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ABSTRACT

Energy transfer along finite curvature plasma-metal interfaces in cylindrical metallic waveguides entirely filled by magnetoactive
plasma is studied. Angular phase velocity, angular velocity of energy transfer, and angular group velocity are introduced and ana-
lyzed as functions of the waveguide parameters: radius, plasma particle density, azimuthal wave number, and external static axial
magnetic field.
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I. INTRODUCTION

The difference between “velocity of transmission of phase”
tph and “velocity of propagation of vibratory motion” tg was
established for the first time in Ref. 1 as one of the conclusions
of research in the field of theory of light.

Thirty four years later, in studies of elastic waves in contin-
uous media, the average wave energy flux density was found to
be proportional to the average wave energy density.2

The brief and complete overview of the history of imple-
mentation of the term “group velocity” in Ref. 3 makes it possible
not to repeat it herein. However, the significance of the group
velocity as a tool for studying a wide scope of physical problems
keeps it in the focus of many investigations until now.

One can find three different definitions of the group veloc-
ity, e.g., in Ref. 4. The first one is the group velocity tg ¼ dx/dk.
In Ref. 4, Rayleigh was specified as the person who was the first
to introduce this definition while studying the sound waves.
However, as it is already mentioned above, Hamilton had oper-
ated with the group velocity already in 18391 while studying the
theory of light. The second definition is the signal velocity ts of
Sommerfeld4 who introduced this value while ascertaining in a
one-dimensional approach how a well-defined signal propa-
gates in a material medium. The third one is the velocity of
energy transfer ten, which is the proportionality coefficient
between the energy flux surface density averaged over the time

period (in electrodynamics, this is the well-known Poynting vec-
tor) and the averaged wave energy volume density. For instance,
a rigorous identity between the group velocity tg and the veloc-
ity of energy transfer ten in non-uniform non-dissipative media
with or without anomalous dispersion was demonstrated under
very general conditions in Refs. 5 and 6. The precise physical
meaning of the complex group velocity in absorbing and active
media is a matter of extensive research (see, e.g., Ref. 7 and
references therein). These three velocities were shown to be
identical for non-absorbing media and differ considerably in an
absorption band.

The group velocity also plays an important role in the the-
ory of linear particle accelerators.8 In particular, the group
velocity was shown to be a significant characteristic observable
in studies of power flow in the waveguide.9

They use to introduce group velocity in classical textbooks
on electrodynamics, including plasma electrodynamics. It was
demonstrated on pages 246–248 in Ref. 10 that in vacuum wave-
guides, the axial energy flux density is in general case propor-
tional to the energy density with the group velocity tgz � @x/
@kz as the coefficient of proportionality.

The term group velocity is also widely used in plasma elec-
trodynamics. The group velocity tg ¼ dx/dk was introduced, for
example, on page 33 in the textbook11 as the quantity which
“characterizes the velocity of amplitude (and with that energy)
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displacement” without any reasoning. However, the authors of
this textbook almost did not apply the term in presenting
selected chapters of plasma electrodynamics. This explains the
fact that this mistake in the physical sense of the group velocity
did not interfere with the authors of the textbook in obtaining
correct physical results in the field of plasma electrodynamics
and avoiding mistakes in physical issues.

The other popular comprehensive textbook in plasma elec-
trodynamics12 does not discuss the relation between the group
velocity tg¼ dx/dk and velocity of energy transfer ten. In studies
on plane electromagnetic waves in infinite homogeneous plas-
mas, the group velocity was applied there for explaining the
phenomenon of conical refraction13 in magnetohydrodynamics
which is analogous to that in crystal optics.14

However, the energy transfer is usually considered in non-
bounded media. Even the waveguide theory considers usually
the energy transfer along the waveguide axis only (along the
boundary). In this case, the axial wave vector kz is obtained from
the dispersion relation. Then, both phase and group wave veloci-
ties are defined in a usual way but using the axial component of
the wave vector instead of complete wave vector in the medium.
However, it is clear that the electromagnetic energy in wave-
guides with arbitrary cross section can rotate around the axis
but not only propagate along the axis.

The objective of this paper is to introduce an angular veloc-
ity of energy transfer xen for description of electromagnetic
energy rotation around the axis of cylindrical plasma wave-
guides, as well as an angular group velocity xg, and angular
phase velocity xph. Propagation of azimuthal surface waves
(ASWs) of extraordinary polarization (XASWs) along the plasma-
metal interface in cylindrical waveguides is considered as an
example.

ASWs are well-known to be eigenwaves of these wave-
guides.15–17 They propagate strictly across the axial external
static magnetic field~B0k~z. Their fields depend on time and coor-
dinates as follows:~E; ~H ¼ fðrÞ exp ðimu� ixtÞ. Here, u is the azi-
muthal angle, and m and x are the azimuthal wavenumber and
angular frequency of ASWs, respectively. The waveguide param-
eters are assumed not to depend on the axial coordinate, so that
@/@z¼0. In this case, the Maxwell equations split into two sub-
sets. One describes the waves of ordinary polarization (OASWs)
with the field components Ez, Hr, Hu. The other corresponds to
the extraordinary polarized waves (XASWs) with the field com-
ponentsHz, Er, Eu.

The case of a dense plasma, for which the inequality
X2

e > x2
e is valid, here xe and Xe are the electron cyclotron and

plasma (Langmuir) frequencies, respectively, is considered. In
this case, XASWs propagate along the plasma-metal interface in
the following two frequency ranges:

xLH < x < jxej; (1)

xUH < x < x2; (2)

where x2 ¼ jxej=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

e þ x2
e=4

q
is the cut-off frequency for

bulk modes, and xLH and x UH are the lower and upper hybrid
frequencies, respectively. The frequency range (1) is referred
hereinafter as the low frequency (LF) region and (2) as the high
frequency (HF) range.

Ordinarily polarized azimuthal waves (AWs) are of surface
nature if their frequency is lower than the Langmuir frequency
(x < Xe).16,17 They are out of scope of detailed analysis in the
present paper. That is why their properties are mentioned only
briefly here.

Electrodynamic properties of plasmas are described by the
dielectric permittivity tensor eik of a cold collisionless plasma.18

The radial distributions of the axial electric field of OASWs and
axial magnetic field of XASWs are described by second order
differential equations of Bessel type. The solutions of these
equations are linear combinations of modified Bessel functions
ImðnÞ and MacDonald functions KmðnÞ.19 In particular, for the
XASWs

Hz ¼ A1Imðk?rÞ þ A2Kmðk?rÞ: (3)

In (3), k? ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � 1Þe1

p
, l ¼ e2=e1, k ¼ x=c, e1,2 are the compo-

nents of the permittivity tensor eik, and A 1;2 are constants of
integration. The value k?–1 has the following clear physical
sense: it is a radial scale at which the amplitude of the XASW
field sufficiently decreases with going away from the plasma
interface.

Radial distributions of the radial Er(r) and azimuthal Eu(r)
electric fields of XASWs can be derived from the known distri-
bution of the wave axial magnetic fieldHz(r)

Er ¼
x

ck2?
l
@Hz

@r
þm

r
Hz

� �
; Eu ¼

ix
ck2?

@Hz

@r
þ l

m
r
Hz

� �
: (4)

The interior problem of ASW propagation along the
plasma-metal interface of a cylindrical waveguide is considered.
The cylindrical metallic chamber of radius a is entirely filled by a
plasma column (see Fig. 1). The boundary condition of finite
magnitude of the wave fields allows us to determine the

FIG. 1. Scheme of the problem: a metal chamber is entirely filled with magneto-
active plasma.
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constant of integration A2. This integration constant is set to A2

¼ 0 to eliminate the pole of KmðnÞ, which is known to diverge at
the axis (r¼ 0), limn!0KmðnÞ ¼ 1.

XASWs are unidirectional waves,15,17 which means that in
specific frequency ranges, their dispersion relation allows solu-
tions with only one sign of azimuthal wavenumber. In other
words, XASWs propagate in specific frequency ranges in a defi-
nite direction without the reflected signal. This feature can be of
interest for radio frequency engineering. The azimuthal wave-
numbers of XASWs can be only positive, m>0, in the LF fre-
quency range (1). In this range, XASWs propagate in the same
direction in which electrons gyrate in an external static axial
magnetic field. In the HF range (2), XASW azimuthal wavenum-
bers are only negative,m<0.

Since the waveguide metal walls are assumed to have infi-
nite electric conductivity, the application of non-dissipative
boundary condition at the plasma-metal interface, r¼a, allows
us to derive the dispersion relation of XASWs in the following
form:

Dðx; mÞ � k?RF0mðk?aÞ þmlFmðk?aÞ ¼ 0; (5)

where FmðnÞ ¼ ImðnÞ for the considered problem. In the approxi-
mation of large azimuthal wavenumber, jmj � 1, Eq. (5) trans-
forms into the dispersion relation for surface waves which
propagate exactly across the external static magnetic field along
a planar plasma-metal boundary.20

The dispersion relation (5) also describes the dispersion
properties of extraordinarily polarized electromagnetic azi-
muthal bulk waves (XABWs) whose frequency real parts lie out-
side of the frequency ranges (1) and (2), which are not the
subject of detailed analysis of the present paper. In this case,
Fm(n)¼ Jm(n), where Jm(n) is the Bessel function of the first kind.19

Angular phase velocity xph, angular group velocity xg, and
angular velocity of energy transfer xen of both LF and HF
XASWs are introduced and studied in the present paper with
respect to their dependence on plasma waveguide parameters:
azimuthal wavenumber, radius of the interface, plasma particle
density, and external static magnetic field.

The paper is arranged as follows. An analytical study of
electromagnetic energy rotation and treatment of the men-
tioned three angular velocities is given in Sec. II. The dependen-
cies of the three angular velocities are numerically analyzed in
detail in Sec. III. Section IV contains the discussion of the
obtained results and conclusions.

II. ANALYTICAL TREATMENT OF XASW
ELECTROMAGNETIC ENERGY TRANSFER

To the best of our knowledge, the terms angular phase
velocity, angular group velocity, and angular velocity of energy
transfer are introduced in this paper for the first time. However,
the terms which correspond to angular rotation are well-known
long ago. For example, orbital angular momentum (OAM) carried
by light beams (vortex beams) was discovered in Ref. 21 and has
been widely employed in many technological applications like
optical tweezers, optical drives of micro-machines, atom trap-
ping, and optical communications.

Higher-order mode gyrotrons were shown to be natural
sources of high-power OAM millimeter wave beams.22 While
OAM describes the phase twisting, the so-called spin angular
momentum is used for studying the twisting of the wave electric
field (polarization).22

The well-defined OAM of rotating cavity modes operating
near the cutoff frequency excited by gyrating electrons in a
high-power electron cyclotron maser (ECM)—a gyrotron—was
derived by photonic and electromagnetic wave approaches in
Ref. 23. A mode generator, built with a high-precision 3D print-
ing technique to mimic the rotating gyrotron modes for precise
low-power measurements, showed clear natural production of
higher-order OAM modes. Cold-test measurements of higher-
order OAM mode generation promised the realization towards
wireless long-range communications using high-power ECMs.

In studying a capability of XASWs to sustain a gas discharge
in cylindrical waveguides, the angular discharge “length” was
used in Ref. 24 rather than the linear discharge length commonly
used for the case of planar discharge chambers.

To study electromagnetic energy rotation carried by
XASWs, one has to get use of the Poynting vector2,10,25

~S � c
4p
~E � ~H: (6)

Since azimuthal waves (AWs, both bulk and surface) do not
propagate in the axial direction, kz ¼ 0, they naturally do not
transfer any energy along the ~z axis. This is confirmed via the
direct calculation of the axial component of the Poynting vector

Sz �
c
4p

ErHu � EuHrð Þ: (7)

For ordinarily polarized AWs, the electric wave field components
Er and Eu are equal to zero, and the Poynting vector component
Sz is hence equal to zero. Extraordinarily polarized AWs do con-
tain neither radialHr nor azimuthalHu magnetic fields, and their
axial energy flux is also zero.

The absence of axial component of energy flux of azimuthal
waves is also clear in terms of group velocity

tgz �
@x
@kz
¼ � @Dðx;mÞ=@kz

@Dðx;mÞ=@x : (8)

Indeed, since the axial wavenumber kz does not come, e.g., into
the XASW dispersion relation (5), D(x,m) is independent of kz,
and hence, tgz¼ 0.

This result for the axial group velocity was expected in
advance since the axial power flux in the waveguide of arbitrary
cross-section is proportional to the axial wavenumber.26

Generally speaking, the dispersion relation of electromagnetic
waves in cylindrical waveguides with the axial magnetic field can
depend on the axial wavenumber kz. But if the wave group veloc-
ity in the axial direction is zero, one can conclude that the dis-
persion relation of electromagnetic waves is an even function of
kz. In this case, the first derivative of the dispersion relation in
respect of kz is an odd function of kz. As a sequence, the electro-
magnetic wave power does not propagate axially if kz ¼ 0 like it
should be from the physical point of view. In other words, the
spectra of electromagnetic waves in cylindrical waveguides with
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the axial magnetic field are degenerated in respect of the kz
sign. This is well-known, but it is very pleasant to see that the
present theory is self-coordinated and internally consistent.

Since azimuthal waves (both bulk and surface) propagate in
cylindrical waveguides, their energy flux in the radial direction is
also zero. This is obvious since eigenwaves of cylindrical wave-
guides are standing waves in the radial direction. This can also
be checked by the calculation of the Poynting vector. The radial
component of the Poynting vector is

Sr �
c
4p

EuHz: (9)

In the non-dissipative approach, e1,2 are real values, and the
phase shift of Eu compared to Hz is p/2 [see Eq. (4)]. This means
that averaging of Sr over the time period T gives zero

hSriT �
c
4p

EuðrÞHzðrÞ

�

ðT

0

ð�cos mu� x tþ u0ð Þsin mu� xtþ u0ð ÞÞdt

T
¼ 0:

(10)

Finally, the energy flux of azimuthal waves (both bulk and
surface) in the azimuthal direction is nonzero. This is expected
from the point of view of general physics, but the application of
the Poynting vector directly confirms this statement. The azi-
muthal component of the Poynting vector is

Su �
�c
4p

ErHz: (11)

In the non-dissipative approach, the phase shift of Er compared
to Hz is 0 [see Eq. (4)]. This means that averaging of Su over the
period Tdoes not give zero

hSuiT �
�c
4p

ErðrÞHzðrÞ

ðT

0

cos2 mu� x tþ u0ð Þdt

T

¼ �cErðrÞHzðrÞ
8p

6¼ 0: (12)

A. Angular phase velocity

The linear phase velocity tph ¼ x/ku cannot be considered
as an appropriate tool for describing the “velocity of phase trans-
mission” of azimuthal waves since one has to choose an azi-
muthal wave vector ku in some way. The simplest solution would
be ku ¼ m/r. However, since it depends on the radial coordinate
r, it does not fit. One has to introduce the angular phase velocity
to describe the azimuthal wave propagation in the azimuthal
direction. It can be easily derived from differentiating the phase f
¼ (f0þmu–xt)¼ Const,where df¼ (mdu–xdt)¼ 0)

xph ¼ x=m: (13)

B. Angular group velocity

In the case of the cylindrical plasma waveguide structure,
the angular group velocity

xg �
@x
@m
¼ � @Dðx;mÞ=@m

@Dðx;mÞ=@x (14)

can be introduced. The definition (14) cannot be applied for
studying ASW properties in neither plasma-filled coaxial metal-
lic waveguides nor for the exterior problemwhich is ASWs prop-
agating around a metal rod in infinite magneto-active plasma
since the dispersion relation contains McDonald functions. The
partial derivative of Km(n) with respect to the order m is not
defined by mathematics. However, the definition (14) can be
applied for studying the properties of XABWs mentioned above
since the derivative @JmðnÞ=@m is known in mathematics. The
following numerical analysis confirms that, in general, the angu-
lar velocity xen of energy transfer (18) is not equal to the angular
group velocity (14) though their signs coincide.

C. Angular velocity of energy transfer

In contradiction to the angular phase velocity xph given in
(13) and the angular group velocity xg of Eq. (14) which are inte-
gral characteristics of the azimuthal energy transfer, the angu-
lar velocity of energy transfer xen(r) can be introduced as the
radial dependence of the ratio of the averaged azimuthal
Poynting flux Su(r) ¼ �(c/8p)Er(a)Hz(a)b(r) to the angular elec-
tromagnetic energy density d3W/(drdzdu) ¼ (r/16p)(jE(r)j2
þ jH(r)j2) ¼ (a/16p)(jE(a)j2 þ jH(a)j2)v(r) which is also averaged
over the wave period. Both values are presented already in nor-
malized forms, where their radial dependencies given in Eqs. (3)
and (4) are contained in the functions b(r) and v(r).

Since, as it was mentioned above, in the simplest cases of
Cartesian coordinates the velocity of energy transfer is equal to
the group velocity, it is convenient to introduce the integral azi-
muthal velocity of energy transfer xen. First, one has to calculate
the time averaged energy flux (not energy flux density, which is
the Poynting vector) which is carried by the AWs through the rect-
angle ABCD (see Fig. 2). One side is a segment on the axis of the
waveguide; its length is arbitrary, let it be DC ¼ dz. The opposite
side is the axial segment of the same length AB¼ dz at themetallic
wall of the waveguide. The other two sides are the radii DA and CB
which connect the ends of the first and second sides.This flux is

dz
ða

0

Sudr: (15)

This flux can also be calculated as the product of the angu-
lar velocity of energy transfer xen and the time averaged energy
of the electromagnetic wave, which is contained inside the ele-
mentary volume drawn in Fig. 2.

Note that this elementary volume is not (!) a rectangular
parallelepiped even in the limit du� 1. The volume is restricted
by the rectangle ABCD described above and the other one,
which can be obtained by rotating the first one by the elemen-
tary angle du (see Fig. 2). This electromagnetic energy dW is
given by

dW ¼ dz du
ða

0

rudr; (16)
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where u is the electromagnetic energy density6

u ¼ 1
8p
jEj2 þ jHj2
� �

: (17)

Then, the definition of the integral angular velocity of energy
transfer reads as

xen ¼
ða

0

Sudr
�ða

0

rudr: (18)

In general, monochromatic electromagnetic azimuthal
waves (both bulk and surface) propagate in cylindrical wave-
guides with azimuthal phase velocity (13) and carry on their
energy with the angular velocity of energy transfer (18).
Azimuthal waves do not carry their energy along the~z axis, tenz
¼ 0.

III. RESULTS OF NUMERICAL ANALYSES

The radial dependencies of normalized azimuthal Poynting
flux b(r), normalized angular electromagnetic energy density
v(r), angular velocity of energy rotation xen(r)/jxej, and linear
velocity of energy transfer rxen(r)/c are plotted in Figs. 3 and 4
for Z � Xe/jxej ¼ 5 and m¼ 2. The electromagnetic energy is
concentrated mainly near the plasma-metal interface and the
electromagnetic energy flux is also the largest near the inter-
face. However, the angular velocity of the energy transfer has its
maximum near the waveguide axis. The latter means that the
efficiency of energy rotation is the largest just there: the full
energy of elementary cylindrical volume drmakes the full circle
faster than in the other elementary cylindrical layers. Figure 4
presents the linear velocity of the energy rotation to confirm
the fact that it does not exceed the velocity of light. The solid
and dotted curves in Figs. 3 and 4 correspond to the case of

small wave penetration depth into the plasma: kef ¼ 0.649,
k?a¼ 3.0, x/jxej ¼ 0.594, and the dashed and dashed-dotted
curves describe the case of larger wave penetration depth: kef
¼ 5.77, k?a¼0.333,x/jxej ¼ 0.99.

The XASW phase velocity xph given in Eq. (13) is a very sim-
ple function of the XASW eigenfrequency x. The dependence of
x on the plasma waveguide parameters was analyzed in detail in
Refs. 15 and 17. That is why not too much attention is paid to xph

in the present paper. It is only used to be compared with the
angular velocity of energy transfer xen in Figs. 5 and 6. The
dependence ofxen on the plasmawaveguide parameters is stud-
ied in detail in Figs. 5–8. Thereafter, the dependence of the

FIG. 2. Schematic of the definition of angular velocity of energy transfer.

FIG. 3. Radial profile of normalized azimuthal energy flux density b(r)—right ordi-
nate axis (dashed-dotted and dotted curves) and that of angular velocity of energy
rotation, xen(r)/jxej—left ordinate axis (dashed and solid curves).

FIG. 4. Radial profile of normalized angular electromagnetic energy density v(r)—
right ordinate axis (dashed-dotted and dotted curves) and that of local linear veloc-
ity of energy transfer, rxen(r)/c—left ordinate axis (dashed and solid curves).
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angular group velocity xg is analyzed and compared with xen in
Figs. 9–12. The numbers nearby the curves mark the azimuthal
wavenumberm.

They present the dispersion dependencies as a function of
eigenfrequency vs wave vector, x ¼ x(k). The ratio m/a can be
chosen as a characteristic azimuthal wave vector in the present
problem. That is why the effective wavenumber kef ¼ jmjd/a is
chosen as abscissa in Figs. 5–12, where d ¼ c/Xe is the skin-
depth. For LF XASWs, the value of kef is closely related to the
magnitude of the argument k?a of the Bessel functions in the
dispersion relation (5): kef � jmj/(k?a). According to this defini-
tion, increasing kef corresponds to decreasing waveguide radius
a and decreasing plasma particle density. However, the effective

wavenumber kef is not a proper abscissa if one studies the
dependencies on azimuthal wavenumber m since kef is propor-
tional to jmj. To investigate these dependencies, separate
numerical runs were carried out which results are given below
in the text but not presented in the form of figures.

The ranges of kef for which numerical analyses were per-
formed are chosen based on the following reasons. For LF
XASWs, the calculations are stopped for those values of kef for
which the eigenfrequency becomes close to jxej which is the
upper limit of the LF frequency range (1). This range is 0< kef< 2.

In Figs. 6, 8, 10, and 12, in which the dependencies of the HF
XASW angular phase velocity, angular velocity of energy trans-
fer, and angular group velocity on kef are presented, the curves

FIG. 5. LF XASW angular phase velocity (dashed lines) and angular velocity of
energy transfer (solid lines) for Z¼ 5.

FIG. 6. HF XASW angular phase velocity (dashed lines) and angular velocity of
energy transfer (solid lines) for Z¼ 10.

FIG. 7. LF XASW angular velocity of energy transfer for two different strengths of
the external static axial magnetic field B0: Z¼ 5 (dashed lines) and Z¼ 10 (solid
lines).

FIG. 8. HF XASW angular velocity of energy transfer for two different strengths of
the external static axial magnetic field B0: Z¼ 5 (dashed lines) and Z¼ 10 (solid
lines).
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are calculated for those ranges of kef where these waves can
propagate. These ranges are known to be limited by zero on the
left side and a moderate value of kef on the right side.15,17 For HF
XASWs, small values of kef also correspond to plasma wave-
guides with thin penetration depths (k?a� 1), and the values of
kef close to the right limit of the range correspond to plasmas
wherein HF XASWs penetrate deeply (k?a� 1).

In Figs. 5 and 6, absolute values of angular phase velocity
and angular velocity of energy transfer normalized by the elec-
tron cyclotron frequency, jxen,ph/xej, are chosen as the ordinate
axis. The dashed curves correspond to the angular phase veloci-
ties and the solid curves to angular velocities of energy transfer.

In Fig. 5, one can see that the absolute value of the angular
velocity of energy transfer of LF XASWs (solid curves) is larger

than that of the corresponding angular phase velocity (dashed
curves). The horizontal dashed-dotted line relates to the upper
limit of the LF frequency range (1), Z¼ 5. The absolute value of
the angular phase velocity is known15,17 to approach xLH/jmj
� jxej with the decreasing effective wavenumber, kef ! 0. The
dispersion of LF XASWs is normal: the signs of their angular
velocities of energy transfer and phase velocities coincide. The
absolute value of the angular velocity of energy transfer jxenj of
LF XASWs decreases with increasing curvature radius a of the
plasma-metal interface and increasing plasma particle density.
The dependence of jxenj on the absolute value jmj of the azi-
muthal wavenumber is not clear from Fig. 5 since the effective
wavenumber kef also depends on jmj.

Additional numerical analysis proves that jxenj of LF XASWs
decreases with increasing jmj. For small values of kef, both jxenj

FIG. 9. Angular group velocity of LF XASWs vs effective wavenumber for Z¼ 5
(dashed lines) and Z¼ 10 (solid lines).

FIG. 10. Angular group velocity of HF XASWs vs effective wavenumber for Z¼ 5
(dashed lines) and Z¼ 10 (solid lines).

FIG. 11. Angular group velocity (solid curves) and angular velocity of energy trans-
fer (dashed curves) of LF XASWs vs effective wavenumber for Z¼ 10.

FIG. 12. Angular group velocity (solid curves) and angular velocity of energy trans-
fer (dashed curves) of HF XASWs vs effective wavenumber for Z¼ 10.
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and jxphj are approximately proportional to kef, and for large val-
ues of kef, they saturate.

Figure 6 shows that angular phase velocities (dashed
curves) of HF XASWs are larger than their velocities of energy
transfer (solid curves). The dashed-dotted lines indicate the
boundaries of the frequency range (2) for HF XASWs. With the
decreasing effective wavenumber (kef ! 0), the absolute values
of the phase velocities approach the finite values xUH/jmj, and
jxenj of HF XASWs decreases to a value which is much lower
than jxej. The absolute values of xph approach the finite values
x2/jmj for moderate values of Max{kef} < 1,15–17 and HF XASWs
do not propagate in the waveguides with parameters which cor-
respond to the values of kef > Max{kef}. For 0 < kef < Max{kef},
jxenjmonotonously increases.The absolute values of both angu-
lar phase velocity and angular velocity of energy transfer of HF
XASWs decrease with increasing jmj. The dispersion of HF
XASWs also appears to be normal.

The dispersion properties of XASWs are known to strongly
depend on the external static magnetic field B0.15–17 Figures 7
and 8 present the results of studying the influence of an external
static magnetic field on the angular velocity of energy transfer.
That is why the absolute value of xen normalized by the
Langmuir frequency is used in these figures as the ordinate axis.
In this case, both abscissa and ordinate contain the Langmuir
frequency in the denominator. In Figs. 7 and 8, the dashed curves
are used for the dependencies plotted for Z � Xe/jxej ¼ 5, and
the solid curves for the weaker external static magnetic field,
Z¼ 10. In Fig. 7, one can see that jxenj of LF XASWs increases
with increasing B0. The opposite behavior is shown in Fig. 8 for
HF XASWs,where jxenj decreases with increasing B0.

The results of numerical studies on the effect of the external
static magnetic field B0 on the dependence of the angular group
velocity of XASWs vs effective wavenumber are presented in Figs.
9 and 10. By definition, larger Z corresponds to smaller B0. The
angular group velocity of LF XASWs is plotted in Fig. 9. It
increases with the increasing external staticmagnetic field, unlike
jxgj for HF XASWs, which is smaller for larger B0 as shown in Fig.
10.This characteristic of the dependence of jxgj vsB0 is in qualita-
tive agreement with the dependence of the angular velocity of
energy transfer jxenj (see Figs. 7 and 8). The angular group velocity
of LF XASWs demonstrates non-monotonous behavior, unlike
jxgj for HF XASWs which infinitely increases with the increasing
effective wavenumber. This feature of the dependence of jxgj on
the effective wavenumber has no analogy with that of jxenj.

In Figs. 11 and 12, the dependence of the magnitude of the
angular group velocity jxgj of XASWs on kef is compared with
that of jxenj. The absolute value jxgj of HF XASWs infinitely
increases when kef approaches the right limit of the kef range
within which HF XASWs can propagate. For sufficiently small
values of kef, the absolute value of the angular group velocity is
smaller than that of the angular velocity of energy transfer, jxgj
< jxenj. The value of kef for which jxgj ¼ jxenj is larger for XASWs
with larger absolute values of the azimuthal wavenumberm. The
angular group velocity of LF XASWs is smaller than xen and
depends non-monotonously on kef . The absolute value of the
angular group velocity of both LF and HF XASWs decreases with
the increasing absolute value of the azimuthal wavenumber.

IV. CONCLUSIONS

When non-axisymmetric electromagnetic waves (whose
axial and azimuthal wavenumbers are nonzero, kz 6¼ 0, m 6¼0)
propagate in cylindrical waveguides, their energy is transferred
in two directions. A part of the energy is transferred along the
waveguide axis. This is described and studied elsewhere. The lin-
ear velocity of energy transfer,which is the proportionality coef-
ficient between the Poynting vector given in Eq. (6) and spatial
electromagnetic energy density Eq. (17), is the appropriate tool
for description of this motion. The other part of the electromag-
netic energy rotates around the waveguide axis. The linear
velocity of energy transfer cannot be used for the description of
such energymotion.

The radial dependence of the angular velocity of the energy
rotation shows that the electromagnetic power rotates most
effectively near the waveguide axis although the electromag-
netic energy density and electromagnetic energy flux are the
largest near the plasma-metal interface for XASWs. Since the
radial dependence of the angular velocity of the energy transfer
is strongly non-monotonous, the integral value of the angular
velocity of the energy rotation xen is introduced.

The angular phase velocity xph, angular group velocity
xg, and angular velocity of energy transfer xen should be
applied to study the electromagnetic energy rotation in
cylindrical waveguides. The definitions of these physical val-
ues are introduced for the case of azimuthal electromagnetic
waves (kz ¼ 0). These angular velocities are studied here in
their dependence on the plasma waveguide parameters for a
cylindrical metal chamber entirely filled by plasmas in two
frequency ranges: low frequencies (LF) defined by Eq. (1) and
high frequencies (HF) defined by (2).

The angular phase velocity xph given by Eq. (13) is defined
as the angular velocity with which the half-plane of the wave
fixed phase (mu � xt ¼ Const) rotates around the waveguide
axis.

The angular velocity of energy transfer xen described by Eq.
(18) is defined as the proportionality coefficient between the
averaged electromagnetic energy flux and the averaged electro-
magnetic energy contained in an angular unit volume (see Fig. 3,
in which the angle du should be put equal to unit).

The angular group velocity xg given by Eq. (14) is defined as
the angular velocity with which the wavepacket consisting of
the modes with different azimuthal wavenumbers m rotates
around the waveguide axis without change in shape. This physi-
cal value cannot be considered as a universal one since it can be
calculated only for a small scope of waveguide structures.

In the present paper, it is shown that the dispersion of
XASWs is normal: the directions of the angular velocity of
energy transfer xen and the angular phase velocity xph coincide.
For LF XASWs, the absolute value of the angular velocity of
energy transfer is shown to be larger than that of the angular
phase velocity (jxenj > jxphj) or vice versa jxenj < jxphj for HF
XASWs. Increasing the external static magnetic field results in
an increase in the absolute value of the angular velocity of LF
XASW energy transfer and decrease in the jxenj for HF XASWs.
Both angular velocity of energy transfer and angular phase
velocity increase with the increasing effective wavenumber.
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The mathematical operation of differentiation over the
order of Bessel functions is principally not defined for neither
Neumann nor McDonald functions. That is why only for a few
cylindrical plasma waveguide structures, like the interior prob-
lems studied in this paper, the angular group velocity can be
theoretically calculated. The dependence of the angular group
velocity xg of XASWs on plasma waveguide parameters is
derived analytically and studied numerically. The difference
between xg and the angular velocity of energy transfer xen is
more pronounced for those plasma waveguide parameters for
which the XASW eigenfrequency is close to the upper limits of
these wave frequency ranges: electron cyclotron frequency jxej
and cut-off frequency for bulk modes x2. This result is in agree-
ment with the conclusion of Ref. 4, where it is noticed that for
electromagnetic waves, the group velocity can be considered as
the velocity of energy transfer only if they propagate in media
whose permittivity is a slowly varying function of the wave
frequency.

The presented analysis of electromagnetic energy transfer
in cylindrical plasma-filled waveguides can be of interest, first of
all, for plasma electronics,17 plasma production in gas dis-
charges,24,27,28 development of new nano-dimensional photonic
elements, and surface enhanced Raman spectroscopy (see, e.g.,
Ref. 29 and references therein).
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