ is Cartesian-closed because T is.

Definition 14 (Notation) In the remainder of the paper, we
use a slightly simplified notation where we write f : A → B
for f ∈ Mor(A × Ω, B × Ω) when it is clear from context
that A and B are types. We also say that A ∈ C to denote that
A × Ω ∈ ob C.

Further, a functor F applied to a given object A × Ω in
C must be an object F(A × Ω) = A′ × Ω . We notate this
type A′ as A′ = F(A) such that F(A × Ω) = F(A) × Ω .
We refer to changes in the global state as set-theoretic total
functions Δω ∈ ΔΩ := Ω → Ω .

If we know that a morphism f : A → B is side effect
free, we often treat it as a function A × Ω → B, because it
is clear that the state will not change.

Definition 15 In a mutable type category C, a state change
Δω can be extended to a transformation I dC → I dC

ΔωA : A → A, (a, ω) �→ (a,Δω(ω))

that applies this state change but leaves the value intact.
The morphismsωA always exist as projections of tuples of the
identity on A and the model manipulation. In the remainder,
we use this inclusion if this is clear from the context.

A.3Why not monads?

Although functors already suffice to represent incremental
execution systems, it is useful to consider monads. One rea-
son for this is that in order to apply I(f) to an instance
m ∈ M , one needs an instance m′ ∈ I(M). Since the incre-
mentalization system should be independent of the model

28 We treat a type and its set of instances as two different objects to
account for axiomatic set theory, to account for self-descriptive meta-
models where some model elements represent their own type [78].
29 Note that a morphism may be implemented by multiple methods
according to the mapping of Crole.

type M , such a method should be available as a transforma-
tion I dC → I. Semantically, an element of a given type can
be regarded as an incremental value that never changes, i.e.,
as a constant. This definition matches the requirements for
the unit transformation η of a monad.

For a given fixed model element, the value for a given
property may change over time so that the property value
can be understood as an incremental value. A useful thing
one would like to achieve is to also apply such a function
to incremental values of the model element type and still
retrieve an incremental value instead of an incremental value
of an incremental value. Such a simplification can be offered
by the μ transformation of a monad.

What remains to discuss is whether the naturality of η

and μ is useful in this scenario. For η, this naturality means
that we could either apply a function on a value and then
regard the result as an incremental value (by regarding it as
a constant) or lifting the input to the monad (by regarding
it as a constant) and then run the incremental derivation of
the function on it. This is clearly not the case. Consider, for
example, a property access as a function. The value of the
property may change over time (if the property is assigned a
new value) whereas the constant value obtained by lifting the
property access result once does not change. Thus, naturality
is something that we explicitly do not want to have for η and
we have to be very careful when to apply it.

This situation is different for μ, as this function is only
used to combine the incrementality of two levels into one.
However, we are typically not interested in why the result
of a model analysis changed and it suffices to know that the
value has changed. Therefore, it is viable to lose track of
whether the outer or the inner incremental value has caused
a value to change.

A.4 Proof of Theorem 1

Proof Let f : A → B an arbitrary morphism in CΩ and
Δω ∈ ΔΩ be a state change. We begin by proving that
(Initialization) holds for f . We first observe that the following
diagram commutes due to the naturality of value:

I(A) I(B)

A B

I(f)

valueA

f

valueB

We then have that

valueB ◦ I(f) ◦ ηA

= f ◦ valueA ◦ ηA

= f ◦ (I dC)A = f .

Here, I dC denotes the identity functor of C, whose com-
ponents are the identities, therefore (I dC)A is the C-identity
on A.

To prove the updates, we see that the following diagram
commutes due to the naturality of apply(Δω):

I(A) I(B)

I(A) I(B)

I(f)

apply(Δω)A

I(f)

apply(Δω)B

Thus,

valueB ◦ apply(Δω)B ◦ I(f) ◦ ηA

= valueB ◦ I(f) ◦ apply(Δω)A ◦ ηA

= f ◦ valueA ◦ apply(Δω)A ◦ ηA

= f ◦ valueA ◦ ηA ◦ ΔωA

= f ◦ ΔωA.

This concludes the proof. �	

References

1. Choi, K., Hwang, S.Y., Blank, T.: Incremental-in-time algorithm
for digital simulation. In: Proceedings of the 25th ACM/IEEE
Design Automation Conference, pp. 501–505. IEEE Computer
Society Press (1988)

2. Salz, A., Horowitz, M.: IRSIM: an incremental MOS switch-level
simulator. In: 26th Conference on Design Automation, 1989, pp.
173–178. IEEE (1989)

3. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J.,
Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T.,
et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: Software Engineering for Self-Adaptive Sys-
tems II, pp. 1–32. Springer (2013)

4. Szvetits, M., Zdun, U.: Systematic literature review of the objec-
tives, techniques, kinds, and architectures of models at runtime.
Softw. Syst. Model. 15, 1–39 (2013)

5. Gossman, J.: Introduction to Model/View/ViewModel pat-
tern for building WPF apps (2005). http://blogs.msdn.com/b/
johngossman/archive/2005/10/08/478683.aspx

6. Smith, J.: PATTERNS-WPF apps with the model-view-viewmodel
design pattern. MSDN Mag. 24(2), 72 (2009)

7. Ben-Menachem, M., Marliss, G.S.: Software Quality: Producing
Practical, Consistent Software. International Thomson Computer
Press, New York (1997)

8. Sutherland, J.: Business objects in corporate information systems.
ACM Comput. Surv. CSUR 27(2), 274–276 (1995)

9. Chen, Y., Dunfield, J., Hammer, M.A., Acar, U.A.: Implicit self-
adjusting computation for purely functional programs. J. Funct.
Program. 24(01), 56–112 (2014)

10. Willis, D., Pearce, D.J., Noble, J.: Caching and incrementalisation
in the java query language. ACM SIGPLAN Not. 43(10), 1–18
(2008)

11. Bergmann, G., Horváth, Á., Ráth, I.,Varró, D., Balogh, A., Balogh,
Z., Ökrös, A.: Incremental evaluation of model queries over EMF
models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) Model

Driven Engineering Languages and Systems, pp. 76–90. Springer
(2010)

12. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental
pattern matching in the VIATRA model transformation system. In:
Proceedings of the Third International Workshop on Graph and
Model Transformations, pp. 25–32. ACM (2008)

13. Giese, H., Wagner, R.: Incremental model synchronization with
triple graph grammars. In: Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G. (eds.) Model Driven Engineering Languages and Sys-
tems, pp. 543–557. Springer (2006)

14. Giese, H., Wagner, R.: From model transformation to incremental
bidirectional model synchronization. Softw. Syst. Model. 8(1), 21–
43 (2009)

15. Hammer, M.A., Phang, K.Y., Hicks, M., Foster, J.S.: Adapton:
Composable, demand-driven incremental computation. ACM SIG-
PLAN Not. 49, 156–166 (2014)

16. Hammer, M.A., Dunfield, J., Headley, K., Labich, N., Foster, J.S.,
Hicks, M., Van Horn, D.: Incremental computation with names.
In: Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 748–766. ACM (2015)

17. Hinkel, G.: NMF: A Modeling Framework for the .NET Platform,
Karlsruhe Institute of Technology, Technical Report (2016)

18. Hinkel, G.: NMF: a multi-platform modeling framework. In:
Proceedings of the Theory and Practice of Model Transforma-
tions: 11th International Conference, ICMT 2018, Held as Part of
STAF 2018, Toulouse, France, June 25–29, 2018. Springer (2018)
(accepted, to appear)

19. Szárnyas, G., Semeráth, O., Ráth, I., Varró, D.: The TTC 2015 train
benchmark case for incremental model validation. In: Proceedings
of the 8th Transformation Tool Contest, A Part of the Software
Technologies: Applications and Foundations (STAF 2015) Feder-
ation of Conferences, L’Aquila, Italy, July 24, 2015, pp. 129–141
(2015)

20. Staron, M.: Adopting model driven software development in
industry—a case study at two companies. In: Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G. (eds.) Model Driven Engineering
Languages and Systems, pp. 57–72. Springer (2006)

21. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An
empirical study of the state of the practice and acceptance of model-
driven engineering in four industrial cases. Empir. Softw. Eng.
18(1), 89–116 (2013)

22. Meyerovich, L.A., Rabkin, A.S.: Empirical analysis of program-
ming language adoption. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, pp. 1–18. ACM (2013)

23. Carlsson, M.: Monads for incremental computing. SIGPLAN Not.
37(9), 26–35 (2002)

24. Hinkel, G.: Change propagation in an internal model transforma-
tion language. In: Proceedings of the Theory and Practice of Model
Transformations: 8th International Conference, ICMT 2015, Held
as Part of STAF 2015, L’Aquila, Italy, July 20–21, 2015, pp. 3–17.
Springer (2015)

25. Hinkel, G., Burger, E.: Change propagation and bidirectionality in
internal transformation DSLs. Softw. Syst, Model (2017)

26. Hinkel, G.: An NMF solution to the Smart Grid Case at the TTC
2017. In: Proceedings of the 10th Transformation Tool Contest, A
Part of the Software Technologies: Applications and Foundations
(STAF 2017) Federation of Conferences, series CEUR Workshop
Proceedings, CEUR-WS.org (2017)

27. Hinkel, G.: An NMF solution to the Families to Persons case at
the TTC 2017. In: Proceedings of the 10th Transformation Tool
Contest, A Part of the Software Technologies: Applications and
Foundations (STAF 2017) Federation of Conferences, series CEUR
Workshop Proceedings, CEUR-WS.org (2017)

http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx

28. Wert, A., Happe, J., Happe, L.: Supporting swift reaction: Auto-
matically uncovering performance problems by systematic exper-
iments. In: Proceedings of the 2013 International Conference on
Software Engineering, series ICSE ’13, pp. 552–561. IEEE Press
(2013)

29. Tarjan, R.E.: A class of algorithms which require nonlinear time to
maintain disjoint sets. J. Comput. Syst. Sci. 18(2), 110–127 (1979)

30. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm.
J. ACM JACM 22(2), 215–225 (1975)

31. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM JACM 48(4),
723–760 (2001)

32. Cattaneo, G., Faruolo, P., Petrillo, U.F., Italiano, G.: Maintaining
dynamic minimum spanning trees: an experimental study. Discrete
Appl. Math. 158(5), 404–425 (2010)

33. Acar, U.A., Blelloch, G., Ley-Wild, R., Tangwongsan, K.,
Turkoglu, D.: Traceable data types for self-adjusting computation.
ACM SIGPLAN Not. 45, 483–496 (2010)

34. Fraiteur, G.: User-friendly aspects with compile-time imperative
semantics in .net: an overview of postsharp. In: Seventh Inter-
national Conference on Aspect-Oriented Software Development
(AOSD) (2008)

35. Fowler, M., Parsons, R.: Domain Specific Languages, 1st edn.
Addison-Wesley, Reading (2010)

36. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, Carnegie
Mellon University, Pittsburgh, USA (2005)

37. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of
changes for higher-order languages. ACM SIGPLAN Not. 49, 145–
155 (2014)

38. Grust, T.: Monad Comprehensions: A Versatile Representation for
Queries. Springer, New York (2004)

39. Hinkel, G.: Implicit Incremental Model Analyses and Transforma-
tions. Ph.D. thesis, Karlsruhe Institute of Technology (2017) (to
appear)

40. Hinkel, G.: An NMF solution to the TTC 2018 Social Media Case.
In: Proceedings of the 11th Transformation Tool Contest, A Part of
the Software Technologies: Applications and Foundations (STAF
2018) Federation of Conferences, series CEUR Workshop Proceed-
ings, CEUR-WS.org (2018)

41. Hinkel, G.: The TTC 2018 Social Media Case. In: Proceedings
of the 11th Transformation Tool Contest, A Part of the Soft-
ware Technologies: Applications and Foundations (STAF 2018)
Federation of Conferences, Series CEUR Workshop Proceedings,
CEUR-WS.org (2018)

42. Hinkel, G., Happe, L.: An NMF solution to the TTC train bench-
mark case. In: Proceedings of the 8th Transformation Tool Contest,
A Part of the Software Technologies: Applications and Foundations
(STAF 2015) Federation of Conferences, Series CEUR Workshop
Proceedings, vol. 1524, CEUR-WS.org, pp. 142–146 (2015)

43. Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The train benchmark:
cross-technology performance evaluation of continuous model
queries. Softw. Syst. Model. 17(4), 1365–1393 (2017)

44. Horn, T.: Solving the TTC train benchmark case with funnyqt.
In: Proceedings of the 8th Transformation Tool Contest, A Part of
the Software Technologies: Applications and Foundations (STAF
2015) Federation of Conferences, L’Aquila, Italy, July 24, 2015,
pp. 147–151 (2015)

45. Wagelaar, D.: The ATL/EMFTVM solution to the train benchmark
case. In: Proceedings of the 8th Transformation Tool Contest, A
Part of the Software Technologies: Applications and Foundations
(STAF 2015) Federation of Conferences, L’Aquila, Italy, July 24,
2015, pp. 152–156 (2015)

46. Krikava, F.: Solving the ttc’15 train benchmark case study with
SIGMA. In: Proceedings of the 8th Transformation Tool Contest,
A Part of the Software Technologies: Applications and Foundations

(STAF 2015) Federation of Conferences, L’Aquila, Italy, July 24,
2015, pp. 167–175 (2015)

47. Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró,
D.: Incquery-d: a distributed incremental model query framework
in the cloud. In: Proceedings of the Model-Driven Engineering
Languages and Systems—17th International Conference, MOD-
ELS 2014, Valencia, Spain, September 28–October 3, 2014, pp.
653–669 (2014)

48. Pugh, W., Teitelbaum, T.: Incremental computation via function
caching. In: Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 315–
328. ACM (1989)

49. Acar, U.A.: Self-adjusting computation: (an overview). In: Pro-
ceedings of the 2009 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, pp. 1–6. ACM (2009)

50. Hammer, M.A., Acar, U.A., Chen, Y.: CEAL: a C-based Language
for self-adjusting computation. ACM SIGPLAN Not. 44, 25–37
(2009)

51. Burckhardt, S., Leijen, D., Sadowski, C., Yi, J., Ball, T.: Two for
the price of one: a model for parallel and incremental computation.
ACM SIGPLAN Not. 46, 427–444 (2011)

52. Harkes, D., Groenewegen, D.M., Visser, E.: Icedust: Incremental
and eventual computation of derived values in persistent object
graphs. In: 30th European Conference on Object-Oriented Pro-
gramming, ECOOP 2016, July 18–22, 2016, Rome, Italy, pp.
11:1–11:26 (2016)

53. Harkes, D., Visser, E.: Icedust 2: derived bidirectional relations and
calculation strategy composition. In: 31st European Conference on
Object-Oriented Programming, ECOOP 2017, June 19–23, 2017,
Barcelona, Spain, pp. 14:1–14:29 (2017)

54. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S.,
Meuter, W.D.: A survey on reactive programming. ACM Comput.
Surv. 45(4), 52:1–52:34 (2013)

55. Cooper, G.H., Krishnamurthi, S.: Embedding dynamic dataflow in
a call-by-value language. ESOP 3924, 294–308 (2006)

56. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg,
M., Bromfield, A., Krishnamurthi, S.: Flapjax: a programming lan-
guage for Ajax applications. ACM SIGPLAN Not. 44, 1–20 (2009)

57. Meijer, E.: Reactive extensions (RX): curing your asynchronous
programming blues. In: ACM SIGPLAN Commercial Users of
Functional Programming, Series CUFP ’10, ACM, p. 11:1 (2010)

58. Ramalingam, G., Reps, T.: A categorized bibliography on incre-
mental computation. In: Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pp. 502–510. ACM (1993)

59. Reiss, S.P.: An approach to incremental compilation. In: Proceed-
ings of the 1984 SIGPLAN Symposium on Compiler Construction,
Series, SIGPLAN ’84, pp. 144–156. ACM (1984)

60. Bergmann, G., Dávid, I., Hegedüs, Á., Horváth, Á., Ráth, I.,
Ujhelyi, Z., Varró, D.: Viatra 3: a reactive model transforma-
tion platform. In: Theory and Practice of Model Transformations.
Springer, pp. 101–110 (2015)

61. Reps, T.: Optimal-time incremental semantic analysis for syntax-
directed editors. In: Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
Series, POPL ’82, pp. 169–176. ACM (1982)

62. Hoffman, K.: Continuous linq. Dr. Dobbs J. 33(2), 55–58 (2008)
63. Blakeley, J.A., Larson, P.-A., Tompa, F.W.: Efficiently updating

materialized views. SIGMOD Rec. 15(2), 61–71 (1986)
64. Gupta, A., Mumick, I.S., et al.: Maintenance of materialized views:

problems, techniques, and applications. IEEE Data Eng. Bull.
18(2), 3–18 (1995)

65. Kuno, H.A., Rundensteiner, E.A.: Using object-oriented principles
to optimize update propagation to materialized views. In: Proceed-
ings of the Twelfth International Conference on Data Engineering,
1996, pp. 310–317. IEEE (1996)

66. Giarrusso, P.G., Ostermann, K., Eichberg, M., Mitschke, R., Ren-
del, T., Kästner, C.: Reify your collection queries for modularity
and speed! In: Proceedings of the 12th Annual International Confer-
ence on Aspect-Oriented Software Development, pp. 1–12. ACM
(2013)

67. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object
pattern match problem. Artif. Intell. 19(1), 17–37 (1982)

68. Ujhelyi, Z., Bergmann, G., Hegedús, Ábel, Horváth, Ákos, Izsó,
B., Ráth, I., Szatmári, Z., Varró, D.: EMF-IncQuery: an integrated
development environment for live model queries, Part 1. Sci. Com-
put. Program. 98, 80–99 (2015)

69. Ráth, I., Hegedüs, Á., Varró, D.: Derived features for EMF by inte-
grating advanced model queries. In: Vallecillo, A., Tolvanen, J.P.,
Kindler, E., Störrle, H., Kolovos, D. (eds.) Modelling foundations
and applications, pp. 102–117. Springer (2012)

70. Bergmann, G.: Translating OCL to graph patterns. In: Din-
gel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.)
Model-Driven Engineering Languages and Systems, pp. 670–686.
Springer (2014)

71. Cabot, J., Teniente, E.: Incremental integrity checking of
UML/OCL conceptual schemas. J. Syst. Softw. 82(9), 1459–1478
(2009)

72. Reder, A., Egyed, A.: Incremental consistency checking for com-
plex design rules and larger model changes. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) Model Driven Engi-
neering Languages and Systems, pp. 202–218. Springer (2012)

73. Uhl, A., Goldschmidt, T., Holzleitner, M.: Using an OCL impact
analysis algorithm for view-based textual modelling. Electron.
Commun. EASST 44, 1–20 (2011)

74. King, V., Sagert, G.: A fully dynamic algorithm for maintaining
the transitive closure. In: Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, pp. 492–498. ACM
(1999)

75. Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge
University Press, Cambridge (2003)

76. Crole, R.L.: Categories for Types. Cambridge University Press,
Cambridge (1993)

77. Stachowiak, H.: Allgemeine Modelltheorie. Springer, New York
(1973)

78. Hinkel, G.: Using structural decomposition and refinements for
deep modeling of software architectures. Softw. Syst. Model.
(2018). https://doi.org/10.1007/s10270-018-0701-6

Georg Hinkel received his B.Sc.
and M.Sc. degrees in Computer
Science from the Karlsruhe Insti-
tute of Technology (KIT), in 2011
and 2014, respectively, and the
B.Sc. degree in mathematics in
2012. In 2017, he received his
Ph.D. degree on implicit incre-
mental model analyses and trans-
formations from the KIT. Cur-
rently, he is a software technol-
ogy engineer at Tecan Software
Competence Center GmbH. His
research interest covers model-
driven engineering, incremental-

ity and medical robotics. He has organized several international work-

shops and is a reviewer for multiple international journals. He is the
lead developer of NMF and has (co)-authored more than 30 peer-
reviewed publications.

Robert Heinrich is head of the
Quality-Driven System Evolution
Research Group at Karlsruhe
Institute of Technology (Germany).
He holds a doctoral degree from
Heidelberg University and a
degree in Computer Science from
University of Applied Sciences
Kaiserslautern. His research inter-
ests include quality modeling and
analysis across several domains,
such as information systems, busi-
ness processes and automated pro-
duction systems. One core asset of
his work is the Palladio software

architecture simulator. He is involved in the organization committees
of several international conferences, established and organized vari-
ous workshops, is reviewer for international premium journals, like
IEEE Transactions on Software Engineering and IEEE Software, and
is reviewer for international academic funding agencies. Robert is
principal investigator or chief coordinator in several grants from gov-
ernmental funding agencies. He has (co-)authored more than 50 peer-
reviewed publications and spent research visits in Chongqing (China)
and Tel Aviv (Israel).

Ralf Reussner holds the Chair for
Software-Design and -Quality at
Karlsruhe Institute of Technology
since 2006 and heads the Institute
of Program Structures and Data
Organisation. His research group
works in the interplay of soft-
ware architecture and predictable
software quality as well as on
view-based design methods for
software-intensive technical sys-
tems. Ralf Reussner published over
150 peer-reviewed papers in Jour-
nals and Conferences, but also
established and organized various

conferences and workshops, including QoSA and WCOP. In addi-
tion, he acts as a PC member or reviewer of several conferences and
journals, including IEEE Transactions on Software Engineering, IEEE
Software and IEEE Computer. He founded the software architecture
section of the German Informatics Society in 2006 and is speaker of
its software engineering division since 2017. As scientific director of
the FZI—Research Center for Information Technologies he consults
various industrial partners in the areas of component based software,
architectures and software quality. He is principal investigator or chief
coordinator in several grants from industrial and governmental fund-
ing agencies. Ralf received offers on full professorships from Univer-
sity of Osnabrück, University of Hamburg and Technical University
of Munich, which he all rejected. From 2003 till 2006 he held the
Juniorprofessorship for Software Engineering at the University of Old-
enburg, Germany, and was awarded with a grant of the Emmy-Noether
young investigators excellence programme of the National German
Science Foundation (DFG).

https://doi.org/10.1007/s10270-018-0701-6

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Hinkel, G.; Heinrich, R.; Reussner, R.
An extensible approach to implicit incremental model analyses.
2019. Software and systems modeling, 18.
doi:10.5445/IR/1000091136

Zitierung der Originalveröffentlichung:

Hinkel, G.; Heinrich, R.; Reussner, R.
An extensible approach to implicit incremental model analyses.
2019. Software and systems modeling, 18 (5), 3151–3187.
doi:10.1007/s10270-019-00719-y

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000091136
https://publikationen.bibliothek.kit.edu/1000091136
https://publikationen.bibliothek.kit.edu/1000091136
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

	An extensible approach to implicit incremental model analyses
	Abstract
	1 Introduction
	2 Running example
	3 Incrementalization as a functor
	4 Integrating dynamic algorithms into incremental analyses
	4.1 Choice of algorithms
	4.2 Reification of the problem for incrementalization

	5 An extensible implicit incremental computation system in .NET
	5.1 Overview
	5.2 Incrementalization at instruction level
	5.3 Incrementalization of higher-order functions
	5.4 Extensibility

	6 Incremental queries as an example extension
	7 Validation and evaluation
	7.1 Goals and strategy
	7.2 An incremental average micro-benchmark
	7.2.1 Benchmark setup
	7.2.2 Results

	7.3 The TTC 2015 Train Benchmark
	7.3.1 Benchmark setup
	7.3.2 The NMF solution
	7.3.3 Results

	7.4 Threats to validity
	7.4.1 Internal validity
	7.4.2 External validity

	7.5 Summary

	8 Related work
	8.1 General-purpose incremental computation systems
	8.2 Reactive programming
	8.3 Specialized incremental approaches

	9 Conclusion
	10 Future work
	Acknowledgements
	A Details and proofs
	A.1 A very brief introduction to category theory
	A.2 Mutable type categories
	A.3 Why not monads?
	A.4 Proof of Theorem 1

	References

